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ABSTRACT 
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IMAGING 
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Under the Supervision of Professor Mahsa Ranji 

 
 

 

The structures and biochemistry properties of biological tissues are mostly 

affected by diseases. The visualization of organ structure and biochemistry helps in early 

detection and progression monitoring of diseases.  

Although, 2D imaging has traditionally been used to gain information from the 

tissue, it does not accurately represent many of the structures and functions. There 

currently exists a need for sensitive and specific methods to show detailed information 

about the structure of the tissue with high resolution and in 3D. The potential advantage 

of the high resolution 3D images is the ability to accurately probe structural and 

biochemical properties of the tissue.  

Not only the changes in structure, but also the changes in temporal physiological 

responses affected by oxidative stress (OS) at cellular levels. Thus, it would be valuable 

to detect the cellular metabolic states, which play a key role in understanding the 

pathogenesis of the disease, and to develop instruments to detect high resolution 3D 

images of the tissue.  
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The objective of this research is to develop a second generation fluorescence 

optical imaging instrument to image the cellular redox state in 3D, in control and diseases 

conditions.  

I have improved upon one of optical instrument, called cryoimager software and 

hardware wise to enable higher resolution images. This higher resolution imaging 

resembles the microscopy capability in cryo temperatures for high resolution 3D imaging.  

In conclusion, high resolution optical instrumentation combined with signal and 

image processing tools provide quantitative physiological and structural information of 

diseased tissue. 
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Chapter 1 

Introduction and Background  
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1 Introduction and Background 

One of the fastest growing research areas in bioengineering is biophotonics. As 

the name implies, biophotonics is the study of the interaction between light and biological 

tissue [2]. This interaction can be studied in two different categories. One is the 

properties of the tissue and the other is the changes that light can induce in a biological 

sample after the interaction. A majority of the current research in the biophotonics field is 

about the properties of the tissue and thus tissue disease diagnosis.  

I develop cryo-microscopy imaging technique to monitor the structures of the 

tissue with diseases such as cardiopulmonary injuries and diabetes as well as the 

metabolic state of the tissue.   

1.1 My Contributions 

In this research, my goal was to increase resolution of cryoimaging to visualize 

the structural changes in 3D due to the diseases, and correlate the results with the 

metabolic changes in the tissue. To reach the aforementioned plan, I contributed to 

implementation of the microscopy capability of a device named cryoimager. The 

cryoimager is an automatic image acquisition instrument that sequentially slices the 

frozen tissue and acquires fluorescent images of each slice. The fluorescent images then 

are analyzed and the metabolic changes of the tissue are quantified. The physiological 

marker to show the changes in the metabolism is mitochondrial redox ratio of the tissue.  
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The implementation includes the study and design of the new cryo-microscopy 

setup by choosing, ordering and assembling the appropriate equipment and linking them 

to the software I implemented, based on the limitations and challenges existed. Three 

main limitations which I overcame are taking magnified images by still holding high 

resolution images properties, eliminating the chromatic aberration of the imaging lens 

and compensating the limited field of view in highly magnified images. Picking an 

appropriate lens based on our application, moving the position of the lens by using a 

linear translation micro-stage and raster scanning are the solutions I figured out to the 

aforementioned challenges. The new cryo-microscopy setup completed by solving 

problems such as non-homogeneity illumination, implementing a stitching software for a 

convenient and rapid post-imaging processing and ultimately result validation by testing 

the system on many scrap samples.   

In my research, I studied the mitochondrial redox ratio in bronchopulmonary-

dysplasia (BPD) injury models in mice lungs. Bronchopulmonary dysplasia is a chronic 

lung condition that affects premature infants who receive supplemental oxygen 

(hyperoxia) or ventilator support for long periods of time. The results of this study 

validated the performance of the cryoimaging technique in measuring the oxidative state 

of the tissues. I also studied the structural changes in the tissue due to disease which 

affects the mitochondrial redox state of the tissue with the new cryo-microscopy setup. A 

dominant vascular dysplasia (HHT-1 or Endoglin+/-) injury model was studied to reach 

this goal. HHT-1 (Hereditary hemorrhagic telangiectasia) is a good model of a disease in 

which the vasculature network of different organs is affected. This disease is caused by 
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loss-of-function mutations in the human Endoglin gene and results in excessive bleeding 

and vascular malformation due to failure to recruit perivascular supporting cells to the 

newly forming blood vessels [51]. HHT-1 causes frequent nose bleeds, telangiectases, 

mucosa, and arteriovenous malformations in lung, liver, kidney, and brain [51] [52]. 

1.2 Biology Background 

1.2.1 Cell Structure and the Mitochondrion 

All biological organisms are made up of cells [3] and one of the most important 

factors in any biological system is cellular and sub-cellular homeostasis.  

Homeostasis is a state in which everything within the cell is in equilibrium and 

functioning properly. If the cell is not homeostasis, it is not healthy and will results in cell 

death. Injuries and diseases within the tissue cause irregularities in the cell function.  

Although, there are many cellular organelles responsible for organism health, 

mitochondrion plays the most important role. Mitochondria are often referred to as the 

power plants of the cell since energy production takes place in them. 

The mitochondrion is responsible for many cellular functions, including metabolic 

processes [4], which are the chemical reactions necessary for sustaining life in a 

biological organism [5]. A cell structure including the mitochondria is shown in Figure 

1.1 [6]. 
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Figure 1.1: Cell structure including the mitochondria [6]. 

 

A form of cellular respiration that requires oxygen to generate energy is called 

aerobic respiration. In this process, coenzymes present in the mitochondria are oxidized 

and produce energy usable by cells  [5] [7] [8]. Therefore, the amount of energy that 

supplied to the cell is highly dependent on the amount of oxygen present in the 

mitochondria. The energy is termed ATP and the majority of the energy is produced 

through electron transport chain. Electron transport chain is the cellular mechanisms used 

for extracting energy from redox reactions such as respiration [9]. A diagram of 

mitochondrial electron transport chain is shown in Figure 1.2 [10]. 
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Figure 1.2: Electron transport chain diagram [10]. 

 

The electron transport chain comprises an enzymatic series of electron donors and 

acceptors. Each electron donor passes electrons to a more electronegative acceptor, which 

in turn donates these electrons to another acceptor. This complex chemical reactions 

located in the inner mitochondrial membrane and is used to create a proton gradient 

across the membrane by pumping excess hydrogen ions into the mitochondria's 

"intermembrane space" [11]. In the electron transport chain, two proteins, NADH 

(nicotinamide adenine dinucleotide) [12] and FADH2 (flavin adenine dinucleotide) [13], 

are oxidized through a series of protein complexes, resulting in a release of protons. The 
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protons are then pumped into the intermembrane space using a portion of the energy 

released and create a proton gradient. Finally, these protons escape the intermembrane 

space through adenosine triphosphate (ATP) synthase [4], using the electric potential in 

conjunction with adenosine diphosphate (ADP) and inorganic phosphate. ATP is 

considered as cell's basic unit of energy. A change in the oxidation state of NADH and 

FADH2 is an indicator of a change in tissue bioenergetics [14]. Thus, we are interested in 

detecting these two proteins in the chain.  

1.2.2 Oxidation in the Mitochondria 

As explained earlier, the amount of oxygen present in and around the cell is one 

of the most important factors in regulating the mitochondrial production [15] and it has 

been shown that an irregularity in this amount of oxygen leads to cell death [16]. 

The excess or shortage of oxygen available to the cells is called oxidative stress, 

and shows a misbalance between the chemical compounds that the body produces and the 

body ability to consume it. These chemically reactive compounds contain oxygen and are 

called reactive oxygen species (ROS). ROS have important roles in cell signaling and 

homeostasis. An excessive amount of reactive oxygen species can result in the production 

of peroxides and free radicals, which may cause damage to all parts of a cell [17]. A 

variety of diseases can change the balance of oxygen flow into and around cells, and 

cause improper function of the mitochondria, and thus an increased rate of cell death, via 

apoptosis or necrosis [18]. Figure 1.3 shows the mitochondrial dysfunction, and cell 

death due to increasing oxidative stress [19]. 
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Figure 1.3: Impact of oxidative stress.  

Mitochondrial dysfunction and cell death due to increasing oxidative stress [19]. 

 

In many cases the amount of oxygen available to a cell can accurately represent 

the health of the cell and be used as a tool for diagnosis. This is especially true in cases 

related to mitochondrial dysfunction or diseases related to oxidative stress, such as 

diabetes. In these cases, the oxidation state (redox state), of the tissue is a sensitive and 

reliable quantification for the cell behavior. 
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1.3 Fluorescence 

1.3.1 Description of Fluorescence 

Fluorescence is the emission of photons from a substance that has absorbed 

photons. In most cases the emitted light has a longer wavelength, and thus lower energy, 

than the absorbed photons [20].  

