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ABSTRACT 

THE ROLE OF G-PROTEIN COUPLED ESTROGEN RECEPTOR (GPER/GPR30) IN 
HIPPOCAMPAL MEMORY AND CELL SIGNALING IN FEMALE MICE 

 
by 

Jae Kyoon Kim 

 

The University of Wisconsin-Milwaukee, 2014  
Under the Supervision of Professor Karyn Frick 

 

The loss of estrogens at menopause significantly increases a woman’s risk of memory 

loss and Alzheimer’s disease because estrogens are essential trophic factors for the 

hippocampus. However, current hormone replacement therapies are not recommended 

to reduce age-related memory decline because of their adverse side effects. To 

develop better hormone replacement therapies, it is essential to understand the 

mechanisms through which estrogens regulate memory. Our laboratory has 

demonstrated that the ability of 17β-estradiol (E2) to enhance hippocampal memory 

depends on the rapid activation of extracellular-signal-regulated kinase (ERK), which 

occurs through activation of ERα and ERβ. The G-protein coupled estrogen receptor 

(GPER) is a novel membrane estrogen receptor, expressed in areas of the brain 

important for learning and memory such as the hippocampus. However, little is 

known about the role of dorsal hippocampal (DH) GPER in hippocampal memory 

consolidation and cell signaling. Here, the present study tested the roles of GPER in 

regulating hippocampal memory consolidation and cell signaling in young female 

mice. DH infusion of the GPER agonist, G-1, enhanced object recognition and spatial 

memory consolidation in ovariectomized female mice. DH infusion of the GPER 

antagonist, G-15, blocked the memory-enhancing effects of G-1, suggesting that 
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GPER activation mimics the beneficial effects of E2 on hippocampal memory. 

Interestingly, however, G-1 did not increase ERK phosphorylation like E2, but instead 

significantly increased phosphorylation of the c-Jun N-terminal kinase (JNK) in the 

DH, suggesting that the molecular mechanisms underlying the memory-enhancing 

effects of GPER activation may differ from those of ERα and ERβ activation. 

Consistent with this notion, DH infusion of the JNK inhibitor, SP600125, blocked G-

1-induced memory enhancement and JNK phosphorylation, whereas the ERK 

inhibitor, U0126, did not. Finally, we showed that DH infusion of SP600125 or G-15 

did not prevent E2 from enhancing memory and activating ERK, demonstrating that 

the memory-enhancing effects of E2 are not dependent on JNK or GPER activation in 

the DH. These results indicate that GPER regulates memory independently from ERα 

and ERβ by activating JNK signaling, rather than ERK signaling. Together, the data 

suggest that GPER does not function as an estrogen receptor in the DH. As such, this 

study identifies GPER as a putative new target for reducing memory decline in 

menopausal women without the detrimental side effects of currently available 

treatment options 
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Introduction 

 The massive loss of estrogens at menopause significantly increases the risk of 

memory deficiency and Alzheimer’s disease (AD) in women (Zandi et al., 2002; Yaffe 

et al., 2007). Out of the 5.2 million Alzheimer’s disease patients, 3.4 million are 

women (Alzheimer's Association, 2012), and this number will continue to increase 

due to the aging of the baby boomer generation. In 2012, the costs of patient care for 

AD and other dementias is estimated at $200 billion and are projected to rise to $1.1 

trillion by 2050 (Alzheimer's Association, 2012). Estrogen therapies can decrease the 

risk of menopause-related memory decline and AD in women (Yaffe et al., 1998; 

Zandi et al., 2002), however these treatments are accompanied by increased risk of 

breast cancer, heart disease, and stroke (Rossouw et al., 2002). The effects of 

estrogens in the hippocampus are important to study because hippocampus 

dysfunction leads to memory loss (deToledo-Morrell et al., 1988). Unfortunately, the 

mechanisms underlying the beneficial effects of estrogens on memory are not fully 

understood. These beneficial effects may be mediated by intracellular estrogen 

receptors (ERα and ERβ) or membrane-bound ERs (e.g., G-protein coupled estrogen 

receptor; GPER) (Waters et al., 2011). Although some evidence suggests an important 

role of intracellular ERs (ERα and ERβ) in memory formation (Liu et al., 2008; Frick 

et al., 2010b; Boulware et al., 2013), very little is known regarding the role of GPER 

in hippocampal memory consolidation.  

 This gap in our knowledge is important to address because manipulating 

GPER could provide the memory-enhancing effects of intracellular ER activation 

without cancerous side effects, as ERα and ERβ activation are implicated in certain 

types of cancer (Deroo and Korach, 2006; Burns and Korach, 2012). Whereas nuclear 
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ERα and ERβ expression increased or stayed constant during breast cancer 

progression (Filardo et al., 2006), GPER expression decreased, and other evidence 

suggests that GPER acts independently from ERα and ERβ in cancer cell lines 

(Filardo and Thomas, 2012). Furthermore, GPER activation suppresses cell 

proliferation in ovarian cancer cell lines (Ignatov et al., 2013). Therefore, 

understanding the role of GPER in estrogen signaling may help resolve some of the 

controversies related to estrogen’s involvement in regulating both cognitive function 

and certain types of cancer. Moreover, better understanding of GPER function could 

also provide important opportunities for the development of new therapies that would 

provide the cognitive benefits of estrogens while limiting potentially dangerous side 

effects. 

 

Hippocampus 

 The hippocampus is one of the most researched structures in the brain. It is a 

bilateral medial temporal lobe structure that plays a central role in the functioning of 

the limbic system, due to its connections with the temporal cortex (e.g., entorhinal, 

perirhinal, and parahippocampal cortices), septum, and amygdala (Arushanyan and 

Beier, 2008). The primary cell type within the hippocampus is the pyramidal neuron, 

which are organized into a form of three-layered cortical tissue. The hippocampus in 

subdivided into several subregions, denoted as CA1, CA2, CA3, and dentate gyrus, 

based on morphologic and functional composition. Although the specific functions of 

the hippocampus remain subject to debate, most investigators agree that the 

hippocampus plays a critical role in learning and memory.  

 The famous case study of patient H.M, firstly published by Brenda Milner, 

first suggested the critical importance of the hippocampus for memory formation 
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(Scoville and Milner, 1957). After surgery of a bilateral medial temporal lobectomy, 

H.M. had severely impaired memory, although not all types of memory were affected. 

H.M. experienced severely impaired declarative memory; H.M. had severe 

anterograde amnesia as well as partial retrograde amnesia, on the other hand, His 

nondeclarative memory and short-term memory was preserved (Corkin et al., 1997). 

Therefore, H.M. study demonstrated the organization of memory in the brain, long 

term memory and immediate memory and the findings from H.M. motivated the 

efforts to study the neurobiological mechanisms underlying memory formation in 

animal models, such as monkey and rodent models (Squire, 2009). Two of the most 

well-known functions of the hippocampus are the generation of cognitive maps for 

use in spatial navigation and regulating episodic memory processes (Smith and 

Mizumori, 2006).  Analysis of neuronal activity, by recordings of single neurons in 

the hippocampus, revealed that the hippocampus is involved in spatial navigation, as 

well as other abilities including detecting speed and direction of movement, match or 

non-match detection, and olfactory discrimination (Holscher, 2003).  

 To test functioning of hippocampus in rodent models, many behavioral tests 

have been established. For example, spatial learning and memory can be evaluated 

using several different methods, including the Morris water maze, Barnes maze, radial 

arm maze, T-maze, and Y-maze (Yuede et al., 2007). Our laboratory uses object 

recognition and object placement tasks to test hippocampal- dependent object 

recognition memory and spatial memory because these one-trail tasks allow us to link 

memory consolidation with rapid molecular events within the hippocampus. 

Moreover, these tasks can be conducted using the same apparatus and training 

procedures, permitting observation of multiple forms of hippocampal memory under 

similar testing conditions.    
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Object recognition (OR) and object placement (OP) 

 OR and OP have ben used extensively to examine hippocampal memory in 

rodents because they are sensitive to numerous factors, including hormones, aging, 

and drug treatments (Tuscher et al., 2014). Although the tasks can be run with 

anywhere from 2-6 objects, most protocols for rodents typically require them to 

explore two identical objects in a testing arena. During the training phase, these two 

objects are usually identical.  For object recognition, memory is tested after a delay 

by allowing subjects to explore one familiar object that is identical to the training 

objects and one novel object. Mice who remember the familiar object will spend more 

time than chance exploring the novel object. For object placement, memory is tested 

by moving one of the familiar training objects to a new location in the arena. Mice 

who remember the training object locations will spend more time than chance 

exploring the moved object. 

 Both OR and OP are well suited for investigating hormonal regulation of 

hippocampal memory because these tasks take advantage of rodent's instinct, 

attraction to novel stimuli, without other potential variables influencing motivation. 

For example, the Morris water maze involves the stress of submersion in water and 

dry land mazes like the radial arm maze, T-maze, and Y-maze involve the stress of 

nutrient restriction. These stressors can induce physiological changes, including 

hormone level changes that can differ between males and females (ter Horst et al., 

2012). In contrast, OR and OP involve only the subject’s own intrinsic motivation to 

explore; it uses no nutrient restriction, provides no rewards, and it does not place 

subjects in an uncomfortable stressful environment (i.e., no water submersion, shock, 

or exposure to bright light). Therefore, OR and OP are ideal behavior tasks for 
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studying the effects of hormone treatment on learning and memory. Despite some 

controversy surrounding the role of the hippocampus in object recognition, several 

studies demonstrate the importance of the hippocampus in regulating object 

recognition (Clark et al., 2000; Broadbent et al., 2004). In fact, one recent study 

suggests that inactivation of a very small portion of the total hippocampus can impair 

object recognition memory (Cohen et al., 2013). Furthermore, ovariectomy impairs 

memory in both OR and OP (Wallace et al., 2006), and as will be demonstrated below, 

estrogen treatment enhances OR and OP memory consolidation.  

