
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

August 2014

Development and Usability Evaluation of Low-cost
Virtual Reality Rehabilitation Games for Patients
with Upper Limb Impairment
Jayashree Arunkumar
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Industrial Engineering Commons

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Arunkumar, Jayashree, "Development and Usability Evaluation of Low-cost Virtual Reality Rehabilitation Games for Patients with
Upper Limb Impairment" (2014). Theses and Dissertations. 658.
https://dc.uwm.edu/etd/658

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F658&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F658&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F658&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=dc.uwm.edu%2Fetd%2F658&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/658?utm_source=dc.uwm.edu%2Fetd%2F658&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu

DEVELOPMENT AND USABILITY EVALUATION OF LOW-COST VIRTUAL

REALITY REHABILITATION GAMES FOR PATIENTS WITH UPPER LIMB

IMPAIRMENT

by

Jayashree Arun Kumar

A Thesis Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Master of Science

in Engineering

at

University of Wisconsin-Milwaukee

August, 2014

ii

ABSTRACT

DEVELOPMENT AND USABILITY EVALUATION OF LOW-COST VIRTUAL

REALITY REHABILITATION GAMES FOR PATIENTS WITH UPPER LIMB

IMPAIRMENT

by

Jayashree Arun Kumar

The University of Wisconsin-Milwaukee

Under the Supervision of Na Jin Seo, PhD

 Stroke is one of the primary causes of long-term disability in adults in the United

States which leads to mild to severe sensorimotor impairments. Long-term continuous

rehabilitation therapies are needed to facilitate sensorimotor recovery and empower

patients in performing daily living activities. Currently, the opportunity of receiving post

stroke rehabilitation in the chronic stage (> 6 months post stroke) is limited due to a lack

of insurance and the high cost of therapy. Low-cost virtual rehabilitation games with

motion tracking devices have tremendous potential to assist physical rehabilitation.

Motion tracking devices such as Kinect (Microsoft, Redmond, CA; $100) and P5 Glove

(Essential Reality, LLC, NY; $40) have become available to enable development of low-

cost virtual rehabilitation games. Such low-cost games may encourage continuous,

repeated, and intensive rehabilitation therapies thereby enhancing recovery post stroke.

However, current virtual rehabilitation games emphasize on gross arm movements using

Kinect or fine finger movements using P5 Glove, but not both at the same time. Since

most daily living activities require coordination of the gross shoulder/elbow movement

and fine finger movement such as reaching to grasp and transferring a jar to a shelf,

effective upper limb rehabilitation must involve coordination of the arm and finger

iii

movements. In addition, many virtual rehabilitation games have been developed without

user input and feedback, which may be the primary reason why virtual rehabilitation

games are not prominently used at home by patients. This thesis presents the

development and usability evaluation of low-cost virtual rehabilitation games. In addition

to the archery and puzzle games previously developed in the laboratory, a low-cost

rehabilitation kitchen game was developed to encourage patients to practice various

functional tasks involving coordinated arm and finger movements that were detected by

using Kinect and P5 Glove, respectively. Usability of the three games was assessed with

ten chronic stroke survivors using pre-game and post-game surveys. The games met

patients’ expectations of providing challenging movements. The House of Quality

analysis revealed that technical characteristic needing the most improvement was device

reliability. The future research should address device reliability by developing a better

instruction manual to facilitate device set-up and use. In addition, filtering data can also

improve quality of virtual arm movements in future versions of the games. In summary,

this thesis presents promising evidence for low-cost rehabilitation games using

commercially available motion tracking devices of Kinect and P5 Glove together with

free Blender software.

iv

To my beloved husband Arun Kumar, who has been the backbone of all my

endeavors.

 v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. ix

1. INTRODUCTION... 1

2. AIM 1: .. 8

TO DEVELOP A LOW-COST VIRTUAL REHABILITATION GAME FOR

FINGER AND ARM COORDINATION ... 8

2.1 Introduction ... 8

2.2 Kitchen Game Features .. 8

2.3 Kitchen Game Workflow ... 11

2.4 Kitchen Game Activities ... 19

2.5 Clinical Relevance ... 20

2.6 Conclusions .. 21

3. AIM 2: .. 23

TO EVALUATE USABILITY OF THE LOW-COST VIRTUAL

REHABILITATION GAMES ... 23

3.1 Methods .. 24

3.1.1 Subjects ... 24

3.1.2 Study Protocol .. 25

3.2 Results .. 29

3.2.1 HOQ results .. 29

4. DISCUSSION AND CONCLUSION .. 38

4.1 Low-cost rehabilitation game development .. 38

4.2 Usability evaluation of the virtual rehabilitation games 39

4.3 Conclusions .. 41

References .. 43

Appendix: Abstracts & posters ... 47

Appendix: Software source code .. 55

Appendix: IRB approval ... 79

Appendix: Questionnaires & Instruction manual ... 80

vi

LIST OF FIGURES

Figure 1: (a) Kinect and (b) The 20 joint positions detected by

Kinect……………………………………………………………………………………...4

Figure 2: Capture volume of Kinect ……………………………………………………..4

Figure 3: P5 Glove and sensor receptor showing the 3-D coordinates…….…………….4

Figure 4: P5 Glove showing the 3-D orientation information.............................………...6

Figure 5: The virtual arm in the game (left) mimics the user’s upper arm movements

(right)……………………………………………………………………………………...9

Figure 6: Different scenes used for different tasks in the kitchen game: (A) Task for

grasping cups from the countertop and placing them on the overhead compartment, (B)

Task for grasping the dishes from the dish holder and placing them on the countertop, (C)

Task for grasping the teapot handle and pouring water from the teapot to a teacup, and

(D) Task for opening a drawer, grasping and moving silverware from countertop to inside

the drawer..…………………………….….………………………….………….………..9

Figure 7: During the kitchen game, the game score was shown in the upper left corner

and the elapsed time was shown in the upper right corner of the screen……………..….10

Figure 8: Praises were provided to a user upon successful completion of a task…….…11

Figure 9: Basic workflow and system components of the kitchen virtual rehabilitation

game……………………………………….……………...……………………………...12

Figure 10: Schematic diagram shows a user playing the kitchen game with Kinect

detecting the gross arm movements and P5 Glove detecting finger

movements...13

Figure 11: P5 Glove calibration…………………………………………………………13

Figure 12: Diagram depicting the 20 º, 90 º, and 135 º elbow angles……….…………..15

Figure 13: Diagram depicting the -45 º, 45 º, 0 º and 90 º shoulder azimuth angles……16

Figure 14: Diagram depicting the 45 º, 90 º and 135 º shoulder elevation angles.

…...17

Figure 15: Diagram depicting 45º and -45º rotation of the shoulder…...........................18

vii

Figure 16: A few postures involved in the kitchen game activities. (A) task involving

shoulder elevation, elbow extension, and finger extension posture, (B) task involving

shoulder elevation, elbow extension, and finger flexion posture, (C) task involving

shoulder rotation posture , and (D) task involving forearm pronation and elbow flexion

posture………………………………………………………….......................................20

Figure 17: Usability evaluation workflow of the rehabilitation games. Patients’ feedback

was analyzed in this pattern …………………………………………………………….26

Figure 18: (A) Technical characteristics of the games (j). (B) Patient expectations from

pre-game survey (i). (C) Interrelationship matrix showing the relationship between

technical characteristics and the patient expectation criteria (Iij), (D) Levels of

relationships for the interrelationship matrix……….…………………………………...29

Figure 19: Mean ± standard deviation (SD) of the patients’ expectations of virtual

rehabilitation games based on the pre-game survey criteria, referred to as the expectation

weight, W. The expectation criterion of challenging (green bar) was weighted the highest

and the graphics quality (red bar) was lowest weighted expectation in the pre-game

survey…………………………………………………………………………………….30

Figure 20: Patients’ expectations of virtual rehabilitation games based on the pre-game

survey criteria, referred to as the expectation weights, shown in the left column of the

HOQ matrix………………………………………………...……………………………31

Figure 21: Mean ± SD of the patients’ response weight, Ri, for each game for all of the

criteria combined (A) and for each criterion (B) based on the post-game survey............32

Figure 22: Patients’ evaluations of the virtual rehabilitation games based on the post-

game survey, referred to as the response weight, are shown in the right column of the

HOQ matrix …………………………………………………………...………………...33

Figure 23: Priority weight for each technical characteristic in each game was divided into

highest, moderate, and the lowest priority need. Based on HOQ, device reliability showed

the highest priority need for improvement…………………………………..………….34

Figure 24: The HOQ matrix for a low-cost VR games identified priority needs as an

outcome (bottom row), based on patients’ expectation ratings (left column), the game’s

technical characteristics (top row), interrelationship matrix (center), and patients’

evaluation of the game (right column). Red, brown, and green numbers indicate the

highest, intermediate, and the lowest technical improvement…………….......................35

Figure 25: Poster presentation - College of Engineering and Applied science (CEAS

2013)………………………………………………………………………………...…...53

Figure 26: Poster presentation - College of Engineering and Applied science (CEAS

2014) …………………………………………………………………………...………..54

viii

LIST OF TABLES

Table 1: Range of motion for various postures in the kitchen game …………………...21

Table 2: Patient demographic information……………………………………………....25

Table 3: Virtual rehabilitation game system cost comparison ….…………...………….39

ix

ACKNOWLEDGEMENTS

I would like to thank my advisor, Na Jin Seo, PhD, who has been very helpful and

supportive since our first meeting. I would like to thank my thesis committee members,

Naira Campbell-Kyureghyan, PhD and Brooke Slavens, PhD, for all their guidance. I

would like to extend my thanks to all of the research assistants in the Hand Rehabilitation

Laboratory. I feel indebted to my family and friends who have been a great source of

inspiration and encouragement at every stage of my research work. I owe a special thanks

to my sweet daughter Saadhana Arun Kumar.

Finally, I would like to thank the stroke survivors who participated in the study

and provided valuable feedback.

 Thank you all.

1

1. INTRODUCTION

 Stroke in adults is a cerebrovascular accident which happens due to blockage or

rupture of the blood vessels in the brain (O'Sullivan and Schmitz 2007). Stroke causes

brain cell death or brain damage (O'Sullivan and Schmitz 2007). Stroke is one of the

primary causes of adult long-term disability in the United States and the fourth leading

cause of death (O'Sullivan and Schmitz 2007, Towfighi and Saver 2011). Nearly 6.4

million Americans suffer from long-term disability often associated with upper limb

impairment post stroke (Broeks 1999, Lloyd-Jones, Adams et al. 2010).

Long-term continuous rehabilitation therapies are needed to facilitate

sensorimotor recovery and empower patients in performing daily living activities (Wang,

Phua et al. 2009). Currently, not all stroke survivors receive rehabilitation in the chronic

stage (>6 months post stroke) due to lack of insurance coverage and the high cost of

physical therapy (Burdea 2002, Burke, McNeill et al. 2009). Additionally, rehabilitation

therapy is often primarily focused on lower limb rehabilitation in order to regain patients’

walking abilities, rather than upper-limb rehabilitation (Putman, De Wit et al. 2006).

However, approximately 60% of post stroke patients suffer from persistent upper-limb

impairment and are challenged in performing daily activities using the upper limb (Wade,

Langton-Hewer et al. 1983, Hackett, Duncan et al. 2000, Roger, Go et al. 2011)

Virtual upper-limb rehabilitation games have tremendous potential to assist upper

limb physical rehabilitation (Morrow, Docan et al. 2006). Virtual games can provide

patients with a motivating environment for intense and continuous practices of active

functional movements and can be accustomed to varying levels of disabilities, hence

facilitating positive rehabilitation outcomes for a wide range of patients (Crosbie, Lennon

2

et al. 2006). For this reason, virtual reality has been identified as one of the promising

tools used in many fields of therapy and rehabilitation such as physical therapy,

psychiatry, and cognitive rehabilitation (Rizzo, Bowerly et al. 2002, Zimand, Anderson et

al. 2002, Glanz, Rizzo et al. 2003). Over the past couple decades, such virtual

rehabilitation games have been developed to facilitate stroke survivors’ upper-limb

functional recovery (Subramanian, Knaut et al. 2007, Duff, Chen et al. 2010).

Specifically, virtual rehabilitation games for stroke survivors have been designed

using high-tech systems. For instance, three dimensional (3-D) infrared motion capture

systems such as Optotrak Certus
TM

 (Northern Digital Inc., Waterloo, Ontario, Canada)

(Subramanian, Knaut et al. 2007) and Motion Analysis (Motion Analysis Corporation,

Santa Rosa, CA, USA) (Duff, Chen et al. 2010) have been used to track and record

patients’ upper-limb motion for virtual games in real-time, allowing for goal-oriented

interaction that encourages repetitive training in arm movements. In addition, since

upper-limb functional tasks often involve not only the arm movement but also the finger

movement, CyberGlove (CyberGlove Systems LLC, San Jose, CA, USA) has been used

to track finger posture (Merians, et al., 2011). While these high-end motion tracking

systems have high accuracy, rehabilitation games using these systems are often

unaffordable for patients and most clinics and thus impractical. Therefore, there is a need

for low-cost virtual rehabilitation games, allowing for a cost-effective alternative for

patients and clinics.

Affordable virtual rehabilitation games can be possible by using free software and

low-cost motion tracking devices. Specifically, Blender is free and open-source 3-D

computer graphics software to create animation, visual effects, art, interactive 3-D

3

models and video games. In addition, many commercially-available low-cost motion

tracking devices are widely used in gaming. Such commercially available low-cost

motion tracking devices include Nintendo Wii (Nintendo, Redmond, WA, USA), Leap

Motion (Leap Motion Inc., San Francisco, CA, USA), P5 Glove (Essential Reality Inc.,

LLC, NY, USA), and Kinect (Microsoft Inc., Redmond, CA, USA).

