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ABSTRACT 

ROLE OF SENSATION IN ALTERED PHALANX GRIP FORCE IN PERSONS 

WITH STROKE 

 

by 

Leah R. Enders 

 

The University of Wisconsin-Milwaukee, 2014 

Under the Supervision of Professor Na Jin Seo 

 

 

Many individuals experience hand impairment after stroke leading to decreased ability to 

perform daily living activities. Previous research studies have investigated how stroke 

survivors’ pinch grip control differs from healthy individuals, even though many 

individuals can only grasp with power grip after stroke. Furthermore, many stroke 

survivors experience tactile sensory deficit in their paretic limb in addition to motor 

deficit. It is currently unknown how stroke induced tactile sensory deficit affects power 

grip force directional control, which is important in terms of preventing object slippage 

and power grip normal force generation. Additionally it is unknown if power grip could 

be improved through tactile sensory enhancement. This dissertation investigated how 

stroke survivors’ power grip force control is different from healthy individuals. Also, the 

effect of stroke induced tactile sensory deficit on power grip force control and the 

benefits of a sensory enhancement method using remote subsensory vibrotactile noise on 

power grip phalanx force deviation was assessed. In addition, the effect of noise on the 

tactile sensation for stroke survivors with tactile sensory deficit and their performance on 

two dynamic gripping tasks, the Box and Block Test (‘BBT’, number of blocks moved in 
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60 seconds) and the Nine Hole Peg Test (‘NHPT’, time to pick up, place, and remove 9 

pegs from 9 holes), were investigated. The theoretical framework of this dissertation is 

that tactile sensation is critical for grip control and impairment or enhancement of tactile 

sensation impacts power grip force control post stroke. Results showed that stroke 

survivors, especially those with tactile sensory deficit, gripped with increased phalanx 

force deviation compared to healthy individuals, showing reduced directional force 

control and increasing their chances of dropping objects. Remote subsensory vibrotactile 

noise improved fingertip and upper palm tactile sensation for stroke survivors with tactile 

sensory deficit. The noise also improved phalanx force directional control during power 

grip (reducing phalanx force deviation) for stroke survivors with and without tactile 

sensory deficit and age-matched healthy controls and improved the BBT score and time 

to complete the NHPT for stroke survivors with tactile sensory deficit. Overall, stroke 

survivors, particularly those with tactile sensory deficit, appear to have reduced phalanx 

force control during power grip, which may biomechanically result from a muscle 

activation pattern. Remote subsensory vibrotactile noise may have enhanced tactile 

sensation and hand motor control via stochastic resonance and interneuronal connections 

and could have potential as a wearable rehabilitation device for stroke survivors. This 

dissertation contributes to the long term goal of increasing stroke survivors’ 

independence in completing daily living activities.  
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Chapter 1: Introduction1 

 

1.1 Stroke Survivors’ Hand Sensorimotor Impairment 

 

There are greater than 7 million stroke survivors that currently reside in the 

United States of America (Roger et al. 2012). Even after normal physical therapy 

measures, up to 75% of stroke survivors experience persisting motor impairment in the 

hands after 6 months of the stroke event (Feys et al. 1998; Olsen 1990; Parker et al. 

1986). Loss of hand function can lead to limb disuse and can further worsen the level of 

stroke survivors’ disability. In addition, loss of hand function reduces independence by 

leading to dependency on others to complete both simple and complex daily living 

activities.  

 

Hand function is particularly affected by stroke, potentially due to the high degree 

of cortical control with the motor cortex and corticospinal pathways responsible for 

controlling the hand muscles (Kamper 2012 ; Strick and Preston 1982). Altered activation 

of the muscles controlling the hand has been observed for stroke survivors (Cruz et al. 

                                                 
1 Information presented in this chapter is adapted from published material as follows and is used with 

permission from:    

 

Enders LR, Seo NJ, “Phalanx force magnitude and trajectory deviation increased during power grip with 

an increased coefficient of friction at the hand-object interface", Journal of Biomechanics, Elsevier, 2011, 

44(8):1447-53.  

 

Enders L.R. “Effect of hand-object friction on grip force application and hand function” Master’s Thesis, 

University of Wisconsin-Milwaukee, 2010. 
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2005; Kamper et al. 2003; Kamper and Rymer 2001; Lang and Schieber 2004b), as well 

as a change composition of the muscles controlling the hand (Dattola et al. 1993; Hafer-

Macko et al. 2008; Hu et al. 2007; Landin et al. 1977), muscle spasticity (Bhakta et al. 

1996; Nathan et al. 2009), and  muscle atrophy (Triandafilou and Kamper 2012) (Figure 

1). Similarly, hand somatosensory feedback is often diminished post stroke (Carey 1995; 

Carey and Matyas 2011; Kim and Choi-Kwon 1996), potentially due to the damages in 

the somatosensory pathway as well as somatosensory cortex hand area. Since proper 

hand motor control depends significantly on sensory feedback from the hands (Johansson 

and Westling 1984), stroke induced sensory loss in the hand could contribute to 

decreased hand motor control. Therefore, stroke survivors are at a high risk for hand 

deficit due to neuronal damages and subsequently, reduced neuronal resources in the 

motor and sensory systems.  

 



3 

 

  

 

Figure 1: Stroke power grip may be altered (such as increased phalanx force deviation) 

due to altered neurological input, changes in composition of the muscles controlling the 

hand, muscle spasticity, muscle atrophy, and stroke induced sensory deficit. 

 

Previous research investigations for stroke survivors’ hand grip have focused 

predominantly on pinch grip (Hermsdorfer et al. 2003; McDonnell et al. 2006; Nowak et 

al. 2003), even though many stroke survivors with severe hand impairment are limited to 

grasping with power grip due to impaired finger individuation (Gowland et al. 1995; 

Lang and Schieber 2004b). Power grip, also referred to as cylindrical grip, is a type of 

hand grip technique where the fingers and thumb work together against the palm to 

produce force against the object being gripped (Landsmeer 1962) (Figure 2). Power grip 

is often utilized in tasks such as holding a bottle and carrying a cup of water. Studies that 

have focused on stroke survivors’ power grip, have shown reduced power grip strength 
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(Radhakrishnan and Nagaravindra 1993), but have not investigated how power grip force 

control is altered post stroke (discussed in Aim 1). 

 

Figure 2. Proximal-distal shear force (tangential to the cylinder surface) and normal 

forces (perpendicular to the cylinder surface) can be measured on three contact pads that 

align with each phalanx of a finger during power grip using a new instrumented grip 

dynamometer (Enders and Seo 2011) (a). Normal and shear forces can be produced by 

the thumb and fingers against a cylindrical object during power grip (b). The cylinder 

was held so that the long axis of the cylinder was parallel to the direction of gravity, Fg. 

 

 

  

In order to fully comprehend power grip impairment for stroke survivors, 

different aspects important for power grip force control are outlined in this Introduction. 

To understand how power grip control can be characterized for stroke survivors, the 

different force elements that are commonly produced during power grip and how these 

force elements contribute to gripping stability is first discussed. Second, important 

muscles involved in controlling power grip force and the effect that altered muscle 

activation resulting from the stroke could have on this power grip force control will be 

discussed, followed by the importance of sensory feedback on phalanx force control and 

Shear force 
Normal 

force 

Fg 

(a) 



5 

 

  

the effect of stroke induced sensory deficit on phalanx force control. Finally, the effect 

that potential that sensory enhancement may have on stroke survivors’ hand motor 

impairment is explained.  

 

1.2 Elements of Power Grip 

 

Power grip involves force generation by each phalanx of the five digits (Amis 

1987; An et al. 1980; Lee and Rim 1991; Radhakrishnan and Nagaravindra 1993). During 

power grip, each phalanx of the digits produces force in three dimensions. When gripping 

a vertical cylinder, the three dimensional force at one phalanx can be decomposed to 1) 

normal force in the direction perpendicular to the cylinder surface, 2) shear force in the 

gravity direction, and 3) shear force in either the proximal or distal direction relative to a 

digit (referred to as proximal-distal shear force hereafter) (Figure 2). The shear force in 

the gravity direction is determined by the weight of the grasped object (Johansson and 

Westling 1984; Westling and Johansson 1984a). The proximal-distal shear force does not 

directly contribute to lifting of the grasped object, but people still do apply this shear 

force during power grip (Amis 1987; Irwin and Radwin 2009). Many of the research 

studies have not had the capacity to record both normal and shear forces from the 

individual phalanges of the finger during a power grip (Boissy et al. 1999; Naik et al. 

2011). Even the use of three miniature load cells to align with the phalanges would be too 

bulky in structure to allow for a typical power grip posture. Recently, a new grip 

dynamometer has been developed that has the capacity to quantify normal and shear 

forces from each of three phalanges independently and simultaneously (Figure 2a) 
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(Enders and Seo 2011). Using this device, it was found that young healthy individuals 

produced a proximal-distal shear force during power grip that was, on average, 22% of 

normal force magnitude (Enders and Seo 2011). The ratio of proximal-distal shear force 

to normal force significantly varied between .09 and .43 depending upon the coefficient 

of friction between the surface and the finger skin, the grip effort level, finger, and the 

phalanx (Enders and Seo 2011). Therefore, it appears that young healthy individuals 

increase and decrease proximal-distal shear to normal force ratio depending on the 

demands of the power grip task and that proximal-distal shear force is an important force 

element applied during power grip.   

  

Altering proximal-distal shear force during power grip could affect grip control 

and normal force generation during power grip. The extent of phalanx force deviation in 

the proximal-distal direction (calculated as the arctangent of the ratio of the phalanx 

proximal-distal shear and normal forces) can be used as an indication of phalanx force 

directional control and object stabilization (Figure 3). Stable grip requires phalanx force 

direction to not deviate from the direction normal with respect to a gripped object’s 

surface, by more than an angle calculated as the arctangent of the coefficient of friction 

(COF) between finger skin and the object’s surface, termed the ‘cone of friction’ 

(MacKenzie and Iberall 1994). Phalanx force deviations outside the cone of friction lead 

to finger slippage (MacKenzie and Iberall 1994; Seo et al. 2010). In addition to 

preventing object slippage form the hand, controlling phalanx force deviation has been 

shown to be necessary in preventing unwanted rotational forces that may occur during 

gripping (Kinoshita et al. 1997). Furthermore, recent evidence suggests that proximal-
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distal shear force can contribute to people’s normal force generation capacity. A 

biomechanical model (Wu et al. 2009) and empirical evidence (Seo et al. 2007) suggest 

that proximal-distal shear force can affect normal force generation, even when the muscle 

force is constant. Specifically, proximal-distal shear force on a phalanx can generate a 

moment about the joint proximal to the phalanx, independent from the joint moment 

produced by muscles (Seo et al. 2007; Wu et al. 2009). Thus, proximal-distal shear force 

can contribute to increased phalanx normal force. For example, distally-directed shear 

force at the distal phalanx (equal to proximally-directed reaction force from a cylinder to 

the distal phalanx) has been shown to increase distal phalanx normal force (Seo et al. 

2007; Valero-Cuevas 2000; Wu et al. 2009). Individuals may utilize this mechanism to 

intentionally increase proximal-distal shear force to increase normal force during power 

grip. Proximal-distal shear force, therefore, is an important element of power grip in 

terms of grip control and power grip normal force generation.  
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Figure 3: Phalanx resultant force, Fresultant, should not deviate from the normal direction 

with respect to the object surface (referred to as phalanx force deviation, α), more than 

that of certain angle range termed the ‘cone of friction’ (θ, determined by arctangent 

(atan) of the COF)in order to avoid slippage between the finger and the grip surface. In 

other words, the ratio of proximal-distal shear force (Fshear) (distal direction shown) to 

normal force (Fnormal) should be less than COF (MacKenzie and Iberall 1994). The greater 

the COF, the greater the angle range that allows stable contact. 

    

 

Altered grip force control has previously been shown for stroke survivors during 

pinch grip. Specifically, stroke survivors have displayed increased safety margin 

(Hermsdorfer et al. 2003) and reduced force control and timing (Hermsdorfer et al. 2003; 

Nowak et al. 2003). In addition, stroke survivors have displayed digit force deviations 

that are twice that of the non-paretic hand during pinch grip, leading to frequent finger 

slippage (55% of the trials)(Seo et al. 2010). However, how phalanx force control is 

altered for stroke survivors during power grip has not been studied. Therefore, phalanx 

force control (characterized by the extent of phalanx force deviation) is used to 

investigate stroke survivors’ power grip (discussed in Aim 1).  

Fshear 

Fnormal 

Fresultant 

θ = ATAN (COF) = 

“Cone of Friction”  

Phalanx force deviation 

(α) = atan (
𝑠ℎ𝑒𝑎𝑟 𝑓𝑜𝑟𝑐𝑒

𝑛𝑜𝑟𝑚𝑎𝑙 𝑓𝑜𝑟𝑐𝑒
)  

α  

θ 
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1.3 Role of Altered Muscle Activation in Stroke Survivors’ Reduced Phalanx Force 

Control 

 

Grip requires coordination among all muscles for the hand to produce grip force, 

and disruption in the balance among individual muscles’ force outputs can directly alter 

grip force control and magnitude (Johanson et al. 2001; Kutch and Valero-Cuevas 2011; 

Valero-Cuevas 2000). Weakening of any single muscle can limit the force production in a 

specific direction (Kutch and Valero-Cuevas 2011). Muscle activation is often altered for 

stroke survivors, in-part due to impaired neurological control (Kamper and Rymer 2001; 

Lang and Schieber 2004b), changes in muscle fiber type composition (Dattola et al. 1993; 

Hafer-Macko et al. 2008; Hu et al. 2007; Landin et al. 1977), muscle spasticity (Bhakta et 

al. 1996; Nathan et al. 2009), and  muscle atrophy (Triandafilou and Kamper 2012).  

Altered muscle activation for stroke survivors’ could reduce power grip force control 

(discussed in Aim 1). 

 

The muscle groups controlling finger forces, for instance the index finger, can be 

broken down into two groups: intrinsic (i.e., lumbricals (LUM), first dorsal interosseous 

(DDI), palmer interosseous (PI)) and extrinsic muscles (i.e. flexor digitorum profundus 

(FDP), flexor digitorum superficialis (FDS), extensor digitorum communis (EDC)) 

(Figure 4). Each muscle of the finger is comprised of a different amount of Type I (slow-

twitch, slow to fatigable  fibers) and Type II (fast-twitch, fast to fatigable fibers), which 

assist in the delicate synchronization between the muscles to correctly coordinate force 
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control of the hand (Hwang et al. 2013).  Intrinsic muscles are predominantly comprised 

of Type II muscle fibers, while extrinsic muscles are composed mostly of Type I muscle 

fibers (Hwang et al. 2013).  

 

 

Figure 4: The two main groups of muscles that are important for power grip are the: 1) 

intrinsic muscles (shaded in red) and 2) extrinsic muscles (shaded in green). These 

muscles groups for the index finger include the intrinsic muscles: the lumbricles (LUM) 

and the dorsi interossei (DI) which are important for force directional control and 

produce some flexion force, and the extrinsic muscles: the flexor digitorum profundus 

(FDP), flexor digitorum superficialis (FDS), and the extensor digitorum communis 

(EDC) which are important for force production and finger stabilization (Lauer et al. 

1999; Li et al. 2001; Long et al. 1970; Stack 1962). 

 

In general, the extrinsic muscles supply much of the gripping force, while the 

intrinsic muscles are important some force generation and fine motor control (Long et al. 

1970). The degree, to which either muscle group is involved during a particular grip, 

depends on the level of flexion of the phalanges and where the force is being applied 

along the finger. For instance, during power grip the index finger’s extrinsic muscles are 

the producing the greatest amount of force and the index finger’s intrinsic interosseous 

muscle provides rotation of the phalanges and produces flexion force and stabilization of 
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the metacarpophalangeal joint (MCP) (Lauer et al. 1999; Li et al. 2001; Long et al. 1970; 

Stack 1962).   

 

Specific weakening of the extrinsic muscles results in a loss of grip force (Long et 

al. 1970; Shinohara et al. 2003; Valero-Cuevas et al. 2000) and may affect the 

mechanical coupling of the fingers, since the extrinsic muscles interact with more than 

one finger at a time (Schieber 1995). Intrinsic muscle weakness (due to their 

predominantly Type II muscles fiber composition) have been shown to be particularly 

prone to atrophy due to age (Larsson et al. 1978; Lexell 1995), diabetes (Bus et al. 2002), 

and stroke (Dattola et al. 1993; Dietz et al. 1986; Hafer-Macko et al. 2008; Hu et al. 

2007; Landin et al. 1977). Specific weakening of the intrinsic hand muscles can cause 

destabilization of the MCP joint, reduce flexion force, and reduces control of directed 

fingertip forces (Stack 1962; Valero-Cuevas et al. 2000). However, as previously 

mentioned, that weakening of any single muscle of the hand can actually affect force 

production in a specific direction (Kutch and Valero-Cuevas 2011).Therefore, for 

appropriate control of phalanx forces to achieve the desired force generation during 

power grip, coordination of both the intrinsic and extrinsic muscles of the hand is 

important.  
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1.4 Role of Diminished Sensory Feedback in Stroke Survivors’ Reduced Phalanx 

Force Control  

 

In addition to altered neurological input to the muscles for stroke survivors, 

diminished sensory feedback could also contribute to stroke survivors altered grip. 

Sensation loss of the upper extremity affects somewhere between 50% and 85% of all 

stroke survivors (Carey 1995; Carey and Matyas 2011; Kim and Choi-Kwon 1996) and 

could altered power grip force control because sensory feedback is critical in terms 

controlling grip forces (Johansson and Westling 1984). Therefore, the effects of stroke 

induced sensory deficit on power grip should be investigated (discussed in Aim 2).  

 

In order to obtain, hold, and transfer an object with the hand, it is necessary for a 

person to apply finger forces that adapt to the physical properties of the object to create a 

stable and balanced grip. A person may vary the force application strategy (i.e., phalanx 

force deviation and normal force) in order to apply the correct amount and direction of 

force on the object’s surface, depending on object weight, shape and friction coefficient 

between finger skin and object surface, using sensory feedback (Gordon et al. 1991; 

Johansson and Westling 1984; Westling and Johansson 1984b). Initial information 

regarding the object being gripped, such as the weight, friction, and shape, is sent by the 

fast adapting I (FA I) tactile receptors in the fingers (Johansson and Westling 1984), 

which provide information about the tangential shear forces (Macefield et al. 1996). The 

FA I receptors are also used throughout gripping to detect the need for force adjustment 

(Johansson and Westling 1984; Macefield et al. 1996). The fast adapting II (FA II) tactile 
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receptors give indications of rapid changes in the reactive grip forces (Macefield et al. 

1996). After contact, during gripping, slow adapting I and II (SA I and SA II) receptors 

transmit information about the grip reactive forces and tangential shear forces, 

respectively (Macefield et al. 1996). More sensory information pertaining to reactive grip 

forces occurring during gripping is sent by the intrinsic and extrinsic hand muscle spindle 

and tendon-organ receptors and the interphalangeal joint mechanoreceptors (Macefield 

and Johansson 1996) which, although are less sensitive to tangential shear forces and 

surface characteristics (i.e., texture) than the tactile sensory receptors, these receptors still 

assist in controlling phalanx forces and loss of their input can result in increased latencies 

in reactive grip responses (Häger-Ross and Johansson 1996). Sensory feedback is 

transmitted to the central nervous system (CNS), which updates any control signals 

according to the current or any future stages of grip. This feedback control allows a 

person to use sensory feedback to appropriate the grip forces to prevent the object from 

slippage (Johansson and Westling 1984).   

 

Sensation loss can occur due to age (Thornbury and Mistretta 1981), peripheral 

nerve damage (Braune and Schady 1993; Gelberman et al. 1983), or CNS lesions, such as 

stroke (Carey 1995; Carey and Matyas 2011; Kim and Choi-Kwon 1996). Loss of 

sensation feedback can lead to imbalance of grip forces, reduce coordination of forces, 

and yield non-adaptive gripping to varying frictional surfaces both during initiation and 

hold of grip (Johansson and Westling 1984). Therefore, decreased sensory feedback for 

stroke survivors may affect phalanx force control during power grip.   
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1.5 Motor Improvement via Sensory Enhancement  

 

If power grip is found to be altered post stroke and sensory loss contributes to this 

altered power grip, then a rehabilitation therapy involving sensory enhancement has 

potential to assist stroke survivors regaining grip function and daily independence. 

Increasing sensation could give individuals important information regarding  grip surface 

characteristics (Johansson and Westling 1987), magnitude and directional feedback on  

phalanx force being produced (Augurelle et al. 2003; Blennerhassett et al. 2007; Cole 

2006; Hermsdorfer et al. 2003; Monzée et al. 2001; Robertson and Jones 1994) and more 

information on the finger position and alignment with respect to the object surface 

(Monzée et al. 2001). Furthermore, increasing somatosensory feedback has been shown 

to increase cortical excitation and activation in the motor cortices (Kaelin-Lang et al. 

2002) and could lead to increased activation of muscles previously diminished in 

activation due to stroke. In addition, sensory feedback assists in the preservation of the 

normal cortical representations of both the motor and sensory cortices  (Weiss et al. 

2004). Reduced tactile sensation can further alter motor function for stroke survivors via 

impaired cortical sensorimotor representations (Weiss et al. 2004) and increasing tactile 

sensory feedback has the potential to redirect cortical representation towards normal 

cortical mapping. Based on this evidence, increasing tactile sensory feedback could be a 

promising method to improve motor function of the hand of stroke survivors (as 

discussed in Aim 3).  
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1.6 Dissertation Objectives    

 

In summary, stroke power grip characteristics such as phalanx force direction may 

be altered post stroke due to altered neurological activation (Cruz et al. 2005; Kamper et 

al. 2003; Kamper and Rymer 2001; Lang and Schieber 2004b), a change composition of 

the muscles controlling the hand (Dattola et al. 1993; Hafer-Macko et al. 2008; Hu et al. 

2007; Landin et al. 1977), and stroke induced sensory deficit (Carey 1995; Carey and 

Matyas 2011; Kim and Choi-Kwon 1996) (Figure 1). The overall objective of this 

dissertation was to determine the role of tactile sensation in altered power grip post 

stroke. The theoretical framework is that tactile sensation is critical for grip control and 

impairment or enhancement of tactile sensation impacts power grip force control post 

stroke. Specifically, how power grip is altered post stroke, especially with stroke induced 

finger tactile sensory deficit, was examined. Also investigated was if sensory 

enhancement via vibrotactile noise could improve stroke survivors’ power grip. Stroke 

survivors’ power grip was compared with age-matched neurologically healthy controls. 

The central hypothesis is that stroke survivors’ tactile sensory deficit results in altered 

power grip with large phalanx force deviation and sensory enhancement improves grip 

control. These findings will contribute to the current knowledge base regarding altered 

grip for stroke survivors (Appendix) and can be applied to the development of 

rehabilitation techniques (such as sensory enhancement via the application of remote 
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subsensory vibrotactile noise) to improve stroke survivors independence in completing 

daily living activities. The following aims were proposed to test this hypothesis.  

 

Aim 1: To characterize altered power grip post stroke. 

Study: To determine effects of stroke on power grip force control compared to 

healthy age-matched controls. It was hypothesized that phalanx force 

direction during power grip is altered for stroke survivors compared to age 

matched controls (Chapter 2). 

Aim 2: To determine the role of tactile sensory deficit in stroke survivors’ power grip 

control of phalanx forces.  

Study: To determine the difference in phalanx force directional control during 

power grip between stroke survivors with tactile sensory deficit, stroke 

survivors without tactile sensory deficit, and healthy age -matched 

controls. It is hypothesized that power grip phalanx force control is altered 

more for stroke survivors with hand tactile sensory deficit compared to 

stroke survivors without hand tactile sensory deficit and age matched 

controls (Chapter 3).  

Aim 3: To determine the effect of sensory enhancement on power grip phalanx force 

control.  

Study 1: To determine the effect of remote subsensory vibrotactile noise on 

fingertip sensation. It is hypothesized that remote subsensory vibrotactile 

stimulation will increase fingertip sensation for stroke survivors with 

sensory deficit (Chapter 4).  

Study 2: To determine effects of sensory enhancement (via remote subsensory 

vibrotactile stimulation) on stroke survivors and age matched controls’ 

power grip.  It is hypothesized that remote subsensory vibrotactile 

stimulation will improve stroke survivors’ and age matched controls’ 

power grip phalanx force control (Chapter 5). 

Study 3: To determine effects of sensory enhancement (via remote subsensory 

vibrotactile stimulation) on dynamic hand grip control of stroke survivors 

who experience tactile sensory deficit.  It is hypothesized that remote 

subsensory vibrotactile stimulation will improve stroke survivors’ 
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dynamic grip control, as measured by the 9-Hole peg test and Box and 

Block Test (Chapter 6). 

 

In addition to the aims, the entrepreneurial activity related to making a wearable 

rehabilitation device using subsensory remote vibrotactile noise and the current stages of 

prototype development is described (Chapter 7).  
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Chapter 2: Altered phalanx force deviation during power grip following stroke 

 

Abstract  

 

Many stroke survivors with severe impairment can grasp only with a power grip. 

Yet, little knowledge is available on altered power grip after stroke, other than reduced 

power grip strength. This study characterized stroke survivors’ static power grip during 

100% and 50% maximum grip. Each phalanx force’s angular deviation from the normal 

direction and its contribution to total normal force was compared for 11 stroke survivors 

and 11 age-matched controls. Muscle activities and skin coefficient of friction (COF) 

were additionally compared for another 20 stroke and 13 age-matched control subjects. 

The main finding was that stroke survivors gripped with a 34% greater phalanx force 

angular deviation of 19±2˚ compared to controls of 14±1˚ (p<.05). Stroke survivors’ 

phalanx force angular deviation was closer to the 23˚ threshold of slippage between the 

phalanx and grip surface (=atan(COF) found not to differ after stroke), which may 

explain increased likelihood of object dropping in stroke survivors. In addition, this 

altered phalanx force direction decreases normal grip force by tilting the force vector, 

indicating a partial role of phalanx force angular deviation in reduced grip strength post 

stroke. Greater phalanx force angular deviation and reduced grip strength may 

biomechanically result from more severe intrinsic and extensor muscle weakness 

compared to extrinsic flexor muscles, as empirically observed in stroke survivors. While 

stroke survivors’ maximum power grip strength was approximately half of the controls’, 

the distribution of their remaining strength over the fingers and phalanges did not differ, 

indicating evenly distributed grip weakness over the entire hand.   
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2.1 Introduction 

 

 Currently more than 7 million stroke survivors reside in the United States of 

America (Roger et al. 2012). Many of these stroke survivors suffer from impaired motor 

function in their hands and arms (Gray et al. 1990; Nakayama et al. 1994; Parker et al. 

