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ABSTRACT
AN OPTIMIZATION METHOD FOR ESTIMATING JOINT PARAMETERS OF THE

HIP AND KNEE

by

Ben Tesch

The University of Wisconsin-Milwaukee, 2014
Under the Supervision of Professor Brian S.R. Armstrong

Biomechanics, generally speaking, concerns the application of engineering principles to the

study of living things. This work is concerned with human movement analysis, a sub�eld of

biomechanics, where the methods of classical mechanics are applied to human movement.

This �eld has contributed to the general understanding of human movement, and its

techniques are used in the diagnosis and treatment of disease. Central to the �eld is the

process of measuring human movement. Since classical mechanics deals with the motion of

rigid bodies, and ideal measurement system would be able to accurately record the exact

pose � combined position and orientation � of the bones. The techniques that reach this

ideal require exposure to radiation or the insertion of metal pins into bones. Non-invasive

methods are far more commonly used, and these involve the optical tracking of special

markers placed over the skin on each segment of the body being studied. Motion capture

systems are able to accurately record the pose of the markers, but they bear no repeatable

relationship to the pose of the underlying bone. Many techniques are employed to bridge

the gap between the two. The most direct technique �nds three or more points on each

bone near the surface of the skin, called Anatomical Landmarks (ALs), and uses them to

de�ne the bone's pose relative to the motion tracking markers. There are concerns about

the reliability of this method; the same experimenter performing this procedure multiple

times on the same subject will choose slightly di�erent points on the bone, leading to

variation in its orientation. The problem is exacerbated when multiple experimenters are

involved. This a�ects the ability to compare data across time or between working groups;
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it may also lead to erroneous interpretations of data. Furthermore, this technique cannot

be used directly to locate the hip joint center; instead, ALs at the pelvis are used as

independent variables in a regression equation which statistically predicts the hip joint

center location. Such techniques have begun to show reasonable reliability only recently.

An alternative approach is to orient the bones based on a mathematical analysis of the

motion of the tracking markers while the subject moves. This is the domain of functional

and optimization methods. Functional methods are commonly used to �nd two joint

parameters in particular: the center of the hip joint and the axis of rotation of the knee.

Once found, these parameters are used to determine the orientation of the bones relative

to the tracking markers. Functional methods are subject speci�c and operator independent

but may be biased due to the presence of Soft Tissue Artifact (STA), which is the

measurement error caused by the movement of tissue in between the tracking markers and

the underlying bone. Optimization methods estimate joint parameters by �tting a

kinematic model of the joints under study to motion data which records a subject

exercising those joints. Unlike functional methods, which estimate parameters for a single

joint, optimization methods may estimate the parameters of multiple joints in some

circumstances. The parameters of a kinematic model incorporating multiple joints may be

estimated as long as the relative pose of the end segments of the model is measured with

more Degrees of Freedom (DoF) than the model itself possesses. The key insight of this

work is that a kinematic model which contains a spherical hip joint and a 2 DoF

compound hinge knee joint may be �tted to motion data from the pelvis and lower leg.

There are two bene�ts to this procedure. First, the thigh is known to be a�ected by a high

degree of STA; by removing dependence on data from the thigh, this method gains the

potential for more accurate joint parameter estimates. Second, once �tted to movement

data, the model provides an estimate of the pose of the femur. One may investigate STA

at the thigh by comparing the pose of the thigh markers to the model's estimate of the

pose of the femur. Typically, medical imaging or invasive methods are required to

investigate STA; this procedure is accessible and safe.

In summary, this work presents a technique which has the potential to make the
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non-invasive measurement of human movement more reliable. This technique also provides

the possibility of estimating soft tissue artifact at the thigh in a safe and convenient

manner.
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Chapter 1

Background Material

1.1 Introduction

The �eld of human movement analysis applies the techniques of classical mechanics to the

study of human movement. This �eld is concerned both with the diagnosis and treatment of

disease, as well as with the broader investigation of human movement in its various forms.

Since classical mechanics concerns the mathematical analysis of rigid bodies, it is desirable

to quantitatively measure the pose, the combined position and orientation, of the human

body's rigid bodies � the bones. For reasons of practicality and safety, such measurement is

not often carried out directly. Instead, optical tracking markers are placed over the surface

of a subject's skin on each segment of the body under study, and a motion capture system

tracks the pose of the markers as the subject moves [7].

Placing the tracking markers over the skin has two drawbacks. The �rst is that the

markers do not have a repeatable relationship to the underlying bone across data collections

or subjects [7]; this prevents the meaningful comparison of di�erent data sets unless further

steps are taken. The second drawback is called Soft Tissue Artifact (STA). It encompasses

the measurement error which results from movement of the tissue in between the tracking

markers and the underlying bone [22].

The unreliable relationship between the tracking markers and bones is overcome by

de�ning, for each body segment, the pose of the underlying bone relative to the tracking

markers. This is typically carried out by manually palpitating points on the bone which

are near the surface of the skin, a procedure which is prone to operator error and may

introduce spurious results during data processing [10]. Functional methods aim for improved

reliability by de�ning the pose of the bones relative to the tracking markers using joint
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parameters, which include the centers and axes of rotation of the body's joints. Functional

methods estimate joint parameters by a mathematical analysis of a subject's movement data,

removing the potential for operator error [29]. Unfortunately, they are adversely a�ected by

STA [27].

This work presents a method for estimating the joint parameters of the hip and knee by

�tting a kinematic model incorporating both joints to motion capture data from markers

on the pelvis and lower leg. Model �tting is accomplished using a nonlinear optimization

routine, which is operator independent, just like functional methods. Furthermore, the

particular combination of kinematic model and optimization routine set forth in this work

removes dependence on data from the thigh segment, which is prone to a high degree of

STA. This opens the possibility for more accurate estimates of the joint parameters of the

hip and knee, which would improve the quality of data used in human movement analysis.

The kinematic model and optimization routine mentioned above are covered in Chapters

2, 3, and 4. For more information on these chapters, see Section 1.5. The present chapter

covers background information assumed in Chapters 2, 3, and 4 under two main sections:

background in biomechanics, which primarily covers data collection in human movement

analysis and background in parameter estimation, which is basic to understanding the opti-

mization routine. These are tied together by a �nal section discussing functional methods,

which were mentioned above.

1.2 Background in Biomechanics

Biomechanics is the application of classical mechanics to the study of living things. Less

broadly, the present work focuses on the kinematics of the human hip and knee, where

kinematics is the sub�eld of classical mechanics which concerns the motion of rigid bodies

[24, p. 3]. This chapter begins by de�ning helpful terminology for describing the body

and its movement and proceeds to cover motion capture technology and the mathematical

techniques for quantifying human movement; these topics are basic to the understanding of

later chapters.
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1.2.1 Anatomical Directions

Consider two people talking about a part of the body: The �rst says to the second, �The

right side of the leg,� and means to indicate the right side of the right leg. The second person

(mis)understands the �rst to mean the right side of the left leg. Initially, these two people

will be unaware that they are talking about opposite things! Appropriate terminology helps

to prevent such misunderstanding.

Superior

PosteriorAnterior

Proximal

Distal

Lateral

Proximal

Distal Inferior

LateralMedial

Medial

Figure 1.1: Anatomical Direction Terms [39]

The terms right and left are always considered from the perspective of the person they

refer to; in this case it is the person in Figure 1.1. The terms medial and lateral solve the

sort of misunderstanding in the paragraph above due to a special property: Whether one's

point of reference is on the right arm or the left leg, the medial direction points inward

toward the body, while the lateral direction points outward away from it. This re�ects the

symmetry of our bodies.

The superior direction points toward the top of the head, while the inferior direction

points toward the bottom of the feet. These terms maintain their anatomical meaning during

a hand stand, for instance, which is why they are used instead of more common terms like

up and down. In a similar vein, superior and inferior are ambiguous when referring to the

arm, which may be raised up over one's head or held down at one's side. This ambiguity is

resolved by using the terms proximal and distal when referring to the limbs. The proximal
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direction points toward the attachment point for the limb, while the distal direction points

away from it.

Finally, the terms anterior and posterior have the same meaning as the non-latinate

terms front and back, respectively. The terms in this section follow the de�nitions laid out

in [19, pp. 8�9].

1.2.2 Anatomical Planes

The anatomical axes and planes, shown in Figure 1.2, are additional terminological tools for

describing anatomical locations and bodily movements. In particular, they will be useful for

describing joint motion in Section 1.2.3.

Transverse Plane

Sagittal PlaneFrontal Plane

Longitudinal Axis

Transverse

(Horizontal)

Axis

Anteroposterior

(Coronal)

Axis

Figure 1.2: Anatomical Planes [37]

The transverse plane, also called the horizontal plane, passes through the body horizon-

tally and is parallel to the ground. The sagittal plane passes through the body vertically

and is oriented in the anterior direction. The frontal plane, sometimes called the coronal

plane, also passes throught the body vertically, but it is oriented from left to right. These

planes are pictured as intersecting at the center of the body, but they may be translated,

conceptually, along the axes to which they are perpendicular. For example, the transverse

axis, which is de�ned by the intersection of the frontal and transverse planes, is perpendic-
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ular to the sagittal plane. The sagittal plane may be thought to translate left or right along

the transverse axis such that, if the person in Figure 1.2 were to bend his right knee, this

motion would be said to occur in the sagittal plane.

The anteroposterior axis points in a direction �tting of its name and is de�ned by the

intersection of the transverse and sagittal planes. The longitudinal axis points along a

superior-inferior direction and is de�ned by the intersection of the frontal and sagittal planes.

The anatomical axes, like the anatomical planes, may be translated conceptually from their

position in Figure 1.2, provided their orientation remains constant. For example, if the

person in the �gure were to bend his right knee, the lower part of his leg would be said to

rotate about a transverse axis.

The persons represented in Figures 1.1 and 1.2 are standing in what is called the anatom-

ical position. This is a reference posture that consists in standing straight with one's arms

held at one's side with the palms facing anteriorly. It is a useful starting point for describing

di�erent postures or drawing anatomical reference �gures. The discussion in this section

follows [19, pp. 9�12].

1.2.3 Joint Motion

Joints allow our bodies to realize a wonderful variety of poses. Fortunately, as in previous

sections, terminology exists which helps to categorize and describe this variety. Since the

focus of the present work is on the hip and knee, discussion will be restricted to these joints.

Flexion is a joint movement which occurs in the sagittal plane and decreases the angle

between the proximal and distal segments of the joint. At the hip, the proximal segment is

the pelvis, and the distal segment is the femur. At the knee, the proximal segment is the

femur, while the distal segment is the tibia.