Nintendo Wii and Kinect both convey arm movement data to the console and into

the gaming system. Nintendo Wii, which is widely commercially available, uses game

controllers that are grasped by the entire hand that measure hand velocity and

displacement. However, Nintendo Wii only conveys information relating to the position

of the hand in space, and does not provide positional data of the individual upper-limb

joints. Kinect recognizes joint positions of the whole-body and allows the position of 20

joints in a 3-D space to be conveyed to the system (Fig. 1). Since upper limb physical

rehabilitation focuses on achieving various arm postures such as elbow extension and

shoulder elevation, not only the hand location in space but also information on the whole

arm posture is important for virtual rehabilitation games. Therefore, Kinect is a better

alternative for relaying upper limb posture for virtual rehabilitation game development

compared to Nintendo Wii.

Kinect costs approximately $100. Kinect captures joint position at a 30 Hz

sampling rate which is adequate for tracking users’ movements in real time (LaBelle

2011) and can detect users standing between 1.2 m to 4.7 m from the device. Specifically,

Kinect has a capture volume of 17 m
3

with a horizontal field of view of 4.9 m, vertical

field of view of 2.8 m, and a depth field of view that starts at a distance of 1.2 m from

Kinect and is up to 4.7 m from Kinect (Fig. 2). Even though Kinect is superior in

4

measuring upper-limb joint position data compared to Nintendo Wii, both systems lack

the ability to measure finger joint posture which is important in designing games

involving hand grasping tasks.

Figure 1: (a) Kinect and (b) The 20 joint positions detected by Kinect

Figure 2: Capture volume of Kinect

Both Leap Motion and P5 Glove are low-cost devices that measure finger bending

and wrist position. Leap Motion provides motion capture for the fingers and wrist.

However, Leap Motion can detect finger posture only when fingers are open, but not

when the fingers are closed in a fist. Thus, Leap Motion is limited in measuring finger

postures during tasks involving grasping, which is one of the major components of upper-

5

limb functional tasks. Alternatively, P5 Glove is capable of measuring finger opening and

closing postures. Therefore, P5 Glove is a better alternative for measuring finger bending

for virtual rehabilitation games.

P5 Glove (Essential reality, New York, New York, USA) (Fig. 3) is a

commercially available device that costs approximately $40. P5 Glove can track the

hand’s 3-D position (i.e. X, Y, and Z coordinates shown in Fig.3, (Davison 2007) yaw,

pitch, roll (Fig.4), and finger bending (flexion/extension) angles. P5 Glove is plugged

into the sensor receptor (Fig. 3), which is hooked up to a computer through a USB port.

P5 Glove has a maximum 45 Hz sampling rate for the 3D position/orientation of the hand

and maximum 60 Hz for the finger bending. The hand position is tracked optically using

an infrared LED sensor receptor (Fig.3). The glove is portable, has an ergonomic design,

weighs approximately 0.12 kg, and wearable on the hand (Morrow, Docan et al. 2006),

although stroke survivors with spasticity may have trouble putting it on as with any other

wearable devices. P5 Glove can track hand movements up to a distance of 1.2 m from the

sensor receptor.

6

Figure 3: P5 Glove and sensor receptor showing the 3-D coordinates (Davison 2006)

Figure 4: P5 Glove showing the 3-D orientation information

Together, Kinect and P5 Glove have the capability to communicate position

information of the upper-limb joints and finger bending for virtual rehabilitation games.

While there exists rehabilitation games that use Kinect for gross arm movements only

7

(Roy, Soni et al. 2013) or P5 Glove for fine finger movements only (Morrow, Docan et

al. 2006), there is currently no rehabilitation game that involves both of the devices to

measure gross arm and fine finger movements at the same time. Finger and arm

coordination is critical for upper limb function in daily activities such as reaching to

grasp a cup and transferring a jar to a shelf (Carroll 1965, Wade, Langton-Hewer et al.

1983). Therefore, there is a need for virtual rehabilitation games to focus on improving

both gross and fine motor abilities of the arm and hand. In addition, many games are

developed by engineers with minimal feedback from patients. Therefore, developed

games may not effectively motivate patients nor be liked by patients, especially those

suffering from very limited range of motion, such as stroke survivors. Lack of user input

and feedback in the development of rehabilitation games is a major problem, since

motivation and likability are crucial for patients to adhere to a rehabilitation regime for

successful outcomes (Luck 2003). Therefore, in order to address these issues in current

virtual rehabilitation games, this thesis focuses on the development and usability

evaluation of low-cost virtual rehabilitation games for coordinated arm and finger

movements of stroke survivors using Kinect and P5 Glove. Specifically, the following

two aims are investigated.

Aim 1: To develop a low-cost virtual rehabilitation game for finger and arm

coordination.

Aim 2: To evaluate usability of the low-cost virtual rehabilitation games.

8

2. AIM 1:

TO DEVELOP A LOW-COST VIRTUAL REHABILITATION GAME FOR

FINGER AND ARM COORDINATION

2.1 Introduction

 We developed a virtual rehabilitation kitchen game for enhancing finger and arm

coordination in stroke survivors using the low-cost motion tracking devices of Kinect and

P5 Glove. This kitchen game simulates tasks that are generally performed in a kitchen

setting and involves grasping, moving, and putting away plates and utensils. Thus, the

kitchen game focuses on functional activities of daily living to a greater extent than the

previous games that were developed in the laboratory. The previous games that were

developed in the laboratory are the archery game and puzzle game (Crocher, Hur et al.

2013). The archery game requires patients to control and orient a bow and arrow with

their arm, while requiring patient to use opening and closing finger motions to release the

arrow and shoot at the targets. The puzzle game requires patients to grab virtual puzzle

pieces resembling states within the United States and place/orient them in their correct

locations on a United States map.

2.2 Kitchen Game Features

The low-cost virtual kitchen game (Fig. 5) had a virtual arm that mimicked a

user’s upper-limb movements in real-time using Kinect and P5 Glove. The game required

the user to perform a variety of functional tasks that involved grasping, moving, and

putting away kitchen utensils. The tasks were inspired by the clinical test, Fugl-Meyer

Assessment (Duncan, Propst et al. 1983) and focused on flexion/extension of the digits,

grasping objects of different sizes and shapes, forearm pronation/supination, elbow

9

extension, and shoulder abduction. Different scenes were designed for different tasks

(Fig. 6).

Figure 5: The virtual arm in the game (left) mimics the user’s upper arm movements

(right)

Figure 6: Different scenes used for different tasks in the kitchen game: (A) Task

for grasping cups from the countertop and placing them on the overhead compartment,

(B) Task for grasping the dishes from the dish holder and placing them on the countertop,

A B

C D

10

(C) Task for grasping the teapot handle and pouring water from the teapot to a teacup,

and (D) Task for opening a drawer, grasping and moving silverware from countertop to

inside the drawer.

Instructions were provided in the game so that the users could understand the

gameplay and the sequence of each task that needed to be played. Users could track their

game score in the upper left corner of the monitor (Fig. 7). Also, they could monitor the

elapsed time while playing (Fig.7). Motivation to keep playing the game and move to the

next task was provided in the form of a visual and audio cue. For instance, after

successfully completing a task, the user was awarded stars and cheering phrases such as

“Wow”, “Good Job”, “Keep up the good work”, and “One task to go” (Fig. 8).

Figure 7: During the kitchen game, the game score was shown in the upper left corner

and the elapsed time was shown in the upper right corner of the screen.

Figure 8: Praises were provided to a user upon successful completion of a task

Game
score

display

Time

elapsed

11

2.3 Kitchen Game Workflow

The basic game workflow included motion tracking devices to acquire the

motions performed by the user and then a program to process the input data provided by

the motion tracking devices (Fig.9). First, the client program received input from the

motion tracking devices and sent the data to the server program. Secondly, the tracked

data from the server program was used in joint angle computation. Hence, the joint angle

information (section 2.3 iv) was then used in the interaction script and that data was

processed and sent to the game engine. Finally, the game engine sent the data to the audio

and video output modules and these output modules generated the virtual reality

environment that could be experienced by the users through computer monitor and

speakers. Internal Client/Server architecture within the program received input from the

motion tracking devices, computed the joint angles, and sent the results to the game

engine. The virtual arm model was designed using the armature bones and mesh in

Blender. The interface with the motion tracking devices to mimic the users’ movements

and simulate interaction with objects in the game was programmed using Python. The

objects in the game obeyed the laws of physics and reacted to gravity to make the objects

fall to floor when a user dropped the object. Fig.9 shows the basic workflow of the virtual

rehabilitation games and each section is explained in detail below.

12

Figure 9: Basic workflow and system components of the kitchen virtual rehabilitation

game

i. Motion Tracking

The user’s upper-limb movements were tracked using the motion tracking devices

of Kinect and P5 Glove. Kinect was used to detect gross arm movements and P5 Glove

was used to detect finger motions (Fig. 10). Manufacturer-provided calibration software

was used to calibrate P5 Glove (Fig. 11).

13

Figure 10: Schematic diagram shows a user playing the kitchen game with Kinect

detecting the gross arm movements and P5 Glove detecting finger movements

Figure 11: P5 Glove calibration

14

ii. Client program

A client program used Kinect to locate the upper-limb joints of the user in 3-D

space and P5 Glove to detect bending of the fingers and track their movements in real

time. The program was written in C# because; Application Programming Interfaces (API)

for both Kinect and P5 Glove are available in C#. The Kinect for Windows Software

Development Kit (SDK) provides the tools and APIs, needed to develop Kinect-enabled

applications. Skeletal tracking information provided in Microsoft developer network

(msdn) was appropriately used to tweak and incorporate the respective user joint

positions to build the program. This program was used to send real time Kinect and P5

Glove data that provided the arm postures and finger flexion/extension of the user to the

server program. Data was sent from the client program to the server via a secured

networking protocol called User Datagram Protocol (UDP). UDP is used for sending data

over the network using minimal protocol mechanism (Postel 1980).

iii. Server program

The server program received real-time Kinect and P5 Glove data sent by the client

program (Fig.9). The server program was developed in Python because Blender supports

Python.

iv. Joint angle computation

Using the user’s arm and finger posture data received by the server program,

elbow and shoulder joint angles were computed in Python. The wrist angle was not

computed since accuracy for Kinect to detect the wrist angle is poor based on

unpublished data in our laboratory. Each of the elbow and shoulder angles was computed

as follows:

15

a) Elbow angle

The elbow angle was defined as the angle made by the forearm and extension of

the upper arm (Fig. 12). If the 3-D positions of shoulder, elbow, and wrist are shown as S,

E, and W vectors respectively, then the forearm vector (V1) and the upper-arm vector

(V2) was calculated as:V1 = W-E, V2 = E-S. Equation (1) was used to perform elbow

angle computation.

 (

| || |
)

Figure 12: Diagram depicting 20 º, 90 º, and 135 º elbow angles.

b) Shoulder azimuth angle

The shoulder azimuth angle was defined as the angle between the upper arm and

the sagittal plane as seen in the Fig.13. Equation (1) was used to compute the azimuth

angle with V1 being the vector of the upper arm projected on the horizontal plane and V2

(1)

16

being the unit vector of the forward horizontal direction (intersection between the sagittal

and horizontal planes).

Figure 13: Diagram depicting the -45 º, 45 º, 0 º and 90 º shoulder azimuth angles

c) Shoulder elevation angle

The shoulder elevation angle was defined as the angle made by the upward-

downward motion of the arm with respect to the body (Fig.14). Equation (1) was used to

compute the shoulder elevation angle with V1 being the vector of the upper arm and V2

being the unit vector of the downward direction (intersection between the sagittal and

frontal planes).

17

Figure 14: Diagram depicting the 45 º, 90 º and 135 º shoulder elevation angles.

d) Shoulder rotation angle

The shoulder rotation angle was defined as the internal/external rotation angle of

the upper arm around its own axis (Fig 15). Equation (2) was used to compute the

shoulder rotation angle. First, the vector normal to the plane of the arm (V3) was

computed by finding the cross product between the upper arm vector (V1) and the

forearm vector (V2). Then, the normal vector (V3) was projected on the horizontal plane

(V4). The shoulder rotation was calculated as the angle between the normal vector (V3)

and its projection on the horizontal plane (V4).

 (

| || |
)

(2)

18

Figure 15: Diagram depicting 45º and -45º rotation of the shoulder.

v. Interaction script

An interaction script was written in Python to control the interaction between the

hand and movable objects (cups, dishes, teapot and silverware), so that those objects

could be grasped, moved and dropped. Specifically, when the distance between the hand

and the desired object was less than a preset value, that object could be grasped by

closing of the fingers. In that case, the interaction script changed the state of that object to

prevent the physics engine from controlling it, thus its location could be controlled by the

hand. On the other hand, by opening the fingers, the grasped object was released, in

which case the state of the object was returned back to its default setting allowing the

physics engine to control the object movement according to the physics laws again.

vi. Game engine and output

Based on the upper limb posture and object information determined in the

interaction script, the game engine updated the virtual reality environment (Fig. 9).

Specifically, input modules were updated by incorporating physics engine and

textures/render engine, along with the elbow and shoulder joint angles to make the virtual

19

arm mimic the upper limb movements performed by the user. Physics engine attributed

physical laws to the objects in the game making them obey dynamics and gravity.

Textures added extra details to the surface of the objects, which was achieved by

projecting images or patterns on the surface. Render engine provided a fine quality image

of the developed 3-D scene. These game engine data determined video and audio outputs

that were fed into a computer monitor and speaker, respectively. These visual and audio

displays provided the user with experience in the virtual reality environment.