Molecules are usually in the ground state. When the molecule is exposed to a 

source of energy such as a bright light source or high heat, it absorbs some of the energy 

and goes to an excited energy state. The amount of energy required to excite the molecule 

is large. Therefore, a light source is used for the excitation.  

When the molecule at the excited energy state goes back to ground state, a small 

portion of the energy is lost to lattice vibrations prior to the release of extra energy. In the 

transition back to the ground state, there is a probability, termed the fluorescence 

quantum yield. Fluorescence quantum yield is defined as the ratio of the number of 

photons emitted to the number of photons absorbed. The maximum fluorescence quantum 

yield is 1.0 (100%), which means every photon absorbed is emitted. If the photon 

emission occurs, a photoelectric device can quantify the amount of releasing energy. This 

process can be seen in Figure 1.4 [21]. Jablonski diagram of fluorescence is another term 

used to show the aforementioned process. 
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Figure 1.4: Jablonski diagram of fluorescence  [21]. 

 

There is just a narrow range of light energies which can cause excitation 

corresponding to the allowed energy levels of the molecules, and especially intrinsic 

fluorophores. Based on the Planck relation, the energy of a photon is inversely 

proportional to its wavelength, or directly proportional to the frequency of the light. Thus, 

only a specific range of wavelengths can be used to excite a given molecule. The emitted 

fluorescence light also has a narrow range energy, so narrow wavelength and color equal 

to the energy released when the molecule transitions back to its ground state. 

As explained earlier, some energy is lost between the time when the molecule 

leaves the excited state and returns to the ground state, which means excitation 

(absorption) and emission spectra must be different. This different shows a phenomenon 

known as the Stokes shift [22] and can be seen in Figure 1.5.  
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Figure 1.5: Stokes shift.  

The difference between absorption and emission maxima is known as the Stokes shift [23]. 

 

 This phenomenon can help us to separate the excitation and emission light by the 

use of optical filters or dichroic mirrors and only transmit the emission light to the 

detector of the devices which are able to measure the light. 

1.3.2 Intrinsic Mitochondrial Fluorophores 

 Tryptophan, collagen, NADH, flavins, and porphyrins are some of intrinsic 

fluorophores in the tissue which can be considered as structural or physiological tissue 

parameters. NADH and FAD (one of the flavins) are the two proteins which we are 

interested in the most. They are autofluorescent coenzymes which are essential in the 

metabolic pathway of the mitochondria and help to determine the oxidation state of the 
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mitochondria [4]. The spectra of these two autofluorophores are shown in Figure 1.6 [24] 

[25] in some specific biochemical states [26]. NADH only fluoresces in its reduced form, 

whereas FAD only fluoresces in its oxidized form. Thus, the fluorescence signals from 

these fluorophores are used as indicators of tissue mitochondrial oxidation in injuries due 

to diseases. The ratio of these two fluorophores, called the mitochondrial redox ratio, is 

used as a marker of the oxidation state within the tissue [27]. Since, this ratio is 

independent of the number of mitochondria, thus, it is a better quantitative marker of 

tissue metabolism. 

 

 

Figure 1.6: NADH and FAD fluorescence spectra.  

Excitation and emission spectra of NADH (left) and FAD (right) . 

 

 In order to excite NADH and FAD, a white light such as mercury light is filtered 

at excitation wavelengths of these two coenzymes. The excitation spectrum of NADH has 

a peak value at 340 nm (ultraviolet region of the electromagnetic spectrum) and there is a 
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peak in the emission spectrum at 460 nm (blue in color). FAD has its excitation peak 

value at 448 nm (blue in color) and a peak value in the emission spectrum at 520 nm 

(green in color). As we can see, there is an overlap between NADH emission and FAD 

excitation which requires the two fluorophores be excited and detected sequentially.  

As seen in Figure 1.6, the excitation spectra of the two fluorophores don't overlap 

each other, and the emission spectra don't overlap either. Hence, by detecting the 

fluorescence of each of these fluorophores, we can measure cellular metabolism of an 

organ.
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15 

 

 

 

2 Cryoimaging-Macroscopy 

2.1 Introduction 

The structure of organs and the redox ratio are both affected by disease 

progression. The changes in the mitochondrial redox state reflects physiological states 

that can be directly or indirectly related to structural changes. A high resolution 3D 

representation of the organ is essential to understand this relation [1]. In order to make a 

3D representation, which gives enough information about the tissue, a high optical 

resolution imaging system (for microscopy purposes) with the capability of imaging all 

layers of the tissue is required. Cryoimaging is advantageous over the other methods 

because of the following reasons: 

• It provides a strong fluorescence quantum yield of NADH and FAD as 

compared to room-temperature imaging techniques. The stronger signal, 

the higher signal to noise ratio and the more accurate measurement. 

• It demonstrates 3D spatial distribution of NADH and FAD fluorescence 

intensities in tissue. 

• It provides the snapshot of metabolism at the freezing time. 

In the following chapter the cryoimager of Biophotonics Lab at University of 

Wisconsin-Milwaukee is described in macroscopy setup for tissue redox calculations 

(version 1) and  in the next chapter, the microscopy setup, which I added to the system, 

(version 2) for high resolution 3D tissue structure presentation will be explained in detail.    
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2.2 Cryoimager 

The cryoimager is an automated image acquisition and analysis system consisting 

of software and hardware designed to acquire fluorescence images of tissue sections [28] 

[29]. This device uses the autofluorescence of the previously mentioned NADH and FAD 

co-enzymes within the mitochondria to determine the cellular redox state. By measuring 

the fluorescence intensities of a reduced protein, NADH, and an oxidized protein, FAD, 

one can obtain an effective measure of the oxidation state of the mitochondria.  

We use this device to monitor the autofluorescence of the NADH and FAD co-

enzymes within the mitochondria to determine the cellular redox state. By measuring the 

fluorescence intensities of a reduced protein, NADH, and an oxidized protein, FAD, one 

can obtain an effective measure of the oxidation state of the mitochondria. 

The cryoimager has a motor-driven microtome, which sequentially sections 

frozen tissue. The thickness of sections which defines the resolution in z direction is 

adjustable. This resolution can be as small as 5 µm. A broadband light from a mercury 

arc lamp is filtered by a filterwheel with up to five distinct fluorophores filters. The 

filtered light is then reflected and exposed to the surface of the tissue block. After each 

slice, a CCD camera records a fluorescence image of the tissue block after the emitted 

backlight passes through another filterwheel and an optical lens. Later the stacks of 

images will be analyzed to determine the fluorophore distribution. The microtome of the 

cryoimager is housed in a freezer unit with a temperature around -25°C during sample 

slicing and image acquisition.  
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2.2.1 Hardware Components 

The cryoimager consists of some main components like a freezer, blade 

(including all mechanical devices participating in slicing process), mercury arc lamp, 

cold mirror and reflecting mirror, excitation and emission filterwheels, lenses, and 

camera. 

Except the freezer and the blade (which is located inside the freezer) all other 

mentioned components are parts of two main light paths, namely the excitation light path 

and emission light path, which will be explained in the following sections.  

2.2.1.1 Microtome Blade  

The cryoimager contains a blade which is driven by an AC motor (Blador, 1/3 HP 

AC motor VL 3501). The blade and the motor are housed in the cryoimager freezer 

container. The movement of the blade is controlled through an implemented software 

with the help of two sensors located on top of the blade holder. Figure 2.1 shows the 

blade and the two sensors.  

 

Figure 2.1: Microtome blade. 

left) Blade and blade mount. Right) Blade mount and sensors in the freezer. 
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2.2.1.2 Ultra-Low Freezer  

 The cryoimager includes an ultralow freezer, in which the inside temperature is 

controlled by an interchangeable temperature sensor. The temperature goes down to         

-25°C while slicing and imaging.  

2.2.1.3 Filterwheels  

Two optical filterwheels (named excitation and emission filterwheels) rotate 

simultaneously to provide required excitation/emission wavelengths for fluorescence 

imaging. The excitation filterwheel is located after the excitation light source and the 

emission filterwheel is located after the sample. Both filterwheels are controlled by 

stepper motors and their drivers through the implemented software.      

2.2.1.4 Camera  

We usually use the two following cameras: 

• Exi Aqua (QImaging EXi Aqua, Canada): This is a color CCD Camera 

with low dark current and high quantum efficiency. The pixel size is 

6.45um*6.45um and the CCD size is 1392*1040 pixels [30]. 