Flexion of the hip consists in raising the leg anteriorly in the sagittal plane; this decreases

the angle between the femur and pelvis. Knee �exion, on the other hand, consist of raising

the lower leg or shank (the portion of the leg between the knee and ankle) posteriorly in the

sagittal plane. This movement would appear to be the opposite of �exion at the hip, but it

is consistent with the de�nition of �exion because it decreases the angle between the femur

and tibia. See Figures 1.3 and 1.4.
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FL

EX

Figure 1.3: Flexion / Extension of
the Hip

FL

EX

Figure 1.4: Flexion / Extension of
the Knee

Extension, which increases the angle between the proximal and distal segments, is the

opposite of �exion. Sometimes, both terms are referred to as a group, such as in the sentence,

�This movement exhibits very little �exion or extension.� The abbreviation FL/EX is helpful

in such cases. At the knee, full extension occurs when the femur and tibia are colinear.

Hyperextension is extension beyond this point; it has a range of about 5 to 10 degrees [24,

p. 443].

AB

AD

Figure 1.5: Adduction / Abduction of the Hip
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If one envisions a longitudinal axis running down the middle of the body, as in Figure

1.2, abduction involves a movement away from this axis in the frontal plane, while adduction

involves a movement toward it. Hip abduction, then, involves raising the leg laterally in

the frontal plane, and hip adduction is the opposite movement (Figure 1.5). The knee

also undergoes small amounts of AD/AB [4]. Following the scheme above, knee abduction

consists of a lateral movement of the shank relative to the thigh in the frontal plane, while

knee adduction is the opposite movement. The term valgus is sometimes used in place of

abduction and varus in place of adduction when referring to the knee [24, p. 448].

Internal / external rotation, abbreviated IN/EX, occurs at both the hip and knee. At

the hip, it involves rotation of the femur about its proximal-distal axis. Starting from the

anatomical position, internal rotation of the hip causes the foot to rotate in the transverse

plane such that the toes point in a medial direction. External rotation under the same

conditions would cause the toes to point laterally.

Similar to the hip, IN/EX at the knee involves rotation of the tibia about its proximal-

distal axis. When the knee is �exed to 90◦, the proximal-distal axis of the tibia aligns with

the anterior-posterior axis. In this posture, internal rotation of the knee causes the foot to

rotate in the frontal plane such that the toes point in a medial direction; external rotation

is again the opposite movement.

The above movements and terminology have been described largely in isolation from

each other, starting from a standing posture; this follows the exposition in [19, pp. 12�14].

It is possible to combine the terms to describe a wide variety of postures, but speci�city

is lacking due to their qualitative nature. The remaining sections of this chapter build up

mathematical and scienti�c techniques which may be used to quantify a wide range of human

movement.

1.2.4 Motion Capture

In order to apply the techniques of kinematics to the analysis of human movement, that

movement must �rst be quanti�ed or measured. Since classical mechanics as a whole deals

with the analysis of rigid bodies � objects which do not deform � an ideal measurement

system would measure the exact pose of the bones, the structures of the human body which
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are least deformable (Figure 1.6). (The pose of an object encompasses both its position

and orientation.) This ideal type of measurement may be accomplished using intracortical

pins or bi-plane �uoroscopy, but such methods come with ethical concerns [22]. Far more

commonly used is an optical motion tracking system which can measure the pose of markers

placed on the subject's skin (Figure 1.7). The pose obtained from the marker on a particular

segment of the body is then assumed to coincide with the pose of the underlying bone [7].

X

Y

Z

X

Z

Y

X

Z

Y

Figure 1.6: Ideal measurement would
yield the pose of each bone.

Figure 1.7: Practical measurement
places markers over the skin, yield-
ing the pose of each bodily segment.

In Figure 1.6, the pose of each bone is represented graphically by a reference frame (or

coordinate frame). The position of a bone in space is given by the origin of its corresponding

reference frame in cartesian coordinates. Position is a 3 Degree of Freedom (DoF) measure-

ment, as position may vary independently in its X, Y, or Z coordinate, each constituting

a degree of freedom. Similarly, the orientation of a bone in space is given by the axes of

its corresponding reference frame. This too is a 3-DoF measurement, as a reference frame

may rotate about its X, Y, or Z axes. In total, pose constitutes a 6 degree of freedom

measurement [45, p. 104].

This work uses a Moiré Phase Tracking (MPT) system by Metria Innovation (Milwaukee,
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X

Z

Y X

Z

Y

Figure 1.8: The MPT system measures the complete pose of each marker, represented here
by a reference frame.

WI), whose markers are pictured in Figures 1.7 and 1.8. The MPT system is composed of a

single camera with integrated light source, a set of markers, and a computer. The markers are

engineered to produce distinct moiré patterns which allow the system to measure a marker's

orientation relative to the plane of the camera's sensor. This information, combined with

measurements in the plane of the camera's sensor, results in a 6-DoF measurement of the

marker's pose [43]. Company literature reports position accuracy to be 1 part in 2500 of

the distance from the marker to the camera (e.g. ±1mm at 2.5m distant) and an orientation

accuracy of ±0.05◦ [23].

The goal is to capture movement, and in order to do this, the camera takes a series of

snapshots at a very high rate. Each snapshot results in a frame of data or data frame (the

term data is used to disambiguate data frames and reference frames). One frame of data

contains the pose of every marker visible to the camera in the instant the data frame was

captured. The camera records data at up to 90 frames per second, resulting in a series of

poses for each marker which progresses in time.

There are two caveats to the measurement process described above. First, the assumption

that the pose of a skin-mounted marker tracks the underlying bone is not always valid. Skin

sliding and tissue deformation cause this assumption to be violated and are grouped under

the term Soft Tissue Artifact (STA). STA is a major hindrance to the analysis of human

movement [22] and will be discussed below. Second, the description above only speci�es that

a marker is attached somewhere on each segment to be measured. Given this lax requirement,

marker placement could be highly variable across di�erent data collection sessions, and this

would severely limit the ability to compare di�erent data sets [7]. The next section provides

a solution to this problem.
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1.2.5 Technical and Anatomical Reference Frames

The reference frames associated with markers are called Technical Frames (TFs). Reference

frames which are aligned to the subject's anatomy are called Anatomical Frames (AFs).

While the technical frames vary in their relation to the subject's bones across collections

due to varying placement of the markers, the anatomical frames are more consistent. This

is because anatomical frames are constructed using Anatomical Landmarks (ALs) � points

on the body where the underlying bone is palpable due to limited soft tissue coverage. This

paragraph follows [7].

1.2.5.1 Anatomical Landmarks

Several common ALs are labeled with their abbreviated names in Figures 1.9 and 1.10. The

abbreviations expand as follows: LASI and RASI, Left and Right Anterior Superior Iliac

Spine; LPSI and RPSI, Left and Right Posterior Superior Iliac Spine; MEKN and LAKN,

Medial and Lateral Femoral Epicondyle; MEMA and LAMA, Medial and Lateral Malleolus.

For a more complete listing, see [6].

LAKNMEKN

LAMA MEMA

RASILASI

Figure 1.9: Anatomical Landmarks (An-
terior View) [42]

LPSI RPSI

MEKNLAKN

LAMAMEMA

Figure 1.10: Anatomical Landmarks
(Posterior View) [41]
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A special pointing tool is used to locate the ALs in space; it consists of an MPT marker

mounted onto a wand of dimensionally stable plastic which tapers to a point at the tip of

the wand. The precise location of the pointing tool tip in the reference frame of the pointing

tool marker is known from a calibration procedure. Thus, when the MPT system measures

the marker's pose, the location pointing tool tip is also known.

To locate an AL, the researcher places the pointing tool tip over the AL on the subject

and records the pose of the subject's markers and the pointing tool marker. The location of

the AL may then be represented in the technical frame of the body segment where the AL

resides; for example, the MEKN landmark would be represented as a point in the femoral

technical frame � the reference frame of the thigh marker. As the subject moves, this point

will continue to track the MEKN landmark because the thigh marker will track the motion

of the femur. This is useful because the marker's pose relative to the femur varies across

data collections, but the location of the MEKN landmark on the bone does not change.

If three ALs are located on a segment of the body, they may be used to construct a

complete reference frame for that segment which is aligned to the subject's anatomy. This

is an anatomical frame, and its pose relative to the bone will be fairly consistent across data

collections. The mathematical construction of such anatomical frames is covered next.

1.2.5.2 Transformation Between Reference Frames

This section demonstrates by example the mathematical technique used to transform a

point from representation in the coordinates of one reference frame to representation in the

coordinates of another reference frame.

Figure 1.11 shows two reference frames (A and B), their origins, their axes, and a point

G. Frames A and B di�er in orientation, as frame B has been rotated 45◦ counterclockwise

about its X axis. The axes of frame B represented as unit vectors in frame A (
A
X̂B,

A
ŶB,

and
A
ẐB) as well as the origin of frame B (denoted

◦
B) represented as a point in frame A

(AP ◦
B
) appear in Equation 1.1. If these quantities are grouped as the columns of a matrix,

and a bottom row of
[
0 0 0 1

]
is appended to it, the result is the homogeneous transform

from frame B to frame A, ABT . A may be called the from frame and B the to frame of the

transform. It is also helpful to think of ABT as frame B represented in frame A coordinates.
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X
Y

Z

Y

X

Z G

Frame B

Frame A

Figure 1.11: Reference Frame Example

A
X̂B =



1

0

0


A
ŶB =



0

√
2
2

√
2
2


A
ẐB =



0

−
√
2
2

√
2
2


AP ◦

B
=



4
5

4
5

4
5


(1.1)

A
BT =



1 0 0 4
5

0
√
2
2 −

√
2
2

4
5

0
√
2
2

√
2
2

4
5

0 0 0 1


(1.2)

A Homogeneous Transform (HT) is a 4x4 matrix which combines the operations of

rotation and translation into a single matrix multiplication. The �rst three columns of ABT

hold the relative orientation of the A and B reference frames and carry out the rotation

part of the transform. The fourth column holds the relative position of the two frames

and handles the translation part. When A
BT multiplies point G expressed in B coordinates
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(BPG), with an additional 1 appended to its vector,

A
BT · BPG =



1 0 0 4
5

0
√
2
2 −

√
2
2

4
5

0
√
2
2

√
2
2

4
5

0 0 0 1


·



0

0

1
2

1


=



4
5

4
5 −

√
2
4

4
5 +

√
2
4

1


= APG, (1.3)

it is transformed into an A coordinate representation (APG). Note that the point has not

moved; its is merely expressed in a di�erent reference frame. Further note that, while the

additional element of value 1 is not written in the multiplication A
BT · BPG, it is appended

to the vector BPG when that multiplication is carried out. This is a simple notational

convenience.

The X component of APG is due entirely to the translation between reference frames A

and B, and it appears because the fourth column of ABT multiplies the 1 that was appended

to BPG. The Y and Z components of APG have components due both to the translation

between the A and B frames (45) and to the orientation of
A
ẐB multiplied by the component

of BPG along that axis (±
√
2
4 ). One can see how translation and rotation are both needed

to account for the change in pose when transforming a point between reference frames.

1.2.5.3 Properties of Homogeneous Transforms

The example of the previous section only covers the basic function of homogeneous trans-

forms. HTs have a variety of theoretical properties that make them a versatile tool for

working with 3D data, and these properties are the subject of this section.