2.4 Kitchen Game Activities

The kitchen game had game activities to practice functional tasks involving finger

and arm coordination to impact daily upper limb function (Stanger, Anglin et al. 1994)

and also to improve the clinical upper limb score of the Fugl-Meyer Assessment (a

standard motor impairment scale for stroke survivors as an index for rehabilitation

outcome). Specifically, the Fugl-Meyer Assessment emphasizes on movements requiring

control and coordination of multiple upper-limb joints such as reaching forward and up

(shoulder elevation) with elbow and finger extension, shoulder elevation with forearm

rotation, and shoulder internal rotation while maintaining the elbow posture. Therefore,

kitchen tasks involving coordination of multiple upper limb joints were featured. All

tasks involved grasping and releasing of kitchen items with the hand to practice hand-arm

coordination. The game involved four different tasks (Fig.6). In the first and second

tasks, the user was asked to move glasses from the counter to an overhead compartment

and to move plates from the overhead compartment to the counter, respectively. These

tasks represent typical functional activities of reaching, grasping, and releasing.

20

Clinically, these tasks focused on coordinated shoulder elevation, elbow extension, and

finger flexion/extension (Fig.16A, B) that are relevant to the Fugl-Meyer Assessment.

The third task had the user grasp a teapot and pour water into a cup to practice shoulder

internal/external rotation (Fig. 16C). In the fourth task, the user had to open a drawer,

pick up a spoon and a fork one by one from the countertop and place it inside the drawer.

This task involved practice of forearm pronation and coordinated shoulder, elbow, and

hand movements (Fig. 16D) in addition to reaching, grasping, and releasing.

Figure 16: A few postures involved in the kitchen game activities. (A) task involving

shoulder elevation, elbow extension, and finger extension posture, (B) task involving

shoulder elevation, elbow extension, and finger flexion posture, (C) task involving

shoulder rotation posture , and (D) task involving forearm pronation and elbow flexion

posture.

2.5 Clinical Relevance

The game can provide not only game scores but also relevant clinical information

such as the range of motion, movement speed, and time to complete given tasks that may

help clinicians understand the progress that patients are making. To demonstrate that the

game is capable of providing relevant clinical information, the range of motion observed

A B

D C

21

for each task and for each joint as well as time to complete each task obtained while one

person played the kitchen game are described in Table 1.

Table 1: Range of motion and time elapsed observed during the kitchen game

Kitchen

tasks
Elbow

angle

range

Shoulder

azimuth

angle range

Shoulder

elevation

angle range

Shoulder

rotation

angle
range

Time

elapsed

Grasping cup

from

countertop

and placing it

in overhead

compartment

84º 160º 104º 175º 40sec

Grasping

dishes from

dish holder

and placing it

in countertop

124º 108º 141º 179º 30sec

Grasping

teapot and

pouring tea

from it

107º 96º 79º 148º 20sec

Grasping

different

sizes of

silverware

and placing it

in the table

cabinet after

opening it.

114º 134º 69º 131º 45sec

2.6 Conclusions

 Aim 1 was to develop a low-cost virtual rehabilitation kitchen game for

finger/arm coordination. This aim was achieved using affordable Kinect and P5 Glove

motion tracking devices and free Blender software. This rehabilitation games

22

demonstrated a strong potential and feasibility for low-cost rehabilitation systems which

could be used at home or a clinical environment. The expected cost is $140 including the

hardware and free open-source software. The game requires patients to employ a range of

motor functions and repetitive movements that are ideal in upper limb rehabilitation

therapies (Sveistrup, McComas et al. 2003). The requested movements in the game have

potential to train the upper limb motor functions and may allow for recovery by providing

more practice while keeping patients motivated.

23

3. AIM 2:

TO EVALUATE USABILITY OF THE LOW-COST VIRTUAL

REHABILITATION GAMES

Usability assessment is a crucial step in designing a product because it is a way to

optimize product design by identifying weak areas in the product’s concept, design and

user interface (Lange, Flynn et al. 2009, Lange, Rizzo et al. 2011). If the product goes to

market without a thorough usability assessment and subsequent design and quality

improvements, the product is at a high risk of failure because of the lack of interest and

motivation associated with poor usability. Such failure results in a great loss of labor and

development cost. Hence, it is an industry standard to evaluate usability of a product.

Usability of a product can be assessed in form of questionnaires, focus groups,

task analysis, user observation, interviews and surveys after users interact with the

product. The usability of our virtual rehabilitation games was tested using House of

Quality (HOQ). HOQ belongs to a management approach called Quality Functional

Deployment (QFD). HOQ has been widely adopted in Japan and has gained popularity in

the U.S. as well (Hauser 1993). After its inception in Japan in 1972, HOQ is now used by

many major developers such as Hewlett-Packard, AT&T, Ford, General Motors and

Toyota (Hauser and Clausing 1988). Toyota’s auto body startup and production costs

have reduced 61% after implementing HOQ and QFD (Sullivan 1986). All three games

developed in our laboratory – the kitchen game described in Ch. 2 as well as the archery

and puzzle games described in Crocher et al. (2013) – were tested for usability in this

study.

24

3.1 Methods

3.1.1 Subjects

Ten stroke survivors (five males and five females, ages ranging from 43 to 76

years with a mean of 63 year) participated in this study. The inclusion criteria used to

recruit subjects was that the subject must be a chronic stroke survivor (>6 months post-

stroke). Traditional health insurances do not cover for extended durations of physical

rehabilitation, and stroke survivors are commonly believed to have reached a recovery

plateau within 6 months post stroke (Page, Sisto et al. 2004, Krakauer 2006). However,

recent evidence suggests that targeted therapy and exercises can help stroke survivors

achieve meaningful motor function improvements and improve physical fitness and

cardiovascular health (Mark and Taub 2004, Page, Sisto et al. 2004, Billinger, Arena et

al. 2014). Therefore we were interested in understanding how we can improve our current

games to make them more interesting and user-friendly for chronic stroke survivors.

Subjects were excluded from the study if they had botulinum toxin injection within the

past 3 months from the day of study and/or if the subject had cognitive impairments.

Botulinum toxin injection reduces spasticity in stroke survivors. The subjects that

undergo the botulinum toxin treatment may not represent the general populace of stroke

victims we are aiming for. Also, subjects with cognitive impairment were excluded

because the game tasks required ability to understand and follow commands. All subjects

signed a consent form and followed a protocol approved by the Institutional Review

Board. Table 2 shows the patients’ demographic information along with their functional

evaluation scores. Subjects’ upper extremity function was evaluated by a physical

therapist in the lab using Chedoke McMaster Stroke Assessment and Fugl-Meyer score

25

(Fugl-Meyer, Jääskö et al. 1974, Gowland, Stratford et al. 1993, Sanford, Moreland et al.

1993).

 Table 2: Patient demographic information

Characteristics Range Mean

Age in years 43 to 76 63

Years post stroke 3.5 to 13 8

Fugl-Meyer score (out of 66) 2 to 66 43

Chedoke score (out of 7) 1 to 7 5

Modified Ashworth score 0 to 3 1.5

3.1.2 Study Protocol

Subjects answered pre- and post-game surveys before and after interacting with

the games for half an hour (Fig. 17). These surveys were then used to construct the HOQ.

The pre-game survey was designed to better understand the user expectations about the

virtual rehabilitation game systems. The survey included 10 questions related to user

expectations on usability and functional implications of the low-cost virtual rehabilitation

games. Total ten criteria to be used in HOQ analysis were extracted from these survey

questions, which are: (1) easy to understand, (2) easy to use, (3) adaptation of the game to

the patient’s functional ability/ improvement, (4) interesting (5) challenging, (6) graphics

quality, (7) progression score, (8) variety of different scenes, activities and games, (9)

integrating clinical assessment (10) proven clinical effect (Fig. 18B).

26

The post-game survey was similar to the pre-game survey with the same 10

criteria but re-worded to determine which expectations were met with the games. The

subjects were asked to select an answer on a Likert scale of 1-5 (least to most

satisfactory). Pre and post-game surveys provided data to construct the HOQ matrix in

order to quantitatively identify the technical characteristics of the game that should have

the highest priority for improvement for future development. Also, the post-game survey

included an open ended feedback to provide remarks about the games.

Figure 17: Usability evaluation workflow of the rehabilitation games. Patients’ feedback

was analyzed in this pattern.

 During the gaming session, subjects were given the instruction manual (see

Appendix) for the games, a computer running Windows 7 with the games already

installed, and the hardware (Kinect and P5 Glove). The instruction manual described

where to place the hardware and how to wear P5 Glove, turn the hardware on, and run the

game software before being able to play the games.

27

3.1.3 House of Quality Analysis:

An HOQ matrix is an orderly way of defining improvement priorities among the

technical characteristics of a product to effectively respond to user expectations in future

designs of the product (Logan and Radcliffe 1997). The HOQ is completed in following

steps: (1) The engineer determines the technical characteristics, j (Fig. 18A). (2) The

engineer determines the patient expectation criteria to be included in the pre-game

survey, i (Fig. 18B). (3) The relationship between technical characteristics and the patient

expectation criteria are determined by the engineer for the interrelationship matrix index,

Iij (Fig. 18C), which has three levels (strong relationship as 9, moderate relationship as 3,

and weak relationship as 1, Fig. 18D). (4) The expectation weight for each criterion is

calculated as the mean of patients’ pre-game survey scores, Wi. (5) The response weight

for each criterion is calculated from the patients’ response in the post-game survey, Ri.

(6) Priority weight (Pj) for each technical characteristic is computed using Equation 3,

using the interrelationship matrix index (Iij), the pre-game survey (Wi), and the post-

game survey (Ri). (7) The priority weight is expressed into percentage. (8) The technical

characteristic with the highest priority weight is considered to have the maximum need to

be improved.

The technical characteristics included are shown in Fig. 18A. Specifically, the

installation manual represents the presence, quality, and understandability of a paper-

version installation manual. Game instructions are the instructions that show up on the

 ∑

 (3)

28

computer monitor during the game play to prompt the user for next necessary actions as

the user progresses through the game, such as the words shown in Figure 5. Device

reliability is the probability of a device performing its required function and producing

same results on repeated trials (Miller, Epstein et al. 1985). Game reliability represents

the game’s ability to provide scores in a consistent manner. Game adaptation represents

the game’s ability to change its contents according to the user’s functional ability and

improvement over time, possibly by using Artificial Intelligence (AI). The number of

levels represents various levels of difficulty and challenges in the game for the user to

work through. Game realism represents the user’s perception that the virtual

environment is real, facilitated by realistic objects, environment, sounds, textures, and

physics simulation. 3-D display is concerned with the technical decision on whether

high quality 3-D display would be needed or 2-D display would suffice for rehabilitation

games to satisfy users’ expectation. Clinical assessment represents administration of

clinical tests such as the Fugl-Meyer Assessment within the virtual game setup without

clinicians’ presence in order for clinicians to track and easily understand recovery and

progress of the patients during the course of game usage. Lastly, clinical evidence

represents clinical trials that demonstrate that the virtual rehabilitation game effectively

enhances users’ upper limb function.

29

Figure 18: (A) Technical characteristics of the games (j). (B) Patient expectations from

pre-game survey (i). (C) Interrelationship matrix showing the relationship between

technical characteristics and the patient expectation criteria (Iij), (D) Levels of

relationships for the interrelationship matrix.

3.2 Results

3.2.1 HOQ results

The pre-game survey showed that the highest expectation that patients had of

virtual rehabilitation game criteria was for the game to be challenging, shown by a mean

± standard deviation (SD) expectation weight of 4.1 ± 0.6 (Fig. 19) out of a highest score

of 5 on a Likert scale. These pre-game survey results of the expectation weights were

provided in the left column of the HOQ matrix in Fig. 20. The lowest criterion that

patients rated for expectation was the graphics quality with the expectation weight of 3.0

± 1.3. Other criteria were found to be moderately important to the users.

B

A

C

D

30

Figure 19: Mean ± standard deviation (SD) of the patients’ expectations of virtual

rehabilitation games based on the pre-game survey criteria, referred to as the expectation

weight, W. The expectation criterion of challenging (green bar) was weighted the highest

and the graphics quality (red bar) was the lowest weighted expectation in the pre-game

survey.

0

1

2

3

4

5

Ex
p

e
ct

at
io

n
 W

e
ig

h
t,

 W

31

Figure 20: Patients’ expectations of virtual rehabilitation games based on the pre-

game survey criteria, referred to as the expectation weights, shown in the left column of

the HOQ matrix

The post-game survey results showed that the kitchen game and the archery game

were similar in patient evaluation with a response weight of 3.5 ± 0.3 and 3.6 ± 0.2 out of

a highest score of 5 on a Likert scale, respectively (Fig. 21A). The puzzle game had the

lowest overall response weight of the three games with a response weight of 3.2 ± 0.5.

When examining individual criteria, all of the games achieved the highest response

weight of 3.9 for the challenging criteria (Fig. 21B). These post-game survey results were

also provided in the right column of the HOQ matrix in Fig. 22.

32

Figure 21: Mean ± SD of the patients’ response weight, Ri, for each game for all of the

criteria combined (A) and for each criterion (B) based on the post-game survey.

0

1

2

3

4

5

Kitchen game Archery game Puzzle game

R
e

sp
o

n
se

 W
e

ig
h

t,
 R

i

0

1

2

3

4

5

R
e

sp
o

n
se

 W
e

ig
h

t,
 R

i

Kitchen game Archery game Puzzle game

A

B

33

Figure 22: Patients’ evaluations of the virtual rehabilitation games based on the post-

game survey, referred to as the response weight, are shown in the right column of the

HOQ matrix

Priority weight results are shown in Fig. 23. The priority weights were computed

using Equation 3, with the expectation and response weights obtained from the pre- and

post-game surveys. Device reliability was rated with the highest priority weight, meaning

device reliability needs the most improvement according to the HOQ analysis (Fig. 23). It

was also noticeable that the priority weights for four technical characteristics (installation

manual, game instructions, game realism, and 3-D display) were comparable to each

other and were lower than priority weights of other characteristics (Fig. 23). These four

characteristic were considered to have the lowest need for improvement in our study.