• Rolera (QImaging, EM-C2 Rolera, Canada): This is a monochrome 

camera, which features lower noise and more sensitivity in terms of signal 

detection. The pixel size is 8um*8um and the CCD size is 1004 * 1002 

pixels [31]. 
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The Aqua camera has a smaller CCD pixel which helps imaging in higher 

resolution, while the Rolera camera has a higher signal to noise ratio and works better in 

dark environments. 

2.2.1.5 Lamp  

The lamp used in cryoimager is a 200 Watt mercury-arc lamp (Number 6283NS, 

Newport Instrument, CT, US).  

This type of lamp has a broadband, intense white light, which is able to excite 

multiple fluorophores. The spectrum of the lamp is shown in Figure 2.2. As seen this type 

of lamp has two intense spectral peaks at 365 nm and 436 nm, which correspond to the 

excitation peaks of NADH and FAD respectively. 

 

Figure 2.2: Spectral intensity of mercury-arc lamp. 
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2.2.2 Light Paths 

2.2.2.1 Excitation Path 

The broadband, intense white light, generated from the mercury-arc lamp is 

considered as excitation light. This light is coupled into a condenser, which homogenizes 

the light. The light is then incident on a cold mirror. The cold mirror eliminates the 

infrared portion of light.  

The homogeneous light then passes through a filterwheel called the excitation 

filterwheel. The filterwheel contains a set of optical band-pass filters to filter the light at 

the proper wavelengths of fluorophore excitation.  

The filters used in our research attenuate the light by approximately five orders of 

magnitude out of the nominal bandwidth. The excitation band-pass filter used for NADH 

is 350 nm with an 80 nm bandwidth, (UV Pass Blacklite, HD Dichroic, Los Angeles, 

CA) and for FAD is 437 nm with a 20 nm bandwidth, (440QV21, Omega Optical, 

Brattleboro, VT).  

The narrow-range excitation light at the desired wavelengths is then reflected by a 

mirror, and finally illuminates the tissue surface inside the freezer unit. Figure 2.3 shows 

the excitation path of the cryoimager. 
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Figure 2.3: Cryoimager excitation path schematic.  

1) Mercury-arc lamp. 2) Cold mirror. 3) Filterwheel. 4) Reflecting Mirror. 

 

2.2.2.2 Detection Path 

After light is exposed on the tissue surface, the autofluorophores FAD and NADH 

emit fluorescence light. This light passes through another filterwheel and a lens. The 

order and the types of the filterwheel and the lens vary due to the desired magnification 

and resolution of the final images. Finally, a CCD camera records a fluorescence image 

of the tissue block to be later analyzed for fluorophore distribution. 

We used to use a certain lens and filterwheel setup in the detection path namely 

the macroscopy. I implemented and added a new setup for microscopy purposes to the 

cryoimager. Both setups are described in further detail below. 
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2.2.2.3 Cryoimaging-Macroscopy Setup  

In this setup, the light emitted from the tissue sample passes through a fixed large 

filterwheel containing filters with 2 inch diameter, then a lens, and finally the camera. 

The lens used in this setup is a Canon standard lens (EF 28-135 mm, f/3.5-5.6 IS) with 

low distortion and a large aperture. The large aperture of the lens and the large filters 

collect more light (than if a small aperture and filters were used) from the sample and 

compensate for light dispersion and dissipation at this setup. 

The filter used for NADH is 460 nm (50 nm bandwidth, D460/50M, Chroma, 

Bellows Falls, VT) and for FAD is 537 nm (50 nm bandwidth, QMAX EM 510-560, 

Omega Optical, Brattleboro, VT). We use this setup to image samples in cryo-

macroscopy and usually in one field of view. Figure 2.4 shows this emission light path 

setup, used mostly in cryo-macroscopy. 

 

Figure 2.4: Cryoimager detection path schematic, macroscopy setup.   

1) Emission bigger size filterwheel. 2) Canon lens. 3) Aqua Exi camera. 
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2.2.2.4 New Cryoimaging-Microscopy Setup 

In this setup, the emitted light from the tissue sample first passes through a zoom 

lens, then a small filterwheel, containing filters with 1 inch diameter, and finally the 

camera. The lens is an Optem Zoom lens system (125C 12.5:1 Micro-Inspection, 

Qioptiq) and the filter used for NADH is 445 nm (90 nm bandwidth, HQ 445/90M, 

Chroma, Bellows Falls, VT) and for FAD is 520 nm (35 nm bandwidth, FF01-520/35-25, 

Semrock, Rochester, NY). This zoom lens has a large focal length with a slim body in 

respect to the Canon lens. Therefore, a small filterwheel is used in between the camera 

and the lens. Placing the filterwheel in between the lens and the camera gives us the 

freedom to move the lens closer to the sample, and collect more light before it dissipates 

from travelling in the air. We use this setup for microscopy imaging (high resolution 

imaging), where we need more details of the tissue samples. Figure 2.5 shows this 

emission light path setup, used in cryo-microscopy. Implementing this setup required 

some modifications in different parts of the cryoimager, which will be explained in next 

chapter. 
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Figure 2.5: Cryoimager detection path schematic, microscopy setup.   

1) Optem zoom lens. 2) Emission small filterwheel 3) Rolera EM-C2 camera. 

 

2.2.2.5 Entire System 

Figure 2.6 shows the schematic and the physical implementation of the 

cryoimager with the two different detection paths. In summary, the light path begins with 

the mercury-arc lamp, and then passes through a coupled cold mirror. The light then 

passes through the excitation filterwheel, where the desired wavelengths of light are 

selected. This light is then reflected to the tissue via a reflecting mirror. The emitted 

fluorescent light from the tissue then passes through the emission filterwheel and lens, 

and will be finally captured by the camera. 
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Figure 2.6: Cryoimager schematic. 

 

2.2.3 Software 

To control the slicing and image acquisition process, a software is implemented in 

LabVIEW. The software is also responsible for controlling different settings, such as 

adjusting the camera settings (gain and exposure), setting up the file format and location, 

adding filters to the experimental setup and rotating the filterwheels, positioning the 

sample (moving the sample block surface to the location where the blade is able to cut at 

the desired thickness), setting the slices thickness, and controlling the automated image 

acquisition. As soon as the aforementioned parameters are set, the slicing and imaging 

process can be started. Figure 2.7 shows the slicing and imaging sequence of the cryo-

macroscopy. 



26 

 

 

 

 

Figure 2.7: Cryoimager slicing and imaging sequence. 

 

2.2.4 Sample Preparation 

Before a sample is ready for cryoimaging, there are several steps that must be 

taken. These include tissue preparation, sample freezing, mounting medium preparation, 

and sample embedding.  
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After the desired tissue or organ sample (controlled, diseased or special tagged) is 

harvested, in order to preserve tissues metabolic state, the sample should be frozen. We 

immerse the sample in chilled isopentane (2-methyl butane, -80°C) for 1-2 minutes for 

primary freezing and then place it in liquid Nitrogen (LN2). This method prevents the 

sample from cracking due to sudden temperature changes. Frozen tissues can be stored in 

a LN2 Dewar or an ultralow freezer (-80°C) to be imaged later. The sample will be 

embedded in a black mounting medium, which is fluorescent free at the excitation 

wavelengths of interest. Polyvinyl alcohol, distilled water and carbon black powder or 

India ink are used to make a reliable fluorescent-free mounting medium. The frozen 

sample is placed on a bed of frozen black mounting medium on top of a metal plate, and 

then covered with more black mounting medium. The whole sample block will be 

allowed to rest in the ultralow freezer for a day before imaging. Finally, the metal plate 

will be mounted on the sample carriage in the cryoimager, ready to be sliced and imaged.  

Figure 2.8 shows a kidney during mounting. 

 

Figure 2.8: Sample embedding.  

Left) Sample on the mounting medium. Right) Sample block ready for cryoimaging. 



28 

 

 

 

2.2.5 Image Processing 

MATLAB and ImageJ are the two main software platforms used for image 

processing and 3D rendering, respectively (although, both platforms have the capability 

to perform the two mentioned applications). LabVIEW is also used to stitch the images 

taken in microscopy. In the following sections, first the pre-processing steps including 

image calibration will be explained. Then the stitching algorithm implemented in 

LabVIEW to construct cryo-microscopy images is discussed, and finally the post-

processing and different presentations of data are illustrated. 