The HT A
BT may be written

A
BT =


A
BR

AP ◦
B

0 0 0 1

 , (1.4)



14

where the component ABR is a special type of 3 × 3 matrix called a rotation matrix. Every

rotation matrix R is orthogonal and satis�es the following relations

RTR = I

RT = R−1.

(1.5)

Inverting A
BR switches the order of its from and to frames,

B
AR =

(
A
BR
)−1

=
(
A
BR
)T
, (1.6)

and a similar formula applies to B
AT ,

B
AT = A

BT
−1. (1.7)

In the case of the full HT, however, the inverse and transpose operations are not equivalent.

There is instead an explicit formula for the inverse of ABT ,

(
A
BT
)−1

=


(
A
BR
)T −BAR · AP ◦B

0 0 0 1

 =


B
AR

BP ◦
A

0 0 0 1

 = B
AT, (1.8)

which may be compared with Equation 1.4. HTs may also be chained together,

C
AT = C

BT · BAT. (1.9)

Here, C is a third reference frame.

The equation

APG = A
BR · BPG + AP ◦

B
(1.10)

is the a�ne form of Eqn 1.3. It produces the same result � point G in A coordinates �

without the need to append an additional 1 to BPG. The a�ne form is not used much in

this work, as the operations shown in Eqns 1.7 and 1.9 are inconvenient to perform when it

is used. The a�ne form is helpful for expanding equations involving HTs, a purpose which



15

it serves well in Chapter 2.

The discussion above in Sections 1.2.5.2 and 1.2.5.3 draws from [45, pp. 23�39].

1.2.5.4 Transforming Anatomical Landmarks

The representation an AL measured with the pointing tool in the coordinates of an ap-

propriate technical frame provides a nice application of the properties of HTs. The MPT

motion capture system records the pose of each marker using a homogeneous transform

that represents the marker's pose in camera coordinates (abbreviated cam). Suppose we are

measuring the medial femoral epicondyle (MEKN) landmark; this would involve measuring

both the pointing tool reference frame, abbreviated pnt, and the femoral technical frame,

abbreviated ft, in camera coordinates. The system records the following point and HTs

cam
pnt T,

cam
ft T, pntPMEKN = pntPtip, (1.11)

where an identity is assumed between the pointing tool tip and the AL of interest. Expressing

the AL in coordinates of the femoral technical frame requires chaining and inverting HTs

ftPMEKN =
(
cam
ft T

)−1 · campnt T · pntPMEKN (1.12a)

ftPMEKN = ft
camT · campnt T · pntPMEKN . (1.12b)

Here the MEKN landmark is measured in pointing tool coordinates, transformed into camera

coordinates, and �nally transformed into femoral technical frame coordinates. Equations

1.12a and 1.12b are identical, thanks to Equation 1.7.

1.2.5.5 Creating the Pelvic Anatomical Frame

An anatomical frame is constructed as a homogeneous transform in which its axes and origin

are represented in the coordinates of the technical frame corresponding to the body segment

in which it is embedded. For example, the pelvic anatomical frame (pa) is represented in

pelvic technical frame (pt) coordinates by the homogeneous transform pt
paT . It is constructed

similarly to A
BT above, but the starting point is slightly di�erent. The pa frame begins
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with four ALs measured in PT coordinates: the left and right anterior superior iliac spine

landmarks (LASI, RASI) and their posterior counterparts (LPSI, RPSI).

Y
X

Z

LASI RASI

pt

ZPA

LPSI RPSI

MPSIpZ

MPSI

M
PSI - LASI

XPA

Figure 1.12: Pelvic Anatomical Frame Landmarks, Superior View

The axes of the pa frame are created from these four points according to the recommen-

dations in [44]. The �rst recommendation is relatively simple: The Z-axis points from the

LASI landmark to the RASI landmark

pt
Ẑpa =

(
ptPRASI − ptPLASI

)
/ ‖ptPRASI − ptPLASI‖, (1.13)

and this equation also normalizes the Z axis. ‖·‖ represents the 2-norm, and the hat over
pt
Ẑpa marks it as a unit vector. The next recommendation is a little more involved; it requires

the creation of the midpoint between the LPSI and RPSI landmarks, dubbed MPSI,

ptPMPSI =
ptPLPSI + ptPRPSI

2
. (1.14)

It states that the X axis lies in the plane de�ned by MPSI, LASI, and RASI, is orthogonal

to the Z axis, and points anteriorly. All three conditions may be accomplished by de�ning

ptXpa to be the vector pointing from ptPMPSI to its projection onto the Z axis, ptPMPSIpZ ,

ptPMPSIpZ = ptPLASI +
pt
Ẑpa · 〈 ptPMPSI − ptPLASI ,

pt
Ẑpa 〉 (1.15a)

pt
X̂pa =

(
ptPMPSIpZ − ptPMPSI

)
/‖ptPMPSIpZ − ptPMPSI‖, (1.15b)

and again,
pt
X̂pa has been normalized (For projections, see [34, pp. 144�150]).

pt
Ŷpa is given
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by the cross product of the other two unit vectors,

pt
Ŷpa =

pt
Ẑpa ×

pt
X̂pa. (1.16)

The last recommendation is to place the pelvic anatomical frame origin at the Hip Joint

Center (HJC). The HJC is not palpable like the landmarks used to de�ne the axes of the

pa frame; its location may be estimated using either functional (Section 1.4) or regression

(Section 1.2.5.6) methods. Whichever technique is used, the HJC location is given the

symbol ptPHJC , leading to the full de�nition of the pa frame as a homogeneous transform

pt
paT =



| | | |

pt
X̂pa

pt
Ŷpa

pt
Ẑpa

ptPHJC

| | | |

0 0 0 1


. (1.17)

It can be thought of as the pose of the pelvic bone in the hip marker reference frame.

1.2.5.6 Regression Methods for HJC Estimation

Regression methods are so called because they use quantities derived from the anatomical

landmarks as independent variables in a set of statistical regression equations which output

an estimated HJC location. The regression method of Harrington, et al. [18] is given by the

equations below,

PW = ‖ptPRASI − ptPLASI‖ (1.18a)

ptPMASI =
ptPRASI + ptPLASI

2
(1.18b)

PD = ‖ptPMASI − ptPMPSI‖ (1.18c)

paCPHJC(x) = −0.24 · PD − 9.9 (1.18d)

paCPHJC(y) = −0.30 · PW − 10.9 (1.18e)
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paCPHJC(z) = 0.33 · PW + 7.3, (1.18f)

where PW stands for Pelvic Width, PD stands for Pelvic Depth, and ptPMASI is the mid-

point of the RASI and LASI ALs. Eqns 1.18d, 1.18e, and 1.18f perform the regression itself,

yielding an estimate of the HJC location in the paC frame, which is the pelvic anatomical

frame speci�ed by Cappozzo, et al. [6]. The paC frame di�ers from the pa frame de�ned in

Section 1.2.5.5 in only one particular: Its origin is placed at ptPMASI . This frame is de�ned

by the transform

pt
paCT =



| | | |

pt
X̂pa

pt
Ŷpa

pt
Ẑpa

ptPMASI

| | | |

0 0 0 1


, (1.19)

which can transform the HJC estimate obtained by regression into pt coordinates:

ptPHJC = pt
paCT ·

paCPHJC . (1.20)

The regression equations above were derived from MRI measurements of the HJC and

pelvic ALs in a cohort of 32 subjects including adults, healthy children, and children with

cerebral palsy [18]. Clinical Leg Length (LL) was also measured. Multiple linear regression

was performed to determine which combination of the PD, PW, and LL variables best

predicted HJC location in the anteroposterior (Eqn 1.18d), superior/inferior (Eqn 1.18e),

and mediolateral (Eqn 1.18f) directions, as determined by the R2 coe�cient and F-statistic.

Another set of equations which includes LL was also presented in [18], but the set in Eqns

1.18d, 1.18e, and 1.18f was �nally recommended due to the poor reliability of measuring LL

in practice. The regression described by these equations is meant to be applied to the right

hip.

There are two main drawbacks to regression methods. First, they rely on accurate

palpitation of pelvic (and sometimes other) landmarks, introducing the potential for operator
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error. Second, they are not subject speci�c, as the regression equations are derived from

measurements performed on a small group of people. HJC location estimates calculated

using the earlier regression methods of Bell, et al. [3] and Davis, et al. [9] were shown to

have mean errors of 23mm and 29mm, respectively, relative to the �true� HJC location

determined by Roentgen Stereophotogrammetry [21]. These errors are large enough to

signi�cantly a�ect the calculation of moments at the hip when inverse kinetics is performed

[33]. Harrington's regression has demonstrated improved accuracy; HJC estimates made

using the set of equations incorporating leg length were found to have a mean a mean error

of 16mm relative to 3D ultrasound determination of the HJC, which is competitive with the

best functional methods [27]. Unlike functional methods, regression methods rely solely on

AL data which is routinely collected during gait analysis and do not require the subject to

perform any additional movements. On the other hand, AL palpitation can be di�cult if

the landmarks are covered by a su�cient quantity of tissue.

1.2.5.7 Other Anatomical Frames

The pelvic anatomical frame has been de�ned, but in order to analyze joint motion at the

hip and knee, the femoral and tibial anatomical frames, fa and ta, must also be de�ned.

That is the purpose of this section, which is based on the frame de�nitions found in [28] and

[17]. The fa and ta frames will be used in Section 1.2.6, and they are shown in Figure 1.13

along with the other technical and anatomical frames tracked in the course of analyzing the

hip and knee joints.

The femoral anatomical frame, fa, has its origin at the midpoint between the MEKN

and LAKN landmarks. Its Y axis points toward the center of the femoral head. Its Z axis

points to the right and aligns with the line connecting the MEKN and LAKN landmarks

subject to the constraint that it remains orthogonal to the Y axis. The X axis is mutually

orthogonal to the Y and Z axes.

The tibial anatomical frame, ta, requires the introduction of two new landmarks. MC

and LC are the most medial and lateral points on the rim of the tibial condyle; IC denotes

their midpoint and serves as the origin of the ta frame. The Y axis of the ta frame is parallel

to the vector connecting the midpoint of the MEMA and LAMA landmarks (the Ankle Joint
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Figure 1.13: Technical and Anatomical Reference Frames

Center) to the IC landmark. The Z axis of the ta frame is made to align with the Z axis

of the fa frame when the subject is standing with the knee fully extended, subject to the

constraint that it remains orthogonal to the Y axis. The X axis is the cross product of the

Y and Z axes and points anteriorly.

1.2.6 Quantifying Joint Motion

An earlier section (1.2.3) de�ned qualitative terms (adduction, �exion, etc.) for describing

the variety of postures permitted by our joints. These terms correspond to the relative

orientation of adjacent bones, which in turn is quanti�able thanks to the anatomical frames

and the motion capture system. There is, however, one more hurdle to jump. Currently,

the relative orientation of the femur and tibia is given by the 3x3 rotation matrix between

the femoral and tibial anatomical frames, tafaR, which may be di�cult to interpret. Since

the motion of a joint is quanti�ed by a series of such matrices, it may also be impossible to

graph. A new convention for representing orientation can help overcome these di�culties.