34

Rest of the technical characteristics had medium need for improvement. The moderate

priority technical characteristics were game reliability, game adaptation/ AI, number of

levels, clinical assessment, and clinical effectiveness. These results were also provided in

the bottom rows of the HOQ matrix (Fig. 24). The technical characteristic with the

highest priority are in red text, followed by moderate priority characteristics in brown,

and lastly characteristics with lowest priority need in green. When priority weights for

technical characteristics were averaged within a game, HOQ showed that device

reliability obtained priority weight of 15% for the kitchen game, 16% for the archery

game and 15% for the puzzle game.

Figure 23: Priority weight for each technical characteristic in each game was divided

into highest, moderate, and the lowest priority need. Based on HOQ, device reliability

showed the highest priority need for improvement.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

Priority
weight, %

Kitchen Game Archery game Puzzle game

High priority Moderate priority

Low priority

35

Figure 24: The HOQ matrix for a low-cost VR games identified priority needs as an

outcome (bottom row), based on patients’ expectation ratings (left column), the game’s

technical characteristics (top row), interrelationship matrix (center), and patients’

evaluation of the game (right column). Red, brown, and green numbers indicate the

highest, intermediate, and the lowest technical improvement.

The open-ended feedback collected based on the post-game survey supported

HOQ results. Specifically, open-ended feedback showed that patients really enjoyed that

the games were challenging and fun. Some of the comments obtained were: (1) “The

kitchen game was interesting, the plates fell just like real [plates upon dropping], the tea

kettle made real house [looked real], and silverware was challenging to lift”.

(2) “The archery game was challenging. The bow showed easy direction to shoot the

targets”. (3) “The puzzle game was challenging and the states were easy to understand

36

and I like the color scheme”. Open-ended feedback also showed device reliability issues.

For instance, one patient commented “Kinect and P5 Glove didn’t work all the time.

[My] Frustration level was high”.

3.3 Discussion and Conclusions

The usability evaluation of the virtual rehabilitation games concluded that there is

additional scope of work available in the area of device reliability. Device reliability

pertains to the motion tracking devices performing their required function. It was

observed during the game play that Kinect and P5 Glove sometimes could not track a

patient’s arm and finger movements well because the patient’s arm was outside the

capture range. Therefore, one of the ways to improve device reliability for the virtual

rehabilitation games may be to improve the instruction manual to visualize the capture

range so that users gain better understanding of the capture volumes of each motion

tracking device. Moreover, the games may be modified to generate a warning sign when

the movements go out of the capture volume. Filtering of the data could also improve

smoothness of virtual arm movements. Advanced movement prediction algorithms to

compensate for the device reliability related issues may help usability of the virtual

rehabilitation games. In summary, to have the virtual rehabilitation game accepted by

patients, improvement on device reliability was identified as a priority development

requirement based on the usability evaluation (Fig. 23, Fig. 24).

In addition, the result of the pre-game survey questionnaire clearly indicates

(Fig.20) that the patients expect more of challenging games than that of a high quality

graphics. The post-game survey results show that the patients’ highest expectation

37

criterion of ‘challenging game’ was met without compromising the graphics quality

expected by the patients (Fig. 22, 4.1/5 pre-game expectation weight vs. 3.9/5 post-game

response weight for challenging). The resulting mean response weight of 3.5/5 from post-

game survey shows that the evaluation results of all three games indicate a good overall

rating and likeability (Fig. 22).

38

4. DISCUSSION AND CONCLUSION

4.1 Low-cost rehabilitation game development

This study used commercially available motion tracking devices of Kinect and P5

Glove and free Blender software for developing a low-cost virtual rehabilitation game

that practices arm and finger coordination. While Kinect (Roy, Soni et al. 2013) has been

used for rehabilitation games that involve gross upper limb movements of the shoulder

and elbow, Kinect alone is unable to measure finger motion. Hence, P5 Glove, which

detects finger flexion/extension associated with grasping and releasing of objects, was

combined with Kinect in this thesis to complete the motion tracking for the whole upper-

limb including fingers. The innovation of this thesis is the combination of Kinect and P5

Glove motion capture systems, because such combination has previously not been used

for a virtual rehabilitation game. As mentioned before, most daily living activities

involving the upper limb require coordination of the gross and fine motor movements of

the arm and fingers such as reaching and grasping of objects with elbow extension and

forearm rotation. Thus it becomes of foremost importance to have an effective upper limb

rehabilitation approach which involves coordination of the arm and finger movements.

The kitchen game developed in this thesis also provides clinically relevant information

such as the joint range of motion and time to complete each task, facilitating clinicians’

understanding of patients’ progress.

The major benefit of Kinect and P5 Glove is that they are less expensive

compared to other position tracking devices such as the Optotrak and CyberGlove,

respectively (Table 3). In addition, use of the free open-source Blender software helps

keeping the total cost down. A cost comparison between the traditional motion capture

39

and virtual environment systems and the low-cost virtual rehabilitation game developed

in this thesis is shown in Table 3. The expected total cost of our low-cost rehabilitation

system is $140, which includes both of the motion tracking devices (Kinect and P5

Glove) and the free open-source Blender software (Table 3). On the other hand, a

traditional system composed of Optotrak, CyberGlove, and the World ToolKit software

(to program the Optotrak and CyberGlove) is estimated to cost approximately $76,000.

Thus, the low-cost virtual rehabilitation game in this thesis offers a powerful advantage

over the current rehabilitation systems in terms of cost. An additional benefit to the low-

cost virtual rehabilitation game in this thesis is that the game can be played using any

basic personal computer with graphics and sound capabilities. There is no need to install

any specific software to run the game other than the device drivers for Kinect and P5

Glove when they are using the devices for the first time.

Table 3: Virtual rehabilitation game system cost comparison

4.2 Usability evaluation of the virtual rehabilitation games

Within the House of Quality assessment, the pre-game survey results showed that

patients’ highest desire in a virtual rehabilitation game is for the games to be challenging.

The three games developed in our laboratory were well received in that regard. In

addition, our games in general met patients’ expectations as evidenced by above-average

post-game response weight of 3.5/5 for all games. These findings are promising enough

System component Our low-cost virtual

rehabilitation game

Other rehabilitation

game options

Arm motion capture

camera system

Microsoft Kinect ~$100 Optotrak ~$60,000

Finger motion

capture system

P5 Glove ~$40 Cyber Glove ~$10,000

Programming Toolkit Blender (free software) World ToolKit ~$6,000

40

to lead the researchers to further improve the low-cost virtual rehabilitation games for

clinical adoption.

The usability evaluation/HOQ priority weight analysis of the virtual rehabilitation

games also show that there is additional work required in the area of device reliability.

Device reliability can consist of quality and performance of hardware and set-up and

calibration of hardware. The quality and performance of the hardware are linked with the

price; therefore there may not be much room for improvement for this category.

However, game software may compensate for the hardware quality by utilizing motion

prediction algorithm and filtering (Pastor, Hayes et al. 2012). For instance, jittery

movements based on Kinect data (Obdrzalek, Kurillo et al. 2012) could be resolved by

filtering the noise data by using Kalman filter (Welch and Bishop 1995). Kalman filter is

used as a predictor-estimator model and it estimates the output based on the certainty of

prior state. Kalman filter is used for estimating the upper limb segment orientation in real

time (Yun and Bachmann 2006). Future versions of these low-cost virtual rehabilitation

games may integrate this filtering technique for better game performance and user

experience.

As for set-up of hardware, the instruction manual described where to locate

Kinect and P5 Glove sensor receptor but not in absolute details. As a result, it was

observed that many patients placed the sensors such that they were not standing within

the capture range. Therefore, the instruction manual may be improved to better explain

the appropriate location of the sensors by including more explanatory figures for the

capture range. Also, a few modifications to the games to generate a warning sign to

indicate the user movements go out of range would prevent the user, falling out of

41

capture range. In addition, patient-specific calibration procedures may be added as

needed to adapt to patients’ movement capability.

4.3 Conclusions

We developed a virtual rehabilitation game with free Blender software and

affordable motion tracking devices of Kinect and P5 Glove. This virtual rehabilitation

game demonstrated strong potential and feasibility for a low-cost rehabilitation game

system for home or clinic use with expected cost of $140 for the hardware and free open

source software. The low-cost virtual rehabilitation game have potential to significantly

facilitate patients’ physical rehabilitation for coordinated arm and finger movements

because of their feasibility to be available to a wide population, even in chronic stages

after stroke. The low-cost virtual rehabilitation game can also provide clinically relevant

information such as the joint range of motion and time to complete tasks, thereby

facilitating clinicians’ understanding of patients’ progress.

Our usability evaluation using a well-known method of House of Quality showed

that our low-cost virtual rehabilitation games were liked by our patient population. We

were able to identify the top priority improvement need of the game system which was

device reliability. Future work should develop better data processing algorithms and

instructions in order to improve the device reliability.

This thesis provides evidence that it is possible to develop a low-cost and usable

rehabilitation game by using commercially available hardware and free software. Such

technical development is expected to be important to motivate and encourage patients to

practice movements in various scenarios to result in positive outcomes (Kwakkel,

Wagenaar et al. 1997). Upon refining the games per usability evaluation, long-term

42

clinical studies will be needed to determine the clinical efficacy of low-cost virtual

rehabilitation games on patients’ physical functions. Furthermore, accessibility for

patients and compatibility with conventional rehabilitation programs may be considered

to facilitate bench to bed side translation.

43

References

Billinger, S. A., R. Arena, J. Bernhardt, J. J. Eng, B. A. Franklin, C. M. Johnson, M.

MacKay-Lyons, R. F. Macko, G. E. Mead and E. J. Roth (2014). "AHA/ASA Scientific

Statement: Physical Activity and Exercise Recommendations for Stroke Survivors: A

Statement for Healthcare Professionals From the American Heart Association/American

Stroke Association."

Broeks, G., GJ Lankhorst, K. Rumping, AJH Prevo, J (1999). "The long-term outcome of

arm function after stroke: results of a follow-up study." Disability & Rehabilitation 21(8):

357-364.

Burdea, G. (2002). Keynote address: Virtual rehabilitation-benefits and challenges. 1st

International Workshop on Virtual Reality Rehabilitation (Mental Health, Neurological,

Physical, Vocational) VRMHR, sn.

Burke, J. W., M. McNeill, D. Charles, P. J. Morrow, J. Crosbie and S. McDonough

(2009). Serious games for upper limb rehabilitation following stroke. Games and Virtual

Worlds for Serious Applications, 2009. VS-GAMES'09. Conference in, IEEE.

Carroll, D. (1965). "A quantitative test of upper extremity function." Journal of chronic

diseases 18(5): 479-491.

Crocher, V., P. Hur and N. J. Seo (2013). Low-cost virtual rehabilitation games: House of

quality to meet patient expectations. Virtual Rehabilitation (ICVR), 2013 International

Conference on, IEEE.

Crosbie, J., S. Lennon, M. McNeill and S. McDonough (2006). "Virtual reality in the

rehabilitation of the upper limb after stroke: the user’s perspective." CyberPsychology &

Behavior 9(2): 137-141.

Davison, A. (2007). "The P5 Glove." Pro Java™ 6 3D Game Development: Java 3D™,

JOGL, JInput, and JOAL APIs: 349-373.

Duff, M., Y. Chen, S. Attygalle, J. Herman, H. Sundaram, G. Qian, J. He and T. Rikakis

(2010). "An adaptive mixed reality training system for stroke rehabilitation." Neural

Systems and Rehabilitation Engineering, IEEE Transactions on 18(5): 531-541.

Duncan, P. W., M. Propst and S. G. Nelson (1983). "Reliability of the Fugl-Meyer

assessment of sensorimotor recovery following cerebrovascular accident." Physical

therapy 63(10): 1606-1610.

Fugl-Meyer, A. R., L. Jääskö, I. Leyman, S. Olsson and S. Steglind (1974). "The post-

stroke hemiplegic patient. 1. a method for evaluation of physical performance."

Scandinavian journal of rehabilitation medicine 7(1): 13-31.

44

Glanz, K., A. S. Rizzo and K. Graap (2003). "Virtual reality for psychotherapy: Current

reality and future possibilities." Psychotherapy: Theory, Research, Practice, Training

40(1-2): 55.

Gowland, C., P. Stratford, M. Ward, J. Moreland, W. Torresin, S. Van Hullenaar, J.

Sanford, S. Barreca, B. Vanspall and N. Plews (1993). "Measuring physical impairment

and disability with the Chedoke-McMaster Stroke Assessment." Stroke 24(1): 58-63.

Hackett, M. L., J. R. Duncan, C. S. Anderson, J. B. Broad and R. Bonita (2000). "Health-

Related Quality of Life Among Long-Term Survivors of Stroke Results From the

Auckland Stroke Study, 1991–1992." Stroke 31(2): 440-447.

Hauser, J. R. (1993). "How Puritan-Bennett used the house of quality." Sloan

Management Review 34(3): 61-70.

Hauser, J. R. and D. Clausing (1988). "The house of quality."

Krakauer, J. W. (2006). "Motor learning: its relevance to stroke recovery and

neurorehabilitation." Current opinion in neurology 19(1): 84-90.

Kwakkel, G., R. C. Wagenaar, T. W. Koelman, G. J. Lankhorst and J. C. Koetsier (1997).

"Effects of intensity of rehabilitation after stroke a research synthesis." Stroke 28(8):

1550-1556.

LaBelle, K. (2011). "Evaluation of Kinect joint tracking for clinical and in-home stroke

rehabilitation tools." Undergraduate Thesis, University of Notre Dame.

Lange, B., S. Flynn and A. Rizzo (2009). "Initial usability assessment of off-the-shelf

video game consoles for clinical game-based motor rehabilitation." Physical Therapy

Reviews 14(5): 355.

Lange, B., S. Rizzo, C.-Y. Chang, E. A. Suma and M. Bolas (2011). Markerless full body

tracking: Depth-sensing technology within virtual environments. The

Interservice/Industry Training, Simulation & Education Conference (I/ITSEC), NTSA.

