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ABSTRACT 

 

DEVELOPMENT AND USABILITY EVALUATION OF LOW-COST VIRTUAL 

REALITY REHABILITATION GAMES FOR PATIENTS WITH UPPER LIMB 

IMPAIRMENT 

by  

Jayashree Arun Kumar 

 

The University of Wisconsin-Milwaukee 

Under the Supervision of Na Jin Seo, PhD 

 

 Stroke is one of the primary causes of long-term disability in adults in the United 

States which leads to mild to severe sensorimotor impairments. Long-term continuous 

rehabilitation therapies are needed to facilitate sensorimotor recovery and empower 

patients in performing daily living activities. Currently, the opportunity of receiving post 

stroke rehabilitation in the chronic stage (> 6 months post stroke) is limited due to a lack 

of insurance and the high cost of therapy. Low-cost virtual rehabilitation games with 

motion tracking devices have tremendous potential to assist physical rehabilitation. 

Motion tracking devices such as Kinect (Microsoft, Redmond, CA; $100) and P5 Glove 

(Essential Reality, LLC, NY; $40) have become available to enable development of low-

cost virtual rehabilitation games. Such low-cost games may encourage continuous, 

repeated, and intensive rehabilitation therapies thereby enhancing recovery post stroke. 

However, current virtual rehabilitation games emphasize on gross arm movements using 

Kinect or fine finger movements using P5 Glove, but not both at the same time. Since 

most daily living activities require coordination of the gross shoulder/elbow movement 

and fine finger movement such as reaching to grasp and transferring a jar to a shelf, 

effective upper limb rehabilitation must involve coordination of the arm and finger 
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movements. In addition, many virtual rehabilitation games have been developed without 

user input and feedback, which may be the primary reason why virtual rehabilitation 

games are not prominently used at home by patients. This thesis presents the 

development and usability evaluation of low-cost virtual rehabilitation games. In addition 

to the archery and puzzle games previously developed in the laboratory, a low-cost 

rehabilitation kitchen game was developed to encourage patients to practice various 

functional tasks involving coordinated arm and finger movements that were detected by 

using Kinect and P5 Glove, respectively. Usability of the three games was assessed with 

ten chronic stroke survivors using pre-game and post-game surveys. The games met 

patients’ expectations of providing challenging movements. The House of Quality 

analysis revealed that technical characteristic needing the most improvement was device 

reliability. The future research should address device reliability by developing a better 

instruction manual to facilitate device set-up and use. In addition, filtering data can also 

improve quality of virtual arm movements in future versions of the games. In summary, 

this thesis presents promising evidence for low-cost rehabilitation games using 

commercially available motion tracking devices of Kinect and P5 Glove together with 

free Blender software.  
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1. INTRODUCTION 

 Stroke in adults is a cerebrovascular accident which happens due to blockage or 

rupture of the blood vessels in the brain (O'Sullivan and Schmitz 2007). Stroke causes 

brain cell death or brain damage (O'Sullivan and Schmitz 2007). Stroke is one of the 

primary causes of adult long-term disability in the United States and the fourth leading 

cause of death (O'Sullivan and Schmitz 2007, Towfighi and Saver 2011). Nearly 6.4 

million Americans suffer from long-term disability often associated with upper limb 

impairment post stroke (Broeks 1999, Lloyd-Jones, Adams et al. 2010).  

Long-term continuous rehabilitation therapies are needed to facilitate 

sensorimotor recovery and empower patients in performing daily living activities (Wang, 

Phua et al. 2009). Currently, not all stroke survivors receive rehabilitation in the chronic 

stage (>6 months post stroke) due to lack of insurance coverage and the high cost of 

physical therapy (Burdea 2002, Burke, McNeill et al. 2009). Additionally, rehabilitation 

therapy is often primarily focused on lower limb rehabilitation in order to regain patients’ 

walking abilities, rather than upper-limb rehabilitation (Putman, De Wit et al. 2006). 

However, approximately 60% of post stroke patients suffer from persistent upper-limb 

impairment and are challenged in performing daily activities using the upper limb (Wade, 

Langton-Hewer et al. 1983, Hackett, Duncan et al. 2000, Roger, Go et al. 2011) 

Virtual upper-limb rehabilitation games have tremendous potential to assist upper 

limb physical rehabilitation (Morrow, Docan et al. 2006). Virtual games can provide 

patients with a motivating environment for intense and continuous practices of active 

functional movements and can be accustomed to varying levels of disabilities, hence 

facilitating positive rehabilitation outcomes for a wide range of patients (Crosbie, Lennon 
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et al. 2006). For this reason, virtual reality has been identified as one of the promising 

tools used in many fields of therapy and rehabilitation such as physical therapy, 

psychiatry, and cognitive rehabilitation (Rizzo, Bowerly et al. 2002, Zimand, Anderson et 

al. 2002, Glanz, Rizzo et al. 2003). Over the past couple decades, such virtual 

rehabilitation games have been developed to facilitate stroke survivors’ upper-limb 

functional recovery (Subramanian, Knaut et al. 2007, Duff, Chen et al. 2010).  

Specifically, virtual rehabilitation games for stroke survivors have been designed 

using high-tech systems. For instance, three dimensional (3-D) infrared motion capture 

systems such as Optotrak Certus
TM

 (Northern Digital Inc., Waterloo, Ontario, Canada) 

(Subramanian, Knaut et al. 2007) and Motion Analysis (Motion Analysis Corporation, 

Santa Rosa, CA, USA) (Duff, Chen et al. 2010) have been used to track and record 

patients’ upper-limb motion for virtual games in real-time, allowing for goal-oriented 

interaction that encourages repetitive training in arm movements. In addition, since 

upper-limb functional tasks often involve not only the arm movement but also the finger 

movement, CyberGlove (CyberGlove Systems LLC, San Jose, CA, USA) has been used 

to track finger posture (Merians, et al., 2011). While these high-end motion tracking 

systems have high accuracy, rehabilitation games using these systems are often 

unaffordable for patients and most clinics and thus impractical. Therefore, there is a need 

for low-cost virtual rehabilitation games, allowing for a cost-effective alternative for 

patients and clinics.  

Affordable virtual rehabilitation games can be possible by using free software and 

low-cost motion tracking devices. Specifically, Blender is free and open-source 3-D 

computer graphics software to create animation, visual effects, art, interactive 3-D 
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models and video games. In addition, many commercially-available low-cost motion 

tracking devices are widely used in gaming. Such commercially available low-cost 

motion tracking devices include Nintendo Wii (Nintendo, Redmond, WA, USA), Leap 

Motion (Leap Motion Inc., San Francisco, CA, USA), P5 Glove (Essential Reality Inc., 

LLC, NY, USA), and Kinect (Microsoft Inc., Redmond, CA, USA).  

Nintendo Wii and Kinect both convey arm movement data to the console and into 

the gaming system. Nintendo Wii, which is widely commercially available, uses game 

controllers that are grasped by the entire hand that measure hand velocity and 

displacement. However, Nintendo Wii only conveys information relating to the position 

of the hand in space, and does not provide positional data of the individual upper-limb 

joints. Kinect recognizes joint positions of the whole-body and allows the position of 20 

joints in a 3-D space to be conveyed to the system (Fig. 1). Since upper limb physical 

rehabilitation focuses on achieving various arm postures such as elbow extension and 

shoulder elevation, not only the hand location in space but also information on the whole 

arm posture is important for virtual rehabilitation games. Therefore, Kinect is a better 

alternative for relaying upper limb posture for virtual rehabilitation game development 

compared to Nintendo Wii.  

Kinect costs approximately $100. Kinect captures joint position at a 30 Hz 

sampling rate  which is adequate for tracking users’ movements in real time (LaBelle 

2011) and can detect users standing between 1.2 m to 4.7 m from the device. Specifically, 

Kinect has a capture volume of 17 m
3 

with a horizontal field of view of 4.9 m, vertical 

field of view of 2.8 m, and a depth field of view that starts at a distance of 1.2 m from 

Kinect and is up to 4.7 m from Kinect (Fig. 2). Even though Kinect is superior in 
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measuring upper-limb joint position data compared to Nintendo Wii, both systems lack 

the ability to measure finger joint posture which is important in designing games 

involving hand grasping tasks. 

 

Figure 1: (a) Kinect and (b) The 20 joint positions detected by Kinect 

 

Figure 2: Capture volume of Kinect 

 

Both Leap Motion and P5 Glove are low-cost devices that measure finger bending 

and wrist position. Leap Motion provides motion capture for the fingers and wrist. 

However, Leap Motion can detect finger posture only when fingers are open, but not 

when the fingers are closed in a fist. Thus, Leap Motion is limited in measuring finger 

postures during tasks involving grasping, which is one of the major components of upper-
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limb functional tasks. Alternatively, P5 Glove is capable of measuring finger opening and 

closing postures. Therefore, P5 Glove is a better alternative for measuring finger bending 

for virtual rehabilitation games.  

P5 Glove (Essential reality, New York, New York, USA) (Fig. 3) is a 

commercially available device that costs approximately $40. P5 Glove can track the 

hand’s 3-D position (i.e. X, Y, and Z coordinates shown in Fig.3, (Davison 2007) yaw, 

pitch, roll (Fig.4), and finger bending (flexion/extension) angles. P5 Glove is plugged 

into the sensor receptor (Fig. 3), which is hooked up to a computer through a USB port. 

P5 Glove has a maximum 45 Hz sampling rate for the 3D position/orientation of the hand 

and maximum 60 Hz for the finger bending. The hand position is tracked optically using 

an infrared LED sensor receptor (Fig.3). The glove is portable, has an ergonomic design, 

weighs approximately 0.12 kg, and wearable on the hand (Morrow, Docan et al. 2006), 

although stroke survivors with spasticity may have trouble putting it on as with any other 

wearable devices. P5 Glove can track hand movements up to a distance of 1.2 m from the 

sensor receptor.  
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Figure 3: P5 Glove and sensor receptor showing the 3-D coordinates (Davison 2006) 

 

 

 
Figure 4: P5 Glove showing the 3-D orientation information 

 

Together, Kinect and P5 Glove have the capability to communicate position 

information of the upper-limb joints and finger bending for virtual rehabilitation games. 

While there exists rehabilitation games that use Kinect for gross arm movements only 
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(Roy, Soni et al. 2013) or P5 Glove for fine finger movements only (Morrow, Docan et 

al. 2006), there is currently no rehabilitation game that involves both of the devices to 

measure gross arm and fine finger movements at the same time. Finger and arm 

coordination is critical for upper limb function in daily activities such as reaching to 

grasp a cup and transferring a jar to a shelf (Carroll 1965, Wade, Langton-Hewer et al. 

1983). Therefore, there is a need for virtual rehabilitation games to focus on improving 

both gross and fine motor abilities of the arm and hand. In addition, many games are 

developed by engineers with minimal feedback from patients. Therefore, developed 

games may not effectively motivate patients nor be liked by patients, especially those 

suffering from very limited range of motion, such as stroke survivors. Lack of user input 

and feedback in the development of rehabilitation games is a major problem, since 

motivation and likability are crucial for patients to adhere to a rehabilitation regime for 

successful outcomes (Luck 2003). Therefore, in order to address these issues in current 

virtual rehabilitation games, this thesis focuses on the development and usability 

evaluation of low-cost virtual rehabilitation games for coordinated arm and finger 

movements of stroke survivors using Kinect and P5 Glove. Specifically, the following 

two aims are investigated.  

 

Aim 1: To develop a low-cost virtual rehabilitation game for finger and arm 

coordination. 

 

Aim 2: To evaluate usability of the low-cost virtual rehabilitation games. 
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2. AIM 1:  

TO DEVELOP A LOW-COST VIRTUAL REHABILITATION GAME FOR 

FINGER AND ARM COORDINATION 

2.1 Introduction 

 We developed a virtual rehabilitation kitchen game for enhancing finger and arm 

coordination in stroke survivors using the low-cost motion tracking devices of Kinect and 

P5 Glove. This kitchen game simulates tasks that are generally performed in a kitchen 

setting and involves grasping, moving, and putting away plates and utensils. Thus, the 

kitchen game focuses on functional activities of daily living to a greater extent than the 

previous games that were developed in the laboratory. The previous games that were 

developed in the laboratory are the archery game and puzzle game (Crocher, Hur et al. 