Cardan angles represent a rotation between reference frames using three angular val-

ues which correspond to a sequence of elemental rotations about a de�ned set of axes [36].
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When the sequence of elemental rotations is properly de�ned for a given joint, the Cardan

angles correspond to �exion/extension (FL/EX), adduction/abduction (AD/AB), and in-

ternal/external rotation (IN/EX) [17]. They are physiologically relevant, quantitative, and

easy to plot [45, pp. 60�61].

This section begins by constructing a rotation between two reference frames from three

Cardan angles. It proceeds to develop a formula for extracting Cardan angles from any

rotation matrix. Next, these techniques are applied to the knee, showing how its joint

angles may be derived from ta
faR. Finally joint angles are plotted for a speci�c movement of

the hip.

1.2.6.1 Cardan Angles and Rotation Matrices

Figure 1.14 shows the rotation from frame A to frame D as a series of Cardanic rotations,

labelled by the Cardan angles EX , EY , and EZ . It also shows the intermediate coordinate

frames (labelled B and C) created by these rotations.

EZEXEY
A

B

C

D

YC

ZC

XC YD

XD

ZD

YB

XB

ZB

YA

XA

ZA

Figure 1.14: Rotation from frame A to frame D in three steps.

The sequence in which the rotations occur is important. In Figure 1.14, the sequence is

Z-X-Y, indicating that EZ occurs about the Z axis of the initial frame (A), EX occurs about

the X axis of the intermediate frame (B), and EY occurs about the Y axis of the �nal frame

(D). Note that frames C and D share a Y axis. If an X-Y-Z sequence were used, EX would
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occur about the X axis of frame A, producing a very di�erent B frame, call it B′. EY would

then occur about the Y axis of frame B′, and EZ would occur about the Z axis of frame

D. The rotation from frame A to frame D would still occur, but the rotations would take

quite di�erent values. For the Z-X-Y sequence shown in Figure 1.14, EX = 10◦, EY = 25◦,

and EZ = 30◦. For the X-Y-Z sequence (not pictured), EX = −5.03◦, EY = 29.09◦, and

EZ = 31.11◦.

Note the negative sign on the value for EX in the X-Y-Z sequence. A rotation about an

axis may be either positive or negative. Positive rotation is in the direction that the �ngers

of the right hand curl when the right thumb points in the same direction as the axis about

which rotation occurs. This is also called a counterclockwise rotation. Negative rotation is

in the opposite direction. The light gray arrows indicating rotation in Figure 1.14 all point

in the direction of positive rotation.

The X axis of frame B has an interesting property: It is mutually orthogonal to the Z

axis of frame A and the Y axis of frame C. By extension, it is also orthogonal to the Y

axis of frame D. As a result, the Z-X-Y sequence rotation from frame A to frame D may be

described as occuring about the Z axis of frame A, the Y axis of frame D, and the axis which

is mutually orthogonal to both of them. This description is convenient because it does not

mention the intermediate frames.

The three Cardanic rotations may be constructed as rotation matrices, each of which

performs a rotation about a single axis. The form of these matrices depends only on the

axis, not on the sequence. Rotation about an X axis is performed by the rotation matrix

RX ,

RX =



1 0 0

0 CX SX

0 −SX CX


, (1.21)

where CX abbreviates cos (EX), and SX abbreviates sin (EX). The Cardan angles are

labelled with the letter E to avoid confusion with these terms and because they are sometimes
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called Euler angles. RY and RZ perform rotations about a Y axis and a Z axis, respectively

RY =



CY 0 −SY

0 1 0

SY 0 CY


RZ =



CZ SZ 0

−SZ CZ 0

0 0 1


. (1.22)

Here, CY and SY are the cosine and sine of EY , while CZ and SZ are the cosine and sine of

EZ .

The sequence of rotations comes into play when RX , RY , and RZ are multiplied to form

the rotation from frame A to frame D,

D
AR = RY ·RX ·RZ =



CZCY − SZSY SX SZCY + CZSY SX −SY CX

−SZCX CZCX SX

CZSY + SZCY SX SZSY − CZCY SX CY CX


, (1.23)

where the Z-X-Y sequence has been used. Now that the form of Equation 1.23 is known, it

is possible to use trigonometry to recover the Cardan angles from the rotation matrix.

The easiest angle to recover is EX since the matrix element D
AR(2, 3) is SX , which

expands to sin (EX). Taking the arcsine of this term will yield EX . The equations for all

three Cardan angles follow

EX = asin
(
D
AR(2, 3)

)
EY = atan2

(
−DAR(1, 3),DAR(3, 3)

)
EZ = atan2

(
−DAR(2, 1),DAR(2, 2)

)
.

(1.24)

Equations like these are used to recover the joint angles from motion capture data.
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If the X-Y-Z sequence is used, the resultant rotation from frame A to frame D is written

D
AR = RZ ·RY ·RX =



CZCY CZSXSY + SZCX −CZSY CX + SZSX

−SZCY −SZSXSY + CZCX SZSY CX + CZSX

SY −SXCY CXCY ,


(1.25)

which is quite di�erent from Equation 1.23. Sequence makes a di�erence because matrix

multiplication, in general, does not commute. Eqns 1.23 and 1.25 produce the same D
AR

matrix, but the values of EX , EY , and EZ will di�er between the two sequences.

1.2.6.2 Application to the Knee

The goal in applying Cardan rotations to the knee is to �nd the sequence for which the

rotations correspond in behavior to the joint angles. That is, each of EX , EY , and EZ should

correspond to one of Flexion/Extension (FL/EX), Adduction/Abduction (AD/AB), and

Internal/External Rotation (IN/EX). These angles are extracted from the rotation matrix

ta
faR, which is the rotation from femoral anatomical (fa) coordinates to tibial anatomical (ta)

coordinates. The use of tafaR instead of fataR ensures the rotations proceed from proximal to

distal across the joint, and it entails that the �rst rotation occurs about one of the axes of

the fa frame.

Figure 1.15 shows the femur and tibia, their anatomical frames, the rotation axes for the

Cardan sequence used at the knee, and their corresponding joint angles. It lists the Z axis

of fa (Zfa) as the �rst rotation axis, corresponding to FL/EX. Why not use Xfa or Yfa as

the axis �rst rotation? When the knee is in full extension, as in Figure 1.15, rotation about

Xfa would correspond to AD/AB, and rotation about Yfa would correspond to IN/EX.

However, when the knee is �exed to 90◦, rotation about Xfa would correspond to IN/EX,

and rotation about the Yfa would correspond to negative AD/AB. Intermediate values of

knee �exion would cause these rotations to correspond proportionally more or less to one of

AD/AB or IN/EX � a nightmare to interpret. Rotation about the Z axis of fa consistently

corresponds to FL/EX and is the logical choice by exclusion.
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⊥X

Xfa

Zfa

Yta

Zta

Xta

FL/EX

IN/EX

AD/AB

Yfa

Figure 1.15: Cardan angles of the Z-X-Y sequence result in the joint angles when applied
to the knee.

It is more di�cult to make such a case for the remaining rotations. Figure 1.15 shows

IN/EX occuring about the Y axis of ta, which makes physiological sense, as this is the

proximal-distal axis of the tibia. AD/AB is shown occuring about the axis mutually or-

thogonal to Zfa and Yta, labelled ⊥X. Because Zfa maintains a medio-lateral orientation

throughout �exion and Yta maintains a proximal-distal orientation throughout internal ro-

tation, ⊥X will maintain align with the anterior-posterior axis. This is the axis of rotation

desired for AD/AB, and the sequence just described is the Z-X-Y sequence.

What about the Z-Y-X sequence? It speci�es AD/AB as occuring about Xta, which

works physiologically. It also speci�es IN/EX as occuring about the axis mutually perpen-

dicular to Xta and Zfa; this axis would take on a proximal-distal orientation, as desired

for the axis of IN/EX rotation. This sequence also makes physiological sense, and both the
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Z-X-Y and Z-Y-X sequences have been used to describe the motion of the knee joint [8].

This work uses the Z-X-Y sequence for the knee, on the recommendation of [17]. Z-X-Y

is also used at the hip, on the recommendation of [44]. Another paper has recommended

the Z-X-Y sequence for both the hip and knee, based on their favorable performance in the

analysis of a fencing lunge [31].

With the sequence determined, the joint angles for the knee may be extracted from ta
faR

using Equation 1.24. Similarly, the joint angles for the knee may be extracted from fa
paR

using the same equation. fapaR is the rotation from pelvic anatomical (pa) to fa coordinates.

In both cases, EZ corresponds to FL/EX, EX corresponds to AD/AB, and EY corresponds

to IN/EX.

1.2.6.3 Gimbal Lock

If the second in a series of Cardanic rotations has value ±90◦, the �rst and third rotation

will occur about an identical axis, and one degree of freedom will be lost. In the case of

the Z-X-Y sequence, this occurs when EX = ±90◦, which orients the Y axis of the �nal

frame so that it is coincident with the Z axis of the initial frame. This makes it impossible

to distinguish the action of EY and EZ , a point which becomes apparent if one forms the

overall rotation matrix from the Cardan angles

R = RY ·RX(90◦) ·RZ =



CZCY − SZSY SZCY + CZSY 0

0 0 1

CZSY + SZCY SZSY − CZCY 0


. (1.26)

This rotation matrix resolves by trigonometric identity to

R =



cos(EY + EZ) sin(EY + EZ) 0

0 0 1

sin(EY + EZ) − cos(EY + EZ) 0


, (1.27)
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where the identities

sin(α+ β) = sin(α) cos(β) + cos(α) sin(β)

cos(α+ β) = cos(α) cos(β)− sin(α) sin(β)

(1.28)

have been used [1, pg. 72].

Gimbal lock should be avoided, as it makes recovery of the true joint angles impossible.

Fortunately, a healthy human being cannot attain ninety degrees of adduction or abduction

at either the hip or the knee. Barring some error in reference frame de�nition or in data

collection more generally, gimbal lock should not occur when applying the Z-X-Y sequence

to the hip and knee.

1.2.6.4 Plotting Movement Data

The joint angles are amenable to plotting; they are scalar values which vary in time and

remain within reasonable ranges. Furthermore, a plot of the joint angles for a particular

movement gives the reader a sense of what that movement would look like. This section

provides an opportunity to compare a plot of joint angles for the Star Arc movement (Figure

1.17) with a diagram illustrating its execution (Figure 1.16). The Star Arc movement is

developed in [5].

Arc

Star 1
2

3

4

5

67

Figure 1.16: Path traced by right foot during Star Arc movement. The star has seven lobes;
the arc is a circumduction of the hip.
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The Star Arc movement is used as an input for functional methods which identify the

Hip Joint Center (HJC); one such method is shown in Section 1.4. Functional methods start

with measured movement data and work backwards to estimate some property of the joint

which produced the data, in this case, the location of the HJC. The star arc movement

was designed to excercise the hip through a variety of con�gurations so that the functional

methods will have a rich data set to work from [5]. The �star� part of the star arc has seven

lobes, which are labelled in Figure 1.16. The �rst lobe involves �exion of the hip and return

to stance, while the fourth involves abduction of the hip and return to stance. Lobes two and

three are gradations between one and four, with decreasing �exion and increasing abduction.