Lloyd-Jones, D., R. J. Adams, T. M. Brown, M. Carnethon, S. Dai, G. De Simone, T. B.

Ferguson, E. Ford, K. Furie and C. Gillespie (2010). "Heart disease and stroke

statistics—2010 update A report from the American Heart Association." Circulation

121(7): e46-e215.

Logan, G. D. and D. F. Radcliffe (1997). "Potential for use of a House of Quality matrix

technique in rehabilitation engineering [wheelchair customized seating]." Rehabilitation

Engineering, IEEE Transactions on 5(1): 106-115.

Luck, R. (2003). "Dialogue in participatory design." Design Studies 24(6): 523-535.

Mark, V. W. and E. Taub (2004). "Constraint-induced movement therapy for chronic

stroke hemiparesis and other disabilities." Restor Neurol Neurosci 22(3-5): 317-336.

45

Miller, I. W., N. B. Epstein, D. S. Bishop and G. I. Keitner (1985). "THE McMASTER

FAMILY ASSESSMENT DEVICE: RELIABILITY AND VALIDITY*." Journal of

Marital and Family Therapy 11(4): 345-356.

Morrow, K., C. Docan, G. Burdea and A. Merians (2006). Low-cost virtual rehabilitation

of the hand for patients post-stroke. Virtual Rehabilitation, 2006 International Workshop

on, IEEE.

O'Sullivan, S. B. and T. J. Schmitz (2007). Physical Rehabilitation, F a Davis Company.

Obdrzalek, S., G. Kurillo, F. Ofli, R. Bajcsy, E. Seto, H. Jimison and M. Pavel (2012).

Accuracy and robustness of Kinect pose estimation in the context of coaching of elderly

population. Engineering in Medicine and Biology Society (EMBC), 2012 Annual

International Conference of the IEEE, IEEE.

Page, S. J., S. Sisto, P. Levine and R. E. McGrath (2004). "Efficacy of modified

constraint-induced movement therapy in chronic stroke: a single-blinded randomized

controlled trial." Archives of physical medicine and rehabilitation 85(1): 14-18.

Pastor, I., H. A. Hayes and S. J. Bamberg (2012). A feasibility study of an upper limb

rehabilitation system using kinect and computer games. Engineering in Medicine and

Biology Society (EMBC), 2012 Annual International Conference of the IEEE, IEEE.

Postel, J. (1980). "User datagram protocol." Isi.

Putman, K., L. De Wit, W. Schupp, B. Ilse, P. Berman, L. Connell, E. Dejaeger, A.-M.

De Meyer, W. De Weerdt and H. Feys (2006). "Use of time by physiotherapists and

occupational therapists in a stroke rehabilitation unit: a comparison between four

European rehabilitation centres." Disability & Rehabilitation 28(22): 1417-1424.

Rizzo, A. A., T. Bowerly, J. G. Buckwalter, M. Schultheis, R. Matheis, C. Shahabi, U.

Neumann, L. Kim and M. Sharifzadeh (2002). Virtual environments for the assessment of

attention and memory processes: the virtual classroom and office. Proceeding of the 4th

International Conference on Disability, Virtual Reality and Associated Technology:

University of Reading: Vresprem, Hungary.

Roger, V. L., A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R.

Carnethon, S. Dai, G. de Simone and E. S. Ford (2011). "Heart disease and stroke

statistics—2011 update a report from the American Heart Association." Circulation

123(4): e18-e209.

Roy, A. K., Y. Soni and S. Dubey (2013). Enhancing effectiveness of motor

rehabilitation using kinect motion sensing technology. Global Humanitarian Technology

Conference: South Asia Satellite (GHTC-SAS), 2013 IEEE, IEEE.

Sanford, J., J. Moreland, L. R. Swanson, P. W. Stratford and C. Gowland (1993).

"Reliability of the Fugl-Meyer assessment for testing motor performance in patients

following stroke." Physical therapy 73(7): 447-454.

46

Stanger, C. A., C. Anglin, W. S. Harwin and D. P. Romilly (1994). "Devices for assisting

manipulation: a summary of user task priorities." Rehabilitation Engineering, IEEE

Transactions on 2(4): 256-265.

Subramanian, S., L. A. Knaut, C. Beaudoin, B. J. McFadyen, A. G. Feldman and M. F.

Levin (2007). "Virtual reality environments for post-stroke arm rehabilitation." Journal of

neuroengineering and rehabilitation 4(1): 20.

Sullivan, L. P. (1986). Quality Function Deployment, Quality Progress:39-50

Sveistrup, H., J. McComas, M. Thornton, S. Marshall, H. Finestone, A. McCormick, K.

Babulic and A. Mayhew (2003). "Experimental studies of virtual reality-delivered

compared to conventional exercise programs for rehabilitation." CyberPsychology &

Behavior 6(3): 245-249.

Towfighi, A. and J. L. Saver (2011). "Stroke declines from third to fourth leading cause

of death in the United States: historical perspective and challenges ahead." Stroke 42(8):

2351-2355.

Wade, D., R. Langton-Hewer, V. Wood, C. Skilbeck and H. Ismail (1983). "The

hemiplegic arm after stroke: measurement and recovery." Journal of Neurology,

Neurosurgery & Psychiatry 46(6): 521-524.

Wang, C., K. S. Phua, K. K. Ang, C. Guan, H. Zhang, R. Lin, K. Sui Geok Chua, B. T.

Ang and C. W. K. Kuah (2009). A feasibility study of non-invasive motor-imagery BCI-

based robotic rehabilitation for Stroke patients. Neural Engineering, 2009. NER'09. 4th

International IEEE/EMBS Conference on, IEEE.

Welch, G. and G. Bishop (1995). An introduction to the Kalman filter.

Yun, X. and E. R. Bachmann (2006). "Design, implementation, and experimental results

of a quaternion-based Kalman filter for human body motion tracking." Robotics, IEEE

Transactions on 22(6): 1216-1227.

Zimand, E., P. Anderson, J. Gershon, K. Graap, L. Hodges and B. Rothbaum (2002).

"Virtual reality therapy: Innovative treatment for anxiety disorders." Primary Psychiatry

9(7): 51-54.

47

Appendix: Abstracts & posters

Abstract 1

LOW-COST VIRTUAL REALITY GAME FOR UPPER LIMB

REHABILITATION USING KINECT AND P5 GLOVE

Jayashree Arun Kumar, Pilwon Hur, Binal Motawar and Na Jin Seo

University of Wisconsin, Milwaukee, WI, USA

email: arunkum2@uwm.edu, web: pantherfile.uwm.edu/seon/www/

The paper included in the following pages had submitted for inclusion in the 37
th

Annual meeting of the American Society of Biomechanics, Omaha, September 2013.

48

49

50

Abstract 2

USABILITY EVALUATION OF A LOW-COST VIRTUAL REALITY

REHABILITATION GAME FOR STROKE PATIENTS WITH UPPER LIMB

IMPAIRMENT USING KINECT AND P5 GLOVE

Jayashree Arun Kumar, Pilwon Hur, Kishor Lakshminarayanan and Na Jin Seo

University of Wisconsin, Milwaukee, WI, USA

email: arunkum2@uwm.edu, web: pantherfile.uwm.edu/seon/www/

The paper included in the following pages had been submitted for inclusion in the

38
th

 Annual meeting of the World Congress of Biomechanics, Massachusetts, July

2014.

51

52

53

Figure 25: Poster presentation - College of Engineering and Applied science (CEAS

2013)

54

Figure 26: Poster presentation - College of Engineering and Applied science (CEAS

2014)

55

Appendix: Software source code

Python software source code

Joint angle computation

import GameLogic

import bge

import mathutils

import math

from math import radians

from math import sin

import time

try:

 bge.logic.globalDict['start_time']

except KeyError:

 bge.logic.globalDict['start_time']=10000

 bge.logic.globalDict['elapsed_time']=0

 bge.logic.globalDict['Text']=0

 bge.logic.globalDict['Text']=bge.logic.globalDict['Text']+ 0.0165

 print("*********************not defined***********")

bge.logic.globalDict['start_time'] = timer()

print("time.time and time_clock()", time.time(),time.clock())

#start_time=bge.logic.globalDict['start_time']

print("Start time",bge.logic.globalDict['start_time'])

distance=0.15

distance1=0.25

try:

 bge.logic.globalDict['theta_min']

except KeyError:

 bge.logic.globalDict['theta_min']=10000

 bge.logic.globalDict['theta_max']=-10000

 bge.logic.globalDict['theta_prev']=0

 print("*********************not defined***********")

theta_prev=bge.logic.globalDict['theta_prev']

theta_max=bge.logic.globalDict['theta_max']

theta_min=bge.logic.globalDict['theta_min']

56

try:

 bge.logic.globalDict['alpha_min']

except KeyError:

 bge.logic.globalDict['alpha_min']=10000

 bge.logic.globalDict['alpha_max']=-10000

 bge.logic.globalDict['alpha_prev']=0

 print("*********************not defined***********")

alpha_prev=bge.logic.globalDict['alpha_prev']

alpha_max=bge.logic.globalDict['alpha_max']

alpha_min=bge.logic.globalDict['alpha_min']

try:

 bge.logic.globalDict['beta_min']

except KeyError:

 bge.logic.globalDict['beta_min']=10000

 bge.logic.globalDict['beta_max']=-10000

 bge.logic.globalDict['beta_prev']=0

 print("*********************not defined***********")

beta_prev=bge.logic.globalDict['beta_prev']

beta_max=bge.logic.globalDict['beta_max']

beta_min=bge.logic.globalDict['beta_min']

try:

 bge.logic.globalDict['gamma_min']

except KeyError:

 bge.logic.globalDict['gamma_min']=10000

 bge.logic.globalDict['gamma_max']=-10000

 bge.logic.globalDict['gamma_prev']=0

 print("*********************not defined***********")

gamma_prev=bge.logic.globalDict['gamma_prev']

gamma_max=bge.logic.globalDict['gamma_max']

gamma_min=bge.logic.globalDict['gamma_min']

cont = GameLogic.getCurrentController()

objects= GameLogic.getCurrentScene().objects

owner = cont.owner

x=1.5

y=1

z=2.0

armature = cont.owner

57

bone1 = armature.channels["Bone.forarm"]

bl=bone1.joint_rotation

bone2 = armature.channels["Bone.bicept"]

Bone = armature.channels["Bone"]

bone3 = armature.channels["Bone.003"]

Bone_012 = armature.channels["Bone.012"]

Bone_009 = armature.channels["Bone.009"]

Bone_014 = armature.channels["Bone.014"]

Bone_001 = armature.channels["Bone.001"]

Bone_010= armature.channels["Bone.010"]

Bone_013 = armature.channels["Bone.013"]

Bone_015 = armature.channels["Bone.015"]

bone4 = armature.channels["Bone.004"]

bone5 = armature.channels["Bone.005"]

Bone_002 = armature.channels["Bone.002"]

Bone_011 = armature.channels["Bone.011"]

bone5 = armature.channels["Bone.014"]

Bone_016 = armature.channels["Bone.016"]

bone1.rotation_mode = 5

bone2.rotation_mode = 5

bone3.rotation_mode = 5

bone4.rotation_mode = 5

bone5.rotation_mode = 5

Bone .rotation_mode = 5

Bone_001.rotation_mode = 5

Bone_002.rotation_mode = 5

Bone_015.rotation_mode = 5

Bone_016.rotation_mode = 5

Bone_009.rotation_mode = 5

Bone_010.rotation_mode = 5

Bone_011.rotation_mode = 5

Bone_012.rotation_mode = 5

Bone_013.rotation_mode = 5

Bone_014.rotation_mode = 5

euler = bone1.rotation_euler

euler = bone2.rotation_euler

euler = bone3.rotation_euler

euler = bone4.rotation_euler

euler = bone5.rotation_euler

euler = Bone.rotation_euler

euler = Bone_001.rotation_euler

euler = Bone_002.rotation_euler

58

euler = Bone_015.rotation_euler

euler = Bone_016.rotation_euler

euler = Bone_009.rotation_euler

euler = Bone_010.rotation_euler

euler = Bone_011.rotation_euler

euler = Bone_012.rotation_euler

euler = Bone_013.rotation_euler

euler = Bone_014.rotation_euler

x = euler.z + 0.01

tempstr1=bge.logic.globalDict['Data']

tempstr2=tempstr1.replace("b","")

tempstr=tempstr2.replace("'","")

bge.logic.globalDict['tempdata']= tempstr.split()

#Joint angles computation

if len(bge.logic.globalDict['tempdata'])>9:

 Shoulder = []

 for i in range(3):

 Shoulder.append(bge.logic.globalDict['tempdata'][i+1])

 print(Shoulder)

 Elbow = []

 for i in range(3):

 Elbow.append(bge.logic.globalDict['tempdata'][i+4])

 Wrist = []

 for i in range(3):

 Wrist.append(bge.logic.globalDict['tempdata'][i+7])

#Elbow angle

 ES = []

 EW = []# used for elbow rotation

 WE = []

 for i in range(3):

 ES.append(float(Shoulder[i])-float(Elbow[i]))

 EW.append(float(Wrist[i])-float(Elbow[i]))

 WE.append(float(Elbow[i])-float(Wrist[i]))

 ESNorm=math.sqrt(ES[0]*ES[0]+ES[1]*ES[1]+ES[2]*ES[2])

 EWNorm=math.sqrt(EW[0]*EW[0]+EW[1]*EW[1]+EW[2]*EW[2])

59

 WENorm=math.sqrt(WE[0]*WE[0]+WE[1]*WE[1]+WE[2]*WE[2])

 for i in range(3):