1986). Loss of hand function leads to dependency on others to complete both simple and 

complex daily living activities. As such, many studies examined how pinch grip control 

is altered after stroke (Hermsdorfer et al. 2003; McDonnell et al. 2006; Nowak et al. 

2003). However, many stroke survivors suffering from severe impairment can grasp only 

with a power grip, and cannot perform a pinch grip due to impaired finger individuation 

(Gowland et al. 1995; Lang and Schieber 2004b). Yet, currently little knowledge is 

available on altered power grip after stroke, other than a reduced power grip strength 

(Boissy et al. 1999).  

 

Power grip characteristics, such as phalanx force direction and force distribution 

over the hand, may differ post stroke. Biomechanics studies have shown that not only the 

action of the long finger flexor muscles but also the action of the extensor muscles and 

intrinsic hand muscles are important for controlling the force direction and distribution 

(Li et al. 2000; Valero-Cuevas et al. 2000). Altered muscle activation patterns, especially 

with under-activated intrinsic and extensor muscles, have been observed post stroke 

(Cruz et al. 2005; Kamper et al. 2003; Kamper and Rymer 2001; Lang and Schieber 

2004b) and may disrupt the delicate balance among multiple hand muscles necessary for 
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force directional control or natural force distribution during power grip (Kutch and 

Valero-Cuevas 2011; Li et al. 2001). Alternatively, changes in skin frictional properties, 

if there are any after stroke, could affect the slipperiness of the finger skin against the 

grip surface and modify grip force control, as it does for aging adults (Cole 1991).  

 

These stroke related changes could affect power grip characteristics such as 

phalanx force direction and force distribution over the hand, which can lead to the 

decreased object stability and object dropping that is frequently observed in persons with 

impaired hand function (Pazzaglia et al. 2010). Stable grip requires that phalanx force not 

deviate from the direction normal to a gripped object’s surface by more than an angle 

defined as the ‘cone of friction’ (Figure 5), which is calculated as the arctangent of the 

coefficient of friction (COF) between finger skin and the object’s surface (MacKenzie 

and Iberall 1994). Phalanx force direction outside the cone of friction leads to finger 

slippage, which has been observed in stroke survivors during pinch grip (Seo et al. 2010). 

In addition, deviation from the typical grip force distribution of the highest force 

concentration on the distal phalanx directed toward the palm (Amis 1987; Kong and 

Lowe 2005; Lee et al. 2009) could result in reduced grip force (Seo et al. 2007), object 

rotation out of the hand (Kinoshita et al. 1997; Latash et al. 2002; MacKenzie and Iberall 

1994), and discomfort (Gurram et al. 1993).  
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Figure 5: Stable grip without slippage requires that each phalanx’s force not deviate 

from the direction normal to the object surface more than the cone of friction angle (θ), 

determined as arctangent of the coefficient of friction (COF) between the hand and 

grasped object (MacKenzie and Iberall 1994). Phalanx force deviations outside the cone 

of friction can lead to hand-object slippage 

 

Despite these important functional implications for grip stability and strength, 

knowledge is sparse on the extent of altered phalanx force direction and altered force 

distribution across the fingers and phalanges during power grip post stroke. This 

knowledge gap is perhaps due to a lack of proper equipment. A recent development of an 

instrumented cylinder that has the capacity to measure not only normal force but also 

shear force from each phalanx and finger independently (Enders and Seo 2011) enables 

quantitative characterization of phalanx force direction and distribution during power grip 

post stroke. This new information on post-stroke power grip characteristics can provide 

Fnormal 

Fphalanx 

Fshear 
 θ=atan(COF) 
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greater insight into stroke survivors’ grip abnormality, especially the extent that altered 

phalanx force direction and distribution account for reduced whole-hand grip stability 

and strength.  

 

 The goal of this study was to characterize the altered power grip for people with 

stroke as compared with age-matched neurologically-intact (control) persons. The first 

experiment investigated the extent to which stroke survivors’ phalanx forces deviated 

from the normal direction and the distribution of normal forces across the phalanges and 

fingers compared to controls during static power grip at 100% and 50% maximum 

perceived effort. In addition, the ability to approximate 50% of the maximum power grip 

force was examined to gauge the potential role of somatosensation in altered power grip 

post stroke. Upon observing greater phalanx force angular deviation post stroke, the 

second experiment was performed to examine potential mechanisms for altered phalanx 

force direction by comparing hand muscle activity between stroke survivors and healthy 

controls. In addition, the COF between the finger skin and grip surface was measured to 

determine any decrease in skin slipperiness that might allow greater phalanx force 

angular deviation after stroke.  

 

2.2 Methods  

 

2.2.1 Subjects   
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Eleven chronic stroke survivors (mean age ± standard deviation (SD) = 64 ± 11 

years) and 11 age matched neurologically intact control subjects (65 ± 10 years) 

participated in Experiment 1 (Table I). Twenty chronic stroke survivors (mean age ± SD 

= 59 ± 11 years) and 13 age- matched control subjects (57 ± 8 years) participated in 

Experiment 2 (Table II). Roughly half of the participants were females for each 

Experiment. Six of the subjects returned from Experiment 1 to participate in Experiment 

2. All stroke survivors had time since stroke greater than 6 months. The mean motor 

impairment for the stroke survivors in Experiment 1 was Stage 5 ± 2 out of the maximum 

score of 7 on the Chedoke-McMaster Stroke Assessment Hand Section (Gowland et al. 

1995) and Stage 5 ± 2 in Experiment 2. For the hand and wrist subdivision of the Fugl-

Meyer Assessment (Fugl-Meyer et al. 1975), the mean motor impairment was 19 ± 5 out 

of the maximum score of 24 for the stroke survivors in Experiment 1, and 19 ± 7 in 

Experiment 2. All subjects signed a consent form and followed a protocol approved by 

the Institutional Review Board. 

Table I: Stroke Subject Demographics for Experiment 1 

Subject 

Approximate 

time since 

most recent 

stroke 

(months) 

Type of Stroke 

Hand 

Dominance  

 
Paretic 

Hand 

Side 

Sex 
Age 

(years) 

Fugl-

Meyer 

Score  

(out of 

24) 

Chedoke 

McMaster  

Score  

(out of 7) 
Pre 

stroke 

 Post 

Stroke 

1 8 Hemorrhagic R R L Female 49 24 7 

2 44 Hemorrhagic R R R Female 59 24 7 

3 19 Ischemic R L R Male 79 - 2 

4 86 Ischemic R R L Male 79 - 3 

5 16 Ischemic R R R Female 73 24 6 

6 22 Ischemic R R R Male 50 21 5 

7 102 Hemorrhagic L R L Female 66 9 2 

8 45 Ischemic R R L Female 58 16 6 

9 46 Ischemic R R R Male 69 13 2 

10 82 Ischemic R R L Male 59 16 5 

11 80 Hemorrhagic R R R Male 63 24 7 

*R= “Right hand dominance”, L= “Right hand dominance” 
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Table II: Stroke Subject Demographics for Experiment 2  

Subjects 

Approximate 

time since 

most recent 

stroke 

(months) 

Type of 

Stroke    

 

Hand 

 Dominance*  Paretic 

Side 
Gender 

Age 

(years) 

Fugl-

Meyer 

Score 

(out of 

24) 

Chedoke 

McMaster  

Score (out 

of 7) 
Pre 

Stroke 

Post 

Stroke 

1 36 Unknown R L R Female 67 5 2 

2 47 Hemorrhagic R R L Female 51 24 7 

3 245 Ischemic L L R Female 55 24 7 

4 48 Hemorrhagic R R R Male 52 21 5 

5 53 Ischemic R R L Male 54 10 2 

6 44 Ischemic R R R Female 75 24 6 

7 40 Ischemic L L L Female 61 16 5 

8 51 Ischemic R R R Male 60 23 7 

9 126 Hemorrhagic L R L Female 67 9 2 

10 67 Ischemic R R L Male 59 16 6 

11 7 Ischemic R R R Male 66 24 7 

12 55 Hemorrhagic L R L Male 32 8 2 

13 162 Hemorrhagic R R L Male 60 22 7 

14 52 Ischemic R L R Male 81 9 2 

15 62 Unknown R R R Female 60 22 7 

16 142 Ischemic L L R Female 53 24 7 

17 64 Ischemic R R L Male 62 24 7 

18 8 Unknown R R L Male 65 24 7 

19 44 Ischemic R R L Female 43 18 3 

20 172 Hemorrhagic R R R Female 50 24 7 

*R= “Right hand dominance”, L= “Right hand dominance” 

 

2.2.2 Procedure and Analysis  

 

Experiment 1 quantified phalanx force direction and distribution during 100% and 

50% maximum power grip for stroke survivors as compared to controls. Experiment 1 

also examined the ability to approximate 50% of the maximum grip force for stroke and 

control subjects. Subjects sat in a chair with the elbow flexed at approximately 90 and 

the forearm horizontally rested on an arm rest. Subjects performed power grip at 100% 

and 50% of their maximum perceived effort on a custom-made grip dynamometer 
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(Enders and Seo 2011) for at least five seconds, while individual phalanges’ normal force 

and shear force in the proximal-distal direction were recorded at 1000 Hz for one finger 

at a time. For each phalanx, normal and shear forces were measured using two sets of 

four strain gauges in a Wheatstone bridge configuration instrumented in the custom-made 

grip dynamometer (Enders and Seo 2011).  Two grip efforts were examined to facilitate 

comparison with previous literature using maximum grip (Radhakrishnan and 

Nagaravindra 1993) and to include submaximal grip for its relevance to daily activities. 

No visual feedback was provided to the subjects during gripping. Subjects were 

instructed to grip in a consistent manner regardless of the finger being measured. 

Subjects’ distal, middle, and proximal phalanges of the finger were aligned with the three 

measuring pads on the grip dynamometer during power grip. If subjects were unable to 

correctly align the fingers themselves, the experimenter assisted the subject by aligning 

their finger with the three pads. Stroke subjects’ paretic hand and control subjects’ non-

dominant hand were used because this hand often acts as the “stabilizing hand” to hold 

objects while opening containers or performing finer manipulation with the non-paretic 

or dominant hand (Sainburg 2005; Wang and Sainburg 2007). The entire surface of the 

grip dynamometer was covered with a paper surface. Measurements of phalanx normal 

and shear forces for all five fingers at the two effort levels were repeated three times each 

to obtain averages.  

  

For Experiment 1 data analysis, phalanx force direction and normal grip force 

distribution were determined from the phalanx shear force and normal force during the 

two-second static grip period with the highest grip force within each trial. The phalanx 
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force angular deviation for each phalanx of each finger was quantified as the absolute 

arctangent of the ratio of mean shear force to mean normal force of that phalanx during 

the static grip period.  A deviation of 0º indicates that phalanx force was in the normal 

direction, perpendicular to the grip surface with no shear force. Phalanx force deviation 

of either distal or proximal direction was noted separately.  For the normal grip force 

distribution across the phalanges and fingers, the percentage contribution for each of the 

14 individual phalanges of the hand to the total normal force was calculated during the 

same static grip period. The accuracy of approximating 50% of the maximum grip was 

examined using the ratio of the sum of each phalanx’s resultant forces during the 50% 

maximum grip to that during the 100% maximum grip. Resultant force was used in this 

analysis since subjects may use feedback from both the normal and shear forces to 

approximate 50% of their maximum grip force.   

 

Experiment 2 was performed in the same setting during the same gripping tasks, 

except that electromyography (EMG) from hand muscles was additionally recorded. 

EMG data from two extrinsic hand muscles, the extensor digitorum communis (EDC) 

and flexor digitorum superficialis (FDS), and one intrinsic muscle, the first dorsal 

interosseous (FDI), were recorded at 1000 Hz (Bortec Biomedical Ltd., Calgary, AZ). 

The EDC and FDS muscles were investigated to sample the extrinsic muscles, and the 

FDI was investigated to sample the intrinsic muscles, similar to previous studies (Kamper 

et al. 2003), to determine if altered phalanx direction was due to either intrinsic or 

extrinsic muscle-specific weakness post stroke.  
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Skin was cleaned with alcohol swabs to reduce impedance before the bipolar 

surface electrodes were placed on the muscle bellies according to literature (Basmajian 

1989). The maximum voluntary contraction (MVC) EMG level was also recorded twice 

for each muscle by performing maximum voluntary contractions against resistance. For 

the EMG analysis, the root mean square (RMS) EMG with a 20-ms moving window was 

calculated for the two second static grip period with the highest grip force.  These mean 

RMS values were further normalized by the RMS MVC for each muscle (%MVC). To 

examine altered muscle activation patterns post stroke, the relative FDI and EDC muscle 

activities in relation to the FDS muscle activity (calculated as the ratio of FDI to FDS 

EMG and that of EDC to FDS EMG in %MVC) were compared between stroke survivors 

and controls. 

  

To compare the skin slipperiness between stroke survivors and healthy controls, 

the COF between the subjects’ finger skin and the paper surface was measured during a 

series of finger drag tests. The subject’s index finger tip was placed on a force transducer 

covered in paper and the experimenter applied 2N of normal force down on the finger tip, 

guided by a visual feedback display. Then force was increased in the shear direction until 

the finger slipped. The shear to normal force ratio at the point of the slip was then defined 

as the COF for that subject’s finger skin and the paper surface. COF was measured twice 

for each subject.  
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2.2.3 Statistical Analysis  

 

For Experiment 1 results, two separate mixed-design Analysis of Variance tests 

(ANOVAs) were used to examine if the phalanx force angular deviation and normal force 

distribution varied significantly for the subject group, effort level, phalanx, finger, and 

interactions between the subject group and the effort level, the subject group and the 

phalanx, and the subject group and the finger. Once a significant subject group effect was 

found for the phalanx force angular deviation, Pearson correlation was performed to 

examine the relationship between the motor impairment levels (both in the Chedoke-

McMaster Stroke Assessment Hand Section and the hand and wrist subdivision of the 

Fugl-Meyer Assessment) and the mean phalanx force deviation of stroke survivors. For 

the ability to estimate 50% of maximum grip force, one-sample t-tests determined if the 

ratio of grip force during 50% perceived grip to that during maximum grip was 

significantly different from 50% for each subject group.   

 

For Experiment 2, a mixed-design ANOVA was used to determine if muscle 

activation, EMG (%MVC), significantly varied for subject group, effort level, muscle, 

and the interaction between group and effort and the interaction between group and 

muscle. To further investigate how muscle activation pattern is altered post stroke, 

another mixed-design ANOVA was used to examine if the relative FDI and EDC EMG 

(normalized to FDS EMG) varied significantly for the subject group, effort level, muscle, 

and interactions between the subject group and the effort level and between the subject 

group and the muscle. For the COF data, a two-sample t-test determined if the stroke 
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survivors’ COF differed from healthy controls. To ensure normality, a square root 

transformation was applied to the phalanx force deviation, normal force distribution, and 

COF data and a log transformation was applied to the muscle activation pattern data to 

result in non-significant skewness (Tabachnick and Fidell 2007), and these transformed 

data were used for the ANOVAs and t-tests.   

 

2.3 Results  

 

The overall static power grip force profiles for stroke survivors and controls 

obtained from Experiment 1 are shown in (Figure 6). The maximum total normal force 

for stroke survivors was 43% reduced compared to the control (154 N vs. 270 N).  This 

extent of grip weakness is comparable to a previous study (Boissy et al. 1999). The new 

finding of this study is that phalanx force angular deviation is substantially greater for the 

stroke survivors. Altered phalanx force direction post stroke was associated with an 

altered muscle activation pattern with more reduced FDI and EDC muscle activities 

compared to the FDS activity and larger force estimation error after stroke, but without 

any skin friction change. This increased phalanx force deviation was significantly 

correlated with lower hand motor function in stroke survivors. The distribution of the 

remaining force across the phalanges and fingers was unaltered in stroke survivors. 

Detailed results are described below.  
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Figure 6: Mean phalanx force angular deviation, shown as the spread of the fan, was 

significantly greater for stroke survivors compared with healthy controls. Mean grip 

forces were substantially reduced for stroke survivors compared with healthy controls, as 

seen by the shorter fan height for stroke survivors. 

 

2.3.1 Increased phalanx force angular deviation for stroke survivors 

 

Stroke survivors gripped with 34% greater phalanx force deviation compared with 

controls on average (Figure 7a and Appendix B, ANOVA subject group main effect with 

p=.03). Phalanx force deviation was significantly dependent upon the subject group, 

phalanx, finger, and interaction between the subject group and the finger (p<.05). Stroke 
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survivors’ phalanx force deviation was significantly greater than controls’ for both grip 

efforts and all phalanges (Figure 7b-c and Appendix B, ANOVA subject group main 

effect with p<.01 and non-significant interactions between subject group and effort and 

between subject group and phalanges with p>.05). The stroke survivors’ phalanx force 

deviation was significantly higher for the thumb, index, and little fingers, compared with 

the controls (Figure 7b, ANOVA subject group and finger interaction with p<.01, and 

post-hoc significance found for the three fingers with p<.05). The frequency of phalanx 

force being distally directed was 56% for the stroke subjects, which is comparable to 

47% for the controls. 
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Figure 7: Phalanx force angular deviation was significantly greater for stroke survivors 

compared with controls (ANOVA subject group main effect with p<.05) (effort levels, 

fingers, phalanges, and subjects pooled) (a), for both 50% and maximum grip effort (b), 

for all three phalanges (c), and especially for the thumb, index, and little fingers 

(ANOVA, subject group and finger interaction with p<.05, posthoc significance marked 

with stars) (d). Non-transformed mean ± SE data is shown in the figure. 
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Increased phalanx force deviation was significantly and negatively correlated with 

motor impairment scores of the Chedoke-McMaster Assessment Hand Section (Figure 

8a, Pearson Correlation, r = -.84 with p<.05). Stroke survivors’ increased phalanx force 

deviation was also significantly and negatively correlated with a lower motor function 

score on the hand and wrist subdivision of the Fugl-Meyer Assessment (Figure 8b, 

Pearson Correlation, r = -.79 with p<.05). 

 

 

Figure 8: Stroke survivors’ increased phalanx force deviation was significantly 

correlated with lower motor function scores of the Chedoke-McMaster Assessment Hand 

Section (Pearson Correlation, r = -.84 with p<.05) (a) and the hand and wrist subdivision 

of the Fugl-Meyer Assessment (Pearson Correlation, r = -.79 with p<.05) (b). 
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2.3.2 Similar grip force distribution 

 

The distribution of normal force across the fingers and phalanges was similar 

between stroke and controls: They both gripped with the largest normal force produced 

by the distal phalanges (Figure 9a,c and Appendix B) and the thumb (Figure 9b,d and 

Appendix B), consistent with the previous study (Radhakrishnan and Nagaravindra 1993). 

The percent contribution of the phalanx normal force to the total normal force was 

significantly dependent on the phalanx and the finger (ANOVA with p<.05), but not 

significantly dependent on any other factor or interaction with the subject group 

(ANOVA with p>.05). Similar observations were made when resultant force magnitudes 

(instead of normal force) were examined for distribution across the fingers and 

phalanges, with no significant difference between the two subject groups.  
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Figure 9: The distribution of phalanx normal force across the phalanges (a and c) and 

fingers (b and d) for stroke and control subjects. Percent contribution (c and d) of the 

individual phalanges to total normal force was not significantly dependent upon the 

interaction of subject group and phalanx or the interaction of subject group and finger 

(ANOVA with p>.05) (d). Non-transformed mean ± SE data is shown in the figure. 

 

 

0

5

10

15

20

25

30

35

Thumb Index

Finger

Middle

Finger

Ring

Finger

Little

Finger

P
h

a
la

n
x
 N

o
rm

a
l 

F
o
rc

e,
 N

Healthy Controls Stroke Survivors

0

2

4

6

8

10

12

14

16

Thumb Index

Finger

Middle

Finger

Ring

Finger

Little

Finger

P
er

ce
n

t 
C

o
n

tr
ib

u
ti

o
n

 o
f 

F
in

g
er

 t
o
 

T
o
ta

l 
 N

o
rm

a
l 

 F
o
rc

e,
 %

 

Healthy Controls Stroke Survivors

a) b) 

c) 

0

2

4

6

8

10

12

14

16

Distal

Phalanx

Middle

Phalanx

Proximal

Phalanx

P
er

ce
n

t 
C

o
n

tr
ib

u
ti

o
n

 o
f 

P
h

a
la

n
x
 t

o
 

T
o
ta

l 
 N

o
rm

a
l 

 F
o
rc

e,
 %

 

d) 

0

5

10

15

20

25

30

35

Distal

Phalanx

Middle

Phalanx

Proximal

Phalanx

P
h

a
la

n
x
 N

o
rm

a
l 

F
o
rc

e,
 N



36 

 

  

2.3.3 Overestimation of 50% grip for stroke survivors 

 

During the 50% effort grip, the control subjects gripped with 46% ± 3% (mean ± 

SE) of their maximum grip force, which was not significantly different from 50% (Figure 

10 and Appendix B, t-test with p>.05). On the other hand, the stroke survivors gripped 

with, on average, 68% ± 11% of their maximum grip force, which was significantly 

different from 50% (Figure 10 and Appendix B, t-test with p<.05).  

 

Figure 10: Mean ± SE percentage of force produced during grip at 50% of maximum 

perceived effort. Stroke survivors produced more than 50% of maximum (t-test with 

p<.05), unlike controls (t-test with p>.05). Non-transformed data is shown in the figure. 
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2.3.4 Altered muscle activity pattern post stroke  

 

Each muscle’s activity (in %MVC) is shown for the stroke and control groups in 

Figure 11a and Appendix B. Muscle activity was significantly dependent upon subject 

group, effort level, muscle, and the interaction between group and muscle (ANOVA with 

p<.05). While the overall muscle activity was lower for stroke survivors compared with 

control, the reduction in muscle activity was more pronounced for the EDC and FDI 

muscles compared to the FDS muscle. 

 

This greater reduction in the FDI and EDC muscle activity than the FDS muscle 

for stroke survivors is apparent when the relative muscle activity is examined (Figure 11b 

and Appendix B). Compared to healthy controls, stroke survivors’ FDI and EDC 

activities relative to FDS muscle were significantly lower (ANOVA subject group main 

effect with p<.05 as well as Tukey posthoc p<.05 for stroke vs. control for both muscles). 

The under-activation was greater for the FDI than EDC muscle (ANOVA, muscle main 

effect and subject group and muscle interaction with p<.05). The interaction between 

group and effort was also found to be significant (p<.05) while the effort main effect was 

not (p>.05). 
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   (a)      (b) 

Figure 11: Mean ± SE EMG was reduced for all muscles of the stroke survivors 

compared with healthy controls (a). Relative to the FDS EMG, mean + SE FDI and EDC 

EMG were significantly reduced for stroke survivors compared with controls (significant 

subject group and finger muscle interaction with p<.05, significant difference in relative 

FDI and EDC EMG between stroke and control with Tukey post-hoc p<.05) (b), showing 

an altered muscle activity pattern with a particularly weakened intrinsic FDI muscle and 

the extrinsic EDC muscle for stroke survivors compared with controls. Non-transformed 

data is shown in the figure. 
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force deviation allowed before slippage, calculated as arctangent of the COF) for the grip 

surface used in this study was 23˚ for both stroke survivors and controls. 

 

Figure 12: Mean ± SE of the COF between the finger skin and paper surface was similar 

for stroke survivors and healthy controls (t-test, p>.05). Non-transformed data is shown 

in the figure. 
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friction change. This increased phalanx force deviation was significantly correlated with 

lower motor function scores. Consistent with the previous study (Boissy et al. 1999), 

stroke survivors produced reduced maximum grip force compared with the age-matched 

controls. However, the distribution of the remaining grip force across the fingers and 

phalanges of the hand was similar to the controls.  

 

One of the possible explanations for this greater phalanx force angular deviation 

during power grip after stroke is disruption in the coordinated force outputs across 

individual muscles for the hand. Both the FDI and EDC muscles were under-activated for 

stroke survivors, with greater weakness observed for the FDI muscle compared to the 

EDC muscle. Grip requires coordination among all muscles for the hand to produce grip 

force toward the object, and disruption in the balance among individual muscles’ force 

outputs can directly alter the direction of phalanx forces (Johanson et al. 2001; Valero-

Cuevas 2000). For instance, weakening of any single muscle can limit force production in 

a specific direction (Kutch and Valero-Cuevas 2011). Specifically, the intrinsic muscles 

are important for directional force control (Long et al. 1970; Milner and Dhaliwal 2002; 

Valero-Cuevas et al. 2000). Weakening of the intrinsic muscles has been shown to 

increase digit force angular deviation from the normal direction based on a biomechanical 

model (Valero-Cuevas et al. 2000), and this weakening has been speculated to contribute 

to altered digit force deviation in older adults (Cole 2006). Therefore, the increased 

phalanx force angular deviation may be attributable to the observed altered muscle 

activation pattern with more weakened intrinsic and extensor muscles relative to the long 

finger flexor muscles after stroke. This specific pattern of altered muscle activation after 
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stroke was observed in the past (Seo et al. 2010) and is thought to be mediated by a 

disinhibited reticulospinal tract resulting in the hyperexcited long finger flexor muscle 

(Zaaimi et al. 2012) relative to other muscles. In addition, the distal intrinsic muscles may 

require more corticospinal drive than more proximal muscles (Palmer and Ashby 1992; 

Turton and Lemon 1999), leaving them more vulnerable to weakness post-stroke. 

Furthermore, intrinsic muscles may suffer from disproportionately greater weakness due 

to changes occurring within the muscles: intrinsic muscles are composed predominantly 

of Type II muscle fibers (Hwang et al. 2013), which have been shown to be particularly 

prone to atrophy post stroke (Dattola et al. 1993; Hu et al. 2007).  

 

While the altered muscle activation pattern with relatively more weakened 

intrinsic and extensor muscles appears to have contributed to greater phalanx force 

deviation following stroke (Figure 11), force distribution over the phalanges and fingers 

remained unchanged after stroke (Figure 9). This preserved force distribution could be 

due to the relatively minor contribution of the intrinsic and extensor muscles toward grip 

force generation compared with the large long finger flexor muscles (Li et al. 2000). 