 

Estrogen effects on the hippocampus  

 Estrogens are a class of sex steroid hormones that are synthesized primarily 

within the ovaries and placenta, although smaller amounts of estrogens are also 

synthesized in non-gonadal organs such as the heart, liver, bone, and muscle (Cui et 

al., 2013). Estrogens influence many physiological processes via estrogen receptors 

(ERs), including reproduction, bone integrity, cognition, and parenting behaviors. The 

three major forms of estrogens are estrone (E1), estradiol (E2), and estriol (E3). Of 

these, E2 is most potent and biologically active. E2 levels in the rat hippocampus are 

higher than in serum (Hojo et al., 2004), implying an important role of estrogens in 

the hippocampus. The earliest findings to demonstrate that E2 regulates hippocampal 

function showed that dendritic spine density in the CA1 region in the female rat 

hippocampus is elevated when estrogen levels are their highest during the estrous 

cycle and that E2 treatment reverses an ovariectomy-induced decrease in CA1 spine 

synapse density (Gould et al., 1990; Woolley et al., 1990). Exogenous E2 also 

increases hippocampal neurogenesis and enhances various forms of hippocampal 

synaptic plasticity, including long-term potentiation (Foy et al., 1999; McClure et al., 
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2013). In general, estrogens have been shown to enhance hippocampal memory in 

menopausal women and female rodents (Duff and Hampson, 2000; Frick, 2009). 

Many studies have demonstrated that exogenous E2 administration enhances 

hippocampal memory using a variety of tasks, including the Morris water maze, radial 

arm maze, and T-maze (Bimonte and Denenberg, 1999; Daniel and Dohanich, 2001; 

Wide et al., 2004; Bohacek and Daniel, 2007). As discussed below and in our recent 

review (Tuscher et al., 2014), E2 facilitates memory consolidation in the OR and OP 

tasks as well. However, the molecular mechanisms underlying this enhancement are 

not well understood.  

 Using an ovariectomized mouse model, our laboratory previously 

demonstrated that post-training bilateral infusion of E2 into the dorsal hippocampus 

(DH) enhances hippocampal-dependent memory consolidation in the OR task 

(Fernandez et al., 2008). Other work from our lab has shown that DH E2 infusions 

also enhance hippocampal-dependent spatial memory in OP (Boulware et al., 2013). 

Although the role of the hippocampus in OR has been subject to debate (Gervais et al., 

2013), DH lesions or inactivations demonstrate that the DH is essential for object 

recognition memory consolidation in rats and mice (Clark et al., 2000; Baker and Kim, 

2002; Fernandez et al., 2008; Cohen et al., 2013). In our laboratory, E2 is infused 

immediately after training in OR and OP, rather than before training, to pinpoint E2’s 

effects on memory consolidation without affecting motivation, anxiety, or encoding 

during training. Infusion of E2 three hours after training does not enhance memory 

consolidation (Fernandez et al., 2008), suggesting that E2-induced hippocampal 

memory consolidation occurs within three hours of training. Vehicle-infused young 

ovariectomized mice show a significant preference for the novel object 24 hr, but not 

48 hr, after OR training. However, E2-infused mice exhibit enhanced memory 48 hr 
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after OR training, as indicated by their spending significantly more time than chance 

with the novel object. For the OP task, vehicle-infused young ovariectomized mice 

show a significant preference for the moved object 4 hr, but not 24 hr, after OP 

training. However, E2-infused mice exhibit a significant preference for the moved 

object 24 hr after OP training. Thus, to test the memory-enhancing effects of drugs, 

we use a 48-hr retention delay for OR and a 24-hr delay for OP. To test the memory-

impairing effects of drugs, we use a 24-hr delay for OR and a 4-hr delay for OP.  

 Our laboratory has extensively studied the molecular mechanisms through 

which E2 affects hippocampal memory (Harburger et al., 2007; Lewis et al., 2008; 

Pechenino and Frick, 2009; Fan et al., 2010; Frick et al., 2010a; Zhao et al., 2010; 

Zhao et al., 2012; Boulware et al., 2013; Fortress et al., 2013b; Fortress et al., 2013a; 

Fortress et al., 2014). In particular, we have shown repeatedly that phosphorylation of 

the p42 isoform of the cell signaling kinase extracellular signal regulated kinase (ERK) 

in the DH is necessary for E2 to enhance OR memory (Fernandez et al., 2008; Fan et 

al., 2010; Zhao et al., 2010; Zhao et al., 2012). This activation is observed as early as 

five minutes after DH infusion of E2. The importance of ERK in mediating the 

mnemonic effects of E2 was underscored by other work from our laboratory showing 

that rapid activation of the p42 isoform of ERK (p42-ERK) is required for histone 

acetylation alterations that promote the transcriptional events that enhance memory 

consolidation (Zhao et al., 2010). Although this work sheds light on the intracellular 

events that underlie the memory-enhancing effects of E2, the ERs that mediate these 

effects have remained somewhat of a mystery. 

 

Estrogen receptors 

 Two types of ERs, intracellular ERs (ERα and ERβ) and membrane ERs (e.g., 
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GPER, ER-X) likely mediate the memory-enhancing effects of E2. The intracellular 

ERs, ERα and ERβ, have been cloned and are found in several brain regions 

including the hippocampus of the nuclei, dendritic spines, and axon terminals of 

pyramidal neurons and interneurons (Milner et al., 2001; Milner et al., 2005). When 

estrogens bind to ERα or ERβ in the cytoplasm, they are dimerized and move into the 

nucleus where they bind to estrogen response elements (ERE) to initiate gene 

transcription (Cheskis et al., 2007). This so-called classic nuclear action of estrogens 

is considered somewhat slow because the cellular effects can take hours to be 

observed. However, ERα and ERβ can also activate hippocampal cell signaling 

cascades within minutes, suggesting an alternative mechanism of action. Such rapid 

effects have been termed “non-classical” mechanisms. One established non-classical 

mechanism regulating involves interactions between ERα and ERβ and metabotropic 

glutamate receptors (mGluR) to stimulate the phosphorylation of the transcription 

factor cAMP response element-binding protein (CREB) (Boulware et al., 2005). 

Although studies using ERα and ERβ knockout mice have suggested that the effects 

of E2 on hippocampal memory are dependent on ERβ, but not ERα (Liu et al., 2008; 

Walf et al., 2008), potential compensatory mechanisms after gene knockout 

throughout early development make it difficult to pinpoint the roles of each 

intracellular ER. Therefore, ERα-selective and ERβ-selective agonists have been 

developed to differentiate the role of each ER to memory formation.  

 Recently, our laboratory used ER agonists to show that the intracellular 

estrogen receptors ERα and ERβ can mediate the E2-induced enhancement of object 

recognition and object placement memory consolidation (Boulware et al., 2013). 

Specifically, bilateral infusion of propyl pyrazole triol (PPT, ERα agonist) or 
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diarylpropionitrile (DPN, ERβ agonist) into the DH immediately after OR or OP 

testing enhanced object recognition and object placement memory consolidation. Like 

E2, both PPT and DPN increased phosphorylation of the p42, but not the p44, isoform 

of ERK 5 minutes after infusion, and this activation was necessary for PPT and DPN 

to enhance memory. Because ERα and ERβ are not integral membrane proteins, it is 

unlikely that they activate ERK on their own. Instead, we found that both receptors 

must interact mGluR1 to rapidly activate ERK signaling and enhance memory 

consolidation (Boulware et al., 2013). 

 As an alternative to intracellular receptors, E2 may regulate memory by 

binding to membrane ERs (mERs). The existence of specific mERs has been the 

subject of intensive debate in recent years because they have yet to be cloned. 

Candidate mERs include G-protein coupled estrogen receptor 1 (GPER), ER-X, and 

Gq-mER. Despite the uncertainty surrounding the identity of the mERs, these 

receptors can be examined generally using bovine serum albumin (BSA)-conjugated 

E2 (BSA-E2), which is membrane impermeable (Taguchi et al., 2004). Unlike E2, 

BSA-E2 does not activate estrogen responsive gene transcription (Watters et al., 1997). 

Instead, BSA-E2 rapidly activates calcium signaling and ERK phosphorylation in vitro 

and in vivo (Carrer et al., 2003; Wu et al., 2011). In addition, our laboratory has found 

that infusion of BSA-E2 into the DH of ovariectomized female mice enhances OR 

memory consolidation in an ERK-dependent manner (Fernandez et al., 2008). These 

effects were not blocked by an intracellular ER antagonist (ICI 182,780) (Fernandez 

et al., 2008), suggesting that mER activation can influence memory and ERK 

activation independently of intracellular ERs. Although informative, studies using 

BSA-E2 do not provide information about which mERs are involved. Given the 

difficulty of identifying these ERs, it is therefore, challenging to target them 
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pharmacologically or genetically. However, the availability of agonist and antagonist 

drugs for the recently named GPER had led to an increasing number of studies aimed 

at understanding the role of this putative mER in memory formation.  