2.2.5.1 Pre-processing 

Before processing we should make sure to remove any undesired images from the 

stack of images. These images, for instance, could be the ones in which the black 

mounting medium after being sliced is folded and stuck to the tissue surface, affecting the 

next image. This problem, as illustrated in Figure 2.9, occurs frequently when we take 

very thin slices of the tissue sample (around 10 to 15 um).  

Sometimes we also need to compensate for the sudden increase or decrease in 

light intensity in the middle of an experiment, as shown in Figure 2.10 . This can be 

caused by the user in an attempt to prevent saturation or improve the contrast of the 

image.  
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Figure 2.9: Undesired sample slices. 

 

Figure 2.10: Intensity change in two consecutive NADH images. 

 

2.2.5.2 Imaging Calibration 

Calibration is an important part of imaging. For each experiment, we acquire 

several calibration images to compensate for day-to-day variations of light intensity and 

non-uniformity of the illumination pattern. Figure 2.11 shows a set of calibration images 
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taken at the beginning of each experiment and before slicing the tissue. Figure 2.11 (1) 

shows image of a grid. This image is used to determine the magnification of the images 

and to set the focus of the lens. The dimension of each small square in the sample grid 

paper is 1 mm and the real magnification can be easily defined by the size of the camera 

CCD. Figure 2.11 (2) is a sample dark current image. This image is used for background 

subtraction. Figure 2.11 (3 and 4) show the flat-field images in NADH and FAD channels 

respectively. The flat-field image is captured from a uniformly fluorescent and flat object. 

It accounts for day-to-day light intensity variations as well as possible non-uniform 

distribution of light on the sample. All the images in each channel were then normalized 

by dividing each image to the flat-field image captured in the same channel. 

 

Figure 2.11: Calibration Images.  

1) Grid image 2) Dark current image 3) NADH channel flat field image 4) FAD channel flat field image. 
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2.2.5.3 Post-processing 

2.2.5.3.1 Redox calculation in MATLAB 

After pre-processing, FAD and NADH images of the samples (taken in either 

macroscopy or microscopy) are loaded into MATLAB, and background correction and 

exposure compensation are performed.  

NADH fluorescence images are then divided by the corresponding FAD images, 

voxel by voxel, to calculate the NADH redox ratio for each slice of the tissue sample, and 

the redox stack is constructed. The final results can then be presented in one of the 

following methods, depending on the organ and desired part of the tissue. 

One Slice Representation 

In this method, one representative slice from the whole sample is chosen to 

display the results. Figure 2.12 shows NADH, FAD, and NADH redox images from one 

slice of a control mouse kidney, which shows one cross-section of the tissue. This method 

is used when emphasizing a specific part of the tissue which is of most interest. 

 

Figure 2.12: One slice method data representation.  

NADH, FAD, and NADH redox images of a control mouse kidney. 
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Whole Volume Representation 

In this method, we form a composite image using all slices in NADH, FAD, and 

NADH redox. These 3-D composite images are used for representation and comparison 

of the data and calculation of the histograms. Figure 2.13 shows the rendered NADH and 

FAD images and the redox volume calculations of a control mouse kidney.  

 

Figure 2.13: Whole volume method data representation.  

NADH, FAD, and NADH redox images of a control mouse kidney. 

Maximum Projection Representation 

In this method, the maximum intensities along the z-axis of the composite images 

3D volume in NADH, FAD, and redox ratio) are calculated and used for representation 

and comparison of the data. Figure 2.14 shows the maximum projection of NADH, FAD, 

and NADH redox in a control mouse kidney. 

 

Figure 2.14: Maximum projection method data representation.  

NADH, FAD, and NADH redox images of a control mouse kidney. 
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2.2.5.3.2 3D visualization in ImageJ 

The 3D viewer plug-in of ImageJ is used to present the structure of the tissues. 

This plug-in allows us to display stacks of images as volume renderings or surface plots, 

and enables us to perform volume editing. Figure 2.15 shows an example of a 3D 

rendering with this software. 

 

Figure 2.15: 3D rendering of a control mouse kidney sample reconstructed in ImageJ.  

Whole and half kidney. 
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3 Design and Implementation of Cryoimaging-Microscopy 

3.1 Introduction 

As explained earlier, one of the main goals of this research is to represent the 

small structures of the tissue samples in 3D, look at the changes in the structure due to the 

diseases, and compare the results with the redox ratio. Cryo-microscopy seems to be the 

best approach to this goal. But at the same time microscopy has led to some limitations 

and challenges in imaging, and we needed to modify our cryoimager for microscopy. 

These limitations and challenges are summarized into three categories and are explained 

in the following subsections.   

3.2 Microscopy Imaging Challenges 

3.2.1 Resolution 

Due to some optical system limitations (specifically lack of resolution), 

magnifying an image for microscopy does not always show the details we are looking 

for. The resolution of an image is the detail an image holds. Higher resolution means 

more image detail. Resolution is defined in number of line pairs per millimeter (LP/mm). 

Each pair consists of a black line and a white line. In other words each LP/mm is equal to 

2 lines per millimeter. Higher LP/mm means higher image resolution [32] [33].  
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For high-resolution imaging we need an optical system with high optical 

resolution. Optical resolution is the ability of an imaging system to resolve detail in the 

object that is being imaged. Imaging systems may have different individual components 

like filters, lens mechanism, and recording and monitoring devices. Each of these 

components, plus the environment in which the imaging is done, contributes to the final 

optical resolution of the system [34]. In this research, we particularly focus on the lens. 

To transition from cryo-macroscopy to cryo-microscopy, we have to use a special 

lens to be able to magnify the sample while having high optical resolution.  

There are two main parameters that should be taken into consideration for 

choosing a lens with desired resolution.  

• Numerical aperture.  

• Working distance. 

The light-gathering ability of a lens is expressed in terms of the numerical 

aperture, which is a measure of the number of highly diffracted image forming light rays 

captured by the lens. Higher values of numerical aperture allow increasingly oblique rays 

to enter the lens, producing a more highly resolved image [35].   

Working distance, the distance from the sample to the camera CCD surface, will 

be explained in further detail as a part of the cryo-microscopy implementation.  

As mentioned earlier, we used an Optem Zoom lens system (125C 12.5:1 Micro-

Inspection, Qioptiq). This lens is capable of magnifying the image up to 6.5X without 

any auxiliary lens. With an auxiliary lens of 2X, it can magnify up to 13.0X without 

changing the main tube of the lens [36]. The lens is shown in Figure 3.1. 



 

 

 

The resolution, numerical aperture

different magnifications, 

Table 3-2. 

 

1X main tube

with no auxiliary lens

Magnification Range

Resolution

Numerical Aperture

Working Distance

Table 3-1: Optem zoom lens 

 

 

 

 

 

Figure 3.1: Optem zoom lens.  

This lens is used for cryo-microscopy. 

The resolution, numerical aperture, and working distance of the Optem lens at 

 without and with 2X auxiliary lens, are shown in

1X main tube 

o auxiliary lens 
Low magnification High magnification

Magnification Range 0.52X 6.5X 

Resolution 58 LP/mm 300 LP/mm 

Numerical Aperture 0.019 0.10 

Working Distance 89 mm 

: Optem zoom lens specifications with no auxiliary lens.
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and working distance of the Optem lens at 

shown in Table 3-1 and 

High magnification 

 

auxiliary lens. 
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1X main tube  

with 2X auxiliary lens 
Low magnification High magnification 

Magnification Range 1X 13X 

Resolution 114 LP/mm 594 LP/mm 

Numerical Aperture 0.038 0.20 

Working Distance 32 mm 

Table 3-2: Optem zoom lens specifications with 2X auxiliary lens. 

 

3.2.2 Chromatic Aberration 

As explained in Chapter One, we usually analyze the concentration and 

distribution of the two coenzymes FAD and NADH in the tissue samples. To do this, we 

image in two channels of the cryoimager by using appropriate filters for FAD and NADH 

excitation and emission wavelengths.  

Before starting the imaging and while performing the pre-imaging setup, we 

adjust the lens to focus on one channel. If we change the channel to the other without 

refocusing, we see the new images become blurry. This is the result of an optical 

phenomenon called aberration. Figure 3.2 shows aberration in the images taken by the 

cryoimager with the Canon lens and in cryo-macroscopy configuration. At the picture we 

see a slice of control mouse kidney sample with FAD channel in focus. Because of the 
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aberration the NADH channel is out of focus. The number of girds in the grid image of 

Figure 3.2 shows the images are taken in macroscopy.  

 

Figure 3.2: Chromatic aberration in Canon lens, rat kidney sample.  