Intrinsic muscles account for less than 13% of the metacarpophalangeal joint moment and 

their contribution toward distal phalanx flexion force production is minimal (Li et al. 

2000).  Likewise, the extensor muscles appears to contribute very little to the flexion 

force of the fingers (Chao et al. 1976) but are important in terms of joint stability (Chao 

et al. 1976). As such, the trend with the major force concentrated on the distal phalanges 

powered by the extrinsic flexor muscles did not change after stroke in this study. In 
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general, FDI and EDC weakness does not appear to affect the power grip force 

distribution over the fingers and phalanges.  

 

Another explanation for altered phalanx force direction for stroke survivors is a 

difference in finger posture with respect to the gripping surface compared to healthy 

controls. Although subjects’ finger alignment to the three measuring pads was controlled 

when the subjects’ hand was placed on the dynamometer initially for each trial, it is 

possible that the position and orientation of the phalanges shifted during power grip 

exertion. For instance, stroke subjects’ altered muscle activation could have caused a 

curling or rotation of the finger during the grip, affecting the direction of the force vector 

and causing an increase in the proximal-distal shear force. Although finger postures were 

not recorded in the present study to substantiate this possibility, the results of the present 

study show that regardless of the posture, the force vectors applied to the object differed 

for stroke survivors compared to healthy controls, which has implication for grip stability 

during daily activities involving power grip as discussed in the next section. 

 

An alternative explanation for the greater phalanx force angular deviation during 

power grip after stroke is impaired somatosensation post stroke (Carey 1995; Di Fabio 

and Badke 1991; Hermsdorfer et al. 2003; Niessen et al. 2008; Turton and Butler 2001). 

Somatosensory feedback has previously been shown to be critical in the control of digit 

force magnitudes and trajectories during gripping (Enders and Seo 2011; Nowak et al. 

2001; Shim et al. 2012; Zatsiorsky and Latash 2004a). The diminished somatosensation 
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often found for stroke survivors (Carey 1995; Turton and Butler 2001) has been shown to 

contribute to stroke survivors’ excessive force fluctuation (Blennerhassett et al. 2007), 

inappropriate grip force regulation (Blennerhassett et al. 2007), and improper safety 

margins (Hermsdorfer et al. 2003). The stroke survivors tested in this study exhibited 

impaired somatosensation, as seen by the overshooting of grip force estimation at 50% of 

maximum effort (Figure 10 and Appendix B). The impaired somatosensation could have 

hindered stroke survivors from correcting their phalanx force direction reaching toward 

the threshold of slippage, resulting in the increased phalanx force deviation observed in 

this study.  

 

2.4.2 Functional implications of stroke survivors’ altered phalanx force deviation 

 

As previously discussed, the phalanx skin slips against the gripped object surface 

when phalanx force deviation reaches the cone of friction, calculated as the arctangent of 

the COF between the finger and the grasped object (MacKenzie and Iberall 1994) (Figure 

5). Stroke survivors produced an average 19˚ ± 2˚ phalanx force deviation, closer to the 

slip threshold of 23˚ for the grip surface used in the present study, compared with 

controls who kept their phalanx force deviation low at 14˚ ± 1˚. The COF between the 

finger skin and the grip surface was not significantly different between stroke survivors 

and controls (Figure 12 and Appendix B), indicating that both groups had the same slip 

threshold and the increased phalanx force deviation was not afforded by increased skin 

COF post stroke.  
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This phalanx force deviation near the slip threshold post stroke represents grip 

instability and likelihood of object dropping. Indeed, a previous study found that 

excessive digit force deviation for stroke survivors was accompanied by finger slippage 

of at least 1 cm in 55% of all pinch grips (Seo et al. 2010). The increased phalanx force 

deviation near the slip threshold also implies potential hand slippage while stroke 

survivors try to hold onto a support pole in a bus or in the shower, which could lead to 

falling and serious injury. Given the tight relationship between the phalanx force 

deviation and grip stability, it is not surprising that stroke survivors with greater phalanx 

force deviation were found to have lower motor function scores indicating difficulty in 

hand grip function.  

 

In addition to greater finger-object slippage, greater phalanx force deviation can 

lead to reduced phalanx normal force. Increasing phalanx force deviation can decrease 

the phalanx normal force by tilting the force vector such that the force in the normal 

direction decreases and force in the shear direction increases. Specifically, in the present 

study, the phalanx force deviation reduced stroke survivors’ potential normal force by 

approximately 14% (calculated by taking the average difference between phalanx 

resultant and normal force).  

 

Furthermore, applying more grip force than is required by the task, such as the 

grip force overshoot observed in this study during the 50% maximum grip task, can lead 
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to an earlier onset of muscle fatigue and decrease one’s ability to perform daily activities 

(Nowak et al. 2003). This could be especially true for the tasks where a high grip effort is 

required, such as cooking, holding onto a bar while riding the bus or train, or pushing and 

pulling a cart in a store.  

 

2.4.3 Study Limitations and Future Directions 

 

 One limitation of this study is that each trial only recorded phalanx force data 

from one finger at a time. Recording forces from all fingers at the same time would be 

preferable. However, the custom-made device does not allow for simultaneous 

measurements across fingers due to space constraints for the strain gauges inside. Instead, 

subjects were instructed to grip the device with the whole hand in a consistent manner 

regardless of what finger was placed on the measuring pads.  Another limitation of this 

study is that only the proximal-distal shear force was recorded, again due to the device 

limitation. Therefore, the medial-lateral shear force was neglected in this study and 

phalanx force deviation only took into account the normal force and proximal-distal shear 

force. Because grip is performed primarily in the finger flexion direction and 

abduction/adduction strength is severely weakened post stroke (Lang and Schieber 

2004a), and because the grip dynamometer was supported against gravity in this study, 

only a very small amount of shear force is expected to be applied in the medial-lateral 

direction. 
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2.5. Conclusions  

 

 

The present study demonstrated that stroke survivors perform power grip with 

greater phalanx force deviation compared to age-matched controls, although the slip 

threshold between the skin and grip surface was not significantly different between stroke 

survivors and controls. Distribution of phalanx grip force was similar for stroke survivors 

and healthy controls. Altered muscle activation patterns with reduced activation of the 

FDI and EDC muscles compared with the FDS muscle may account for increased 

phalanx force deviation. Impaired somatosensation following stroke may also account for 

the increased phalanx force deviation as well as the grip force overshoot. Furthermore, 

impaired posture, shifting the position and orientation of the phalanges during power grip 

exertion due to stroke survivors’ altered muscle activation could have increased phalanx 

force deviation. Increased phalanx force deviation could reduce the grip strength and 

increase the likelihood of finger-object slippage, thus leading to reduced grip stability and 

an increased rate of object dropping or loss of grip. In addition, stroke survivors’ grip 

force overshoot may indicate that they develop muscle fatigue earlier in tasks requiring 

submaximal force. Decreased phalanx force control and grip force overshoot may limit 

stroke survivors in completing everyday tasks and progressing in rehabilitation, leading 

to long-term negative effects on hand function post stroke. The knowledge obtained in 

this research could be applied to developing more sophisticated rehabilitation therapies or 

assistive devices that correct altered phalanx force deviations and assist in approximating 

target grip force levels. 
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Chapter 3: Effects Of Tactile Sensory Deficit On Phalanx Force Deviation During 

Power Grip Post Stroke 

 

 

ABSTRACT 

 

When stroke survivors apply grip force, force from each phalanx is directed further from 

the direction normal to the object surface, compared to age-matched stroke-free adults. 

This study examined how tactile sensory deficit, in addition to motor deficit, plays a role 

in altered phalanx force direction during static power grip. Three groups (stroke survivors 

with tactile sensory deficit, stroke survivors without tactile sensory deficit, and age-

matched controls) gripped an instrumented cylinder at 100% and 50% maximum efforts. 

The two stroke groups were similar in motor impairment and grip strength. Each 

phalanx’s normal force and direction as well as muscle activity were recorded. The main 

finding was that the stroke survivors with tactile sensory deficit gripped with 14% and 

24% greater phalanx force deviation compared to stroke survivors without tactile sensory 

deficit and healthy controls, respectively (p<.05). Altered muscle activity pattern 

compared to controls, with greater weakness in the intrinsic and extensor muscles than in 

the long flexor muscle, was observed for the stroke survivors with tactile sensory deficit 

(p<.05), but not for the stroke survivors without tactile sensory deficit. All three subject 

groups estimated 50% maximum power grip force closely, showing that neither stroke 

groups exhibited proprioceptive sensory deficit. All groups had similar skin friction. In 

summary, stroke survivors with tactile sensory deficit were found to grip with more 

altered phalanx force direction than those without, compared to healthy controls, 

accompanied by an altered muscle activation pattern, which could elevate the risk of 

dropping grasped objects, hampering their ability to complete daily activities. 
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3.1. Introduction 

 

 Of the 7 million stroke survivors in the U.S. (Roger et al. 2012), many experience 

unilateral arm and hand functional loss (Gray et al. 1990; Nakayama et al. 1994; Parker et 

al. 1986) that continues to persist even after physical therapy (Parker et al. 1986). Post 

stroke hand impairment is further complicated by somatosensory loss in the hands (Carey 

1995). The reduced hand function affects stroke survivors’ ability to complete common 

gripping tasks and can lead to increased dependence on others to perform daily living 

activities.  

 

Approximately 50% to 85% of stroke survivors experience tactile and 

proprioceptive sensory deficit (Carey 1995; Kim and Choi-Kwon 1996) in addition to 

motor deficit in their hands and arms (Gray et al. 1990; Nakayama et al. 1994; Parker et 

al. 1986). While proprioceptive sensory information from the muscle spindle and tendon-

organ afferents and the interphalangeal joint receptors pertains to limb positions and 

muscle force during gripping (Macefield and Johansson 1996), the tactile sensory 

feedback is the dominant type of sensory feedback used for the initial force scaling and 

the majority of finger force feedback control (Häger-Ross and Johansson 1996). When 

the finger comes in contact with an object for grasping, tactile feedback is sent via 

activation of the mechanoreceptors in the fingertips (Johansson and Westling 1987). This 

tactile sensory feedback is important for appropriating the necessary finger force 

magnitudes and direction for a successful grasp (Augurelle et al. 2003; Monzée et al. 

2001; Nowak et al. 2001; Robertson and Jones 1994; Zatsiorsky and Latash 2004b). Post 
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stroke tactile sensory deficit has previously been linked to impaired detection of contact 

with an object (Turton and Butler 2001), increased latencies in pinch grip activation 

during lifting tasks (Blennerhassett et al. 2007), problems regulating grip force 

(Blennerhassett et al. 2007), and  increases in safety margin (Hermsdorfer et al. 2003).   

 

In addition to its implications on pinch grip force control, post stroke tactile 

sensory deficit may account for impairment in power grip force control. In our recent 

study, it was found that stroke survivors perform static power grip with phalanx forces 

deviated further from the normal direction with respect to the object surface, referred to 

as increased phalanx force deviation, compared to healthy controls.  Power grip was 

examined because little knowledge exists with stroke survivors’ power grip force control 

even though stroke survivors with severe impairment are unable to perform pinch grip 

and are limited to power grip (Gowland et al. 1995; Lang and Schieber 2004b). A 

successful grasp requires phalanx force to not be deviated from the direction normal to an 

object’s surface, by more than an angle calculated as the arctangent of the coefficient of 

friction (COF) (MacKenzie and Iberall 1994) (Figure 13). Increased phalanx force 

deviation can lead to finger slippage and hamper hand grip function (Seo et al. 2010). 

Also, increased phalanx force deviation results in a tilting of the phalanx force and could 

reduce the phalanx normal force. This altered power grip for stroke survivors may 

increase the likelihood of object dropping due to reduced gripping stability and overall 

grip force. Since tactile sensory feedback has previously been shown to be important for 

gripping force control (Nowak et al. 2001; Shim et al. 2012), stroke survivors who 

experience tactile sensory deficit could be at greater risk for altered phalanx force 
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deviation and object dropping during power compared to stroke survivors with normal 

tactile sensation as well as their healthy counterparts. 

 

 

 

 

 

 

 

 

 

Figure 13. During power grip, there are normal and shear forces produced by the 

phalanges. (a) Phalanx slippage occurs when phalanx force deviation (α) exceeds a 

certain angle (θ) determined as arctangent (atan) of the COF between the finger skin and 

object.  

 

Stroke survivors’ increased phalanx force deviation was also previously found to 

be accompanied by an altered muscle activation pattern with reduced activation of the 

intrinsic and extensor muscles (first dorsal interosseous and extensor digitorum 

superficialis) more so than the extrinsic flexor muscle (flexor digitorum superficialis) 

(Chapter 2). Altered muscle activation pattern is thought to biomechanically account for 

 Θ = atan (COF) Fshear 
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Fresultant 

α 

Phalanx 

Force 

Deviation  

Fshear 

Fshear 
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increased phalanx force deviation since the intrinsic and extensor muscles are important 

for directing and stabilizing the digit force (Kutch and Valero-Cuevas 2011; Long et al. 

1970; Milner and Dhaliwal 2002; Valero-Cuevas et al. 2000). Intrinsic muscles may be 

particularly affected post stroke due to their need for corticospinal drive (Palmer and 

Ashby 1992; Turton and Lemon 1999) and their dominant Type II muscle fiber 

composition (Hwang et al. 2013) which has been associated with increased risk of 

atrophy post stroke (Dattola et al. 1993; Hu et al. 2007). Altered muscle activation 

previously observed for stroke survivors could have decreased phalanx force control 

(Chapter 2), and tactile sensory deficit could further alter muscle activation via reduced 

feedback, leading to increased phalanx force deviation. Furthermore, changes in skin 

slipperiness could account for increased phalanx force deviation (Cole 1991). However 

there was no evidence of difference in skin slipperiness between stroke survivors and 

healthy controls in the previous study (Chapter 2).  

 

It is currently unknown how stroke-induced tactile sensory deficit (Carey 1995; 

Turton and Butler 2001) plays a role in altering phalanx force direction in power grip. 

The goal of this study was to determine the effects of tactile sensory deficit on stroke 

survivors’ power grip force direction during power grip. Phalanx force direction for 

stroke survivors with tactile sensory deficit was compared to stroke survivors without 

tactile sensory deficit and age-matched neurologically-intact healthy controls. 

Furthermore, muscle activation pattern was examined to determine if stroke induced 

tactile sensory deficit is associated with an altered muscle activation pattern compared to 

stroke survivors with no tactile sensory deficit and healthy controls. COF between the 
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finger skin and the grip surfaces were also measured to determine any decrease in skin 

slipperiness that might allow for greater phalanx force deviation between the subject 

groups. Determining the role of impaired tactile sensory feedback on power grip is 

important to inform stroke rehabilitation practices with the way somatosensation impacts 

motor recovery post stroke and could be useful in the development of more effective or 

alternative rehabilitation strategies for stroke recovery. 

 

3.2. Methods 

 

3.2.1 Subjects 

 

 Fourteen chronic stroke survivors with tactile sensory deficit (mean age ± SD = 

59 ± 12 years), 9 chronic stroke survivors without tactile sensory deficit (63 ± 12 years), 

and 18 age-matched healthy control subjects (61 ± 10 years) participated (Table III). Age 

was not significantly different between any of the groups (T-Tests with p>.05). Mean 

motor impairment was quantified by the Chedoke-McMaster Stroke Assessment Hand 

Section (Gowland et al. 1995) and the hand and wrist subdivision of the Fugl-Meyer 

Assessment (Fugl-Meyer et al. 1975). Mean Chedoke-McMaster score was 5 ± 2 for both 

stroke groups (out of a possible 7, t-test with p>.05), and mean Fugl-Meyer score was 17 

± 7 and 20 ± 6 (out of a possible 24) for the stroke survivors with tactile sensory deficit 

and stroke survivors without tactile sensory deficit groups, respectively (t-test with 

p>.05). Stroke survivors’ median Modified Ashworth Scale (MAS) (Ashworth 1964) 

assessing spasticity of the flexor muscles of the forearm was 1 and 0  (out of a possible 4) 
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for the stroke survivors with and without tactile sensory deficit, respectively (ranging 

from 0 to 3 for both groups, Mann-Whitney Test with p>.05). Overall, both stroke groups 

were similar in terms of motor function. In addition, the FDS, EDC, and FDI muscle 

activity was recorded for 13 stroke survivors with tactile sensory deficit, 7 stroke 

survivors without tactile sensory deficit, and 13 healthy controls 

Table III: Subject Demographics 

Group Subject 

Time since 

most 

recent 

stroke 

(months) 

Type of Stroke 

Hand 

Dominance***  
Paretic 

Side 
Sex 

Age 

(years) 

Fugl-

Meyer 

Score    

(out of 

24) 

Chedoke 

McMaster  

Score    

(out of 7) 

Monofilament 

Score 

Pre 

Stroke 

Post 

Stroke 
Index Thumb 

S
tr

o
k

e 
su

rv
iv

o
rs

 w
it

h
 t

ac
ti

le
 s

en
so

ry
 d

ef
ic

it
 

1 19 Ischemic R R L Male 79 - 2 3.61 3.61 

2* 16 Ischemic R R R Female 73 24 6 3.61 3.61 

3* 22 Ischemic R R R Male 50 21 5 3.61 3.61 

4* 102 Hemorrhagic L L R Female 66 9 2 3.61 3.61 

5* 82 Ischemic R L R Male 59 16 5 6.65 6.65 

6* 36 Unknown R L R Female 67 5 2 4.31 3.61 

7* 53 Ischemic R R L Male 54 10 2 6.65 6.65 

8* 7 Ischemic R R R Male 66 24 7 4.31 4.31 

9* 55 Hemorrhagic L R L Male 32 8 2 6.65 6.65 

10* 162 Hemorrhagic R R L Male 60 22 7 3.61 3.61 

11* 62 Unknown R R R Female 60 22 7 3.61 3.61 

12* 142 Ischemic L L R Female 53 24 7 3.61 3.61 

13* 8 Unknown R R L Male 65 24 7 3.61 3.61 

14* 44 Ischemic R R L Female 43 18 3 6.65 6.65 

S
tr

o
k

e 
su

rv
iv

o
rs

 w
it

h
o

u
t 

ta
ct
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e 
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n
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ry

 d
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1* 8 Hemorrhagic R R L Female 49 24 7 2.83 2.83 

2 86 Ischemic R R L Male 79 - 3 2.83 2.83 

3* 45 Ischemic R R L Female 58 16 6 2.83 2.83 

4 46 Ischemic R R R Male 69 13 2 2.83 2.83 

5 80 Hemorrhagic  R R R Male 63 24 7 2.83 2.83 

6* 245 Ischemic L L R Female 55 24 7 2.83 2.83 

7* 52 Ischemic R L R Male 81 9 2 3.61 2.83 

8* 172 Hemorrhagic R R R Female 50 24 7 2.83 2.83 

9* 42 Ischemic R R R Male 59 23 7 2.83 2.83 

10** 64 Ischemic R R L Male 62 24 7 3.61 2.83 

*Indicates subjects whose EMG and COF measurement was also recorded  

**Indicates subjects who only had EMG and COF measurement recorded with no grip force data obtained 

 **R= “Right hand dominance”, L= “Right hand dominance” 
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All subjects underwent the Semmes-Weinstein monofilament test (Bell-Krotoski 

et al. 1993). Tactile sensory deficit was determined based on a score of  ≥ 3.61 (Dellon 

1997) for both the index and thumb finger. Monofilament scores for the stroke survivor 

group with tactile sensory deficit ranged from 3.61 to 6.65 with a median score of 3.61. 

All stroke survivors were at least 6 months post stroke. All age-matched controls were 

neurologically healthy and free from injury in the upper extremity. All subjects signed a 

consent form and followed a protocol approved by the Institutional Review Board.  

 

3.2.2 Procedure 

 

Subjects were instructed to sit in a chair with the elbow flexed at approximately 

90 and the forearm horizontally rested on an arm rest.  Subjects gripped a custom-made 

power grip dynamometer at the maximum and 50% maximum effort for five seconds, 

while individual phalanges’ normal and proximal-distal shear force were recorded for a 

single finger (Enders and Seo 2011). Visual feedback was not provided to the subjects 

during gripping. Subjects were instructed to grip in a consistent manner regardless of the 

finger being measured. Stroke subjects’ paretic hand and control subjects’ non-dominant 

hand was used because this hand often acts as the “stabilizing hand” that people use to 

hold objects, while performing finer manipulation with the dominant hand and non-

paretic hand. Two grip surfaces, a paper or a rubber surface, covered the entire surface of 

the grip device and finger pads. These two surfaces were used because a previous study 

showed that young healthy individuals adapted the direction of their phalanx forces 
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depending on the surface (Enders and Seo 2011). Measurement of phalanx normal and 

shear forces for the all five fingers, two frictional surfaces, and two effort levels 

(maximum and 50% of maximum power force) were repeated at least two times each, 

and the order of testing was randomized.  

 

In addition, the FDS, EDC, and FDI muscle activity was recorded during power 

grip using surface electromyogram (EMG) (Bortec Biomedical Ltd., Calgary, AB, 

Canada). Surface electrodes were placed on top of the muscle bellies according to 

Basmajian (1989) after the skin had been cleaned with alcohol swabs. Maximum 

voluntary contractions (MVC) for each muscle, while contracting against resistance, were 

also recorded. Both the force and EMG data were recorded at 1000 Hz. 

 

Furthermore, the COFs of the finger skin and the paper and rubber surfaces were 

determined using a series of finger drags for same set of subjects who had EMG recorded 

(Table III). Subjects’ fingers were pressed against a load cell by the investigator at a 

normal force level of approximately 2 N. Then shear force was gradually applied until the 

finger slipped against the surface. The shear to normal force ratio at the point of slip was 

defined as the COF for that surface. COF was measured twice for each subject and each 

surface. The COF data for the paper surface was previously reported for the average of 

the two stroke groups and is investigated here for the two separate stroke groups along 

with the COF for the rubber surface.  
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3.2.3 Data Analysis  

 

Mean phalanx normal and shear forces for each grip trial were calculated from the 

two-second period in which the total force (the sum of all normal and shear forces for all 

phalanges) was the greatest. The phalanx force deviation from the direction normal to the 

grip surface was quantified as the arctangent of the absolute ratio of shear force to normal 

force. The absolute phalanx force deviation was used because the frequency of phalanx 

force being distally directed was similar for all of the groups (64% for healthy 

individuals, 67% for stroke survivors without tactile sensory deficit, and 57% for stroke 

survivors with tactile sensory deficit). For the analysis of the EMG data, the root mean 

square (RMS) with a 20-ms moving window was applied. The RMS EMG was 

normalized to the MVC level for each muscle calculated as the peak RMS EMG recorded 

during the MVC trials. The mean EMG in %MVC during the same two-second period 

from which the force data was selected were used for further analysis. Muscle activation 

pattern between the subject groups was assessed by examining the raw %MVC data and 

the relative FDI and EDC muscle activities in relation to the FDS muscle activity 

(calculated as the ratio of FDI to FDS EMG and that of EDC to FDS EMG in %MVC). 

  

A mixed-design ANOVA was conducted to examine how the phalanx force 

deviation varied for the three subject groups (stroke survivors with tactile sensory deficit, 

stroke survivors without tactile sensory deficit, and healthy controls), surface, effort 

level, finger, phalanx, and the interactions between subject group and surface, subject 

group and effort, subject group and finger, and subject group and phalanx. To assess 
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difference in power grip force level among the three subject groups, secondary mixed-

design ANOVA was conducted for the phalanx normal force with the same model. To 

determine if proprioceptive sensory feedback was different between the subject groups, 

three separate one-sample t-tests were used to determine if the approximated 50% 

maximum phalanx resultant force normalized to the phalanx resultant force produced 

during 100% maximum power grip was different from 50% for each subject group. 

Additionally, two separate mixed design ANOVAs were used to analyze how muscle 

activity changed for the FDS, FDI, and EDC muscles depending on the subject groups. 

One determined if EMG (%MVC) activity was significantly different subject group, 

effort level, muscle, and interactions between the subject group and the effort level and 

between the subject group and the muscle. Another ANOVA was used to examine if the 

muscle activity pattern, the relative FDI and EDC EMGs (normalized to FDS EMG), 

varied significantly for the subject group, effort level, muscle, and interactions between 

the subject group and the effort level and between the subject group and the muscle. 

Finally, a fifth mixed-design ANOVA was conducted to examine differences in COF of 

the finger skin for the three subject groups, surface, and the interaction between subject 

group and surface. Phalanx force deviation data, phalanx normal force data, and  EMG 

data sets were skewed based on the Test for Skewness (Tabachnick and Fidell 2007). 

Therefore, a square root transformation was applied to normalize the phalanx force 

deviation data and the phalanx normal force data and a log transformation was applied to 

the muscle activation pattern data. Transformed data were used in the ANOVAs. Tukey 

post hoc tests determined differences among the three subject groups. 
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3.3. Results  

 

 An overview of the results is as follows. The average phalanx force magnitude 

and direction during static power grip for the two stroke groups and healthy controls are 

shown in Figure 14. Consistent with the previous literature (Boissy et al. 1999), stroke 

survivors’ mean phalanx normal force was approximately half of that for controls. The 

stroke survivors with and without tactile sensory deficit had similar maximum phalanx 

normal forces that were not significantly different from each other.  Consistent with the 

previous study (Chapter 2), the stroke groups gripped with greater phalanx force 

deviation compared to healthy controls. The new finding of this study is that stroke 

survivors with tactile sensory deficit produced power grip with significantly greater 

phalanx force deviation compared to stroke survivors without tactile sensory deficit and 

healthy controls. Increased phalanx force deviation for stroke survivors with tactile 

sensory deficit was associated with an altered muscle activation pattern, but not a change 

in skin slipperiness or force estimation accuracy. The details of these findings are 

presented below.  
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Figure 14: Mean phalanx force deviation, was the greatest for stroke survivors with 

tactile sensory deficit followed by stroke survivors without tactile sensory deficit and 

healthy controls. Averaged phalanx force deviation across the effort levels, surfaces, 

fingers, and phalanges is shown. The averaged phalanx force deviation across the effort 

levels, surfaces, fingers, and phalanges is shown. The slip threshold is the averaged 

threshold between the two surfaces.  

