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ABSTRACT 

 

THE EFFECT OF FEMALE QUALITY ON MATING PREFERENCES IN THE 

EASTERN GRAY TREEFROG  

 

By 

 

Robb C. Kolodziej 

 

The University of Wisconsin-Milwaukee, 2014 

Under the Supervision of Dr. Gerlinde Höbel 

 

 

 

Understanding the mechanisms driving female mate choice is critical to developing a 

holistic framework from which to assess effects and outcomes of sexual selection.  I 

investigated the effects of female quality (measured as size, body condition and 

fecundity) on preferences for call traits that indicate either male quality (call duration) or 

species specificity (call pulse rate). I document large variation in both quality and call 

trait preferences of individual female Gray treefrogs, and show that preferences are 

influenced by female quality. Contrary to previous studies, however, I found that 

intermediate quality females show the strongest preferences, while low and high quality 

females show similar, and weaker, preferences.  Further, preferences for male quality 

were influenced by more quality measures than preferences for species specificity, 

suggesting that species recognition is somewhat more immune to quality effects than 

choice for conspecific mate quality. 
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Introduction 

 

Variation in mate choice behavior is important because of the dramatic evolutionary 

consequences resulting from sexual selection on male phenotypes (Hunt et al. 2005; 

Jennions & Petrie 1997). Identifying the origin and maintenance of variation in female 

preferences is a critical step in understanding the role of sexual selection in the co-

evolution of male traits and female preferences for those traits. Despite growing interest 

in the patterns of variation of female preferences, the causes of variation in preferences 

remain poorly understood (Anderson 1994; Cotton et al. 2006b; Jennions & Petrie 1997). 

Frequently, mate preferences are dependent on environmental factors such as predation 

risk (Magnhagen 1991), parasite load (Lopez 1999), age/experience (Kodric-Brown & 

Nicoletto 2001), body condition (Hunt et al. 2005), and relative cost of choice imposed 

by predators in the environment or the cost of maintaining oocytes beyond a certain time 

(Hedrick & Dill 1993; Moore & Moore 2001).   

In particular the relationship between female preferences and female quality has 

captured attention. Like male traits, female preferences should be costly to maintain 

(Booksmythe et al. 2008; Jennions & Petrie 1997; Slagsvold & Dale 1991), and higher 

quality females are expected to better bear the costs associated with mate choice (Alem & 

Greenfield 2010; Cotton et al. 2006b; Iwasa & Pomiankowski 1991; Kokko et al. 2002). 

Indeed, several studies found evidence supporting the link between preference and 

quality (Bos et al. 2009; Hunt et al. 2005; Lerch et al. 2013; Riebel et al. 2009).   

Yet, quality is a difficult concept to capture in one or a few measures, and not 

surprisingly, definitions of quality vary greatly among studies. Quality has been 

measured by means of body condition indices, body size, age, major histocompatibility 
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complex, and relative disease load (Hale et al. 2009; Kotiaho 2000; Laucht & Dale 2012).  

A link between female age and female preference has been demonstrated in multiple taxa 

(Anjos-Duarte et al. 2011; Coleman et al. 2004; Kodric-Brown & Nicoletto 2001; Moore 

& Moore 2001). Generally these studies reveal a relatively linear relationship of age with 

preference, with older females being less selective (Anjos-Duarte et al. 2011; Coleman et 

al. 2004; Kodric-Brown & Nicoletto 2001; Ligout et al. 2012; Moore & Moore 2001; 

Wilgers & Hebets 2012).  In organisms with short generation time amenable to lab 

rearing, age can be assessed with relative ease. Field studies aiming to assess individual 

age are at a disadvantage. However, in many taxa individuals continue to grow after 

reaching sexual maturity (i.e., many invertebrate as well as lower vertebrate taxa), such 

that body size correlates with age (Lykens & Forester 1987; Sagor et al. 1998). This 

allows for the use of body size as a proxy for age, which may then be related to female 

preferences.  

The costs associated with the expression of female preferences should be modulated 

by the energy reserves that are available for mate choice behavior, as well as by the 

energy reserves that have been invested in reproduction (Jennions & Petrie 1997). For 

example, females with larger energy reserves should be better able to cope with the cost 

of mate choice, predicting that females in better condition are more selective. Studies 

generally use body condition indices, i.e., size-adjusted measures of relative body mass, 

to estimate energy reserves, and several studies have found a relatively linear relationship 

between condition and preferences (Baugh & Ryan 2009; Hebets et al. 2008; Hedrick & 

Kortet 2012; Holveck & Riebel 2010; Hunt et al. 2005; Lerch et al. 2011; Lerch et al. 