Left) FAD channel. Right) NADH channel. While the FAD channel is in focus, the NADH channel is out 

of focus.  

 

It is clear that blurry images  suppress  detailed information about the distribution 

of NADH and FAD and therefore the redox ratio. So, the goal is to cancel the effect of 

the aberration on the captured images to preserve the information within the images 

which helps us to quantify redox ratio and represent tissue structures. 

Aberration is due to flaws in optical elements, and it results in blurring and 

distortion in the image taken. 

In an imaging system, aberration occurs when visible light from one point of an 

object does not converge into a single point after passing through the system [37, 38].  

Aberrations are divided into two classes:  
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• Monochromatic aberration 

• Chromatic aberration 

3.2.2.1 Monochromatic Aberration 

The geometry and the nature of a lens, including spherical, coma and curvature is 

the cause of this type of aberration. It occurs when light is either reflected or refracted 

and all beams of light do not converge to the focal point of the lens. It appears even when 

monochromatic light (visible light with a narrow band wavelength) passes through the 

lens [39]. 

3.2.2.2 Chromatic Aberration (Achromatism)   

Chromatic aberration occurs when a lens is not able to focus all colors 

(wavelengths) of the light to the same convergence point because it has 

different refractive indices for different wavelengths of light. In a lens, higher 

wavelengths have a lower refractive index [39]. With chromatic aberration, images are 

distorted and are blurry.  

There are two types of chromatic aberration:  

• Axial (longitudinal)  

• Transverse (lateral)  

3.2.2.2.1 Axial (longitudinal) 

Axial chromatic aberration occurs when different wavelengths of light focus at 

different distances from the lens on the optical axis. This type of aberration is also called 

focal shift. 
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3.2.2.2.2 Transverse aberration (lateral)   

Transverse chromatic aberration occurs when different wavelengths of light focus 

at different positions in the focal plane of the lens.  

To reduce the chromatic aberration, lens manufacturers usually use the following 

techniques: 

• The focal length of the lens is increased to the maximum possible length.  

• An achromatic lens, or achromat, is used to reduce the chromatic 

aberration. In these lenses materials with differing dispersions are used to 

make a compound achromatic lens. 

• Combining more than two lenses of different composition can increase the 

degree of correction further. This technique is used in an apochromatic 

lens, or apochromat. 

• Costly fluorite glasses with very small tolerances are used to make 

superachromat lenses. In this lens four separate wavelengths can be 

brought to focus in the same plane. 

Figure 3.3 visualizes the two different chromatic aberrations versus an ideal lens 

which is considered to be aberration free [40].  

Figure 3.4 shows the focus error (focal shift) of different types of lenses versus 

different wavelengths [41].  

 



 

Figure 3.3: Axial and transverse chromatic aberration versus an aberration free lens

  

Figure 3.4: Chromatic correction of vis

1) Simple, 2) Achromatic doublet, 3) Apochromatic, and 4)

 

 

Axial and transverse chromatic aberration versus an aberration free lens

 

hromatic correction of visible and near infrared wavelengths

1) Simple, 2) Achromatic doublet, 3) Apochromatic, and 4) Superachromat.
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Axial and transverse chromatic aberration versus an aberration free lens [40]. 

ible and near infrared wavelengths [41]. 

uperachromat. 
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Although lens manufacturers apply these techniques to reduce chromatic 

aberrations, chromatic aberration is still an issue on most prime and zoom lenses, and 

affects many images especially at higher resolution imaging.  In Section 3.3.2 the method 

I have used to eliminate chromatic aberration is explained. 

3.2.3 Field Of View 

The area that is visible to an optical instrument is called the field of view (FOV). 

By increasing the magnification, the field of view decreases and vice versa. In other 

words, in order to be able to see the tissue structure, we have to increase the 

magnification, which results in a smaller field of view. As a result, imaging the whole 

tissue samples in high resolution in just one field of view may not be possible, and only a 

small part of a large sample would be captured like the one shown in Figure 3.5 [42]. 

Since we are interested in imaging the whole tissue sample, regardless of size, a raster 

scanning mechanism is implemented which will be explained in subsection 3.3.3.   

 

Figure 3.5: Scenery at different magnifications [42]. 
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3.3 Implementation of Cryo-Microscopy 

In the previous section, the challenges in cryo-microscopy were explained. In this 

section the solutions and the implementations done to overcome the challenges are 

explained. Based on the main requirement of cryo-microscopy, which is recording 

images in high magnification, the importance of an aberration-free lens mechanism with 

a long working distance is apparent. We searched the market for a lens with the 

aforementioned properties, and the best choice applicable to our cryoimager was Optem 

zoom lens. Some detailed information about this lens was already given. In the following 

section, more information about other properties of this lens will be given in the 

following section. 

3.3.1 Long Working Distance Lens 

By increasing the magnification, the working distance of any lens decreases, 

which means the lens should be closer to the sample being imaged. Since there was a 

long distance between the location of the sample in the freezer and the location of the 

camera and lens, we had to decrease this physical distance and bring the sample into the 

lens’ working distance for cryo-microscopy. By some modifications in the cryoimager 

setup, we could decrease the distance to minimum of 96 mm. As shown in Table 3-1 and 

Table 3-2, the working distance of the Optem zoom lens (with 1X main tube) is 89 mm 

without any auxiliary lens and 32 mm with 2X auxiliary lens. To guarantee the proper 

working distance, we had to use a 0.75X auxiliary lens to increase the lens’ working 



45 

 

 

 

distance. With the 0.75X auxiliary lens, the lens mechanism characteristics are as 

following (Table 3-3): 

 

 

 

 

 

 

 

 

 

 

Table 3-3: Optem zoom lens specifications with 0.75X auxiliary lens. 

 

This lens mechanism also has a property (as opposed to other lens mechanisms), 

which helps us to overcome the limited working distance in the cryoimager. In this lens, 

at higher magnifications, we do not approach the sample but instead back away from it.  

3.3.2 Camera Movement 

Because of the chromatic aberration of the lens, we have different focal points for 

different emission wavelengths in the same image. We usually use two different 

wavelengths in the detection path. When we focus on one channel (e.g., the NADH 

channel with 445 nm), the other channel will be out of focus (i.e., the FAD channel with 

520nm).  

1X main tube 

with 0.75X auxiliary lens 
Low magnification High magnification 

Magnification Range 0.39X 4.9X 

Resolution 42 LP/mm 217 LP/mm 

Numerical Aperture 0.014 0.072 

Working Distance 114 mm 
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In order to eliminate this problem, we used Optem zoom lens for Cryo-

microscopy. This lens is an achromatic lens system with a very small focal shift. The lens 

mechanism has a long tube, meaning the focal length is increased to reduce the focal 

shift, which results in less aberration. Although this lens is sold under the aberration free 

tag, it still has chromatic aberration. 

Figure 3.6 shows the images of one slice of a control mouse eye (the lens of the 

eye is taken out to avoid saturation) in NADH, FAD, and bright field channels taken by 

the zoom lens. The number of girds in the grid image of the figure determines that the 

images are taken in microscopy. The small size of the mouse eye allows us to image the 

whole tissue in one field of view. Because of the focal shift error (due to chromatic 

aberration) of the lens, there is a compromise between the focal points of the NADH and 

FAD channels. This means the focus point is chosen somewhere in between each 

channel’s focal point. Thus, both channels are out of focus and a bit blurry. The bright 

field channel, which uses white light illumination with no filters in either excitation or 

emission path, has the worst image quality. 

 

Figure 3.6: Chromatic aberration in Optem zoom, mouse eye sample.   

Left) FAD channel. Middle) NADH channel. Right) Bright field channel. All images suffer from CA. 
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Figure 3.7 shows another mouse eye sample image taken by the Optem zoom lens 

in cryo-microscopy with the FAD channel in focus. It is clear that the NADH channel is 

out of focus. 

 

Figure 3.7: Chromatic aberration in Optem zoom lens, rat eye sample.  

Left) FAD channel. Right) NADH channel. While FAD channel is in focus, NADH channel is out of focus. 

 

The focal shift charts obtained from the manufacturer at the minimum and 

maximum magnification without any auxiliary lens shown in Figure 3.8 and Figure 3.9. 

From Figure 3.8, it can be seen that at the lowest magnification (0.55X), the maximum 

focal shift in the visible light spectrum is 145.5001 µm, while the shift between the 

wavelengths of FAD and NADH channel is 100 µm (0.1 mm). In Figure 3.9, we can see 

that at maximum magnification (6.9X), the maximum focal shift in visible light spectrum 

is 4039.6748 µm, while the shift between the wavelengths of FAD and NADH channel is 

2700 µm (2.7 mm). 