2013). The archery game requires patients to control and orient a bow and arrow with 

their arm, while requiring patient to use opening and closing finger motions to release the 

arrow and shoot at the targets. The puzzle game requires patients to grab virtual puzzle 

pieces resembling states within the United States and place/orient them in their correct 

locations on a United States map.   

 

2.2 Kitchen Game Features 

The low-cost virtual kitchen game (Fig. 5) had a virtual arm that mimicked a 

user’s upper-limb movements in real-time using Kinect and P5 Glove. The game required 

the user to perform a variety of functional tasks that involved grasping, moving, and 

putting away kitchen utensils. The tasks were inspired by the clinical test, Fugl-Meyer 

Assessment (Duncan, Propst et al. 1983) and focused on flexion/extension of the digits, 

grasping objects of different sizes and shapes, forearm pronation/supination, elbow 
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extension, and shoulder abduction. Different scenes were designed for different tasks 

(Fig. 6).  

 

Figure 5: The virtual arm in the game (left) mimics the user’s upper arm movements 

(right) 

 

 

 

Figure 6: Different scenes used for different tasks in the kitchen game: (A) Task 

for grasping cups from the countertop and placing them on the overhead compartment, 

(B) Task for grasping the dishes from the dish holder and placing them on the countertop, 

A B 

C D 
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(C) Task for grasping the teapot handle and pouring water from the teapot to a teacup, 

and (D) Task for opening a drawer, grasping and moving silverware from countertop to 

inside the drawer.   
     

Instructions were provided in the game so that the users could understand the 

gameplay and the sequence of each task that needed to be played. Users could track their 

game score in the upper left corner of the monitor (Fig. 7). Also, they could monitor the 

elapsed time while playing (Fig.7). Motivation to keep playing the game and move to the 

next task was provided in the form of a visual and audio cue. For instance, after 

successfully completing a task, the user was awarded stars and cheering phrases such as 

“Wow”, “Good Job”, “Keep up the good work”, and “One task to go” (Fig. 8). 

 

Figure 7: During the kitchen game, the game score was shown in the upper left corner 

and the elapsed time was shown in the upper right corner of the screen. 

 

 
 

Figure 8: Praises were provided to a user upon successful completion of a task  

 

Game 
score 

display 

Time 

elapsed 
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2.3 Kitchen Game Workflow  

 

The basic game workflow included motion tracking devices to acquire the 

motions performed by the user and then a program to process the input data provided by 

the motion tracking devices (Fig.9). First, the client program received input from the 

motion tracking devices and sent the data to the server program. Secondly, the tracked 

data from the server program was used in joint angle computation. Hence, the joint angle 

information (section 2.3 iv) was then used in the interaction script and that data was 

processed and sent to the game engine. Finally, the game engine sent the data to the audio 

and video output modules and these output modules generated the virtual reality 

environment that could be experienced by the users through computer monitor and 

speakers. Internal Client/Server architecture within the program received input from the 

motion tracking devices, computed the joint angles, and sent the results to the game 

engine. The virtual arm model was designed using the armature bones and mesh in 

Blender. The interface with the motion tracking devices to mimic the users’ movements 

and simulate interaction with objects in the game was programmed using Python. The 

objects in the game obeyed the laws of physics and reacted to gravity to make the objects 

fall to floor when a user dropped the object. Fig.9 shows the basic workflow of the virtual 

rehabilitation games and each section is explained in detail below.  
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Figure 9: Basic workflow and system components of the kitchen virtual rehabilitation 

game 

 

i. Motion Tracking 

The user’s upper-limb movements were tracked using the motion tracking devices 

of Kinect and P5 Glove. Kinect was used to detect gross arm movements and P5 Glove 

was used to detect finger motions (Fig. 10). Manufacturer-provided calibration software 

was used to calibrate P5 Glove (Fig. 11).  
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Figure 10: Schematic diagram shows a user playing the kitchen game with Kinect 

detecting the gross arm movements and P5 Glove detecting finger movements 

 

 

Figure 11: P5 Glove calibration 
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ii. Client program 

A client program used Kinect to locate the upper-limb joints of the user in 3-D 

space and P5 Glove to detect bending of the fingers and track their movements in real 

time. The program was written in C# because; Application Programming Interfaces (API) 

for both Kinect and P5 Glove are available in C#. The Kinect for Windows Software 

Development Kit (SDK) provides the tools and APIs, needed to develop Kinect-enabled 

applications. Skeletal tracking information provided in Microsoft developer network 

(msdn) was appropriately used to tweak and incorporate the respective user joint 

positions to build the program. This program was used to send real time Kinect and P5 

Glove data that provided the arm postures and finger flexion/extension of the user to the 

server program. Data was sent from the client program to the server via a secured 

networking protocol called User Datagram Protocol (UDP). UDP is used for sending data 

over the network using minimal protocol mechanism (Postel 1980).  

iii. Server program 

The server program received real-time Kinect and P5 Glove data sent by the client 

program (Fig.9). The server program was developed in Python because Blender supports 

Python. 

iv. Joint angle computation 

Using the user’s arm and finger posture data received by the server program, 

elbow and shoulder joint angles were computed in Python. The wrist angle was not 

computed since accuracy for Kinect to detect the wrist angle is poor based on 

unpublished data in our laboratory. Each of the elbow and shoulder angles was computed 

as follows: 
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a) Elbow angle 

The elbow angle was defined as the angle made by the forearm and extension of 

the upper arm (Fig. 12). If the 3-D positions of shoulder, elbow, and wrist are shown as S, 

E, and W vectors respectively, then the forearm vector (V1) and the upper-arm vector 

(V2) was calculated as:V1 = W-E, V2 = E-S. Equation (1) was used to perform elbow 

angle computation. 

        (
     

|  ||  |
)  

 

Figure 12: Diagram depicting 20 º, 90 º, and 135 º elbow angles. 

 

b) Shoulder azimuth angle 

The shoulder azimuth angle was defined as the angle between the upper arm and 

the sagittal plane as seen in the Fig.13. Equation (1) was used to compute the azimuth 

angle with V1 being the vector of the upper arm projected on the horizontal plane and V2 

(1) 
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being the unit vector of the forward horizontal direction (intersection between the sagittal 

and horizontal planes). 

 

Figure 13: Diagram depicting the -45 º, 45 º, 0 º and 90 º shoulder azimuth angles 

 

c) Shoulder elevation angle 

The shoulder elevation angle was defined as the angle made by the upward-

downward motion of the arm with respect to the body (Fig.14). Equation (1) was used to 

compute the shoulder elevation angle with V1 being the vector of the upper arm and V2 

being the unit vector of the downward direction (intersection between the sagittal and 

frontal planes).  
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Figure 14: Diagram depicting the 45 º, 90 º and 135 º shoulder elevation angles. 

 

d) Shoulder rotation angle 

The shoulder rotation angle was defined as the internal/external rotation angle of 

the upper arm around its own axis (Fig 15). Equation (2) was used to compute the 

shoulder rotation angle. First, the vector normal to the plane of the arm (V3) was 

computed by finding the cross product between the upper arm vector (V1) and the 

forearm vector (V2). Then, the normal vector (V3) was projected on the horizontal plane 

(V4). The shoulder rotation was calculated as the angle between the normal vector (V3) 

and its projection on the horizontal plane (V4).  

        (
     

|  ||  |
)  

 

(2) 
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Figure 15: Diagram depicting 45º and -45º rotation of the shoulder. 

 

v. Interaction script  

An interaction script was written in Python to control the interaction between the 

hand and movable objects (cups, dishes, teapot and silverware), so that those objects 

could be grasped, moved and dropped. Specifically, when the distance between the hand 

and the desired object was less than a preset value, that object could be grasped by 

closing of the fingers. In that case, the interaction script changed the state of that object to 

prevent the physics engine from controlling it, thus its location could be controlled by the 

hand. On the other hand, by opening the fingers, the grasped object was released, in 

which case the state of the object was returned back to its default setting allowing the 

physics engine to control the object movement according to the physics laws again. 

vi. Game engine and output 

 

Based on the upper limb posture and object information determined in the 

interaction script, the game engine updated the virtual reality environment (Fig. 9). 

Specifically, input modules were updated by incorporating physics engine and 

textures/render engine, along with the elbow and shoulder joint angles to make the virtual 
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arm mimic the upper limb movements performed by the user. Physics engine attributed 

physical laws to the objects in the game making them obey dynamics and gravity. 

Textures added extra details to the surface of the objects, which was achieved by 

projecting images or patterns on the surface. Render engine provided a fine quality image 

of the developed 3-D scene. These game engine data determined video and audio outputs 

that were fed into a computer monitor and speaker, respectively. These visual and audio 

displays provided the user with experience in the virtual reality environment.  

 

2.4 Kitchen Game Activities 

The kitchen game had game activities to practice functional tasks involving finger 

and arm coordination to impact daily upper limb function (Stanger, Anglin et al. 1994) 

and also to improve the clinical upper limb score of the Fugl-Meyer Assessment (a 

standard motor impairment scale for stroke survivors as an index for rehabilitation 

outcome). Specifically, the Fugl-Meyer Assessment emphasizes on movements requiring 

control and coordination of multiple upper-limb joints such as reaching forward and up 

(shoulder elevation) with elbow and finger extension, shoulder elevation with forearm 

rotation, and shoulder internal rotation while maintaining the elbow posture. Therefore, 

kitchen tasks involving coordination of multiple upper limb joints were featured. All 

tasks involved grasping and releasing of kitchen items with the hand to practice hand-arm 

coordination. The game involved four different tasks (Fig.6). In the first and second 

tasks, the user was asked to move glasses from the counter to an overhead compartment 

and to move plates from the overhead compartment to the counter, respectively. These 

tasks represent typical functional activities of reaching, grasping, and releasing. 
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Clinically, these tasks focused on coordinated shoulder elevation, elbow extension, and 

finger flexion/extension (Fig.16A, B) that are relevant to the Fugl-Meyer Assessment. 

The third task had the user grasp a teapot and pour water into a cup to practice shoulder 

internal/external rotation (Fig. 16C). In the fourth task, the user had to open a drawer, 

pick up a spoon and a fork one by one from the countertop and place it inside the drawer. 

This task involved practice of forearm pronation and coordinated shoulder, elbow, and 

hand movements (Fig. 16D) in addition to reaching, grasping, and releasing. 

 

Figure 16: A few postures involved in the kitchen game activities. (A) task involving 

shoulder elevation, elbow extension, and finger extension posture, (B) task involving 

shoulder elevation, elbow extension, and finger flexion posture, (C) task involving 

shoulder rotation posture , and (D) task involving forearm pronation and elbow flexion 

posture. 

 

2.5 Clinical Relevance  

The game can provide not only game scores but also relevant clinical information 

such as the range of motion, movement speed, and time to complete given tasks that may 

help clinicians understand the progress that patients are making. To demonstrate that the 

game is capable of providing relevant clinical information, the range of motion observed 

A B 

D C 
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for each task and for each joint as well as time to complete each task obtained while one 

person played the kitchen game are described in Table 1. 

Table 1: Range of motion and time elapsed observed during the kitchen game 

Kitchen 

tasks 
Elbow 

angle 

range  

Shoulder 

azimuth 

angle range  

Shoulder 

elevation 

angle range  

Shoulder 

rotation 

angle 
range  

Time 

elapsed 

Grasping cup 

from 

countertop 

and placing it 

in overhead 

compartment 

84º 160º 104º 175º 40sec 

Grasping 

dishes from 

dish holder 

and placing it 

in countertop 

124º 108º 141º 179º 30sec 

Grasping 

teapot and 

pouring tea 

from it 

107º 96º 79º 148º 20sec 

Grasping 

different 

sizes of 

silverware 

and placing it 

in the table 

cabinet after 

opening it. 