 

G-Protein Coupled Estrogen Receptor 1 (GPER) 

 GPER is a G-protein coupled receptor, previously known as the orphan 

GPCR called GPR30 (Funakoshi et al., 2006). Although has been considerable debate 

about whether GPER is, indeed, a mER (Langer et al., 2010), there was sufficient 

evidence from peripheral tissues that the receptor’s name was officially changed from 

GPR30 to GPER. GPER is expressed at high levels in the brain, including the 

hippocampus (Brailoiu et al., 2007). Within the hippocampus, GPER is localized 

within dendritic spines of excitatory synapses and peri-synaptic regions in CA1 

hippocampal neurons (Akama et al., 2013; Srivastava and Evans, 2013). GPER is a 

seven transmembrane domain (7TMD) receptor that includes the heterotrimeric G 

protein subunits Gαβγ (Filardo and Thomas, 2005). The Gα protein is involved in 

regulating ion channels and membrane-associated enzymes, whereas the Gβγ-subunit 

plays a role in activating protein kinase cascades (Luttrell et al., 1999; Filardo and 

Thomas, 2005). Importantly, G proteins provide signaling mechanisms critical for the 

regulation of different mitogen-activated protein kinase (MAPK)  (Goldsmith and 

Dhanasekaran, 2007). Some studies suggest that activation of the SRC-like tyrosine 

kinase downstream of GPER can promote the induction of the MAPK pathway 

(Maggiolini and Picard, 2010), and that both E2 and the GPER agonist G-1 increase 

ERK phosphorylation in pancreatic beta cells (Sharma and Prossnitz, 2011). However, 

other studies indicate that activation of GPER does not induce ERK phosphorylation 

in human vascular smooth muscle cells (Ortmann et al., 2011) and that ERK 
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inhibition has no effect on the ability of G-1 to induce DNA synthesis in human 

epithelial cells (Holm et al., 2011). Several other downstream targets of GPER have 

been characterized, including a SRC-like tyrosine kinase (Quinn et al., 2009), PKA 

via cAMP (Thomas et al., 2005), PI3K/Akt (Maggiolini and Picard, 2010), and the 

Notch signaling pathway (Ruiz-Palmero et al., 2011).  

 Interestingly, some reports have demonstrated that ERα localized at the 

membrane interacts directly with various G-proteins (Wyckoff et al., 2001; Kumar et 

al., 2007). However, potential interaction between GPER and intracellular ERs has 

not been examined. As mentioned above, whether GPER is, in fact, an estrogen 

receptor has been a matter of heated debate. Some investigators insist that GPER is 

not a true ER, but potentially has a collaborative role in mediating the biological 

actions of estrogens (Levin, 2009). Although this issue has not yet been resolved for 

neural tissue, evidence in peripheral tissues suggests that GPER binds E2 with a high 

affinity (Thomas et al., 2005), prompting the name change from GPR30 to GPER.  

 The contribution of GPER to hippocampal memory formation is not well 

established. However, some pharmacological studies have examined the role of GPER 

in memory processes using systemic injections of the GPER agonist, G-1, and 

antagonist, G-15. G-1 is a selective agonist for GPER that does not bind ERα and 

ERβ at concentrations up to 10 µM in vitro (Bologa et al., 2006; Blasko et al., 2009) 

and G-15 is selective antagonist for GPER that also does not bind to ERα and ERβ at 

concentrations up to 10 µM in vitro using COS7 cells (fibroblast-like cells) (Dennis et 

al., 2009). One recent study showed that chronic systemic treatment with G-1 mimics 

the beneficial effects of E2 on spatial working memory in young female rats 

(Hammond et al., 2009). In contrast to G-1, systemic treatment with G-15 impairs 
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spatial working memory in young female rats (Hammond and Gibbs, 2011). Although 

these studies suggest that GPER regulates hippocampal memory, their use of systemic 

injections do not permit definitive conclusions about the role of hippocampal GPER 

in memory formation. To address this issue, this thesis employed direct DH infusions 

of G-1 and G-15 to pinpoint the role of hippocampal GPER in memory consolidation. 

 

c-Jun N-terminal kinase (JNK) 

 G-proteins like GPER can activate numerous cell-signaling cascades.  As 

will be discussed below, our results led us to examine cascades other than ERK, 

including the JNK signaling pathway. Like ERK, JNK belongs to the mitogen-

activated protein kinase (MAPK) family and has a kinase signaling cascade structure 

in which mitogen-activated protein kinase kinase (MKK) 4 and MKK7 are direct 

activators of JNK (Haeusgen et al., 2009). JNK has more than 60 substrates, including 

a variety of nuclear transcription factors such as c-Jun, ATF2, and Elk-1, as well as 

cytoplasmic substrates such as cytoskeletal proteins and mitochondrial proteins like 

Bcl-2 and Bcl-xl (Antoniou and Borsello, 2012).  

 JNK has most often been studied in the context of cellular stress and 

apoptosis related to heat shock or DNA damage (Kyriakis and Avruch, 2001; 

Reinecke et al., 2013). In the nervous system, JNK plays an important role in synaptic 

plasticity, neuronal regeneration, and brain development (Tararuk et al., 2006; 

Waetzig et al., 2006). Evidence has also suggested that JNK activity is involved in the 

regulation of the post-synaptic density protein called post-synaptic density-95 (PSD-

95) (Kim et al., 2007). Interactions between GPER and PSD-95 have been identified 

in hippocampal dendritic spines (Akama et al., 2013), suggesting a possible link 

between JNK and GPER at the synaptic membrane. Much less is known, however, 
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about JNK’s role in learning and memory. Studies of JNK inhibitor-treated mice 

suggest a facilitative role of JNK activation in long-term inhibitory avoidance 

memory and neuroprotective effects in hippocampal neurons (Bevilaqua et al., 2007; 

Carboni et al., 2008). In addition, a study using JNK1-deficient (JNK1-/-) mice found 

that JNK1 may play a crucial role in short-term synaptic plasticity and mGluR-

dependent long-term depression (Li et al., 2007). However, other data indicate that 

JNK inhibition in the hippocampus enhances short-term memory (Bevilaqua et al., 

2003), suggesting that JNK may also negatively regulate memory. Therefore, the role 

of JNK signaling in hippocampal memory formation is unclear. Furthermore, nothing 

is known about whether JNK signaling is involved estrogenic regulation of the 

hippocampus or memory. As such, the role of JNK in mediating the effects of E2 or 

GPER on memory was of interest in this thesis. 

 

Aims 

Given the uncertainty surrounding the role of the putative mER GPER in memory 

formation, the primary goals of this thesis were to pinpoint the role of GPER in 

regulating hippocampal object recognition and spatial memory consolidation and 

determine the molecular mechanisms underlying this regulation. To achieve these 

goals, we conducted a series of studies in which we infused a GPER agonist or 

antagonist directly into the DH of ovariectomized mice immediately after training in 

the OR and OP tasks.. We found that GPER regulates both object recognition and 

spatial memory consolidation, but that these effects were dependent on JNK, but not 

ERK activation in the DH. Next, we found that the memory-enhancing effects of E2 

were not dependent on JNK or GPER activation in the DH. Collectively, these data 

suggest that GPER enhances hippocampal memory consolidation by activating 
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different cell signaling cascades than E2. As such, GPER does not appear to function 

as a mER in the hippocampus. 
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Materials and Methods 

Subjects 

 Subjects were female C57BL/6 mice (8-10 weeks of age) purchased from 

Taconic Biosciences (Cambridge City, IN). After surgery, mice were singly housed in 

a room with a 12-hour light/dark cycle, and were allowed ad libitum access to food 

and water. All behavioral testing was performed between 9 am and 6 pm in a quiet 

room with dim lights. All procedures were approved by the University of Wisconsin-

Milwaukee Institutional Animal Care and Use Committee, and followed policies set 

forth by the National Institutes of Health Guide for the Care and Use of Laboratory 

Animals. 

 

Surgery  

 At least one week prior to behavioral testing, mice were bilaterally 

ovariectomized and implanted with chronic indwelling guide cannuale within the 

same surgical session as previously described (Boulware et al., 2013; Fortress et al., 

2013b; Fortress et al., 2014). Mice were anesthetized with isoflurane gas (2% 

isoflurane in 100% oxygen) and secured in a stereotaxic apparatus (Kopf Instruments). 

Following ovariectomy, mice were implanted with guide cannulae (22 gauge, C232G, 

Plastics One) into the DH (-1.7 mm AP, ±1.5 mm ML, -2.3 mm DV) or DH and 

dorsal third ventricle (intracerebroventricular (ICV); -0.9 mm AP, ±0.0 mm ML, -2.3 

mm DV) as previously performed (Boulware et al., 2013; Fortress et al., 2013b; 

Fortress et al., 2014). Dummy cannulae (C232DC, Plastics One) were inserted into all 

guide cannulae to preserve patency of the guide cannulae.  Cannulae were fixed to 

the skull with dental cement (Darby Dental Supply) that served to close the wound. 
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Mice were allowed 7 days to recover from surgery before the start of behavioral 

testing. 

 

Drugs and infusions 

 During infusions, mice were gently restrained and dummy cannulae were 

replaced with an infusion cannula (C3131; DH: 28 gauge, extending 0.8 mm beyond 

the 1.5 mm guide; ICV: 28 gauge, extending 1.0mm beyond the 1.8 mm guide) 

attached to PE20 polyethylene tubing that was mounted on a 10 µl Hamilton syringe. 

Infusions were controlled by a microinfusion pump (KDS Legato 180; KD Scientific). 

