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ABSTRACT

UNDERSTANDING THE ELECTRICITY-WATER-CLIMATE CHANGE
NEXUS USING A STOCHASTIC OPTIMIZATION APPROACH

by

Ivan Saavedra-Antoĺınez

The University of Wisconsin-Milwaukee, 2014
Under the Supervision of Professor Vishnuteja Nanduri Ph.D.

Climate change has been shown to cause droughts (among other

catastrophic weather events) and it is shown to be exacerbated by the

increasing levels of greenhouse gas emissions on our planet. In May 2013,

CO2 daily average concentration over the Pacific Ocean at Mauna Loa

Observatory reached a dangerous milestone of ≈ 400 ppm, which has not

been experienced in thousands of years in the earth’s climate. These levels

were attributed to the ever-increasing human activity over the last 5-6

decades. Electric power generators are documented by the U.S. Department

of Energy to be the largest users of ground and surface water and also to be

the largest emitters of carbon dioxide and other greenhouse gases. Water

shortages and droughts in some parts of the U.S. and around the world are

becoming a serious concern to independent system operators in wholesale

electricity markets. Water shortages can cause significant challenges in

electricity production having a direct socioeconomic impact on surrounding

regions. Several researchers and institutes around the world have
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highlighted the fact that there exists an inextricable nexus between

electricity, water, and climate change. However, there are no existing

quantitative models that study this nexus. This dissertation aims to fill this

vacuum.

This research presents a new comprehensive quantitative model that studies

the electricity-water-climate change nexus. The first two parts of the

dissertation focuses on investigating the impact of a joint CO2 emissions

and H2O usage tax on a sample electric power network. The latter part of

the dissertation presents a model that can be used to study the impact of a

joint CO2 and H2O cap-and-trade program on a power grid. We adopt a

competitive Markov decision process (CMDP) approach to model the

dynamic daily competition in wholesale electricity markets, and solve the

resulting model using a reinforcement learning approach.

In the first part, we study the impacts of different tax mechanisms using

exogenous tax rate values found in the literature. We consider the

complexities of a electricity power network by using a standard

direct-current optimal power flow formulation. In the second part, we use a

response surface optimization approach to calculate optimal tax rates for

CO2 emissions and H2O usage, and then we examine the impacts of

implementing this optimal tax on a power grid. In this part, we use a

multi-objective variant of the optimal power flow formulation and solve it

using a strength Pareto evolutionary algorithm. We use a 30-bus IEEE

power network to perform our detailed simulations and analyses. We study
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the impacts of implementing the tax policies under several realistic

scenarios such as the integration of wind energy, stochastic nature of wind

energy, integration of PV energy, water supply disruptions, adoption of

water saving technologies, tax credits to generators investing in water

saving technologies, and integration of Hydro power generation. The third

part, presents a variation of our stochastic optimization framework to

model a joint CO2 and H2O cap-and-trade program in wholesale electricity

markets for future research.

Results from the research show that for the 30-bus power grid, transition

from coal generation to wind power could reduce CO2 emissions by 60%

and water usage about 40% over a 10-year horizon. Electricity prices

increase with the adoption of water and carbon taxes; likewise, capacity

disruptions also cause electricity prices to increase.
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Chapter 1

Introduction

The security and prosperity of all nations in the twenty-first century are

directly connected with smart and sustainable management of both energy

and water resources. In the United States, it is well known that the electricity

industry is the single largest contributor of greenhouse gases (GHGs) causing

climate change and is also one of the largest consumers of ground and surface

water. Climate change is known to drastically affect water availability, which

in turn affects the operation of new power plants undermining the energy

security goals of the nation. Clearly, electricity, water, and climate change

are inextricably linked to each other. This relationship, however, has not

been considered by the policymakers who continue to tackle energy, water,

and climate change management policies as disjointed issues. This approach

could be myopic and could have severe consequences in the future.

Climate change has been shown to have a negative effect on the daily
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lives of humans, since it impacts the availability and quality of basic natu-

ral resources that are essential for a healthy life such as air and water. In

the U.S., records for high temperatures have been broken in past two years

with 2012 being the hottest year on record. Over the last two years, the U.S.

population has faced catastrophic climate-related disasters with some regions

experiencing strong hurricanes and tropical storms (e.g., Super Storm Sandy

in October of 2012, causing blackouts, floods, deaths and economic losses

across the region); while others experiencing large wildfires due to extreme

heat and dry weather (e.g., Waldo Canyon Wild Fire in 2012 is the most

expensive in history, destroying thousands of homes and businesses). Fur-

thermore, other ecosystem impacts due to climate change such as droughts

leading to challenges in irrigation for farmers and other socioeconomic dam-

ages for the general public have been reported [2].

In large countries like China and India, population at the middle income

level is increasing rapidly leading to a dramatic increase in demand for more

electricity. Even at the domestic level, demand for electricity is on the rise

albeit not at the same rate. As a consequence of this increasing demand,

electricity production from dominant technologies (coal, gas, nuclear) is also

increasing, thereby releasing large amounts of greenhouse gas emissions, using

up large quantities of water and also causing negative impacts on the climate.

In May 2013, CO2 daily average concentration over the Pacific Ocean at

Mauna Loa Observatory reached a dangerous milestone of ≈ 400 ppm, which

has not been experienced in thousands of years in the earths climate. Similar
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significant increases in CO2 concentrations in the air have also been detected

by many observatories around the world, reigniting the discussions of climate

change and the role of greenhouse gas emissions.

In 2012, Nebraska experienced power outages because demand exceeded

records of electricity usage. It is very likely that there will be more water-

stressed regions in the U.S. as the temperatures are expected to increase

between two to four degrees Celsius over the next decade. It was noted in [3]

that on the one hand power plants experienced water shortages, while on the

other hand some power generators faced the challenge of hotter than usual

water which affected the efficiency of their cooling systems.

Similarly, records of low precipitation in the Midwest have also been bro-

ken in 2012 due to dry conditions and high pressures, affecting thermoelectric

generation given their high water consumption. In the case of the thermo-

electric power plants, dry conditions could result in a decrease in power

generation. As noted in [2] in 2011, Texas thermoelectric power plants were

affected due to droughts and were under a high risk of being shutdown.

Other similar cases of electricity generation reduction due to droughts were

experienced in California and Missouri hydropower plants.

Some federal and individual state-level environmental initiatives have

been introduced to increase greener power production, increase energy ef-

ficiency, and reduce carbon emissions. Some of these plans include carbon

cap-and-trade (in California and RGGI regions) and renewable portfolio stan-

dards (in over two dozen states). Cap-and-trade programs for controlling
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GHG emissions and their impact on wholesale electricity markets have been

studied extensively in the literature. Carbon taxation is a command-and-

control approach to reduce GHGs. The fundamental difference between a

cap-and-trade program and a tax program is that a tax fixes the price on

CO2 emissions and expects that the emissions would adjust as a result. On

the other hand, a cap-and-trade program controls the quantity of emissions

and expects prices to follow suit [4]. Proponents of a tax scheme argue that

it is a much more stable mechanism since entities subject to taxes have a

direct price signal without unnecessary volatility. Given the current aversion

of businesses to price and regulatory uncertainties, perhaps, a tax mechanism

is a plausible alternative.

The debate as to which carbon reducing mechanism (tax or cap-and-

trade) is better is an ongoing one and there is no unanimous agreement

among researchers or policy makers. While world leaders are taking some ac-

tions about the climate change issues related to energy, the electricity-water-

climate change nexus has not been studied in great detail and is starting to

become a serious concern. Since there are no existing quantitative models

that examine this nexus, the goal of this research is to study this nexus under

a joint CO2 emissions and H2O usage tax for both water usage and carbon

emissions, and then present the directions needed to use this model to study

a joint CO2 emissions and H2O usage cap-and-trade program.
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1.1 Electricity-Water-Climate Change Nexus

As noted in [5, 6], electricity production requires water, and water supply,

transport, and purification requires electricity. As such, the growing demand

for more energy will drive the demand for more water and vice-versa. Elec-

tricity production generates a tremendous amount of carbon dioxide (and

other greenhouse gases), leading to climate change. On the other hand, cli-

mate change has been shown to cause severe water shortages, in turn affecting

the electricity generation ([7]). Extremely high usage of water is ubiquitous

in every facet of the energy sector, including extraction, refining, processing,

electric power generation, storage, and transport. It also has a devastating

impact on downstream water quality because of waste streams, runoff from

mining operations, and noxious emissions. [5] have done some of the pioneer-

ing work in shining the spotlight on the electricity-water nexus. It is noted in

([8–10]) that on average, thermoelectric generators use more water than the

entire U.S agricultural and horticultural industry. A tremendous amount

of water is required for thermoelectric power plants to support electricity

generation, the highest demand coming from cooling water for condensing

steam.

While power generators return a significant percentage of water back to

the source, the returned water is at a higher temperature causing heat pollu-

tion, which affects the surrounding ecosystem. The returned water is also of

much lower quality, thereby requiring significant further energy expenditure
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on purification for any future human use. Furthermore, water withdrawal for

energy production causes a significant strain to the amount of water avail-

able for simultaneous use in the ecosystem and human consumption. It is

to be emphasized that up to 3.3 billion gallons of water is consumed each

day by power plants. [5] note that due to increasing population, rising en-

ergy demands, and water shortages, the U.S. could have close to two dozen

water crisis areas in the next decade. These areas include some of the na-

tion’s most populous metropolitan centers that may have to trade-off between

water-usage for human consumption and electricity production. Clearly, such

trade-offs can have devastating impacts on the economy; hence, a coherent

electricity-water-climate change policy is needed to avert a national crisis.

It is unfortunate that given the importance of this area of research, there

are no model-based quantitative studies that comprehensively examine the

electricity-water-climate change nexus. This research is targeted at remedy-

ing this situation. Some other qualitative reports discussing the electricity-

water nexus include ([11–16]) and a quantitative tool for water use estimation

was developed by Argonne National Lab ([10]).

It can be seen from Figure 1.1a that the electricity sector is the largest

emitter of CO2 followed by transportation, industry, and residential users.

Also note in Figure 1.1b, that thermoelectric power plants are the largest

users of ground and surface water in the U.S., followed by irrigation, public

usage, and industry. In this research we focus our attention solely on the

electricity generation sector.
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(a) CO2 Emissions (b) H2O Usage

Figure 1.1: Emissions and water usage by sector

1.2 Big Picture

The fundamental contribution of this research is to develop a comprehen-

sive stochastic optimization and simulation framework that connects three

important components: electric power generation, CO2 emissions, and wa-

ter usage. We investigate the impact of a potential tax policy prescription

on electric power markets with the goals of reducing CO2 emissions and re-

ducing water usage. To ensure realism in the model, this research considers

all the intricacies that can manifest in a real life power grid: transmission

constraints, power balance constraints, bus angle constraints, supply, and

demand constraints.

This research studies the impact of a fixed CO2 and H2O tax combination

and a calculated optimal CO2 and H2O tax policy by imposing it on a power

market. The power market model we adopt in this research is a wholesale
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independent system operator-based one that is used in over two dozen states

in the U.S. The wholesale power market operation is discussed in detail in the

Literature Review section of this dissertation. We also model the complex

dynamic daily bidding behavior of power generators using a stochastic game

setting. Our model captures most of the realistic elements of how power mar-

kets operate and how market participants (e.g., generators) interact with it on

a daily basis. This dissertation also examines several realistic scenarios such

as wind energy integration, impact of stochasticity of wind, long-term water

supply disruptions, adoption of water saving technologies, inclusion of clean

coal technologies, tax credits, and integration of hydro power generation. We

finally present directions needed to use our model to study the impacts of a

joint CO2 and H2O cap-and-trade program on wholesale electricity markets.