 



 

Figure 3.8

 

 

8: Chromatic focal shift of Optem zoom lens at 0.55X.
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: Chromatic focal shift of Optem zoom lens at 0.55X. 



 

Figure 3.9

 

To eliminate the chromatic aberration and improve the image quality, we move 

the camera and lens to the focal point of the wavelength of each channel

implement this plan, we used 

distance) and modified the 

µm with a repeatability of 1

manufacture is 19.29 µm. The lens and the camera are mounted on the stage

help of the stage we first focus on one channel, save the position of the camera and lens, 

then find the focal point in the other channel and 
 

 

9: Chromatic focal shift of Optem zoom lens at 0.6.9X.

To eliminate the chromatic aberration and improve the image quality, we move 

camera and lens to the focal point of the wavelength of each channel

we used a moving stage (NRT 150, Thorlabs with 150mm moving 

the cryo-software. The stage has incremental movement of 0.1 

h a repeatability of 1 µm and the absolute on-axis accuracy 

manufacture is 19.29 µm. The lens and the camera are mounted on the stage

help of the stage we first focus on one channel, save the position of the camera and lens, 

find the focal point in the other channel and save the position of the camera and lens
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Chromatic focal shift of Optem zoom lens at 0.6.9X. 

To eliminate the chromatic aberration and improve the image quality, we move 

camera and lens to the focal point of the wavelength of each channel separately. To 

a moving stage (NRT 150, Thorlabs with 150mm moving 

software. The stage has incremental movement of 0.1 

axis accuracy according to the 

manufacture is 19.29 µm. The lens and the camera are mounted on the stage, and with the 

help of the stage we first focus on one channel, save the position of the camera and lens, 

of the camera and lens 
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in this channel as well. During the experiment, the software automatically moves the 

camera and lens to the appropriate focal point for each channel. Figure 3.10 shows the 

implementation used for both the macroscopy and microscopy setup. 

 

Figure 3.10: Macroscopy and Microscopy setups with moving stage for camera and lens. 

 Top) Macroscopy. Bottom) Microscopy. 

 

The distance that the camera and lens should move between the two channels’ 

focal points could be calculated based on the focal shift graphs at different 

magnifications; in practice, however, we find it easier to determine the focal shift 

empirically for each experiment.  
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The red area in Figure 3.11 shows the changes in the software implementation 

necessary to control for aberration. Figure 3.12 shows the slicing, stage movements and 

imaging sequence after the new implementation. 

 

Figure 3.11: Camera setting page of the cryoimager software.  

Left) Old implementation. Right) New implementation. In the new implementation, camera position can be 

controlled via the software.  
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Figure 3.12: Cryoimager slicing and imaging sequence while using the moving stage. 

 

By implementing this method, our images improved significantly and the 

aberration problem was solved. Figure 3.13 and Figure 3.14 show sample images taken 

by Canon and Optem zoom lens in both FAD and NADH channel after aberration 

correction, respectively. The number of grids in the gird image of each figure show that 

Figure 3.13 is in cryo-macroscopy and Figure 3.14 is in cryo-microscopy. After the 



 

aberration correction, the images taken 

macroscopy and cryo-microscopy

Figure 3.13: Chromatic aberration correction of r

Left) FAD channel. Right) NADH channel. 

Figure 3.14: Chromatic aberra

Left) FAD channel. Right) NADH channel. 

 

 

 

he images taken in both channels are in focus

microscopy.  

Chromatic aberration correction of rat kidney sample imaged by

Left) FAD channel. Right) NADH channel. Both channels are in focus.

Chromatic aberration correction of mouse eye sample imaged by

Left) FAD channel. Right) NADH channel. Both channels are in focus.
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in focus in both cryo-

 

by Canon lens.  

focus. 

 

by Optem lens.  

focus. 



54 

 

 

 

3.3.3 Raster Scanning and Image Stitching 

When magnifying the image the field of view decreases, which means the whole 

tissue cannot be imaged once at time for larger samples. Raster scanning is a solution to 

this problem. Raster scanning is implemented by subdividing the image into different 

fields of view, then taking images of each single field of view. These single images will 

be stitched together to construct the whole image. For raster scanning, movements in two 

directions (X and Y) are required. To implement raster scanning we have used a two-axis 

motorized micro stage (Standa 8MTF - Motorized XY Scanning Stage). The stage is 

installed vertically in the cryo freezer chamber and the tissue block is mounted onto it. 

This stage has movement resolution of 2.5 µm in full step and 0.31 µm in 1/8 step and 

can tolerate up to 6 KG load capacity in the vertical direction. This capacity is enough for 

the tissue block weight with allowance for the force applied to the tissue and stage from 

the strikes of the blade. Figure 3.15 shows the stage and how it is installed inside the 

cryoimager with the sample block mounted to it. 

 

Figure 3.15: XY-stage used for raster scanning.  
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The raster scanning algorithm also is implemented in the cryoimager software. 

The red area in Figure 3.16 shows the implementation of the software.  

 

Figure 3.16: Raster scanning software implementation.  

 

For raster scanning we need to define the tissue boundary first. This boundary can 

be recognized by the help of four markers (e.g., toothpicks) around the tissue when 

embedding the tissue in black mounting medium. By moving the stage to the positions of 

these markers, the four corners of our final rectangular surface are defined and saved in 

the software. 

The number of images per slice should also be defined in the software. This 

number is calculated based on how big the tissue is and how magnified we want the 

tissue image to be. These numbers vary for the vertical and horizontal axes. By entering 
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the boundary positions and desired number of images into the software, the software is 

able to automatically calculate and save the distribution of the positions where the stage 

should move. The more magnification, the more images should be defined to cover the 

whole tissue surface (due to limited CCD camera field of view). When calculating the 

number of images, a safe overlap (typically %20 to %25) between the images should also 

be taken into consideration.  

The software is implemented such that raster scanning starts from the top right-

hand side of the sample and works its way down, meaning the stage should initially be 

positioned as far left and as low possible. Figure 3.17 shows the implemented raster 

scanning algorithm. 
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Figure 3.17: Cryoimager slicing and imaging sequence after using both stages. 

 

Figure 3.18 shows each field of view of one slice of a control rat kidney in the 

FAD channel, which will be stitched to construct the image of that slice, as shown in 

Figure 3.19. 
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Figure 3.18: Multiple fields of view of one slice of a rat kidney sample with cryo-microscopy setup.  

 

Figure 3.19: Stitched fields of view of one slice of a rat kidney sample. 

Figure 3.20 and Figure 3.21 shows some selected stitched images of different 

layers of control rat kidneys in both macoscopy and microscopy, respectively.  
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Figure 3.20: Selected images of different layers of a rat kidney sample after cryo-macroscopy. 

 

Figure 3.21: Selected images of different layers of a rat kidney sample after cryo-microscopy. 
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The macroscopy-imaged kidney was imaged in 300 slices with 30 µm thickness 

and the microscopy-imaged kidney was imaged in 60 slices with 200 µm thickness. In 

microscopy imaging, each slice was imaged in 12 fields of view (3*4). It is quite clear 

that the structures of the microscopy-imaged kidney are more recognizable and can be 

analyzed more easily. With the stack of the stitched high-resolution images, we are able 

to make 3D pictures of the tissue for both redox and structural analysis. More details 

about image stitching and the stitching algorithm, will be discussed in the next section.  

3.4 Cryo-Microscopy Imaging Improvements 

3.4.1 Images Stitching Challenges 

Image stitching technique combines multiple images to produce one image, and is 

typically used to construct a high-resolution image. To obtain a seamless image with no 

artifacts after stitching, the two following conditions should be met while imaging: 

1) The sub-images should be exposed to uniform homogenous illumination. 

2) There should be nearly exact overlaps between the sub-images. 

Figure 3.22 shows a rat eye image with severe artifacts. These artifacts between 

sub-images after stitching are due to light non-homogeneity. Figure 3.23 shows the 

illumination pattern of an individual field of view taken from a flat-field standard in the 

FAD channel with camera exposure of 500 ms and gain of 1. The small yellow rectangle 

defines one of regions where the average intensity was calculated. As shown in the 



 

image, the five different regions have different intensity averages, which shows the light 

is not homogenous.  

Figure 3.22: Control rat eye imaged in 4 fields of view (2*2) and stitched before

The artifacts are visible due to non

Figure 3.23: Calibration image for the control rat eye in FAD channel before light correction.

Different mean values of intensity

 

 

image, the five different regions have different intensity averages, which shows the light 

 

: Control rat eye imaged in 4 fields of view (2*2) and stitched before

The artifacts are visible due to non-homogeneity illumination. 