2013; Riebel et al. 2009; Woodgate et al. 2010). Further, females with higher investment 
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in a given mating event should also be choosier because they have more to loose from a 

bad mate choice decision.  Although never investigated in connection with female 

preferences, fecundity might be a particularly good measure of quality relating to mate 

preferences, especially in organisms with pulsed reproduction where clutch size provides 

a direct measure of current reproductive investment (Perrill & Daniel 1983; Ritke et al. 

1990; Wells 1976).  

Amphibians offer an excellent opportunity to investigate the relationships between 

female quality and mate preferences, due to their well characterized preferences for call 

traits, indeterminate growth, easily assessed body condition and external fertilization. I 

studied the effect of female quality on call preferences in Eastern Gray Treefrogs (Hyla 

versicolor). During the spring and summer breeding season, male H. versicolor form 

choruses at woodland ponds and produce pulsed advertisement calls to attract females. 

Female H. versicolor discriminate among males based on various call parameters, namely 

call duration and pulse rate (Gerhardt 1991). Females prefer longer calls (Gerhardt 1991), 

which have been linked to better larval performance (Doty & Welch 2001; Welch 2000; 

Welch et al. 2002). Females also prefer calls with pulse rates near 20Hz (Gerhardt 1991). 

The calls of a closely related species (Hyla chrysoscelis) are centered at 50Hz (Gerhardt 

1994) suggesting that pulse rate is involved in species recognition. Thus, call duration 

and pulse rate are involved in different contexts of mate choice, and focusing on female 

preferences for either trait allowed me to assess how quality might affect different aspects 

of female choice (conspecific mate choice and species recognition, respectively).  

I tested two hypotheses about the causes of variation in female mate preferences.  The 

first hypothesis posits that female quality influences female preferences.  This hypothesis 
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makes the prediction that high-quality females (i.e., larger/older females, females in 

better body condition, and females with larger egg clutches) will show stronger 

preferences for long calls and calls with a species-specific pulse rate than low quality 

females. The second hypothesis posits that there will be an interaction between female 

quality and the context of choice (conspecific mate quality vs. species recognition).  

Since choosing the wrong species carries more severe penalties than choosing a low 

quality conspecific, preferences associated with species recognition should be less 

strongly associated with quality than preferences associated with conspecific mate 

choice. This hypothesis therefore makes the prediction that there will be a tighter 

correlation between female quality and preference for longer duration calls than to calls 

of the correct pulse rate. By using 3 quality measures (size/age, condition, and clutch 

size) and detailed descriptions of female preferences through the construction and 

analysis of entire preference functions (Fowler-Finn & Rodriguez 2012; Rodriguez et al. 

2006) this study examines the effect of female quality on female choice at an 

unprecedented level of detail.  

 

Methods 

Study site 

Amplectant pairs of frogs were collected from the University of Wisconsin-Milwaukee 

(UWM) Field station in Saukville WI during the 2010 breeding season (April-July).  

Females were transported to UWM, and kept in coolers at 2° C. Females were acclimated 

to room temperature 30 minutes prior to testing. All playback trails were conducted at 

20°C to control for effects of temperature on female preference (Gerhardt 1978).   
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Playback setup and stimulus design 

For testing, females were placed in a circular, acoustically transparent (hardware cloth) 

cage, which was located 1m from the playback speaker within a playback chamber 

covered in anechoic foam.  Females were tested using a no-choice paradigm in which 

response latency to a given stimuli is used as a proxy for interpreting preferences across 

the range of tested stimuli (Bailey 2008). After the stimulus was played 3 times, the lid of 

the release cage was removed remotely.  Female movements were observed under 

infrared illumination via a closed circuit video system.  A positive choice was scored if a 

female moved within 10 cm of the speaker broadcasting the stimuli, at which point the 

time it took the female to reach the speaker was recorded.  If a female did not show 

phonotactic behavior within 5 minutes the trial was recorded as a “no response”.  “No 

Responses” were excluded from statistical tests, but included (coded as infinitely long 

approach latencies) for the construction of preference functions.  Experimental calls were 

generated using a custom designed computer program (written by Joshua J. Schwartz) 

and amplified before being played back from the speaker at an amplitude of 85 dB SPL at 

the position of the release cage.  Testing stimuli for call duration (pulses per call) covered 

the range from 6 pulses (280 milliseconds) to 42 pulses (2070 milliseconds) per call at 

intervals of 6 pulses for a total of 7 stimuli.  The test series for pulse rate stimuli ranged 

from 8 to 40 Hz, with smaller intervals located around previously reported peak in 

preference of 20-25Hz (Gerhardt 1991) for a total of 11 stimuli.  Pulse rate stimuli were 

held constant for duration being 18 pulses in length.  Both sequences bracketed the 

natural variation in male call traits with at least 1 stimulus above and below the natural 
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range observed in the population (Diana S. Kim unpublished data).   