114º 134º 69º 131º 45sec 

 

 

2.6 Conclusions 

 Aim 1 was to develop a low-cost virtual rehabilitation kitchen game for 

finger/arm coordination. This aim was achieved using affordable Kinect and P5 Glove 

motion tracking devices and free Blender software. This rehabilitation games 



22 

 

 
 

demonstrated a strong potential and feasibility for low-cost rehabilitation systems which 

could be used at home or a clinical environment. The expected cost is $140 including the 

hardware and free open-source software. The game requires patients to employ a range of 

motor functions and repetitive movements that are ideal in upper limb rehabilitation 

therapies (Sveistrup, McComas et al. 2003). The requested movements in the game have 

potential to train the upper limb motor functions and may allow for recovery by providing 

more practice while keeping patients motivated.  
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3. AIM 2: 

TO EVALUATE USABILITY OF THE LOW-COST VIRTUAL 

REHABILITATION GAMES 

 

Usability assessment is a crucial step in designing a product because it is a way to 

optimize product design by identifying weak areas in the product’s concept, design and 

user interface (Lange, Flynn et al. 2009, Lange, Rizzo et al. 2011). If the product goes to 

market without a thorough usability assessment and subsequent design and quality 

improvements, the product is at a high risk of failure because of the lack of interest and 

motivation associated with poor usability. Such failure results in a great loss of labor and 

development cost. Hence, it is an industry standard to evaluate usability of a product.  

Usability of a product can be assessed in form of questionnaires, focus groups, 

task analysis, user observation, interviews and surveys after users interact with the 

product. The usability of our virtual rehabilitation games was tested using House of 

Quality (HOQ). HOQ belongs to a management approach called Quality Functional 

Deployment (QFD). HOQ has been widely adopted in Japan and has gained popularity in 

the U.S. as well (Hauser 1993). After its inception in Japan in 1972, HOQ is now used by 

many major developers such as Hewlett-Packard, AT&T, Ford, General Motors and 

Toyota (Hauser and Clausing 1988). Toyota’s auto body startup and production costs 

have reduced 61% after implementing HOQ and QFD (Sullivan 1986).  All three games 

developed in our laboratory – the kitchen game described in Ch. 2 as well as the archery 

and puzzle games described in Crocher et al. (2013) – were tested for usability in this 

study.  
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3.1 Methods  

3.1.1 Subjects 

Ten stroke survivors (five males and five females, ages ranging from 43 to 76 

years with a mean of 63 year) participated in this study. The inclusion criteria used to 

recruit subjects was that the subject must be a chronic stroke survivor (>6 months post-

stroke). Traditional health insurances do not cover for extended durations of physical 

rehabilitation, and stroke survivors are commonly believed to have reached a recovery 

plateau within 6 months post stroke (Page, Sisto et al. 2004, Krakauer 2006). However, 

recent evidence suggests that targeted therapy and exercises can help stroke survivors 

achieve meaningful motor function improvements and improve physical fitness and 

cardiovascular health (Mark and Taub 2004, Page, Sisto et al. 2004, Billinger, Arena et 

al. 2014). Therefore we were interested in understanding how we can improve our current 

games to make them more interesting and user-friendly for chronic stroke survivors. 

Subjects were excluded from the study if they had botulinum toxin injection within the 

past 3 months from the day of study and/or if the subject had cognitive impairments. 

Botulinum toxin injection reduces spasticity in stroke survivors. The subjects that 

undergo the botulinum toxin treatment may not represent the general populace of stroke 

victims we are aiming for. Also, subjects with cognitive impairment were excluded 

because the game tasks required ability to understand and follow commands. All subjects 

signed a consent form and followed a protocol approved by the Institutional Review 

Board. Table 2 shows the patients’ demographic information along with their functional 

evaluation scores. Subjects’ upper extremity function was evaluated by a physical 

therapist in the lab using Chedoke McMaster Stroke Assessment and Fugl-Meyer score 
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(Fugl-Meyer, Jääskö et al. 1974, Gowland, Stratford et al. 1993, Sanford, Moreland et al. 

1993).  

  Table 2: Patient demographic information 

Characteristics Range Mean 

Age in years 43 to 76 63 

Years post stroke 3.5 to 13   8 

Fugl-Meyer score (out of 66) 2 to 66 43 

Chedoke score (out of 7) 1 to 7   5 

Modified Ashworth score 0 to 3 1.5 

 

3.1.2 Study Protocol  

Subjects answered pre- and post-game surveys before and after interacting with 

the games for half an hour (Fig. 17). These surveys were then used to construct the HOQ. 

The pre-game survey was designed to better understand the user expectations about the 

virtual rehabilitation game systems. The survey included 10 questions related to user 

expectations on usability and functional implications of the low-cost virtual rehabilitation 

games. Total ten criteria to be used in HOQ analysis were extracted from these survey 

questions, which are: (1) easy to understand, (2) easy to use, (3) adaptation of the game to 

the patient’s functional ability/ improvement, (4) interesting (5) challenging, (6) graphics 

quality, (7) progression score, (8) variety of different scenes, activities and games, (9) 

integrating clinical assessment (10) proven clinical effect (Fig. 18B).  
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The post-game survey was similar to the pre-game survey with the same 10 

criteria but re-worded to determine which expectations were met with the games. The 

subjects were asked to select an answer on a Likert scale of 1-5 (least to most 

satisfactory). Pre and post-game surveys provided data to construct the HOQ matrix in 

order to quantitatively identify the technical characteristics of the game that should have 

the highest priority for improvement for future development. Also, the post-game survey 

included an open ended feedback to provide remarks about the games. 

 

Figure 17: Usability evaluation workflow of the rehabilitation games. Patients’ feedback 

was analyzed in this pattern. 

 During the gaming session, subjects were given the instruction manual (see 

Appendix) for the games, a computer running Windows 7 with the games already 

installed, and the hardware (Kinect and P5 Glove). The instruction manual described 

where to place the hardware and how to wear P5 Glove, turn the hardware on, and run the 

game software before being able to play the games.  
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3.1.3 House of Quality Analysis: 

 

 

An HOQ matrix is an orderly way of defining improvement priorities among the 

technical characteristics of a product to effectively respond to user expectations in future 

designs of the product (Logan and Radcliffe 1997). The HOQ is completed in following 

steps: (1) The engineer determines the technical characteristics, j (Fig. 18A). (2) The 

engineer determines the patient expectation criteria to be included in the pre-game 

survey, i (Fig. 18B). (3) The relationship between technical characteristics and the patient 

expectation criteria are determined by the engineer for the interrelationship matrix index, 

Iij (Fig. 18C), which has three levels (strong relationship as 9, moderate relationship as 3, 

and weak relationship as 1, Fig. 18D). (4) The expectation weight for each criterion is 

calculated as the mean of patients’ pre-game survey scores, Wi. (5) The response weight 

for each criterion is calculated from the patients’ response in the post-game survey, Ri. 

(6) Priority weight (Pj) for each technical characteristic is computed using Equation 3, 

using the interrelationship matrix index (Iij), the pre-game survey (Wi), and the post-

game survey (Ri). (7) The priority weight is expressed into percentage. (8) The technical 

characteristic with the highest priority weight is considered to have the maximum need to 

be improved.  

The technical characteristics included are shown in Fig. 18A. Specifically, the 

installation manual represents the presence, quality, and understandability of a paper-

version installation manual. Game instructions are the instructions that show up on the 

 

   ∑       

 

   

        

 (3) 
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computer monitor during the game play to prompt the user for next necessary actions as 

the user progresses through the game, such as the words shown in Figure 5. Device 

reliability is the probability of a device performing its required function and producing 

same results on repeated trials (Miller, Epstein et al. 1985). Game reliability represents 

the game’s ability to provide scores in a consistent manner. Game adaptation represents 

the game’s ability to change its contents according to the user’s functional ability and 

improvement over time, possibly by using Artificial Intelligence (AI). The number of 

levels represents various levels of difficulty and challenges in the game for the user to 

work through. Game realism represents the user’s perception that the virtual 

environment is real, facilitated by realistic objects, environment, sounds, textures, and 

physics simulation. 3-D display is concerned with the technical decision on whether 

high quality 3-D display would be needed or 2-D display would suffice for rehabilitation 

games to satisfy users’ expectation. Clinical assessment represents administration of 

clinical tests such as the Fugl-Meyer Assessment within the virtual game setup without 

clinicians’ presence in order for clinicians to track and easily understand recovery and 

progress of the patients during the course of game usage. Lastly, clinical evidence 

represents clinical trials that demonstrate that the virtual rehabilitation game effectively 

enhances users’ upper limb function.  

 

  



29 

 

 
 

 

 

 

Figure 18: (A) Technical characteristics of the games (j). (B) Patient expectations from 

pre-game survey (i). (C) Interrelationship matrix showing the relationship between 

technical characteristics and the patient expectation criteria (Iij), (D) Levels of 

relationships for the interrelationship matrix. 

 

3.2 Results  

3.2.1 HOQ results 

 

The pre-game survey showed that the highest expectation that patients had of 

virtual rehabilitation game criteria was for the game to be challenging, shown by a mean 

± standard deviation (SD) expectation weight of 4.1 ± 0.6 (Fig. 19) out of a highest score 

of 5 on a Likert scale. These pre-game survey results of the expectation weights were 

provided in the left column of the HOQ matrix in Fig. 20. The lowest criterion that 

patients rated for expectation was the graphics quality with the expectation weight of 3.0 

± 1.3. Other criteria were found to be moderately important to the users.   

B 

A 

C 

D 
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Figure 19: Mean ± standard deviation (SD) of the patients’ expectations of virtual 

rehabilitation games based on the pre-game survey criteria, referred to as the expectation 

weight, W. The expectation criterion of challenging (green bar) was weighted the highest 

and the graphics quality (red bar) was the lowest weighted expectation in the pre-game 

survey. 
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Figure 20: Patients’ expectations of virtual rehabilitation games based on the pre-

game survey criteria, referred to as the expectation weights, shown in the left column of 

the HOQ matrix 

 

The post-game survey results showed that the kitchen game and the archery game 

were similar in patient evaluation with a response weight of 3.5 ± 0.3 and 3.6 ± 0.2 out of 

a highest score of 5 on a Likert scale, respectively (Fig. 21A). The puzzle game had the 

lowest overall response weight of the three games with a response weight of 3.2 ± 0.5. 

When examining individual criteria, all of the games achieved the highest response 

weight of 3.9 for the challenging criteria (Fig. 21B). These post-game survey results were 

also provided in the right column of the HOQ matrix in Fig. 22. 
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Figure 21: Mean ± SD of the patients’ response weight, Ri, for each game for all of the 

criteria combined (A) and for each criterion (B) based on the post-game survey. 
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Figure 22: Patients’ evaluations of the virtual rehabilitation games based on the post-

game survey, referred to as the response weight, are shown in the right column of the 

HOQ matrix 

 

Priority weight results are shown in Fig. 23. The priority weights were computed 

using Equation 3, with the expectation and response weights obtained from the pre- and 

post-game surveys. Device reliability was rated with the highest priority weight, meaning 

device reliability needs the most improvement according to the HOQ analysis (Fig. 23). It 

was also noticeable that the priority weights for four technical characteristics (installation 

manual, game instructions, game realism, and 3-D display) were comparable to each 

other and were lower than priority weights of other characteristics (Fig. 23). These four 

characteristic were considered to have the lowest need for improvement in our study. 
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Rest of the technical characteristics had medium need for improvement. The moderate 

priority technical characteristics were game reliability, game adaptation/ AI, number of 

levels, clinical assessment, and clinical effectiveness. These results were also provided in 

the bottom rows of the HOQ matrix (Fig. 24). The technical characteristic with the 

highest priority are in red text, followed by moderate priority characteristics in brown, 

and lastly characteristics with lowest priority need in green. When priority weights for 

technical characteristics were averaged within a game, HOQ showed that device 

reliability obtained priority weight of 15% for the kitchen game, 16% for the archery 

game and 15% for the puzzle game.

 

 

Figure 23: Priority weight for each technical characteristic in each game was divided 

into highest, moderate, and the lowest priority need. Based on HOQ, device reliability 

showed the highest priority need for improvement. 
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Figure 24: The HOQ matrix for a low-cost VR games identified priority needs as an 

outcome (bottom row), based on patients’ expectation ratings (left column), the game’s 

technical characteristics (top row), interrelationship matrix (center), and patients’ 

evaluation of the game (right column). Red, brown, and green numbers indicate the 

highest, intermediate, and the lowest technical improvement. 

 

 

The open-ended feedback collected based on the post-game survey supported 

HOQ results. Specifically, open-ended feedback showed that patients really enjoyed that 

the games were challenging and fun. Some of the comments obtained were: (1) “The 

kitchen game was interesting, the plates fell just like real [plates upon dropping], the tea 

kettle made real house [looked real], and silverware was challenging to lift”.  