All infusions were conducted immediately post-training at a rate of 0.5 µl/minute in 

the DH or 1 µl/2 minutes into the dorsal third ventricle as described previously 

(Boulware et al., 2013; Fortress et al., 2013b; Fortress et al., 2014). Infusion cannulae 

remained in place for 1 min after each infusion to prevent diffusion back up the 

cannula track. For studies in which E2 or G-1 was administered in combination with 

G-15 or a cell-signaling inhibitor, the antagonist or cell-signaling inhibitor was first 

infused bilaterally into the DH and then E2 or G-1 was infused ICV immediately 

afterwards. We routinely use this triple infusion protocol to prevent possible tissue 

damage from two DH infusions in rapid succession (Fernandez et al., 2008; Fan et al., 

2010; Zhao et al., 2010; Zhao et al., 2012; Boulware et al., 2013; Fortress et al., 

2013b). This protocol allows us to infuse estrogenic compounds adjacent to the DH 

while inhibiting receptor or cell-signaling activation directly within the DH.   

 G-1, 1-[4-(6-bromobenzo[1,3]dioxol-5yl)-3a,4,5,9b-tetrahydro-3H-

cyclopenta [c]quinolin-8-yl]-ethanone (Azano biotech) was dissolved in 16% 

dimethylsulfoxide (DMSO) and infused at doses of 2 or 4 ng/hemisphere into the DH 

or 8 ng ICV. G-1 is a selective agonist for GPER that does not bind ERα and ERβ at 
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concentrations up to 10 µM in vitro (Bologa et al., 2006; Blasko et al., 2009). The 

vehicle control for G-1 was 16% DMSO in 0.9% saline. G-15, (3aS*,4R*,9bR*)-4-(6-

Bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-3H-cyclopenta[c]quinoline (Azano biotech) 

was dissolved in 2% DMSO and infused at doses of 1.85, 3.7, and 7.4 ng/hemisphere 

into the DH. G-15 is selective antagonist for GPER that also does not bind to ERα 

and ERβ at concentrations up to 10 µM in vitro (Dennis et al., 2009). The vehicle 

control for G-15 was 2% DMSO in 0.9% saline.  

Cyclodextrin-encapsulated E2 (Sigma-Aldrich) was dissolved in 0.9% saline 

and infused at doses of 5 µg/hemisphere into the DH or 10 µg ICV (Zhao et al., 2012; 

Boulware et al., 2013). The vehicle control for E2 was 2-hydroxypropyl-β-

cyclodextrin (HBC, Sigma-Aldrich), dissolved in 0.9% saline using the same amount 

of cyclodextrin as E2 for infusions. The JNK inhibitor SP600125 (Anthra[1,9-

cd]pyrazol-6(2H)-one, Sigma-Aldrich) was dissolved in 2% DMSO and infused at 

doses of 0.11, 0.55, and 2.75 ng/hemisphere into the DH. SP600125 is a selective 

inhibitor for JNK that does not affect ERK and p38 at concentrations below 10 µM 

(Bennett et al., 2001). The vehicle control for SP600125 was 2% DMSO in 0.9% 

saline. The MEK inhibitor U0126 (1,4-diamino-2,3-dicyano-1,4-bis (o-

aminophenylmercapto) butadiene, Promega) was dissolved in 25% DMSO and 

infused at a dose of 0.5 µg/hemisphere into the DH. This dose does not impair OR and 

OP memory by itself (Fernandez et al., 2008; Boulware et al., 2013), and therefore, 

any effects of this drug in combination with E2 or G-1 cannot be attributed to a 

general memory impairing effect of this compound. The vehicle control for U0126 

was 25% DMSO in 0.9% saline. 

 

Object recognition and object placement 
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 OR and OP were conducted to examine hippocampus-dependent object 

recognition and spatial memory. Both tasks have been shown to involve dorsal 

hippocampal function (Baker and Kim, 2002; Luine et al., 2003; Frye et al., 2007; 

Cohen et al., 2013) and are sensitive to E2 treatment (Gresack and Frick, 2006; Zhao 

et al., 2010). Before the start of behavioral training, mice were handled (1 min/day) 

for three days to acclimate them to the experimenters. They were also familiarized 

with objects by placing a small Lego not used during testing in their home cage. At 

the start of training, mice were habituated to the empty white arena (width, 60 cm; 

length, 60 cm; height, 47 cm) by allowing them to explore for five min/day for two 

consecutive days. On third day, mice were habituated for two minutes in the arena, 

and then placed in a holding cage while two identical objects were placed near the 

northwest and northeast corners of the arena. Mice were then returned to the arena 

and allowed to freely explore the objects until they accumulated 30 s of investigation. 

Immediately after this training, mice were infused and then returned to their home 

cage. After 24 or 48 h, memory was tested by allowing mice to accumulate 30 s 

exploring a novel object and an object identical to the familiar training objects. Time 

spent with the objects was recorded using by ANYmaze tracking software (Stoelting). 

Because mice inherently prefer novelty, mice who remember the familiar object spend 

more time investigating the novel object than chance (15 s). Vehicle-infused mice do 

not remember the familiar object 48 h after training (Gresack et al., 2007), so we used 

this delay to test the memory enhancing effects of E2 and G-1. However, vehicle-

infused females do remember the familiar object 24 h after training (Gresack et al., 

2007), so this shorter delay was used to test for potential memory impairing effects of 

G-15 and cell-signaling inhibitors.  
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The OP task used the same apparatus and general procedure as OR, but 

instead of substituting a novel object for a training object during testing, one familiar 

object was moved to the Southeast or Southwest corner of the testing arena. Because 

vehicle-infused females remember the original object placement after 4 h, but not 24 

h(Boulware et al., 2013), we used the 24-h delay to test memory enhancing effects of 

E2 and G-1 and the 4-h delay to test memory impairing effects of G-15 and cell-

signaling inhibitors. Two weeks separated OR and OP testing to allow acute effects of 

the drug infusions to dissipate prior to the next infusion (n = 6-12/group).  

 

Western blotting 

Western blotting was performed as described previously (Fernandez et al., 

2008; Boulware et al., 2013). To determine the effects of G-1 on DH cell signaling, 

mice were cervically dislocated and decapitated, and the dorsal hippocampus was 

dissected bilaterally 5, 15, or 30 min after infusion and stored at -80°C until 

homogenization. To determine the effects of E2, GPER compounds, and cell-signaling 

inhibitors on DH cell signaling, the DH was dissected bilaterally 5 min after infusion. 

DH tissues were resuspended 50 µl/mg in lysis buffer and homogenized by sonication 

(Branson Sonifier 250). Proteins were then electrophoresed on 10% Tris-HCl precast 

gels (Bio-Rad) and transferred to PVDF membranes (Bio-Rad). Western blots were 

blocked with 5% skim milk and incubated with primary antibodies (phospho-ERK, 

phospho-Akt, phospho-PI3K, phospho-JNK, and phospho-ATF2, 1:1000; Cell 

Signaling Technology) overnight. Blots were then incubated with the appropriate 

HRP-conjugated secondary antibody (1:5000; Cell Signaling), and developed using 

West Dura chemiluminescent substrate (Pierce). A ChemiDocMP gel imager (Bio-Rad) 

was used for signal detection of protein expression. Densitometry was performed 
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using Carestream Molecular Imaging Software (Carestream Healthcare). Blots then 

were stripped with 0.2M NaOH and incubated with antibodies (total-ERK, total-Akt, 

total-PI3K, and total-JNK, 1:1000; β-actin, 1:5000; Cell Signaling Technology) for 

protein normalization. Data were represented as immunoreactivity percent of vehicle 

controls. Treatment effects were measured within single gels (n = 5-8/group). 

 

Statistics 

For OR and OP data, one-sample t-tests were conducted using SPSS (IBM, 

Armonk, NY) to determine if each group spent more time than chance (15 s) 

exploring the novel or moved object (Gresack and Frick, 2003). Western blotting data 

were analyzed in GraphPad Prism 6 (La Jolla, CA) using one-way ANOVA followed 

by Fisher’s LSD posthoc tests and selected t-tests . Significance was determined at p 

< 0.05. 
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Results 

GPER regulates hippocampal memory consolidation 

 We first infused the GPER agonist G-1 into the DH to determine if activation 

of GPER in the DH enhances object recognition and object placement memory 

consolidation in a manner similar to E2. Mice received bilateral DH infusion of 

vehicle (16% DMSO) or on of two doses of G-1 (2 or 4 ng/hemisphere) immediately 

after OR training. Forty-eight hours later, mice infused with vehicle of 2 ng G-1 spent 

no more time with the novel object than chance (15 s). In contrast, mice infused with 

4 ng/hemisphere of G-1 spent more time exploring the novel object than chance (t(8) = 

2.56, p = 0.03; Fig.1A), suggesting that 4 ng G-1 enhanced object recognition 

memory consolidation. Two weeks after OR testing, mice were trained in OP and then 

were immediately infused with vehicle, 2 ng G-1, or 4 ng G-1. Twenty-four hours 

later, mice infused with vehicle or 2 ng G-1 did not exhibit a preference for the moved 

object. However, as in OR, mice receiving 4 ng/hemisphere of G-1 spent significantly 

more time than chance with the moved object (t(9) = 3.81, p = 0.004; Fig. 1B), 

demonstrating enhanced spatial memory consolidation.  