 ES[i]=ES[i]/ESNorm

 EW[i]=EW[i]/EWNorm

 WE[i]=WE[i]/WENorm

 dotprod=ES[0]*EW[0]+ES[1]*EW[1]+ES[2]*EW[2]

 el=bone1.channel_matrix

 theta = math.acos(dotprod)

 print("Elbow angle",theta)

 if(theta-theta_prev)>math.pi:

 theta=(theta-(2*math.pi))

 elif(theta-theta_prev)<-math.pi:

 theta=(theta+(2*math.pi))

 if theta<theta_min:

 theta_min=theta

 if theta>theta_max:

 theta_max=theta

 theta_prev=theta

 print("theta_max",theta_max)

 print("theta_min",theta_min)

 bge.logic.globalDict['theta_max']=theta_max

 bge.logic.globalDict['theta_min']=theta_min

#Shoulder angles

#Alpha angle

 ES = []

 X=[1,0,0]

 for i in range(3):

 ES.append(float(Elbow[i])-float(Shoulder[i]))

 print(ES)

 ESNorm=math.sqrt(ES[0]*ES[0]+ES[1]*ES[1]+ES[2]*ES[2])

 for i in range(3):

 ES[i]=ES[i]/ESNorm

 #dot_alpha= X[0]*ES[0]+X[1]*ES[1]+X[2]*ES[2]

 alpha= math.atan2(-ES[2],ES[0])

 print("Alpha angle",alpha)

 if(alpha-alpha_prev)>math.pi:

60

 alpha=(alpha-(2*math.pi))

 elif(alpha-alpha_prev)<-math.pi:

 alpha=(alpha+(2*math.pi))

 if alpha<alpha_min:

 alpha_min=alpha

 if alpha>alpha_max:

 alpha_max=alpha

 alpha_prev=alpha

 print("alpha_max",alpha_max)

 print("alpha_min",alpha_min)

 bge.logic.globalDict['alpha_max']=alpha_max

 bge.logic.globalDict['alpha_min']=alpha_min

#Beta angle

 beta= math.asin(ES[1])

 print("Beta angle ",beta)

 if(beta-beta_prev)>math.pi:

 beta=(beta-(2*math.pi))

 elif(beta-beta_prev)<-math.pi:

 beta=(beta+(2*math.pi))

 if beta<beta_min:

 beta_min=beta

 if beta>beta_max:

 beta_max=beta

 beta_prev=beta

 print("beta_max",beta_max)

 print("beta_min",beta_min)

 bge.logic.globalDict['beta_max']=beta_max

 bge.logic.globalDict['beta_min']=beta_min

#Gamma Angle

 ES = []

 WE = []

 #print(dir(ES))

 for i in range(3):

 ES.append(float(Shoulder[i])-float(Elbow[i]))

 WE.append(float(Elbow[i])-float(Wrist[i]))

61

 ESNorm=math.sqrt(ES[0]*ES[0]+ES[1]*ES[1]+ES[2]*ES[2])

 WENorm=math.sqrt(WE[0]*WE[0]+WE[1]*WE[1]+WE[2]*WE[2])

 for i in range(3):

 ES[i]=ES[i]/ESNorm

 WE[i]=WE[i]/WENorm

 import mathutils

 vec_a = mathutils.Vector((WE[0],WE[1],WE[2]))

 vec_b = mathutils.Vector((ES[0],ES[1],ES[2]))

 cross_prod = vec_a.cross(vec_b)

 print("Cross Product of WE Vector and ES Vector ",cross_prod)

 cross_prod_Norm =

math.sqrt(cross_prod[0]*cross_prod[0]+cross_prod[1]*cross_prod[1]+cross_prod[2]*cro

ss_prod[2])

 for i in range(3):

 cross_prod[i]= cross_prod[i]/cross_prod_Norm

 XZ =[cross_prod[0],0,cross_prod[2]]

 from math import sin

 #Y=cross_prod[1]

 #print("Y value is",Y)

 #print("Opposite side of the sin",A)

 #Hyp=cross_prod[0]+cross_prod[1]+cross_prod[2]

 gam= cross_prod[0]*-(math.sin(alpha))+cross_prod[1]*0+cross_prod[2]*-

(math.cos(alpha))

 gamma=math.asin(gam)

 print("Gamma angle",gamma)

 if(gamma-gamma_prev)>math.pi:

 gamma=(gamma-(2*math.pi))

 elif(gamma-gamma_prev)<-math.pi:

 gamma=(gamma+(2*math.pi))

 if gamma<gamma_min:

 gamma_min=gamma

 if gamma>gamma_max:

 gamma_max=gamma

 gamma_prev=gamma

 print("gamma_max",gamma_max)

 print("gamma_min",gamma_min)

 bge.logic.globalDict['gamma_max']=gamma_max

 bge.logic.globalDict['gamma_min']=gamma_min

62

bone1.rotation_euler = [0,-gamma, math.pi-theta]

bone3.rotation_euler=[0,0,-float(bge.logic.globalDict['tempdata'][0])/40.0]

bone4.rotation_euler=[0,0,float(bge.logic.globalDict['tempdata'][0])/40.0]

bone5.rotation_euler=[0,float(bge.logic.globalDict['tempdata'][0])/40.0,0]

Bone.rotation_euler=[0,0,-float(bge.logic.globalDict['tempdata'][0])/40.0]

Bone_001.rotation_euler=[0,0,float(bge.logic.globalDict['tempdata'][0])/40.0]

Bone_002.rotation_euler=[0,-float(bge.logic.globalDict['tempdata'][0])/40.0,0]

Bone_015.rotation_euler=[0,0,-float(bge.logic.globalDict['tempdata'][0])/40.0]

Bone_016.rotation_euler=[0,0,float(bge.logic.globalDict['tempdata'][0])/40.0]

Bone_009.rotation_euler=[0,0,-float(bge.logic.globalDict['tempdata'][0])/40.0]

Bone_010.rotation_euler=[0,0,float(bge.logic.globalDict['tempdata'][0])/40.0]

Bone_011.rotation_euler=[0,-float(bge.logic.globalDict['tempdata'][0])/40.0,0]

Bone_012.rotation_euler=[0,0,-float(bge.logic.globalDict['tempdata'][0])/40.0]

Bone_013.rotation_euler=[0,0,float(bge.logic.globalDict['tempdata'][0])/40.0]

Bone_014.rotation_euler=[0,-float(bge.logic.globalDict['tempdata'][0])/40.0,0]

bone2.rotation_euler = [alpha-math.pi/2,(gamma)*0.1,beta]

#fingers = Bone_002.rotation_euler

armature.update()

bge.logic.globalDict['theta_ROM'] = (bge.logic.globalDict['theta_max']-

bge.logic.globalDict['theta_min'])

print("ROM_theta",bge.logic.globalDict['theta_ROM'])

bge.logic.globalDict['alpha_ROM'] = (bge.logic.globalDict['alpha_max']-

bge.logic.globalDict['alpha_min'])

print("ROM_alpha",bge.logic.globalDict['alpha_ROM'])

bge.logic.globalDict['beta_ROM'] = (bge.logic.globalDict['beta_max']-

bge.logic.globalDict['beta_min'])

print("ROM_beta",bge.logic.globalDict['beta_ROM'])

bge.logic.globalDict['gamma_ROM'] = (bge.logic.globalDict['gamma_max']-

bge.logic.globalDict['gamma_min'])

print("ROM_gamma",bge.logic.globalDict['gamma_ROM'])

bge.logic.globalDict['elapsed_time']= (timer() - bge.logic.globalDict['start_time'])

bge.logic.globalDict['elapsed_time'] = bge.logic.globalDict['elapsed_time'] * 1000

print ("elapsed_time",bge.logic.globalDict['elapsed_time'])

print("Global_dict.time",bge.logic.globalDict['Text'])

Server program

import bge, socket, GameLogic

63

import sys

import time

def main():

print('AAAA')

 cont = bge.logic.getCurrentController()

 own = cont.owner

print('BBB')

 if not 'init' in own:

 own['init']=1

 own['UDP_IP'] = "127.0.0.1"

 own['UDP_PORT'] = 8778

 address =(own['UDP_IP'],own['UDP_PORT'])

 print('Begin.')

 GameLogic.globalDict['sock'] = socket.socket(socket.AF_INET,

socket.SOCK_DGRAM)

 GameLogic.globalDict['sock'].setsockopt(socket.SOL_SOCKET,

socket.SO_REUSEADDR,3)

 ##GameLogic.globalDict['sock'].serve_forever()

 GameLogic.globalDict['sock'].bind(address)

 ##GameLogic.globalDict['sock'].listen(200)

 GameLogic.globalDict['sock'].setblocking(0)

 GameLogic.globalDict["EncoderReceiverState"] = 1

 bge.logic.globalDict['Data']='1'

 print('Socket created')

try:

 data,addr = GameLogic.globalDict['sock'].recvfrom(256)

 data = data.decode("utf-8")

 #print(data)

 bge.logic.globalDict['Data']=data

print(GameLogic.globalDict['Data'])

data = GameLogic.globalDict['Data'][0]

 #addr = GameLogic.globalDict['Data'][1]

new = data.split()

GameLogic.globalDict['new_array']= new

for i in new:print(i)

print(GameLogic.globalDict['new_array'][0])

 #print(new)

64

except:

 pass

if not data:

break

reply = 'OK...' + data

GameLogic.globalDict['sock'].sendto(reply ,addr)

print 'Message[' + addr[0] + ':' + str(addr[1]) + '] - ' + data.strip()

 # GameLogic.globalDict['sock'].close()

main()

C# software source code

Client program

//--

// <copyright file="MainWindow.xaml.cs" company="Microsoft">

// Copyright (c) Microsoft Corporation. All rights reserved.

// </copyright>

//--

namespace Microsoft.Samples.Kinect.SkeletonBasics

{

 using System;

 using System.IO;

 using System.Windows;

 using System.Windows.Media;

 using Microsoft.Kinect;

 using System.Net;

 using System.Net.Sockets;

 using System.Text;

 using System.Threading;

 using Zion.Input;

 /// <summary>

 /// Interaction logic for MainWindow.xaml

 /// </summary>

 ///

 public partial class MainWindow : Window

 {

 P5State p5state = new P5State();

 P5Dll p5 = new P5Dll();

 /// <summary>

65

 /// Width of output drawing

 /// </summary>

 private const float RenderWidth = 640.0f;

 /// <summary>

 /// Height of our output drawing

 /// </summary>

 private const float RenderHeight = 480.0f;

 /// <summary>

 /// Thickness of drawn joint lines

 /// </summary>

 private const double JointThickness = 3;

 /// <summary>

 /// Thickness of body center ellipse

 /// </summary>

 private const double BodyCenterThickness = 10;

 /// <summary>

 /// Thickness of clip edge rectangles

 /// </summary>

 private const double ClipBoundsThickness = 10;

 /// <summary>

 /// Brush used to draw skeleton center point

 /// </summary>

 private readonly Brush centerPointBrush = Brushes.Blue;

 /// <summary>

 /// Brush used for drawing joints that are currently tracked

 /// </summary>

 private readonly Brush trackedJointBrush = new

SolidColorBrush(Color.FromArgb(255, 68, 192, 68));

 /// <summary>

 /// Brush used for drawing joints that are currently inferred

 /// </summary>

 private readonly Brush inferredJointBrush = Brushes.Yellow;

 /// <summary>

 /// Pen used for drawing bones that are currently tracked

 /// </summary>

 private readonly Pen trackedBonePen = new Pen(Brushes.Green, 6);

 /// <summary>

66

 /// Pen used for drawing bones that are currently inferred

 /// </summary>

 private readonly Pen inferredBonePen = new Pen(Brushes.Gray, 1);

 /// <summary>

 /// Active Kinect sensor

 /// </summary>

 private KinectSensor sensor;

 /// <summary>

 /// Drawing group for skeleton rendering output

 /// </summary>

 private DrawingGroup drawingGroup;

 /// <summary>

 /// Drawing image that we will display

 /// </summary>

 private DrawingImage imageSource;

 /// <summary>

 /// Initializes a new instance of the MainWindow class.

 /// </summary>

 public MainWindow()

 {

 InitializeComponent();

 }

 /// <summary>

 /// Draws indicators to show which edges are clipping skeleton data

 /// </summary>

 /// <param name="skeleton">skeleton to draw clipping information for</param>

 /// <param name="drawingContext">drawing context to draw to</param>

 private static void RenderClippedEdges(Skeleton skeleton, DrawingContext

drawingContext)

 {

 if (skeleton.ClippedEdges.HasFlag(FrameEdges.Bottom))

 {

 drawingContext.DrawRectangle(

 Brushes.Red,

 null,

 new Rect(0, RenderHeight - ClipBoundsThickness, RenderWidth,

ClipBoundsThickness));

 }

 if (skeleton.ClippedEdges.HasFlag(FrameEdges.Top))

 {

67

 drawingContext.DrawRectangle(

 Brushes.Red,

 null,

 new Rect(0, 0, RenderWidth, ClipBoundsThickness));

 }

 if (skeleton.ClippedEdges.HasFlag(FrameEdges.Left))

 {

 drawingContext.DrawRectangle(

 Brushes.Red,

 null,

 new Rect(0, 0, ClipBoundsThickness, RenderHeight));

 }

 if (skeleton.ClippedEdges.HasFlag(FrameEdges.Right))

 {

 drawingContext.DrawRectangle(

 Brushes.Red,

 null,

 new Rect(RenderWidth - ClipBoundsThickness, 0, ClipBoundsThickness,

RenderHeight));

 }

 }

 /// <summary>

 /// Execute startup tasks

 /// </summary>

 /// <param name="sender">object sending the event</param>

 /// <param name="e">event arguments</param>

 private void WindowLoaded(object sender, RoutedEventArgs e)

 {

 // Create the drawing group we'll use for drawing

 this.drawingGroup = new DrawingGroup();

 // Create an image source that we can use in our image control

 this.imageSource = new DrawingImage(this.drawingGroup);

 // Display the drawing using our image control

 Image.Source = this.imageSource;

 // Look through all sensors and start the first connected one.