Lobes �ve, six, and seven are mirrors of one, two, and three, with the seventh lobe involving

extension and return to stance. The �arc� portion of the movement is a circumduction � a

combination of FL/EX and AD/AB which produces a circular motion.
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Figure 1.17: Hip Angles for the Star Arc Movement: FL+/EX− (gray), IN+/EX− (light
gray), and AD+/AB− (dashed). The data frame index marks time � each frame lasts 1/60
seconds.

Figure 1.17 shows a plot of the joint angles for the hip which were measured during a

star arc movement. Angular peaks are marked corresponding to the lobe where they were

produced. The peaks in FL/EX do not show the expected steadily-decreasing pattern for

lobes 1, 2, and 3. They do behave as expected for lobe 4 � minimal �exion � as well as

for lobes 5, 6, and 7, where an increasing pattern is observed. Also note the sign change
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between lobes 4 and 5, where the movement switches from �exion (positive) to extension

(negative). The peaks in AD/AB are just as expected; they increase to a maximum at lobe

4 and steadily decrease to the end of the star movement. The large movement between lobe

7 and the end of the data is the arc movement. The FL/EX curve for this movement is a

lopsided sinusoidal; it begins with extension, switches to �exion, and ends with extension

returning to stance. This is consistent with an arc movement proceeding from back to front.

AD/AB shows a single peak in abduction during the arc, as expected.

The IN/EX curve is not very descriptive of the star arc movement; it simply records how

much the subject's leg twists during the movement.

In Figure 1.17, the joint angles are plotted against the Data Frame Index, a measure of

time. The motion capture system's camera works like a movie camera: It captures motion

by taking still snapshots or frames at a high rate. In this case, the rate is 60 frames per

second. Each snapshot or frame records the pose of all markers visible to the camera at that

instant; the collection of these poses is called a data frame or frame of data, to distinguish

it from the reference frames. The data frame index is a simple counter that marks the order

of the frames: 1st, 2nd, ..., 718th. The data could also be plotted against time, in this case,

zero to 11.97 seconds.

1.2.7 Summary

The most important part of this section is the process of using motion capture technology

to record human movement. Motion tracking markers are placed over the skin on each

body segment under study; the motion capture system resolves a technical frame for each

marker in every frame of motion capture data. For each body segment, an anatomical

frame is constructed using anatomical landmarks which de�nes the pose of the underlying

bone in the coordinates of the technical frame. Joint angles are recovered by calculating

the rotation matrix between anatomical frames on either side of a joint and decomposing

the rotation matrix into Cardan angles of the appropriate sequence. The end result is a

quantitative description of joint motion which is amenable to graphical representation and

human interpretation.
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1.3 Background in Parameter Estimation

1.3.1 Linear Least Squares: An Example

Parameter estimation is an important mathematical tool which will be described through

the following example. It is typical to see a relation of the form

y = f(x), (1.29)

where the function f() relates the dependent variable y to the independent variable x. Now,

give f() the form

y = f(x; g, h, v) = h+ v · x− g

2
· x2, (1.30)

where h, v, and g are unknown constants called parameters. This is the equation for the

vertical position, y (m), of a projectile at time x (s), subject to initial height h (m), initial

velocity v (m
s
), and gravitational constant g (m

s
2 ). Suppose we are given data from a ball

drop experiment,

x1 = 1.0000s y1 = 29.9720m

x2 = 2.0000s y2 = 24.3944m

x3 = 3.0000s y3 = 15.1640m

x4 = 4.0000s y4 = 2.1590m,

(1.31)

and asked to �nd the parameters of f which most closely approximate the dependent vari-

ables (yi, i = 1 . . . 4) given the independent variables (xi, i = 1 . . . 4). We are assured that the

time points in the data are highly accurate and cautioned that the position measurements

contain small errors.

This problem is a parameter estimation problem. In this case, it amounts to solving four
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equations for three parameters,



1 x1 −1
2x

2
1

1 x2 −1
2x

2
2

1 x3 −1
2x

2
3

1 x4 −1
2x

2
4




h

v

g

 =



y1

y2

y3

y4


, (1.32)

and the equations are linear in the parameters. The left side matrix multiplies the parameter

vector, and the vector containing the dependent variables is called the data vector. For the

sake of brevity, these are given the symbols A, u, and y, respectively. Because there are

more equations than unknowns, Equation 1.32 is an overdetermined linear system and is

therefore unlikely to have an exact solution.

Instead, we may solve for an approximate solution û which satis�es

min
u
‖Au− y‖2. (1.33)

û is called the least squares solution to Equation 1.33 because it minimizes the sum of

squares of the residual vector r,

Au = b

r = Au− y = b− y.
(1.34)

Since any approximate data vector b is a linear combination of the columns of A, it lies in

the column space of A. The b vector which minimizes ‖r‖2 = ‖b − y‖2 is therefore the

projection of y onto the column space of A, given by

b̂ = A(ATA)−1ATy, (1.35)

where the hat over b̂ marks it as corresponding to the least squares solution to Equation

1.33. Since b = Au, the u vector which minimizes ‖r‖2 is given by

û = (ATA)−1AT y. (1.36)
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Equation 1.36 is a solution to the normal equations,

ATAû = AT y, (1.37)

which exists when A is of full column rank; otherwise, ATA is not invertible.

The discussion above follows [2, pp. 15�16] and [34, pp. 154�158].

We now have a way to analyze the ball drop experiment. The A matrix is given by



1 1 −1
2

1 2 −2

1 3 −41
2

1 4 −8


, (1.38)

and û is given by


31.8054

0.0173

3.7137

 =


73
4 −63

4 −21
2

−63
4 6 9

20 21
2

−21
2 21

2 1




1 1 1 1

1 2 3 4

−1
2 −2 −41

2 −8





29.9720

24.3944

15.1640

2.1590


, (1.39)

which is Equation 1.36 writ large. This yields the parameter estimates h = 31.8054(m), v =

0.0173 (m
s

), g = 3.7137 (m
s
2 ). From this we may conclude that the ball was dropped with

small initial velocity from a height of about 32 meters on the planet Mars, which has a

gravitational constant of 3.7 m

s
2 [15]. The residual vector and its norm will give a clue as to

how close this solution is to the measured data,

ŷ =



29.9659

24.4127

15.1457

2.1651


r =



−0.0061

0.0183

−0.0183

0.0061


‖r‖ = 0.0272, (1.40)

and a residual of 2.7cm on data ranging from 2m to 30m seems pretty good. In fact, the
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data of Equation 1.31 were generated according to

xi = i

yi = 31.8− 3.7

2
x2i + εi

i = 1, 2, 3, 4,

(1.41)

where εi is an error term that is normally distributed with µ = 0 and σ = 2cm. The least

squares solution û di�ers from the true solution u∗

û− u∗ =


31.8054

0.0173

3.7137

−


31.8

0

3.7

 =


0.0054

0.0173

0.0137

 (1.42)

by only a small amount.

1.3.1.1 Summary

Parameter estimation is a mathematical tool which allows one to estimate the unknown

constants (parameters) of a function whose form is otherwise known, given a quantity of

observations which is greater than the number of parameters. Each observation pairs a

value of the independent variable(s) of the function with a measured data point. The goal

is to �nd the parameters which cause the function to most closely approximate the observed

data, or equivalently, which minimize the residual.

1.3.2 Nonlinear Estimation

While linear least squares does �nd applications in biomechanics (See Section 1.4), many

interesting phenomena are nonlinear in the parameters, including the movements of general

kinematic models [32]. Nonlinear parameter estimation bears many similarities to linear
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parameter estimation. It begins with a nonlinear function f(),

fi(u) = f(xi;u)

f(u) = [f1(u), f2(u), . . . , fn(u)]T

ri(u) = fi(u)− yi

i = 1, 2, . . . , n

u ∈ Rp, xi ∈ Rk

(1.43)

dependent on the k independent variables in x and the p parameters in u. The n-observation

residual vector r is the di�erence between the vector of function values and the data vector

y, and the residual, S(), is composed of the sum of squares of the residual vector,

S(u) =
∑
i

ri(u)2. (1.44)

We seek a solution û which minimizes Equation 1.44, this time using an iterative approach.

1.3.2.1 Iterative Solution to Nonlinear Least Squares

Given an estimate u(j) of û, the function S() in the vicinity of u(j) may be approximated

by the second-order Taylor expansion,

S(u(j) + δ) ≈ S(u(j)) + δT∇S(u(j)) +
1

2
δT∇2S(u(j))δ

δ ∈ Rp,
(1.45)

where ∇S(u(j)) is the gradient of S(u(j)),

∇S(u(j)) =



∂S

∂u
(j)
1

∂S

∂u
(j)
2

...

∂S

∂u
(j)
p


= J(u(j))Tr(u(j)). (1.46)
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The Jacobian

J(u(j)) =


∂r1(u(j))

∂u
(j)
1

· · · ∂r1(u(j))

∂u
(j)
p

...
. . .

...

∂rn(u(j))

∂u
(j)
1

· · · ∂rn(u(j))

∂u
(j)
p

 (1.47)

allows the gradient of S() to be written in terms of f(). Since y is constant, ∂ri(u)∂ul
= ∂fi(u)

∂ul

(See Equation 1.43). Returning to Equation 1.45, ∇2S(u(j)) denotes the Hessian of S(u(j))

∇2S(u(j)) =


∂2S(u(j))

∂u
(j)
1 ∂u

(j)
1

· · · ∂2S(u(j))

∂u
(j)
1 ∂u

(j)
p

...
. . .

...

∂2S(u(j))

∂u
(j)
p ∂u

(j)
1

· · · ∂2S(u(j))

∂u
(j)
p ∂u

(j)
p

 = J(u(j))TJ(u(j)) + G(u(j)), (1.48)

and the matrix G(u(j))

G(u(j)) =
n∑
i=1

ri(u
(j))∇2ri(u

(j)), (1.49)

along with J(u(j)), allow ∇2S(u(j)) to be written in terms of f() and r.

The vector δ is called the update, for reasons which will soon become clear. The goal is

to choose δ such that the Taylor expansion of S(u(j) + δ) in Equation 1.45 is minimized or

at least reduced relative to S(u(j)). The Newton step

δ
(j)
N = −

(
∇2S(u(j))

)−1
∇S(u(j))

= −
(
J(u(j))TJ(u(j)) + G(u(j))

)−1
J(u(j))Tr(u(j))

(1.50)

is one way to do this. Once the update δ(j) corresponding to the parameter vector estimate

u(j) is found, the next parameter estimate is written

u(j+1) = u(j) + δ(j). (1.51)

We may then return to Equation 1.45 and repeat the process above with j = j + 1 until

S(u(j)) reaches a minimum.