 Because these data suggest that activation of GPER facilitates hippocampal 

memory consolidation, we next examined effects of GPER antagonism on memory 

consolidation. Immediately after OR or OP training, mice received bilateral DH 

infusion of vehicle (2% DMSO) or one of three doses of G-15 (1.85, 3.7, or 7.4 

ng/hemisphere). Mice receiving vehicle (t(8) = 3.52, p = 0.008) or 1.85 ng/hemisphere 

of G-15 (t(7) = 3.32, p = 0.013) showed preference for the novel object 24 h after OR 

training suggesting intact object recognition memory after treatment with a low dose 

of G-15. In contrast, mice receiving 3.7 (t(8) = 2.02, p = 0.08) or 7.4 (t(6) = 0.89, p = 

0.41) ng/hemisphere of G-15 did not (Fig. 1C), suggesting that these doses impaired 
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Figure 1. GPER activation enhances OR and OP memory consolidation. A, Mice receiving DH 
infusion of 4 ng/hemisphere G-1 (but not vehicle or 2 ng G-1) spent more time than chance 
(dashed line at 15 s) with the novel object 48 hr after training, indicating enhanced memory for 
the familiar object (n = 6-9/group). B, Similarly, mice infused with 4 ng G-1, but not vehicle or 2 
ng G-1, spent significantly more time with the moved object than chance 24 h after OP training, 
indicating enhanced spatial memory (n = 9-10/group). C, Mice receiving 3.7 or 7.4 
ng/hemisphere G-15 exhibited impaired OR memory consolidation 24 h after DH infusion, 
whereas mice receiving vehicle or 1.85 ng G-15 did not (n = 7-9/group). D, In OP, 7.4 ng G-15 
impaired spatial memory consolidation 4 h after DH infusion, but no other dose of G-15 affected 
memory (n = 6-9/group).  E, F, ICV infusion of 4 ng/hemisphere G-1 significantly enhanced 
OR (E) and OP (F) memory tested 48 h and 24 h after infusion, respectively (n = 8-11/group).. 
However, DH infusion of 1.85 ng/hemisphere G-15 abolished these effects, suggesting that 
activation of GPER is necessary for G-1-mediated hippocampal memory enhancement. Each bar 
represents the mean ± SEM time spent with the novel or moved object (*p < 0.05, **p < 0.01 
relative to chance)..  
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object recognition memory consolidation. In OP, mice receiving DH infusion of 

vehicle (t(8) = 2.62, p = 0.03), 1.85 ng G-15 (t(7) = 3.32, p = 0.013), or 3.7 ng G-15 (t(8) 

= 2.02, p = 0.08) spent significantly more time than chance (15 s) with the moved 

object, whereas mice infused with 7.4 ng G-15 did not (Fig. 1D). That only the high 

dose of G-15 impaired spatial memory consolidation suggests that spatial memory 

may be less sensitive to the effects of G-15 antagonism. that 1.85 ng/hemisphere of G-

15 did not impair memory consolidation on its own and GPER inhibition impairs 

hippocampal memory although the sensitivity of task is a little bit different.  

 Finally, to confirm that G-15 acts as a GPER antagonist, we examined 

whether G-15 could block the memory-enhancing effects of G-1. To this end, we 

infused 8 ng G-1 into the dorsal third ventricle because bilateral infusion of 4 

ng/hemisphere G-1 enhanced memory in both tasks. We also infused 1.85 ng/ 

hemisphere G-15 into the DH because this dose had no detrimental effects on memory 

in both tasks. Immediately after training in each task, mice received a DH infusion of 

vehicle (2% DMSO) or G-15 (1.85 ng/hemisphere) followed immediately by an ICV 

infusion of vehicle (16% DMSO) or G-1 (8 ng). OR and OP retention were tested 48 

and 24 hours later, respectively. In both tasks, G-15 blocked the memory enhancing 

effects of G-1 (Fig. 1E,F). Only mice receiving G-1 + vehicle showed a significant 

preference for the novel object (t(7) = 2.68, p = 0.032; Fig 1E) and moved object (t(8) = 

2.46, p = 0.04; Fig 1F). These results demonstrate that GPER activation is necessary 

for G-1 to enhance hippocampal memory consolidation in female mice, and suggest 

that GPER regulates both object recognition and spatial memory consolidation. 

 

G-1 does not activate ERK or PI3K/Akt signaling in the DH 
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 We have previously shown that the enhanced memory consolidation 

induced by DH infusion of E2 or agonists of ERα and ERβ is dependent on DH p42 

ERK phosphorylation (Fernandez et al., 2008; Boulware et al., 2013). To determine 

whether GPER also enhances memory by activating p42 ERK, we first measured the 

effects of GPER activation on ERK phosphorylation. Mice received bilateral DH 

infusion of 4 ng G-1 and the DH was dissected bilaterally 5, 15, or 30 min later. 

 

 
 

Figure 2. GPER does not activate the ERK or PI3K/Akt signaling pathways. A, G-1 (4 
ng/hemisphere) infusion did not increase DH p42 and p44 ERK phosphorylation relative to 
vehicle 5, 15, or 30 min after DH infusion. B, G-1 infusion significantly reduced Akt 
phosphorylation levels in the DH 30 min after infusion. C, G-1 infusion did not alter PI3K 
phosphorylation relative to vehicle 5, 15, or 30 min after DH infusion. Each bar represents the 
mean ± SEM percent change from vehicle controls (*p < 0.05 relative to vehicle). Insets are 
representative Western blots. (n = 5/group). 
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In contrast to E2(Fernandez et al., 2008; Boulware et al., 2013), G-1 infusion did not 

significantly increase levels of phospho-p42 ERK at any time point examined (F(3,16) 

= 0.72; Fig. 2A). G-1 also did not affect levels of phospho-p44 ERK (F(3,16) = 3.07; 

Fig. 2A). We then examined activation of the PI3K/Akt signaling pathway because we 

have previously demonstrated that activation of this signaling pathway is necessary 

for E2 to activate ERK and enhance OR memory consolidation in young and middle-

aged female mice (Fan et al., 2010; Fortress et al., 2013b). However, G-1 did not 

significantly increase levels of phospho-Akt (F(3,16) = 3.94, p > 0.05; Fig. 2B) or 

phospho-PI3K (F(3,16) = 0.68; p > 0.05; Fig. 2C). In fact, G-1 decreased levels of 

phospho-Akt 30 min after infusion (Fig. 2B). Collectively, these data show that GPER 

activation does not activate ERK or PI3K/Akt signaling in the DH and suggest that 

the effects of GPER activation on DH cell signaling are different from those of E2 or 

ER agonists.  

 

GPER activation leads to rapid JNK phosphorylation in the DH  

 We next investigated whether GPER activation could phosphorylate c-Jun 

N-terminal Kinase (JNK) in the DH. As a seven transmembrane domain receptor, 

GPER is comprised of heterotrimeric G protein subunits Gαβγ (Filardo and Thomas, 

2005), and the Gβγ-subunit plays a role in activating protein kinase cascades such as 

ERK and JNK (Luttrell et al., 1999; Filardo and Thomas, 2005; Goldsmith and 

Dhanasekaran, 2007). Moreover, JNK is known to play an important role in synaptic 

plasticity, neuronal regeneration, and brain development (Tararuk et al., 2006; 

Waetzig et al., 2006). Therefore, we thought it possible that GPER might activate one 

or both of the two JNK isoforms (p46 and p54). Mice bilaterally infused into the DH 

with vehicle or 4 ng G-1 exhibited a significant increase in the phosphorylation of 
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both the p46 (F(3,16) = 13.46, p < 0.001; Fig. 3A) and p54 (F(3,16) = 6.335, p < 0.01; Fig. 

3B) isoforms of JNK 5 min after infusion. These effects were transient, as levels of 

both phosphorylated isoforms returned to baseline by 15 min after infusion. We next 

examined phosphorylation of the downstream JNK transcription factor called 

activating transcription factor 2 (ATF2) (Antoniou and Borsello, 2012). As with JNK, 

G-1 infusion significantly increased levels of, phospho-ATF2 5 min after DH infusion 

 

 
 

Figure 3. GPER activation increases JNK phosphorylation in the DH. A,B, DH infusion of G-1 (4 
ng/hemisphere) significantly increased phosphorylation of the JNK p46 isoform (A) and p54 
isoform (B) within 5 min. Levels returned to baseline 15 min later. C, Similarly, G-1 infusion 
significantly increased phosphorylation of the downstream JNK transcription factor ATF2 in the 
DH 5 min after infusion. (n = 5/group). 
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(F(3,16) = 3.03, p < 0.05; Fig. 3C), and levels returned to baseline by 15 min after 

infusion.  

To confirm that the G-1 mediated-JNK activation observed occurred via 

GPER activation, we next examined if G-15 could block the effects of G-1 on JNK 

 
 

 
 

Figure 4. GPER antagonist blocks the G-1-mediated JNK phosphorylation in DH. A,B, ICV 
infusion of 8 ng G-1 significantly increased levels of phosphorylated p46 JNK (A) and p54 JNK (B) 
5 min after infusion. However, these effects were abolished by DH infusion of G-15 indicating that 
GPER activation is necessary for G-1 to activate JNK signaling. C, Neither G-1 nor G-15 altered 
ERK phosphorylation. Each bar represents the mean ± SEM percent change from vehicle (*p < 
0.05, **p < 0.01, ***p < 0.001). Insets are representative Western blots. (n = 6/group). 
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activation. Mice received DH infusion of vehicle or G-15, and ICV infusion of 

vehicle or G-1. Consistent with the effects of DH G-1 infusion, ICV infusion of G-1 

increased phosphorylation of both the p46 (F(2,15) = 4.97, p < 0.05; Fig 4A) and p54 

(F(2,15) = 7.89, p < 0.01; Fig 4B) isoforms of JNK 5 min after infusion. Infusion of G-

15 into the DH completely blocked these effects (Fig. 4A,B), suggesting that GPER 

activation induces JNK phosphorylation in the DH. In contrast, ICV and DH infusion 

of G-1 and G-15 did not significantly alter ERK phosphorylation (Fig. 4C). 