 

3.3.1 Increased phalanx force deviation for stroke survivors with tactile sensory deficit 

compared to stroke survivors without tactile sensory deficit and healthy controls  

 

 Phalanx force deviation was significantly dependent upon group, finger, phalanx, 

surface, and the interactions between group and effort, group and phalanx, and group and 

finger (Figure 15 and Appendix C, ANOVA with p<.05). Stroke survivors with tactile 

sensory deficit produced the largest phalanx force deviations, followed in order by stroke 

15.5˚ 

17.7˚ 

19.2˚ 

Slip Threshold 

(averaged for surfaces) 
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survivors without tactile sensory deficit and healthy individuals (Figure 15a and 

Appendix C). Compared to healthy controls, phalanx force deviation was significantly 

increased by 14% for stroke survivors without tactile sensory deficit and 24% for stroke 

survivors with tactile sensory deficit (Tukey-post hoc, p<.05). This trend of stroke 

survivors with tactile sensory deficit producing the greatest phalanx force deviation, 

followed in order by stroke survivors without tactile sensory deficit and healthy controls, 

was observed for all surfaces, efforts, phalanges, and fingers (Figure 15b-d and Appendix 

C). Stroke survivors with tactile sensory deficit produced significantly greater phalanx 

force deviation compared to healthy controls and stroke survivors without tactile sensory 

deficit during 50% maximum power effort and significantly greater phalanx force 

deviation compared to healthy controls at maximum power effort (Figure 15c and 

Appendix C,  group and effort level interaction, Tukey post hoc with  p<.05). Stroke 

survivors with tactile sensory deficit produced significantly greater phalanx force 

deviation with all the phalanges compared to healthy controls and for the distal phalanx 

compared to stroke survivors without tactile sensory tactile deficit (Figure 15d and 

Appendix C, group and phalanx interaction with Tukey post-hoc p<.05). Stroke survivors 

with tactile sensory deficit produced significantly greater phalanx force deviation with 

the thumb and index finger compared to healthy controls and for the thumb compared to 

stroke survivors without tactile sensory deficit (Figure 15e and Appendix C, group and 

finger interaction with Tukey post-hoc p<.05). Consistent with the previous study for 

healthy young adults (Enders and Seo 2011) phalanx force deviation was greater with the 

rubber surface compared to the paper surface (Figure 15b and Appendix C, ANOVA 

surface main effect with p<.05 without a significant subject group and surface 
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interaction), although it was observed that stroke survivors with tactile sensory deficit 

changed their phalanx force deviation very little (<1%) compared to the stroke survivors 

without tactile sensory deficit (7%) and healthy controls (13%). 
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Figure 15: Mean ± SE phalanx force deviation was significantly greatest for stroke 

survivors with tactile sensory deficit, followed in order by stroke survivors without tactile 

sensory deficit and healthy controls (ANOVA, subject group main effect with p<.05) 

This trend was observed for all surfaces (b), effort levels (c), phalanges (d), and fingers 

(e). 
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3.3.2 Phalanx normal force  

  

Phalanx normal force was similarly reduced for both stroke groups. Phalanx 

normal force was significantly dependent upon subject group, effort level, finger, 

phalanx, and the interaction of group and effort, group and phalanx, and group and finger 

(Figure 16 and Appendix C, ANOVA with p<.05). Both stroke survivors with and 

without tactile sensory deficit performed power grip with reduced phalanx normal force 

during both effort levels compared to healthy controls (Figure 16c and Appendix C, 

group and effort level interaction Tukey post-hoc with p<.05), while the two stroke 

groups were not significantly different from one another during either effort level (Figure 

16c and Appendix C, group and effort level interaction Tukey post-hoc with p>.05).  

Although their force level was reduced compared to healthy controls, both stroke 

survivor groups were able estimate 50% of their maximum power grip force well, without 

a significant difference from 50% (Figure 17 and Appendix C, t-tests p>.05 for all three 

groups).  Stroke survivors with tactile sensory deficit produced significantly less phalanx 

normal force during power grip with all the phalanges compared to healthy controls and 

significantly less normal force with the distal phalanx compared to stroke survivors 

without tactile sensory deficit (Figure 16d and Appendix C, ANOVA, group and phalanx 

interaction, Tukey post-hoc with p<.05). Both stroke groups produced significantly less 

phalanx normal force from all the fingers compared to healthy controls and were not 

significantly different from one another for any finger (Figure 16e and Appendix C, 

ANOVA, group and phalanx interaction, Tukey post-hoc with p<.05).  
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Figure 16:  Mean ± SE phalanx normal force was significantly reduced for both stroke 

survivor groups compared to healthy controls (ANOVA, subject group main effect with 

p<.05). This reduction was similar for both stroke survivor groups and was observed for 

all surfaces (b), effort levels (c), phalanx (d), or finger (e).   
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Figure 17: Mean ± SE grip force produced during grip at 50% of the maximum 

perceived effort normalized to the grip force produced during maximal grip was not 

significantly different from the target of 50% for all subject groups.  

 

 

3.3.3 Altered muscle activity pattern for stroke survivors with tactile sensory deficit 

  

Each muscle’s activity during static power grip is shown for the three subject 

groups in Figure 18a (and Appendix C). The EMG (%MVC) was significantly dependent 

upon subject group, effort level, muscle, and the interaction between subject group and 

effort level and the interaction between subject group and muscle (p<.05). While the 
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and EDC muscle activities were significantly reduced for both stroke groups compared to 

controls (Tukey post hoc, subject group and muscle interaction with p<.05), while the 

FDS muscle activity was not significantly different between any of the subject groups 

(Tukey post hoc, subject group and muscle interaction with p>.05). 

 

This difference in muscle activity pattern for the three subject groups is 

highlighted in the relative FDI and EDC activity normalized to FDS EMG (Figure 18b 

and Appendix C). Muscle activation pattern was significantly dependent upon subject 

group, muscle, and the interactions between group and muscle, and group and effort 

(ANOVA with p<.05). Muscle activation pattern was significantly altered for stroke 

survivors with tactile sensory deficit compared to stroke survivors without tactile sensory 

deficit and healthy controls (Figure 18b and Appendix C, ANOVA subject group main 

effect, Tukey post-hoc with p<.05). Specifically, the stroke survivors with tactile sensory 

deficit have significantly reduced FDI and EDC muscle activities relative to the FDS 

muscle, compared to both stroke survivors without tactile sensory deficit and healthy 

controls (Figure 18b and Appendix C, ANOVA, subject group and muscle interaction and 

Tukey post hoc with p<.05). Such altered muscle activation pattern was found for both 

the 50% maximum and maximum power grip effort levels (ANOVA, subject group and 

effort level interaction, Tukey post-hoc with p<.05). Although the overall muscle activity 

in %MVC was lower than healthy controls (Figure 18a), stroke survivors without tactile 

sensory deficit were not significantly different in muscle activation pattern compared to 

healthy controls (Figure 18b and Appendix C, ANOVA, subject group and muscle 
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interaction, Tukey post-hoc with p>.05), for either effort level (ANOVA, subject group 

and effort level interaction, Tukey post-hoc with p>.05).  

 

 

Figure 18: Mean ± SE EMG was reduced for stroke survivors compared to healthy 

controls for both stroke survivor groups (a). Mean + SE FDI and EDC EMGs relative to 

the FDS EMG were significantly reduced for stroke survivors with tactile sensory deficit 

compared to controls and stroke survivors without tactile sensory deficit (significant 

subject group main effect with p<.05, significant  difference for stroke survivors with 

tactile sensory deficit group compared to other two groups with Tukey posthoc p<.05 for 

both relative FDI and EDC EMGs) (b), showing altered muscle activity pattern with 

particularly reduced intrinsic FDI and extrinsic EDC muscle activities for stroke 

survivors with tactile sensory deficit compared to controls and stroke survivors without 

tactile sensory deficit. Non-transformed data is shown in the figure. 
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3.3.4 Skin COF  

  

There was no signifiant difference in the COF between any of the subject groups 

for either surface (Figure 19 and Appendix C, ANOVA, group main effect and group and 

surface interaction with p>.05, and only surface having p<.05). The mean COF of the 

paper surface was 0.43, similar to previous papers (Buchholz et al. 1988; Gee et al. 

2005). The mean COF of the rubber surface was 1.00, similar to a previous study that 

found a COF for the finger skin and rubber of 0.9 (Seo and Armstrong 2009). These COF 

values indicate that the threshold for slippage (calculated as the arctangent of the COF) 

was, on average, 23˚ and 45˚ for the paper and rubbers surfaces, respectively. 

  

Figure 19: Mean ± SE COF between the finger skin and the paper and rubber surfaces 

was similar for stroke survivors with tactile sensory deficit, stroke survivors without 

tactile sensory deficit, and healthy controls (ANOVA, group main effect and group and 

surface interaction p>.05). The COF for the rubber surfaces was significantly greater than 
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the paper surface (ANOVA, surface main effect with p<.05). Non-transformed data is 

shown in the figure.   

   

3.4. Discussion  

 

Consistent with previous studies, stroke survivors gripped with greater phalanx 

force deviation compared to healthy controls during static power grip. The new finding of 

this study is that stroke survivors with tactile sensory deficit gripped with greater 

deviation compared to stroke survivors without tactile sensory deficit. This greater 

phalanx force deviation for the stroke survivors with tactile sensory deficit was 

accompanied by an altered muscle activation pattern, characterized by the underactivated 

FDI and EDC muscles relative to the FDS muscle, compared to both the stroke survivors 

without tactile sensory deficit and the healthy controls. Stroke survivors without tactile 

sensory deficit were not significantly different in muscle activation pattern compared to 

healthy controls. Differences in the two stroke survivors groups were not the result of 

differences in motor impairment level, grip strength, skin slipperiness, or proprioceptive 

sensory feedback.  

 

3.4.1 Phalanx force direction altered more for stroke survivors with tactile sensory 

deficit 

 

Stroke survivors with tactile sensation deficit performed a static power grip with 

phalanx force deviated from the normal direction to a greater extent than stroke survivors 
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with no tactile sensation deficit, compared to healthy controls. The effect of tactile 

sensory loss on power grip force control investigated in the present study is in line with 

other studies showing that reduced sensation may affect pinch grip force control 

(Blennerhassett et al. 2007; Hermsdorfer et al. 2003; Robertson and Jones 1994). Both 

stroke survivor groups had similar functional motor scores (described in the subject 

section) and exhibited similar reduction in phalanx normal force during power grip for 

both effort levels, thus indicating that the group differences in grip control could be 

related to reduced sensory feedback (Figure 16c and Appendix C). Also, the difference in 

gripping control was most likely not the result of differences in skin slipperiness (Figure 

19 and Appendix C), because the threshold for slippage (the maximum phalanx force 

deviation allowed before slippage, calculated as arctangent of the COF) was similar for 

all subject groups. Therefore, it appears that stroke induced sensory deficit, in addition to 

motor deficit, was associated with a loss of phalanx force control. Specifically, those 

stroke survivors with tactile sensory deficit appeared to have decreased phalanx force 

control, since proprioceptive sensory feedback (important for force scaling and force 

estimation (Levin et al. 1995; Ostry and Feldman 2003)) appears to be similar for all 

groups as shown by the similar grip force estimation accuracy for all groups (Figure 17 

and Appendix C).   

 

An altered muscle activation pattern was also observed for stroke survivors with 

stroke induced tactile deficit in the present study, suggesting that diminished sensory 

feedback was associated with greater alteration in muscle activity controlling the fingers 

during power grip. When muscle activation pattern was examined by quantifying the 
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relative muscle activity to the major gripping muscle of the FDS, both the intrinsic FDI 

and the extrinsic extensor EDC muscles were under-activated compared to the extrinsic 

flexor FDS muscle for stroke survivors with tactile sensory deficit compared to the other 

stroke group and healthy controls (Figure 18b and Appendix C). This reduction in the 

relative muscle activity for the stroke survivors with tactile sensory deficit was somewhat 

greater for the intrinsic FDI muscle than the EDC muscle (Figure 16b and Appendix C). 

No statistical difference in the muscle activation pattern was observed between the stroke 

survivors without tactile sensory deficit and healthy controls. Weakening of any muscle 

controlling the fingers can hamper finger force production in a specific direction (Kutch 

and Valero-Cuevas 2011). The intrinsic muscles are important for directional force 

control and weakening of the intrinsic muscles has previously been shown to lead to 

increased fingertip force deviation in biomechanical models (Valero-Cuevas et al. 2000) 

and has been speculated to have reduced force control for older adults  (Cole 2006). 

Therefore the altered phalanx force deviation seen for stroke survivors with tactile 

sensory deficit could be attributable to the observed altered muscle activation pattern with 

more weakened intrinsic and extensor muscle activities relative to the long finger flexor 

muscle activity after stroke. While the EDC and FDI muscle activity was reduced for 

stroke survivors with tactile sensory deficit, the FDS muscle activity appeared to be 

preserved (Figure 18a and Appendix C) potentially due to the disinhibited reticulospinal 

tract (Zaaimi et al. 2012). Different muscle activation pattern despite similar Fugl-Meyer 

Assessment and Chedoke-McMaster Stroke Assessment Hand Section scores, could be 

because these motor functional scores were not sensitive enough to detect the differences 

in muscle activation pattern between the two stroke survivor groups.  
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Tactile sensory deficit could be linked to the decreased phalanx force direction 

and altered muscle activation pattern in two ways. First, decreased tactile sensory 

feedback could have reduced stroke survivors’ ability to detect how they are directing 

their phalanx forces and hampered the closed-loop motor control, resulting in non-

corrected phalanx force deviation and altered muscle activation pattern during power 

grip. This finding complements previous studies in which reduced tactile sensory 

feedback was associated with impaired closed-loop pinch grip control based on grip 

surface characteristics (Johansson and Westling 1987), the magnitude and direction of the 

phalanx force being produced (Augurelle et al. 2003; Blennerhassett et al. 2007; Cole 

2006; Hermsdorfer et al. 2003; Monzée et al. 2001; Robertson and Jones 1994), and the 

finger position with respect to the object surface (Monzée et al. 2001). In addition, our 

previous study showed that healthy individuals change their phalanx force deviation with 

a change in surface COF (Enders and Seo 2011), because a higher COF surface allows 

for greater phalanx force deviations, reducing the amount of muscle coordination needed 

to direct the phalanx forces in a precise direction (Cole 2006; Milner and Dhaliwal 2002; 

Valero-Cuevas et al. 2000). Stroke survivors with tactile sensory deficit tended to not 

change their phalanx force deviation between the two surfaces compared to stroke 

survivors without tactile sensory deficit and healthy controls (Figure 15b and Appendix 

C, group and surface interaction with p>.05). Therefore, it is possible that stroke 

survivors with tactile sensory deficit were not able to detect the surface change and adapt 

their phalanx force deviation during the static power grip task.  
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Second, previous research has shown how sensory and motor cortical territories 

shift following the removal of sensory inputs, suggesting that sensory feedback assists in 

the preservation of the normal cortical representations of both the motor and sensory 

cortex (Weiss et al. 2004).  Therefore, those stroke survivors with reduced tactile 

sensation could have altered cortical sensorimotor representations, leading to an altered 

muscle activity pattern and diminished phalanx force control. Furthermore, the distal 

intrinsic muscles may require more corticospinal drive than more proximal muscles 

(Palmer and Ashby 1992; Turton and Lemon 1999), leaving them more vulnerable to the 

reorganizational shifts in the sensorimotor cortical representations and making them 

especially affected in stroke survivors with tactile deficit (Figure 18b and Appendix C).  

In summary, a loss of tactile sensory feedback following stroke could have led to altered 

coordination of muscle activation, resulting in increased phalanx force deviation, due to 

reduced feedback control and cortical shifts that occurred after stroke. As a future study, 

making a comparison on the power grip of healthy individuals with and without digital 

anesthesia simulating tactile sensory deficit could provide insight into the direct 

interaction of tactile sensation and power grip control. 

 

3.4.2 Functional Implications of Reduced Phalanx Force Control and Clinical 

Implications 

 

Increased phalanx force deviation can lead to object dropping. Finger force 

deviating from the direction normal to the surface can lead to increased chance of object 
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slippage (MacKenzie and Iberall 1994; Seo et al. 2010). Therefore, stroke survivors with 

tactile sensory deficit may be more at risk than stroke survivors without tactile sensory 

deficit for dropping objects. This finding for power grip is comparable to the previous 

finding for pinch grip in which reduced tactile sensation increased frequencies of 

dropping objects (Augurelle et al. 2003). Furthermore, increased phalanx force deviation 

can also lead to increased risk of dropping objects by reducing the phalanx normal force. 

Increased phalanx force deviation tilts the force vector such that the normal force is 

reduced and force in the shear direction increases. Specifically, in the present study, the 

phalanx force deviation reduced potential normal force by 29% for stroke survivors with 

tactile sensory deficit (calculated by taking the average difference between phalanx 

resultant force and normal force).  

 

Tactile sensory deficits have been shown to negatively impact functional recovery 

of the upper limb following stroke (Meyer et al. 2014).  The results of this study 

demonstrate the importance of integrating tactile sensory retraining for stroke survivors 

in addition to motor re-training post stroke. Methods exist to improve hand tactile 

sensation, such as the transcutaneous electrical stimulation (Conforto et al. 2007), 

temporary functional de-afferentation (Sens et al. 2012b), and vibrotactile noise (Collins 

et al. 1996; Enders et al. 2013; Kurita et al. 2013). Combining these tactile sensory 

enhancement techniques with a sensory re-training paradigm such as that described in 

(Carey and Matyas 2005; Chanubol et al. 2012) or conventional motor 

rehabilitation(Wolf et al. 2006)  could be beneficial to stroke patients in functional 

recovery. Alternatively, bypassing stroke survivors’ tactile sensory impairment and 
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increasing functional performance by training to improve force control with visual 

feedback may have potential to lead to recovery of motor control (Ellis et al. 2005; Seo et 

al. 2011).   

  

3.5. Conclusion 

 

This study indicates that tactile sensory feedback could be important for control of 

phalanx force direction and reduction of tactile sensory feedback due to stroke could 

reduce control of phalanx forces during static power grip. Stroke survivors with tactile 

sensory deficit exhibited similar motor impairment level, similar reduction in grip 

strength, and similar skin friction as other stroke survivors without tactile sensory deficit, 

but had greater phalanx force deviation. Stroke induced tactile sensory deficit was 

associated with increased phalanx force deviation and an altered muscle activation 

pattern. These results suggest that not only motor deficit, but also tactile sensory deficit 

following stroke could be responsible for impaired hand grip for stroke survivors. Stroke 

survivors with tactile sensory deficit may have an increased incidence of dropping 

grasped objects compared to those without tactile sensory deficit and healthy controls due 

to greater phalanx force deviations, and may require additional attention for sensory 

deficit during their rehabilitation.  
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Chapter 4: Remote vibrotactile noise improves light touch sensation in stroke 

survivors’ fingertips via stochastic resonance2 

 

ABSTRACT 

 

Stroke rehabilitation does not often integrate both sensory and motor recovery. While 

subthreshold noise was shown to enhance sensory signal detection at the site of noise 

application, having a noise-generating device at the fingertip to enhance fingertip 

sensation and potentially enhance dexterity for stroke survivors is impractical, since the 

device would interfere with object manipulation. This study determined if remote 

application of subthreshold vibrotactile noise (away from the fingertips) improves 

fingertip tactile sensation with potential to enhance dexterity for stroke survivors. Index 

finger and thumb pad sensation was measured for ten stroke survivors with fingertip 

sensory deficit using the Semmes-Weinstein Monofilament and Two-Point 

Discrimination Tests. Sensation scores were measured with noise applied at one of three 

intensities (40%, 60%, 80% of the sensory threshold) to one of four locations of the 

paretic upper extremity (dorsal hand proximal to the index finger knuckle, dorsal hand 

proximal to the thumb knuckle, dorsal wrist, volar wrist) in a random order, as well as 

without noise at beginning (Pre) and end (Post) of the testing session. Vibrotactile noise 

of all intensities and locations instantaneously and significantly improved Monofilament 

scores of the index fingertip and thumb tip (p<.01). No significant effect of the noise was 

                                                 
2 Information presented in this chapter is published as follows and is used with permission from:    

 

Enders LR, Hur P., Johnson M.J., and Seo N.J, “Remote vibrotactile noise improves light touch sensation 

in stroke survivors' fingertips via stochastic resonance", Journal of NeuroEngineering and Rehabilitation, 

2013, 10:105 
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seen for the Two-Point Discrimination Test scores. Remote application of subthreshold 

(imperceptible) vibrotactile noise at the wrist and dorsal hand instantaneously improved 

stroke survivors’ light touch sensation, independent of noise location and intensity. 

Vibrotactile noise at the wrist and dorsal hand may have enhanced the fingertips’ light 

touch sensation via stochastic resonance and interneuronal connections. While long-term 

benefits of noise in stroke patients warrants further investigation, this result demonstrates 

potential that a wearable device applying vibrotactile noise at the wrist could enhance 

sensation and grip ability without interfering with object manipulation in everyday tasks.   

  



78 

 

  

4.1 Introduction 

 

 

Many of 7 million stroke survivors in the U.S. (Roger et al. 2012) experience not 

only motor deficit (Gray et al. 1990; Nakayama et al. 1994; Parker et al. 1986) but also 

sensory deficits (Carey 1995) especially in the hand. Carey and Matyas  found that 

discriminatory sensory loss was observed in almost 50% (24 of 51 subjects) in chronic 

stroke survivors, compared to almost 85% (57 of 67 subjects) of acute stroke 

survivors(Kim and Choi-Kwon 1996). Turton and Butler (2001) found in a case study 

that a stroke survivor had a decreased ability to correctly identify the time and locations 

of stimuli applied to both the palm and digits of the affected hand (Turton and Butler 

2001). When the stroke subject was asked to correctly identify where and when a touch 

stimulus was applied on their hand, the subject only responded to the tests correctly about 

65% of the time (Turton and Butler 2001).  

 

While tactile sensation is critical for hand function, current stroke rehabilitation 

practices predominantly focus on motor re-training with limited emphasis on sensory re-

training and sensorimotor integration. Cutaneous sensory feedback is essential for 

dexterity, fine finger movements, grip stability, and the setting and maintenance of force 

production during grip and object manipulation (Augurelle et al. 2003; Monzée et al. 

2001). For instance, tactile sensory feedback from receptors in the fingertips is used for 

motor adaptation to surface characteristics (Johansson and Westling 1984) and dexterous 

hand movement (Zatsiorsky and Latash 2004b). Tactile sensory deficit experienced by 
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stroke survivors can lead to inappropriate grip force regulation and inefficient safety 

margins (Blennerhassett et al. 2006). The reduced sensory feedback experienced in stroke 

survivors may deteriorate feedback control of finger forces leading to unstable grip and 

object slipping against the finger, thereby hampering their hand grip function. Therefore, 

it is necessary to improve tactile sensation for stroke survivors, which may facilitate 

rehabilitation to improve dexterity, finger force control, and thus, hand function. 

 

Previous research has aimed at increasing tactile sensation through a range of 

modalities. Anesthetic cream to the forearm has been shown to increase fingertip tactile 

sensation for healthy individuals (Bjorkman et al. 2004) and stroke survivors (Sens et al. 

2012a) by inducing short-term changes in cortical representations (Sens et al. 2012a). 

Intense sensory retraining for chronic stroke survivors through repetitive sensory 

exercises (i.e. shape and texture discrimination) over a several weeks time period has also 

been shown some potential to increase tactile sensation (Byl et al. 2003; Carey and 

Matyas 2005; Yekutiel and Guttman 1993). 

 

Stochastic resonance is a phenomenon in which addition of noise (e.g., 

vibrotactile noise) to a weak signal maximizes the detection and transmission of the weak 

signal (Galica et al. 2009; Moss et al. 2004; Priplata et al. 2002). Collins et al. (1997) 

found that healthy individuals’ tactile sensation can be improved with certain levels of 

subthreshold vibrotactile noise (below the level at which a person can perceive the 

vibration), while it can be degraded if noise is too high (i.e., suprathreshold) “masking” 
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the original signal. Therefore, intensity of noise should be high enough for the signal to 

cross the threshold but low enough not to swamp the signal and decrease the signal to 

noise ratio (Collins et al. 1997; Moss et al. 2004; Wells et al. 2005). Previous work has 

shown optimum vibrotactile noise intensity as low as 50% of the sensory threshold for 

sensing a vibration at the fingertips (Kurita et al. 2011; Wells et al. 2005), while others 

have shown as high as 90% of the sensory threshold to be effective (Galica et al. 2009; 

Liu et al. 2002; Priplata et al. 2002). No consensus has been reached regarding the 

optimum vibrotactile noise intensity, especially for stroke survivors. 

 

In light of the accumulating evidence for stochastic resonance, a wearable device 

applying vibrotactile noise to the fingertip has been developed by Kurita et al. (2011). 

While the device improves tactile sensation at the fingertip pad, a noise-generating device 

placed at the lateral aspect of the fingertip adversely interferes with object manipulation 

and dexterous finger movement by blocking physical contact between the finger and 

object, thus defeating the purpose of somatosensory enhancement. Furthermore, donning 

and doffing an assistive glove is difficult for stroke survivors, especially those with 

spasticity (Bhakta et al. 1996; Nathan et al. 2009). Thus, the desirable design would 

involve remote application of the vibrotactile noise to a location on the back of the hand 

or wrist that can still enhance tactile sensation. However, it is unknown if remote 

vibrotactile noise (i.e., away from the fingertip) could influence tactile sensation of the 

fingertip. In this study, we investigated how vibrotactile noise applied to various noise 

locations proximal to the fingertips could influence tactile sensation of the fingertip for 

stroke survivors.  
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The main objective of this study was to determine the effect of remote 

subthreshold vibrotactile noise on the tactile sensation of the index and thumb fingertips 

in stroke survivors. To achieve this objective, subthreshold vibrotactile noise was applied 

to one of four locations on the paretic upper limb (dorsal hand proximal to the index 

finger knuckle, dorsal hand proximal to the thumb knuckle, dorsal wrist, or volar wrist) at 

one of three noise intensities (40%, 60%, or 80% of the sensory threshold). It was 

hypothesized that remote subthreshold vibrotactile noise improves light touch sensation 

and spatial discrimination at the index and thumb fingertip pads in stroke survivors.  

 

4.2 Methods 

 

4.2.1 Subjects 

 

 Ten chronic stroke survivors (mean age ± SD = 60 ± 9 years) with sensory deficit 

participated in this study (Table IV). Hand motor function, evaluated using the hand and 

wrist subdivision of the Fugl-Meyer Assessment (Fugl-Meyer et al. 1975) (Table IV), 

was 19 ± 5 (out of a possible 24). All stroke survivors were at least 6 months post stroke. 