1.3 Outline

The relevant literature review and concepts for this research are discussed

in Chapter 2. We present an overview of the wholesale electricity markets

to understand the essence of the market competition and the role of inde-

pendent system operators in the day-ahead operations on wholesale electric

power markets. Subsequently, we present an overview of tax policies, we

discuss the current mechanisms proposed by policy makers and their actual

U.S. environmental policies to mitigate CO2 emissions. We also discuss the

optimal power flow problem which is used by the independent system opera-
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Figure 1.2: Stochastic optimization and simulation framework
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tor to determine dispatch quantities and locational marginal prices under the

real complexities of a power grid, followed by a summary of the optimization

approaches commonly used to solve this problem and a multi-objective vari-

ant of the optimal power flow problem. In addition, we present a review of

the climate policy models found in the literature in which it can be seen that

there is no other model that consider the dynamic behavior of the electricity

market participants and the electricity-water-climate change nexus as we are

do in this research. In Chapter 3, we introduce the mathematical formula-

tions and the solution approaches used to model the generator’s competing

behavior in wholesale markets and the intricacies of a real power grid. A

competitive Markov decision process is presented to model the generator’s

bidding problem in competitive wholesale electricity markets and the rein-

forcement learning approach used as the solution approach to this model is

also presented. A standard direct-current optimal power flow formulation

is presented to represent the real properties of a power grid, as well as the

interior point method used to solve this problem. Similarly, we also present a

multi-objective variant of the direct-current optimal power flow formulation

which is solved using a evolutionary strength Pareto algorithm. In Chapter

4, we present the comprehensive numerical analysis and conclusions of the

impacts of implementing tax policies in wholesale electricity markets. Fi-

nally in Chapter 5, we present an overview of cap-and-trade programs, basic

concepts, and directions to be followed in our model in order to study the im-

pacts of a joint CO2 and H2O cap-and-trade program on wholesale electricity
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markets.
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Chapter 2

Literature Review

2.1 Review of Relevant Literature and Concepts

This chapter discusses the key concepts of the dissertation and the state of

the literature in this area. We discuss the operation of wholesale electric-

ity markets, cap-and-trade programs, carbon taxation, optimal power flow,

competitive Markov decision processes, and reinforcement learning.

2.2 Wholesale Electricity Markets

A wholesale electricity market is a system where a set of power companies

compete with one another with the interest of supplying electricity to meet

the system’s demand from large wholesale customers. The U.S. electricity

industry has been evolving from regulated markets with vertically integrated

monopolies where power systems are regulated by a government agency,
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which sets the prices for the electricity; to deregulated wholesale markets

with a more diverse industry that promotes competition by allowing power

generators to make supply offers, resulting in a variety of purchase options

for large electricity retailers or load serving entities [17]. These restructured

wholesale markets are typically administered by an independent system op-

erator (ISO), which is a non-profit entity. Readers are referred to [17–19] for

detailed description of restructured markets and other terminology.

The transactions in a wholesale electricity market occur in two types of

markets: the day-ahead (DA) energy markets and the real-time (RT) energy

markets. First, the day-ahead energy market calculates an hourly electricity

price for the next day, as well as the dispatch quantities to be assigned to

every supplier based on generation offers from suppliers and demands bids

from wholesale customers (transactions are settled daily); and second, the

real-time market which is a spot market, balances the deviations between

the day-ahead scheduled electricity dispatch quantities and the actual real-

time operational requirements in the system, given that the demand, the

generation capacities, and the system conditions can vary (transactions are

settled hourly or even as often as every 5 minutes).

In DA energy markets as shown in figure 2.1, on day D both generators

and consumers, submit price-quantity supply offers in $/MWH and demand

bids in MWH respectively to an Independent System Operator (ISO) before

the operating day D+1. The ISO is the entity that coordinates all the trans-

actions in a power grid, responsible for solving a complex network flow model
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(presented in detail in Section 2.4) that accounts for constraints related to

transmission, generation capacities, and demands, and returns the respective

dispatch quantities scheduled for every generator in the system and the lo-

cational prices for the next operating day. In the U.S., currently, there are

seven independent system operators providing two-thirds of the electricity

demanded: California independent system operator (CAISO), electric relia-

bility council of Texas (ERCOT), Midwest independent transmission system

operator (MISO), ISO New England (ISO-NE), New York independent sys-

tem operator (NYISO), PJM interconnection (PJM), and southwest power

pool (SPP). In this research we focus our attention on the day ahead segment

of wholesale electricity markets.

2.3 Carbon Taxes

It has been noted in the literature that the purpose of a tax policy is to change

a particular consumer behavior associated with a specific good. Furthermore,

in the context of non-fiscal taxation, the purpose is to produce a certain

economic or social effect and alter private sector choices independently of the

revenue in order to meet specific government goals [20, 21]. Policy makers

have proposed carbon taxes as an environmental policy instrument to reduce

the amount of carbon emissions due to electricity generation [22, 23] by

directly taxing the quantities of carbon emissions produced by the sources

(coal, oil, gas generators). The revenue obtained from taxes is expected to
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Figure 2.1: Energy market model

be invested in green and efficient energy related projects. There are several

goals of implementing a tax policy [24]: to raise revenues, to provide economic

stimulus, to achieve social objectives, and to correct market failures. In this

research, one of our goals is to examine the effects of imposing such taxes

on both CO2 emissions and water usage in wholesale electricity markets.

What implications do different tax rates have on electricity prices? What

implications do tax rates have on power generator profits, consumer welfare,

and supply shares. These are some of the fundamental questions we examine

via this dissertation.

Current U.S. energy tax incentives and rebate policies are described well
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in the 2012 CRS report to congress [24]; some of the measures include: cred-

its for investing in clean coal facilities, credits for electricity production and

investment in renewable sources, and credits for energy efficiency. Similarly,

tax incentives are being used in the European Union (EU) in order to stim-

ulate the use of green energy technologies. In [23], it was noted that most of

the countries with the highest increases in green electricity generation in the

EU were those where a tax incentive was implemented. Similar findings are

reported from simulations of the impacts of a carbon tax on economies like

China [25] and South Africa [26].

Carbon tax proposals have been presented to the U.S. Congress (H.R.

594 by Stark [27], H.R. 1337 by Larson [28], H.R. 2380 by Inglis [29], and

H.R. 1683 by McDermott [30]), however, they have not been considered as the

principal tool for energy and climate change legislations because of particular

design elements. Proponents of carbon taxes note that they provide cost

certainty given that the tax rate is known ahead of time, but it does not

present certainty in benefits (i.e., desired reductions of carbon emissions).

However, there is no a clear agreement about whether is better to have

cost certainty or benefit certainty [31], since sometimes the tax rate can be

adjusted in order to correct this uncertainty. Metcalf and Weisbach [32] noted

that an appropriate CO2 tax should be equal to the social marginal damages

from producing an additional unit of carbon dioxide emissions. However,

computing social marginal damages is an extremely complex challenge as

noted in the Stern Review [33]. It is noted in [33] that estimating the social
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cost of carbon is a complex multi-stage process involving the assessment

of effects of greenhouse gases on temperature, regional impacts assessment,

rates of technical progress, potential abatement investments, and so on.

In this research, we investigate the three different tax schemes proposed

for carbon-dioxide emissions by Metcalf and Weisbach [32]: We use our model

as a vehicle for understanding the impacts of such tax mechanisms on com-

plex wholesale electricity market operations.

2.4 Optimal Power Flow

Optimal power flow (OPF) problems have been used by independent system

operators to minimize cost of electricity production subject to electric power

network constraints, to identify dispatch quantities and locational marginal

prices. However, several formulations have been studied for about 50 years in

the literature making specific assumptions and varying the objective function,

constraints, or both. The standard OPF problem seeks to minimize the total

generation cost subject to balance power injection constraints, branch flow

limits, bus angles limits, and power injection limits. The real-world prac-

tical formulation of the OPF problem is known as the alternating current

optimal power flow (ACOPF) problem. The ACOPF was first formulated

by Carpentier in 1962. It has been shown to be a very difficult problem to

solve [34] due to the nonlinearities in the objective function and constraints

and because it considers both active and reactive power at the same time,
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notwithstanding the large size of real wholesale electricity markets. Given

this complexity, a simplified linearized version, the direct current optimal

power flow (DCOPF) problem is mostly used in the electricity market liter-

ature to study OPF problems. In some DCOPF formulations the objective

function is nonlinear but with a linear set of constraints, and it only considers

active power injections.

Several methods have been studied to solve the OPF problem as noted in

[35], most of which can be subdivided into the following three basic categories:

deterministic methods for solving the OPF, stochastic methods for solving

the OPF, and hybrid methods.

[36] presents an excellent survey about deterministic optimization meth-

ods to solve the OPF problems, including gradient methods (RG), Newton

methods, simplex method, sequential linear programming (SLP), sequential

quadratic programming (SQP), and interior point methods (IPMs) for non-

linear or quadratic formulations. It is also noted by [37] that several non-

deterministic methods have been applied to the OPF problem. They include

Ant colony optimization (ACO), artificial neural networks (ANN), bacterial

foraging algorithms (BFA), chaos optimization algorithms (COA), variety of

evolutionary algorithms (EAs), particle swarm optimization (PSO), simu-

lated annealing (SA), and Tabu search (TS). For details readers are referred

to [36] and [37]. Both deterministic and non-deterministic methods have

their own advantages and disadvantages. For instance, most deterministic

methods can not easily handle discrete variables, non-convex, and complex
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formulations, while non-deterministic methods can handle these effectively;

however, they are usually computationally intensive and sensitive to param-

eters chosen.

2.4.1 Multi-objective Optimization

There are several papers in the literature that have solved the optimal power

flow problem with multiple objectives using non-deterministic/artificial in-

telligence methods. In our research, for one of the cases we studied, we

adopted a multi-objective approach for tackling the optimal power flow prob-

lem. There are several variants of the OPF problem from a multi-objective

standpoint including multi-objective economic dispatch problem (MOEDP)

and variants of the multi-objective optimal power flow problem (MOOPF).

For the sake of brevity, we have summarized these contributions in the table

below.