The above discussion follows [25, pp. 21�23] and [2, pp. 171�177].
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1.3.2.2 Conditions for a Local Minimum

A general nonlinear function may have multiple local minima, as illustrated in Figure 1.18.

While the solution procedure of the last section is designed to reach a local minimum, a

Figure 1.18: Local and Global Minima [38]

point where

S(û) ≤ S(u), for all u near û. (1.52)

A global minimum, on the other hand, satis�es

S(û) ≤ S(u), for all u. (1.53)

The problem of �nding the global minimum of a nonlinear function is, in general, quite

di�cult [2, pp. 182�184]. Here, the focus will be on recognizing when our iterative procedure

reaches a local minimum, particularly by examining three conditions for a local minimum.

The �rst is called the �rst-order necessary condition: If S(û) is a local minimum of

S(), then ∇S(û) must equal the zero vector, 0. Any point û which satis�es the �rst-

order necessary condition is called a stationary point. Since this condition only considers

�rst derivative information in the Taylor expansion of S() (See Equation 1.45), a stationary

point is not necessarily a minimum. At a saddle point, for instance, ∇S(û) = 0, but ∇2S(û)

is inde�nite, and it is possible to decrease S() further, since δT∇2S(û)δ < 0 for some δ

[25, p. 92]. This leads to the second-order necessary condition: If S(û) is a local minimum

of S(), then ∇S(û) must equal 0, and ∇2S(û) must be positive semide�nite. That is,

δT∇2S(û)δ ≥ 0 for all δ.

The second-order su�cient condition is stronger than the preceding two conditions. It
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states: If ∇S(û) = 0 and ∇2S(û) is positive de�nite (δT∇2S(û)δ > 0 for all δ 6= 0), then

S(û) is a strict local minimum of S(), which satis�es

S(û) < S(u), for all u 6= û near û (1.54)

(Compare with Equation 1.53). The conditions above will be useful later on for examining

the success or failure of a nonlinear estimation routine.

The discussion in this section follows [25, pp. 12�16] and [13, pp. 10�13].

1.3.2.3 Gauss-Newton and Levenberg-Marquardt

The Newton update

δ(j) = −
(
J(u(j))TJ(u(j)) + G(u(j))

)−1
J(u(j))Tr(u(j)) (1.55)

requires the calculation of 1
2np(p+ 1) second derivatives to create G(u(j)),

G(u(j)) =
n∑
i=1

ri(u
(j))∇2ri(u

(j)), (1.56)

a symmetric p×p matrix (See Equation 1.48 for the expansion of the Hessian operator ∇2).

Unless the G matrix is sparse (has many 0 elements), or n and p are small, calculating G

can be time-consuming and error-prone.

Fortunately, there are three situations in which G may be small relative to JTJ: First,

if the residuals ri(u(j)) = fi(u
(j))− yi approach zero as j increases; second, if f approaches

linearity near the minimum, causing its second derivatives to become small; third, if the

second derivatives of the n ri terms are nearly equal, a mix of positive and negative residual

terms will allow for cancellation [30, pp. 622�623]. In any case, if the Hessian

H(u(j)) = J(u(j))TJ(u(j)) + G(u(j)) (1.57)



38

is dominated by the JTJ term, then the Newton step may be approximated by

δ
(j)
GN = −

(
J(u(j))TJ(u(j))

)−1
J(u(j))Tr(u(j)), (1.58)

which requires only the calculation of the �rst derivatives in the Jacobian. This is the

Gauss-Newton (GN) step, and it is a solution the linear least squares problem

min
δ(j)
‖J(u(j))δ(j) + r(u(j))‖2. (1.59)

It may fail to reduce the residual S() if J(u(j)) is poorly conditioned or singular, or if the

matrix
(
J(u(j))TJ(u(j))

)−1
G(u(j)) has an eigenvalue with magnitude greater than 1 [16].

The line search Gauss-Newton direction

δ
(j)
LGN = α · δ(j)GN , (1.60)

where α solves

min
α

[
S(u(j) + α · δ(j)GN )

]
, (1.61)

improves the convergence properties of GN, but the Levenberg-Marquardt (LM) algorithm

tends to work even better. Its update step is given as

δ
(j)
LM = −

(
J(u(j))TJ(u(j)) + λI

)−1
J(u(j))Tr(u(j)), (1.62)

where λ is a positive-valued damping parameter which a�ects the character of the update.

When λ� 1, the LM update resembles the GN update; when λI� J(u(j))TJ(u(j)),

δ
(j)
LM ≈ −

1

λ
J(u(j))Tr(u(j)) = − 1

λ
∇S(u(j)), (1.63)

and the LM update resembles a steepest-descent update with a small step length. According

to [25, pp. 21�22], such a step is guaranteed to produce a decrease in the residual if the step

length is small enough, or equivalently, if λ is large enough. Taking many such steps does

result in slow convergence, but the option to take them allows the LM algorithm to succeed
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where the unmodi�ed GN algorithm would have failed.

Although there are various methods for choosing λ, one practical way is to start iteration

with a small value, such as λ(0) = 0.01. If the update signi�cantly reduces the residual, λ

may be reduced by a constant factor, such as λ(j+1) = λ(j)

2 . If the update fails to reduce the

residual, λ may be increased by a constant factor, such as λ(j+1) = 2λ(j). Fortunately, in

the case of a failure, the Jacobian does not need to be recalculated; Equation 1.62 is simply

solved with a new value of λ.

The discussion in this section follows [2, pp. 174�177], [13, pp. 91�98], and [30, pp. 619�

627].

1.3.2.4 Numerically stable LM updates

There is a better way to calculate the LM update than Equation 1.62, but it requires some

motivation. Consider the linear system Ax = b with solution x = A−1b. If the b vector

is perturbed by some source of error (measurement noise, roundo� error, etc.) e�ects of the

perturbation will carry through to x. This is written explicitly as

x+ ∆x = A−1(b+ ∆b). (1.64)

The relative error in x is bounded by the condition number of A,

‖∆x‖
‖x‖

≤ cond(A)
‖∆b‖
‖b‖

, (1.65)

where cond(A) is given as the ratio of the largest and smallest singular values in A,

cond(A) =
σmax
σmin

. (1.66)

The condition number serves as a metric for the extent to which A multiplies error when

computing x. As a rule of thumb, one may expect to lose one digit of accuracy for every

power of 10 in the condition number of A. That is, if cond(A) = 102, 2 digits of accuracy

would be lost, and for cond(A) = 104, 4 digits of accuracy would be lost. This matters

for the calculation of the LM update, since cond(J(u(j))TJ(u(j))) =
[
cond(J(u(j)))

]2
�
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See Equation 1.62. Discussion of conditioning follows [20, pp. 56�61, 118, 139] and [34,

pp. 363�365].

The LM update may be alternatively formulated as the solution to

min
δ

∥∥∥∥∥∥∥
r(u(j))

0

+

J(u(j))

(λI)
1
2

 · δ
∥∥∥∥∥∥∥
2

, (1.67)

a linear least squares problem equivalent to Equation 1.62 which may be solved in a more

numerically stable way, such as through use of the QR decomposition [30, p. 624].

The QR decomposition of an n× p matrix A results in

A = QR, (1.68)

where Q is an n×p orthonormal matrix whose columns form a basis for the column space of

A, and R is a p×p upper triangular matrix. As an orthonormal matrix, Q has the following

property,

QTQ = I, (1.69)

which will allow the least squares problem to be solved in a numerically stable way. An

overdetermined linear system Au = y, with u ∈ Rp and y ∈ Rn, has the normal equations

ATAû = ATy, (1.70)

which, using the QR decomposition, become

RTQTQRû = RTQTy. (1.71)

This simpli�es via Equation 1.69 to

RTRû = RTQTy (1.72)
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and, by removing RT from both sides, to

Rû = QTy. (1.73)

Equation 1.73 is an upper triangular system, which may be solved for the least-squares

solution û to the overdetermined linear system Au = y without forming ATA. As before,

A is required to be of full column rank.

Discussion of the QR decomposition follows [34, pp. 167�169] and [20, pp. 119�121].

1.3.2.5 Summary

When the function of interest produces an output which is nonlinear with respect to its

parameters, the parameters are no longer estimated in a single calculation, as with linear

least-squares; instead an interative process is used. This involves solving a succession of lin-

ear least-squares problems, each of which is a linearization of the residual function about the

current parameter estimates. While there are various ways of carrying out this process, the

Levenberg�Marquardt algorithm, with update calculated by applying the QR decomposition

to the linear least squares problem of Equation 1.67, is the algorithm used in the main body

of this work. It avoids the computational cost of calculating the Hessian matrix required by

Newton's method and has better convergence properties than the Gauss�Newton algorithm.

Furthermore, its update calculations are numerically stable.

1.4 Functional Methods for HJC Estimation

This section is placed after both background chapters because it requires knowledge of both

biomechanic topics and parameter estimation techniques yet remains preliminary to the

chapters that follow.

1.4.1 Why Functional Methods

The centers and axes of rotation of the joints of the body, collectively called joint parameters,

are used to de�ne the position and orientation of anatomical frames [29]. Their values are

sometimes derived from Anatomical Landmarks (ALs) and regression methods, as seen in
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Sections 1.2.5.5, 1.2.5.7, and 1.2.5.6. These methods have some drawbacks. AL palpitation

is prone to operator error, which can lead to kinematic crosstalk � the recovery of spurious

joint angles due to a misaligned anatomical frame [26]. Regression methods predict HJC

location using the ALs as independent variables, but this process is not subject speci�c.

Functional methods provide an alternative means to estimate joint parameters; they

operate by applying mathematical techniques to a subject's movement data. Typically an

additional movement exercising the joint of interest is collected, such as the Star Arc move-

ment (see Section 1.2.6.4), which is used to locate the HJC [5]. Unlike AL palpitation and

regression methods, functional methods are both subject speci�c and operator independent

[29], but they are susceptible to bias due to the e�ects of Soft Tissue Artifact (STA) [27].

There are many di�erent functional methods aimed at estimating the location of the HJC

[11] as well as the location of the Knee Joint Center (KJC) and the location and orientation

of the Knee Flexion Axis (KFA) [12].