(2) “The archery game was challenging. The bow showed easy direction to shoot the 

targets”. (3) “The puzzle game was challenging and the states were easy to understand 
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and I like the color scheme”. Open-ended feedback also showed device reliability issues. 

For instance, one patient commented “Kinect and P5 Glove didn’t work all the time. 

[My] Frustration level was high”.  

 

3.3 Discussion and Conclusions 

The usability evaluation of the virtual rehabilitation games concluded that there is 

additional scope of work available in the area of device reliability. Device reliability 

pertains to the motion tracking devices performing their required function. It was 

observed during the game play that Kinect and P5 Glove sometimes could not track a 

patient’s arm and finger movements well because the patient’s arm was outside the 

capture range. Therefore, one of the ways to improve device reliability for the virtual 

rehabilitation games may be to improve the instruction manual to visualize the capture 

range so that users gain better understanding of the capture volumes of each motion 

tracking device. Moreover, the games may be modified to generate a warning sign when 

the movements go out of the capture volume. Filtering of the data could also improve 

smoothness of virtual arm movements. Advanced movement prediction algorithms to 

compensate for the device reliability related issues may help usability of the virtual 

rehabilitation games. In summary, to have the virtual rehabilitation game accepted by 

patients, improvement on device reliability was identified as a priority development 

requirement based on the usability evaluation (Fig. 23, Fig. 24). 

In addition, the result of the pre-game survey questionnaire clearly indicates 

(Fig.20) that the patients expect more of challenging games than that of a high quality 

graphics. The post-game survey results show that the patients’ highest expectation 
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criterion of ‘challenging game’ was met without compromising the graphics quality 

expected by the patients (Fig. 22, 4.1/5 pre-game expectation weight vs. 3.9/5 post-game 

response weight for challenging). The resulting mean response weight of 3.5/5 from post-

game survey shows that the evaluation results of all three games indicate a good overall 

rating and likeability (Fig. 22).  
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4. DISCUSSION AND CONCLUSION 
 

 

4.1 Low-cost rehabilitation game development  

This study used commercially available motion tracking devices of Kinect and P5 

Glove and free Blender software for developing a low-cost virtual rehabilitation game 

that practices arm and finger coordination. While Kinect (Roy, Soni et al. 2013) has been 

used for rehabilitation games that involve gross upper limb movements of the shoulder 

and elbow, Kinect alone is unable to measure finger motion. Hence, P5 Glove, which 

detects finger flexion/extension associated with grasping and releasing of objects, was 

combined with Kinect in this thesis to complete the motion tracking for the whole upper-

limb including fingers. The innovation of this thesis is the combination of Kinect and P5 

Glove motion capture systems, because such combination has previously not been used 

for a virtual rehabilitation game. As mentioned before, most daily living activities 

involving the upper limb require coordination of the gross and fine motor movements of 

the arm and fingers such as reaching and grasping of objects with elbow extension and 

forearm rotation. Thus it becomes of foremost importance to have an effective upper limb 

rehabilitation approach which involves coordination of the arm and finger movements. 

The kitchen game developed in this thesis also provides clinically relevant information 

such as the joint range of motion and time to complete each task, facilitating clinicians’ 

understanding of patients’ progress. 

The major benefit of Kinect and P5 Glove is that they are less expensive 

compared to other position tracking devices such as the Optotrak and CyberGlove, 

respectively (Table 3). In addition, use of the free open-source Blender software helps 

keeping the total cost down. A cost comparison between the traditional motion capture 
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and virtual environment systems and the low-cost virtual rehabilitation game developed 

in this thesis is shown in Table 3. The expected total cost of our low-cost rehabilitation 

system is $140, which includes both of the motion tracking devices (Kinect and P5 

Glove) and the free open-source Blender software (Table 3). On the other hand, a 

traditional system composed of Optotrak, CyberGlove, and the World ToolKit software 

(to program the Optotrak and CyberGlove) is estimated to cost approximately $76,000. 

Thus, the low-cost virtual rehabilitation game in this thesis offers a powerful advantage 

over the current rehabilitation systems in terms of cost. An additional benefit to the low-

cost virtual rehabilitation game in this thesis is that the game can be played using any 

basic personal computer with graphics and sound capabilities. There is no need to install 

any specific software to run the game other than the device drivers for Kinect and P5 

Glove when they are using the devices for the first time. 

Table 3: Virtual rehabilitation game system cost comparison 

 

 

 

4.2 Usability evaluation of the virtual rehabilitation games  

 

Within the House of Quality assessment, the pre-game survey results showed that 

patients’ highest desire in a virtual rehabilitation game is for the games to be challenging. 

The three games developed in our laboratory were well received in that regard. In 

addition, our games in general met patients’ expectations as evidenced by above-average 

post-game response weight of 3.5/5 for all games. These findings are promising enough 

System component Our low-cost virtual 

rehabilitation game 

Other rehabilitation 

game options 

Arm motion capture 

camera system 

Microsoft Kinect ~$100 Optotrak ~$60,000 

Finger motion 

capture system 

P5 Glove ~$40 Cyber Glove ~$10,000 

Programming Toolkit Blender (free software) World ToolKit ~$6,000 
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to lead the researchers to further improve the low-cost virtual rehabilitation games for 

clinical adoption.  

The usability evaluation/HOQ priority weight analysis of the virtual rehabilitation 

games also show that there is additional work required in the area of device reliability. 

Device reliability can consist of quality and performance of hardware and set-up and 

calibration of hardware. The quality and performance of the hardware are linked with the 

price; therefore there may not be much room for improvement for this category. 

However, game software may compensate for the hardware quality by utilizing motion 

prediction algorithm and filtering (Pastor, Hayes et al. 2012). For instance, jittery 

movements based on Kinect data (Obdrzalek, Kurillo et al. 2012) could be resolved by 

filtering the noise data by using Kalman filter (Welch and Bishop 1995). Kalman filter is 

used as a predictor-estimator model and it estimates the output based on the certainty of 

prior state. Kalman filter is used for estimating the upper limb segment orientation in real 

time (Yun and Bachmann 2006). Future versions of these low-cost virtual rehabilitation 

games may integrate this filtering technique for better game performance and user 

experience.  

As for set-up of hardware, the instruction manual described where to locate 

Kinect and P5 Glove sensor receptor but not in absolute details. As a result, it was 

observed that many patients placed the sensors such that they were not standing within 

the capture range. Therefore, the instruction manual may be improved to better explain 

the appropriate location of the sensors by including more explanatory figures for the 

capture range. Also, a few modifications to the games to generate a warning sign to 

indicate the user movements go out of range would prevent the user, falling out of 
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capture range. In addition, patient-specific calibration procedures may be added as 

needed to adapt to patients’ movement capability.  

4.3 Conclusions 

We developed a virtual rehabilitation game with free Blender software and 

affordable motion tracking devices of Kinect and P5 Glove. This virtual rehabilitation 

game demonstrated strong potential and feasibility for a low-cost rehabilitation game 

system for home or clinic use with expected cost of $140 for the hardware and free open 

source software. The low-cost virtual rehabilitation game have potential to significantly 

facilitate patients’ physical rehabilitation for coordinated arm and finger movements 

because of their feasibility to be available to a wide population, even in chronic stages 

after stroke. The low-cost virtual rehabilitation game can also provide clinically relevant 

information such as the joint range of motion and time to complete tasks, thereby 

facilitating clinicians’ understanding of patients’ progress. 

Our usability evaluation using a well-known method of House of Quality showed 

that our low-cost virtual rehabilitation games were liked by our patient population. We 

were able to identify the top priority improvement need of the game system which was 

device reliability. Future work should develop better data processing algorithms and 

instructions in order to improve the device reliability.  

This thesis provides evidence that it is possible to develop a low-cost and usable 

rehabilitation game by using commercially available hardware and free software. Such 

technical development is expected to be important to motivate and encourage patients to 

practice movements in various scenarios to result in positive outcomes (Kwakkel, 

Wagenaar et al. 1997). Upon refining the games per usability evaluation, long-term 
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clinical studies will be needed to determine the clinical efficacy of low-cost virtual 

rehabilitation games on patients’ physical functions. Furthermore, accessibility for 

patients and compatibility with conventional rehabilitation programs may be considered 

to facilitate bench to bed side translation.   
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Figure 25: Poster presentation - College of Engineering and Applied science (CEAS 

2013) 

  



54 

 

 
 

 

Figure 26: Poster presentation - College of Engineering and Applied science (CEAS 

2014) 
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Appendix: Software source code 

 

Python software source code 

  

Joint angle computation 

 

import GameLogic 

import bge 

import mathutils 

import math 

from math import radians 

from math import sin 

import time 

 

try: 

    bge.logic.globalDict['start_time'] 

except KeyError: 

    bge.logic.globalDict['start_time']=10000 

    bge.logic.globalDict['elapsed_time']=0 

    bge.logic.globalDict['Text']=0 

    bge.logic.globalDict['Text']=bge.logic.globalDict['Text']+ 0.0165   

    print("*********************not defined***********") 

     

     

bge.logic.globalDict['start_time'] = timer() 

print("time.time and time_clock()", time.time(),time.clock()) 

 

#start_time=bge.logic.globalDict['start_time'] 

print("Start time",bge.logic.globalDict['start_time']) 

 

distance=0.15 

distance1=0.25 

try: 

    bge.logic.globalDict['theta_min'] 

except KeyError: 

    bge.logic.globalDict['theta_min']=10000 

    bge.logic.globalDict['theta_max']=-10000 

    bge.logic.globalDict['theta_prev']=0 

    print("*********************not defined***********") 

 

theta_prev=bge.logic.globalDict['theta_prev'] 

theta_max=bge.logic.globalDict['theta_max'] 

theta_min=bge.logic.globalDict['theta_min'] 
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try: 

    bge.logic.globalDict['alpha_min'] 

except KeyError: 

    bge.logic.globalDict['alpha_min']=10000 

    bge.logic.globalDict['alpha_max']=-10000 

    bge.logic.globalDict['alpha_prev']=0 

    print("*********************not defined***********") 

 

alpha_prev=bge.logic.globalDict['alpha_prev'] 

alpha_max=bge.logic.globalDict['alpha_max'] 

alpha_min=bge.logic.globalDict['alpha_min'] 

 

 

try: 

    bge.logic.globalDict['beta_min'] 

except KeyError: 

    bge.logic.globalDict['beta_min']=10000 

    bge.logic.globalDict['beta_max']=-10000 

    bge.logic.globalDict['beta_prev']=0 

    print("*********************not defined***********") 

 

beta_prev=bge.logic.globalDict['beta_prev'] 

beta_max=bge.logic.globalDict['beta_max'] 

beta_min=bge.logic.globalDict['beta_min'] 

 

try: 

    bge.logic.globalDict['gamma_min'] 

except KeyError: 

    bge.logic.globalDict['gamma_min']=10000 

    bge.logic.globalDict['gamma_max']=-10000 

    bge.logic.globalDict['gamma_prev']=0 

    print("*********************not defined***********") 

 

gamma_prev=bge.logic.globalDict['gamma_prev'] 

gamma_max=bge.logic.globalDict['gamma_max'] 

gamma_min=bge.logic.globalDict['gamma_min'] 

 

cont = GameLogic.getCurrentController() 

objects= GameLogic.getCurrentScene().objects 

owner = cont.owner 

 

      

x=1.5 

y=1 

z=2.0      

armature = cont.owner 



57 

 

 
 

 

bone1 = armature.channels["Bone.forarm"] 

bl=bone1.joint_rotation 

 

bone2 = armature.channels["Bone.bicept"] 

Bone = armature.channels["Bone"] 

bone3 = armature.channels["Bone.003"] 

Bone_012 = armature.channels["Bone.012"] 

Bone_009 = armature.channels["Bone.009"] 

Bone_014 = armature.channels["Bone.014"] 

Bone_001 = armature.channels["Bone.001"] 

Bone_010= armature.channels["Bone.010"] 

Bone_013 = armature.channels["Bone.013"] 

Bone_015 = armature.channels["Bone.015"] 

bone4 = armature.channels["Bone.004"] 

bone5 = armature.channels["Bone.005"] 

Bone_002 = armature.channels["Bone.002"] 

Bone_011 = armature.channels["Bone.011"] 

bone5 = armature.channels["Bone.014"] 