 

Activation of JNK is necessary for GPER to influence hippocampal memory 

consolidation 

Given the rapid activation of JNK by G-1, we next examined whether this 

activation is necessary for G-1 to enhance memory consolidation. To do so, we used 

the JNK activation inhibitor SP600125. We first needed to find a dose of SP600125 

that did not block memory consolidation on its own. Therefore, we infused mice with 

vehicle (2% DMSO) or one of two doses of SP600125 (0.55 or 2.75 ng/hemisphere) 

immediately after OR or OP training. Mice receiving vehicle (t(6) = 3.27, p = 0.02) or 

either dose of SP600125 (0.55 ng, t(5) = 2.7, p = 0.043; 2.75 ng, t(7) = 3.46, p = 0.01) 

spent significantly more time than chance with the novel object 24 h after OR training 

(Fig. 5A), suggesting that neither dose of SP600125 impaired OR memory 

consolidation. Similarly, mice infused with vehicle (t(8) = 3.87, p = 0.005) or either 

dose of SP600125 (0.55 ng, t(9) = 3.45, p = 0.007; 2.75 ng, t(7) = 3.7, p = 0.008) spent 

significantly more time than chance with the moved object 4 h after OP training (Fig. 

5B), indicating neither dose impaired OP memory consolidation. Because neither dose 

affected memory on its own, we selected the highest behaviorally ineffective dose of 

SP600125 (2.75 ng/hemisphere) for our remaining studies. 
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To test whether activation of JNK or ERK was necessary for G-1 to enhance 

memory consolidation, we next infused mice with G-1 plus 2.75 ng SP600125 or the 

ERK activation inhibitor U0126 at a dose (0.5 µg/hemisphere) that has no effect on 

OR or OP on its own (Fernandez et al., 2008; Boulware et al., 2013). A new set of 

mice received DH infusion of vehicle (25% DMSO), 2.75 ng SP600125, or 0.5 µg 

U0126 and ICV infusion of vehicle (16% DMSO) or 8 ng G-1 immediately after OR 

     

  
 

Figure 5. JNK inhibition blocks the GPER-mediated memory enhancement in DH. A, Mice 
receiving DH infusion of vehicle or the JNK inhibitor SP600125 (0.55 or 2.75 ng/hemisphere) spent 
significantly more time than chance with the novel object 24 hr after training, suggesting that 
neither dose of SP600125 impaired memory on its own (n = 6-8/group). B, Similarly, neither dose 
of SP600125 impaired OP memory tested 4 h after DH infusion (n = 6-10/group).  C, D, 
Immediately after OR or OP training, mice received DH infusion of vehicle, SP600125 (1.85 
ng/hemisphere), or U0126 (0.5 µg/hemisphere) followed by ICV infusion of vehicle or G-1 (8 ng). 
ICV infusion of G-1 significantly enhanced OR memory (C) and OP memory (D). SP600125 
blocked these effects (C, D), but U0126 did not, suggesting that activation of JNK, but not ERK, is 
necessary for GPER-mediated hippocampal memory enhancement (n = 7-10/group).. Each bar 
represents the mean ± SEM time spent with the novel or moved object (*p < 0.05, **p < 0.01 , ***p 
< 0.001 relative to chance).   
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and OP training. Memory in OR and OP was tested 48 and 24 hours later, respectively. 

In both tasks, SP600125, but not U0126, blocked the memory-enhancing effects of G-

1 (Fig. 5C,D). Mice receiving G-1 + vehicle showed a significant preference for the 

novel object (t(9) = 2.48, p = 0.04) and moved object (t(6) = 6.37, p = 0.0007), whereas 

mice receiving G-1 + SP600125 did not (novel object, t(8) = 1.16, p = 0.28; moved 

 

 
 

Figure 6. JNK inhibition blocks the GPER-mediated cell signaling in DH. A, B, ICV infusion of 8 
ng G-1 increased phosphorylation of p46 JNK (A) and p54 JNK (B) 5 min later. These effects were 
blocked by DH SP600125 infusion. C, Neither G-1 nor SP600125 altered ERK phosphorylation (n 
= 7-8/group). 
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object, t(7) = 0.86, p = 0.42), suggesting that JNK activation is necessary for G-1 to 

enhance memory consolidation. In contrast, mice infused with G-1 + U0126 spent 

significantly more time than chance with the novel object (t(8) = 2.83, p = 0.02) and 

moved object (t(10) = 2.48, p = 0.03), suggesting that ERK activation is not necessary 

 

 
 

Figure 7. ERK inhibition does not alter the GPER-mediated cell signaling in DH. A, B, The increase 
in p46 (A) and p54 (B) phosphorylation induced by ICV infusion of 8 ng G-1 was not blocked by 
DH U0126 infusion. C, Neither G-1 nor the behaviorally subeffective dose of U0126 altered ERK 
phosphorylation. Each bar represents the mean ± SEM percent change from vehicle (*p < 0.05, **p 
< 0.01). Insets are representative Western blots (n = 7-8/group). 
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for G-1 to enhance memory consolidation. We next examined the effects of JNK and 

ERK inhibition on G-1 mediated hippocampal cell signaling. Consistent with the 

behavioral data, ICV infusion of G-1 increased phosphorylation of both p46 JNK 

(F(2,19) = 6.56, p < 0.01; Fig. 6A) and p54 JNK (F(2,19) = 6.47, p < 0.01; Fig. 6B) 5 min 

after infusion. DH infusion of SP600125 abolished the effects of G-1 on p46 and p54 

JNK (Fig. 6A,B). In contrast, G-1 and SP600125 did not significantly alter ERK 

phosphorylation (Fig. 6C). Unlike SP600125, U0126 did not block the GPER-

mediated JNK activation (Fig. 7A,B). Whereas G-1 increased phosphorylation of both 

p46 JNK (F(2,15) = 4.44, p < 0.05; Fig. 7A) and p54 JNK (F(2,15) = 6.68, p < 0.01; Fig. 

7B) 5 min after infusion, U0126 did not block the effects of G-1 on p46 JNK (t(10) = 

2.35, p < 0.05; Fig. 4H) and p54 JNK (t(10) = 2.34, p < 0.05; Fig. 7B). Moreover, 

neither G-1 nor U0126 infusion altered ERK activation (Fig. 7C). These data suggest 

that ERK activation does not regulate G-1-induced hippocampal JNK activation. 

Together, these results support that activation of JNK, but not ERK, is essential for 

GPER to induce memory enhancement.  

 

E2-mediated hippocampal memory consolidation is independent of GPER and 

JNK activation 

 We have previously demonstrated that E2 enhances hippocampal memory 

consolidation by ERα− or ERβ-mediated ERK activation in the DH (Fernandez et al., 

2008; Boulware et al., 2013). In contrast, above data support that the G-1-induced 

enhancement of hippocampal memory consolidation is dependent on hippocampal 

JNK activation, rather than ERK activation. This finding begs the question of whether 

E2-induced memory enhancements are also dependent on JNK and/or GPER 

activation. To address this issue, we first examined the effects of E2 on JNK cell 



３３ 

 

 

 

signaling in the DH. Mice received bilateral DH infusion of the vehicle or E2 (5 µg/ 

hemisphere), and the DH was dissected bilaterally 5 or 10 min later. DH E2 infusion 

did not alter DH p46 JNK, and p54 JNK phosphorylation at either the 5 or 10 min 

time point (Fig. 8A,B), suggesting that E2 does not activate JNK in the DH. As our 

previous studies (Fernandez et al., 2008; Boulware et al., 2013), DH E2 infusion 

 

 
 
Figure 8. E2 increases activation of ERK, but not JNK, in the DH. A, B, DH infusion of E2 (5 
µg/hemisphere) did not alter levels of phospho-p46 JNK (A) or phospho-p54 JNK (B) 5 or 10 min 
later. C, DH infusion of E2 (5 µg/hemisphere) significantly increased phosphorylation of p42 
ERK, but not p44 ERK, 5 min after infusion. Levels returned to baseline 10 min later. Each bar 
represents the mean ± SEM percent change from vehicle controls (*p < 0.05). Insets are 
representative Western blots. (n = 6/group). 
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increased phospho-p42-ERK 5 min after infusion (F(2,15) = 3.38, p < 0.05; Fig. 8C) but 

had no effect on p44 ERK (Fig. 8C). These data suggest that E2 increases activation of 

ERK, but not JNK, in the DH.   

Next, we investigated the effects of GPER and JNK inhibition on E2-

mediated hippocampal cell signaling. Mice received ICV and DH infusions, 

respectively, of vehicle + vehicle, E2 + vehicle, E2 + SP600125, or E2 + G-15, and DH 

tissue was collected 5 min later. As in our previous work (Boulware et al., 2013), ICV 

infusion of E2 increased levels of phospho-p42 ERK (F(3,20) = 7.6, p < 0.01), but not 

phospho-p44 ERK (F(3,20) = 0.7, p > 0.05) (Fig. 9A). The increase in p42 ERK was 

not blocked by DH infusion of G-15 and SP600125 (G-15, F(3,20) = 7.6, p < 0.001; 

SP600125, F(3,20) = 7.6, p < 0.05; Fig. 9A). As with DH infusion, ICV infusion of E2 

did not alter phosphorylation of p46 JNK or p54 JNK, whether alone or in 

combination with DH infusion of G-15 and SP600125 (Fig. 9B,C). Together, these 

data reiterate that E2 does not rapidly activate JNK in the DH and indicate that 

activation of JNK or GPER is not necessary for E2 to activate ERK in the DH.  