1.4.2 Details of a Functional Method

This section presents one functional method, the Symmetrical Center of Rotation Estimation

(SCoRE) [35], which estimates the location of the HJC. The development of SCoRE depends

on the rigid body hypothesis, which assumes that the tracking markers rigidly follow the

underlying bone of each segment. Under this assumption, the two points

ptPHJC and ftPHJC , (1.74)

which give the HJC in the coordinates of the pelvic and femoral technical frames, will remain

coincident throughout movement of the hip when transformed into camera coordinates,

cam
pt T · ptPHJC ≈ cam

ft T · ftPHJC . (1.75)

The a�ne form (see Section 1.2.5.3) of this equation is

cam
pt R · ptPHJC + camP ◦

pt
≈ cam

ft R · ftPHJC + camP ◦
ft
. (1.76)
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In both forms, the equality is only approximate, as the rigid body hypothesis is not perfectly

ful�lled in practice due to the presence of STA. The SCoRE method �nds the HJC locations

in pt and ft coordinates which come closest to satisfying Eqn 1.75 during a recorded hip

movement. Given n frames of movement data, this is accomplished by solving the least-

squares problem

min
ptPHJC
ftPHJC

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



cam
pt R1 −camft R1

cam
pt R2 −camft R2

...
...

cam
pt Rn −camft Rn


ptPHJC
ftPHJC

+



(
camP ◦

pt
− camP ◦

ft

)
1(

camP ◦
pt
− camP ◦

ft

)
2

...(
camP ◦

pt
− camP ◦

ft

)
n



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

. (1.77)

Writing

A =



cam
pt R1 −camft R1

cam
pt R2 −camft R2

...
...

cam
pt Rn −camft Rn


y = −



(
camP ◦

pt
− camP ◦

ft

)
1(

camP ◦
pt
− camP ◦

ft

)
2

...(
camP ◦

pt
− camP ◦

ft

)
n


, (1.78)

the equation ptPHJC
ftPHJC

 =
(
ATA

)−1
ATy (1.79)

gives the solution to Eqn 1.77, although more numerically robust methods are available.

The contribution of each data frame to the residual vector,

r = A ·

ptPHJC
ftPHJC

− y, (1.80)

is given by

cam
pt R · ptPHJC + camP ◦

pt
−
(
cam
ft R · ftPHJC + camP ◦

ft

)
, (1.81)

which quanti�es violation of the equality given in Eqn 1.76.
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1.4.3 Properties and Performance of Functional Methods

The SCoRE method has some properties typical of functional methods. Movement data

is required from both segments adjacent to the joint, in this case, the pelvis and thigh.

Further, functional methods are typically tailored to either estimate a center of rotation,

such as the HJC, or a center and axis of rotation, such as the KJC and KFA [11, 12, 29, 14].

Some joints, such as the wrist and ankle, are not appropriately modelled by a single center

or axis of rotation. For these, optimization methods, which �t a general kinematic model to

a subject's movement data, are employed [32, 40].

The SCoRE method HJC estimate was found to have an mean error of about 20mm

relative to 3D ultrasound determination of the HJC when tested on a group of 19 subjects

[27]. The same study found the best performing functional method, Geometric Sphere

Fitting, to have a mean error of 15mm. While the SCoRE method relies on the rigid body

hypothesis, sphere �tting methods use multiple markers on the thigh segment and assume

that the origin of each one lies a constant distance from the HJC; this criterion is less

stringent than the rigid body hypothesis [14], which may make the sphere �tting method

less susceptible to the e�ects of STA than the SCoRE method. While functional methods

are meant to improve upon regression methods, they are hampered by the e�ects of STA.

Meanwhile, the best performing regression method examined in [27] � that of Harrington,

et al. � attained a mean error of 16mm; it turns out there are no clear winners in the

contest for accurate HJC location estimates.

Using functional methods instead of AL palpitation to estimate the KFA orientation

has been shown to improve the repeatability of gait data and to reduce kinematic crosstalk

[28, 29]. In this case, the value of functional methods is more readily apparent.

1.4.4 Summary

Functional methods use mathematical techniques to estimate joint parameter values from a

subject's movement data. They are meant to improve upon anatomical landmark palpitation

and regression methods and have the dual advantage of being operator independent and

subject speci�c. Unfortunately, they are subject to bias due to the presence of soft tissue
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artifact, and the best functional and regression methods for hip joint center location show

similar performance. Functional methods display promising results in �nding the orientation

of the knee �exion axis. They are limited to �nding the center and/or axis of rotation of a

joint; more complicated joint models require the use of optimization techniques.

1.5 Preview of Coming Chapters

Chapters 2, 3, and 4 are formatted as individual papers intended for submission to various

journals. They cover di�erent aspects of the central focus of this work: The estimation of

joint parameters at the hip and knee through the �tting of a kinematic model spanning both

joints to motion data from the pelvic and lower leg segments using an optimization method.

Chapter 2 presents a detailed mathematical analysis of the kinematic model of the hip

and knee, with particular focus on the parameters which de�ne the orientation of the model's

tibial anatomical frame. The analysis �nds that these parameters may vary widely without

a�ecting the residual, which quanti�es the �t of the kinematic model to a subject's movement

data. As a result, these parameters cannot be reasonably estimated using an optimization

method and must be determined through other means.

Chapter 3 presents the results of a motion capture study, which uses the optimization

method central to this work to estimate the joint parameters of 10 subjects, and the estima-

tion process is repeated 5 times for each subject. Repeatability is reasonably good; standard

deviation of the joint parameters across 5 repetitions is, on average, 3.52mm for hip joint

center location, 2.44mm for femoral length, and 1.67mm for knee joint center location. A

technique for orienting the tibial anatomical frame of the kinematic model is presented in

Chapter 3, along with a demonstration of the non-invasive investigation of thigh soft tissue

artifact using the model �tting procedure.

Chapter 4 presents a nonlinear optimization method for �tting a general kinematic model

to motion data which improves upon the two-level optimization method of Sommer and

Miller [32]. Both methods are set forth and compared in detail. The new method results

in parameter estimates consistent with those produced by the two-level method, but at a

signi�cantly reduced computational cost. When applied to data from the motion capture
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study of Chapter 3, the new method converges approximately 30 times faster than the

two-level method.
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Chapter 2

Parameter identi�ability of a �ve degree of freedom kinematic

model with application in human movement analysis

Ben Tesch1,∗, Brian S.R. Armstrong1

1 University of Wisconsin-Milwaukee

∗ E-mail: Corresponding bctesch@uwm.edu

2.1 Abstract

Optimization methods provide a means to estimate joint parameters in the context of human

movement analysis. These methods use a nonlinear optimization routine to �t a kinematic

model of the joint(s) of interest to motion capture data of the human subject under study.

The model parameters which best �t the subject's data are taken as estimates of the subject's

joint parameters. A �ve degree of freedom (DoF) model, which represents the hip as a

spherical joint and the knee as a 2 DoF compound hinge joint, shows particular promise

for estimating parameters of the hip and knee. In �tting this model to a subject, motion

capture data is required from only two segments of the body: the pelvis and lower leg.

By removing dependence on data from the thigh, a major source of soft tissue artefact is

removed from the �tting procedure, and more accurate parameter estimates are expected.

Unfortunately, the three parameters in the 5 DoF model which de�ne the orientation of the

tibial anatomical frame are able to vary widely without a�ecting the model's ability to �t

a given data set. The mathematical properties of the model which allow this to happen

are set forth in this paper, as is a procedure for calculating the range over which the three

parameters may vary. Under reasonable assumptions about the human knee, this range is

large enough to exclude the possibility of estimating the orientation of the tibial anatomical



48

frame. The 5 DoF model may still prove useful for estimating other joint parameters, such

as the hip and knee joint centers.

2.2 Introduction

In human movement analysis, joint parameters, which include the centers and axes of rota-

tion of the body's joints, play an important role in reconstructing the kinematics and kinetics

of the body from motion data. Joint parameters are needed due to the way motion data is

collected. Typically, motion tracking markers are placed over the skin of a human subject

on each segment of the body that is to be measured, such as the pelvis, thigh, and lower

leg; these markers are assumed to have a �xed relationship with respect to the underlying

bone. An optical motion tracking system measures the location these markers in 3D space

at discrete intervals as the subject moves. The resultant data is used to reconstruct the

pose of each body segment under measurement, and the set of all such poses is called the

data set. Pose is the combination of position and orientation. It is often represented math-

ematically by a reference frame, where the reference frame axes represent orientation and

the reference frame origin represents position. The reference frame representing the pose

of a body segment as reconstructed from the tracking markers is called a technical frame.

Because the markers may be placed at di�erent locations on a given body segment, their

placement does not bear a repeatable relationship to the subject's anatomy [3].

Without a reference frame aligned to the anatomy, it is impossible to meaningfully com-

pare data collected on di�erent days, let alone data from di�erent subjects. Joint parameters

provide a remedy to this problem, as they may be used to de�ne a reference frame which

is aligned to the subject's anatomy [21]. Such a reference frame is called an anatomical

frame, and for each body segment under measurement, one anatomical frame is de�ned in

the coordinates of the segment's technical frame [3].

Accurate joint parameter estimates are crucial for obtaining valid data. Errors in hip

joint center (HJC) location can lead to signi�cant errors in calculated moments at the hip

[24]. Similarly, kinematic crosstalk, the recovery of non-physiological joint angles due to a

misaligned anatomical frame, can result from an inaccurate estimate of the orientation of
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the knee �exion axis [15, 20].

There are several methods for determining joint parameters. Anatomical landmark (AL)

palpitation is used to orient anatomical frames at the pelvis, femur, and tibia; it is also used

to �nd joint centers at the knee and ankle [2]. The HJC may not be directly found in this

way. Instead, regression equations are used to estimate its location based on measurements

of the ALs at the hip and leg [5]. The lack of subject speci�city in regression equations

adds another source of error to the variability already present in the palpitation of ALs

[9]. Functional methods use mathematical techniques to estimate joint parameters from a

subject's movement data. They are subject speci�c and are not in�uenced by the same

sources of error as regression equations and AL palpitation. Various functional methods

have been used to �nd the HJC [6] as well as the knee �exion axis and knee joint center

(KJC) [7]. Functional methods show promise, but they may be biased due to the presence

of soft tissue artefact (STA) [19]. STA is the measurement error introduced by movement of

tissue between motion tracking markers and the underlying bone. It is a major hindrance

in the �eld of human movement analysis [11]. Of note is a new set of regression equations

for the HJC [8] which is competitive with the best functional method when both are judged

against 3D ultrasound localization of the HJC [19].

The �ve degree of freedom (DoF) model which is analyzed in this paper has an intended

application in the estimation of joint parameters as part of an optimization method. Opti-

mization methods require a kinematic model of the joint of interest and motion data which

records the subject exercising this joint. The kinematic model is de�ned by two kinds of

quantities: model parameters and joint angles. The model parameters represent quantities

which do not change during movement, such as the position of the hip joint center in the

pelvis or the orientation of the knee �exion axis in the femur. Joint angles encode the degrees

of freedom of the model's joints and may take on a di�erent value for each measurement

of the subject's pose in the data set. Optimization methods estimate joint parameters by

using a nonlinear optimization routine to adjust the model parameters and joint angles of

the kinematic model so that it reproduces or ��ts� the subject's movement data as closely

as possible. The model parameters which best �t the subject's data are taken as estimates

of the subject's joint parameters. [17, 23, 25]
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The 5 DoF model which is the focus of this paper uses a spherical joint to model the hip

and a 2 DoF compound hinge joint to model the knee, allowing estimation of the parameters

of both joints. Because the model has 5 DoF, it may be �tted to motion data from only the

pelvis and lower leg segments using the optimization routine in [23], provided both segments

are tracked with 6 DoF measurement. Lack of dependence on data from the thigh segment

may lead to improved parameter estimates, as such data is a�ected by a high degree of STA

[18]. A model with a spherical hip joint and four bar linkage knee joint has previously been

employed to remove dependence on data from the thigh in [14], but it appears there is some

di�culty in adapting this more complicated model to individual subjects. The simpler 2

DoF compound hinge knee model is suggested by the work of Hollister, et al. who found

knee motion to be well represented by �xed �exion axis and a �xed longitudinal rotation

axis. The longitudinal rotation axis was both placed anterior and oriented non-orthogonally

with respect to the �exion axis. [10]. Prior work has been carried out in �tting this knee

model to motion data [16]. The 2 DoF compound hinge used in this work's 5 DoF model is

a simpli�ed version of the one just mentioned, as its �exion and longitudinal rotation axes

are both orthogonal and intersecting.