 // This requires that a Kinect is connected at the time of app startup.

 // To make your app robust against plug/unplug,

 // it is recommended to use KinectSensorChooser provided in

Microsoft.Kinect.Toolkit

68

 foreach (var potentialSensor in KinectSensor.KinectSensors)

 {

 if (potentialSensor.Status == KinectStatus.Connected)

 {

 this.sensor = potentialSensor;

 break;

 }

 }

 if (null != this.sensor)

 {

 // Turn on the skeleton stream to receive skeleton frames

 this.sensor.SkeletonStream.Enable();

 // Add an event handler to be called whenever there is new color frame data

 this.sensor.SkeletonFrameReady += this.SensorSkeletonFrameReady;

 // Start the sensor!

 try

 {

 this.sensor.Start();

 }

 catch (IOException)

 {

 this.sensor = null;

 }

 }

 if (null == this.sensor)

 {

 this.statusBarText.Text = Properties.Resources.NoKinectReady;

 }

 if (p5.Connect())

 {

 p5.SetMouseState(false);

 }

 //while (!messageReceived)

 //{

 // Thread.Sleep(100);

 //}

 }

 /// <summary>

69

 /// Execute shutdown tasks

 /// </summary>

 /// <param name="sender">object sending the event</param>

 /// <param name="e">event arguments</param>

 private void WindowClosing(object sender,

System.ComponentModel.CancelEventArgs e)

 {

 try

 {

 p5.Close();

 p5 = null;

 }

 catch

 { }

 if (null != this.sensor)

 {

 this.sensor.Stop();

 }

 }

 public bool udpDefined = false;

 Socket udpSocket2;

 EndPoint local2EP;

 EndPoint remote2EP;

 byte[] sendBuffer;

 /// <summary>

 /// Event handler for Kinect sensor's SkeletonFrameReady event

 /// </summary>

 /// <param name="sender">object sending the event</param>

 /// <param name="e">event arguments</param>

 private void SensorSkeletonFrameReady(object sender,

SkeletonFrameReadyEventArgs e)

 {

 Skeleton[] skeletons = new Skeleton[0];

 using (SkeletonFrame skeletonFrame = e.OpenSkeletonFrame())

 {

 if (skeletonFrame != null)

 {

 skeletons = new Skeleton[skeletonFrame.SkeletonArrayLength];

 skeletonFrame.CopySkeletonDataTo(skeletons);

 }

 }

70

 using (DrawingContext dc = this.drawingGroup.Open())

 {

 // Draw a transparent background to set the render size

 dc.DrawRectangle(Brushes.Black, null, new Rect(0.0, 0.0, RenderWidth,

RenderHeight));

 if (skeletons.Length != 0)

 {

 Skeleton skel = skeletons[0];

 double hipZ=0.0;

 double hipZ_prev=10000.0;

 foreach (Skeleton skel1 in skeletons)

 {

 if (skel1.TrackingState == SkeletonTrackingState.Tracked)

 {

 hipZ = skel1.Joints[JointType.HipCenter].Position.Z;

 if (hipZ < hipZ_prev)

 {

 hipZ_prev = hipZ;

 skel = skel1;

 }

 }

 }

 //Skeleton skel = skeletons[0];

 //SkeletonTrackingState.Tracked

 //skeletons.GetLength

 //foreach (Skeleton skel in skeletons)

 //{

 RenderClippedEdges(skel, dc);

 if (skel.TrackingState == SkeletonTrackingState.Tracked)

 {

 this.DrawBonesAndJoints(skel, dc);

 }

 else if (skel.TrackingState == SkeletonTrackingState.PositionOnly)

 {

 dc.DrawEllipse(

 this.centerPointBrush,

 null,

 this.SkeletonPointToScreen(skel.Position),

71

 BodyCenterThickness,

 BodyCenterThickness);

 }

 //}

 }

 // prevent drawing outside of our render area

 this.drawingGroup.ClipGeometry = new RectangleGeometry(new Rect(0.0,

0.0, RenderWidth, RenderHeight));

 }

 }

 /// <summary>

 /// Draws a skeleton's bones and joints

 /// </summary>

 /// <param name="skeleton">skeleton to draw</param>

 /// <param name="drawingContext">drawing context to draw to</param>

 private void DrawBonesAndJoints(Skeleton skeleton, DrawingContext

drawingContext)

 {

 if (!udpDefined)

 {

 udpDefined = true;

 udpSocket2 = new Socket(AddressFamily.InterNetwork, SocketType.Dgram,

ProtocolType.Udp);

 local2EP = new IPEndPoint(IPAddress.Any, 0);

 remote2EP = new IPEndPoint(IPAddress.Loopback, 8778);

 udpSocket2.ExclusiveAddressUse = false;

 udpSocket2.SetSocketOption(SocketOptionLevel.Socket,

SocketOptionName.ReuseAddress, true);

 udpSocket2.Bind(local2EP);

 udpSocket2.Blocking = false;

 }

 // Update p5 state

 //P5Dll.P5_GetState(0, 0, ref p5state);

 p5state=p5.GetState();

 float temp_sum1 = 0.0f;

 for (int i = 0; i < 5; i++)

 {

 temp_sum1 += (float)p5state.Finger[i]; // get finger bending info

 }

 int temp_sum = (int)Math.Round(temp_sum1 / 5.0);

 // Render Torso

72

 this.DrawBone(skeleton, drawingContext, JointType.Head,

JointType.ShoulderCenter);

 this.DrawBone(skeleton, drawingContext, JointType.ShoulderCenter,

JointType.ShoulderLeft);

 this.DrawBone(skeleton, drawingContext, JointType.ShoulderCenter,

JointType.ShoulderRight);

 this.DrawBone(skeleton, drawingContext, JointType.ShoulderCenter,

JointType.Spine);

 this.DrawBone(skeleton, drawingContext, JointType.Spine,

JointType.HipCenter);

 this.DrawBone(skeleton, drawingContext, JointType.HipCenter,

JointType.HipLeft);

 this.DrawBone(skeleton, drawingContext, JointType.HipCenter,

JointType.HipRight);

 // Left Arm

 this.DrawBone(skeleton, drawingContext, JointType.ShoulderLeft,

JointType.ElbowLeft);

 this.DrawBone(skeleton, drawingContext, JointType.ElbowLeft,

JointType.WristLeft);

 this.DrawBone(skeleton, drawingContext, JointType.WristLeft,

JointType.HandLeft);

 // Right Arm

 this.DrawBone(skeleton, drawingContext, JointType.ShoulderRight,

JointType.ElbowRight);

 this.DrawBone(skeleton, drawingContext, JointType.ElbowRight,

JointType.WristRight);

 this.DrawBone(skeleton, drawingContext, JointType.WristRight,

JointType.HandRight);

 // Left Leg

 this.DrawBone(skeleton, drawingContext, JointType.HipLeft,

JointType.KneeLeft);

 this.DrawBone(skeleton, drawingContext, JointType.KneeLeft,

JointType.AnkleLeft);

 this.DrawBone(skeleton, drawingContext, JointType.AnkleLeft,

JointType.FootLeft);

 // Right Leg

 this.DrawBone(skeleton, drawingContext, JointType.HipRight,

JointType.KneeRight);

 this.DrawBone(skeleton, drawingContext, JointType.KneeRight,

JointType.AnkleRight);

 this.DrawBone(skeleton, drawingContext, JointType.AnkleRight,

JointType.FootRight);

73

 Joint joint2 = skeleton.Joints[JointType.ShoulderRight];

 Joint joint8 = skeleton.Joints[JointType.ElbowRight];

 Joint joint10 = skeleton.Joints[JointType.WristRight];

 string udpString = temp_sum.ToString() + " " + joint2.Position.X.ToString("F4")

+ " " + joint2.Position.Y.ToString("F4") + " " + joint2.Position.Z.ToString("F4") + " ";

 udpString += joint8.Position.X.ToString("F4") + " " +

joint8.Position.Y.ToString("F4") + " " + joint8.Position.Z.ToString("F4") + " ";

 udpString += joint10.Position.X.ToString("F4") + " " +

joint10.Position.Y.ToString("F4") + " " + joint10.Position.Z.ToString("F4") + " ";

 sendBuffer = Encoding.ASCII.GetBytes(udpString);

 //sendBuffer = Encoding.ASCII.GetBytes(temp_sum.ToString());

 udpSocket2.SendTo(sendBuffer, remote2EP);

 this.Title = udpString;

 //Declares all 20 joint positons

 /*

 Joint joint0 = skeleton.Joints[JointType.Head];

 Joint joint1 = skeleton.Joints[JointType.ShoulderCenter];

 Joint joint2 = skeleton.Joints[JointType.ShoulderRight];

 Joint joint3 = skeleton.Joints[JointType.ShoulderLeft];

 Joint joint4 = skeleton.Joints[JointType.Spine];

 Joint joint5 = skeleton.Joints[JointType.HipCenter];

 Joint joint6 = skeleton.Joints[JointType.HipRight];

 Joint joint7 = skeleton.Joints[JointType.HipLeft];

 Joint joint8 = skeleton.Joints[JointType.ElbowRight];

 Joint joint9 = skeleton.Joints[JointType.ElbowLeft];

 Joint joint10 = skeleton.Joints[JointType.WristRight];

 Joint joint11 = skeleton.Joints[JointType.WristLeft];

 Joint joint12 = skeleton.Joints[JointType.HandRight];

 Joint joint13 = skeleton.Joints[JointType.HandLeft];

 Joint joint14 = skeleton.Joints[JointType.KneeRight];

 Joint joint15 = skeleton.Joints[JointType.KneeLeft];

 Joint joint16 = skeleton.Joints[JointType.AnkleRight];

 Joint joint17 = skeleton.Joints[JointType.AnkleLeft];

 Joint joint18 = skeleton.Joints[JointType.FootRight];

 Joint joint19 = skeleton.Joints[JointType.FootLeft];

 */

 //Displays X,Y,and Z in window title for the specified marker position

 //this.Title = "(" + joint19.Position.X.ToString() + " , " +

joint19.Position.Y.ToString() + " , " + joint19.Position.Z.ToString() + ")";

74

 //Records all of the data for the session

 /*

 writer.Write("{0} \t {1} \t {2} \t", joint0.Position.X.ToString(),

joint0.Position.Y.ToString(), joint0.Position.Z.ToString());

 writer.Write("{0} \t {1} \t {2} \t", joint1.Position.X.ToString(),

joint1.Position.Y.ToString(), joint1.Position.Z.ToString());

 writer.Write("{0} \t {1} \t {2} \t", joint2.Position.X.ToString(),

joint2.Position.Y.ToString(), joint2.Position.Z.ToString());

 writer.Write("{0} \t {1} \t {2} \t", joint3.Position.X.ToString(),

joint3.Position.Y.ToString(), joint3.Position.Z.ToString());

 writer.Write("{0} \t {1} \t {2} \t", joint4.Position.X.ToString(),

joint4.Position.Y.ToString(), joint4.Position.Z.ToString());

 writer.Write("{0} \t {1} \t {2} \t", joint5.Position.X.ToString(),

joint5.Position.Y.ToString(), joint5.Position.Z.ToString());

 writer.Write("{0} \t {1} \t {2} \t", joint6.Position.X.ToString(),

joint6.Position.Y.ToString(), joint6.Position.Z.ToString());

 writer.Write("{0} \t {1} \t {2} \t", joint7.Position.X.ToString(),

joint7.Position.Y.ToString(), joint7.Position.Z.ToString());

 writer.Write("{0} \t {1} \t {2} \t", joint8.Position.X.ToString(),

joint8.Position.Y.ToString(), joint8.Position.Z.ToString());

 writer.Write("{0} \t {1} \t {2} \t", joint9.Position.X.ToString(),

joint9.Position.Y.ToString(), joint9.Position.Z.ToString());

 writer.Write("{0} \t {1} \t {2} \t", joint10.Position.X.ToString(),

joint10.Position.Y.ToString(), joint10.Position.Z.ToString());

 writer.Write("{0} \t {1} \t {2} \t", joint11.Position.X.ToString(),

joint11.Position.Y.ToString(), joint11.Position.Z.ToString());

 writer.Write("{0} \t {1} \t {2} \t", joint12.Position.X.ToString(),

joint12.Position.Y.ToString(), joint12.Position.Z.ToString());

 writer.Write("{0} \t {1} \t {2} \t", joint13.Position.X.ToString(),

joint13.Position.Y.ToString(), joint13.Position.Z.ToString());

 writer.Write("{0} \t {1} \t {2} \t", joint14.Position.X.ToString(),

joint14.Position.Y.ToString(), joint14.Position.Z.ToString());

 writer.Write("{0} \t {1} \t {2} \t", joint15.Position.X.ToString(),

joint15.Position.Y.ToString(), joint15.Position.Z.ToString());

 writer.Write("{0} \t {1} \t {2} \t", joint16.Position.X.ToString(),

joint16.Position.Y.ToString(), joint16.Position.Z.ToString());

 writer.Write("{0} \t {1} \t {2} \t", joint17.Position.X.ToString(),

joint17.Position.Y.ToString(), joint17.Position.Z.ToString());

 writer.Write("{0} \t {1} \t {2} \t", joint18.Position.X.ToString(),

joint18.Position.Y.ToString(), joint18.Position.Z.ToString());

 writer.Write("{0} \t {1} \t {2} \n", joint19.Position.X.ToString(),

joint19.Position.Y.ToString(), joint19.Position.Z.ToString());

 */

 // Render Joints

 foreach (Joint joint in skeleton.Joints)

75

 {

 Brush drawBrush = null;

 if (joint.TrackingState == JointTrackingState.Tracked)

 {

 drawBrush = this.trackedJointBrush;

 }

 else if (joint.TrackingState == JointTrackingState.Inferred)

 {

 drawBrush = this.inferredJointBrush;

 }

 if (drawBrush != null)