Bone_016 = armature.channels["Bone.016"] 

 

bone1.rotation_mode = 5 

bone2.rotation_mode = 5 

bone3.rotation_mode = 5 

bone4.rotation_mode = 5 

bone5.rotation_mode = 5 

Bone .rotation_mode = 5 

Bone_001.rotation_mode = 5 

Bone_002.rotation_mode = 5 

Bone_015.rotation_mode = 5 

Bone_016.rotation_mode = 5 

Bone_009.rotation_mode = 5 

Bone_010.rotation_mode = 5 

Bone_011.rotation_mode = 5 

Bone_012.rotation_mode = 5 

Bone_013.rotation_mode = 5 

Bone_014.rotation_mode = 5 

 

euler = bone1.rotation_euler 

euler = bone2.rotation_euler 

euler = bone3.rotation_euler 

euler = bone4.rotation_euler 

euler = bone5.rotation_euler 

euler = Bone.rotation_euler 

euler = Bone_001.rotation_euler 

euler = Bone_002.rotation_euler 
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euler = Bone_015.rotation_euler 

euler = Bone_016.rotation_euler 

euler = Bone_009.rotation_euler 

euler = Bone_010.rotation_euler 

euler = Bone_011.rotation_euler 

euler = Bone_012.rotation_euler 

euler = Bone_013.rotation_euler 

euler = Bone_014.rotation_euler 

 

x = euler.z + 0.01 

 

 

tempstr1=bge.logic.globalDict['Data'] 

tempstr2=tempstr1.replace("b","") 

tempstr=tempstr2.replace("'","") 

bge.logic.globalDict['tempdata']= tempstr.split() 

 

#Joint angles computation 

 

if len(bge.logic.globalDict['tempdata'])>9: 

    Shoulder = [] 

    for i in range(3): 

        Shoulder.append(bge.logic.globalDict['tempdata'][i+1]) 

        print(Shoulder)  

    Elbow = [] 

    for i in range(3): 

        Elbow.append(bge.logic.globalDict['tempdata'][i+4]) 

 

    Wrist = [] 

    for i in range(3): 

        Wrist.append(bge.logic.globalDict['tempdata'][i+7]) 

     

#Elbow angle 

 

    ES = [] 

    EW = []# used for elbow rotation 

    WE = [] 

     

    for i in range(3): 

        ES.append(float(Shoulder[i])-float(Elbow[i])) 

        EW.append(float(Wrist[i])-float(Elbow[i])) 

        WE.append(float(Elbow[i])-float(Wrist[i])) 

         

     

    ESNorm=math.sqrt(ES[0]*ES[0]+ES[1]*ES[1]+ES[2]*ES[2]) 

    EWNorm=math.sqrt(EW[0]*EW[0]+EW[1]*EW[1]+EW[2]*EW[2]) 
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    WENorm=math.sqrt(WE[0]*WE[0]+WE[1]*WE[1]+WE[2]*WE[2]) 

    for i in range(3): 

        ES[i]=ES[i]/ESNorm 

        EW[i]=EW[i]/EWNorm 

        WE[i]=WE[i]/WENorm 

     

    dotprod=ES[0]*EW[0]+ES[1]*EW[1]+ES[2]*EW[2] 

    el=bone1.channel_matrix 

    theta = math.acos(dotprod) 

    print("Elbow angle",theta) 

    if(theta-theta_prev)>math.pi: 

        theta=(theta-(2*math.pi)) 

    elif(theta-theta_prev)<-math.pi: 

        theta=(theta+(2*math.pi)) 

         

    if theta<theta_min: 

        theta_min=theta 

    if theta>theta_max: 

        theta_max=theta 

    theta_prev=theta 

    

    print("theta_max",theta_max) 

    print("theta_min",theta_min)    

 

    bge.logic.globalDict['theta_max']=theta_max 

    bge.logic.globalDict['theta_min']=theta_min 

   

#Shoulder angles 

     

#Alpha angle 

     

    ES = [] 

    X=[1,0,0] 

  

    for i in range(3): 

        ES.append(float(Elbow[i])-float(Shoulder[i])) 

    print(ES)  

    ESNorm=math.sqrt(ES[0]*ES[0]+ES[1]*ES[1]+ES[2]*ES[2]) 

    for i in range(3): 

        ES[i]=ES[i]/ESNorm 

     

    #dot_alpha= X[0]*ES[0]+X[1]*ES[1]+X[2]*ES[2]  

    alpha= math.atan2(-ES[2],ES[0]) 

    print("Alpha angle",alpha) 

     

    if(alpha-alpha_prev)>math.pi: 
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        alpha=(alpha-(2*math.pi)) 

    elif(alpha-alpha_prev)<-math.pi: 

        alpha=(alpha+(2*math.pi)) 

         

    if alpha<alpha_min: 

        alpha_min=alpha 

    if alpha>alpha_max: 

        alpha_max=alpha 

    alpha_prev=alpha 

    

    print("alpha_max",alpha_max) 

    print("alpha_min",alpha_min)    

 

    bge.logic.globalDict['alpha_max']=alpha_max 

    bge.logic.globalDict['alpha_min']=alpha_min 

#Beta angle 

     

    beta= math.asin(ES[1]) 

    print("Beta angle ",beta) 

     

    if(beta-beta_prev)>math.pi: 

        beta=(beta-(2*math.pi)) 

    elif(beta-beta_prev)<-math.pi: 

        beta=(beta+(2*math.pi)) 

         

    if beta<beta_min: 

        beta_min=beta 

    if beta>beta_max: 

        beta_max=beta 

    beta_prev=beta 

    

    print("beta_max",beta_max) 

    print("beta_min",beta_min)    

 

    bge.logic.globalDict['beta_max']=beta_max 

    bge.logic.globalDict['beta_min']=beta_min 

     

#Gamma Angle 

     

    ES = [] 

    WE = [] 

    #print(dir(ES)) 

    for i in range(3): 

        ES.append(float(Shoulder[i])-float(Elbow[i])) 

        WE.append(float(Elbow[i])-float(Wrist[i])) 
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    ESNorm=math.sqrt(ES[0]*ES[0]+ES[1]*ES[1]+ES[2]*ES[2]) 

    WENorm=math.sqrt(WE[0]*WE[0]+WE[1]*WE[1]+WE[2]*WE[2]) 

    for i in range(3): 

        ES[i]=ES[i]/ESNorm 

        WE[i]=WE[i]/WENorm 

  

    import mathutils 

    vec_a = mathutils.Vector((WE[0],WE[1],WE[2])) 

    vec_b = mathutils.Vector((ES[0],ES[1],ES[2])) 

    cross_prod = vec_a.cross(vec_b) 

    print("Cross Product of WE Vector and ES Vector ",cross_prod) 

    cross_prod_Norm = 

math.sqrt(cross_prod[0]*cross_prod[0]+cross_prod[1]*cross_prod[1]+cross_prod[2]*cro

ss_prod[2]) 

    for i in range(3): 

        cross_prod[i]= cross_prod[i]/cross_prod_Norm  

     

    XZ =[cross_prod[0],0,cross_prod[2]] 

     

     

    from math import sin 

    #Y=cross_prod[1] 

    #print("Y value is",Y)     

    #print("Opposite side of the sin",A) 

    #Hyp=cross_prod[0]+cross_prod[1]+cross_prod[2] 

    gam= cross_prod[0]*-(math.sin(alpha))+cross_prod[1]*0+cross_prod[2]*-

(math.cos(alpha)) 

    gamma=math.asin(gam) 

    print("Gamma angle",gamma) 

     

    if(gamma-gamma_prev)>math.pi: 

        gamma=(gamma-(2*math.pi)) 

    elif(gamma-gamma_prev)<-math.pi: 

        gamma=(gamma+(2*math.pi)) 

         

    if gamma<gamma_min: 

        gamma_min=gamma 

    if gamma>gamma_max: 

        gamma_max=gamma 

    gamma_prev=gamma 

    

    print("gamma_max",gamma_max) 

    print("gamma_min",gamma_min)    

 

    bge.logic.globalDict['gamma_max']=gamma_max 

    bge.logic.globalDict['gamma_min']=gamma_min 
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bone1.rotation_euler = [0,-gamma, math.pi-theta]  

bone3.rotation_euler=[0,0,-float(bge.logic.globalDict['tempdata'][0])/40.0] 

bone4.rotation_euler=[0,0,float(bge.logic.globalDict['tempdata'][0])/40.0] 

bone5.rotation_euler=[0,float(bge.logic.globalDict['tempdata'][0])/40.0,0] 

 

Bone.rotation_euler=[0,0,-float(bge.logic.globalDict['tempdata'][0])/40.0] 

Bone_001.rotation_euler=[0,0,float(bge.logic.globalDict['tempdata'][0])/40.0] 

Bone_002.rotation_euler=[0,-float(bge.logic.globalDict['tempdata'][0])/40.0,0] 

Bone_015.rotation_euler=[0,0,-float(bge.logic.globalDict['tempdata'][0])/40.0] 

Bone_016.rotation_euler=[0,0,float(bge.logic.globalDict['tempdata'][0])/40.0] 

 

Bone_009.rotation_euler=[0,0,-float(bge.logic.globalDict['tempdata'][0])/40.0] 

Bone_010.rotation_euler=[0,0,float(bge.logic.globalDict['tempdata'][0])/40.0] 

Bone_011.rotation_euler=[0,-float(bge.logic.globalDict['tempdata'][0])/40.0,0] 

Bone_012.rotation_euler=[0,0,-float(bge.logic.globalDict['tempdata'][0])/40.0] 

Bone_013.rotation_euler=[0,0,float(bge.logic.globalDict['tempdata'][0])/40.0] 

Bone_014.rotation_euler=[0,-float(bge.logic.globalDict['tempdata'][0])/40.0,0] 

 

bone2.rotation_euler = [alpha-math.pi/2,(gamma)*0.1,beta] 

#fingers = Bone_002.rotation_euler 

 

armature.update() 

bge.logic.globalDict['theta_ROM'] = (bge.logic.globalDict['theta_max']-

bge.logic.globalDict['theta_min']) 

print("ROM_theta",bge.logic.globalDict['theta_ROM']) 

bge.logic.globalDict['alpha_ROM'] = (bge.logic.globalDict['alpha_max']-

bge.logic.globalDict['alpha_min']) 

print("ROM_alpha",bge.logic.globalDict['alpha_ROM']) 

bge.logic.globalDict['beta_ROM'] = (bge.logic.globalDict['beta_max']-

bge.logic.globalDict['beta_min']) 

print("ROM_beta",bge.logic.globalDict['beta_ROM']) 

bge.logic.globalDict['gamma_ROM'] = (bge.logic.globalDict['gamma_max']-

bge.logic.globalDict['gamma_min']) 

print("ROM_gamma",bge.logic.globalDict['gamma_ROM']) 

 

bge.logic.globalDict['elapsed_time']= (timer() - bge.logic.globalDict['start_time'])  

 

bge.logic.globalDict['elapsed_time'] = bge.logic.globalDict['elapsed_time'] * 1000 

 

print ("elapsed_time",bge.logic.globalDict['elapsed_time']) 

print("Global_dict.time",bge.logic.globalDict['Text']) 

 

Server program 

 

import bge, socket, GameLogic 
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import sys 

import time 

  

def main(): 

  

#    print('AAAA') 

    cont = bge.logic.getCurrentController() 

    own = cont.owner 

#    print('BBB') 

     

    if not 'init' in own: 

        own['init']=1             

        own['UDP_IP'] = "127.0.0.1" 

        own['UDP_PORT'] = 8778   

                      

        address =(own['UDP_IP'],own['UDP_PORT']) 

        print('Begin.') 