Subjects with history of upper extremity orthopedic conditions were excluded from this 

study. Subjects’ tactile sensory deficit was recorded with the Semmes-Weinstein 

Monofilaments (Bell-Krotoski et al. 1993) and the Two-Point Discrimination Tests (Bell-

Krotoski et al. 1993) for the index finger and thumb. Sensory deficit was defined as 

abnormal scoring for either of the sensory tests for either the index finger or the thumb. 
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All subjects signed a consent form and followed a protocol approved by the Institutional 

Review Board.   

 

Table IV: Subject demographics 

Subject Gender  Age 
Fugl-

Meyer 

Monofilament 

(mm) 

Two Point 

Discrimination 

(mm) 

Vibrotactile sensory threshold  

(A peak to peak) 

Index Thumb Index Thumb 

Dorsal 

hand 

proximal 

to index 

knuckle 

Dorsal 

hand 

proximal 

to thumb 

knuckle 

Volar 

wrist 

Dorsal 

wrist 

1 F 67 9 3.61 3.61 5 6 0.19 0.07 0.17 0.20 

2 F 75 24 3.61 3.61 5 6 0.75 0.05 0.14 0.17 

3 M 71 13 3.61 3.61 6 8 0.20 0.12 0.20 0.20 

4 M 57 23 3.61 3.61 4 3 0.21 0.13 0.19 0.19 

5 M 52 21 3.61 3.61 4 5 0.20 0.11 0.15 0.06 

6 F 60 16 6.65 6.65 15 10 0.09 0.07 0.19 0.21 

7 F 60 22 3.61 3.61 5 5 0.08 0.05 0.14 0.19 

8 F 47 20 3.61 3.61 3 5 0.17 0.06 0.07 0.15 

9 M 54 24 3.61 3.61 4 4 0.09 0.07 0.07 0.17 

10 M 59 16 3.61 3.61 4 5 0.20 0.12 0.16 0.20 

 

4.2.2 Procedure 

  

Subjects’ Monofilament and Two-Point Discrimination scores for the index and 

thumb fingertips were compared with and without noise. Specifically, sensory scores 

without noise were recorded at the beginning (pre) and end (post) of the testing session. 

Sensory scores for the pre and post test were compared to ensure no learning effect and 

no residual effect of noise after the exposure during the one day testing session. In 

between the pre and post sensory tests without noise, sensory scores with noise were 

recorded while subthreshold vibrotactile noise was applied to four different locations at 
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three noise intensities. The subthreshold vibrotactile noise was turned on immediately 

before each sensory test and was turned off immediately after each sensory test (lasting 

approximately 1 minute each). The testing session lasted for approximately two hours for 

each subject. 

 

  Subthreshold vibrotactile noise was white noise bandwidth filtered at 0 to 500 

Hz, applied with a C-3 Tactor (Engineering Acoustics, Inc. Casselberry, Florida). Due to 

the characteristics of the C-3 Tactor, the vibration amplitude could have been larger 

for 100-300Hz which includes the sensitive range of the Pacinian corpuscles.  The noise 

was applied to one of four locations in the paretic upper limb (Figure 20): 1) dorsal hand 

approximately 2 cm proximal to the index finger knuckle; 2) dorsal hand approximately 2 

cm proximal to the thumb knuckle; 3) dorsal wrist, medial to the radial styloid process; 

and 4) volar wrist, medial to the radial styloid process. These locations were arbitrarily 

chosen with the intention of developing a future wearable rehabilitation device for stroke 

survivors. Since the long-term goal of the research is to improve dexterity and grip 

control, noise locations that would interfere with gripping, such as the fingertip or palm, 

were avoided. Presentation of noise locations was block randomized.  
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Figure 20: Sensation scores were recorded while remote vibrotactile noise was applied to 

one of four locations: 1) dorsal hand approximately 2 cm proximal to the index finger 

knuckle; 2) dorsal hand approximately 2 cm proximal to the thumb knuckle; 3) dorsal 

wrist, medial to the radial styloid process; and 4) volar wrist, medial to the radial styloid 

process. Noise intensity was set to 40%, 60%, or 80% of the sensory threshold for each 

location for each stroke survivor. 

 

 

  Noise intensities were set to 40%, 60%, or 80% of the sensory thresholds specific 

for each location. The order of testing different noise intensities was randomized within 

each location block. To determine the sensory threshold, the noise intensity was increased 

and decreased until the subject was barely able to distinguish between an “off” and an 

“on” presentation of the vibrotactile noise (i.e., the method of ascending and descending 

limits (Collins et al. 1997)). Subjects’ mean sensory threshold occurred when the Tactor 

was driven by current of 0.17 A peak-to-peak. There is a linear relationship between the 

current and amplitude of the vibration. According to the data sheet from the 

manufacturer, 0.17 A peak-to-peak corresponds to a maximum amplitude of 260 µm.  

Subthreshold noise intensities were chosen not only so that subjects could not distinguish 
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between trials with and without noise (Priplata et al. 2002), but also because 

suprathreshold noise has been shown to degrade performance (Wells et al. 2005).  

 

 The Monofilament and Two-Point Discrimination Tests were administered using 

standard testing measures. For the Monofilament score, beginning with the baseline 2.83 

Monofilament (indicating the threshold for “normal sensing”), the Monofilament was 

applied to the fingertip at least three times and the smallest Monofilament for which the 

subjects responded “yes” and could identify the correct finger that was touched marked 

the score (Bell-Krotoski et al. 1993). Similarly, the Two-Point Discrimination test was 

conducted so that subjects were asked to respond either “one” for a single point and 

“two” for two points separated by a small distance. One and two point stimuli were 

alternated randomly. The smallest distance where the subjects responded correctly to the 

two separated points was used for their Two-Point Discrimination score (Bell-Krotoski et 

al. 1993). A score of 2.83 (Dellon 1997) and 5 mm (Louis et al. 1984) was considered 

normal for the Monofilament test and Two-Point Discrimination tests, respectively.  

 

4.2.3 Data Analysis  

  

 Monofilament Test scores (ranging from 2.83 to 6.65) were converted to the 

corresponding estimated logarithmic bending force (ranging from .07 to 300 grams) for 

the statistical analysis. Paired t-tests showed that neither the Monofilament score nor 

Two-Point Discrimination Test score without vibrotactile noise at the beginning of the 

testing session was significantly different from that at the end of the testing session 

without noise (p=.33 and p=.78 for the Monofilament and Two-Point Discrimination, 
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respectively), indicating that there was no learning effect with repeated sensory tests and 

there was no residual effect of noise on tactile sensation. Therefore, sensory scores pre 

and post testing sessions were averaged to become the noise off trials. 

 

Two separate repeated measures ANOVAs were completed to determine how 

stroke survivors' tactile sensation varied with vibrotactile noise. The first ANOVA 

determined if stroke subjects' Monofilament Test scores varied significantly by noise ‘on’ 

and ‘off’, noise location (nested in the noise ‘on’ condition), noise intensities (nested in 

noise ‘on’), finger (index or thumb), and their second-order interactions. The same 

ANOVA was performed for the Two-Point Discrimination Test scores. Specifically, 

these two ANOVAs were used to determine 1) if noise had an overall effect on the 

Monofilament and Two-Point Discrimination Test scores, and 2) if different noise 

locations and intensities had varying effects on the Monofilament and Two-Point 

Discrimination Test scores. Since the Test for Skewness showed skewed Monofilament 

(p<.01) and Two-Point Discrimination score data (p<.01) (Tabachnick and Fidell 2007), 

log and inverse (1/x) transformations were applied to the Monofilament and Two-Point 

Discrimination data, respectively, to yield non-significant skew values. Transformed data 

were used for the ANOVAs. In addition to these ANOVAs, the same analyses were 

performed using nonparametric Kruskal-Wallis tests, which resulted in the same 

conclusion (not presented here). As an additional analysis, a Pearson Correlation 

examined the relationship between improvement in sensation and functional motor score 

(Fugl-Meyer Assessment). 
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4.3 Results 

 

4.3.1. Improved Monofilament scores with remote subthreshold vibrotactile noise  

   

 Stroke survivors' fingertip mean Monofilament Test scores improved from 3.91 to 

3.73 when vibrotactile noise was applied to the paretic hand remotely from the fingertip 

(subject, noise location, intensity, and fingers pooled) (Figure 21 and Appendix D).  

Seven out of the ten stroke survivors had improved Monofilament Test score when 

vibrotactile noise was applied to the paretic hand remotely from the fingertip, for at least 

one noise location, noise intensity, and finger. The improvement in the Monofilament 

scores with vibrotactile noise was statistically significant (ANOVA, noise main effect 

with p<.01). All other effects of noise location (p=.13), intensity (p=.48), finger (p=.45), 

and interactions were not significant (ANOVA with p>.05). Monofilament scores 

improved from mean ± standard deviation of 3.91 ± 0.94 to 3.73 ± 1.03 with vibrotactile 

noise (subject, noise location, intensity, and fingers pooled). Neither finger (index, 

thumb) nor the interaction between finger and noise was significant, indicating 

vibrotactile noise improved light touch sensation for both fingers. Noise location and 

intensities did not significantly affect the Monofilament scores, indicating that all remote 

vibrotactile noise at all intensities improved Monofilament score at the fingertips to the 

similar degree. As described earlier, monofilament scores without vibrotactile noise did 

not change pre vs. post test (p=.33), indicating no learning effect and no after-effect of 

noise. Improvement in the Monofilament score with noise was not significantly related to 

the Fugl-Meyer score (Pearson Correlation, p=.84). 



88 

 

  

 

Figure 21: Mean ± SE Monofilament scores significantly decreased with subthreshold 

vibrotactile noise (noise locations, intensities, fingers, and subjects pooled) (p<.01) (a). 

Noise locations and intensities did not significantly affect the improvement of 

Monofilament score (fingers and subjects pooled, p>.05 for noise location and intensity) 

(b). 

 

4.3.2 No significant effect of vibrotactile noise on Two-Point Discrimination  

 

 Stroke survivors' Two-Point Discrimination Test score did not significantly change 

when vibrotactile noise was applied to the paretic wrist and dorsal hand (Figure 22 and 

Appendix D, ANOVA, noise main effect with p=.84). Mean Two-Point Discrimination 

was significantly dependent upon finger (ANOVA, finger main effect with p<.01) and 

was significantly higher for the thumb compared to the index finger. Mean Two-Point 

Discrimination scores were not significantly dependent upon noise intensity (p=.82), 
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location (p=.19), or any interactions (p>.05). The Two-Point Discrimination scores 

without vibrotactile noise did not change pre vs. post test (p=.78). 

 

 

 

 

 

 

 

Figure 22: Mean ± SE Two Point Discrimination scores were not significantly affected 

by the vibrotactile noise (a) nor with noise locations, intensities, fingers, and their  

interactions (fingers and subjects pooled) (p>.05) (b). The Two-Point Discrimination 

score without vibrotactile noise did not change at the beginning vs. end of the testing 

session. 

 

4.4. Discussion 

 

4.4.1 Remote subthreshold vibrotactile noise enhanced stroke survivors’ light touch 

sensation at the fingertips 

 

Light touch sensitivity at the pads of the thumb and index fingertips was enhanced 

with the subthreshold vibrotactile noise at the wrist or dorsal hand, as evidenced by the 
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improved Monofilament Test score (Figure 21 and Appendix D). All noise intensities 

(40%, 60%, and 80% of the sensory threshold) and locations (dorsal hand and wrist) 

improved the fingertip light touch sensation. The benefit of the subthreshold vibrotactile 

noise was instantaneous, and not influenced by learning or after-effect of noise (as 

evidenced by insignificant difference between the Monofilament scores without noise pre 

and post test). The largest improvement of 25% in Monofilament score with vibrotactile 

noise compared to without vibrotactile noise was found for the vibrotactile noise at the 

dorsal wrist at 60% of the sensory threshold and for the vibrotactile noise at the dorsal 

hand proximal to the thumb knuckle at 80% of the sensory threshold (Figure 21b and 

Appendix D). Hand motor function (as measured by the hand and wrist subdivision of the 

Fugl-Meyer assessment) was not found to be related to the degree of sensory 

improvement. Therefore, stochastic resonance improved sensation for the stroke 

survivors in this study who ranged from 9 to 24 (out of 24) in hand motor function levels.  

 

The clinical implication of this finding is significant. This study finding indicates 

that a wearable assistive wrist band applying subthreshold vibrotactile noise can be 

developed to enhance touch sensation for stroke survivors’ fingertips and assist with their 

dexterous hand movement. The advantage of this wearable assistive wrist band compared 

to the current glove with a vibrator attached at the fingertip (Kurita et al. 2011) is that the 

wrist band minimally interferes with manual dexterity of stroke survivors. In addition, the 

vibration is minute at the level that is not perceivable. Thus, this vibration is unlikely to 

result in numbness or tissue damage in the long-run.  
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4.4.2. Potential mechanisms of remote sensory enhancement 

 

It is unlikely that the light touch sensation improved via the vibrotactile noise 

traveling from the wrist or dorsal hand to the fingertips through the skin, because 

vibration significantly attenuates across the skin. In general, vibration can improve tactile 

sensation by directly stimulating the tactile receptors in the finger skin (Kurita et al. 

2011). However, Kurita et al. (Kurita et al. 2011) reported that mechanical vibration may 

lose 90% of its original power when it travels 1 to 2 cm on the skin (Kurita et al. 2011). 

In our study, the distance between the fingertip and noise locations ranged from 10 to 20 

cm. Therefore, it is unlikely that the index and thumb fingertips’ sensation would have 

been affected by transfer of the mechanical vibration through the skin from any of the 

noise locations to the thumb or index fingertip.  

 

A more likely mechanism for enhanced light touch sensation at the fingertips with 

remote vibrotactile noise is that the vibrotactile noise at the wrist and dorsal hand may 

have increased the sensory neurons’ excitability not only for the wrist and dorsal hand but 

also for the fingertips through interneuronal overlap either in the spinal or supraspinal 

level. For example, Merzenich et al. (Merzenich et al. 1983) found that median, ulnar, 

and radial nerves, although peripherally separate, appear to overlap in the central nervous 

system. Specifically, they have shown that immediately after median nerve transaction, 

significant inputs from the dorsum of the hand (innervated by the radial and ulnar nerve) 
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appear in the somatosensory cortex area that was previously innervated by the median 

nerve in monkeys. Such emergence of radial and ulnar nerve representation in the median 

nerve territory in the somatosensory cortex was immediate, suggesting pre-existing 

synaptic overlap between the sensory representations of the palmar and dorsal areas of 

the hand (Merzenich et al. 1983). Unmasking of the pre-existing overlap has been shown 

in other studies involving healthy persons (Bjorkman et al. 2004) as well as people with 

stroke (Sens et al. 2012a). In addition it has also been shown that vibrotactile noise 

results in increased cortical as well as spinal neuronal activities in humans and cats, 

which demonstrates the effect of stochastic resonance in the central nervous system 

(Manjarrez et al. 2002a; Manjarrez et al. 2003). Therefore, vibrotactile noise applied to 

the wrist or dorsal hand may have increased the fingertip sensation by increasing the 

excitability of the sensory neurons in the central nervous system through stochastic 

resonance and interneuronal connections.  

 

Another potential mechanism for the enhanced light touch sensation is that 

vibrotactile noise at the wrist or the dorsal hand may have increased the synchronization 

of sensory neuron firing between the spinal cord and the somatosensory cortex 

(Manjarrez et al. 2002a; Manjarrez et al. 2003). The increased synchronization may 

facilitate neural communication between the spinal and cortical levels (Fell and 

Axmacher 2011), thereby enhancing detection of light touch stimulation from the 

fingertips to the somatosensory cortex.  
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4.4.3. Lack of noise effect on Two-Point Discrimination  

 

Two-Point Discrimination sensation was not significantly affected by the 

subthreshold vibrotactile noise in this study. This finding aligns with a study done by 

Kurita et al. (2011) that subthreshold vibrotactile noise enhanced only light touch 

sensation but not Two-Point Discrimination at the fingertips. A reason for inconsistent 

results may be that the Monofilament Test and Two-Point Discrimination Test assess 

different aspects of sensation. The Monofilament Test assesses the threshold of the 

mechanoreceptors responsible for pressure, whereas the Two-Point Discrimination Test 

examines spatial resolution of receptive fields for discriminative touch (O'Sullivan and 

Schmitz 2006). Therefore, the present study’s finding suggests that spatial resolution of 

mechanoreceptors was not affected by the subthreshold vibrotactile noise. 

 

4.4.4. Limitations and Future Work 

 

One limitation of this study could be the use of the Two-Point Discrimination 

Test to demonstrate impact on the tactile spatial resolution. Although still used widely in 

clinics to demonstrate a deficit in spatial acuity, the Two-Point Discrimination has been 

criticized previously by scientists for the response variable of “one point” or “two points” 

as an unreliable outcome measure that has high variability both between and within 

subjects (Craig and Johnson 2000). Additionally, although Monofilament Test Score 

showed that all subjects had light touch deficit at the beginning, not all subjects had 
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sensory deficit according to the Two-Discrimination Test. Therefore, the lack of 

improvement in the Two-Point Discrimination Test with vibrotactile noise could have 

been due to near-normal starting scores leaving not much room for improvement.  

 

Additionally, this study is limited by examining the effect of remote stochastic 

resonance on sensation from only two fingers, the index and thumb fingers. Due to 

limited time to examine each noise level and location, no additional fingers were 

examined for sensation. As discussed earlier, remote stochastic resonance (at sites on the 

hand/wrist innervated by the radial nerve) may have influenced both index and thumb 

fingertip sensation through integration of information from the median, ulnar, and radial 

nerves in the central nervous system. It can only be postulated that similar improvements 

found with the index and thumb fingertip may also occur for the middle, ring, and little 

fingertips through this integration. However, further testing would be necessary to verify.  

 

In this study, the Monofilament scores were recorded from a set of 5 

Monofilaments, instead of the set of 20 Monofilament sizes. The 20 Monofilament sizes 

would have shown greater resolution to the degree of sensory improvement. However, 

the 5 Monofilament set was still sufficient to show the large changes in sensation for this 

study.  
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While the present study demonstrated the immediate effects of vibrotactile noise 

on sensory enhancement, in order to be applied to a longer term sensorimotor 

rehabilitation therapy, future studies need to examine the effects of repeated exposure and 

the long-term benefits of vibrotactile noise in stroke survivors. Although Monofilament 

scores pre and post the 2-hour test were not significantly different in the present study, 

longer or repeated exposure to the vibrotactile noise may elicit longer-lasting 

improvements in fingertip sensation. A sensory re-training program, such as the one 

described by Carey et al. (Carey and Matyas 2005), could be complimented by the 

addition of vibrotactile noise. Furthermore, the effect of sensory enhancement on motor 

function following stroke should be investigated. Specifically, how effectively the 

enhanced sensation at the fingertips leads to improved dexterity such as precise grip force 

regulation and coordination (Blennerhassett et al. 2006) could be investigated. Finally, a 

prototype of a vibrotactile noise wrist band will be developed for clinical evaluation to 

determine the efficacy of the remote vibrotactile noise for rehabilitation post stroke. 

 

4.5 Conclusions 

 

Remote stochastic resonance phenomenon was investigated to determine if 

subthreshold vibrotactile noise at the wrist or dorsal hand can enhance the tactile 

sensation at the fingertip of the stroke survivors. The application of the subthreshold 

vibrotactile noise at the wrist and dorsal hand instantaneously enhanced the light touch 

sensation at the fingertip of stroke survivors. This benefit in the light touch sensation was 

not influenced by learning effect. The most improvement in the light touch sensation at 
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the fingertip occurred when the dorsal wrist and the dorsal hand proximal to the thumb 

knuckle were stimulated at 60% and 80% of the sensory thresholds, respectively. This 

study carries clinical significance, since the finding of this study demonstrates strong 

potential that a subthreshold vibrotactile noise-generating assistive wrist band may be 

able to enhance fingertip tactile sensation for stroke survivors and may contribute to 

enhanced manual dexterity and abilities for activities of daily living. 
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Chapter 5: Effects of remote subthreshold vibrotactile noise on stroke survivors’ 

altered phalanx force direction during power grip 

 

ABSTRACT 

 

Previously it was found that during static power grip, phalanx forces are directed away 

from the direction normal to the object surface, more so for stroke survivors with tactile 

sensory deficit than for those without tactile sensory deficit, compared to age-matched 

controls. This increased phalanx force deviation represents increased likelihood of object 

slippage from the hand. Recently, application of vibration to the wrist skin at unfelt 

intensities was shown to improve stroke survivors’ fingertip sensation. The objective of 

this study was to determine if the subthreshold vibrotactile noise applied to the wrist 

would improve stroke survivors’ phalanx force directions during power grip, especially 

for those with tactile sensory deficit. Thirteen chronic stroke survivors with tactile 

sensory deficit, 7 chronic stroke survivors without tactile sensory deficit, and 13 age-

matched healthy controls performed maximum power grip on an instrumented cylinder. 

Phalanx force direction for the thumb, index, and middle fingers and muscle activity were 

recorded. To confirm tactile sensory enhancement with vibrotactile noise, Monofilament 

scores for the fingertips and palm were recorded with and without vibrotactile noise for 

the stroke survivors with tactile sensory deficit. Results showed that vibrotactile noise 

significantly reduced phalanx deviation, on average, by 7%, for all groups, and improved 

Monofilament scores for stroke survivors with sensory deficit. There was no significant 

change in phalanx normal force or muscle activity with vibrotactile noise. Therefore, 

vibrotactile noise may be useful in reducing phalanx force deviation, improving gripping 
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stability, and complementing sensorimotor rehabilitation especially for stroke survivors 

with tactile sensory deficit.  
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5.1. Introduction 

 

 Impaired tactile sensation has previously been shown to affect anywhere from 

50% (Carey and Matyas 2011) to 85% (Kim and Choi-Kwon 1996) of stroke survivors. 

The extent of tactile sensory deficit is related to motor recovery post stroke (Tyson et al. 

2008). Furthermore, reduced somatosensation post stroke has been shown to hinder 

functional gains and recovery during rehabilitation therapies (Carey 1995) and can 

increase duration of time in rehabilitation (Sommerfeld and von Arbin 2004).  

 

Tactile sensation is important for finger force management during gripping and 

object manipulation (Johansson 1996; Zatsiorsky and Latash 2004b). Artificially 

reducing tactile sensation in fingertips of young healthy individuals has led to impaired 

finger force control (Tseng 2013; Westling and Johansson 1984b) and increased object 

dropping (Augurelle et al. 2003). Stroke induced tactile sensory deficit has been shown 

be associated with impaired pinch grip force regulation (Blennerhassett et al. 2007) and 

impaired power grip force control (Chapter 3). Specifically, during power grip, stroke 

survivors with tactile sensory deficit have been shown to produce phalanx force with 

increased deviation from the direction normal to the grip surface compared to stroke 

survivors without tactile sensory deficit and age-matched healthy controls (Chapter 3). 

Evidence of a greater reduction in activation of the first dorsal interosseous (FDI) and 

extensor digitorum communis (EDC) muscles compared to the flexor digitorum 

superficialis (FDS) muscle accompanied the increased phalanx force deviation for stroke 

survivors with tactile sensory deficit, but not for stroke survivors without tactile sensory 
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deficit, compared to age-matched healthy controls (Chapter 3). Proper muscle activation 

of the finger muscles is critical for controlling phalanx force direction, and weakening or 

underactivation of any muscle can limit phalanx force output in specific direction (Kutch 

and Valero-Cuevas 2011). This is especially true for the intrinsic muscles, such as the 

FDI muscle,  whose decreased activation has previously been shown to lead to increased 

finger force deviation in biomechanical models (Valero-Cuevas et al. 2000).  Therefore, 

the previous study (Chapter 3) concluded that tactile sensory loss could have limited 

stroke survivors’ ability to sense their current phalanx force direction and could have 

hampered feedback control for precise coordination of muscle activities and phalanx 

force direction.  

 

Increased phalanx force deviation can lead to object dropping if the deviation 

exceeds the limit allowed by the coefficient of friction (COF) for that surface. This 

allowed limit of phalanx force deviation, called the ‘cone of friction’, is calculated as the 

arctangent of the COF between finger skin and the object’s surface (MacKenzie and 

Iberall 1994). Phalanx force deviations outside the cone of friction have previously been 

observed to lead to finger slip for stroke survivors during pinch grip (Seo et al. 2010). 

Therefore, stroke survivors with tactile sensory deficit could be at a greater risk of finger 

slippage during power grip due to their greater phalanx force deviation.  

 

One of the recent methods of enhancing tactile sensation is application of 

subthreshold vibrotactile noise remotely from the fingertips so as not to interfere with 
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object manipulation. Specifically, vibration applied to the volar or dorsal wrist or dorsum 

hand skin at the intensities below the level of perception has been shown to result in 

improved fingertip tactile sensation in chronic stroke survivors with sensory deficit 

(Enders et al. 2013). The location of noise away from the fingertips and palm avoids 

interfering with gripping and thus provides potential for a wearable device that improves 

dexterity and grip control for stroke subjects. This finding of improved sensation with 

remote noise is similar with stochastic resonance in which the application of white noise 

can improve the detection of a weak signal, such as a light sensory signal (Galica et al. 

2009; Moss et al. 2004; Priplata et al. 2002). Although this method of applying the 

vibration noise remotely from the fingers was found to improve the fingertip sensation 

for stroke survivors with sensory deficit (Enders et al. 2013), it is currently unknown if 

phalanx force control can be improved as well.  

 

The goal of this study was to determine the effect of remote vibrotactile noise on 

controlling phalanx forces during static power grip. Specifically, this study examined the 

effect of remote subthreshold vibrotactile noise on phalanx force deviations in stroke 

survivors with tactile sensory deficit, stroke survivors without tactile sensory deficit, and 

age-matched healthy controls. While the impact was anticipated for stroke survivors with 

tactile sensory deficit, age-matched controls and stroke survivors without tactile sensory 

deficit were also tested since remote vibrotactile noise is a relatively new technique and 

its impact on motor control for those without sensory deficit is unknown. In addition, 

muscle activity was also recorded to examine if changes in phalanx force direction with 

the noise is associated with changes in muscle activity. Lastly, to determine if the 
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improvement in phalanx force control was accompanied by an improvement in sensation, 

the effect of remote vibrotactile noise on the fingertip and palm tactile sensation for the 

stroke survivors with sensory deficit was examined.  