2.5 Climate Policy Modeling

Climate Policy Modeling: Research in the area of climate policy model-

ing and analysis with respect to electricity markets (without any water policy

component) has progressed along two distinct lines. The first is large-scale

simulation-based models ([4, 54–62]) and the second is mathematical

programming based (theoretical) models ([63–68]). However, none of

these papers consider the dynamic gaming behavior, adaptive learning be-
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Table 2.1: Multi-objective techniques to solve MOOPF

Technique Minimize Source

Strength Pareto Evolutionary Algorithms
(SPEA)

1. Fuel cost
[38]

2. Emissions
1. Real power cost

[39]
2. Voltage stability index

Enhanced Genetic Algorithm (EGA)
1. Fuel cost

[40]2. Real power losses
3. Voltage stability index

Particle Swarm Algorithms (PSA)

1. Fuel cost
[41]

2. Emissions
1. Generation cost

[42]
2. Emissions
3. Transmission losses
4. Voltage stability index

Simulated Annealing (SA)
1. Power losses

[43]2. Emissions
3. Severity index

Bees Algorithms (BA)
1. Fuel cost

[44]2. Emissions
3. Real power losses

Non-dominated Sorting Genetic Algorithm
(NSGA)

1. Fuel cost
[45]

2. Emissions
1. Real power losses

[46]
2. Voltage stability index

Gravitational Search Algorithms (GSA)
1. Fuel cost

[47]2. Transmission losses
3. Voltage deviation

Differential Evolution Algorithms (DEA)

1. Fuel cost
[48]2. Emissions

3. Real power losses
1. Fuel cost

[49]
2. Emissions

Harmony Search Algorithm (HSA)

1. Fuel cost
[50]

2. Emissions
1. Fuel cost

[51]
2. Emissions

Bacterial Foraging Algorithm (BFA)

1. Fuel cost
[52]

2. Emissions
1. Fuel cost

[53]
2. Emissions

havior, and repeated interactions of electricity market participants. This

dissertation, on the other hand, develops a comprehensive CMDP model

that considers the dynamic gaming behavior. The proposed reinforcement

learning based solution approach incorporates the realistic adaptive learning

behavior of numerous market participants.

Solution Approaches for Dynamic Stochastic Games: A critical as-

pect in the study of dynamic stochastic games (such as CMDPs) is the re-

ward mechanism, common forms of which are discounted reward, average

reward, and total reward. In the repeated game environment of a day-ahead
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market, the rewards from the bids are realized within a day, and, hence,

average reward appears to be the most appropriate reward criterion. The

reward criterion significantly impacts the existence of equilibria of stochastic

games. For example, discounted reward non-zero sum CMDPs are guaran-

teed to have at least one mixed strategy Nash equilibrium. But, the question

whether, with respect to the average reward criterion, equilibrium solutions

always exist for non-zero sum games is still open ([69]).

No exact computational method exists for obtaining the Nash equilib-

ria of a non-zero sum average reward stochastic game. The difficulty of

computation arises from the complex nature of interactions among the com-

peting decisions of the participants, probabilities of state transitions, and the

reward structure. In the recent years, algorithms based on a stochastic ap-

proximation method (known as reinforcement learning) have been presented

in literature to solve stochastic games.

2.5.1 Brief background about Reinforcement Learning

(RL)

The theory of RL is founded on two important principles: Bellman’s equation

and the theory of stochastic approximation ([70, 71]). Any learning model

contains four basic elements: system environment (simulation model), learn-

ing agents (market participants), set of actions for each agent (action spaces),

and system response (participant rewards).

Consider a system with three competing market participants. At a decision-
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making epoch when the system is in state s, the three learning agents that

mimic the market participants select an action vector (a = (a1, a2, a3) ε A).

These actions and the system environment (model) collectively lead the sys-

tem to the next decision-making state (say s′). As a consequence of the action

vector (a) and the resulting state transition from s to s′, the agents get their

rewards (r1(s, a, s′), r2(s, a, s′)), and r3(s, a, s′)) from the system environ-

ment. Using these rewards, the learning agents update their knowledge base

(R-values, also called reinforcement value) for the most recent state-action

combination encountered (s, a). The updating of the R-values is carried out

slowly using a small value for the learning rate, which completes a learning

step. At this time the agents select their next actions based on the R-values

for the current state s′ and the corresponding action choices. The policy of

selecting an action based on the R- values is often violated by adopting a

random choice, which is known as exploration, since this allows the agents

to explore other possibilities. The probability of taking an exploratory ac-

tion is called the exploration rate. Both learning and exploration rates are

decayed during the iterative learning process. This process repeats and the

agent performances continue to improve. In the proposed RL algorithm, the

current average reward values are also learned to avoid large fluctuations.

After continuing learning for a large number of steps, if the R-values for all

state-action combinations converge, the learning process is said to be com-

plete. The converged R-values are then used to find a stable policy for each

of the agents. A rationale for the above R-value updating scheme can be
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found in the reinforcement learning literature ([72], [73]).
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Chapter 3

Mathematical Formulation and

Solution Framework

3.1 Problem Statement

This research aims to understand the electricity-water-climate change nexus

by first studying the impact of taxation policy in wholesale electric power

markets with the goals of reducing carbon dioxide emissions and water us-

age by electric power generators, and second by proposing a comprehensive

framework to study the impact of a cap-and-trade policy in wholesale elec-

tric markets to also reduce CO2 emissions and H2O usage. For this pur-

pose, we model the electric power generator’s bidding problem as a competi-

tive Markov decision process (CMDP) and we solve it using a reinforcement

learning approach (RL). This dissertation is subdivided into two main thrust
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areas: 1) implications of carbon and water tax policies on electric power

markets and 2) a model to study the potential implications of a joint water

and carbon cap-and-trade policy on electric power markets.

The first area is further examined in two separate studies:

1. In the first study, we impose exogenous tax rates (from literature) for

both water and CO2 on electric power markets and study their impact

in detail. In order to consider the intricacies of a power grid, we use the

standard DCOPF formulation as shown in Section 3.2. The objective

function of this problem consists of minimizing costs related to: power

generation, CO2 emissions, and water usage. The mathematical model

and solution approach are presented in sections 3.2 and 3.5 respectively.

2. In the second study, we calculate the optimal tax rates using a response

surface methodology and then study the impact of these optimal tax

rates in electric power markets. The OPF formulation we use in this

study is a multi-objective one that includes the minimization of three

separate objective functions: the generation cost, the cost related to

CO2 emissions, and the cost related to water usage. The mathematical

model and the multi-objective OPF’s solution approach are presented

in sections 3.3 and 3.6 respectively.

The overall research objectives of this dissertation are as follows:

1. Develop a stochastic optimization framework to evaluate the energy-

water-climate change nexus.
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Figure 3.1: Core components under study
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2. Perform a detailed study of the impacts of a new joint water and carbon

tax mechanism on electric power generators to limit water usage and

control CO2 emissions.

- exogenous tax rates

- calculation of optimal tax rates for a given power grid

3. Under taxation policies, investigate several real world scenarios encom-

passing wind energy integration, stochasticity of wind energy, long-term

water supply disruptions, adaptation of water saving technologies, in-

clusion of clean coal technologies, tax credits, and integration of hydro

power generation.

4. Propose a model to study the impacts of a cap-and-trade program on

electric power generators to limit H2O usage and CO2 emissions.

In the following sections we present the mathematical formulations used

to model the traditional optimal power flow problem, the multi-objective

optimal power flow problem, the electric power generator’s bidding problem;

followed by the individual solution approaches for each of them.

3.2 Mathematical Formulation of the DC-Optimal Power

Flow

As mentioned in Section 2.4, the optimal power flow problem can be for-

mulated as an alternating current optimal power flow (ACOPF) problem or
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as an direct current optimal power flow (DCOPF) problem. Because the

difficulties of solving an ACOPF described in Section 2.4, the DCOPF for-

mulation is mostly used in the electricity market literature to study OPF

problems. The DCOPF problem consists of a set of linear constraints and

seeks the minimization of the total cost of meeting the active power demand

of the system. The general formulation is presented below.

min
Θ,Pg

ng∑
i=1

f iP (pig) (3.1)

subject to

gP (Θ, Pg) = BbusΘ + Pbus,shift + Pd +Gsh − CgPg = 0 (3.2)

hf (Θ) = BfΘ + Pf,shift − Fmax ≤ 0 (3.3)

ht(Θ) = −BfΘ− Pf,shift − Fmax ≤ 0 (3.4)

Θref
i ≤ Θi ≤ Θref

i , i ∈ Iref (3.5)

pi,ming ≤ pig ≤ pi,maxg , i = 1...ng (3.6)

• Equation (3.1) minimizes the total cost of meeting active power de-

mands, where Θ are the voltage angles, Pg denotes the real power

injections, ng is the number of generators, and f iP is a piecewise linear

cost function of generator i.

• Equation (3.2) balances the real power injections in the system, where

gP (Θ, Pg) are the load injections, Bbus are the bus voltage angles,



29

Pbus,shift is the shift injection vector, Pd is the real power demand,

Gsh are the generation shift factors, and Cg is a binary variable that

identifies the location of a generator.

• Equations (3.3) and (3.4) represent the branch flow limits, where hf is

the branch flow from a specific bus, ht is the branch flow to a specific

bus, Bf are the shunt susceptance values, Pf,shift is the shift injection

vector for the from bus, and Fmax is the vector of flow limits.

• Equation 3.5 maintains the bus angles Θi within the bounds Θref
i , where

Iref is the set of bus indices for the reference buses.

• Equation 3.6 controls the real power injections (pig) within lower and

upper limits pi,ming and pi,maxg respectively.

In this research, we assess the performance of power generators in a whole-

sale electricity market under different CO2 and H2O tax mechanisms. We,

therefore, introduce two new terms in the objective function described above.

Hence, the modified objective function can be written as follows.

min
Θ,Pg

ng∑
i=1

f iP (pig) + f iCO2
(pig) + f iH2O

(pig), (3.7)

where f iCO2
represents the preset tax on CO2 emissions and f iH2O

denotes the

preset tax on water usage. The solution approach used to solve the DCOPF

problem is presented in Section 3.5.
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3.3 Mathematical Formulation of the Multi-objective

DC-Optimal Power Flow Model

The multi-objective DC-optimal power flow problem (MODCOPF) is a mod-

ification of the DCOPF problem presented in the previous section 3.2, which

has a linear set of constraints and minimizes the total cost of meeting the

active power demand in the system. In this section, we modify the DCOPF

formulation by adding two additional objective functions: 1) minimize the

total cost of CO2 emissions and 2) minimize the total cost of water used.

Then the MODCOPF formulation is as follows:

Optimize:

min
Θ,Pg

ng∑
i=1

f iP (pig) (3.8)

min

ng∑
i=1

f iCO2
(ei)(pig) (3.9)

min

ng∑
i=1

f iH2O
(wi)(pig) (3.10)

subject to the same set of constraints (3.2-3.6) presented in 3.2.

• Equation (3.8) minimizes the total cost of meeting active power de-

mands, where Θ are the voltage angles, Pg denotes the real power

injections, ng is the number of generators, and f iP is the cost function

of generator i.
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• Equation (3.9) minimizes the total cost of CO2 emissions, where f iCO2

is the tax set for CO2 emissions, ei is the emission factor of generator

i, and pig are the load injections of all generators.

• Equation (3.10) minimizes the total cost of water used, where f iH2O
is

the tax set for water used, and wi is the water usage factor of generator

i.

The solution approach used to solve the MODCOPF problem is presented

in Section 3.6.

3.4 Mathematical Formulation of the Competitive Markov

Decision Process

In this section, the notation for the electricity generator’s bidding problem is

presented and we show how it can be model as a competitive Markov decision

process (CMDP).

We develop a model similar to the one in [74]. Let B denote the set of

buses in the network, and Bs ⊂ B denotes the subset of supply buses (nodes).

Let the number of generators be denoted by N , and M denote the number

of loads in the network. Let G = {1, 2, · · · , N} and L ={1, 2, · · · ,M} denote

the set of generators and the set of loads in the network respectively.

System State: We define the system state for the tth day X t as the total

demand of the most recently completed day. Since demand is a random

variable, it is necessary to discretize it to develop a discrete stochastic model.
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Let the range of possible values for network demand be discretized in U steps.

Our model allows the level of discretization to be as refined as necessary for

the desired modeling accuracy.