Given this finding, the next logical step was to determine whether JNK and 

GPER activation play a role in E2-mediated hippocampal memory enhancement. To 

do so, we infused mice with vehicle, G-15 (1.85 ng/hemisphere) or SP600125 (2.75 

ng/hemisphere) into the DH and vehicle or E2 (10 µg) into the dorsal third ventricle 

immediately after OR and OP training. OR and OP retention were tested 48 and 24 

hours later, respectively. In both tasks, mice receiving E2 + vehicle showed a 

significant preference for the novel object (t(5) = 2.73, p = 0.04; Fig 9D) and moved 

object (t(7) = 2.69, p = 0.03; Fig 9E), in agreement with our previous work (Boulware 

et al., 2013). Consistent with the lack of JNK activation observed above, SP600125 



３５ 

 

 

 

 

 
 

 
 

Figure 9. GPER and JNK inhibition do not affect the E2-mediated memory enhancement and cell 
signaling in the DH. A, ICV infusion of E2 (10 µg) increased phospho-p42 ERK levels 5 min after 
infusion; this effect was not blocked by DH infusion of G-15 or SP600125. ICV infusion of E2 (10 
µg) did not alter p44 ERK phosphorylation (n = 6/group). B, C, ICV infusion of E2 did not alfter 
p46 JNK (B) or p54 JNK (C) phosphorylation 5 min after infusion when infused with vehicle, G-
15, or SP600125 phosphorylation (n = 6/group). Each bar represents the mean ± SEM percent 
change from vehicle (*p < 0.05, **p < 0.01, ***p < 0.001). Insets are representative Western 
blots. D, E, Immediately after OR or OP training, mice received DH infusion of vehicle, G-15 
(1.85 ng/hemisphere), or SP600125 (2.75 ng/hemisphere) followed by ICV infusion of vehicle or 
E2 (10 µg). ICV infusion of E2 significantly enhanced OR memory (D) and OP memory (E), and 
these effects were not blocked by G-15 or SP600125 (D, E), suggesting that neither GPER nor 
JNK activation is necessary for E2 to enhance hippocampal memory consolidation (n = 6-
12/group). Each bar represents the mean ± SEM time spent with the novel or moved object (*p < 
0.05 relative to chance).  
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did not prevent E2 from enhancing OR or OP memory consolidation (Fig. 9D,E), as 

mice receiving E2 + SP600125 spent significantly more time with the novel object 

(t(11) = 2.36, p = 0.04) and moved object (t(9) = 2.45, p = 0.04). Interestingly, G-15 also 

did not block E2-induced memory enhancements in either task (Fig. 9D,E), as 

demonstrated by the fact that mice receiving E2 + G-15 spent significantly more time 

with the novel object (t(5) = 3.67, p = 0.01) and moved object (t(6) = 3.36, p = 0.02). 

These results suggest that neither JNK nor GPER activation in the DH is necessary for 

E2 to enhance hippocampal memory consolidation.  
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Discussion 

 The present study provides the first evidence that GPER, a putative estrogen 

receptor, regulates hippocampal memory consolidation in young ovariectomized 

female mice in an E2-independent manner. This conclusion is supported by several 

novel findings. First, GPER activation in the DH enhances OR and OP memory 

consolidation and increases JNK, but not ERK, phosphorylation in the DH. Second, 

the memory-enhancing effects of GPER activation are blocked by inhibition of JNK, 

but not ERK, in the DH. Finally, E2 infusion increases ERK, but not JNK 

phosphorylation in the DH, and the memory-enhancing effects of E2 are blocked by 

inhibition of ERK, but not JNK or GPER activation. Collectively, these data indicate 

that E2 enhances hippocampal memory consolidation in females by activating ERK, 

whereas GPER enhances hippocampal memory consolidation by activating JNK. As 

such, the data suggest that GPER in the DH does not function as an estrogen receptor 

to facilitate memory consolidation.  

Our findings showing that G-1 enhanced OR and OP memory consolidation 

are consistent with previous studies demonstrating that systemic injections of G-1 

enhanced spatial learning and memory in ovariectomized rats (Hammond et al., 2009; 

Hammond and Gibbs, 2011; Hawley et al., 2014). However, the rat data do not permit 

definitive conclusions about the role of hippocampal GPER in memory because 

systemic treatments do not specifically affect the hippocampus. Therefore, we used 

dorsal hippocampal infusions of G-1 to pinpoint the role of hippocampal GPER in 

regulating memory consolidation. To ensure that the effects of G-1 were specific to 

GPER, we tested whether G-15 could antagonize the effects of G-1, as some studies 

have indicated that G-1 can act in a GPER-independent manner. For example, in 

breast cancer cell lines, G-1 has been found to interact with an ER-α variant, ER- α 
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36, but not with GPER (Kang et al., 2010). Additionally, G-1 suppressed the 

proliferation of ovarian and breast cancer cells, whereas GPER siRNA or G15 did not 

attenuate the effects of G-1, suggesting that G-1 can act in a GPER-independent 

manner in cancer cell lines (Wang et al., 2012). In contrast to these proliferative cells, 

we found that G-15 infusion into the DH prevented G-1 from enhancing OR and OP 

memory consolidation, as well as increasing JNK phosphorylation. These data suggest 

that the effects of G-1 on memory and JNK activation are mediated by GPER in the 

hippocampus. Interestingly, although higher doses of G-15 on their own impaired 

both OR and OP memory consolidation, OP appeared to be a bit more sensitive to G-

15 than OR at the doses tested. Nevertheless, our finding that post-training DH 

infusion of G-15 dose-dependently impaired memory consolidation is consistent with 

previous data showing that chronic systemic treatment with G-15 dose-dependently 

impaired spatial working memory in ovariectomized rats (Hammond et al., 2012). 

Together, these data suggest an important role of GPER in hippocampal memory 

processes.  

 

The role of ERK in GPER-mediated memory enhancement  

 The molecular mechanisms through which GPER influences hippocampal 

memory have not been investigated previously. Therefore, one of the primary goals of 

this thesis was to pinpoint possible downstream effectors of GPER activation in the 

mouse hippocampus. Based on our previous findings showing that p42 ERK 

activation is necessary for E2 and agonists of ERα and ERβ to enhance OR and OP 

memory (Fernandez et al., 2008; Boulware et al., 2013), our initial hypothesis was 

that p42 ERK phosphorylation would also be necessary for G-1 to enhance memory. 

This hypothesis was also supported by other studies showing that activation of GPER 



３９ 

 

 

 

can activate the ERK pathway in pancreatic beta cells and the ERK activation effect is 

removed in GPER knockout mice model and in GPER depletion model by small 

interfering RNA (Maggiolini and Picard, 2010; Sharma and Prossnitz, 2011). We first 

showed that G-1 does not affect p42 or p44 ERK phosphorylation in the DH 5, 15, or 

30 min after infusion. These time points were selected based on our previous studies 

demonstrating that DH E2 infusion increases p42 ERK phosphorylation 5 min after 

DH infusion (Fernandez et al., 2008; Boulware et al., 2013; Fortress et al., 2013b). G-

1 has a slightly slower effects on the rapid mobilization of intracellular calcium (t1/2 ≈ 

30 s) than E2 (t1/2 ≈ 2 s) (Bologa et al., 2006), and it may take longer for G-1 to 

activate ERK than E2. Therefore, we included the 15 and 30 min time points as well 

as 5 min time point. However, G-1 infusion did not alter ERK activation at any time 

point. This finding is consistent with data from vascular smooth muscle cells showing 

that E2, but not GPER, increases ERK phosphorylation in these cells (Ortmann et al., 

2011).   

 To further explore possible effects of G-1 on ERK signaling, we measured 

whether G-1 regulated activation of PI3K and Akt, based on our previous finding that 

phosphorylation of PI3K/Akt signaling is necessary for E2 to activate ERK in the DH 

and enhance OR memory consolidation (Fan et al., 2010; Fortress et al., 2013b). 

Moreover, several studies show that GPER can regulate Akt cell signaling in 

numerous cell lines (Moriarty et al., 2006; Maggiolini and Picard, 2010) and in rats 

(Jang et al., 2013). As with ERK, however, we found that DH infusion of G-1 did not 

increase PI3K or Akt phosphorylation at any time point. Indeed, Akt phosphorylation 

was decreased 30 min after infusion, the reason for which is unclear. Nevertheless, the 

fact that G-1 did not increase PI3K and Akt phosphorylation in the DH as observed 
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after E2 infusion indicates that G-1 does not activate multiple aspects of ERK 

signaling in the female mouse DH.  

These data led us to hypothesize that ERK activation would not play a role in 

the ability of G-1 to enhance OR and OP memory consolidation. Consistent with this 

hypothesis, we found that the ERK inhibitor U0126 did not prevent G-1 from 

enhancing OR or OP memory consolidation. These results demonstrate for the first 

time that ERK activation is not necessary for GPER to enhance hippocampal memory 

consolidation in female mice. Although this finding is novel as it relates to memory, it 

is consistent with reports from peripheral tissues showing that the ERK inhibitors 

U0126 and PD98059 do not prevent G-1 from inducing endothelium-dependent 

vasorelaxation in rat aorta (Jang et al., 2013) or DNA synthesis in human epithelial 

cells (Holm et al., 2011). These few examples do not permit any general conclusions 

about the role of ERK in mediating the cellular effects of GPER activation, the 

present data provide evidence that ERK is not involved GPER-mediated memory 

regulation. 