Each female was tested with 21 different test stimuli:  7 testing call duration 

preferences, 11 testing pulse rate preferences, 1 two-choice experiment testing species 

identification, and 2 standards (stimuli of average pulse rate and duration as sampled 

from the population being tested).  The first trial for each female was a two-choice trial 

testing species recognition between Hyla versicolor and its sister species Hyla 

chrysoscelis.  The study population is within the range for H. chrysoscelis and this test 

was to confirm that all females being tested were H. versicolor.   The second trial and 

final trial were always a call of population average pulse rate and duration to test for 

female fatigue throughout the trial.  All other stimuli were tested in random order.  A 

fatigue effect was not evident during preliminary trials using either the standards (F 2,162 = 

1.33; P=0.27) or the entire playback sequence (F2, 1638= 0.95; P=0.52).  

 

Female quality  

I obtained three measures of female quality: (1) body length (SVL), which may be related 

to age (Lykens & Forester 1987; Sagor et al. 1998), (2) a body condition index, which 

provides a measure of maintained body mass per body length, and (3) clutch size as a 

measure of reproductive investment.  Clutch size measurements were obtained by placing 

females with their original amplectant male in a container measuring 30 cm x 16.5 cm x 

9.5cm filled with 6.5cm of aged tap water and allowed to oviposit.  Clutch size was later 

tallied using photographs taken with Cannon Powershot S5IS digital camera.  Post 

oviposition, each female’s weight (to the nearest 0.1g with a pesola spring scale) and 

SVL (snout-vent length) (to the nearest 0.1mm with calipers) were recorded.  From these 
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body measures a body condition index was calculated for each female, using the residuals 

from a linear regression of the cube root of body mass divided by body length on body 

length (Baugh & Ryan 2009; Howard & Young 1998).  Post oviposition weights were 

used for the regression in an effort to control for variation in individual fecundity 

investment and water regulation which may confound pre-oviposition mass measures.  

Upon completion of a test series all females were marked using both toe clips and alpha 

numeric tags (Northwest Marine Technology, Inc.) and released at the capture site. 

 

Description of female preference function and analysis of quality effects 

A female mate preference can be thought of as function valued trait that represents the 

female’s propensity to make mate choice decisions across a given range of male traits 

(Hunt et al. 2005). Preferences functions can be categorized as either open, in which the 

preference for the male trait in question has no relative upper limit, or closed, having an 

optimum male trait value from which anything below or above are discriminated against. 

Preferences function curves, can be further dissected into the traits that characterize them, 

such as their responsiveness, tolerance, strength and peak (see Fig 1) (Bailey 2008; 

Fowler-Finn & Rodriguez 2013; Rodriguez et al. 2013).  Preference function shape as 

well as preference function traits can vary between females, and this variation makes the 

whole preference function a trait of interest when investigating sexual selection 

(Rodriguez et al. 2013).   

Preference functions were created using cubic splines (Dolph Schluter, 

http://www.zoology.ubc.ca/~schluter/software.html) of inverse transformed response 

latencies with 10,000 bootstrapped replicates. Cubic splines are smoothed piece-wise 

http://www.zoology.ubc.ca/~schluter/software.html
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polynomial functions used to fit an approximate curve to data which minimizes the total 

curvature while bending through multiple data points. The “stiffness” (λ, Lambda) of the 

function was adjusted on an individual basis based on an analysis of best fit using a cross 

validation score of best-fit report (GCV score) in the same software. 

For visual inspection of preference function shape as a function of female quality, 

the sample of tested females was divided into three quality groups, using the mean female 

quality measure ± 1 SD to determine group ranges.  The medium group contained any 

individual that was within ± 1 SD from the mean and high and low groups contained 

females above or below this group, respectively.  Average preference functions for each 

of the 3 quality groups were created using average response latencies within quality 

groups.  These average times were then inverse transformed and preference functions 

were created using cubic splines as described above.    