Stochastic Process: The random process for the state transition of the

day-ahead market can be defined as X = {X t : t ∈ Z}, where Z is the set of

integers. The value of X t along with the bid submitted on the tth day dictate

the system state of (t + 1)th day, X t+1. Clearly, the X process satisfies the

Markov property. This along with other characteristics such as discrete and

finite system states and time homogeneity assumption for the stochastic load

realization process (within a demand season), make the X process a Markov

chain.

CMDP Notation: Let the bid decision vector at the tth day be given by

Dt = {Dtl : l ∈ G}, where Dtl is the decision vector of generator l and is

given as Dtl = (Stl ). The element Stl denotes the vector of bid parameters

for each of the 24 hours. The stochastic bidding decision process involves

daily selection of bid parameters by the generators. This stochastic process

is referred to as the decision process, denoted by D = {Dt : t ∈ Z}, where Dt

is the decision vector chosen on the tth day. Since the decision vectors Dt
l are

chosen by the generators in a non-cooperative manner, the bidding scenario

characterized by the joint process X and D is a competitive Markov decision

process (CMDP-[69]).

The rewards for the bidding decisions made by the electric power gener-

ators are obtained by solving the DCOPF model presented in Section 3.2 if
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mono-objective setting is applied, or the MODCOPF model presented in 3.3

if multi-objective setting. The solution approach used to solve the CMDP

model is presented in Section 3.7.

3.5 Solution Approach for the DCOPF Model

In order to solve the DCOPF model presented in the Section 3.2, we im-

plement the primal-dual interior point method described in [75] in C++.

A general formulation of an optimization problem is presented below and

the primal-dual interior point method is then explained in relation to the

DCOPF problem.

min
x

1

2
xTHx+ cTx (3.11)

subject to:
l ≤ Ax ≤ u (3.12)

xmin ≤ x ≤ xmax (3.13)

The objective function (Equation 3.11) is quadratic in nature. However,

it can also be used to represent the linear objective function as described in

the DCOPF problem (Equation 3.7). H is the matrix with the quadratic cost

coefficients (this is a matrix of zeros in the DCOPF), c is the vector of linear

cost coefficients (related to each generator’s piecewise linear cost function).

Equation 3.12 describes the linear constraints and Equation 3.13 represents

the bounds on the decision variables (Θ, Pg). A, l, and u denote the matrices
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of coefficients of x, lower, and upper bounds of the linear constraints (related

to real power balancing and branch flow limit equations (3.2, 3.3, 3.4) from

the DCOPF), xmin and xmax in Equation (3.13) are the lower and upper

bounds of the x variables (related to bus angles and real power injection

equations (3.5, 3.6) of the DCOPF). Very briefly, the interior point algorithm

works as follows.

1. The original problem is modified by converting the inequality con-

straints to equality constraints by adding slack variables, and then by

introducing a barrier function to the objective with a parameter value

of γ. When γ converges to zero at the end of the algorithm, the solution

to this modified problem is the same as that of the original.

2. The Lagrangian for this modified equality constrained problem is com-

puted.

3. All the partial derivatives of the Lagrangian are then set to zero in

order to satisfy the first order optimality conditions (Karush-Kuhn-

Tucker conditions).

4. Finally, the Newton’s method [76] is used to solve the KKT conditions

while updating the x variables in each iteration until γ converges to

zero.
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3.6 Solution Approach for the MODCOPF

The multi-objective optimization approach adopted to solve the MODCOPF

described in Section 3.3 was the strength Pareto evolutionary algorithm

(SPEA). In our previous work [77], the SPEA was used successfully for solv-

ing large multi-objective optimization problems in scheduling operations. In

this research, we adopt a similar approach and also utilize the procedure pre-

sented by Zitsler and Thiele [78] for solving the multi-objective OPF. The

SPEA, makes use of the Pareto optimality concept to find the final set of

optimal solutions. This is achieved by performing an iterative evolution pro-

cess making use of the Pareto dominance concept and by performing genetic

operations to create new solutions in every generation until the front set of

solutions cannot be improved any more. The steps of the algorithm are pre-

sented in the following table (Algorithm 1) and we subsequently describe it

in detail.

Step 0) Initialize parameters: Denote MaxGenerations as the maximum

number of generations in the algorithm, numGenerations as the counter of

generations, and MaxPnd as the maximum number of solutions in the non-

dominated set.

Step 1) Generate the initial population:

To create each member of the initial population P , random dispatch

quantities are assigned to all generators, and constraints (3.2) - (3.6) from
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Algorithm 1: SPEA: MultiObjective DCOPF

1 P ← GenerateInitialPopulation()
2 while numGenerations ≤MaxGenerations do
3 F ← CalculateObjectiveFunctions(P )
4 Pnd ← SelectNonDominated(P )
5 if (size(Pnd) > MaxPnd) then
6 Pnd← Clustering(Pnd)

7 fitness← CalculateF itness(P, Pnd)
8 Ps ← SelectionSet(P, Pnd, fitness)
9 Pc ← CrossOver(Ps)

10 Pm ←Mutation(Ps)
11 P ← UpdatePopulation(Pnd, Pc, Pm)
12 numGenerations = numGenerations+ 1

13 Pbest ← FindBestCompromiseSolution(Pnd)
14 LMP ← CalculateLMP (Pbest)

the MO-DCOPF formulation are checked to ensure the feasibility of each

member that is generated.

Step 2) Evaluate the objective functions: Define A = {< A1 >,<

A2 >, · · · , < An >}) such that each member is a tuple containing all three

objective function values based on the dispatch quantities for every member

in P . Recall that the objective functions are: 1) minimize the production

cost (equation 3.8), 2) minimize the CO2 emissions cost (equation 3.9), and

3) minimize the H2O usage cost (equation 3.10).

Step 3) Select the non-dominated solutions: Find Pnd : Ai � Aj,

where i 6= j

Step 4) Clustering: If |Pnd| > P̄nd (where P̄nd is a predefined constant)

reduce Pnd by clustering. First, calculate the Euclidean distance for all com-
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binations of pairs of solutions in Pnd. Second, for the pair of solutions with

the minimal distance, select the solution closest to the centroid and remove

the farthest one. Repeat these steps until |Pnd| = P̄nd.

Step 5) Fitness calculation: The fitness is obtained by finding the

strength of every solution in P and Pnd as described in [79]. For each element

of Pnd, fi = Si, Si=ni/(size(P )+1), where ni is the number of solutions from

P that are dominated by solution i in Pnd; and for every solution j in P ,

calculate fj = 1 +
∑

i,i�j Si.

Step 6) Selection set: Create a new set Ps : {Pnd, Prws}, where Prws ⊂

P and is selected by the commonly used Roulette-Wheel Selection (RWS)

method ([80]) based on the fitness values (fi, fj) calculated in the previous

step.

Step 7) Crossover operator: To explore the entire solution space we

then perform a crossover operation as follows. For each pair of consecutive

solutions we apply one of the two commonly used crossover procedures. Draw

a uniform random number between zero and one; if the random number is less

than a pre-defined crossover probability use an arithmetic blended crossover

operation as shown below [81]:

xnew1
i = α ∗ xi + (1− α) ∗ yi (3.14)

xnew2
i = (1− α) ∗ xi + α ∗ yi, (3.15)
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else if, apply a heuristic crossover operation [81]:

xnew1
i = xi + (yi − xi) ∗ α (3.16)

xnew2
i = xi − (yi − xi) ∗ α, (3.17)

else, do nothing.

Where xi and yi are the parent solutions and α = Unif(0, 1). All xnew1 and

xnew2 are elements of a new crossover solution set Pc.

Step 8) Mutation operator: Perform a mutation on the solution set Ps

to create a new set Pm.

Step 9) Update population: Concatenate sets Pnd, Pc, and Pm to create

the updated set P . If generations < MaxGen, return to Step2, otherwise set

P becomes the Pareto optimal set of solutions, and then proceed to Step 10.

Step 10) Select the best compromise solution: The fuzzy-based method

presented in [38] is applied to select the best compromise solution from the

optimal Pareto set found in the previous step. For each objective function

of every member in the optimal set, find:

µi =


1, Ai ≤ Amini

Amax
i −Ai

Amax
i −Amin

i
, Amini < Ai < Amaxi

0, Ai > Amaxi

(3.18)

where Ai is the tuple of objective function values, Amini is the minimum of the

objective function values across all solutions for objective i, and Amaxi is the
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maximum of the objective function values across all solutions for objective i.

Then this membership function is normalized using:

µk =

∑Nobj

i=1 µki∑Nsol

j=1

∑Nobj

i=1 µji
, (3.19)

where Nobj is the number of objective functions in the problem, Nsol is the

number of solutions in the final set, and k is the index for each solution in

the set. The best compromise solution is that solution k for which µ is the

maximum.

Step 11) Calculate the Locational Marginal Prices (LMPs): Using

the best compromise solution, the LMPs for each bus are calculated as the

cost of supplying an additional MW into the system while satisfying all the

transmission constraints and supply capacity constraints.

3.7 RL Solution Approach for the CMDP Model

Consider that at a decision making epoch, players make decisions which are

sent to the system environment that provides feedback leading the system col-

lectively to the next decision making state. As a consequence of the decisions

and the resulting state transition, players get their rewards from the system

environment. Using these rewards, the players update their knowledge base.

The updating of the knowledge is carried out slowly while players explore

other possibilities in their decision space. This process repeats and the play-

ers’ decision making ability continues to improve and ultimately converges to
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lead to equilibrium decisions. We next present an RL-based algorithm along

the lines of one of our previous papers [74] for solving the CMDP model.

Learning Phase:

1. Initialize the following components of the algorithm:

• Iteration count m = 1.

• For all generators k ∈ G, reinforcement values (R-values) Rk(s) =

0 for all states s ∈ E

• Average reward values ρk = 0.

• Visit counter for each state-action combination (s, ak): n(s, ak) =

0, where ak is an element of the set of all actions Ak(s) available

to generator k in state s.

• Learning rates (αm, βm) and the exploration rate (γm).

• MaxSteps, a large value, is designated as the termination criterion.

2. Start the system simulation in an arbitrary state s.

3. For each player k ∈ N , with probability (1 − γm), choose an action

ak ∈ Ak(s) for which Rk(s, ak) is maximum. With a probability of γm

choose a random (exploratory) action from the set Ak(s)\ak. At m = 1

(i.e., in the first step), choose an action randomly since all the R-values

are zeros.



41

4. Send the generator bids to the DCOPF/MODCOPF program (Section

3.2 or 3.3).

5. Solve the DCOPF problem using the primal-dual interior point method

explained earlier (Section 3.5) or the MODCOPF problem using the

strength Pareto evolutionary algorithm presented earlier (Section 3.6).

6. Use the stochastic demands from the DCOPF/MODCOPF to deter-

mine the system state for the next decision epoch. Let the system

state at that epoch be s′.

7. Calculate rk(s, s′, ak), the reward for kth generator resulting from the

actions (a1, · · · aN) chosen by the generators 1 through N in state s

(obtained from the DCOPF/MODCOPF problem).

8. Update ∀k ∈ G the R-values (Rk(s, ak)) and the average reward (ρk)

as follows.

Rk
new(s, ak)← (1− αm)Rk

old(s, a
k) + αm(rk(s, s′, ak)−

ρkm +Rk
exp(s′)), (3.20)

where

Rk
exp(s′) =

∑
ak∈Ak(s′)

pk(s′, ak)Rk(s′, ak), (3.21)
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and

pk(s′, ak) =


(1− γm) if ak = greedy action

γm
Ak(s′)−1

for other actions.