        GameLogic.globalDict['sock'] = socket.socket( socket.AF_INET, 

socket.SOCK_DGRAM ) 

        GameLogic.globalDict['sock'].setsockopt(socket.SOL_SOCKET, 

socket.SO_REUSEADDR,3) 

        ##GameLogic.globalDict['sock'].serve_forever() 

        GameLogic.globalDict['sock'].bind(address) 

        ##GameLogic.globalDict['sock'].listen(200) 

        GameLogic.globalDict['sock'].setblocking(0) 

        GameLogic.globalDict["EncoderReceiverState"] = 1 

        bge.logic.globalDict['Data']='1' 

        print('Socket created') 

         

try: 

        data,addr = GameLogic.globalDict['sock'].recvfrom(256) 

        data = data.decode("utf-8") 

        #print(data) 

        bge.logic.globalDict['Data']=data 

         

#        print(GameLogic.globalDict['Data']) 

         

#        data = GameLogic.globalDict['Data'][0] 

        #addr = GameLogic.globalDict['Data'][1] 

#        new = data.split()  

#        GameLogic.globalDict['new_array']= new 

#        for i in new:print(i) 

#        print(GameLogic.globalDict['new_array'][0]) 

       

        #print(new) 
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except:     

    pass 

#    if not data:  

#        break 

              

#        reply = 'OK...' + data 

                      

#        GameLogic.globalDict['sock'].sendto(reply ,addr) 

#        print 'Message[' + addr[0] + ':' + str(addr[1]) + '] - ' + data.strip() 

                      

 #       GameLogic.globalDict['sock'].close()                                 

main() 

 

 

C# software source code 

 

Client program 

 

//------------------------------------------------------------------------------ 

// <copyright file="MainWindow.xaml.cs" company="Microsoft"> 

//     Copyright (c) Microsoft Corporation.  All rights reserved. 

// </copyright> 

//------------------------------------------------------------------------------ 

 

namespace Microsoft.Samples.Kinect.SkeletonBasics 

{ 

    using System; 

    using System.IO; 

    using System.Windows; 

    using System.Windows.Media; 

    using Microsoft.Kinect; 

    using System.Net; 

    using System.Net.Sockets; 

    using System.Text; 

    using System.Threading; 

    using Zion.Input; 

 

    /// <summary> 

    /// Interaction logic for MainWindow.xaml 

    /// </summary> 

    ///  

    public partial class MainWindow : Window 

    { 

        P5State p5state = new P5State(); 

        P5Dll p5 = new P5Dll(); 

        /// <summary> 
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        /// Width of output drawing 

        /// </summary> 

        private const float RenderWidth = 640.0f; 

 

        /// <summary> 

        /// Height of our output drawing 

        /// </summary> 

        private const float RenderHeight = 480.0f; 

 

        /// <summary> 

        /// Thickness of drawn joint lines 

        /// </summary> 

        private const double JointThickness = 3; 

 

        /// <summary> 

        /// Thickness of body center ellipse 

        /// </summary> 

        private const double BodyCenterThickness = 10; 

 

        /// <summary> 

        /// Thickness of clip edge rectangles 

        /// </summary> 

        private const double ClipBoundsThickness = 10; 

 

        /// <summary> 

        /// Brush used to draw skeleton center point 

        /// </summary> 

        private readonly Brush centerPointBrush = Brushes.Blue; 

 

        /// <summary> 

        /// Brush used for drawing joints that are currently tracked 

        /// </summary> 

        private readonly Brush trackedJointBrush = new 

SolidColorBrush(Color.FromArgb(255, 68, 192, 68)); 

 

        /// <summary> 

        /// Brush used for drawing joints that are currently inferred 

        /// </summary>         

        private readonly Brush inferredJointBrush = Brushes.Yellow; 

 

        /// <summary> 

        /// Pen used for drawing bones that are currently tracked 

        /// </summary> 

        private readonly Pen trackedBonePen = new Pen(Brushes.Green, 6); 

 

        /// <summary> 
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        /// Pen used for drawing bones that are currently inferred 

        /// </summary>         

        private readonly Pen inferredBonePen = new Pen(Brushes.Gray, 1); 

 

        /// <summary> 

        /// Active Kinect sensor 

        /// </summary> 

        private KinectSensor sensor; 

 

        /// <summary> 

        /// Drawing group for skeleton rendering output 

        /// </summary> 

        private DrawingGroup drawingGroup; 

 

        /// <summary> 

        /// Drawing image that we will display 

        /// </summary> 

        private DrawingImage imageSource; 

 

        /// <summary> 

        /// Initializes a new instance of the MainWindow class. 

        /// </summary> 

        public MainWindow() 

        { 

            InitializeComponent(); 

        } 

 

        /// <summary> 

        /// Draws indicators to show which edges are clipping skeleton data 

        /// </summary> 

        /// <param name="skeleton">skeleton to draw clipping information for</param> 

        /// <param name="drawingContext">drawing context to draw to</param> 

        private static void RenderClippedEdges(Skeleton skeleton, DrawingContext 

drawingContext) 

        { 

            if (skeleton.ClippedEdges.HasFlag(FrameEdges.Bottom)) 

            { 

                drawingContext.DrawRectangle( 

                    Brushes.Red, 

                    null, 

                    new Rect(0, RenderHeight - ClipBoundsThickness, RenderWidth, 

ClipBoundsThickness)); 

            } 

 

            if (skeleton.ClippedEdges.HasFlag(FrameEdges.Top)) 

            { 
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                drawingContext.DrawRectangle( 

                    Brushes.Red, 

                    null, 

                    new Rect(0, 0, RenderWidth, ClipBoundsThickness)); 

            } 

 

            if (skeleton.ClippedEdges.HasFlag(FrameEdges.Left)) 

            { 

                drawingContext.DrawRectangle( 

                    Brushes.Red, 

                    null, 

                    new Rect(0, 0, ClipBoundsThickness, RenderHeight)); 

            } 

 

            if (skeleton.ClippedEdges.HasFlag(FrameEdges.Right)) 

            { 

                drawingContext.DrawRectangle( 

                    Brushes.Red, 

                    null, 

                    new Rect(RenderWidth - ClipBoundsThickness, 0, ClipBoundsThickness, 

RenderHeight)); 

            } 

        } 

 

        

        /// <summary> 

        /// Execute startup tasks 

        /// </summary> 

        /// <param name="sender">object sending the event</param> 

        /// <param name="e">event arguments</param> 

        private void WindowLoaded(object sender, RoutedEventArgs e) 

        { 

            // Create the drawing group we'll use for drawing 

            this.drawingGroup = new DrawingGroup(); 

 

            // Create an image source that we can use in our image control 

            this.imageSource = new DrawingImage(this.drawingGroup); 

 

            // Display the drawing using our image control 

            Image.Source = this.imageSource; 

 

            // Look through all sensors and start the first connected one. 

            // This requires that a Kinect is connected at the time of app startup. 

            // To make your app robust against plug/unplug,  

            // it is recommended to use KinectSensorChooser provided in 

Microsoft.Kinect.Toolkit 
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            foreach (var potentialSensor in KinectSensor.KinectSensors) 

            { 

                if (potentialSensor.Status == KinectStatus.Connected) 

                { 

                    this.sensor = potentialSensor; 

                    break; 

                } 

            } 

 

            if (null != this.sensor) 

            { 

                // Turn on the skeleton stream to receive skeleton frames 

                this.sensor.SkeletonStream.Enable(); 

 

                // Add an event handler to be called whenever there is new color frame data 

                this.sensor.SkeletonFrameReady += this.SensorSkeletonFrameReady; 

 

                // Start the sensor! 

                try 

                { 

                    this.sensor.Start(); 

                } 

                catch (IOException) 

                { 

                    this.sensor = null; 

                } 

            } 

 

            if (null == this.sensor) 

            { 

                this.statusBarText.Text = Properties.Resources.NoKinectReady; 

            } 

             

             

            if (p5.Connect()) 

            { 

                p5.SetMouseState(false); 

            } 

 

            //while (!messageReceived) 

            //{ 

            //    Thread.Sleep(100); 

            //} 

        } 

 

        /// <summary> 
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        /// Execute shutdown tasks 

        /// </summary> 

        /// <param name="sender">object sending the event</param> 

        /// <param name="e">event arguments</param> 

        private void WindowClosing(object sender, 

System.ComponentModel.CancelEventArgs e) 

        { 

            try 

            { 

                p5.Close(); 

                p5 = null; 

            } 

            catch 

            { } 

 

            if (null != this.sensor) 

            { 

                this.sensor.Stop(); 

            } 

             

        } 

         

        public bool udpDefined = false; 

        Socket udpSocket2; 

        EndPoint local2EP; 

        EndPoint remote2EP; 

        byte[] sendBuffer; 

 

        /// <summary> 

        /// Event handler for Kinect sensor's SkeletonFrameReady event 

        /// </summary> 

        /// <param name="sender">object sending the event</param> 

        /// <param name="e">event arguments</param> 

        private void SensorSkeletonFrameReady(object sender, 

SkeletonFrameReadyEventArgs e) 

        { 

            Skeleton[] skeletons = new Skeleton[0]; 

 

            using (SkeletonFrame skeletonFrame = e.OpenSkeletonFrame()) 

            { 

                if (skeletonFrame != null) 

                { 

                    skeletons = new Skeleton[skeletonFrame.SkeletonArrayLength]; 

                    skeletonFrame.CopySkeletonDataTo(skeletons); 

                } 

            } 
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            using (DrawingContext dc = this.drawingGroup.Open()) 

            { 

                // Draw a transparent background to set the render size 

                dc.DrawRectangle(Brushes.Black, null, new Rect(0.0, 0.0, RenderWidth, 

RenderHeight)); 

 

                if (skeletons.Length != 0) 

                { 

                    Skeleton skel = skeletons[0]; 

 

                    double hipZ=0.0; 

                    double hipZ_prev=10000.0; 

                    foreach (Skeleton skel1 in skeletons) 

                    { 

                        if (skel1.TrackingState == SkeletonTrackingState.Tracked) 

                        { 

                            hipZ = skel1.Joints[JointType.HipCenter].Position.Z; 

                            if (hipZ < hipZ_prev) 

                            { 

                                hipZ_prev = hipZ; 

                                skel = skel1; 

                            } 

                        } 

                    } 

 

 

                    //Skeleton skel = skeletons[0]; 

                    //SkeletonTrackingState.Tracked 

                    //skeletons.GetLength 

                    //foreach (Skeleton skel in skeletons) 

                     

 

                    //{ 

                        RenderClippedEdges(skel, dc); 

 

                        if (skel.TrackingState == SkeletonTrackingState.Tracked) 

                        { 

                            this.DrawBonesAndJoints(skel, dc); 

                        } 

                        else if (skel.TrackingState == SkeletonTrackingState.PositionOnly) 

                        { 

                            dc.DrawEllipse( 

                            this.centerPointBrush, 

                            null, 

                            this.SkeletonPointToScreen(skel.Position), 
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                            BodyCenterThickness, 

                            BodyCenterThickness); 

                        } 

                    //} 

                } 

 

                // prevent drawing outside of our render area 

                this.drawingGroup.ClipGeometry = new RectangleGeometry(new Rect(0.0, 

0.0, RenderWidth, RenderHeight)); 

            } 

        } 

 

        /// <summary> 

        /// Draws a skeleton's bones and joints 

        /// </summary> 

        /// <param name="skeleton">skeleton to draw</param> 

        /// <param name="drawingContext">drawing context to draw to</param> 

        private void DrawBonesAndJoints(Skeleton skeleton, DrawingContext 

drawingContext) 

        { 

            if (!udpDefined) 

            { 

                udpDefined = true; 

                udpSocket2 = new Socket(AddressFamily.InterNetwork, SocketType.Dgram, 

ProtocolType.Udp); 

                local2EP = new IPEndPoint(IPAddress.Any, 0); 

                remote2EP = new IPEndPoint(IPAddress.Loopback, 8778); 

                udpSocket2.ExclusiveAddressUse = false; 

                udpSocket2.SetSocketOption(SocketOptionLevel.Socket, 

SocketOptionName.ReuseAddress, true); 

                udpSocket2.Bind(local2EP); 

                udpSocket2.Blocking = false; 

            } 

 

            // Update p5 state 

            //P5Dll.P5_GetState(0, 0, ref p5state); 

            p5state=p5.GetState(); 

 

            float temp_sum1 = 0.0f; 

            for (int i = 0; i < 5; i++) 

            { 

                temp_sum1 += (float)p5state.Finger[i]; // get finger bending info 

            } 

            int temp_sum = (int)Math.Round(temp_sum1 / 5.0); 

 

            // Render Torso 
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            this.DrawBone(skeleton, drawingContext, JointType.Head, 