To further investigate female preferences, individual preference functions were 

generated for all tested females (n=82).  From these preference functions I obtained four 

quantitative preference traits: 1) peak, the trait value eliciting the fastest response; 2) 

response effort, a females’ average response latency across all stimuli for a given male 

trait (duration and pulse rate, respectively); and two measures of selectivity; 3) tolerance, 

measured as preference function width at 70% of peak, (for open function the highest 

value tested acted as the upper boundary to the preference function); and 4) preference 

strength, a measure of how strongly a female discriminates her favorite from her least 

favorite trait value, calculated as the squared coefficient of variation (CV2) in response 

latency (see Figure 1).  Each of the four preference traits was then correlated with female 

quality measures using linear and quadratic regressions. 
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Statistical Analysis 

To test for overall variation in female preferences and their correlation with female 

quality, response sequences were analyzed using random-regression linear mixed models.  

Models included female identity as a random factor, linear and quadratic terms for call 

stimuli (call duration or pulse rate, respectively), linear and quadratic terms of female 

quality measures (SVL, body condition or clutch size, respectively; log transformed to 

normalize data), and the interaction between stimulus and female quality terms.  Linear 

terms represent female response as a function of increasing or decreasing call trait (an 

open preference) while quadratic terms represent female response as a curved function in 

relation to increasing or decreasing call trait (a closed preference).  Significant interaction 

terms indicate variation in preference function shape relative to a given quality term.  

To test whether there was individual variation in preference traits irrespective of 

call trait under investigation, I calculated correlations between preference traits for call 

duration and pulse rate.  Response effort and preference strength values are directly 

comparable between traits.  To compare tolerances, it was necessary to account for 

differences in the maximum preference function width arising from differences in the 

range of tested stimuli.  Therefore, tolerance scores were standardized as a percentage of 

the maximum (i.e., 36 for duration and 32 for pulse rate), with a maximum tolerance 

equal to 1.0. Preferences for peak were not compared due to inherent differences between 

traits. Analyses were performed in JMP Version 7.0.    
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Results  

 

1- Variation in female quality 

Female quality showed a broad range of variation.  SVL ranged from 38.5 mm to 55.5 

mm (Figure 2 a).  Maintained body condition ranged from -0.094 to 0.076 (Figure 2 b).  

Clutch size ranged from 325 to 2062 (Figure 2 c).   

SVL showed a strong positive linear correlation to both clutch size (Figure 3a) and 

maintained body condition (Figure 3b), whereas the relationship between maintained 

body condition and clutch size was non-significant (Figure 3c).  

 

2- Variation in female preferences   

 

2a- Preference for call duration  

Population-wide, females showed a preference for longer-duration calls, which is 

indicated by the significant linear stimulus terms in the model (Table 1). This is 

corroborated by visual inspection of the population preference function (Fig 5c, e, and g) 

and the histogram of peak preferences of individual females (Fig 4a).  51% of females 

preferred the stimulus with 42 pulses per call (Figure 4a ), which is 75% longer than the 

longest call produced by males in the study population (Figure 5a, unpublished data from 

Diana S. Kim).  

There was substantial between-female variation in preferences for call duration.  

Most females preferred the longest-duration stimulus, but individual female peak 

preferences covered the entire sequence tested, from 6 to 42 pulses (Figure 4a).  
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Response efforts ranged from 0.0063 to 0.0788 (Figure 4b).    Tolerances ranged from 7 

to 36 pulses, with most females showing high tolerance values (Figure 4c). Preference 

strength ranged from 0.0114 to 0.7472, with most females showing low preference 

strength (Figure 4d). 

 

2b-  Effect of female quality on call duration preferences 

Clutch size did not have an effect on female preferences for call duration (Table 1, Table 

2 and Figure 5g), but both SVL and condition did (Table 1, Table 2 and Figure 5c and e). 

The significant quadratic SVL term in the GLM indicates that female size did 

affect preferences for call duration (Table 1).  The analysis of individual preference 

function traits showed that this variation was due to differences in response effort (Table 

2), with intermediate-size females showing greater effort (faster response latencies) than 

either small or large females (Figure 6a).  Peak preference, tolerance and preference 

strength, however, were not affected by female SVL (Table 2)    

The significant interaction term between stimulus and maintained body condition 

indicates variation in preference function shape across female body condition (Table 1; 

see also Fig 5e).  The analysis of individual preference function traits showed that this 

variation was mainly due to differences in selectivity (tolerance) (Table 2), with females 

of intermediate body condition showing higher tolerances (wider functions) than females 

in either low or high condition (Figure 6b).  Female peak preferences response effort and 

preference strength were unaffected by body condition (Table 2).    
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2c-  Preference for pulse rate 

Significant linear and quadratic terms of stimulus pulse rate indicate that females prefer 

intermediate value for pulse rate (Table 3).  Population-wide, the majority of females 

preferred the intermediate stimuli values (Figure 7a) which roughly corresponds with the 

distribution of male calls sampled from the population (Figure 5b, unpublished data from 

Diana S. Kim).   