(3.22)

ρjm+1 = (1− βm)ρkm + βm

[
mρkm + rk(s, s′, ak)

(m+ 1)

]
. (3.23)

9. Set s← s′ and m← m+ 1.

10. Update the learning parameters αm and βm and exploration parameter

γm following the DCM [82] scheme given below:

Θm =

(
Θ0

1 + u

)
, where u =

(
m2

Θτ +m

)
, (3.24)

where Θ0 denotes the initial value of a learning/exploration rate, and

Θτ is a large value (e.g., 104) chosen to obtain a suitable decay rate for

the learning/exploration parameters. Exploration rate generally has a

large starting value and a quicker decay, whereas learning rates have

small starting value and very slow decay rates.

11. If m < MaxSteps, go to Step 3, else go to Step 12.

Learned Phase for Profit Calculation:

12. Simulate the system with the final R-values, {Rk(s, ak) : ∀ak ∈ Ak(s), k ∈
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G, s ∈ E}, and estimate the average profit for each generator. Profits

are computed as the product of locational marginal prices and quanti-

ties supplied less the taxes paid for H2O and CO2. These are assumed

to be stable rewards (profits) realized by the generators in the day-

ahead energy market.
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Chapter 4

Numerical Analysis

This section is divided into two subsections. The first section, present the de-

tailed numerical analysis about the impacts on a wholesale electricity market

when a fixed tax for CO2 emissions and water usage is imposed using different

tax mechanisms. The second section provides the numerical analysis related

to the calculation of an optimal tax rate for a given wholesale electricity

market and the evaluation of the impacts of this optimal tax combination.

4.1 Implementation of a fixed tax rate under different

tax mechanisms

The objective of this section is to assess the impacts of various carbon and

water tax mechanisms, wind energy integration issues, and water supply

disruptions on a wholesale electric power market. To accomplish this task
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we use a 30-bus IEEE power network [83] as a testbed.

4.1.1 Network Details, Generation Costs, and Tax As-

sumptions

We selected a standard 30-bus IEEE power network from [83] and modified

it slightly to suit our problem needs. Extensive details of the power network

are not presented here for the sake of brevity. Interested readers, however,

can find these details in the MATPOWER software package [83]. The 30-bus

IEEE power network showed in figure 4.1 has 6 generators, 24 consumers, and

41 transmission lines. We assume that out of these six generators there are

multiple fuel types, which allows us to assess the impacts of taxes on different

generation technologies. We assume that there are three coal generators

(100 MW each), two natural gas generators (100 MW each), and one nuclear

generator (250 MW).

Based on literature, we made appropriate assumptions about the genera-

tor cost function characteristics (e.g., fixed cost of nuclear being higher than

the others while its operational cost is lower; natural gas has a low fixed

cost and a higher operational cost than the rest). The (Xi, Yi) coordinates

of the 3-part piecewise linear cost functions (base bids) of each of the six

generators are presented in Table 4.1 (Yi represents the price in $/hr and

Xi represents the quantity in MW). Generators are assumed to bid above

the piecewise-linear marginal costs presented in Table 4.1. Each generator
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Figure 4.1: Single line diagram of the IEEE 30-bus test system [1]
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is assumed to have a total of 30 action choices where each bid is 0.5$/hr

over the last bid. For example, the set of actions available for Coal1 are:

{{(0, 80.5), (12, 130.5), (36, 900.5), (60, 3200.5)}; {(0, 81), (12, 131), (36, 901),

(60, 3201)}; . . . ; {(0, 95), (12, 145), (36, 915), (60, 3215)}}. Therefore, each gen-

erator has 30 different piecewise linear functions as action choices. This

number can be increased or decreased as needed by the decision makers.

Consumer demand is assumed to be a normal random variable with the

mean value as shown in Table 4.2 and standard deviation of 5MW for all

consumers. Demand is assumed to increase at the rate of 5% each year.

Transmission line capacity is assumed to be 1300MW throughout the power

network, thereby removing any potential for transmission congestion. We do

this to focus only on the impact of CO2 and H2O taxes. Impact of reduced

transmission capacity that creates congestion can also be studied quite easily

using our stochastic optimization model. Other network parameters of the

IEEE 30-bus network are exactly as provided in the MATPOWER software

package. The CO2 emissions factors based on data from U.S. DOE and water

usage factors from [84], are shown in Table 4.3.

Tax rate values for both CO2 and H2O are obtained from literature and

have a wide variability (e.g., $5/KgCO2 − $95/KgCO2). Tax rates for H2O

have been obtained from research reports of the Australian Water Commis-

sion, which performed an economic valuation of water for electricity genera-

tion [85]. In this section, we used a value of $13/TonCO2 and $500/ML for

carbon-dioxide emissions and water usage respectively. The planning horizon
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Table 4.1: Piecewise linear cost functions of generators

Table 4.2: Demands at each of the 30 buses

we consider is ten years. Longer planning horizons will need the examination

of generation and transmission expansion planning issues, which are beyond

the scope of this research.

In this subsection, we examine four main issues:

1. Impact of different tax schemes (for both water and CO2)

Table 4.3: Emissions and water usage factors
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2. Investment in new wind energy by existing generators (replacement)

3. Integration of additional stochastic clean energy resources (capacity

additions)

4. Long-term disruptions/shortages of water supply (e.g., due to drought)

Figure 4.2 presents the complete step-by-step procedure we adopted for

evaluating each of the four main scenarios presented above.

4.1.2 Impact of Different Tax Schemes (for both water

and CO2)

In this section we analyze the impact of three different tax schemes proposed

for carbon-dioxide emissions by Metcalf and Weisbach [32]. Additionally, in

this section we also impose a new water tax based on the amount of water

used for generating electricity. Such analysis for a joint water and carbon

tax scenario has not been presented in literature before. The three different

tax scenarios we examine are the ones described in Section 2.3: 1) ramping

up, 2) grandfathering, and 3) uniform adoption.

In Figure 4.3, the quantities supplied by each of the six generators are

shown under no-tax (NT), ramping-up (RU), grandfathering (GF), and uni-

form adoption (UN) approaches over a ten-year horizon. In this case the

CO2 and H2O taxes are assumed to increase by $5/KgCO2 each year and

5% each year, respectively.
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Figure 4.2: Flowchart of the solution procedure for all scenarios
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Figure 4.3: Quantities supplied by the six generators under different tax
mechanisms over a 10-year horizon

It can be seen in the NT case that the average quantities supplied by

each of the generators are directly related to their cost functions and maxi-

mum capacities. For instance, all the three coal generators supply up to their

maximum capacity (100MW) as demand increases, given that they have the

cheapest production cost; followed by the nuclear generator and then the gas

generators. As expected, under the RU strategy, the average quantities sup-

plied by coal generators are much smaller than the NT case due to the taxes

on CO2 and H2O. Even though the nuclear generator does not emit any

CO2, it uses higher quantities of water than the other generators, however,

nuclear generators are still cheaper than gas generators. Hence, in the RU

case, after the nuclear generator reaches its maximum capacity (250MW),

the coal generators absorb the residual demand in the power network be-

fore gas generators are dispatched. In the GF case one would expect that

coal generation would be higher than that of either RU or UA. However, in



52

Figure 4.4: Average Locational Marginal Prices and Average Profits for the
Various Tax Mechanisms over a 10-year Horizon

this specific case study the monetary values between the taxes are not that

different and hence the lack of perceivable variations in quantities supplied.

The differences in profits of coal generators between the tax schemes are

nevertheless clearly visible in Figure 4.4. Under the UN case (Figure 4.3),

the nuclear generator supplies more than under other mechanisms until Year

4, after which its supply quantities are almost the same under all three tax

schemes.

In Figure 4.4 the average locational marginal prices (secondary Y-axis)

under the three different tax mechanisms are shown. The NT scenario serves

as the lower bound on the average LMP, with UN mechanism serving as the

upper bound. These prices could potentially vary a lot more if transmission

capacity becomes insufficient. As expected the prices are in the order of

severity of the tax mechanism. Figure 4.4 also shows the average yearly

profits obtained by all generators across the ten year horizon (primary X-
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(a) CO2 Emissions (b) H2O Usage

Figure 4.5: Emissions and Water usage Trends under Different Tax Mecha-
nisms

axis). The UN mechanism appears to have the most negative impact on the

profits of coal generators and vice-versa for nuclear generators. The profits

of most generators from the GF scheme, as expected, are higher than RU

and UN but lower than the NT scenario.

From Figure 4.5a, notice that by implementing the UN mechanism, low-

est CO2 emissions are produced by the system, followed by the RU, GF,

and NT mechanisms. However, the reductions in CO2 emissions in this par-

ticular network come at the cost of higher water usage due to the increased

dispatch of nuclear generators. Therefore, in highly water-stressed areas, sys-

tem operators may be better off encouraging investments in renewable energy

technologies rather than ramping up production from nuclear generators. It

can be seen from Figure 4.5b that in most cases the NT scenario acts as

the upper bound for the water usage. While the difference in trends of CO2



54

emissions between the tax mechanisms was clear, the water usage trends are

not as clear. We believe this could be due to the relatively lower rate of water

usage tax for each MWh of power generated as compared to CO2 taxes. In

the next section we examine the issue of replacing coal generators with wind

generators.

Note: From this point forward within this section, for the ease

of exposition, all model simulations are performed assuming that

the uniform adoption (UN) tax mechanism is used.

4.1.3 Investment in New Wind Energy by Existing

Generators

In this portion of the study, we assume that the coal generators are replaced

by wind generators of equal capacity (one at a time). As noted in [86], we

assume that the cost characteristics of the wind farm are similar to that of

a nuclear generator (high fixed cost and very low operational cost). A zero

cost can also be assumed in our model as noted in some literature. Figure

4.6 shows the individual supply shares across a ten year horizon when the

coal plants are replaced by wind farms of the same capacity. We perform this

analysis by replacing one coal plant at a time (1Cby1W-refers to replacing

one coal plant by one wind farm; 2Cby2W refers to replacing two coal plants

by two wind farms). Across all the 10 years, in both 1Cby1W and 2Cby2W

cases the wind generators supply to their maximum capacities (100MW)
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Figure 4.6: Supply Shares when Replacing Coal with Wind

immediately. It can be seen that the supply share of the nuclear generator

is reduced significantly as the number of wind generators increases from one

to two. Coal generators begin to see their supply shares rise only when the

demand increases cannot be met by the wind and nuclear generators.

4.1.4 Integration of Additional Stochastic Wind Gen-

erators

The goal of this subsection is to study the system performance due to in-

tegration of additional wind energy resources into the existing power net-

work (unlike the previous replacement case). We also extend the analysis

by studying the impact of stochastic and intermittent nature of wind energy

availability as well as the imposition of a penalty by the system operator on

wind generators if the promised generation capacity is not available. Both

these extensions make the study much more realistic. Wind energy avail-
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Figure 4.7: Integration of Wind Energy in the Power Network

ability is a random variable with overall capacity factors ranging between

20%-40% (with on-site storage, this can be increased further). Therefore,

studying the stochastic nature of wind generation is critical. As in some

papers in the literature [87], we also impose penalties on wind generators

who do not meet their obligations. In Figure 4.7 +1W refers to the addition

of one wind generator (100MW), +2W refers to the addition of two wind

generators (100MW each), +2WSt refers to the addition of two wind gen-

erators with stochasticity, and +2WStPe refers to the addition of two wind

generators with stochastic availability and the imposition of an exogenous

penalty for not being able to meet promised generation.