 

5.2. Methods 

 

 

5.2.1 Subjects 

 

 Thirteen chronic stroke survivors with tactile sensory deficit (mean age ± SD = 56 

± 12 years), 7 chronic stroke survivors without tactile sensory deficit (64 ± 11 years), and 

13 age-matched healthy control subjects (57 ± 8 years) participated (Table IV). All stroke 

survivors were at least 6 months post stroke. The two stroke groups were separated based 

on the fingertip tactile sensory results from the Semmes-Weinstein monofilaments test 

(Bell-Krotoski et al. 1993) at the beginning of the testing session (Baseline Monofilament 

Score in Table V). Those stroke survivors who had a score of  ≥ 3.61 (Dellon 1997) for 

both the index and thumb fingertips were considered to have tactile sensory deficit. All 

age matched controls were neurologically healthy and had no tactile sensory deficit in the 

fingertips (< 3.61 Semmes-Weinstein monofilaments test).  

 

Both stroke survivor groups were similar in terms of motor function. Stroke 

survivors’ mean functional motor impairment quantified by the Chedoke-McMaster 

Stroke Assessment Hand Section (Gowland et al. 1995) was 5 ± 2 (out of a possible 7) 

for both stroke survivor groups with and without tactile sensory deficit (t-test with p>.05 
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between the two stroke groups). Another functional motor impairment score based on the 

hand and wrist subdivision of the Fugl-Meyer Assessment (Fugl-Meyer et al. 1975) was 

18 ± 7 and 20 ± 7 (out of a possible 24) for the stroke survivors with tactile sensory 

deficit and stroke survivors without tactile sensory deficit groups, respectively (t-test with 

p>.05 between the two stroke groups). Stroke survivors’ muscle spasticity was similar for 

both stroke survivor groups, with a median and interquartial range (IQR) for the Modified 

Ashworth Scale (Ashworth 1964) of 0 (IQR, 0 to 3) for the stroke survivors with tactile 

sensory deficit and  0 (IQR, 0 to 2)  for the stroke survivors without tactile sensory deficit 

(Mann-Whitney Test with p>.05).  All subjects signed a consent form and followed a 

protocol approved by the Institutional Review Board.   
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Table V: Subject Demographics 

Group Subject 

Time 

since 

most 

recent 

stroke 

(months) 

Type of Stroke 

Hand 

Dominance*  
Paretic 

Side 
Sex 

Age 

(years) 

Fugl-

Meyer 

Score    

(out of 

24) 

Chedoke 

McMaster  

Score    

(out of 7) 

Baseline 

Monofilament 

Score 

Pre 

Stroke 

Post 

Stroke 
Index Thumb 
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 d
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it
 B01 36 Unknown R L R Female 67 5 2 4.31 3.61 

B02 47 Hemorrhagic R R L Female 51 24 7 3.61 3.61 

B05 48 Hemorrhagic R R R Male 52 21 5 3.61 3.61 

B06 53 Ischemic R R L Male 54 10 2 6.65 6.65 

B08 40 Ischemic L L L Female 61 16 5 6.65 6.65 

B11 67 Ischemic R R L Male 59 16 6 3.61 3.61 

B12 7 Ischemic R R R Male 66 24 7 4.31 4.31 

B13 55 Hemorrhagic L R L Male 32 8 2 6.65 6.65 

B14 162 Hemorrhagic R R L Male 60 22 7 3.61 3.61 

B16 62 Unknown R R R Female 60 22 7 3.61 3.61 

B17 142 Ischemic L L R Female 53 24 7 3.61 3.61 

B19 8 Unknown R R L Male 65 24 7 3.61 3.61 

B20 44 Ischemic R R L F 43 18 3 6.65 6.65 

S
tr

o
k

e 
su

rv
iv

o
rs

 w
it

h
o

u
t 

ta
ct

il
e 

se
n

so
ry

 d
ef

ic
it

 B03 245 Ischemic L L R Female 55 24 7 2.83 2.83 

B07 44 Ischemic R R R Female 75 24 6 2.83 2.83 

B09 51 Ischemic R R R Male 60 23 7 2.83 2.83 

B10 126 Hemorrhagic L R L Female 67 9 2 2.83 2.83 

B15 52 Ischemic R L R Male 81 9 2 3.61 2.83 

B18 64 Ischemic R R L Male 62 24 7 3.61 2.83 

B21 172 Hemorrhagic R R R Female 50 24 7 2.83 2.83 

 *R= “Right hand dominance”, L= “Right hand dominance” 

 

5.2.2 Procedure 

 

Subjects performed maximum power grip on a custom made grip dynamometer 

(Enders and Seo 2011), with or without remote vibrotactile noise while individual 

phalanges’ normal and proximal-distal shear force data for a single finger as well as 

surface muscle EMG activities were recorded. Subjects sat in a chair with arm rested and 

flexed at 90. Stroke survivors used their paretic hand and control subjects used their 

non-dominant hand because this hand is normally used to hold the object while the non-
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paretic or dominant hand is used to perform finger manipulation tasks. The surface of the 

dynamometer was covered in a high-friction rubber surface with COF of 1.00 with the 

finger skin or a low-friction paper surface with a COF of 0.43 with the finger skin 

(Chapter 3). Only phalanx forces from the thumb, index, and middle fingers were 

recorded due to these fingers being most involved in producing power grip force (Enders 

and Seo 2011). Measurement of phalanx normal and shear forces for the 3 fingers, two 

surfaces, and noise “on” and “off” were repeated at least two times each. The order of 

noise, surfaces and fingers were randomized. Subjects were blinded to the noise “on” and 

noise “off” condition because they were unable to distinguish when the noise was “on” 

during testing. 

 

During all power grip, muscle activation was also measured by recording surface 

EMG (Bortec Biomedical Ltd., Calgary, AZ) from the FDS, EDC, and FDI muscles at 

1000Hz. The surface electrodes were placed on the skin above each targeted muscle’s 

belly according to literature (Basmajian 1989) after skin was prepared with alcohol 

swabs. Maximum voluntary contractions (MVC) that targeted each muscle separately 

were collected additionally.  

 

Subthreshold remote vibrotactile noise was white noise bandwidth filtered at 0 to 

500 Hz and was applied to the dorsal wrist with an intensity at 60% of the sensory 

threshold with a C-3 Tactor (Engineering Acoustics, Inc. Casselberry, Florida). To 

determine the sensory threshold for each subject’s dorsal wrist, noise intensity was 
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increased and decreased in a method of ascending and descending limits (Collins et al. 

1997) until subjects could no longer distinguish between when the noise was “on” and 

“off”.  The noise intensity was set to 60% sensory threshold on the dorsal wrist (medial to 

the radial styloid) because this intensity and remote location were found to be among the 

most effective to improve fingertip sensation in our pervious study (Enders et al. 2013).  

 

Additionally, Monofilament scores for the stroke survivors with tactile sensory 

deficit were recorded for the index fingertip pad, thumb fingertip pad, upper palm below 

the index (or the palmar skin over the index finger knuckle), and the thenar eminence 

region with and without vibrotactile noise using the standard method (Bell-Krotoski et al. 

1993; Enders et al. 2013). Monofilament scores were recorded with vibrotactile noise 

turned off at baseline at the beginning of the testing session, with vibrotactile noise on 

during testing after completing the power grip trials, and with vibrotactile noise turned 

off at the end of the testing session. 

 

5.2.3 Data Analysis  

 

 Phalanx normal force and phalanx force deviation were determined for both 

stroke survivor groups and healthy controls. For each grip trial, the mean phalanx normal 

force and shear force was calculated from a 2-second period in which the total finger 

force (calculated as the sum of all the phalanx normal and shear forces) was greatest.  

The extent of phalanx force deviation from the direction perpendicular to the grip surface 
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was calculated as the arctangent of the absolute ratio of shear force to normal force in that 

time window. EMG was processed using the root mean square (RMS) with a 20-ms 

moving window and the mean RMS EMG during the same 2-second time period  was 

computed for each muscle. The RMS EMGs for each of the three muscles during 

gripping trials were then normalized to that recorded during the MVCs, to calculate the 

muscle activity in %MVC.  

 

One mixed-design ANOVA determined if the phalanx force deviations varied 

significantly for the three subject groups (stroke survivors with tactile sensory deficit, 

stroke survivors without tactile sensory deficit, and healthy controls), noise (on/off), 

surface (paper, rubber), finger (index, middle, thumb), phalanx (distal, middle, proximal), 

and the interactions between subject group and noise, noise and surface, noise and finger, 

and noise and phalanx. To examine if vibrotactile noise affects the grip force magnitude, 

a second mixed-design ANOVA determined if the phalanx normal force varied 

significantly for the three subject groups, noise, surface, finger, phalanx, and the 

interactions between subject group and noise, noise and surface, noise and finger, and 

noise and phalanx. Another ANOVA examined how muscle activity varied for the 

subject groups, noise, muscle, and the interactions between noise and subject group and 

the interaction between noise and muscle. As an additional analysis, an ANOVA 

determined if Monofilament scores for the stroke survivors with tactile sensory deficit 

group varied significantly by noise, location, and their second-order interaction. 

Monofilament scores (ranging from 2.83 to 6.65) were converted to the bending force 

(.07 to 300 grams) for statistical analysis. An ANOVA determined that the baseline and 
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post testing trials without vibrotactile noise were not significantly different from each 

other for either location (p=.20), indicating no residual effect of noise on tactile sensation. 

Therefore, these trials were combined to become the vibrotactile noise “off” trials for the 

statistical analysis.  The phalanx force deviation data, phalanx normal force, muscle 

activation, and monofilament scores  data were skewed based on the Test for Skewness 

(Tabachnick and Fidell 2007). Therefore, a square root transformation was applied to 

normalize the phalanx normal force and phalanx deviation data and the log 

transformation was applied to the muscle activation data and the monofilament scores. 

Transformed data was used in the ANOVA.  

 

5.3. Results  

  

The finding of this study is that phalanx force deviation was significantly reduced 

with the application of the remote vibrotactile noise for all subject groups. This 

improvement in phalanx force deviation was accompanied by improvement in the hand 

tactile sensation for stroke survivors with tactile sensory deficit, while phalanx normal 

force and muscle activity were not significantly affected by the remote vibrotactile noise 

for any subject group. Consistent with the previous study (Chapter 3), both stroke groups 

produced significantly less maximum phalanx normal force and significantly greater 

phalanx force deviation compared to healthy controls. Also consistent with the previous 

study (Chapter 3), the stroke survivors with tactile sensory deficit produced significantly 

greater phalanx force deviation (16˚) compared to stroke survivors without tactile sensory 

deficit (14˚) and healthy controls (12˚). 
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5.3.1 Phalanx force deviation improvement with vibrotactile noise ‘on’  

 

Phalanx force deviation was reduced by noise for all the subject groups (Figure 

23and Appendix D).  Phalanx force deviation was significantly dependent upon noise, 

phalanx, and the interaction between noise and finger and the interaction between noise 

and phalanx (ANOVA with p<.05). No other factor or interaction was significant 

(ANOVA with p>.05). Phalanx force deviation was reduced by 9%, on average 

(ANOVA, noise main effect with p<.05) (Figure 23a and Appendix D). Phalanx force 

deviation was reduced, on average, by 8% for stroke survivors with sensory deficit, 5% 

for stroke survivors without sensory deficit, and 12% for healthy controls (ANOVA, 

group and noise interaction with p>.05) (Figure 23b and Appendix D).  Reduction in 

phalanx force deviation was the largest for the thumb finger than other fingers (noise and 

finger interaction p<.05) (Figure 23c and Appendix D) and for the middle phalanx than 

other phalanges (noise and phalanx interaction p<.05) (Figure 23d and Appendix D).  
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Figure 23: Mean ± SE phalanx force deviation was significantly reduced with remote 

vibrotactile noise turned on (a). Reduction in phalanx force deviation was observed 

across all subject groups (b). The extent that phalanx force deviation reduced with the 

noise differed by fingers (c) and phalanges (d). Individual subjects’ change in phalanx 

force deviation with noise is shown in (e-g) and the change in phalanx force deviation 

with noise in degrees and percent change is shown in (h) and (i), respectively. 

 

5.3.2 No change in phalanx normal force with vibrotactile noise ‘on’ 

  

Phalanx normal force did not significantly vary with the application of remote 

vibrotactile noise (p>.05, Figure 24 and Appendix D).  Phalanx normal force was 

significantly dependent upon subject group, finger, and phalanx (ANOVA with p<.05).  

No other factor or interaction was significant (ANOVA with p>.05).  Phalanx normal 

force was largest in healthy controls, followed by the stroke survivors with tactile sensory 

deficit and stroke survivors without tactile sensory deficit (ANOVA subject group main 

effect with p<.05).  
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Figure 24: Mean ± SE phalanx normal force did not significantly change with the 

application of vibrotactile noise (a). Phalanx normal force was significantly greater for 

the healthy controls, followed in order by the stroke survivors with tactile sensory deficit 

and the stroke survivors without tactile sensory deficit (b). None of the subject groups 

significantly changed their phalanx normal force with remote vibrotactile noise.  

 

5.3.3 No change in muscle activity with vibrotactile noise ‘on’ 

 

Muscle activity was not significantly varied with the application of remote 

vibrotactile noise (Figure 25 and Appendix D). Muscle activity was significantly 

dependent upon subject group and muscle (ANOVA with p<.05). The healthy controls 

produced power grip with the largest muscle activity in %MVC, followed in order by the 

stroke survivors with tactile sensory deficit and the stroke survivors without tactile 

sensory deficit (ANOVA subject group main effect with p<.05). Muscle activity 
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significantly varied depending on the muscle with larger EDC and FDS activities than the 

FDI muscle activity (ANOVA muscle main effect with p<.05).  

 

 

Figure 25: Mean ± SE Muscle EMG activity was not significantly affected by the 

application of remote vibrotactile noise. 

 

5.3.4 Monofilament score improvement for stroke survivors with sensory deficit with 

remote vibrotactile noise ‘on’  
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Monofilament scores for stroke survivors with tactile sensory deficit significantly 

improved with remote vibrotactile noise overall (Figure 26 and Appendix D, ANOVA, 

noise main effect with p<.05). Monofilament score was significantly dependent upon 

noise and location (ANOVA with p<.05), but not the interaction between noise and 

location (ANOVA with p>.05). On average, Monofilament scores improved by 4% with 

vibrotactile noise and Monofilament score was observed to decrease for the index 

fingertip, thumb fingertip, and the palm of the hand near the index finger, but did not 

significantly affect sensation at the thenar eminence location.  

 

Figure 26: Mean ± SE Monofilament score was overall significantly reduced for the 

stroke survivors with tactile sensory deficit when vibrotactile noise was present. 
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5.4. Discussion 

 

Similar to previous findings, stroke survivors with tactile sensory deficit gripped 

with the largest phalanx force deviation compared to both stroke survivors without tactile 

sensory deficit and healthy controls. The new finding of this study is that remote 

vibrotactile noise decreased phalanx force deviation for all of the subject groups. This 

improvement in phalanx force direction was associated with improved hand tactile 

sensation for the fingertips and the upper palm with remote vibrotactile noise. Changes in 

phalanx normal force or muscle activity did not accompany the improvement observed in 

phalanx force deviation.  

 

5.4.1 Proposed mechanism for finger motor control and sensation improvement 

 

Improving the tactile sensation via remote subsensory vibrotactile noise for the 

fingertips and the upper palm could have improved phalanx force deviation by facilitating 

greater feedback in the closed-loop motor control. For instance, increasing tactile 

sensation could have given individuals more information regarding grip surface 

characteristics, such as slipperiness of the object surface (Johansson and Westling 1987). 

Also improving tactile sensation could have provided individuals with greater feedback 

on how the magnitude and direction of the phalanx force being produced (Augurelle et al. 

2003; Blennerhassett et al. 2007; Cole 2006; Hermsdorfer et al. 2003; Monzée et al. 

2001; Robertson and Jones 1994) and more information on the position of their phalanx 
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with respect to the object surface (Monzée et al. 2001). Greater sensory feedback could 

have improved phalanx force control, reducing the deviation of phalanx forces.  

 

The vibrotactile noise at the wrist could have increased tactile sensation of the 

fingertips and upper palm by increasing the sensory neurons’ excitability via 

interneuronal overlap between the wrist and hand areas at the spinal or supraspinal level. 

Increased cortical and spinal activity with the application of vibrotactile noise on the 

hand has previously been observed in both humans and cats (Manjarrez et al. 2002a; 

Manjarrez et al. 2003).  For instance, when vibrotactile noise added to one portion of the 

paw (central hindpaw), it was found that noise increased spinal and cortical activation 

representing another portion of the cat’s paw (the third hindpaw digit), showing remote 

vibrotactile noise  (Manjarrez et al. 2003). In addition, when the spine was transected 

from the brainstem of the cat, this increased activity was absent at the cortical level but 

still present in the spinal cord, showing the presence of remote vibrotactile noise at the 

spinal level (Manjarrez et al. 2003). Cortically, overlap in areas responsible of activation 

for the wrist, palm, and fingertips has been observed for owls and squirrel monkeys 

(Merzenich et al. 1983) and humans(Sanes et al. 1995), providing further evidence of 

how vibrotactile noise at the wrist could have affected tactile sensation at the palm and 

fingertips in the humans in this study. Furthermore, a recent pilot study has shown that 

applying subthreshold remote vibrotactile noise at the wrist during application of a tactile 

stimulation to the fingertip, resulted in evidence of increased brain activity, increased 

sensory feedback, and greater sensorimotor integration and processing for the tactile 

stimulation (Hur et al. 2013; Tseng 2013). Given the previous evidence of vibrotactile 



117 

 

  

noise’s effects in the spinal and cortical areas, the results from this study are important 

because they show that applying vibrotactile noise remotely can improve tactile sensation 

and thus motor control.  

 

In addition to finding the improved tactile sensation at the fingertips, this study 

also found improved tactile sensation for the upper palm region but not for the thenar 

eminence location. The fingertips and the upper palm region near the index finger are all 

innervated by the palmar digital braches of the median nerve, while the thenar eminence 

region is innervated by the palmar branch of the median nerve, radial nerve, and the 

musculocutaneous nerve (Netter 1997). It could be that application of the remote 

vibrotactile noise on the dorsal wrist tended to affect areas mediated by the palmar digital 

branch of the median nerve. Thus, remote vibrotactile noise at the wrist could have 

worked through a direct nerve connection, in addition to the potential increased sensation 

via increased spinal and cortical activity.  

 

It is unlikely, that tactile sensation improved distally by the vibrations traveling 

through the skin from the wrist to the sensation locations because the vibration 

significantly attenuates across the skin. It has previously been shown that  mechanical 

vibration loses approximately 90% of its original power when traveling a distance of 1 to 

2 cm on the skin (Kurita et al. 2011; Manfredi et al. 2012). Also, if vibrations traveled 

through the skin to improve tactile sensation at the fingertips, then the largest 

improvement of tactile sensation would have been expected at the thenar eminence. 
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However, no significant improvement in tactile sensation was observed for the thenar 

eminence, making it unlikely that the mechanism of tactile sensation improvement is 

through vibrations traveling across the skin. 

 

The findings for tactile sensation improvement with remote noise for this study 

and the previous study (Chapter 4) are similar with tactile sensation improvements seen 

in other studies with the direct application of vibrotactile noise. Previous studies have 

found improvement in fingertip tactile sensation (Kurita et al. 2011) and motor control 

(Mendez-Balbuena et al. 2012) when vibrotactile noise was applied directly to the 

fingertip. This study showed similar findings in the finger/hand sensation and finger 

phalanx force control even when the vibrotactile noise was applied remotely at the dorsal 

wrist.  

 

5.4.2 Lack of effect of remote vibrotactile noise on phalanx normal force and muscle 

activation  

 

Although phalanx force direction improved with vibrotactile noise, phalanx 

normal force and muscle activity were not significantly affected.  The change in direction 

was approximately 1-2 degrees for each of the subject group.  Therefore, there was very 

little expected change in phalanx normal force (<1%) and muscle activity. In addition, 

muscle activity was only recorded for three muscles: the FDS, EDC, and index fingers’ 

FDI muscles. Since all the muscles of the fingers are important for controlling force in a 
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particular direction (Kutch and Valero-Cuevas 2011; Valero-Cuevas et al. 2000) 

including the flexor digitorum profundus (FDP), the lumbricals (LUM), the palmer 

interosseous (FPI),  the index finger’s extensor indicis (EI), as well as the thumb finger’s 

flexor pollicis longus, extensor pollicis longus and brevis, abductor pollicis longus, the 

opponens pollicis, the abductor pollicis brevis, the flexor pollicis brevis, and the adductor 

pollicis, it is possible that the examination of only three muscles may not have been 

sufficient to capture the way the muscle activation pattern changed with remote 

vibrotactile noise toward improved phalanx force control. Also, improved phalanx force 

deviation could have occurred by improved posture of the phalanges such that the 

phalanges could be oriented with its resultant force perpendicular to the surface during 

power grip with noise, although experimental evidence for postural change was not 

obtained in this study. Regardless of a lack of empirical evidence for change in FDS, 

EDC, and FDI muscle activation or posture with the application of vibrotactile noise, all 

subject groups were able to improve phalanx force deviation during power grip.5.4.3 

Study Limitation 

 

Tactile sensation improvement was only measured for the strokes survivors with 

tactile sensory deficit and was not measured for the stroke survivors without tactile 

sensory deficit or healthy controls due to a bottom ceiling effect of the Monofilament 

test. Individuals in those groups already detected the lowest Monofilament size before 

noise was applied.  However, it is expected that tactile sensation improved for the stroke 

survivors without tactile sensory deficit and healthy controls based off of previous studies 

that showed tactile sensation improvement with remotely applied vibrotactile noise for 
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tactile sensory healthy individuals (Hur et al. 2014; Lakshminarayanan et al. 2015; Wang 

et al. 2014). 

 

5.4.4 Functional and Clinical Implications  

 

Phalanx force deviation was reduced with vibrotactile noise for stroke survivors 

with tactile sensory deficit, stroke survivors without tactile sensory deficit, and age-

matched controls and could reduce the risk of dropping objects. Previously stroke 

survivors, especially stroke survivors with tactile sensory deficit, were found to have 

increased phalanx force deviation compared to healthy controls (Chapters 2-3).  Increased 

phalanx force deviation has previously been shown to lead to finger slippage in pinch 

grip (Seo et al. 2010) and can lead to object slippage in the hand if the deviations exceed 

the cone of friction for that surface (MacKenzie and Iberall 1994; Seo et al. 2010). 

Therefore, reducing phalanx force deviation with vibrotactile noise could improve object 

stability in the hand and could reduce the risk of dropping objects, especially for those 

stroke survivors with tactile sensory deficit whose phalanx force deviations are closer to 

the slip threshold limit.   

 

Improvement in phalanx force deviation was significant, yet small for both stroke 

survivor groups. However, this small improvement in phalanx force control was seen 

immediately with stimulation. Even though tactile sensory feedback is important for 

finger force control (Blennerhassett et al. 2007; Johansson 1996; Zatsiorsky and Latash 
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2004b), it could be that there is a ceiling effect for improvement in stroke survivors’ 

finger force control regardless of the  interventions due to damage occurring at the 

corticospinal tract (Lang and Schieber 2004b) or for those stroke survivors who 

experienced a high level of muscle atrophy in the hand post stroke (Dattola et al. 1993; 

Dietz et al. 1986; Hafer-Macko et al. 2008; Hu et al. 2007; Landin et al. 1977).  

Therefore, the degree of phalanx force control improvement for stroke survivors may be 

limited due to neurological damages that occur post stroke. Furthermore, the 

improvement in phalanx force deviation for healthy individuals was significance, yet 

small potentially because healthy individuals are already operating close to their optimum 

neurological capacity for grip force control.  

 

Even though the improvement was small, the improvement in phalanx force 

control was seen immediately with the application of vibrotactile noise to the wrist. A 

greater improvement in phalanx force deviation for stroke survivors could occur with 

long-term exposure and therapy using vibrotactile noise. There is evidence that 

application of remote vibrotactile noise increases brain activity and causes greater 

sensorimotor integration and processing (Hur et al. 2013). Over the course of long term-

exposure and therapy, it is possible that vibrotactile noise could potentially reverse some 

cortical damage. Furthermore, remote vibrotactile noise applied over a long period of 

time within an intensive rehabilitation training paradigm could elicit greater phalanx 

force control improvement.  

 



122 

 

  

The results in this study can be applied to the development of a wearable 

therapeutic wrist band device for stroke survivors. The novelty of such a device is that it 

can improve motor control in addition to tactile sensory feedback without impeding 

natural range of motion of the fingers. Also, such a device could improve efficiency in 

rehabilitation therapy sessions by reducing the need for multiple intervention techniques 

to target motor control and tactile sensation separately and could be beneficial to motor 

therapies that already aim at regenerating tactile sensory and motor connections 

simultaneously. For instance, the constraint-induced movement therapy has been found to 

be effective in stroke hand recovery (Kunkel et al. 1999) and also promotes cortical 

reorganization (Liepert et al. 2000). In addition, improving tactile sensory feedback could 

encourage cortical reorganization for stroke survivors with tactile sensory deficit. 

Sensory feedback assists in the preservation of the normal cortical representations of both 

the motor and sensory cortex (Weiss et al. 2004). Therefore, stroke survivors with tactile 

sensory deficit could have altered cortical sensorimotor representations leading to the 

altered muscle activation and their diminished force control, and improving tactile 

sensory feedback via a training paradigm with remote vibrotactile noise could encourage 

shifts towards the normal sensorimotor brain mapping. Adding subsensory remote 

vibrotactile noise to a sensory-motor training paradigm could facilitate functional and 

tactile sensation recovery.  

 

A wearable device that has the potential to improve tactile sensory and motor 

control can be especially important during the immediate recovery time after a stroke. 

Immediately after a stroke, there is a considerable amount of brain reorganization 
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occurring in the first 4 months post stroke (Cicinelli et al. 1997). Furthermore, it has been 

postulated that sensory reorganization may occur before motor reorganization after stroke 

(Weiller 1998) and is critical in motor recovery (Tyson et al. 2008). Because the 

mechanism of motor and sensory improvement with the remote vibrotactile noise is 

proposed to occur through increased brain activity and sensori-motor processing and 

integration (Hur et al. 2013), this wearable device could further promote neural 

regeneration during this critical time 

 

5.4.5 Future Directions  

 

Remote vibrotactile noise was found to improve fingertip motor control of the 

phalanx force deviations during a static power grip. However, this study did not examine 

the effect of remote vibrotactile noise on dynamic grip control and movement. 