There was large between female variation in preferences for pulse rate.  Peak 

preferences covered the entire sequence tested, from 8 to 40 pulses per second (Figure 

7a).  Response efforts ranged from 0.0049 to 0.069 (Figure 7b).  Tolerances ranged from 

5 to 32 pulses per second (Figure 7c).  Preference strengths ranged from 0.0607 to 0.7125 

(Figure 7d).   

 

2d-  Effect of female quality on pulse rate preferences 

Preferences for pulse rate were not affected by clutch size or body condition (Table 3, 

Table 4), but the significant quadratic SVL term indicates that female preference for 

pulse rate is affected by size (Table 3; Figure 5d).  The analysis of individual preference 

function traits showed that this variation was due to differences in response effort (Table 

4) with intermediate-sized females showing higher response effort than either small or 

large females (Figure 8a), and to differences in selectivity (preference strength), with 

females of intermediate size showing lower preference strengths than either small or large 

females (Figure 8b).   
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3- Correlation between call duration and pulse rate preferences 

Response effort was significantly positively correlated between pulse rate and call 

duration trials (Figure 9a), as was preference strength (Figure 9b). Tolerance, however, 

was not correlated between the preferences for different traits (Figure 9c). 

 

4- Difference between call duration and pulse rate preferences 

Female preferences for pulse rate stimuli (indicating species specificity) were less 

correlated with quality measures than preferences for call duration (indicating male 

quality), but the difference was not very pronounced.  SVL was the only quality measure 

significantly affecting pulse rate preferences (significant effect of SVL x SVL, Table 3), 

while both SVL and maintained body condition significantly affected call duration 

preferences (significant effect of SVL x SVL, and significant interaction of Stimulus x 

Condition, Table 1).  The effect of body condition is the biggest difference between the 

two preferences, solely effecting call duration preference function shape.  

 

Discussion 

I tested whether variation in call preferences of female Gray treefrogs related to variation 

in their quality, measured as among-female variation in size, body condition and 

fecundity. I did find large variation in both female preferences and female quality, which 

provides the potential for the evolution of quality-dependent mating preferences. Overall, 

my data is in line with previous research in so far as I document that preferences are 

affected by body condition (Bakker et al. 1999; Baugh & Ryan 2009; Cotton et al. 2006a; 

Engqvist 2009; Hebets et al. 2008; Hunt et al. 2005), body size (Cotton et al. 2006a; 
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Hedrick & Kortet 2012; Holveck & Riebel 2010; Rintamaki et al. 1995; Slagsvold et al. 

1988), and age (Anjos-Duarte et al. 2011; Kodric-Brown & Nicoletto 2001; Ligout et al. 

2012; Moore & Moore 2001; Wilgers & Hebets 2012), but not by fecundity (Cotton et al. 

2006b). However, while previous studies generally report that females that are larger, 

younger or in better condition show stronger preferences (but see (Ahuja et al. 2011; 

Baldauf et al. 2013; Griggio & Hoi 2010; Robinson & Morris 2010; Syriatowicz & 

Brooks 2004), in my study it was the intermediate size, age or condition class that 

showed strongest preferences, while the responses of extreme quality individuals (either 

high or low) were often similar and lower. 

 

Effect of size/age on female preferences  

In Gray treefrogs, body size (SVL) had the largest effect on preferences, affecting 

response effort in both pulse rate and call duration trials, and affecting selectivity 

(tolerance) for pulse rate. In anurans, age and size are frequently correlated (Halliday & 

Verrell 1988), suggesting that the link of preference to SVL may actually indicate 

underlying age-dependent preferences.  Age-dependent variation in preferences seems to 

be common (Anjos-Duarte et al. 2011; Coleman et al. 2004; Jennions & Petrie 1997; 

Kodric-Brown & Nicoletto 2001), but while I found that intermediate sized / aged 

females showed strongest preferences, other studies found that younger females are more 

selective (Ligout et al. 2012; Moore & Moore 2001). One explanation for this non-linear 

pattern of variation is that different sources of selection act on female preferences over 

their lifespan, i.e., similar preferences may have different causes. For example, 

experience-mediated expression of preferences is increasingly documented (Fowler-Finn 



15 
 

 
 

& Rodriguez 2012; Hebets 2003; Svensson et al. 2010), and young female treefrogs may 

have low responsiveness and selectivity because they are inexperienced. By contrast, old 

females may have low responsiveness and selectivity because they are showing signs of 

senescence (Moore & Moore 2001). 