In the +1W case, the addition of a new wind generator causes a marked

decrease in the amount of nuclear generation. In all the ten years in the +1W

case the wind generator supplies up to its maximum capacity. In the +2W

case also, both wind generators are almost dispatched to their full capacities
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(100MW each) in lieu of nuclear generation, which also prevents any increase

in supply by the coal or natural gas generators.

Modeling the Stochastic Nature of Wind

We incorporated the stochasticity in wind energy availability as follows.

Thirty percent of the time the wind generators are assumed to be fully avail-

able and the rest of the time, the generators are said to be partially available

between 30%−90% of their maximum capacities. While we understand that

the capacity factors in most cases are between 20-40%, these wind generators

could be thought of as those with on-site storage devices. We do not model

wind speed forecasting considerations. For each run (hour) of the simula-

tion we generated random numbers to first determine their initial state of

availability. If the generators are partially available, then the percentage of

partial availability is also determined by drawing random numbers from a

uniform distribution. In the +2WSt case, it can be seen (Figure 4.7) that

the stochastic nature of wind generators has a negative impact on their sup-

ply shares when compared to the +1W and +2W cases. As the demand

increases the wind energy unavailable due to stochasticities is filled in by

the nuclear generator. Coal and natural gas generation, however, remain

relatively stable in all the ten years of the study horizon.

Imposition of a Penalty Factor due to Unavailability of Promised

Wind Generation

We also investigated the impact of potential penalties imposed by system op-

erators on wind generators if promised capacity is not available after bidding
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Figure 4.8: Steps in Modeling the Penalty for Stochasticity of Wind Gener-
ators

in the power market. We incorporated this in our stochastic optimization

model as shown in Figure 4.8. The penalty value we considered is $5/MWh.

This value can be modified as needed. It was noticed that the behavior of all

generators in the +2WStPe case was very similar to the +2WSt case. We

believe that this is due to the low value of penalty that was used for testing

in our sample problem.

In the +1W case (see Figure 4.9a), when the new wind generation dis-

places the nuclear generation, CO2 emissions remain practically unchanged.

The CO2 emissions remain almost the same even with the addition of another

wind generator, since the additional wind generation replaces the nuclear gen-
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(a) CO2 Emissions (b) H2O Usage

Figure 4.9: Emissions and Water usage Trends due to Integration of Wind
Energy

eration. In Figure 4.9b we can see that for water usage, +1W serves as the

upper bound while +2WStPe serves as the lower bound.

4.1.5 Long-term Disruptions/Shortages of Water Sup-

ply

Disruptions in water supply are becoming increasingly frequent due to drought

and other climate-change induced conditions. Power production depends on

water and its shortage has been shown in the literature to cause shutdowns

or reductions in electricity generation capacities ([88, 89]). In this section

we examine the impact of reduction in capacities of power generators due to

long-term water supply shortages as a result of prolonged drought or similar

events. Since nuclear and coal generators are the largest consumers of water,

we first study the impact of water shortages on these generators. We then
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(a) Reduced Capacity of Nuclear Generator (b) Reduced Capacity of Coal Generators

Figure 4.10: Supply Shares under Reduced Capacities due to Water Short-
ages

studied the impact of addition of stochastic wind energy resources in addition

to long-term water supply disruptions.

Impact of Water Shortages on Coal and Nuclear Generators

In this case we assumed that due to prolonged water shortages, capacities

of all the coal generators and the nuclear generator are reduced by half (one

generation technology at a time). In Figure 4.10a, it can be seen that the

nuclear generator with its capacity reduced from 250MW to 125MW, supplies

up to its new maximum capacity for all ten years. The residual demand is

then first absorbed by coal plants followed by the natural gas plants starting

Year six. In Figure 4.10b, where the capacity of coal generators is reduced by

half (50MW each), the nuclear generator supplies up to its maximum capacity

starting Year five. Natural gas generators are only dispatched starting Year

seven. This reordering of dispatch involving gas generation is also reflected
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in increased prices as shown in Figure 4.11a. In this figure, UN N refers to

capacity reduction for nuclear generator, UN C refers to capacity reduction

for coal generators, and UN is the uniform adoption case from Section 4.1.2.

(a) Reduced Capacity of Nuclear Generator

(b) Reduced Capacity of Coal Generators

Figure 4.11: LMPs under Reduced Capacities due to Water Shortages

Joint Impact of Water Shortages and Integration of Stochastic

Wind Energy Resources
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We also extended the case examined in Section 4.1.5 by integrating stochastic

wind energy resources (as in Section 4.1.4) and the imposition of penalties

(as in Section 4.1.4). These extensions make the model as close to a realis-

tic power network as possible. This analysis involves all types of generation

technologies, stochastic demands, stochastic availability of wind power gen-

erators, and water shortages. For the sake of brevity, we present the results

for average prices for the three different cases superimposed over the price

graph from the previous section (see Figures 4.11b and 4.11a). In Figure

4.11b, Case1 refers to +2WStPe scenario from Section 4.1.4, Case2 refers to

both +2WStPe conditions and capacity reductions in coal generation (down

to 70MW each from 100MW) due to water shortages, and Case3 refers to

+2WStPe conditions and capacity reduction in nuclear generation (down to

175MW from 250MW) due to water shortages. It can be observed that in

the case of additional wind generation becoming available, the price increases

that were observed earlier are now prevented. The prices in all three cases

remain below the reference UN case. This can be attributed to the large

amount of wind generation that is included as part of the dispatch, which

does not involve either a water or CO2 tax. Under drought-like conditions,

system operators could prevent price spikes by encouraging investments in

wind or other green technologies.
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Figure 4.12: Total CO2 Emissions across all Scenarios

4.1.6 Overall Scenario Analysis

In this section we present the summary of all the twelve comprehensive sce-

narios we studied in this section with respect to CO2 emissions and H2O

usage (see Figures 4.12 and 4.13). It can be seen that the UN N case acts

as the upper bound on CO2 emissions while the NT case serves as the upper

bound for H2O usage. We believe that if the goal of the system operator is

to minimize both the overall CO2 emissions and H2O usage, the 2CBy2W

(replacing two coal by two wind generators) setting would be ideal. Addition

of wind energy resources has been noted by the Department of Energy as

a comprehensive solution for preventing excessive water withdrawals, espe-

cially in drought prone areas. There is approximately a 60% reduction in

10-year CO2 emissions and 40% reduction in water usage between the NT
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Figure 4.13: Total H2O Usage across all Scenarios

case and the 2CBy2W case.

However, the 2CBy2W setting is not entirely realistic, since it does

not consider stochasticity of wind or penalties due to non-availability. The

+2WStPe case is a good representation of reality, albeit without consider-

ation of water supply disruptions. The UN N case (extension of UN case)

which considers water supply disruptions to the nuclear generator gives an

idea of the negative impact that water shortages could have if there are pro-

longed droughts in a region without any wind/green energy. In the UN C

case (extension of UN case) which considers water supply disruptions to the

three coal generators, the ten year CO2 emissions drops, but the water usage

increases significantly. This is due to the nuclear generator (the largest user

of water) and natural gas generators supplying the residual demand.
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4.1.7 A Note on Computational Time and Resources

The RL-based solution approach is computationally intense. We developed

the code for the RL algorithm as well as the DCOPF problem in C + +. We

executed the code on research computing clusters at University of Wisconsin-

Milwaukee. The cluster has 142 compute nodes (1136 cores), each node is a

Dell PowerEdge R410 rack-mount server with two quad-core 2.67 GHz, Intel

Xeon X5550 processors, and 24GB of system memory. All the cases were

simulated for 5000 runs. The base case with six generators took a total of 3

minutes while the largest case with 8 generators with stochastic wind energy

scenario took a total of 9.6 minutes.

4.1.8 Concluding Remarks

In this research we developed a first-of-its-kind quantitative model to study

the electricity-water-climate change nexus. We examine this nexus by impos-

ing H2O usage and CO2 emissions taxes on power generators in a wholesale

electricity market. We adopt a CMDP approach to model the competitive

behavior of power generators who bid daily into a wholesale market un-

der stochastic demand conditions as well as under carbon-dioxide and water

taxes. The CMDP model is solved using a stochastic approximation based

reinforcement learning mechanism. The outputs of the RL algorithm are sta-

ble bidding strategies for all generators which are used to obtain the average

rewards over a demand season.
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This section examined four main scenarios including different tax schemes

proposed in literature, replacement of coal generation by wind, integration

of additional stochastic wind energy resources, and water supply disruptions.

We found that if the goal is to minimize both CO2 emissions and H2O usage,

new green generation should replace coal and nuclear generation. This is also

prescribed by Sovacool and Sovacool in [5]. However, given the political and

practical difficulties in achieving this goal, we also studied the impact of inte-

gration of new wind energy resources which are intermittent and stochastic

but have begun to bid into daily electricity markets. Further the case of

water droughts impacting coal and nuclear generation was also examined.

In this section we used exogenous tax rate values from literature. In the

section 4.2 we conduct a detailed analysis to obtain optimal tax rates for

both carbon and water for a given regional power network. While this has

been noted as an extremely challenging task by Stern Review [33], our model

could be used as a viable tool for such analysis.

4.2 Calculation and implementation of optimal tax rates

The objective of this section is to show the use of our model in obtaining

optimal tax rates for carbon emissions and water usage of a given wholesale

electricity market. Based on a Central Composite Design, different scenarios

of tax rates were created to be simulated. The impositions of all the tax com-

binations were simulated by solving the multi-objective DCOPF presented



67

in Section 3.3. The response variable values for each tax combination were

obtained. By response optimizer, the optimal tax rates were identified for

both CO2 and water usage. In addition, we also study the impact of the im-

position of this optimal tax combination on different scenarios of electricity

power networks to analyze the behavior of the energy market.

4.2.1 The Model

Our overall model is developed in two phases as shown in figure 4.14. The

first phase involves the calculation of optimal tax rates using a response sur-

face method, and the second phase involves the imposition of these taxes on

a wholesale power market, which is modeled using a CMDP approach and

solved using the reinforcement learning approach presented in Section 3.7.

4.2.1.1 Calculation of optimal tax rates

In order to find the optimal combination of tax rates for CO2 emissions and

H2O usage, a three-step procedure was used.

1. A Central Composite Design (CCD) framework of response surface

method (RSM, [90]) was used to design the experiment.

2. Response variables for each treatment of the CCD were calculated using

a simulation model of the electric power network. The electric power
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Figure 4.14: Optimal tax rates calculation and evaluation Model
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grid operations were optimized using a multi-objective DCOPF model

(described in detail in Section 3.3).

3. The optimal tax rate treatment combination was calculated using a

response surface optimizer.

4.2.1.2 Response Surface Method

A RSM was used to obtain the optimal combination of CO2 emissions and

H2O usage tax rates that minimize: 1) the total power generation cost,

2) the total CO2 emissions cost, and 3) the total H2O usage cost. A full

CCD with two factors (CO2 and H2O tax rates) was created to identify the

treatments to be simulated on the sample power network. These simulations

were performed by solving a multi-objective optimization model for every

treatment combination in order to obtain the following responses variables:

1) total cost of generation, 2) total CO2 emissions, and 3) total H2O usage.