: Calibration image for the control rat eye in FAD channel before light correction.

nsity at different regions of the flat field are showing the non

the illumination which causes the artifacts.    
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image, the five different regions have different intensity averages, which shows the light 

 light correction. 

 

: Calibration image for the control rat eye in FAD channel before light correction. 

are showing the non-homogeneity of 
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3.4.2 Solutions to Images Stitching Challenges  

The illumination correction usually is done by adjusting the knobs on the mercury 

arc lamp. Using neutral density (ND) filters in the excitation path also helps make the 

light homogenous, but reduces the intensity of the light incident on the sample, which 

results in longer exposure times. Figure 3.24 shows the flat field illumination pattern of 

the same slice of the eye after the correction with shifting the knobs of the mercury arc 

lamp. As seen, the average intensities of different regions are closer, which results in a 

smoother stitched image. Figure 3.25 shows the eye slice after illumination pattern 

correction. As seen, the artifacts are almost entirely eliminated. 

Overlapping problem is also solved in the implemented stitching software and 

will be explained in the following section. 

 

Figure 3.24: Calibration image for the control rat eye in FAD channel after light correction. 

Average intensities at different regions of the flat field are closer which results in smoother image.    
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Figure 3.25: Control rat eye imaged in 4 fields of view (2*2) and stitched after light correction. 

1) NADH channel 2) FAD channel. The artifacts are eliminated. 
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3.4.3 Images Stitching Software 

A user-friendly software is implemented in LabVIEW for automated image 

stitching. Figure 3.26 shows the software panel and the parameters needed for fine 

stitching.  

 

Figure 3.26: The automatic stitching software implemented in LabVIEW.  

The software is able to eliminate the imprecise movements of the stage. 

 

In the software panel, the number of images (fields of view) per slice should be 

defined. These numbers are exactly the same as those defined when the tissue was 

imaged. The overlap between images can be defined in both percentage and number; the 

pixel/percent switch allows the user to toggle between the two. 
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The software requires other parameters such as the total number of slices, which 

slice to begin stitching, and in which channel (NADH or FAD) the images were acquired  

Artifacts are not always due to the illumination. Since the step movements of the 

stage are not precise, after stitching the artifacts would appear. 

This software has also the ability to remove the artifacts from the imprecise 

movements of the stage by shifting pixels positions’ when stitching. Figure 3.27 shows 

the artifacts in a slice of a rat kidney made due to the imprecise movement of the stage 

and Figure 3.28 shows one-axis corrected image of another slice of that rat kidney.  

 

Figure 3.27: Artifacts in stitched image of a control rat kidney.  

These artifacts are made because of the imprecise movement of the stage. 
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Figure 3.28: One-axis corrected stitched image. 

Region in blue ellipse shows the image is corrected while region in red ellipse still suffers the artifact. 

 

In Figure 3.28 the vertical artifacts are eliminated but the horizontal ones are still 

remaining because of no correction in that axis.  

After obtaining corrected high resolution images in cryo-microscopy, same 

software and techniques explained in image processing section of chapter 2 are used to 

calculate the redox of the tissue samples and to make 3D panels from them.  
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Chapter 4 

Biological Applications of                         

Cryo-Macroscopy and Cryo-Microscopy  
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4 Biological Applications of Cryo-Macroscopy and Cryo-

Microscopy 

4.1 Introduction 

In the previous chapters, cryo-macroscopy, cryo-microscopy, and the images 

captured in each setup were explained. In this chapter, the biological applications of both 

cryo-macroscopy and cryo-microscopy are discussed.  

In my research, I studied the mitochondrial redox state in bronchopulmonary-

dysplasia injury models in mice lungs in macroscopy. The results obtained, validate 

cryoimaging method performance in measuring the oxidative state. Then I studied the 

structural changes in the tissue due to the diseases that change the mitochondrial redox 

state of the tissue. To reach this goal, I studied kidneys of animal model (Endoglin gene 

knock out rat), imaged them in microscopy and showed the structural changes in high 

resolution 3D rendering while the tissue redox state is monitored at the same time. 

4.2 Cryo-Macroscopy Imaging: Bcl-2 (BPD model) 

Bronchopulmonary dysplasia (BPD) is a chronic lung condition that affects 

premature infants who receive supplemental oxygen (hyperoxia) or ventilator support for 

long periods of time. Studies have shown that arrest of alveolar development is a 
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hallmark of BPD caused by either oxygen or mechanical ventilation. We have observed 

significant abnormalities in lungs prepared from Bcl-2 null mice perhaps as a result of 

increased oxidative stress and reduced angiogenesis [43]. Our hypothesis is that oxidative 

stress plays a key role in development of vascular dysfunction associated with BPD. We 

used optical cryo-imaging to investigate the mitochondrial redox state of the tissue 

related to oxidative stress and pathogenesis of BPD. Here we tested whether deficiency in 

Bcl-2, an anti-apoptotic protein with important role in angioegenesis, results in increased 

oxidative stress (OS) and attenuation of lung angiogenesis contributing to PBD. 

In this research lungs from three groups of mice were studied: Bcl-2 +/+, Bcl-2 -/- 

(global Bcl-2 null) and Bcl-2 VE-cad (Bcl-2 only deleted in the endothelium). Bcl-2 +/+ 

lungs were used as control and Bcl-2 VE-cad and Bcl-2 -/- mice were used as potential 

models of BPD. The mice were sacrificed at 3 weeks of age. 

Bcl-2 family acts as regulators of oxidative stress that affect the metabolic state of 

the tissue. Absence of Bcl-2 causes a more oxidized state in tissue and, as such, the 

mitochondria are more oxidized in Bcl-2 -/- mice as compared with their controls. 

The results are shown in Figure 4.1. Figure 4.1 (left) shows the 3-D rendering of 

NADH and FAD fluorescence signals and their ratio (RR = NADH⁄FAD) from 

representative lungs of each of the three groups (Bcl-2 VE-cad vs. Bcl-2 +/+ on top and 

Bcl-2 -/- vs. Bcl-2 +/+ on bottom). As expected, mice with global Bcl-2 null and Bcl-2 

VE-cad show a decreased NADH signal and increased FAD signal and as a result 

decreased RR in respect to the control mice (26% decrease for Bcl-2 VE-cad and 47% for 
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Bcl-2 -/-) which implies generation of more ROS and oxidative stress. Bcl-2 -/- mice also 

had more ROS and oxidative stress (OS) compared with Bcl-2 VE-cad. 

Figure 4.1 (right) shows histograms of RR for the lungs. The mean values of these 

histograms suggest a more reduced mitochondrial redox state for Bcl-2 +/+ lung, and 

more oxidized mitochondrial redox state for both Bcl-2 VE-cad and Bcl-2 -/-.  

 

 

Figure 4.1: Fluorescence images and histograms of Bcl-2 mouse lung. 

Left) Fluorescence images of from left to right NADH, FAD and NADH redox in a Bcl-2 VE-cad vs. Bcl-2 

+/+ mouse lung on top and Bcl-2 -/- vs. Bcl-2 +/+  on the bottom. Right) Histogram of control (blue) and 

Bcl-2 VE-cad lung (red) on top and control (blue) and Bcl-2 -/- lung (red) on bottom. 
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Figure 4.2 Figure 1 (c) shows the average ±SE (standard errors) of the mean 

values of the redox ratio histograms for the three groups of mice, which shows a 

significant decrease (p<0.021) in the NADH redox in Bcl-2 VE-cad lungs and Bcl-2 -/-.   

 

Figure 4.2: Mean value bar graph of  mitochondrial redox ratio. 

Bar graph showing the means and standard errors of the mean value of mitochondrial redox ratio (p<0.021) 

Left) Control and Bcl-2 VE-cad. Right) Control and Bcl-2 -/-. 

 

The utility of cryoimaging for evaluating the redox status of tissue mitochondrial 

coenzymes NADH and FAD was previously shown in intact lungs in another model of 

BPD (combining injuries due to ventilation with elevated oxygen concentration and 

bacterial infection) [44]. It was illustrated that the redox ratio (RR), NADH/FAD, is an 

index of lung tissue mitochondrial redox state, which is an important determinant of 

mitochondrial bioenergetics. Here we have shown that mice lacking Bcl-2 demonstrate 

increased oxidative stress as seen in BPD phenotype. Bcl-2 is a key mediator of 

downstream events that occur in response to both pro- and anti-angiogenic factors, 
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including VEGF and thrombospondin-1 (TSP1), respectively [45]. The important role 

Bcl-2 plays during angiogenesis is demonstrated by the inability of Bcl-2 -/- endothelial 

cells to undergo capillary morphogenesis and sprouting angiogenesis [46].  