 

Effect of condition on female preferences  

Body condition is the quality measure most commonly used to investigate variation in 

preferences (see above), probably because of the straightforward prediction that if mate 

preferences are costly, then females with more energy reserves (i.e., better condition) 

should be able to better bear this cost (Alem & Greenfield 2010; Cotton et al. 2006; 

Iwasa & Pomiankowski 1991; Kokko et al. 2002). Female gray treefrogs indeed did show 

an effect of body condition on call duration preference, namely in the tolerance for call 

duration. Overall, females preferred longer calls. However, the shape of the call duration 

preference function suggests that this preference is best viewed not as a preference for 

long calls, but a discrimination against short calls. The functions falls off steeply towards 

the low end, indicating that the strongest discrimination occurs between very short and 

intermediate duration calls. Interestingly, extremely low condition and extremely high 

condition females were significantly less tolerant of calls of very low duration, while 

females of intermediate body condition were the most tolerant with a large proportion of 

that group being tolerant of the entire testing range. Thus, again I did not find the 

predicted linear relationship between condition and preference, but a pattern in which low 

and high quality individuals show similar preferences. Again, different causes may be 

responsible for similar preferences. On the one hand, low condition females may try to 
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mate with the best quality male (with the longest call), because they do not have 

sufficient energy reserves for a second clutch and thus must make their one opportunity 

for reproduction count.  High quality females may be more able to burden the cost of 

being more selective. 

Previous studies on gray treefrog female preferences have also documented a 

discrimination against very short calls rather than a preference for extremely long ones 

(Gerhardt 1991; Gerhardt & Brooks 2009; Gerhardt et al. 1996; Gerhardt & Schul 1999). 

A novel and important insight from the present study is that this is not a general 

preference shown by every female, but an emergent pattern arising from individual of 

different condition showing different preferences. 

 

Effect of fecundity on female preferences  

Fecundity (clutch size) had no significant relationship to any preference measured for 

pulse rate or call duration.  This is a surprising result given the large amount of variation 

in clutch size, combined with its direct relationship to reproductive investment. Although 

this measure of “direct investment” showed no relationship to call trait preferences, 

alternative measures such as relative egg size should be addressed in future research. Egg 

size may vary within and between clutches (Berven & Chadra 1988; Kaplan & King 

1997), and there may be trade-offs between number and size of eggs in a clutch(Berven 

& Chadra 1988). Larger eggs result in shorter larval development time (Berven & Chadra 

1988; Cherdantseva et al. 2007; Ficetola et al. 2011), and a better measure of 

reproductive investment may have been to assess the size of a female’s eggs, not their 

number. 
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Is species recognition or conspecific mate choice more strongly affected by female 

quality? 

I had predicted that there will be a tighter correlation between female quality and 

preference for longer duration calls (conspecific mate quality) than to calls of the correct 

pulse rate (species recognition). I found support for this prediction: pulse rate preferences 

were only affected by one quality trait (SVL, potentially indicating age and experience), 

while call duration preferences were influence by two quality traits (condition and SVL). 

This suggests that species recognition is somewhat more immune to quality effects than 

choice for conspecific mate quality.  

 

Implications for sexual selection  

Females preferred trait values for both call duration and pulse rate that were higher than 

what the majority of males in this population are producing, suggesting that there is 

currently weak directional selection towards longer calls and higher pulse rates. Peak 

preferences were not related to quality for either call trait, indicating that this directional 

selection is independent of female quality. However, the strength with which these traits 

are selected for does have some relationship to female quality (size and body condition).  

Response effort was the preference function trait with the strongest link to female 

quality. Given the anuran mating system, in which the long handling time associated with 

amplexus and oviposition means that males can only mate once per night, responsive 

females may play a disproportionately important role in sexual selection. Females that 

respond fastest have the best chances of mating with the male of their choice, and males 

with call traits preferred by those fast females are predicted to have highest mating 
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success and thus influence the call trait distribution in the next generation. An important 

finding of my study is that the group of females responding fastest is the least selective 

group, while the group of females responding slowest shows the strongest preferences. 

This apparent trade-off between responsiveness and selectivity has important 

consequences for sexual selection, because it should weaken selection on male call traits, 

and thus allow for the maintenance of variation in male traits in the population.  

What is the underlying cause of the observed negative correlation between 

responsiveness and selectivity? One potential scenario may be that the trade-off arises 

from quality-mediated differences in the expressed phenotype, i.e., that low quality 

induces higher selectivity, while intermediate quality induces higher responsiveness. 

Alternatively, both aspects of the female preference may be linked and arise from 

physiological constraints of the task of mate selection. For example, a highly selective 

female may spend more time carefully assessing male calls, and consequently approach 

the source more slowly. By contrast, a less selective female may spend less time in call 

assessment and can therefore approach the caller more quickly.  