Finally, a response surface optimization was carried out to obtain the optimal

tax rate combination for the given electric power network.

The Minitab c© response optimizer tool was used to perform the response

surface optimization. This tool implements the common desirability ap-

proach presented in [90] and [91] to optimize multiple responses variables

at the same time. This method uses desirability functions to transform each

response variable into a non-measured individual desirability value; then a

weighted combined desirability function is calculated; and finally a reduced

gradient algorithm is implemented to find the maximum composite desirabil-



70

ity for a specific tax rate combination, which is considered to be optimal.

4.2.2 Network Details, Generation Costs, and Tax As-

sumptions

As in Section 4.1.1, we selected the 30-bus IEEE power network found in

Matpower package [92]. This power network has 30 buses, six generators

(2-coal, 2-gas, and 1-nuclear), and 41 transmission lines. We assumed a

maximum electricity generation capacity of 100MW for each coal generator,

100MW for each gas generator, and 250MW for the nuclear generator. The

complete power network details can be found in [92], the one-line diagram is

shown in Figure 4.1. Table 4.4 shows the emissions and water usage factors

for every generation technology simulated. The CO2 emissions tax and H2O

usage tax are the two factors in the response surface analysis. The low val-

ues for each factor were $0/TonCO2 and $0/MLH2O, and high values were

$85/TonCO2 and $900/MLH2O respectively. Our motivation for choosing

these ranges of values for CO2 and H2O taxes was based on openly available

literature about carbon and water tax rates [32, 85]. The advantage of using

a simulation-based optimization model is that one can modify these ranges

as needed to understand their implications.

The complete experimental framework based on a CCD is presented in Ta-

ble 4.5 with the respective response variables obtained from solving the MO-

DCOPF. For instance, in Table 4.5 row 4, for the combination of tax rates of
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$0.085/TonCO2 and $900/MLH2O we solved the MO-DCOPF problem and

obtained the response variables shown in corresponding columns. Minitab c©

statistical software was used to perform the response surface optimization,

and Minitab response optimizer tool was used to obtain the optimal tax rate

combination for the sample electricity network.

Table 4.4: Emissions and water usage factors

GeneratorFuelType KgCO2/MWh MLH2O/MWh

Coal 318.00 0.01325
Gas 184.64 0.00189

Nuclear 0.00 0.001512

Table 4.5: Central Composite Design

Run Factors Response variables
TaxCO2 TaxH2O TotalProdCost TotalCO2Emissions TotalH2OUsage

1 0 0 22098.7 91022.6 4.47
2 0.085 0 22148.1 48123.4 4.71
3 0 900 22657.3 84646.5 2.98
4 0.085 900 22965.8 67606.7 3.36
5 0 450 22711.7 85347.5 2.97
6 0.1026 450 23376.4 67538.5 3.39
7 0.0425 0 22196.7 48647.1 4.70
8 0.0425 1086.4 23355.1 66173.2 3.36
9 0.0425 450 23569.7 65166.5 3.41
10 0.0425 450 24166.5 64261.2 3.36
11 0.0425 450 23499.7 64993.1 3.48
12 0.0425 450 23303.1 65944.3 3.47
13 0.0425 450 23386.9 65734.5 3.45

4.2.3 Finding the optimal tax rates

From Figure 4.15a, notice that the lowest value of the total production cost

is obtained when there is no tax in the system, meaning that coal generators

are the ones supplying most of the electricity demanded in the system. The

highest values of the total production cost are found in the center part of
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(a) Total Production Cost (b) Total CO2 Emissions

(c) Total Water Usage (d) Locational Marginal Prices

Figure 4.15: Contour plots

the Figure 4.15a where gas generators and nuclear generator are the ones

supplying most of the total demand (see Figure 4.16 Combs. 9-13).

From Figure 4.15b, notice that when there are no taxes in the system, the

highest value of CO2 emissions are obtained. This is because coal generators

supply most of the demand as seen in Figure 4.16 (Comb. 1). The same

results are obtained when there is no CO2 tax but H2O tax, in these cases
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Figure 4.16: Supply Shares for the CCD treatments

coal and gas generators supply most of the demand, and the nuclear generator

only supply a small quantity of electricity into the system, (see Figure 4.16

Combs 3 and 5). In contrast, notice that lowest values of CO2 emissions are

found when higher values of CO2 tax are imposed into the system, this is

because nuclear generator becomes the largest supplier of electricity in the

system given that it has the lowest CO2 emission factor, see Figure 4.16

combination 2 and 7.

From Figure 4.15c, notice that with low values of both taxes, high val-

ues of H2O usage are observed, this is because coal generators and nuclear
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generator are the biggest suppliers (see Figure 4.16 Comb. 1). The highest

values of H2O usage are obtained when there is no H2O tax but high CO2

tax, in this case the nuclear generator is the one supplying the larger share

of electricity into the system (see Figure 4.16 Combs. 2 and 7). The lowest

values of H2O usage are obtained when highest values of H2O tax are im-

posed, then gas generators becomes the largest producers of electricity (see

Figure 4.16 Combs. 3 and 5).

When we consider locational marginal prices in Figure 4.15d, notice that

lowest values are observed when both CO2 and H2O taxes are low, while

highest values are observed when tax rates for CO2 and H2O are increased.

After applying the Desirability Method mentioned in Section 4.2.1.2 by

using the Minitab response optimizer tool, it was found that the combination

of $0.0269 for CO2 tax and $1086.39 for H2O usage tax represents the optimal

combination. This tax combination happens to be optimal for the given

sample network when the goal is to minimize all the three objective functions

presented in Section 3.3.

4.2.4 Implementation of optimal tax rates under dif-

ferent tax mechanisms

In this section we present the detailed numerical analysis that were performed

to demonstrate the applicability of our multi-objective optimization and RL

framework to understand the implications of a joint carbon and water tax
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scenario. We study four main cases in this paper:

1. Imposition of the optimal tax rates on a sample power network

2. Adoption of water saving technologies by power generators

3. Impact of tax credits for generators who have invested in water saving

technologies

4. Integration of Hydro power generation

4.2.4.1 Imposition of the Optimal Tax Rates

Figure 4.17: Supply Shares under Optimal Tax Imposition

The goal of this section is to evaluate the impact of the imposition of

the optimal taxes found in the previous section for CO2 emission and H2O

usage. Tax case (Tax) refers to the scenario where the optimal taxes are
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imposed, and is compared against the scenario with no tax (No-Tax). Figure

4.17 shows that natural gas generation behaves as the dominant electricity

supplier for both cases until year 5 when these generators reach their max-

imal capacity. After this, nuclear generation increases rapidly. Notice that

after imposing the optimal CO2 and H2O taxes, coal generation is negatively

impacted and its electricity generation is reduced. Gas generators absorb the

amount of the demand that is not longer fulfilled by the coal generators. In

this scenario, gas generators seems to be a moderate option under the three

objective functions evaluated and presented in Section 3.3.

(a) Total CO2 Emissions (b) Total H2O Usage

Figure 4.18: Emissions and Water Usage under Optimal Tax Imposition

From Figure 4.18a, it is clear that under the imposition of the optimal

taxes, lower CO2 emissions are produced. Similarly, from Figure 4.18b, we

can see that the lower quantities of H2O are used from year 1 to 5. This is

because at year 5, the gas generators reach their maximal capacity of elec-

tricity production, and the new demand is absorbed by the nuclear generator
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which has a higher H2O usage factor than gas generators, but lower than the

coal generator.

4.2.4.2 Adoption of Water Saving Technologies (WST)

In this section, we study the scenario where all electricity generators are

assumed to incorporate water saving technologies in their cooling systems by

using wet-recirculating or closed-loop technologies. For this section and for

the following cases presented in this paper, all cases use the optimal taxes in

the simulations. The water usage factors used for this section are presented in

the Table 4.6 as noted in [93]. Notice that by using water saving technologies

the usage factors are reduced.

Table 4.6: Water Usage Factors under Closed-Loop Technology

Technology MLH2O/MWh
No−WST With−WST

Coal 0.0132 0.0038
Nuclear 0.0151 0.0042
Gas 0.0019 0.001

From Figure 4.19, notice that under water saving technologies (Tax-WST

case), coal generation increases slightly in comparison to the optimal tax sce-

nario (Tax case) showing that by improving their H2O usage, coal generators

are rewarded. However, see that coal generation is still lower than the No-Tax

scenario.

In Figure 4.20a, we can see an increase in CO2 emissions due to the slight

increase in coal generation after investing in WSTs. Figure 4.20b, shows a
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Figure 4.19: Supply Shares using Water Saving Technologies

(a) Total CO2 Emissions (b) Total H2O Usage

Figure 4.20: Emissions and Water Usage using Water Saving Technologies

marked decrease in H2O usage when using WSTs as expected. In addition,

Figure 4.21 illustrates the tax savings due to the investment in WSTs. It

also shows that on average there is a 49% savings on CO2 and H2O taxes

due to the implementation of close-loop technologies.
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Figure 4.21: Tax Savings

4.2.4.3 Issuing Tax Credits to Generators investing in Water Sav-

ing Technologies

In this section, we analyze the scenario where not all electricity generators

use water saving technologies. We assume that those electricity generators

using WSTs, receive tax credits to reward their investment in these tech-

nologies. For this study, we adopted a tax credit of 15% over the total H2O

tax mentioned earlier. We adopted this value based on the tax incentive

values presented in the Energy Tax Policy report [24]. Electricity generators

using WSTs are assumed to be: Coal2, Coal3, Gas2, and Nuclear generator.

Therefore, electricity generators Coal1 and Gas1 do not invest in WSTs.

From Figure 4.22, we can see that under the tax credit scenario, elec-

tricity generation from the coal generator with no WSTs is reduced, and

the difference is now absorbed by the nuclear generator. Notice that even
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Figure 4.22: Supply Shares under Tax-Credit

though Gas1 does not have WSTs, it continues to produce as much electric-

ity as generator Gas2 that uses WSTs. This is possible since gas generators

do not consume as much water as coal generators. Figure 4.23a shows that

under tax credits, lower CO2 emissions are observed due to the reduction in

electricity generation from the coal generator with no WST. Similarly, Figure

4.23b shows that the lower H2O usage is observed since a subset of electricity

generators start investing in WSTs.

4.2.4.4 Hydro Power Generation Integration

In this section, we study the integration of a hydro power generator in the

grid. In this scenario, we assume to have one coal generator, one wind gen-

erator, one hydro generator, two gas generators, and one nuclear generator.
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(a) Total CO2 Emissions (b) Total H2O Usage

Figure 4.23: Emissions and Water Usage under Tax Credit to Generators
investing in WST

In this case, all generators have an electricity generation capacity of 100MW

each except the nuclear generator which has a 200MW capacity. The H2O

usage factor used for the hydro generator was 0.017MLH2O/MWh as pre-

sented in [93]. Given that water availability depends on the season of the

year, we have developed four different scenarios as shown in Table 4.7 ([94]).

In order to simulate the availability of water for the hydro generator in each

season, we reduced its maximum electricity production capacity depending

on the respective water availability percentage of the season under study.