Furthermore, it is unknown if the improvement changes seen in the phalanx deviation can 

lead to improvement object manipulation. In the future, the effect of this noise on 

dynamic movement will be examined during a dynamic task that requires both precision 

manual handling and tactile sensory feedback such as the Box and Block Test 

(Mathiowetz et al. 1985a).  

.  
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5.5. Conclusion 

 

 Remote subthreshold vibrotactile noise applied on the dorsal wrist improved 

phalanx force deviation during static maximal power grip for healthy controls, stroke 

survivors without tactile sensory deficit, and stroke survivors with tactile sensory deficit. 

Remote vibrotactile noise also improved hand tactile sensation for stroke survivors with 

tactile sensory deficit. Reducing phalanx force deviations can lead to a reduced chance of 

object slippage. This study is clinically important since improving tactile sensation and 

motor control remotely could be designed into a wristband-like wearable device to 

improve gripping for stroke survivors. Improving motor control post stroke can lead to 

independence in completing daily living activities.   
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Chapter 6: Effects of subsensory remote vibrotactile noise on stroke survivors’ 

dynamic grip3  

 

 

ABSTRACT 

 

Remote subsensory vibrotactile noise applied to the wrist has previously been shown to 

improve fingertip and upper palm tactile sensation and phalanx force control during static 

power grip. This study examined if stroke survivors’ clinical hand grip function could be 

improved. Ten stroke survivors with tactile sensory deficit performed the Nine Hole Peg 

Test (NHPT) and the Box and Block Test (BBT) with remote subsensory vibrotactile 

noise applied to the dorsal wrist. Tactile sensation was also recorded with and without 

noise. Results showed that stroke survivors improved their BBT score by 2% and 

improved their time to complete the NHPT by 14% (p<.05). Vibrotactile noise at the 

wrist improved motor control of the hand potentially by increased spinal and/or cortical 

motor and sensory activity. Tactile sensation of the fingertips did not improve with noise 

potentially due to the prolonged exposure to noise and the adaptation of the tactile 

afferents, or direct effects to motor control without perceptual changes. Regardless, 

remote subsensory vibrotactile noise could be a useful rehabilitation tool used to improve 

stroke survivors’ ability to manipulate objects during daily living, encouraging long term 

functional recovery and making it a promising rehabilitation tool.  

 

                                                 
3 Information presented in this chapter is published as follows and is used with permission with: 

 

Seo NJ, Kosmopolous M, Enders LR, Hur P. “Effect of Remote Sensory Noise on Hand Function Post 

Stroke", Frontiers in Human Neuroscience, Accepted 

 



126 

 

  

 

6.1. Introduction 

 

Many stroke survivors experience somatosensory deficit (Carey 1995) in addition 

to motor deficit in their hands and arms (Gray et al. 1990; Nakayama et al. 1994; Parker 

et al. 1986). Stroke survivors have been previously been observed to move arms and 

hands slower (Schaefer et al. 2012), with reduced coordination (Cirstea et al. 2003), 

delayed proactive and reactive responses to perturbations (Grichting et al. 2000; 

Hermsdorfer et al. 2003), and excessive force during safety margin tasks (Nowak et al. 

2003) compared to healthy individuals. Impaired tactile sensory feedback further 

contributes to stroke survivors’ reduced phalanx force control (Chapter 2-5) and impaired 

manipulation (Hermsdorfer et al. 2003). Reduced ability to perform object manipulation 

tasks may hamper stroke survivors’ ability to complete daily living tasks. 

 

Increasing tactile sensation of the fingertips and the upper palm via remote 

vibrotactile noise (Chapter 3-4) has previously been shown be associated with improved 

phalanx force control for stroke survivors with tactile sensory deficit, stroke survivors 

without tactile sensory deficit, and healthy controls (Chapter 5). Vibrotactile noise 

applied remotely may improve fingertip and upper palm sensation and motor control of 

the fingers via increasing the excitability of the tactile sensory neurons in the central 

nervous system through stochastic resonance and interneuronal connections (Hur et al. 

2013; Manjarrez et al. 2003; Manjarrez et al. 2002b; Tseng 2013). Specifically, the 

application of remote subsensory vibrotactile noise at the wrist has shown evidence 
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during a pilot study of increased brain activity, increased sensory feedback, and greater 

sensorimotor integration and processing for a tactile stimulation at the fingertip (Hur et 

al. 2013; Tseng 2013).  Therefore, remote subsensory vibrotactile noise has been shown 

to increase tactile sensation and hand motor control via increased excitability in the 

central nervous system and could be a useful rehabilitation device for stroke survivors. 

However, the previous investigation on how remote vibrotactile noise impacts motor 

control only determined the effect of noise on a static grip force task requiring a 

maximum grip effort. It is currently unknown if remote subsensory vibrotactile noise can 

result in an improved ability to complete a dynamic movement task as well. Therefore, 

the effect of remote vibrotactile noise on dynamic movement control should be 

investigated.  

 

The goal of this study was to determine the effect of remote vibrotactile noise on 

stroke survivors’ ability to perform dynamic movement tasks. Specifically, the objective 

of this study was to determine the effect of remote subthreshold vibrotactile noise on 

stroke survivors’ ability to complete the Box and Block Tests (BBT) and the Nine Hole 

Peg Test (NHPT). Additionally, to determine if an improvement in the ability to perform 

a dynamic gripping task was accompanied by an improvement in sensation, the effect of 

remote vibrotactile noise on the fingertip tactile sensation was examined. 
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6.2. Methods 

 

6.2.1 Subjects 

  

Ten chronic stroke survivors (mean ± standard deviation (SD) age of 63 ± 9 

years), with fingertip tactile sensory deficit, participated in the study (Table VI). Mean ± 

SD  motor impairment, quantified by a hand and wrist subdivision of the Fugl-Meyer 

Assessment (Fugl-Meyer et al. 1975), was 21 ± 4 (out of a possible 24) for those who 

completed both the BBT and NHPT. All stroke survivors were at least 6 months post 

stroke. All subjects underwent the Semmes-Weinstein monofilaments test (Bell-Krotoski 

et al. 1993). Sensation deficit was based on a baseline Monofilament score of  > 2.83 

(Dellon 1997) for both the index and thumb finger (Table VI). Monofilament scores for 

the stroke survivors with sensory deficit group ranged from 3.22 to 6.65 with a median 

score of 3.61. All subjects signed a written consent form and followed protocol approved 

by the Institutional Review Board. 

 

 

 

 

 

 



129 

 

  

Table VI: Subject Demographics 

Subject 

Time 

since 

most 

recent 

stroke 

(months) 

Type of Stroke 

Hand 

Dominance*  
Paretic 

Side 
Sex 

Age 

(years) 

Fugl-

Meyer 

Score    

(out of 

24) 

Chedoke 

McMaster  

Score    

(out of 7) 

Baseline 

Monofilament 

Score 

Pre 

Stroke 

Post 

Stroke 
Index Thumb 

1 24 Hemorrhagic R R L M 60 22 7 3.61 3.61 

2 6 Unknown R R L M 62 16 6 3.61 3.61 

3 16 Ischemic L R L F 62 16 5 6.65 6.65 

4 7 Hemorrhagic R R L F 52 24 7 3.61 3.61 

5 15 Hemorrhagic R R L M 59 22 5 3.22 3.22 

6 7 Unknown R R R M 55 14 6 3.22 3.22 

7 3 Hemorrhagic R R R M 81 23 7 4.31 4.17 

8 2 Hemorrhagic R R L M 66 24 7 3.22 3.22 

9 22 Ischemic L L R M 60 24 7 3.61 3.61 

*R= “Right hand dominance”, L= “Right hand dominance” 

 

6.2.2 Functional Tests 

 

Subjects were asked to perform the BBT and the NHPT with and without 

vibrotactile noise applied to the wrist (Figure 27). Due to the difficultly level of the tasks, 

one participant was unable to perform the BBT and two subjects were unable to complete 

the NHPT. The BBT and the NHPT provide a reliable measurement of manual dexterity 

(Chen et al. 2009; Desrosiers et al. 1994) and were administered according to the 

literature (Mathiowetz et al. 1985a; b; Oxford Grice et al. 2003a; b). The BBT score was 

calculated as the total number of blocks moved from one box, across a wooden barrier, to 

another box in 60 seconds (Mathiowetz et al. 1985a).  The score from the NHPT was 

calculated as the total time subjects picked up, placed, and removed nine pegs from nine 

holes (Oxford Grice et al. 2003b).   
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Figure 27: Subjects' performed hand motor tasks using the Box and Block Test (a) and 

the Nine Hole Peg Test (b) 

 

6.2.3 Vibrotactile noise  

 

 Remote subthreshold vibrotactile noise was applied on the dorsal and volar wrists 

of the stroke subjects using C-3 Tactors (Engineering Acoustics, Inc, Casselberry, FL). 

Similar to our previous studies (Enders et al. 2013; Enders and Seo 2014), the remote 

subthreshold vibrotactile noise was white noise bandwidth filtered at 0 to 500 Hz and set 

to an intensity of 60% the sensory threshold for sensing vibration for the wrist dorsal and 

wrist volar location, individually. This intensity has previously been shown to be 

effective in improving fingertip tactile sensation (Enders et al. 2013; Wells et al. 2005) 

and phalanx force deviation (Chapter 5). Similarly, the previous study showed 

improvement in sensation and phalanx force deviation when the vibrotactile noise was 

applied to the wrist area (Chapters 4-5) (Enders et al. 2013). These functional tests were 

repeated in four blocks where the vibrotactile noise on was turned ‘off’ for the first and 

a) 

b) 
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final block, and turned ‘on’ for the second and third block of testing. Total exposure time 

to the vibrotactile noise was the time to complete a block, around 15-25 minutes. A 

practice block was given prior to testing to limit learning effects.   

 

6.2.4 Statistical Analysis   

 

A Kruskal-Wallis test was used on the multivariate data to determine if BBT and 

NHPT score significantly varied with and without noise across all subjects.  There was no 

statistical difference between the first and the last blocks of testing with noise ‘off’ and 

also between the second and third blocks with noise ‘on’ (Mann-Whitney U test with 

p<.05 for both). Thus, the blocks were not included as a factor in the Kruskal-Wallis 

analysis. In addition, an ANOVA was used to measure if fingertip tactile sensation, as 

measured by the 20-set of Semmes-Weinstein monofilaments, improved with and without 

subthreshold vibrotactile noise. Monofilament Test scores (ranging from 3.22 to 6.65) 

were converted to the corresponding estimated logarithmic bending force (ranging from 

.16 to 300 grams) for the statistical analysis.  

 

6.3. Results  

 

 Subthreshold vibration significantly improved stroke survivors’ ability to perform 

the BBT and the NHPT (Kruskal-Wallis, p<.05). With remote subthreshold vibrotactile 

noise, stroke survivors improved BBT score by 4% (an average of 1-2 blocks)(Figure 28a 
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and Appendix D).  Seven out of the 9 subjects who performed the BBT improved their 

score by an average of 7%, while two subjects decreased their BBT score by 2% (Figure 

28c,e and Appendix D). With remote vibrotactile noise, stroke survivors improved their 

ability to complete the NHPT by 9 seconds (14%), on average (Figure 28b and Appendix 

D). Improvement on the NHPT was observed for seven out of the eight subjects who 

were able to complete this task (Figure 28d,f and Appendix D). Mean ± SE monofilament 

score, did not significantly change (4.2 ± 0.3 to 4.1 ± 0.4) with remote vibrotactile noise 

(ANOVA with p>.05).  
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Figure 28: Mean ± Standard Error (SE) BBT score (a) and NHPT time (b) significantly 

improved with the application of remote vibrotactile noise. Individual subjects’ data is 

shown for the BBT scores and NHPT in c) and d), respectively. Individual subjects’ 

percent change in the BBT score and the time to complete the NHPT is shown in e) and 

f), respectively. 
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6.4. Discussion 

 

Manual dexterity improved with remote subthreshold vibrotactile noise for stroke 

survivors with sensory deficit. This study shows that subthreshold vibrotactile noise can 

improve stroke survivors’ ability to complete a dynamic task that involves grasping 

objects and moving them to either a broad (BBT) or precise (NHPT) target area.  

Monofilament score did not improve with prolonged (15-20 minutes) application of the 

remote vibrotactile noise.   

 

6.4.1 Potential mechanism of motor dexterity improvement   

 

This research study confirms previous research that remote vibrotactile noise 

targeting the sensory system has effects in the motor system. Previously, it has been 

found that when subsensory noise was added directly to the fingertip, improvements were 

also seen in motor control system (Galica et al. 2009; Hur et al. 2014; Mendez-Balbuena 

et al. 2012; Priplata et al. 2006). For instance, subsensory vibrotactile noise applied to the 

fingertip has shown improvement in controlling finger position (Mendez-Balbuena et al. 

2012). Also, subsensory vibrotactile noise applied to the lower extremity has been shown 

to reduce variability in gait measures and balance (Galica et al. 2009; Gravelle et al. 

2002; Priplata et al. 2002; Priplata et al. 2006), by increasing tactile sensory and 

proprioception feedback. In addition to direct vibrotactile noise, remote application of 
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subsensory noise on the forearm has been shown to improve muscle reaction time and 

stabilization of a handle after perturbation (Hur et al. 2014). 

 

The mechanism of improvement could be the result of increased cortical or spinal 

activation, previously shown to occur with vibrotactile noise (Manjarrez et al. 2002a; 

Manjarrez et al. 2003).  Specifically, the subthreshold vibrotactile noise on the wrist may 

have increased somatosensory integration and processing for the whole hand area (Hur et 

al. 2013; Tseng 2013), increasing dexterity of the fingers. This is based off previous 

findings that applying subthreshold vibrotactile noise at the fingertip, increases tactile 

sensation at the fingertip location(Collins et al. 1996). Since increasing somatosensory 

feedback has been shown to increase cortical excitation and activation in the motor 

cortices (Kaelin-Lang et al. 2002), it could be that applying vibrotactile noise at the wrist 

increased motor activation and sensation for the whole hand-wrist area via increased 

cortical activation.  

 

6.4.2 Lack of tactile sensory improvement seen after prolonged vibration noise 

exposure 

 

Contrary to previous studies, monofilament score did not significantly improve 

with the subsensory vibrotactile noise, potentially due to adaptation.  In the previous 

studies (Chapters 4-5) (Enders et al. 2013), sensation was examined after the subject 

threshold vibrotactile noise was applied for only a short time (~1 min). In the present 

study, sensation was measured after a much longer exposure to the remote vibrotactile 
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noise (approximately 15-20 minutes). It could be that fingertip tactile sensation improved 

when the vibrotactile noise was first applied and then reached a point of adaptation, 

which has been observed with prolonged exposure to stimulation (Dinse and Merzenich 

2002).  Regardless, improvement in manual dexterity continued without the measurable 

improvement in tactile sensation. It is also possible that an improvement in functional 

performance occurred through bypassing stroke survivors’ tactile sensory impairment via 

the visual feedback provided during the task (Ellis et al. 2005; Seo et al. 2011), paired 

with remote vibrotactile noise.  

 

6.4.3 Clinical Applications of Remote Subsensory Vibrotactile Noise 

 

Because of the improvements observed in this study and previous research 

studies, remote subsensory vibrotactile noise has a promising future as a rehabilitation 

device for stroke survivors. Previous methods of sensory enhancement using intense 

levels of transcutaneous electrical nerve and muscular stimulation and high volume 

vibration of forearm muscles have shown improvements in hand and arm function for 

stroke survivors (Chae et al. 1998; Conforto et al. 2007; Santos et al. 2006; Yozbatiran et 

al. 2006). However, the intensity of the stimulations needed for these devices to produce 

the desired effects, often leads to discomfort, making them less practical in terms of a 

long-term rehabilitation method. Remote vibrotactile noise is subsensory and non-

detectable to a user, making it a comfortable tactile sensory enhancement technique. 

Furthermore, one of the benefits of remote subsensory vibrotactile noise is that it is away 

from restricting movement of the fingers during gripping, allowing stroke survivors to 
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wear such as device during normal rehabilitation therapy or throughout the day. Also due 

to the vibrotactile noise being below the sensory threshold, discomfort of wearing such a 

device for a long exposure is limited unlike other types of motor enhancing stimulations 

(Chae et al. 1998).  

 

6.5. Conclusion 

 

Stroke survivors’ manual dexterity, measured by the BBT and the NHPT, 

improved significantly with the application of remote subsensory vibrotactile noise to the 

wrist.  Therefore, remote subsensory vibrotactile noise appears to improve motor control 

potentially due to increased sensory and motor cortical activation. This technology could 

be applied as a wearable rehabilitation device to promote motor recovery post stroke and 

increase stroke survivors’ ability to complete daily living activities in the long term.  
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Chapter 7: Entrepreneurial activity  

 

1. TheraBracelet, LLC.   

 

A timeline portraying the sequence of entrepreneurial events is shown in Figure 

29. In October of 2012, an invention disclosure to UWM was filed for the technology 

idea of applying remote vibrotactile stimulation as a rehabilitation device. Then in April 

2013, UWM Research Foundation filed a provisional patent on behalf of Dr. Na Jin Seo 

and I. Over the next couple months, companies were interviewed for the opportunity to 

market and develop the rehabilitation device. One of these groups was a student group 

from The University of Louisville’s Entrepreneurship MBA program. This program 

allows for a group of MBA students in their final year of the program to seek out an 

invention idea and market this idea on a national and world-wide business venture capital 

circuit. I was also requested to officially become part of the competition team and 

became a visiting student in their program. A license option agreement was signed 

between Matthew Raggard, Kacie Neutz, Nicholas Phelps, myself, and the University of 

Wisconsin Research Foundation to take the invention, named TheraBracelet, to market 

on the competition circuit.  In October of 2013 an Operating Agreement was signed that 

outlined how the company will conduct business, how the individual financial and 

managerial responsibilities are divided, the equity shares, and how the dissolution of the 

company would be conducted if such would occur. TheraBracelet, LLC became an 

official and legal company entity in October 2013, with Matthew Raggard as CEO, Kacie 

Neutz as COO, Nicholas Phelps as CFO and Leah Enders as CSO (therabracelet.com). 
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During this time, a business plan, an executive summary, and a business plan presentation 

was developed for presenting TheraBracelet to the competition circuit.  

 

Figure 29: Timeline of Entrepreneurial activities with TheraBracelet from 2012-2014. 

Green squares are associated with prototype development, blue squares are associated 

with UWM Research Foundation activities, and red squares are associated with 

Therabraclet, LLC activities.  

 

From October 2013 until April 2014, TheraBracelet, LLC attended seven 

competitions held in the United States and Canada. TheraBracelet, LLC placed third in 

the final competition at the Global Ventures Labs Investment Competition in Austin, TX 

and closed out the competition circuit with over $110,000 

(alliance.rice.edu/2014_RBPC_Winners). The largest of these earnings was $100,000 

from an investor, The Mercury Fund, who will continue to support TheraBracelet as we 
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move into our clinical testing of the device on patients. My personal responsibility as 

CSO is to communicate the technology behind TheraBracelet and the research findings in 

non-technical terms during presentations, tradeshow events, and investor meetings. I was 

also responsible for assembling the investor packet that includes raw data and detailed 

finding explanations for the Mercury Fund.  

 

2. TheraBracelet Prototype Development    

 

Coinciding with this time period, a UW-Madison UW-Milwaukee Inter-

institutional Research Grant between Dr. Na Jin Seo of UW-Milwaukee and Dr. John 

Webster of UW-Madison allowed for the development of a working prototype. Funding 

for prototype development was also provided by an WiSys Technology Foundation, Inc’s  

Applied Research Grant (ARG) to Dr. Seo and Dr. Webster. This prototype was built by 

Dr. John Webster and his graduate student, Fa Wang following the conceptual and 

functional design outlined by Na Jin Seo and I. Working together with input from fellow 

researchers, TheraBracelet has developed into a device that is nearly ready for use in 

clinical testing.  

 

2.1 Laboratory Version  

 

 The initial device that was used throughout the research studies was a C-3 Tactor 

(Engineering Acoustics, Inc. Casselberry, Florida) (Figure 30b) that required an 
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additional mp3 playing device (Figure 30a). The negative with this setup was the 

vibration amplitude of the C-3 vibrotactile device was too small and some patients were 

unable to feel to the maximum amplitude.  

 

Figure 30: The C-3 Tactor (Engineering Acoustics, Inc. Casselberry, Florida) was used 

for all stimulation research studies. Characteristics of the device were not conducive for a 

proper therapeutic device.  

 

 

2.2 TheraBracelet Version 1  

 

  The first prototype for TheraBracelet was an electromagnet transducer that 

oscillated a small metal plate against the skin, and fed through a sweat band cuff (Figure 

31). An mp3 playing device was still needed to play the sound file that transmitted the 

noise signal. The problems with this version were that the house box for the circuitry was 

bulky (Figure 31b), the small metal plate was against the skin and held in place against 

the cuff fabric with superglue (Figure 31c), the small metal plate was detachable and 

easily lost (Figure 31d), and the vibration amplitude was still not strong enough for some 

a) b) 



142 

 

  

stroke survivors to feel. Although the battery was too large, the life was sufficient (~8 hrs 

for all day use) (Figure 31b). In addition, this device was not fMRI compatible for some 

concurrent fMRI studies.    

 

 

Figure 31: TheraBracelet Version 1 (a) with large, inconvenient battery and bulky 

circuitry box (b), electromagnetic vibrators (c), and a detachable metal plate (d). 

  

2.3 TheraBracelet Version 2  

  

 The second TheraBracelet prototype built by Dr. John Webster and Fa Wang was 

piezoelectric (detached could used for the fMRI setup), used a small, easy replaced 3.7V, 

the piezolelectric could be embedded into the cuff between layers so as not to come into 

direct contact with skin, and the circuitry was much more compact. The problems with 

this version was that this device was still dependent upon an external mp3 device, the  

 

a) 

b) 

c) d) 



143 

 

  

tactor was still not strong enough to be felt by some individuals, the battery life (~6) hrs 

w as insufficient for long-term use, the circuitry needed secure housing, the electrical 

connections were unreliable and repairs were difficult.  

 

 

Figure 32: TheraBracelet Version 2 uses a piezoelectric vibrator (a) with small, 

unprotected circuitry box (b), and an easily replaced battery (c). 

 

2.4 TheraBracelet Version 3  

  

 The third TheraBracelet prototype has a portable controller box that contains a 

noise file that can be easily controlled from the controller buttons on the box (Figure 33a) 

and an electromagnetic transducer that has the metal plate securely fixed (Figure 33b-c). 

The TheraBracelet Version 3 allows for the person to find the sensory threshold and then 

adjust the level of the noise. Also the battery is easily replaced on the back of the 

controller box and the connections between the electromagnetic vibrator is secure both on 

the vibrator and the controller box end. The current problems currently being addressed 

with this version are that the control box is still too large for comfort, there are more 

buttons on the control than needed and cause confusion, the battery life (~4 hrs) is still 

a) 

b) c) 
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insufficient, and the plate secured on the electromagnetic device is able to be bent and 

broken easily.  

 

     

Figure 33: TheraBracelet Version 3 has a independently controlled noise file that is 

enclosed in a protective case (a), uses an electromagnetic piezoelectric vibrator (c) with 

the plate attached (b), an external on/off switch (d), and an easily replaced battery (e). 

 

2.5 TheraBracelet Final Desired Version 

 

 The final TheraBracelet product will be able to be worn completely on the wrist 

and include the vibration device, controller, sound file, and battery all in one housing unit 

similar to a watch (Figure 34). Users will be able to adjust the noise level of the device 

using an interface that walks users through finding their sensory threshold. In addition, 

the device will have a long battery life (>8 hrs for all day use) and the battery will be 

rechargeable by plugging in the device at night. The device will be lightweight (about the 

weight of a watch), durable, and waterproof.  

 

a) 

b) c) d) e) 
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Figure 34: The final desired TheraBracelet device with batter, amplitude adjusting 

controlling, sound file, and battery all able to be housed on the wrist.  



146 

 

  

 

Chapter 8: Overall Conclusions 

 

The main findings of this dissertation are that stroke survivors’ power grip is 

altered compared to healthy individuals, especially for those who experience tactile 

sensory deficit, and enhancing sensation via remote vibrotactile improves grip control 

making it a promising rehabilitation technique. Improving rehabilitation therapies could 

improve stroke survivors’ independence in completing daily activities.   

 

After stroke, there is a considerable amount of complex brain reorganization 

(Dettmers et al. 1997; Liepert et al. 2000; Rossini et al. 1998). This reorganization often 

leaves decreased excitability of the motor cortex in the stroke-affected hemisphere and 

decreased cortical representation of the paretic limb (Liepert et al. 2000), leading to 

impaired peripheral neural control. Damage to the sensory cortex area can also lead to 

changes in the cortical representations of the paretic limb in the motor cortex (Nelles et 

al. 1999; Weiss et al. 2004). These cortical activation changes can result in altered 

activation of the muscles controlling grip, change paretic muscle fiber composition, 

impair sensory feedback from the paretic limb and sensory integration to other areas in 

the brain, and result in further disuse of the limb. Stroke induced tactile sensory deficit 

and altered muscle activation and could have contributed to the altered phalanx force 

control observed for stroke survivors (Figure 1), as described in the following several 

paragraphs.   

 



147 

 

  

 

Decreased phalanx force control via intrinsic muscle weakness  

 

Increased phalanx force deviation could also have occurred due to altered muscle 

activation and atrophy specifically affecting the intrinsic muscle group of the hands over 

the extrinsic muscles. Specific weakness of the intrinsic muscles could reduced phalanx 

force control and lead to increased phalanx force deviation during power grip, due their 

role in stabilizing the MCP joint, producing flexion force, and directing fingertip forces 

(Stack 1962; Valero-Cuevas et al. 2000). The intrinsic hand muscles may be particularly 

affected by stroke compared to the extrinsic muscles, potentially due to their muscle fiber 

type composition and greater need for corticospinal activation. Specifically, intrinsic 

muscles have been shown have a greater concentration of Type II muscle fibers 

compared to extrinsic muscles (Hwang et al. 2013). Previous reports have shown that 

muscles composed predominantly of Type I fibers may be better preserved and muscles 

with a higher concentration of Type II muscle fibers may be more susceptible to atrophy 

in instances of increased age (Larsson et al. 1978; Lexell 1995), diabetes (Bus et al. 