Because female quality showed at least some effect on female preferences, 

ecological factors have the potential to affect sexual selection in this species. In years 

with favourable conditions for growth/survival and energy accumulation, high quality 

individuals should make up a larger proportion of the mate searching female population, 

and because of their higher selectivity, sexual selection for call traits should increase. A 

similar pattern is expected for years with unfavourable conditions, which should increase 

the proportion of low quality individuals that nevertheless show stronger selectivity in 

their preferences. In average years, the resulting higher proportion of intermediate quality 
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individuals with low selectivity should result in relaxed sexual selection. This, too, 

should result in the maintenance of variation, but on a different time scale. It would be 

interesting to see if the distribution of male call traits in the population fluctuates over 

time and in accordance with ecological conditions. Documenting such a pattern might be 

difficult, though, because the several-year life-span of male tree frogs probably leads to 

an overlap of age classes, thus washing out any predicted pattern of fluctuating among-

year variation in calls.  
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FIGURE AND FIGURE LEGENDS 
 
 
 
 
 
 

 
 

Figure 1:  Preference function metrics: Peak; a measure of the call trait with the strongest 

response, Response effort; a measure of the average response across all call traits 

measured, Tolerance; the range within the continuum of male traits that a female will 

respond to, measured as the width of the preference at 70% of the peak response and 

Preference strength; the difference in responsiveness between the favorite stimuli and 

least favorite stimuli, measured as the squared coefficient of variation in responses across 

all call traits, for an open functions (top) and closed functions (bottom).  
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Figure 2:  Distribution of female quality measures in terms of a) SVL, b) condition index 

and c) clutch size (N=82).  
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Figure 3:  Correlation of quality measures a) SVL Vs. Clutch size (F1, 81= 52.14 P< 

0.0001) b) condition Vs. clutch size  (F1, 81= 2.67 P< 0.11) and c) SVL Vs. condition (F1, 

81= 24.71 P< 0.0001).  SVL was strongly correlated to both condition index and clutch 

size.  
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Figure 4:  Distribution of preference function traits for call duration a) peak b) response 

effort c) tolerance and d) preference strength (N=82).  
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Figure 5:  Distribution of male calls sampled for a) call duration and b) pulse rate.  

Female average preference functions by condition (High = black solid line, Medium = 

blue large dashed line, Low = red small dotted line), grouped by mean +/- 1standard 

deviation being medium and above and below respectively the high and low groups.  

SVL (n= 13 high, 57 medium, 12 low) for c) call duration and d) pulse rate.  Clutch size 

(n= 15 high, 52 medium, 15 low) for e) call duration and f) pulse rate.  Body Condition 

(n= 12 high, 57 medium, 13 low) for g) call duration and h) pulse rate.  
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Figure 6:  Significant interactions between call duration response variables and quality 

measures.  a)  Individuals of intermediate SVL had higher response efforts b) individuals 

of intermediate condition had larger tolerances.   
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Figure 7:  Distributions of preference function traits for pulse rate a) peak b) response 

effort c) tolerance and d) preference strength (N=82).   
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Figure 8:   Significant interactions of pulse rate response variables with quality 

measures.  a) individuals with intermediate SVL had higher response effort   b) 

individuals with intermediate SVL had weakest preference strengths.   
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Figure 9:  Correlation of female preference traits across call stimuli.  Female a) response 

effort was strongly correlated (F1, 81= 566.7, P< 0.0001, R2= .87) as was b) preference 

strength (F1, 81= 23.1, P< 0.0001, R2= .21) however c) tolerance (F1, 81= .41, P< .5217, 

R2= 0.00) was not across duration and pulse rate trials.     
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TABLE AND TABLE LEGENDS 

 

 

Table 1: Analysis of responses of gray treefrog females (N=82), testing for the effect of female quality on responses to variation in call 

duration. Significant P-values are highlighted in bold. 

Sources of Variation  df F ratio P< 

SVL     

 Stimuli 1, 481 56.8476 <0.0001 

 SVL  1, 79 0.4445 0.5069 

 Stimuli x Stimuli 1, 481 2.8891 0.0898 

 SVL x SVL 1, 79 4.3455 0.0403 

 Stimuli x SVL 1, 481 1.0338 0.3098 

Body Condition     

 Stimuli 1, 481 57.0037 <0.0001 

 Body condition 1, 79 0.1124 0.7384 

 Stimuli x Stimuli 1, 481 2.8486 0.0921 

 Body condition x Body condition 1, 79 3.2175 0.0767 

 Stimuli x Body condition  1, 481 4.7938 0.029 

Clutch size     

 Stimuli 1,481 56.6 <0.0001 

 Clutch size 1,79 0.002 0.9641 

 Stimuli x Stimuli 1,481 2.923 0.088 

 Clutch size x clutch size 1,79 0.2790 0.5989 

 Stimuli x clutch size 1,481 0.1545 0.6944 
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Table 2: Clutch size did not affect preference traits for call duration, but females of different SVL and condition showed differences 

in response effort and tolerance (condition only). Female quality never affected peak preference or preference strength. Significant P-

values are highlighted in bold. 