Table 4.7: Water Availability by Season of the Year

Season Available Impact
Winter (January-March) ∼ 100% Above normal flows

Spring (April-June) ∼ 80% Below normal flows
Summer (July-September) ∼ 50% Below or much-below normal flows

Figure 4.24 shows the supply shares after a hydro power generator is

introduced for every season presented in Table 4.7 (Winter: Hydro-High,



82

Figure 4.24: Supply Shares with Hydro Generation Integration

spring: Hydro:Normal, and summer: Hydro-Low). The hydro generator

does not produces up to its maximum capacity due to its high water usage

factor. Notice that in all cases, wind generator produces close to its maximum

capacity because it is the best solution for two of the three objective functions

(CO2 emissions and H2O usage). Coal generator produces a small amount of

electricity due to the high CO2 emission and the high H2O usage factor. Gas

generators seems to be a moderate solution and their electricity production

increases through the years. By the end of the time horizon, gas generators

produce up to their maximum capacity. Nuclear generation also increases

through the time horizon, supplying most of the increasing demand each
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year.

(a) Total CO2 Emissions (b) Total H2O Usage

Figure 4.25: Emissions and Water Usage with Hydro Generation Integration

From Figure 4.25a and Figure 4.25b, we can see that during dry seasons

(Hydro-Low case) higher CO2 emissions and lower H2O usage are observed.

This happens because in dry seasons, the supply share from the hydro power

generator, which is the generator with the higher H2O usage factor, is re-

duced. Therefore all remaining generators increase their supply share includ-

ing the coal generator which has a high CO2 emissions factor. Additionally,

notice that in seasons with high water availability (Hydro-High case), lower

CO2 emissions and higher H2O usage are observed. In this case, the hydro

power generator’s supply share increases.

4.2.5 Conclusions and Policy Implications

While climate change has driven law makers and leaders in some countries to

devise policies to reduce CO2 emissions produced by electricity generation,
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so far, only research studies like this one and some research agencies are

discussing the need to include H2O usage policies to address the electricity-

water-climate change nexus. To our knowledge, no concrete policies have

been proposed to address this critical issue by lawmakers around the world.

This paper presented a first-of-its-kind simulation-optimization approach to

obtain optimal tax rate combinations (for both CO2 emissions and H2O

usage) for a given power network and then simulated some realistic scenarios

to study the impact of these tax rates.

While studying this nexus, different trade-offs between minimization of

electricity generation costs, minimization of CO2 emissions, and minimiza-

tion of H2O usage need to be addressed. Additionally, these trade-offs may

vary across regions depending on power network characteristics and water

resource conditions, making this decision a very complex one. Therefore, we

believe that calculation of tax rates, especially for water usage, needs to be

a regional decision since water availability varies significantly across regions.

This implies that the opportunity cost for reducing water usage also varies

significantly between regions. While CO2 prices can be uniformized across

a country or perhaps even globally, once they are considered in concert with

water, they need to be jointly recomputed as generation technologies often

have conflicting CO2 emission and H2O usage factors. We address this issue

in this paper by first calculating an optimal tax rate combination for a given

power network and then performing our simulation study.

Results, as expected, show that both CO2 emissions and H2O usage are
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reduced significantly under a joint tax policy. This indicates the importance

of implementing a joint environmental policy for both CO2 emissions and

H2O usage. It was also seen that investing in WSTs is not only a good op-

tion to reduce H2O usage but also to keep non-renewable energy competitive

in the market. WSTs also reduce the risk of possible power plant shutdowns

due to droughts or water shortages that may occur. We believe that WSTs

also provide a smoother transition route to a low water usage future for crit-

ical power generators.
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Chapter 5

Future Research

Some federal and individual state-level environmental initiatives have been

introduced to increase greener power production, increase energy efficiency,

and reduce carbon emissions. Some of these plans include carbon cap-and-

trade (California cap-and-trade program [95], RGGI [96], and EU-ETS [97])

and renewable portfolio standards (in over two dozen states of the U.S.).

However, researchers, policy makers, and world leaders continue arguing

about which carbon reducing mechanism (tax or cap-and-trade) gives better

economic and environmental results. So far, Cap-and-trade has been widely

discussed as the most effective market-based mechanism to control emissions

and mitigate climate change. In fact, the U.S. Environmental Protection

Agency had developed a very successful cap-and-trade program in the early

90’s for SOx emissions under the aegis of the Acid Rain Program. The pro-

gram is said to have achieved its goals within cost and ahead of time [4].



87

However, no federal or state level green energy policy or program includes

water-usage reduction goals even though it has been shown by several re-

searchers that electricity generation, water, and climate change are related

to one another [98, 99]. This research, in the previous chapters, contributes

to this ongoing debate by studying the impacts of implementing a Tax policy

for CO2 emissions and H2O usage on wholesale electricity markets to address

the electricity-water-climate change nexus. In this Chapter, we propose the

use of our stochastic multi-objective optimization framework as a tool to

understand the implications of implementing a cap-and-trade program on

wholesale electricity markets for future research.

5.0.6 Cap-and-Trade basics for CO2 emissions

In a cap-and-trade system that reduces CO2 emissions, a cap for the total

amount of carbon emissions that can be emitted in a time period is fixed and

it is equivalent to a limited amount of CO2 allowances. Each ton of CO2

emissions is equivalent to one allowance. A correct cap on CO2 emissions is

desirable in order to provide certainty and to achieve the emissions reductions

goals in the long term. This cap is expected to decrease annually until it

reaches the CO2 emissions target.

Allowances can be assigned to entities interested by giving them for free

(grandfathering), by selling them through auctions, or by using a hybrid

mechanism where a percentage are given for free and the rest are auctioned.

Allowance allocation is a critical component of a CO2 emissions trading sys-
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tem due to the impact it will cause in the performance of wholesale electricity

markets. Hence, policy makers have to make decisions regarding the mecha-

nism to be used for the allowances distribution, the percentage of allowances

given for free and the percentage that is auctioned, and the type of the auc-

tion to be used. Potential effects of allowance allocations in cap-and-trade

systems, such as impacts on: the overall cost, social cost, environmental

effects, prices, market power, among others, are discussed in [100–103].

Entities that are subject to the cap (e.g., power generators) are then

required to surrender allowances for their CO2 emissions. Those entities that

have additional allowances after meeting their requirement, can sell them to

those entities in need if permitted. Penalties are imposed on those entities

that exceed the limit of CO2 emissions given by the allowances surrendered.

Cap-and-trade programs provide a market flexibility to their participants

that allow them to manage the cost of compliance such as offsets, banking,

borrowing, and trading. Offsets are the processes where power generators

can compensate a portion of their CO2 emissions by surrendering certificates

of CO2 emissions reduction from elsewhere outside the cap-and-trade pro-

gram. Banking is the process that allows power generators to hold unused

allowances for future use. Borrowing is the process that allows power genera-

tors to surrender allowance from future time periods. Trading is the process

where power generators are allowed to sell/purchase allowances from other

entities. For a comprehensive review of all these parameters, the readers are

referred to [4].
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5.1 Proposal for a Cap-and-Trade system

In this section, we explain the procedure that could be adopted in order to

model a cap-and-trade program to mitigate both CO2 emissions and H2O

usage based on the multi-objective stochastic optimization framework pre-

sented in this research. The overall procedure is shown in Figure 5.1.

Initially, the auction operator fixes caps for both CO2 emissions and H2O

usage for the first time period of the program implementation as well as the

rates to be used to reduced these caps annually. Subsequently, the allowance

allocation process begins by making a decision regarding the methodology

to use for the allowances distribution. In order to provide a smooth imple-

mentation of the cap-and-trade system, it is safe to start by given away for

free all allowances available in the market (grandfathering) in the first period

of implementation. This would help to introduce the cap-and-trade system

into the market and help entities interested in getting allowances to get used

to it. For the following time periods, a transition between grandfathering

and a 100% auctioned market should take place by gradually decreasing the

number of allowances given for free while the number of allowances auctioned

increases at the same time in a fixed rate. For the sake of simplicity, power

generators are assume to be the only entities interested in bidding for these

allowances. As soon as the CO2 and H2O allowances begin to be auctioned,

power generators will have a bid decision vector for buying CO2 emissions and

H2O usage allowances. It is expected that power generators with higher cost
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Figure 5.1: Cap-and-Trade model
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of reducing CO2 emissions and H2O usage will bid higher to get the amount

of allowances needed, while generators with lower or no cost of reducing CO2

emissions and H2O usage will bid lower.

The allowance distribution could be assume to be a quarterly and sin-

gle round process as implemented in the California cap-and-trade system

[104]. Thereafter, we define Eg = {< e1
g >,< e2

g >, · · · , < eng >} as the

set of bidding strategies for CO2 allowances for every generator g ∈ G such

that each member is a combination of the number of allowances requested

Q and the respective bidding price P . For instance, < e1
g >= {Q1

g, P
1
g }.

Therefore, there will be m = ng possible bidding strategy combinations

(C = c1, c2, · · · , cm) of quantities of allowances requested and bidding prices.

For instance, c1 = < e1
1 >,< e1

2 >, · · · , < e1
G >. For each bidding strategy

combination ci (i : 1 to m), use the sealed-bid uniform method to allocate

allowances and to find the clearing price as it is used by RGGI cap-and-trade

program [105]. Based on the assumption that each generator wants to ob-

tain as much allowances as requested, we can define the amount of allowances

allocated to each generator as an objective function that have to be maxi-

mized. Hence, there will as many objective functions as number of generators

in the system. Because of this, we can make use of the Best Compromise

Solution (BCS) technique used in Section 3.6 to find the optimal bidding

strategy combination which will be the solution that maximizes all objective

functions. In case of finding a Pareto front of solutions, choose the one that

minimizes the total cost of allowances using the clearing price. This process
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happens to be the same for H2O allowance allocation. The optimal bidding

strategy combination for both CO2 emissions and H2O usage is obtained as

a result of the allowance allocation process.

In order to evaluate the effects of the allowance distribution on the whole-

sale electricity market, we can make use of the CMDP model presented in Sec-

tion 3.4 to simulate the generators’ competitive bidding behavior in wholesale

electricity markets, and solve it using the RL algorithm presented in Section

3.7 considering the respective caps for CO2 emissions and H2O usage, and to

represent the intricacies of a real power grid we can use the multi-objective

DCOPF formulation presented in Section 3.3 and solve it using the SPEA

algorithm presented in Section 3.6.

Based on final electricity production shares and allowances used as re-

sults from the RL algorithm, each generator will be asked to surrender their

allowances. At this moment, generators could consider banking, borrowing,

trading, and offset allowances depending on the market flexibility. As a re-

sult of the allowances surrender process, the operator will apply penalties

to those generators who have exceed the CO2 emissions and the H2O usage

equivalent to the allowances surrendered.

Detailed and overall results of CO2 emissions, H2O usage, operational

production cost, supply shares, profits, and locational marginal prices are

then saved for further detailed analysis. Caps for CO2 emissions and H2O

usage allowances are reduced for the next quarter (evaluation time) where

generators will bid again to get new allowances.
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5.1.1 Further steps

In this Chapter, we propose the adaptation of our multi-objective stochas-

tic optimization framework to evaluate the effects of the implementation

of a cap-and-trade system on wholesale electricity markets for addressing

the electricity-water-climate change nexus. Our model, can be also used

to evaluate the implications and trade-offs of the different allowance allo-

cation methods: auctioning, grandfathering, hybrid models; as well as the

allowances trading mechanisms such as credits, banking, borrowing, and off-

sets. Besides this, the model can be used to find appropriate CO2 emission

and H2O caps. Finally, comparison of taxation vs cap-and-trade program

can be carried out to identify benefits and weaknesses of both environmental

policy programs that would support the decision-making of policy makers

related to the electricity-water-climate change nexus.
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