JointType.ShoulderCenter); 

            this.DrawBone(skeleton, drawingContext, JointType.ShoulderCenter, 

JointType.ShoulderLeft); 

            this.DrawBone(skeleton, drawingContext, JointType.ShoulderCenter, 

JointType.ShoulderRight); 

            this.DrawBone(skeleton, drawingContext, JointType.ShoulderCenter, 

JointType.Spine); 

            this.DrawBone(skeleton, drawingContext, JointType.Spine, 

JointType.HipCenter); 

            this.DrawBone(skeleton, drawingContext, JointType.HipCenter, 

JointType.HipLeft); 

            this.DrawBone(skeleton, drawingContext, JointType.HipCenter, 

JointType.HipRight); 

             

            // Left Arm 

            this.DrawBone(skeleton, drawingContext, JointType.ShoulderLeft, 

JointType.ElbowLeft); 

            this.DrawBone(skeleton, drawingContext, JointType.ElbowLeft, 

JointType.WristLeft); 

            this.DrawBone(skeleton, drawingContext, JointType.WristLeft, 

JointType.HandLeft); 

 

            // Right Arm 

            this.DrawBone(skeleton, drawingContext, JointType.ShoulderRight, 

JointType.ElbowRight); 

            this.DrawBone(skeleton, drawingContext, JointType.ElbowRight, 

JointType.WristRight); 

            this.DrawBone(skeleton, drawingContext, JointType.WristRight, 

JointType.HandRight); 

 

            // Left Leg 

            this.DrawBone(skeleton, drawingContext, JointType.HipLeft, 

JointType.KneeLeft); 

            this.DrawBone(skeleton, drawingContext, JointType.KneeLeft, 

JointType.AnkleLeft); 

            this.DrawBone(skeleton, drawingContext, JointType.AnkleLeft, 

JointType.FootLeft); 

 

            // Right Leg 

            this.DrawBone(skeleton, drawingContext, JointType.HipRight, 

JointType.KneeRight); 

            this.DrawBone(skeleton, drawingContext, JointType.KneeRight, 

JointType.AnkleRight); 

            this.DrawBone(skeleton, drawingContext, JointType.AnkleRight, 

JointType.FootRight); 
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            Joint joint2 = skeleton.Joints[JointType.ShoulderRight]; 

            Joint joint8 = skeleton.Joints[JointType.ElbowRight]; 

            Joint joint10 = skeleton.Joints[JointType.WristRight]; 

 

            string udpString = temp_sum.ToString() + " " + joint2.Position.X.ToString("F4") 

+ " " + joint2.Position.Y.ToString("F4") + " " + joint2.Position.Z.ToString("F4") + " "; 

            udpString += joint8.Position.X.ToString("F4") + " " + 

joint8.Position.Y.ToString("F4") + " " + joint8.Position.Z.ToString("F4") + " "; 

            udpString += joint10.Position.X.ToString("F4") + " " + 

joint10.Position.Y.ToString("F4") + " " + joint10.Position.Z.ToString("F4") + " "; 

                

            sendBuffer = Encoding.ASCII.GetBytes(udpString); 

            //sendBuffer = Encoding.ASCII.GetBytes(temp_sum.ToString()); 

            udpSocket2.SendTo(sendBuffer, remote2EP); 

            this.Title = udpString; 

 

             

 

            //Declares all 20 joint positons 

            /* 

            Joint joint0 = skeleton.Joints[JointType.Head]; 

            Joint joint1 = skeleton.Joints[JointType.ShoulderCenter]; 

            Joint joint2 = skeleton.Joints[JointType.ShoulderRight]; 

            Joint joint3 = skeleton.Joints[JointType.ShoulderLeft]; 

            Joint joint4 = skeleton.Joints[JointType.Spine]; 

            Joint joint5 = skeleton.Joints[JointType.HipCenter]; 

            Joint joint6 = skeleton.Joints[JointType.HipRight]; 

            Joint joint7 = skeleton.Joints[JointType.HipLeft]; 

            Joint joint8 = skeleton.Joints[JointType.ElbowRight]; 

            Joint joint9 = skeleton.Joints[JointType.ElbowLeft]; 

            Joint joint10 = skeleton.Joints[JointType.WristRight]; 

            Joint joint11 = skeleton.Joints[JointType.WristLeft]; 

            Joint joint12 = skeleton.Joints[JointType.HandRight]; 

            Joint joint13 = skeleton.Joints[JointType.HandLeft]; 

            Joint joint14 = skeleton.Joints[JointType.KneeRight]; 

            Joint joint15 = skeleton.Joints[JointType.KneeLeft]; 

            Joint joint16 = skeleton.Joints[JointType.AnkleRight]; 

            Joint joint17 = skeleton.Joints[JointType.AnkleLeft]; 

            Joint joint18 = skeleton.Joints[JointType.FootRight]; 

            Joint joint19 = skeleton.Joints[JointType.FootLeft]; 

            */ 

            //Displays X,Y,and Z in window title for the specified marker position 

            //this.Title = "(" + joint19.Position.X.ToString() + " , " + 

joint19.Position.Y.ToString() + " , " + joint19.Position.Z.ToString() + ")"; 

 



74 

 

 
 

            //Records all of the data for the session 

            /* 

            writer.Write("{0} \t {1} \t {2} \t", joint0.Position.X.ToString(), 

joint0.Position.Y.ToString(), joint0.Position.Z.ToString()); 

            writer.Write("{0} \t {1} \t {2} \t", joint1.Position.X.ToString(), 

joint1.Position.Y.ToString(), joint1.Position.Z.ToString()); 

            writer.Write("{0} \t {1} \t {2} \t", joint2.Position.X.ToString(), 

joint2.Position.Y.ToString(), joint2.Position.Z.ToString()); 

            writer.Write("{0} \t {1} \t {2} \t", joint3.Position.X.ToString(), 

joint3.Position.Y.ToString(), joint3.Position.Z.ToString()); 

            writer.Write("{0} \t {1} \t {2} \t", joint4.Position.X.ToString(), 

joint4.Position.Y.ToString(), joint4.Position.Z.ToString()); 

            writer.Write("{0} \t {1} \t {2} \t", joint5.Position.X.ToString(), 

joint5.Position.Y.ToString(), joint5.Position.Z.ToString()); 

            writer.Write("{0} \t {1} \t {2} \t", joint6.Position.X.ToString(), 

joint6.Position.Y.ToString(), joint6.Position.Z.ToString()); 

            writer.Write("{0} \t {1} \t {2} \t", joint7.Position.X.ToString(), 

joint7.Position.Y.ToString(), joint7.Position.Z.ToString()); 

            writer.Write("{0} \t {1} \t {2} \t", joint8.Position.X.ToString(), 

joint8.Position.Y.ToString(), joint8.Position.Z.ToString()); 

            writer.Write("{0} \t {1} \t {2} \t", joint9.Position.X.ToString(), 

joint9.Position.Y.ToString(), joint9.Position.Z.ToString()); 

            writer.Write("{0} \t {1} \t {2} \t", joint10.Position.X.ToString(), 

joint10.Position.Y.ToString(), joint10.Position.Z.ToString()); 

            writer.Write("{0} \t {1} \t {2} \t", joint11.Position.X.ToString(), 

joint11.Position.Y.ToString(), joint11.Position.Z.ToString()); 

            writer.Write("{0} \t {1} \t {2} \t", joint12.Position.X.ToString(), 

joint12.Position.Y.ToString(), joint12.Position.Z.ToString()); 

            writer.Write("{0} \t {1} \t {2} \t", joint13.Position.X.ToString(), 

joint13.Position.Y.ToString(), joint13.Position.Z.ToString()); 

            writer.Write("{0} \t {1} \t {2} \t", joint14.Position.X.ToString(), 

joint14.Position.Y.ToString(), joint14.Position.Z.ToString()); 

            writer.Write("{0} \t {1} \t {2} \t", joint15.Position.X.ToString(), 

joint15.Position.Y.ToString(), joint15.Position.Z.ToString()); 

            writer.Write("{0} \t {1} \t {2} \t", joint16.Position.X.ToString(), 

joint16.Position.Y.ToString(), joint16.Position.Z.ToString()); 

            writer.Write("{0} \t {1} \t {2} \t", joint17.Position.X.ToString(), 

joint17.Position.Y.ToString(), joint17.Position.Z.ToString()); 

            writer.Write("{0} \t {1} \t {2} \t", joint18.Position.X.ToString(), 

joint18.Position.Y.ToString(), joint18.Position.Z.ToString()); 

            writer.Write("{0} \t {1} \t {2} \n", joint19.Position.X.ToString(), 

joint19.Position.Y.ToString(), joint19.Position.Z.ToString()); 

            */ 

 

            // Render Joints 

            foreach (Joint joint in skeleton.Joints) 
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            { 

                Brush drawBrush = null; 

 

                if (joint.TrackingState == JointTrackingState.Tracked) 

                { 

                    drawBrush = this.trackedJointBrush;                     

                } 

                else if (joint.TrackingState == JointTrackingState.Inferred) 

                { 

                    drawBrush = this.inferredJointBrush;                     

                } 

 

                if (drawBrush != null) 

                { 

                    drawingContext.DrawEllipse(drawBrush, null, 

this.SkeletonPointToScreen(joint.Position), JointThickness, JointThickness); 

                } 

            } 

        } 

 

        public double getVerticalAngle(Joint shoulder, Joint wrist) 

        { 

            float diffx=wrist.Position.X-shoulder.Position.X; 

            float diffy=wrist.Position.Y-shoulder.Position.Y; 

            float diffz=wrist.Position.Z-shoulder.Position.Z; 

            double 

mag=Math.Sqrt(Math.Pow(diffx,2)+Math.Pow(diffy,2)+Math.Pow(diffz,2)); 

            return Math.Asin(diffy / mag) * 180 / Math.PI; 

        } 

 

        public double getHorizontalAngle(Joint shoulder, Joint wrist) 

        { 

            float diffx = wrist.Position.X - shoulder.Position.X; 

            float diffz = wrist.Position.Z - shoulder.Position.Z; 

            double mag = Math.Sqrt(Math.Pow(diffx, 2) + Math.Pow(diffz, 2)); 

            return Math.Asin(-diffx / mag)*180/Math.PI; 

            //return Math.Atan2(diffx, diffz); 

        } 

 

        public double maxArmLength = 0; 

 

        public double getBowStrength(Joint shoulder, Joint wrist) 

        { 

            float diffx = wrist.Position.X - shoulder.Position.X; 

            float diffy = wrist.Position.Y - shoulder.Position.Y; 

            float diffz = wrist.Position.Z - shoulder.Position.Z; 
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            double mag = Math.Sqrt(Math.Pow(diffx, 2) + Math.Pow(diffy, 2) + 

Math.Pow(diffz, 2)); 

            maxArmLength = (maxArmLength < mag) ? mag : maxArmLength; 

            double temp_strength=(maxArmLength - mag) / maxArmLength * 60.0; 

            if (temp_strength<0.0) 

                temp_strength=0; 

            else if (temp_strength>40.0) 

                temp_strength=40.0; 

            return temp_strength; 

        } 

 

        /// <summary> 

        /// Maps a SkeletonPoint to lie within our render space and converts to Point 

        /// </summary> 

        /// <param name="skelpoint">point to map</param> 

        /// <returns>mapped point</returns> 

        private Point SkeletonPointToScreen(SkeletonPoint skelpoint) 

        { 

            // Convert point to depth space.   

            // We are not using depth directly, but we do want the points in our 640x480 

output resolution. 