Quality measure Preference trait Linear    Quadratic   

SVL  Std Error t ratio Prob > t  Std Error t ratio Prob > t 

 Peak  41.35614 0.43 0.6687  1053.247 -1.27 0.2068 

 Response effort 0.039323 -0.58 0.5636  1.002977 -2.12 0.0374 

 Tolerance 26.53564 0.52 0.6029  676.8247 0.36 0.723 

 Preference strength 0.287144 -0.23 0.8148  7.323977 1.44 0.1528 

Body Condition         

 Peak  84.44092 -1.24 0.2184  3957.78 -0.13 0.8943 

 Response effort 0.080743 -0.38 0.7046  3.806268 -1.79 0.0769 

 Tolerance 52.43049 0.35 0.7273  2471.606 -2.07 0.0415 

 Preference strength 0.578994 -0.83 0.4116  27.29411 1.40 0.1655 

Clutch size         

 Peak  9.210486 0.75 0.456  41.75834 -0.02 0.983 

 Response effort 0.009003 0.02 0.982  0.040639 -0.48 0.6315 

 Tolerance 5.783695 1.79 0.0769  26.10778 1.2 0.2338 

 Preference strength 0.064586 -0.30 0.7635  0.291543 -0.19 0.8463 
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Table 3: Analysis of responses of gray treefrog females (N=82), testing for the effect of female quality on responses to variation in 

pulse rate. Significant P-values are highlighted in bold. 

Sources of Variation  df F ratio P< 

SVL       

 Stimuli 1, 481 200.0983  <0.0001 

 SVL  1, 79 0.0001  0.9921 

 Stimuli x Stimuli 1, 481 145.7532  <0.0001 

 SVL x SVL 1, 79 5.4195  0.0225 

 Stimuli x SVL 1, 481 1.2239  0.2689 

Body Condition       

 Stimuli 1, 481 200.5016  <0.0001 

 Body condition 1, 79 0  0.999 

 Stimuli x Stimuli 1, 481 145.7757  <0.0001 

 Body condition x Body condition 1, 79 3.4597  0.0666 

 Stimuli x Body condition  1, 481 1.9678  0.1611 

Clutch size     

 Stimuli 1, 481 199.3071  <0.0001 

 Clutch size 1, 79 0.0721  0.789 

 Stimuli x Stimuli 1, 481 145.0577  <0.0001 

 Clutch size x clutch size 1, 79 0.2117  0.6467 

 Stimuli x clutch size 1, 481 0.5401  0.4626 
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 Table 4: Clutch size did not affect preference traits for pulse rate, but females of different SVL and condition showed differences in 

response effort and preference strength (SVL only). Female quality never affected peak preference or tolerance. Significant P-values 

are highlighted in bold. 

Quality measure Preference trait Linear 

 

   Quadratic   

SVL  Std Error t ratio Prob > t  Std Error T ratio Prob > t 

 Peak  24.6726 1.55 0.1265  629.3055 -1.68 0.0977 

 Response effort 0.033765 -0.1 0.9223  0.861208 -2.31 0.0237 

 Tolerance 20.48688 -0.06 0.9543  522.5435 0.04 0.9646 

 Preference strength 0.33553 0.05 0.9629  8.558116 2.14 0.0358 

Body Condition         

 Peak  51.43234 0.39 0.6977  2424.552 -0.2 0.8455 

 Response effort 0.069279 -0.14 0.8875  3.265859 -1.89 0.0624 

 Tolerance 41.44052 0.69 0.4933  1953.532 -0.01 0.9916 

 Preference strength 0.698258 -0.71 0.4794  32.91629 0.03 0.9743 

Clutch size     

 

    

 Peak  5.595809 1.1 0.2728  25.25965 0.33 0.7439 

 Response effort 0.007727 0.33 0.7453  0.03488 -0.53 0.5988 

 Tolerance 4.461586 -0.23 0.8149  20.13974 -1.73 0.0867 

 Preference strength 0.076132 -0.31 0.7610  0.343663 1.09 0.2799 

3
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