 {

 drawingContext.DrawEllipse(drawBrush, null,

this.SkeletonPointToScreen(joint.Position), JointThickness, JointThickness);

 }

 }

 }

 public double getVerticalAngle(Joint shoulder, Joint wrist)

 {

 float diffx=wrist.Position.X-shoulder.Position.X;

 float diffy=wrist.Position.Y-shoulder.Position.Y;

 float diffz=wrist.Position.Z-shoulder.Position.Z;

 double

mag=Math.Sqrt(Math.Pow(diffx,2)+Math.Pow(diffy,2)+Math.Pow(diffz,2));

 return Math.Asin(diffy / mag) * 180 / Math.PI;

 }

 public double getHorizontalAngle(Joint shoulder, Joint wrist)

 {

 float diffx = wrist.Position.X - shoulder.Position.X;

 float diffz = wrist.Position.Z - shoulder.Position.Z;

 double mag = Math.Sqrt(Math.Pow(diffx, 2) + Math.Pow(diffz, 2));

 return Math.Asin(-diffx / mag)*180/Math.PI;

 //return Math.Atan2(diffx, diffz);

 }

 public double maxArmLength = 0;

 public double getBowStrength(Joint shoulder, Joint wrist)

 {

 float diffx = wrist.Position.X - shoulder.Position.X;

 float diffy = wrist.Position.Y - shoulder.Position.Y;

 float diffz = wrist.Position.Z - shoulder.Position.Z;

76

 double mag = Math.Sqrt(Math.Pow(diffx, 2) + Math.Pow(diffy, 2) +

Math.Pow(diffz, 2));

 maxArmLength = (maxArmLength < mag) ? mag : maxArmLength;

 double temp_strength=(maxArmLength - mag) / maxArmLength * 60.0;

 if (temp_strength<0.0)

 temp_strength=0;

 else if (temp_strength>40.0)

 temp_strength=40.0;

 return temp_strength;

 }

 /// <summary>

 /// Maps a SkeletonPoint to lie within our render space and converts to Point

 /// </summary>

 /// <param name="skelpoint">point to map</param>

 /// <returns>mapped point</returns>

 private Point SkeletonPointToScreen(SkeletonPoint skelpoint)

 {

 // Convert point to depth space.

 // We are not using depth directly, but we do want the points in our 640x480

output resolution.

 DepthImagePoint depthPoint = this.sensor.MapSkeletonPointToDepth(skelpoint,

 DepthImageFormat.Resolution640x480Fps30);

 return new Point(depthPoint.X, depthPoint.Y);

 }

 /// <summary>

 /// Draws a bone line between two joints

 /// </summary>

 /// <param name="skeleton">skeleton to draw bones from</param>

 /// <param name="drawingContext">drawing context to draw to</param>

 /// <param name="jointType0">joint to start drawing from</param>

 /// <param name="jointType1">joint to end drawing at</param>

 private void DrawBone(Skeleton skeleton, DrawingContext drawingContext,

JointType jointType0, JointType jointType1)

 {

 Joint joint0 = skeleton.Joints[jointType0];

 Joint joint1 = skeleton.Joints[jointType1];

 // If we can't find either of these joints, exit

 if (joint0.TrackingState == JointTrackingState.NotTracked ||

 joint1.TrackingState == JointTrackingState.NotTracked)

 {

 return;

77

 }

 // Don't draw if both points are inferred

 if (joint0.TrackingState == JointTrackingState.Inferred &&

 joint1.TrackingState == JointTrackingState.Inferred)

 {

 return;

 }

 // We assume all drawn bones are inferred unless BOTH joints are tracked

 Pen drawPen = this.inferredBonePen;

 if (joint0.TrackingState == JointTrackingState.Tracked && joint1.TrackingState

== JointTrackingState.Tracked)

 {

 drawPen = this.trackedBonePen;

 }

 drawingContext.DrawLine(drawPen, this.SkeletonPointToScreen(joint0.Position),

this.SkeletonPointToScreen(joint1.Position));

 }

 /// <summary>

 /// Handles the checking or unchecking of the seated mode combo box

 /// </summary>

 /// <param name="sender">object sending the event</param>

 /// <param name="e">event arguments</param>

 private void CheckBoxSeatedModeChanged(object sender, RoutedEventArgs e)

 {

 if (null != this.sensor)

 {

 if (this.checkBoxSeatedMode.IsChecked.GetValueOrDefault())

 {

 this.sensor.SkeletonStream.TrackingMode = SkeletonTrackingMode.Seated;

 }

 else

 {

 this.sensor.SkeletonStream.TrackingMode =

SkeletonTrackingMode.Default;

 }

 }

 }

 private void button1_Click(object sender, RoutedEventArgs e)

 {

 try

 {

78

 this.Close();

 }

 catch

 { }

 }

 }

 public class UdpRecvData

 {

 public string recvData;

 }

}

79

Appendix: IRB approval

80

Appendix: Questionnaires & Instruction manual

Questionnaires:

Questionnaire I: Pre-game survey : User expectation

Subject #: Date:

 Virtual rehabilitation description: games or interactive activities where movements are required from the

user to perform the game/activity. Kinect, Wii etc. are examples of interactive games or virtual reality games.

Here we deal with games specifically dedicated to upper-limb rehabilitation, designed for hemiparetic people

recovery and that people could use at home.

 This questionnaire has been designed to better understand your expectations about virtual rehabilitation

systems. This first questionnaire is divided in three different parts and consists of 27 questions.

Part I –A) Rating:

 You are going to rate the importance of the following criteria for a rehabilitation game. According to you,

how important is each element for a rehabilitation game? For each question rank the importance from 0 (not

important) to 5 (essential).

1. How important is it for the rehabilitation gaming equipment to be easy to put on and use?

1 2 3 4 5

(Not important) (Very important)

2. How important is it for any rules and goals of the game to be easy to understand?

 1 2 3 4 5

 (Not important) (Very important)

3. How important is it for the game to be interesting?

 1 2 3 4 5

(Not important) (Very important)

4. How important is it for the game to be challenging/motivating?

 1 2 3 4 5

(Not important) (Very important)

5. How important are the fancy graphics, or the display and pictures provided on the screen?

 1 2 3 4 5

(Not important) (Very important)

6. How important is it to keep a track of your score related to your progression in the game?

81

 1 2 3 4 5

(Not important) (Very important)

7. How important is it to have a variety of different scenes, activities and games?

 1 2 3 4 5

(Not important) (Very important)

8. How important is it for a rehabilitation game to adapt to your progress and movement ability during use?

 1 2 3 4 5

(Not important) (Very important)

9. How important is it for a virtual rehabilitation system to provide a clinical functional score of your movement

ability that therapists usually use?

 1 2 3 4 5

(Not important) (Very important)

10. How important is it for a rehabilitation game to have a proven clinical benefit?

 1 2 3 4 5

(Not important) (Very important)

82

Questionnaire II: Post-game survey : Games rating

Subject #: Date:

 You have now tested two games dedicated to rehabilitation. You played the archery game and the USA-

map puzzle game. In this questionnaire you are going to evaluate these two games according to several criteria

and give your remarks and suggestions.

Part I- Rating:
 In this part you are going to rate each game regarding several criteria. For each question, give your opinion

from 0 to 5 regarding to the proposed criteria and the specified game.

A- For the puzzle game (USA map):

1. Do you think that the game equipment was easy to put on, start and use?

 1 2 3 4 5

(Impossibly difficult) (Somewhat difficult) (OK) (Simple enough) (Very easy)

2. Were the provided instructions helpful to install and play the game?

1 2 3 4 5

(Completely useless) (Useless) (Helpful) (Simple and helpful) (Very simple

 and helpful)

3. Was it easy to understand the goal and the rules?

1 2 3 4 5

(Impossibly difficult) (Somewhat difficult) (OK) (Simple enough) (Very easy)

4. Were the fancy graphics and the display satisfactory?

1 2 3 4 5

(Very unsatisfactory) (Unsatisfactory) (OK) (Satisfactory)

5. Was the scoring system appropriate?

1 2 3 4 5

(Completely (Ina (Completely inadequate) (Inadequate) (OK) (adequate)

6. Was it interesting to play?

1 2 3 4 5

 (Very boring) (Not interesting) (OK) (Interesting) (Fascinating)

(Exceeded my

expectation)

(Completely

adequate)

83

7. Was the game challenging/motivating to play?

1 2 3 4 5

 (Not challenging) (OK) (Challenging) (Very challenging)

8. Was the game difficult to play?

 1 2 3 4 5

(Really too easy) (Just difficult enough) (Impossible to realize)

9. Were the shoulder and elbow movements requested to play too difficult/too easy to realize?

 1 2 3 4 5

(Really too easy) (Just difficult enough)

10. Were the hand (fingers) movements requested to play too difficult/too easy to realize?

 1 2 3 4 5

 (Really too easy) (Just difficult enough) (Impossible to realize)

11. Did the game have various scenes and activities?

 1 2 3 4 5

(Really too simple) (Various enough) (Too much variety)

12. Did the game provide clinical feedback about your game performance?

 1 2 3 4 5

(Not at all) (Appropriate amount of feedback) (Too much to understand)

13. Did the game seem to have a proven clinical benefit?

1 2 3 4 5

(Not at all complicated) (Clinically beneficial) (Too complicated)

14. Give your opinion and remarks about the game you have tested:

(Not-challenging

at all)

(Impossible to realize)

84

B- For the archery game:

1. Do you think that the game equipment was easy to put on, start and use?

1 2 3 4 5

(Impossibly difficult) (Somewhat difficult) (OK) (Simple enough) (Very easy)

2. Were the provided instructions helpful to install and play the game?

1 2 3 4 5

(Completely useless) (Useless) (Helpful) (Simple and helpful) (Very simple

 and helpful)

3. Was it easy to understand the goal and the rules?

1 2 3 4 5

(Impossibly difficult) (Somewhat difficult) (OK) (Simple enough) (Very easy)

4. Were the fancy graphics and the display satisfactory?

1 2 3 4 5

(Very unsatisfactory) (Unsatisfactory) (OK) (Satisfactory)

5. Was the scoring system appropriate?

1 2 3 4 5

(Completely (Ina (Completely inadequate) (Inadequate) (OK) (adequate)

6. Was it interesting to play?

1 2 3 4 5

 (Very boring) (Not interesting) (OK) (Interesting) (Fascinating)

7. Was the game challenging/motivating to play?

1 2 3 4 5

 (Not challenging) (OK) (Challenging) (Very challenging)

8. Was the game difficult to play?

 1 2 3 4 5

(Really too easy) (Just difficult enough) (Impossible to realize)

9. Were the shoulder and elbow movements requested to play too difficult/too easy to realize?

 1 2 3 4 5

(Exceeded my

expectation)

(Completely

adequate)

(Not-challenging

at all)

(Impossible to realize)

85

(Really too easy) (Just difficult enough)

10. Were the hand (fingers) movements requested to play too difficult/too easy to realize?

 1 2 3 4 5

 (Really too easy) (Just difficult enough) (Impossible to realize)

11. Did the game have various scenes and activities?

 1 2 3 4 5

(Really too simple) (Various enough) (Too much variety)

12. Did the game provide clinical feedback about your game performance?

 1 2 3 4 5

(Not at all) (Appropriate amount of feedback) (Too much to understand)

13. Did the game seem to have a proven clinical benefit?

1 2 3 4 5

(Not at all complicated) (Clinically beneficial) (Too complicated)

14. Give your opinion and remarks about the game you have tested:

C- For the Kitchen game:

1. Do you think that the game equipment was easy to put on, start and use?

1 2 3 4 5

(Impossibly difficult) (Somewhat difficult) (OK) (Simple enough) (Very easy)

2. Were the provided instructions helpful to install and play the game?

1 2 3 4 5

(Completely useless) (Useless) (Helpful) (Simple and helpful) (Very simple

 and helpful)

3. Was it easy to understand the goal and the rules?

1 2 3 4 5

86

(Impossibly difficult) (Somewhat difficult) (OK) (Simple enough) (Very easy)

4. Were the fancy graphics and the display satisfactory?

1 2 3 4 5

(Very unsatisfactory) (Unsatisfactory) (OK) (Satisfactory)

5. Was the scoring system appropriate?

1 2 3 4 5

(Completely (Ina (Completely inadequate) (Inadequate) (OK) (adequate)

6. Was it interesting to play?

1 2 3 4 5

 (Very boring) (Not interesting) (OK) (Interesting) (Fascinating)

7. Was the game challenging/motivating to play?

1 2 3 4 5

 (Not challenging) (OK) (Challenging) (Very challenging)

8. Was the game difficult to play?

 1 2 3 4 5

(Really too easy) (Just difficult enough) (Impossible to realize)

9. Were the shoulder and elbow movements requested to play too difficult/too easy to realize?

 1 2 3 4 5

(Really too easy) (Just difficult enough)

10. Were the hand (fingers) movements requested to play too difficult/too easy to realize?

 1 2 3 4 5

 (Really too easy) (Just difficult enough) (Impossible to realize)

11. Did the game have various scenes and activities?

 1 2 3 4 5

(Really too simple) (Various enough) (Too much variety)

12. Did the game provide clinical feedback about your game performance?

 1 2 3 4 5

(Not at all) (Appropriate amount of feedback) (Too much to understand)

13. Did the game seem to have a proven clinical benefit?

1 2 3 4 5

(Not at all complicated) (Clinically beneficial) (Too complicated)

(Exceeded my

expectation)

(Completely

adequate)

(Not-challenging

at all)

(Impossible to realize)

87

14. Give your opinion and remarks about the game you have tested:

88

Instruction manual

89

90

	University of Wisconsin Milwaukee
	UWM Digital Commons
	August 2014

	Development and Usability Evaluation of Low-cost Virtual Reality Rehabilitation Games for Patients with Upper Limb Impairment
	Jayashree Arunkumar
	Recommended Citation

	tmp.1430398446.pdf.72oUZ