            DepthImagePoint depthPoint = this.sensor.MapSkeletonPointToDepth(skelpoint, 

                                                                            

 DepthImageFormat.Resolution640x480Fps30); 

             

            return new Point(depthPoint.X, depthPoint.Y); 

        } 

 

        /// <summary> 

        /// Draws a bone line between two joints 

        /// </summary> 

        /// <param name="skeleton">skeleton to draw bones from</param> 

        /// <param name="drawingContext">drawing context to draw to</param> 

        /// <param name="jointType0">joint to start drawing from</param> 

        /// <param name="jointType1">joint to end drawing at</param> 

        private void DrawBone(Skeleton skeleton, DrawingContext drawingContext, 

JointType jointType0, JointType jointType1) 

        { 

            Joint joint0 = skeleton.Joints[jointType0]; 

            Joint joint1 = skeleton.Joints[jointType1]; 

 

            // If we can't find either of these joints, exit 

            if (joint0.TrackingState == JointTrackingState.NotTracked || 

                joint1.TrackingState == JointTrackingState.NotTracked) 

            { 

                return; 
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            } 

 

            // Don't draw if both points are inferred 

            if (joint0.TrackingState == JointTrackingState.Inferred && 

                joint1.TrackingState == JointTrackingState.Inferred) 

            { 

                return; 

            } 

 

            // We assume all drawn bones are inferred unless BOTH joints are tracked 

            Pen drawPen = this.inferredBonePen; 

            if (joint0.TrackingState == JointTrackingState.Tracked && joint1.TrackingState 

== JointTrackingState.Tracked) 

            { 

                drawPen = this.trackedBonePen; 

            } 

 

            drawingContext.DrawLine(drawPen, this.SkeletonPointToScreen(joint0.Position), 

this.SkeletonPointToScreen(joint1.Position)); 

        } 

 

        /// <summary> 

        /// Handles the checking or unchecking of the seated mode combo box 

        /// </summary> 

        /// <param name="sender">object sending the event</param> 

        /// <param name="e">event arguments</param> 

        private void CheckBoxSeatedModeChanged(object sender, RoutedEventArgs e) 

        { 

            if (null != this.sensor) 

            { 

                if (this.checkBoxSeatedMode.IsChecked.GetValueOrDefault()) 

                { 

                    this.sensor.SkeletonStream.TrackingMode = SkeletonTrackingMode.Seated; 

                } 

                else 

                { 

                    this.sensor.SkeletonStream.TrackingMode = 

SkeletonTrackingMode.Default; 

                } 

            } 

        } 

 

        private void button1_Click(object sender, RoutedEventArgs e) 

        { 

            try 

            { 
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                this.Close(); 

            } 

            catch 

            { } 

        } 

    } 

 

    public class UdpRecvData 

    { 

        public string recvData; 

    } 

} 
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Appendix: IRB approval 
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Appendix: Questionnaires & Instruction manual 
  

 

Questionnaires:  

Questionnaire I: Pre-game survey : User expectation  

 

Subject #:          Date:  

 

 Virtual rehabilitation description: games or interactive activities where movements are required from the 

user to perform the game/activity. Kinect, Wii etc. are examples of interactive games or virtual reality games. 

Here we deal with games specifically dedicated to upper-limb rehabilitation, designed for hemiparetic people 

recovery and that people could use at home. 

 This questionnaire has been designed to better understand your expectations about virtual rehabilitation 

systems. This first questionnaire is divided in three different parts and consists of 27 questions. 

 

 

Part I –A) Rating: 

 You are going to rate the importance of the following criteria for a rehabilitation game. According to you, 

how important is each element for a rehabilitation game? For each question rank the importance from 0 (not 

important) to 5 (essential). 

 

 

1. How important is it for the rehabilitation gaming equipment to be easy to put on and use? 

 

1                    2    3   4  5 

(Not important)         (Very important) 

 

2. How important is it for any rules and goals of the game to be easy to understand?  

 

 1   2    3   4                          5  

 (Not important)                      (Very important) 

 

 

3. How important is it for the game to be interesting? 

 

 1   2    3   4  5 

(Not important)                    (Very important) 

 

4. How important is it for the game to be challenging/motivating? 

 

 1   2    3   4  5 

(Not important)          (Very important) 

 

 

5. How important are the fancy graphics, or the display and pictures provided on the screen? 

 

 1   2    3   4  5 

(Not important)          (Very important) 

 

 

 

6. How important is it to keep a track of your score related to your progression in the game? 
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 1   2    3   4  5 

(Not important)          (Very important) 

 

 

7. How important is it to have a variety of different scenes, activities and games? 

 

 1   2    3   4  5 

(Not important)          (Very important) 

 

 

8. How important is it for a rehabilitation game to adapt to your progress and movement ability during use? 

 

 1   2    3   4  5 

(Not important)          (Very important) 

 

 

9. How important is it for a virtual rehabilitation system to provide a clinical functional score of your movement 

ability that therapists usually use? 

 

 1   2    3   4  5 

(Not important)          (Very important) 

 

 

10. How important is it for a rehabilitation game to have a proven clinical benefit? 

 

 1   2    3   4  5 

(Not important)         (Very important) 
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Questionnaire II: Post-game survey : Games rating 

 

Subject #:          Date:  

 

 You have now tested two games dedicated to rehabilitation. You played the archery game and the USA-

map puzzle game. In this questionnaire you are going to evaluate these two games according to several criteria 

and give your remarks and suggestions. 

 

 

Part I- Rating: 
 In this part you are going to rate each game regarding several criteria. For each question, give your opinion 

from 0 to 5 regarding to the proposed criteria and the specified game. 

 

 

A- For the puzzle game (USA map): 

 

 

1. Do you think that the game equipment was easy to put on, start and use? 

 

    1   2              3                4               5  

(Impossibly difficult) (Somewhat difficult)          (OK)   (Simple enough)    (Very easy) 

 

 

 

2. Were the provided instructions helpful to install and play the game? 

 

1   2   3   4  5 

(Completely useless)        (Useless)                (Helpful)          (Simple and helpful)    (Very simple 

    and helpful) 

 

 

3. Was it easy to understand the goal and the rules? 

 

1   2   3   4  5 

(Impossibly difficult) (Somewhat difficult)           (OK)   (Simple enough)    (Very easy) 

 

 

 

4. Were the fancy graphics and the display satisfactory? 

 

1   2   3   4  5 

(Very unsatisfactory) (Unsatisfactory)                          (OK)                          (Satisfactory)  

 

5. Was the scoring system appropriate?   

 

1   2   3   4  5  

(Completely                   (Ina  (Completely inadequate)   (Inadequate)                            (OK)                     (adequate)  

 

 

 

 

6. Was it interesting to play? 

 

1   2   3   4  5 

 (Very boring)  (Not interesting)                          (OK)      (Interesting)       (Fascinating) 

 

(Exceeded my 

expectation) 

(Completely 

adequate) 
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7. Was the game challenging/motivating to play? 

 

1   2   3   4  5 

                                     (Not challenging)                          (OK)     (Challenging)  (Very challenging) 

          

 

 

 

8. Was the game difficult to play? 

 

              1   2   3   4  5                                  

(Really too easy)                                                 (Just difficult enough)                                 (Impossible to realize) 

 

 

 

9.  Were the shoulder and elbow movements requested to play too difficult/too easy to realize? 

 

             1   2   3   4  5  

(Really too easy)            (Just difficult enough)    

  

   

 

10.  Were the hand (fingers) movements requested to play too difficult/too easy to realize? 

 

             1   2   3   4  5  

 (Really too easy)            (Just difficult enough)                      (Impossible to realize) 

 

 

11. Did the game have various scenes and activities? 

 1   2   3   4  5 

(Really too simple)             (Various enough)               (Too much variety) 

 

 

 

12. Did the game provide clinical feedback about your game performance? 

 1   2   3   4  5   

(Not at all)                  (Appropriate amount of feedback)                (Too much to understand) 

 

 

13. Did the game seem to have a proven clinical benefit? 

1   2   3   4  5  

(Not at all complicated)             (Clinically beneficial)              (Too complicated) 

 

14. Give your opinion and remarks about the game you have tested: 

 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

(Not-challenging 

at all) 

(Impossible to realize) 
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B- For the archery game: 

 

 

1. Do you think that the game equipment was easy to put on, start and use? 

 

1   2              3             4                           5  

(Impossibly difficult) (Somewhat difficult)          (OK)   (Simple enough)    (Very easy) 

 

 

2. Were the provided instructions helpful to install and play the game? 

 

1   2   3   4  5 

(Completely useless)        (Useless)                (Helpful)          (Simple and helpful)    (Very simple 

    and helpful) 

 

 

3. Was it easy to understand the goal and the rules? 

 

1   2   3   4  5 

(Impossibly difficult) (Somewhat difficult)           (OK)   (Simple enough)    (Very easy) 

 

 

4. Were the fancy graphics and the display satisfactory? 

 

1   2   3   4  5 

(Very unsatisfactory) (Unsatisfactory)                          (OK)                          (Satisfactory)  

 

5. Was the scoring system appropriate?   

 

1   2   3   4  5  

(Completely                   (Ina  (Completely inadequate)   (Inadequate)                            (OK)                     (adequate)  

 

 

6. Was it interesting to play? 

 

1   2   3   4  5 

 (Very boring)  (Not interesting)                          (OK)      (Interesting)       (Fascinating) 

 

 

7. Was the game challenging/motivating to play? 

 

1   2   3   4  5 

                                     (Not challenging)                          (OK)     (Challenging)  (Very challenging) 

          

 

 

8. Was the game difficult to play? 

 

              1   2   3   4  5                                  

(Really too easy)                                                 (Just difficult enough)                                 (Impossible to realize) 

 

9.  Were the shoulder and elbow movements requested to play too difficult/too easy to realize? 

 

             1   2   3   4  5  

(Exceeded my 

expectation) 

(Completely 

adequate) 

(Not-challenging 

at all) 

(Impossible to realize) 
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(Really too easy)            (Just difficult enough)    

  

 

10.  Were the hand (fingers) movements requested to play too difficult/too easy to realize? 

 

             1   2   3   4  5  

 (Really too easy)            (Just difficult enough)                      (Impossible to realize) 

 

 

11. Did the game have various scenes and activities? 

 1   2   3   4  5 

(Really too simple)             (Various enough)               (Too much variety) 

 

 

12. Did the game provide clinical feedback about your game performance? 

 1   2   3   4  5   

(Not at all)                  (Appropriate amount of feedback)                (Too much to understand) 

 

 

13. Did the game seem to have a proven clinical benefit? 

1   2   3   4  5  

(Not at all complicated)             (Clinically beneficial)              (Too complicated) 

 

14. Give your opinion and remarks about the game you have tested: 

 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

 
 

C- For the Kitchen game: 

 

 

1. Do you think that the game equipment was easy to put on, start and use? 

 

1   2              3             4                           5  

(Impossibly difficult) (Somewhat difficult)          (OK)   (Simple enough)    (Very easy) 

 

 

 

2. Were the provided instructions helpful to install and play the game? 

 

1   2   3   4  5 

(Completely useless)        (Useless)                (Helpful)          (Simple and helpful)    (Very simple 

    and helpful) 

 

 

3. Was it easy to understand the goal and the rules? 

 

1   2   3   4  5 
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(Impossibly difficult) (Somewhat difficult)           (OK)   (Simple enough)    (Very easy) 

 

 

 

4. Were the fancy graphics and the display satisfactory? 

 

1   2   3   4  5 

(Very unsatisfactory) (Unsatisfactory)                          (OK)                          (Satisfactory)  

 

5. Was the scoring system appropriate?   

 

1   2   3   4  5  

(Completely                   (Ina  (Completely inadequate)   (Inadequate)                            (OK)                     (adequate)  

 

6. Was it interesting to play? 

 

1   2   3   4  5 

 (Very boring)  (Not interesting)                          (OK)      (Interesting)       (Fascinating) 

 

7. Was the game challenging/motivating to play? 

 

1   2   3   4  5 

                                     (Not challenging)                          (OK)     (Challenging)  (Very challenging) 

          

 

8. Was the game difficult to play? 

 

              1   2   3   4  5                                  

(Really too easy)                                                 (Just difficult enough)                                 (Impossible to realize) 

 

9.  Were the shoulder and elbow movements requested to play too difficult/too easy to realize? 

 

             1   2   3   4  5  

(Really too easy)            (Just difficult enough)    

  

10.  Were the hand (fingers) movements requested to play too difficult/too easy to realize? 

 

             1   2   3   4  5  

 (Really too easy)            (Just difficult enough)                      (Impossible to realize) 

 

 

11. Did the game have various scenes and activities? 

 1   2   3   4  5 

(Really too simple)             (Various enough)               (Too much variety) 

 

 

12. Did the game provide clinical feedback about your game performance? 

 1   2   3   4  5   

(Not at all)                  (Appropriate amount of feedback)                (Too much to understand) 

 

 

13. Did the game seem to have a proven clinical benefit? 

1   2   3   4  5  

(Not at all complicated)             (Clinically beneficial)              (Too complicated) 

 
 

(Exceeded my 

expectation) 

(Completely 

adequate) 

(Not-challenging 

at all) 

(Impossible to realize) 
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14. Give your opinion and remarks about the game you have tested: 

 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 
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Instruction manual 

 
  



89 
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