 

The role of JNK in GPER-mediated memory enhancement 

 Given the unexpected lack of a role for ERK in GPER-induced memory 

enhancement, we next sought to identify other signaling pathways through which 

GPER may mediate memory consolidation. We focused on JNK signaling, since this 

MAPK is activated by various G proteins (Goldsmith and Dhanasekaran, 2007) and is 

involved in regulating synaptic plasticity (Tararuk et al., 2006; Waetzig et al., 2006; 

Kim et al., 2007). We demonstrated that GPER activation led to rapid phosphorylation 

of both JNK isoforms in the DH, an effect that was blocked by DH infusino of the 

JNK inhibitor SP600125, but not the ERK inhibitor U0126. In addition, we found that 
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G-1 increased phosphorylation of the downstream JNK transcription factor ATF2, 

suggesting that the G-1 induced phosphorylation of JNK also activated nuclear 

transcription. Importantly, we found that activation of JNK, but not ERK, in the DH is 

necessary for GPER to faciliate memory consolidaion in both the OR and OP tasks. 

As such, these data demonstrate that JNK activation, but not ERK activation, is 

necessary for GPER enhance hippocampal memory consolidation.  

Although JNK has been studied in the context of cellular stress and apoptosis 

(Kyriakis and Avruch, 2001; Reinecke et al., 2013), JNK has also been shown to play 

an important role in synaptic plasticity, neuronal regeneration, and development in the 

central nervous system (Tararuk et al., 2006; Waetzig et al., 2006). However, its role 

in learning and memory has been understudied, and existing data provide conflicting 

results. For example, some studies suggest an important role of JNK activation in 

long-term inhibitory avoidance memory and in short-term synaptic plasticity and 

long-term depression (Bevilaqua et al., 2007; Li et al., 2007; Carboni et al., 2008). 

However, other data indicate that JNK negatively regulates short-term memory in the 

hippocampus (Bevilaqua et al., 2003). Duration of JNK activation may play an 

important role in the resulting effects on memory, as suggested by data showing that 

short-term JNK activation facilitates hippocampal memory and synaptic plasticity, 

whereas prolonged JNK activation leads to memory deficits and neurodegeneration 

(Sherrin et al., 2011). Although our findings cannot directly speak to the 

inconsitencies in the JNK literature, our findings provide much needed additional 

information on the role of JNK in hippocampal memory. These data suggest that JNK 

is an essential mediator of GPER-induced memory modulation. However, as will be 

discussed below, JNK appears to play no role in E2-induced memory modulation.   
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The estrogen receptor that doesn't act like an estrogen receptor 

 Evidence that GPER is an estrogen receptor comes from data showing that E2 

binds GPER with high affinity (Revankar et al., 2005; Moriarty et al., 2006; Prossnitz 

et al., 2007). However, other studies suggest that GPER acts independently of E2. For 

example, a study using endothelial cells from ERα/ERβ-deficient mice demonstrated 

that E2 could not activate cAMP or ERK pathways, despite the presence of GPER 

(Pedram et al., 2006) and cells, COS-7 and CHO (Chinese hamster ovary) cells, 

transfected with GPER failed to signal in response to E2 (Otto et al., 2008). Another 

study revealed that treatment with G-15 or downregulation of GPER expression with 

GPER shRNA did not prevent E2-mediated apoptosis in rat aortic vascular endothelial 

cells (Ding et al., 2014). Further, rapid extranuclear E2 signaling in breast cancer cells 

involved only ERα and ERβ but not GPER (Madak-Erdogan et al., 2008), and the 

neuroprotective effects of E2 on post ischemic injury are not dependent on GPER 

(Lamprecht and Morrison, 2014). Moreover, some investigators insist that GPER is 

not a true ER, but potentially has a collaborative role in mediating the biological 

actions of estrogens (Levin, 2009). Such studies have stimulated extensive debate 

about whether GPER acts as a true estrogen receptor (Langer et al., 2010).  

 The present study adds to the debate by showing that GPER and E2 do not 

enhance memory via the same cell signaling mechanisms. As we have previously 

shown, E2 and agonists of ERα and ERβ require ERK activation in the DH to enhance 

OR and OP memory consolidation in ovariectomized female mice (Fernandez et al., 

2008; Boulware et al., 2013; Fortress et al., 2013b). However, the present study found 

no role of ERK in the memory-enhancing effects of GPER. Furthermore, the present 

study found that E2 did not phosphorylate either isoform of JNK at any time point 
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examined, nor did the JNK inhibitor SP600125 prevent E2 from enhancing OR or OP 

memory consolidation. These data demonstrate not only that E2 does not activate JNK 

in the DH, but also that JNK activation is not necessary for E2 to enhance 

hippocampal memory consolidation. Although these data provide strong support that 

GPER and E2 independently regulate memory formation, more definitive evidence 

comes from the fact that G-15 does not prevent E2 from enhancing either OR or OP 

memory consolidation. These data demonstrate that GPER activation is not necessary 

for E2 to enhance hippocampal memory consolidation, and suggest that GPER does 

not function as an estrogen receptor in the dorsal hippocampus.  Although we cannot 

presently rule out potential interactions between GPER and ERα or ERβ, we find this 

possibility unlikely given how closely ER agonists mimic the effects of E2 on memory 

and ERK signaling (Boulware et al., 2013).  

 

Further studies and conclusion 

The surprising finding that GPER does not act as an estrogen receptor in the 

dorsal hippocampus begs the question of whether GPER directly interacts with ERα 

or ERβ. On the basis of our data, we could first hypothesize that no such interactions 

take place and that GPER is not an estrogen receptor, at least in the hippocampus. If 

GPER does not work as estrogen receptor, the alternative natural ligand for GPER 

might be aldosterone. Some studies have indicated that the potential role of 

aldosterone in GPER activation in vascular smooth muscle cells (Brailoiu et al., 2013; 

Gros et al., 2013), still it needs further investigation (Filardo and Thomas, 2012). 

Although several studies assert that GPER acts independently of E2 (Pedram et al., 

2006; Otto et al., 2008; Ding et al., 2014), it is difficult to ignore the many other 
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studies showing that E2 activates GPER (Revankar et al., 2005; Thomas et al., 2005; 

Moriarty et al., 2006; Prossnitz et al., 2007; Langer et al., 2010). Therefore, an 

alternative hypothesis is that the activation of intracellular ERs may inhibit GPER 

activation. Thus, activation of either ERα or ERβ might be able to suppress GPER 

activation because E2 has higher binding affinity on ERα and ERβ than GPER; 

competitive radiometric binding assay showed the Kd value of E2 on ERα (0.30 nM) 

and ERβ (0.90 nM) in human endometrial cancer (HEC-1) cells, and the Kd value of 

E2 on GPER (3.0 nM) in human embryonic kidney (HEK)293 cells (Sun et al., 1999; 

Thomas et al., 2005). To examine potential interactions between intracellular ERs and 

GPER, we may be able to test whether ERα and ERβ antagonists block the effects of 

G-1 on memory and JNK activation. We can also examine physical interactions 

among the receptors using sucrose fractionation and co-immunoprecipitation (CoIP) 

as we have described previously(Boulware et al., 2013) . Delineating such interactions 

would provide important insight into how the intracellular ERs and GPER may 

interact to regulate hippocampal memory.  

Future studies could also better elucidate the role of JNK signaling in 

hippocampal formation, based on our findings that GPER activation enhances 

hippocampal memory via the JNK signaling pathway. Given how little is known 

about the role of JNK in memory, one possible future direction would be to determine 

the molecular mechanisms through which JNK affects hippocampal memory. Two 

avenues of research may be particularly promising: 1) determining how JNK regulates 

PSD-95 protein, and 2) identifying how JNK modulates gene expression. Because 

interactions between GPER and PSD-95 have been identified in hippocampal 

dendritic spines (Akama et al., 2013) and JNK kinase activity is involved in the 
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regulation of the PSD-95 to recruit synaptic AMPA receptors (Kim et al., 2007), the 

JNK-PSD-95 relationship is worthy of further study to elucidate how JNK affects 

hippocampal memory. Physical interaction between JNK and PSD-95 can be 

examined by Co-IP and JNK inhibition effect on PSD-95 expression can be tested by 

western blot or PCR. JNK-mediated gene expression in the hippocampus would also 

be interesting to examine because we showed that G-1 activated the JNK downstream 

transcription factor, ATF-2. ATF-2 works as a transcription factor responding to nerve 

growth factor in sympathetic neurons (Lau and Ronai, 2012), therefore, microarray 

technique will provide potential target gene for ATF-2 in the hippocampus and the 

gene expression will be confirmed by RT-PCR. If we find JNK-mediated changes in 

gene expression, then it would be interesting to examine the epigenetic processes that 

might regulate this expression. For example, our laboratory has demonstrated that 

histone acetylation and DNA methylation are necessary for E2 to enhance OR memory 

consolidation in ovariectomized female mice (Zhao et al., 2010; Zhao et al., 2012). In 

addition, E2-induced histone H3 acetylation was dependent on ERK activation (Zhao 

et al., 2010; Zhao et al., 2012), indicating that changes in histone acetylation are 

triggered by cell signaling mechanisms. To our knowledge, JNK-induced regulation 

of epigenetic processes has not been investigated, and so is an area ripe for 

investigation.  

 In conclusion, the present study provides the first evidence that GPER 

activation can enhance hippocampal memory consolidation in JNK dependent manner 

and that E2-mediated memory enhancement is independent of GPER and JNK 

activation. These results do not support a role for GPER in the memory-enhancing 

effects of E2, although GPER activation has similar memory-enhancing effects as E2. 

This interesting finding may have important implications for the future design of 
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estrogen-based therapies for reducing the risk of age-related memory decline and 

Alzheimer’s disease in women (Yaffe et al., 1998; Zandi et al., 2002). Therefore, 

better understanding of GPER function could provide important opportunities for the 

development of new therapies that would provide the cognitive benefits of estrogen 

without potentially dangerous side effects. 
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