A clearer understanding of mitochondrial dysfunction and the role Bcl-2 plays in 

this process is critical for elucidating the role of mitochondrial bioenergetics in 

pulmonary developmental arrest and can be further used in prevention of BPD-like 

injuries. Our studies show that deficiency of Bcl-2 in the endothelium is only partially 

responsible for increased oxidative stress. The identity of additional cellular components 

to increased oxidative stress in the global null mice awaits further investigation. 

Other endogenous (intrinsic) fluorophores in the tissue, including collagen and 

elastin, would not be expected to contribute in variations of mitochondrial redox state 

[47] [48]. Contribution of cytosolic NADPH, which has the same fluorescence 

characteristics as NADH, to the NADH fluorescent signal is considered to be small [49] 

since its concentration and quantum yield is much smaller than NADH [50].  

4.3 Cryo-Microscopy Imaging: Endoglin (HHT-1 model) 

The structure of organs and the redox ratio are both affected by disease 

progression. The changes in the mitochondrial redox state reflect physiological states that 

can be directly or indirectly related to structural changes. In order to study this 

correlation, we added microscopy capability to the cryoimager. We started to investigate 

the structural changes in the vasculature of kidneys simultaneously with redox 



73 

 

 

 

measurements in diseases such as HHT-1 (Hereditary hemorrhagic telangiectasia) and 

diabetes. 

We are in a unique position to identify early points of intervention to protect 

kidney function during diabetes. We tested the hypothesis that the reduction in the level 

of metabolic state (redox ratio) is related to an increase in the level of oxidative stress 

occurring in the renal vasculature and proximal tubules during diabetes. These studies 

will establish a time frame for induction of renal oxidative stress during diabetes and its 

association with renal vascular and tubule dysfunctions.  

HHT-1 is a good model to study the way in which a disease affects structural 

changes in the vasculature network of different organs. This disease is a dominant 

vascular dysplasia caused by loss-of-function mutations in the human Endoglin gene. 

HHT-1 results in excessive bleeding and vascular malformation due to failure to recruit 

perivascular supporting cells to the newly forming blood vessels [51]. 

HHT-1 is associated with frequent nose bleeds, telangiectases, mucosa, and 

arteriovenous malformations in lung, liver, kidney, and brain [51] [52]. 

Complete deletion of Endoglin is embryonically lethal. Indeed, Endoglin 

knockout mice (Eng -/-) die in utero from cardiovascular defects due to inappropriate 

remodeling of their mature vascular network [52] [53] [54] [55].  

Using the cryo-microscopy setup I implemented, the vasculature in Endoglin 

heterozygote (Eng +/-) mice was targeted and studied. These mice show some of the 

same vascular defects with as humans with Endoglin haploinsufficiency [56], and 

therefore continuing this study can reveal some unknown aspects of this disease, which 



74 

 

 

 

could help to diagnose and quantify the amount of injury incident to organ by this 

disease. 3D cryo-microscopy optical imaging showed that vasculature network in kidney 

from Eng +/- mice demonstrates following properties as compared to normal mice: 

• More branching 

• Smaller caliber  

• Smaller vessel coverage 

• More tortuosity 

• Premature branching 

Figure 4.3 shows a maximum projection representation of NADH and FAD 

fluorescence signals and the NADH redox ratio from an Endoglin knockout mouse (Eng 

+/-) kidney versus a wild type mouse (Eng +/+) kidney, both sacrificed at 9 month of age. 

It can be seen that the Endoglin knockout mouse shows an increased NADH signal and 

decreased FAD signal and as a result increased NADH redox ratio.  

Figure 4.4 shows histograms of the NADH redox ratio for the two kidneys (Eng 

+/- and Eng +/+). The mean values of these histograms suggest a more oxidized 

mitochondrial redox state for Eng +/- kidney, and more reduced mitochondrial redox 

state for Eng +/+. 

Figure 4.5 and Figure 4.6 also show the Eng +/-and Eng +/+ mouse kidneys 

imaged in microscopy configuration. A 3D rendering of both kidneys illustrate more 

branching with smaller caliber and vessel coverage in vasculature network of an Eng +/- 

kidney. These vessels have more tortuosity and demonstrate premature branching in 

comparison with an Eng +/+ kidney which prove our hypostasis. 



75 

 

 

 

 

Figure 4.3: Maximum projection of NADH, FAD and NADH redox in 9 month Eng +/- and Eng +/+  

mouse kidney. 

 

Figure 4.4: Histogram of NADH redox in 9 month Eng +/- (blue) and Eng +/+ (red) mouse kidney. 



 

Figure 4.5: 3D rendering

Figure 4.6: 3D rendering

 

 

: 3D rendering of NADH redox in 9 month Eng +/+ mouse kidney.

3D rendering of NADH redox in 9 month Eng +/- mouse kidney
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mouse kidney. 

 

mouse kidney sample.
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Chapter 5 

Conclusion and Future Work 
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5 Conclusion and Future Work 

5.1 Conclusion 

I designed and implemented cryo-microscopy for high resolution visualization of 

3D tissue structures to monitor the amount of injury in tissue due mitochondrial 

dysfunction and structural damage. 

I also implemented a raster scanning algorithm for capturing high resolution and 

magnified images. Thirdly I implemented a stitching algorithm to automatically stitch 

multiple raster images to obtain one high resolution image. To eliminate the artifacts on 

the stitched images, the illumination pattern was corrected and shifting method was 

employed in the stitching software to compensate the imprecise movements of the 

cryoimager stage in microscopy configuration. 

Capturing the fluorescence images in microscopy resolution enables us not only 

to determine the oxidative state of the tissue, but also to visualize the tissue structure. The 

correlation between the changes in the mitochondrial redox state and the structural 

changes of the tissue is beneficial. 

I studied the oxidative stress of three groups of mice lungs with 3 weeks of age. 

Bcl-2 +/+, Bcl-2 -/- (global Bcl-2 null) and Bcl-2 VE-cad (Bcl-2 only deleted in the 

endothelium). Bcl-2 +/+ lungs were used as control and Bcl-2 VE-cad and Bcl-2 -/- mice 

were used as potential models of chronic lung condition in premature infants named 

bronchopulmonary dysplasia (BPD).  
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We observed a 47% and 26% decrease in the NADH redox in Bcl-2 deficient 

lungs, Bcl-2-/- and Bcl-2 VE-cad, respectively. Thus, Bcl-2 deficiency is associated with 

significant increase in oxidative stress contributing to reduced angiogenesis and enhanced 

pathogenesis of BPD. 

Using 3D cryo-microscopy setup which I implemented, I also studied the 

structural changes in the vasculature of rat kidneys in diseases such as HHT-1 

(Hereditary hemorrhagic telangiectasia) and diabetes while measuring the tissue redox 

simultaneously. HHT-1 is a dominant vascular dysplasia caused by loss-of-function 

mutations in the human Endoglin gene and leads to diabetes.  

In this research, I targeted the vasculature in 9-month old Endoglin heterozygote 

(Eng +/-) mice was and showed that vasculature network in kidney from Eng +/- mice 

have more branching, smaller caliber, smaller vessel coverage, more tortuosity and 

premature branching in respect to control mice.  

The Endoglin knockout mouse also showed an increased NADH signal and 

decreased FAD signal and as a result increased NADH redox ratio. As a result Eng +/- 

kidney have more oxidized mitochondrial redox state and Eng +/+ kidney have more 

reduced mitochondrial redox state as expected.  

These results can be used to identify early points of intervention to protect kidney 

function during diabetes. 
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5.2 Future Work 

The mice studied in cryo-micorscopy have some of the same vascular defects as 

humans with Endoglin haploinsufficiency, and continuing this study can reveal some 

unknown aspects of this disease, which could help diagnosing and quantifying the 

amount of injury incident to the kidney by this disease. Especially when it is known that 

the reduction in redox ratio is related to an increase in the level of oxidative stress 

occurring in the renal vasculature and proximal tubules during diabetes.  

 The next step is improving the resolution of the cryo-microscopy one step further 

to achieve cellular resolution. With that instrument we could  which provides us with the 

utility to test the hypothesis that diabetes impacts the cell function of renal vascular and 

proximal tubule. Having cellular resolution will lead us to answer the following 

questions: 

• Is renal endothelial cell function affected by disease?  

• Is oxidative stress responsible for the changes observed in lung vascular cells 

during the disease?  
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