2002), and stroke (Dattola et al. 1993; Dietz et al. 1986; Hafer-Macko et al. 2008; Hu et 

al. 2007; Landin et al. 1977). Changes in muscle fiber composition post stroke occur not 

only due to limb disuse after stroke, but also due to changes in the corticospinal 

activation targeting specific muscle fiber types (McComas et al. 1973). In addition to 

greater potential atrophy of their muscle fibers, the intrinsic muscles may be further 

weakened compared to the extrinsic muscles post stroke, due to their need for greater 

corticospinal drive compared to the more proximal muscles of the arms (Palmer and 
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Ashby 1992; Turton and Lemon 1999). Therefore, the reduced cortical activity regarding 

the paretic limb, could have affected the intrinsic muscles to a greater extent compared to 

the extrinsic muscles controlling the hand. Specific weakness of the intrinsic muscles 

could have resulted in destabilization of the MCP joint, decreased flexion force, and 

misdirection of fingertip forces (Stack 1962; Valero-Cuevas et al. 2000).  

 

Decreased phalanx force control via diminished tactile sensory feedback  

 

 Since tactile sensory feedback is critical in the control of phalanx force 

magnitudes and deviations needed during gripping (Johanson et al. 2001; Zatsiorsky and 

Latash 2004b), and it appears that stroke survivors’ diminished tactile sensory feedback 

(Carey 1995; Turton and Butler 2001) decreased phalanx force control further, leading to 

the greater deviation. Since both stroke survivors groups were similar in terms of level of 

motor functional recovery, and the stroke survivors who experienced some level of tactile 

sensory deficit had significantly greater phalanx force deviation than those without 

sensory deficit, it can be proposed that sensory feedback from the fingers is a contributor 

in directing finger forces during power grip. Furthermore, the ability to approximate their 

50% maximum grip effort was similar between both stroke groups, leading greater 

evidence that the reduced phalanx force control was due to differences in a deficit of 

tactile and not proprioceptive sensory feedback. Since tactile sensory feedback is 

important for updating the CNS for the adjustment of the grip forces to prevent object 

slippage (Johansson and Westling 1984), stroke survivors with tactile sensory deficit may 

be more at risk of dropping objects. In addition, research has shown how cortical 
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territories shift following the removal of sensory inputs, suggests that sensory feedback 

assists in the preservation of the normal cortical representations of both the motor and 

sensory cortex (Weiss et al. 2004). Therefore, stroke induced tactile sensory feedback 

could also have decreased representations of the paretic hand in the motor cortex, 

increasing the degree of altered neural control of the hand muscles, and cause the 

increase in phalanx force deviation observed for stroke survivors with sensory deficit.    

 

Decreased phalanx force control via impaired grip posture 

 

Although posture was controlled for in the context of this dissertation, impaired 

grip posture could also decrease phalanx force control during everyday activities for 

stroke survivors. Altered muscle activation has previously been shown to result in finger 

muscle coactivation (Kamper and Rymer 2001; Lang and Schieber 2004b) and spasticity 

(Mottram et al. 2009). Increased coactivation among the fingers’ flexor and extensor 

muscles (Kamper and Rymer 2001) and the abduction/adduction muscles (Lang and 

Schieber 2004b) could have decreased stroke survivors’ ability to achieve an optimal 

posture when gripping the device, leading to a decreased control of phalanx forces. 

Similarly, hyperexcitability of the stretch reflex causing involuntary muscle contraction 

and flexion of the fingers, known as spasticity (Bhakta 2000; Brown 1994), could also 

impede stroke survivors’ ability to correctly coordinate finger force production, leading 

to improper posture, and increased phalanx force deviations.  
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Potential mechanisms of improved fingertip and upper palm tactile sensation and 

motor function via remote subsensory vibrotactile noise 

 

This dissertation investigated how remotely applied subsensory vibrotactile noise 

improved fingertip and upper palm tactile sensation and motor control. This knowledge 

builds upon previous studies which have found similar improvements with direct 

application of subsensory vibrotactile noise (Collins et al. 1996; Kurita et al. 2013; Liu et 

al. 2002; Mendez-Balbuena et al. 2012; Wells et al. 2005). Subsensory vibrotactile noise 

applied directly to the fingertip has been shown to improve the transmission and 

detection of weak sensory signals (Collins et al. 1996) and improve the tactile sensation 

by directly stimulating the tactile receptors in the skin (Kurita et al. 2013; Liu et al. 2002; 

Wells et al. 2005). Furthermore, improvement in tactile sensation at the fingertips, with 

vibrotactile noise applied directly to the fingertip, has been shown to yield improvements 

in motor control (Kurita et al. 2013; Mendez-Balbuena et al. 2012; Priplata et al. 2002). 

For instance, subsensory vibrotactile noise applied to the fingertip has shown 

improvement in controlling finger position (Mendez-Balbuena et al. 2012). Also, 

subsensory vibrotactile noise applied to the feet has been shown to reduce variability in 

gait measures (Galica et al. 2009) and subsensory noise applied to both the knee and the 

feet has been shown to improve balance in healthy (Gravelle et al. 2002; Priplata et al. 

2002; Priplata et al. 2006), by increasing tactile sensory and proprioception feedback. 

Increasing sensation peripherally also has impacts cortically, such as increased cortical 

excitation and activation in the motor cortices (Kaelin-Lang et al. 2002). 
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The effects of remote subsensory vibrotactile noise on tactile sensation and motor 

control have not been previously investigated. Previously, it has been shown that remote 

vibrotactile noise applied to the arterial baroreceptor on the neck of healthy individuals 

was able to improve pressure detection changes in the heart, detected by the 

cardiopulmonary baroreceptor, via the  interaction of the two baroreceptors’ neuronal 

inputs located in the brainstem (Hidaka et al. 2000). Subsensory vibrotactile noise applied 

to the forearm of healthy individuals elicited improvements of muscle reaction time and 

stabilization of a handle after perturbation of the handle (Hur et al. 2014). This 

dissertation research has shown that application of the remote vibrotactile subsensory 

noise to the wrist of stroke patients improved fingertip and upper palm tactile sensation 

(at least short term) and improved motor control of the hands. In addition, healthy 

controls’ phalanx force control also improved with remote subsensory vibrotactile noise. 

The exact mechanism of how remote subsensory vibrotactile noise improves tactile 

sensation of the fingertips and upper palm and hand motor function is currently unknown.  

 

Remote subsensory vibrotactile noise may have improved wrist sensation and 

then increased fingertip and upper palm tactile sensation and motor control via increased 

spinal and cortical excitation and increased corticomuscluar synchronization (Figure 35). 

Increasing tactile sensation peripherally also has impacts cortically, such as increased 

cortical excitation and activation in the motor cortices (Kaelin-Lang et al. 2002). 

Therefore, remote subsensory vibrotactile noise could have stimulated the tactile 

receptors in the skin at the wrist increasing sensation at the wrist (Kurita et al. 2013; Liu 

et al. 2002; Wells et al. 2005) and then increased motor control and tactile sensation at 
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the fingertips via increased cortical activity in the motor areas. The application of 

vibrotactile noise on the hand of humans and the paws of cats, has been shown to 

increase cortical and spinal neuronal activities, demonstrating the effect of noise in the 

central nervous system (Manjarrez et al. 2002a; Manjarrez et al. 2003). It has also been 

shown that vibrotactile noise applied to one portion of a cat’s paw increased spinal and 

cortical activity for another portion of the cat’s paw (Manjarrez et al. 2003), 

demonstrating how vibrotactile noise has the potential to remotely affect other areas on 

the same limb via increased activity in the central nervous system. Recently, a pilot study 

has shown that applying subsensory remote vibrotactile noise at the wrist during noise to 

the fingertip resulted in evidence of increased brain activity, increased sensory feedback, 

and greater sensorimotor integration and processing (Hur et al. 2013; Tseng 2013). In 

addition to increased cortical activity, remote vibrotactile noise may also increase the 

neuronal synchronization between spinal and cortical activity (Manjarrez et al. 2002b). 

Increased synchronization may facilitate neural communication between the spinal and 

cortical levels (Fell and Axmacher 2011) and improving corticomuscluar synchronization 

can lead to improved motor control (Mendez-Balbuena et al. 2012).  
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Figure 35: Application of remote vibrotactile noise at the wrist could have improved 

tactile sensation (at the fingertips and upper palm) and motor control of the hand via 

increased excitation and synchronization of the interneuronal connections in the spinal 

and cortical pathways. The proposed mechanism with internueural connections is shown 

in ‘dotted lines’ with the traditional sensory pathway shown in ‘solid lines’.  
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Practicality of remote subsensory vibrotactile noise for clinical adoption 

 

Currently, main stroke rehabilitation strategies focus more on motor-retraining 

rather than sensorimotor integration, even though motor recovery post stroke has been 

found to depend on the extent of somatosensory deficit (Tyson et al. 2008).  Furthermore, 

sensory reorganization may actually precede and generate motor reorganization post 

stroke (Weiller 1998).  Therefore, a therapy device that has the potential to improve 

sensation and motor control simultaneously, such as one with remote subsensory 

vibrotactile noise, could greatly benefit stroke survivors and promote motor recovery.  

 

Remote subsensory vibrotactile noise may also be beneficial as a rehabilitation 

device because it allows for grip comfort. A preliminary device applying subsensory 

noise has been developed by Kurita et al. (2013). Although this device has been shown to 

improve fingertip tactile sensation, the placement of the device on the side of the fingers 

could be problematic for use as a rehabilitation device. Such a device blocks physical 

contact between the finger and object, defeating the purpose of improving sensation. Also 

since stroke patients often experience spasticity in fingers which causes finger flexion 

(Mottram et al. 2009), there may not be sufficient space around the fingers for a device. 

Applying the subsensory vibrotactile noise remotely, allows for the stroke survivors to 

have full range of motion of the hands. In addition to placement, the remote subsensory 

vibrotactile noise is not felt, decreasing the disturbance to the user. Other methods of 

increasing tactile sensation and motor control peripherally for stroke survivors use 
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suprasensory nerve or muscle stimulation that can cause discomfort (Chae et al. 1998) 

and may cause unintentional muscle spasms (Pike 1978).  

 

Limitations and Future Directions of Remote Subsensory Vibrotactile Noise 

Research  

 

One of the limitations of this research is that tactile sensory deficit and tactile 

sensory improvement was only investigated for fingertip and palm light touch, but not 

directly for other types of sensation that could be important in grip control such as 

proprioception. The effect that vibrotactile noise has on tactile sensory deficit was 

investigated, since impaired tactile sensory feedback is more common post stroke than 

impaired proprioception (Tyson et al. 2008). Also, the stroke groups in this research did 

not show evidence of impaired proprioception by being able to relatively perceive their 

50% maximum grip effort. Proprioception assessment for fingertips is often difficult as 

proper measurement can require a complex testing modality (Clark et al. 1986) or could 

be hindered by spasticity of the fingers due to equipment requirements (Wycherley et al. 

2005). However, a future study may target how remote subsensory vibrotactile noise 

could improve proprioception, which is important for balance and hand motor control and 

has been found to improve with direct remote subsensory vibrotactile noise (Mendez-

Balbuena et al. 2012; Priplata et al. 2002; Priplata et al. 2006). Additionally, a future 

study could look at how healthy older individuals’ and stroke survivors’ cortical activity 

changes with remote subsensory vibrotactile noise using electroencephalography (EEG). 
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The previous pilot study (Hur et al. 2013; Tseng 2013), showed increased activity 

associated with improved sensorimotor processing when remote subsensory vibrotactile 

noise was applied to one healthy young individuals. A similar protocol examining how 

cortical activity changes with noise for stroke survivors and healthy individuals would 

yield greater understanding of the neurological pathway in which remote vibrotactile 

noise improves tactile sensation and motor control.  

 

Another limitation of this research is that the long terms benefits of remote 

vibrotactile noise are currently unknown. The improvements observed in this research did 

not appear to be long lasting, as motor control and sensation returned to normal when the 

vibrotactile noise was removed. However, in these experiments exposure to remote 

subsensory vibrotactile noise was short term (1- 25 minutes, depending on the study). It 

could be that the long term benefits of vibrotactile noise occur after a longer exposure 

time, such as continuously for two hours, or when paired with more intense motor 

training (i.e. 15 minutes of a continuous motor task). Previous experiments in 

determining the effectiveness of peripheral stimulation have shown improvements 

retained 30 days after an intense 2 hour somatosensory training (Conforto et al. 2007). 

Furthermore, the stroke survivors in the research reported in this dissertation were all in 

the chronic stage of recovery (>6 months post-stroke event) and since there is a great deal 

of cortical reorganization occurring in the first months of stroke (termed the acute stage 

of recovery)(Ward et al. 2003), it is possible that applying remote vibrotactile noise 

earlier could induce greater and more permanent results. Currently, a clinical study to 

determine the effects of remote subsensory vibrotactile noise on acute stroke survivors is 
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being designed. Approximately 15 stroke survivors will have remote subsensory 

vibrotactile noise applied to their wrists during their normal physical therapy sessions 

over a two week period. Two weeks following this two week session, measurements of 

functional recovery will be tested again and compared to a control group of stroke 

survivors who received normal physical therapy with no remote subsensory vibrotactile 

noise applied to the wrist.  

 

Final Conclusions 

 

Stroke survivors, especially those with tactile sensory deficit, exhibit reduced 

phalanx force control during power grip, increasing risk of dropping objects. Applying 

remote subsensory vibrotactile noise improved phalanx force control during static power 

and improved gripping during a dynamic task. Furthermore, vibrotactile noise improved 

fingertip and upper palm tactile sensation for stroke survivors with tactile sensory deficit. 

Remote subsensory vibrotactile noise improved tactile sensation and motor control 

potentially via stochastic resonance and interneuronal connections. Therefore, vibrotactile 

noise may be useful in improving gripping stability and could be a useful tool in 

sensorimotor rehabilitation, especially for stroke survivors with tactile sensory deficit. In 

the future, the rehabilitation device designed using the concept of vibrotactile noise will 

be used in clinical testing. In addition, an EEG study will be conducted to further 

understand the cortical pathway of how vibrotactile noise improves stroke survivors’ 

motor control. This dissertation contributes to the long term goal of increasing stroke 

survivors’ independence in completing daily living activities.  
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Appendix A. Dissertation Overview  
 

Aims Known Unknown 
Dissertation 

Contribution 

To characterize 

altered power 

grip post 

stroke. 

Stroke have increased digit force deviation leading to 

increased slippage during pinch grip (Seo 2010) and 

reduced pinch grip force control and timing  (Nowak 

2003, Hermsdorfer  2003) 

 

Force distribution between the index and the thumb tip 

not affected by stroke during pinch grip (Seo 2010)  

Do stroke 

survivors exhibit 

altered force 

control or an 

altered 

distribution of 

grip force in 

power grip? 

Phalanx force 

control is reduced 

for stroke survivors 

compared to healthy 

as found by 

increased phalanx 

force deviation. 

Force distribution 

across the phalanges 

and fingers 

remained similar to 

healthy individuals. 

To determine 

the role of 

sensory deficit 

in stroke 

survivors’ 

power grip 

force control.  

Stroke survivors experience diminished tactile sensory 

feedback (Carey 1995; Turton and Butler 2001) and  

the extent of tactile sensory deficit is related to motor 

recovery post stroke (Tyson 2008) 

 

Sensory feedback assists in the preservation of the 

normal cortical representations of both the motor and 

sensory cortex (Weiss 2004). Important for updating 

the CNS for the adjustment of the grip forces to prevent 

object slippage (Johansson and Westling 1984)  

 

Stroke tactile sensory deficit decreased pinch grip force 

control (Hermsdorfer  2003) 

 

Reduced tactile sensation can lead to object dropping 

(Augurelle 2003)  

How does stroke 

induced sensation 

deficit affect 

power grip force 

control?  

Stroke survivors 

with tactile sensory 

deficit exhibited 

greater phalanx 

force deviation 

during power grip 

compared to stroke 

survivors without 

tactile sensory 

deficit and healthy 

controls.  

To determine 

the effect of 

sensory 

enhancement 

on power grip 

force control 

(via 

application of  

remote 

subsensory 

vibrotactile 

noise)  

Increasing sensation could facilitate information 

regarding  grip surface characteristics (Johansson and 

Westling 1987), magnitude and directional feedback on  

phalanx force being produced (Augurelle 2003; 

Blennerhassett 2007; Cole 2006; Hermsdorfer 2003; 

Monzée 2001; Robertson and Jones 1994) and 

information about finger position and alignment with 

respect to the object surface (Monzée 2001) 

 

Subsensory vibrotactile noise  has been found to 

maximize the detection and transmission of  weak 

sensory signals and can increase tactile sensation 

(Galica 2009; Moss 2004; Priplata 2002, Collins 1997)  

 

Application of vibrotactile noise has been shown to 

improve gait (Galica 2009), balance (Priplata 2002, 

Priplata 2006, Gravelle 2002), and controlling of finger 

position (Mendez-Balbuena 2012) 

 

Evidence shows that vibrotactile noise may increase 

cortical and spinal activation (Manjarrez 2002a; 

Manjarrez 2003, Hidaka 2000) and sensorimotor 

integration and processing (Hur 2013, Tseng 2013)). 

Also vibrotactile noise may improve neuronal 

synchronization (Manjarrez 2002b) which can facilitate 

neural communication between the spinal and cortical 

levels (Fell and Axmacher 2011)  

Can applying the 

subsensory 

vibrotactile noise 

at a remote 

location (at the 

wrist) improve 

sensation at the 

fingertips/hand?  

 

 

Can remote 

subsensory 

vibrotactile noise 

improve phalanx 

force deviation 

during power 

grip?  

 

 

Can remote 

subsensory 

vibrotactile noise 

improve  the 

ability to 

manipulate 

objects during a 

dynamic 

movement?  

Applying 

subsensory 

vibrotactile noise 

remotely improved 

fingertip and upper 

palm tactile 

sensation for stroke 

survivors with 

tactile sensory 

deficit 

 

Noise improved 

power grip phalanx 

force control for 

stroke survivors 

with tactile sensory 

deficit, stroke 

survivors without 

tactile sensory 

deficit, and healthy 

controls 

 

Noise improved 

stroke survivors’ 

with tactile sensory 

deficit ability to 

complete two 

separate dynamic 

movement tasks  
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Appendix B. Aim 1 Results with Standard Deviation bars 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35: Phalanx force angular deviation was significantly greater for stroke survivors 

compared with controls (ANOVA subject group main effect with p<.05) (effort levels, 

fingers, phalanges, and subjects pooled) (a), for both 50% and maximum grip effort (b), 

for all three phalanges (c), and especially for the thumb, index, and little fingers 

(ANOVA, subject group and finger interaction with p<.05, posthoc significance marked 

with stars) (d). Non-transformed mean ± SD data is shown in the figure. 
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Figure 36: The distribution of phalanx normal force across the phalanges (a and c) and 

fingers (b and d) for stroke and control subjects. Percent contribution (c and d) of the 

individual phalanges to total normal force was not significantly dependent upon the 

interaction of subject group and phalanx or the interaction of subject group and finger 

(ANOVA with p>.05) (d). Non-transformed mean ± SD data is shown in the figure. 
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Figure 37: Mean ± SD percentage of force produced during grip at 50% of maximum 

perceived effort. Stroke survivors produced more than 50% of maximum (t-test with 

p<.05), unlike controls (t-test with p>.05). Non-transformed data is shown in the figure. 
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Figure 38: Mean ± SD EMG was reduced for all muscles of the stroke survivors 

compared with healthy controls (a). Relative to the FDS EMG, mean + SD FDI and EDC 

EMG were significantly reduced for stroke survivors compared with controls (significant 

subject group and finger muscle interaction with p<.05, significant difference in relative 

FDI and EDC EMG between stroke and control with Tukey post-hoc p<.05) (b), showing 

an altered muscle activity pattern with a particularly weakened intrinsic FDI muscle and 

the extrinsic EDC muscle for stroke survivors compared with controls. Non-transformed 

data is shown in the figure. 

  

0

10

20

30

40

50

60

70

80

90

FDS FDI EDC

E
M

G
, 

%
M

V
C

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

FDI EDC

E
M

G
 R

el
a

ti
v

e 
to

 t
h

e 
F

D
S

 M
u

sc
le

Healthy Controls Stroke Survivors

* * 

b) a) 

* 



175 

 

  

 

Figure 39: Mean ± SD of the COF between the finger skin and paper surface was similar 

for stroke survivors and healthy controls (t-test, p>.05). Non-transformed data is shown 

in the figure. 
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Appendix C. Aim 2 Results with Standard Deviation bars   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 40: Mean ± SD phalanx force deviation was significantly greatest for stroke 

survivors with tactile sensory deficit, followed in order by stroke survivors without tactile 

sensory deficit and healthy controls (ANOVA, subject group main effect with p<.05) 

This trend was observed for all surfaces (b), effort levels (c), phalanges (d), and fingers 

(e). 

0

5

10

15

20

25

Healthy

Controls

Stroke

Survivors

with No

Tactile

Sensory

Deficit

Stroke

Survivors

with

Tactile

Sensory

Deficit

P
h

a
la

n
x
 F

o
rc

e 
 D

ev
ia

ti
o

n
,˚

0

5

10

15

20

25

  Paper

Surface

Rubber

Surface

P
h

a
la

n
x
 F

o
rc

eD
ev

ia
ti

o
n

˚

Healthy Controls
Stroke  Survivors with No Tactile Sensory Deficit
Stroke Survivors with Tactile Sensory Deficit

0

5

10

15

20

25

50%

Maximum

Power

Maximum

Power

P
h

a
la

n
x
 F

o
rc

e 
 D

ev
ia

ti
o

n
, 
˚

0

5

10

15

20

25

30

35

Distal

Phalanx

Middle

Phalanx

Proximal

Phalanx

P
h

a
la

n
x
 F

o
rc

e 
D

ev
ia

ti
o
n

,˚
 

0

5

10

15

20

25

30

Thumb Index

Finger

Middle

Finger

Ring

Finger

Little

Finger

P
h

a
la

n
x
 F

o
rc

e 
D

ev
ia

ti
o
n

, 
˚

Healthy Controls

Stroke  Survivors with No Tactile Sensory Deficit

Stroke Survivors with Tactile Sensory Deficit

* 

* 
* 

a) b) c) 

d) e) 



177 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41: Mean ± SD phalanx normal force was significantly reduced for both stroke 

survivor groups compared to healthy controls (ANOVA, subject group main effect with 

p<.05). This reduction was similar for both stroke survivor groups and was observed for 

all surfaces (b), effort levels (c), phalanx (d), or finger (e). 
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Figure 42: Mean ± SD grip force produced during grip at 50% of the maximum 

perceived effort normalized to the grip force produced during maximal grip was not 

significantly different from the target of 50% for all subject groups. 
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Figure 43: Mean ± SD EMG appeared to be reduced for stroke survivors compared to 

healthy controls for both stroke survivor groups (a). Mean + SD FDI and EDC EMGs 

relative to the FDS EMG were significantly reduced for stroke survivors with tactile 

sensory deficit compared to controls and stroke survivors without tactile sensory deficit 

(significant subject group main effect with p<.05, significant difference for stroke 

survivors with tactile sensory deficit group compared to other two groups with Tukey 

posthoc p<.05 for both relative FDI and EDC EMGs) (b), showing altered muscle activity 

pattern with particularly reduced intrinsic FDI and extrinsic EDC muscle activities for 

stroke survivors with tactile sensory deficit compared to controls and stroke survivors 

without tactile sensory deficit. Non-transformed data is shown in the figure. 
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Figure 44: Mean ± SD COF between the finger skin and the paper and rubber surfaces 

was similar for stroke survivors with tactile sensory deficit, stroke survivors without 

tactile sensory deficit, and healthy controls (ANOVA, group main effect and group and 

surface interaction p>.05). The COF for the rubber surfaces was significantly greater than 

the paper surface (ANOVA, surface main effect with p<.05). Non-transformed data is 

shown in the figure. 
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Appendix D. Aim 3 Results with Standard Deviation bars   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 45: Mean ± SD Monofilament scores significantly decreased with subthreshold 

vibrotactile noise (noise locations, intensities, fingers, and subjects pooled) (p<.01) (a). 

Noise locations and intensities did not significantly affect the improvement of 

Monofilament score (fingers and subjects pooled, p>.05 for noise location and intensity) 

(b). 
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Figure 46: Mean ± SD Two Point Discrimination scores were not significantly affected 

by the vibrotactile noise (a) nor with noise locations, intensities, fingers, and their  

interactions (fingers and subjects pooled) (p>.05) (b). The Two-Point Discrimination 

score without vibrotactile noise did not change at the beginning vs. end of the testing 

session. 
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Figure 47: Mean ± SD phalanx force deviation was significantly reduced with remote 

vibrotactile noise turned on (a). Reduction in phalanx force deviation was observed 

across all subject groups (b). The extent that phalanx force deviation reduced with the 

noise differed by fingers (c) and phalanges (d). 
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Figure 48: Mean ± SD phalanx normal force did not significantly change with the 

application of vibrotactile noise (a). Phalanx normal force was significantly greater for 

the healthy controls, followed in order by the stroke survivors with tactile sensory deficit 

and the stroke survivors without tactile sensory deficit (b). None of the subject groups 

significantly changed their phalanx normal force with remote vibrotactile noise. 

 

 

 

 

 

 

 

 

 

0

5

10

15

20

25

30

Noise Off Noise On

P
h

a
la

n
x
 N

o
rm

a
l 

F
o

rc
e,

 N

0

5

10

15

20

25

30

35

40

Healthy Controls Stroke Survivors

without Tactile

Sensory Deficit

Stroke Survivors

with Tactile

Sensory Deficit

P
h

a
la

n
x
 N

o
rm

a
l 

F
o

rc
e,

 N

Noise Off Noise On

* 

* 

* 



185 

 

  

 

Figure 49: Mean ± SD Muscle EMG activity was not significantly affected by the 

application of remote vibrotactile noise. 
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Figure 50: Mean ± SD Monofilament score was overall significantly reduced for the 

stroke survivors with tactile sensory deficit when vibrotactile noise was present. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5

3.5

4.5

5.5

Index

Fingertip

Thumb

Fingertip

Palm of the

Hand Near

the Index

Thenar

Eminence

M
o
n

o
fi

la
m

en
t 

S
co

re

Noise off Noise on

* 



187 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 51: Mean ± SD BBT score (a) and NHPT time (b) significantly improved with 

the application of remote vibrotactile noise. Individual subjects’ data is shown for the 

BBT scores and NHPT in c) and d), respectively. Individual subjects’ percent change in 

the BBT score and the time to complete the NHPT is shown in e) and f), respectively. 
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