In attempting to �t the 5 DoF model to motion data, it was found that the parameters

encoding the orientation of the tibial anatomical frame may vary over a wide range without

a�ecting the model's �t to a given data set. An optimization routine has only one criterion for

adjusting model parameters: It chooses the values of the model parameters which allow the

model to best �t the data set. Since many values for the parameters which orient the tibial

anatomical frame �t the data equally well, these parameters are considered unidenti�able.

That is, they cannot be reasonably estimated by an optimization routine. The present work

analyzes this phenomenon mathematically by �tting the model to a synthetic data set. The

synthetic data set is created from the model equations and contains all poses consistent

with a normal range of human joint motion. A procedure is derived for calculating the

range over which the unidenti�able parameters may vary while allowing the model to �t

the synthetic data set exactly. Numerical results for this range are presented for reasonable

values of the other model parameters, and the consequences of parameter unidenti�ability

for the application of the 5 DoF model are discussed.
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2.3 Methods

The model is de�ned by a series of homogeneous transforms (HTs), and its joint angles are

encoded in the model de�nition as Cardan angles. A brief overview of these mathematical

techniques is presented prior to the de�nition and analysis of the model.

2.3.1 Homogeneous Transforms

Suppose there are three reference frames: a, b, and c. The HT from frame a to frame b, baT ,

is a 4× 4 matrix given by the equation

b
aT =

 b
aR

bP◦
a

0 0 0 1

 , (2.1)

where baR is a 3× 3 rotation matrix whose columns are the basis vectors of frame a written

in b coordinates, and bP◦
a
is a 3-vector which represents the origin of frame a (written

◦
a) as

a point in b coordinates. Given an arbitrary point o in a coordinates, aPo,

aPo =



x

y

z

1


, (2.2)

to which a fourth element of value 1 has been appended, multiplication by b
aT will transform

this point into a b coordinate representation

bPo = b
aT · aPo. (2.3)

Assume that any vector or point which is being multiplied by an HT has this additional 1

appended to it.

Rotation matrices and homogeneous transforms have some additional useful properties.
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For any rotation matrix R, the following hold

RTR = I

RT = R−1,

(2.4)

where I is the identity matrix. For arbitrary reference frames a and b,

a
bR =

(
b
aR
)T

=
(
b
aR
)−1

, (2.5)

inverting a rotation matrix switches the order of its from and to frames. A similar formula

applies to HTs,

a
bT =

(
b
aT
)−1

, (2.6)

but the inverse of an HT is not equal to its transpose; instead, the inverse is given by

(
b
aT
)−1

=

 (
b
aR
)T −

(
b
aR
)T · bP◦

a

0 0 0 1

 . (2.7)

Finally, both rotation matrices and HTs may be chained together,

c
aR = c

bR · baR

c
aT = c

bT · baT.
(2.8)

For information on HTs, see also [27, ch. 1.2.5.1].

2.3.2 Cardan Angles

Cardan angles are often used in human movement analysis to de�ne a rotation between

coordinate frames by a sequence of three elemental rotations about a speci�c set of axes.

When the sequence and axes are properly de�ned, and the rotation spans coordinate frames

on either side of a joint, the values of the three Cardan angles will correspond to the joint

angles �exion/extension (FL/EX), adduction/abduction (AD/AB), and internal/external
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rotation (IN/EX), respectively [22]. The elemental rotations are shown below,

R
(
b
aEx

)
=


1 0 0

0 Cx Sx

0 −Sx Cx



R
(
b
aEy

)
=


Cy 0 −Sy

0 1 0

Sy 0 Cy



R
(
b
aEz

)
=


Cz Sz 0

−Sz Cz 0

0 0 1

 ,

(2.9)

where R(·) is an operator which creates the appropriate elementary rotation matrix from

a given Cardan angle (baEx,
b
aEy,

b
aEz). Also, Sz abbreviates sin

(
b
aEz

)
, Cx abbreviates

cos
(
b
aEx

)
, and so on. Using what will here be called the Z-X-Y sequence, the rotation

from a to b coordinates may be created from the elementary rotations,

b
aR = R

(
b
aEy

)
· R
(
b
aEx

)
· R
(
b
aEz

)
. (2.10)

This may be thought of as a rotation of baEz degrees about the Z axis of frame a, followed

by a rotation of baEx degrees about an axis mutually perpendicular to the Z axis of frame a

and the Y axis of frame b, followed by a rotation of baEy degrees about the Y axis of frame

b. baR has the form


CzCy − SzSySx SzCy + CzSySx −SyCx

−SzCx CzCx Sx

CzSy + SzCySx SzSy − CzCySx CyCx

 . (2.11)
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The Z-X-Y sequence Cardan angles may be extracted from a rotation matrix b
aR using the

equations
b
aEx = asin

(
b
aR(2, 3)

)
b
aEy = atan2

(
−baR(1, 3), baR(3, 3)

)
b
aEz = atan2

(
−baR(2, 1), baR(2, 2)

)
.

(2.12)

It is handy to de�ne an operator E(·) which performs this function,

b
aE = E

(
b
aR
)
. (2.13)

Finally, the homogeneous transform b
aT has six degrees of freedom but 16 elements. The

6 DoF of baT may be represented by six elements: three for translation,

bP◦
a

=


bP◦

a
(x)

bP◦
a
(y)

bP◦
a
(z)

 , (2.14)

where bP◦
a
(x) is the X component of bP◦

a
, and three for rotation,

b
aE =


b
aEx

b
aEy

b
aEz

 , (2.15)

where b
aR is decomposed into the Cardan angles in b

aE. These six elements fully de�ne the

pose of the a frame in b coordinates; they simply have a more compact form than b
aT , which

also de�nes the pose of the a frame in b coordinates.

2.3.3 Model De�nition

Figure 2.1 shows an exploded view of the reference frames of the 5 DoF model along with

some of their connections. The model is de�ned by a series of homogeneous transforms

(HTs) between named reference frames. The HTs themselves are populated using model

parameters, joint angles, and anatomical landmarks.
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Figure 2.1: Links and reference frames of 5 DoF model in exploded view.

The pelvic and tibial technical frames, pt and tt, represent the pose of their respective

body segments as it would be recorded by a motion capture system. These typically cor-

respond to the position and orientation of tracking markers placed over the skin on each

measured segment and do not necessarily bear a repeatable relationship to the subject's

anatomy [3]. The model also contains anatomical frames, each of which represents the

pose of one of the subject's bones. These include the pelvic, femoral, and tibial anatomical

frames, abbreviated pa, fa, and ta, respectively. The goal in �tting the model to motion

data is to align the anatomical frames to the subject's anatomy in a way that is repeatable
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and physiologically valid.

The orientation of the pelvic anatomical frame, pa, in pt coordinates is given by the

rotation matrix pa
ptR, which is composed from the three Cardan angles in pa

ptE using Eqn 2.10.

These values are set a-priori from pelvic anatomical landmarks according to [26]. As such,

they are constants not adjusted by the �tting procedure. The origin of the pa frame is

placed at the hip joint center (HJC); it is determined by the three values in paP ◦
pt
. These

values are model parameters � their value is set by the �tting procedure, but it remains

constant across the poses of the data set.

The rotation from the pa frame to the femoral intermediate frame, �, is given by the

three Cardan angles fipaEx,
fi
paEy, and

fi
paEz. These are joint angles; they may each take on

a di�erent value for every pose in the data set. Because they create fi
paR by the Z-X-Y

sequence, fipaEz encodes a rotation about the Z axis of the pa frame corresponding to hip

�exion/extension (FL/EX), fipaEy encodes a rotation about the Y axis of the � frame corre-

sponding to hip internal/external rotation (IN/EX), and hip adduction/abduction (AD/AB)

is given by fi
paEx, which encodes a rotation about an axis mutually perpendicular to the Z

axis of pa and the Y axis of � [4]. These are the three DoF of the spherical joint which

models the hip.

The translation fiP ◦
pa

has only one non-zero component, fiP ◦
pa

(y), a model parameter.

This constrains the HJC (
◦
pa) to lie along the Y axis of the � frame. Since the origin of

the � frame lies at the knee joint center (KJC), fiP ◦
pa

(y) encodes the length of the femur.

The � frame serves two functions: It allows hip IN/EX to occur about the vector pointing

from the KJC to the HJC, and it allows the knee �exion axis to have a non-orthogonal

orientation with respect to that vector. Since the knee �exion axis is the Z axis of the

femoral anatomical frame (fa), this second function is accomplished by de�ning the rotation

from � to fa,

fa
fiR = R

(
fa
fiEx

)
, (2.16)

to be an elementary rotation about the X axis of the � frame (See Eqn 2.9). The origin of

the fa frame is also placed at the KJC; consequently, the translation faP ◦
fi

is given by the

zero vector, 0.
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The rotation from the femoral anatomical frame (fa) to the tibial anatomical frame (ta)

is created according to the equation

ta
faR = R

(
ta
faEy

)
· R
(
ta
faEz

)

=


CzCy SzCy −Sy

−Sz Cz 0

CzSy SzSy Cy

 ,
(2.17)

where ta
faEz and ta

faEy are joint angles. They represent the 2 DoF of the compound hinge

knee joint: rotation of tafaEz degrees about the Z axis of fa, corresponding to FL/EX, followed

by rotation of tafaEy degrees about the Y axis of ta corresponding to IN/EX. The fa and ta

frames share an origin at the KJC, and so taP ◦
fa

= 0.

The pose of the ta frame relative to the tt frame is de�ned by the six model parameters in

tt
taE and ttP ◦

ta
. ttP ◦

ta
gives the location of the KJC in tt coordinates. The model parameters

tt
taEx,

tt
taEy, and

tt
taEz are the focus of this paper. They create tt

taR via the Y-X-Z sequence

(see Eqn 2.40) and are able to vary over a signi�cant range without a�ecting the model's �t

to a given data set.

2.3.4 A Synthetic Data Set

While the 5 DoF model is �tted to motion capture data in its intended application, such

data is inappropriate for an exact mathematical analysis. It contains errors due to soft

tissue artifact (STA), and no single recorded data set will contain all the poses that may be

encountered in practice. In order to avoid these shortcomings, two models are created: the

data model and the exploratory model. The data model is used to create a synthetic data

set, referred to subsequently as the data set. The data set contains all poses of the data

model,

tt
ptT(d), (2.18)

produced by varying its joint angles within a range consistent with the normal limits of

human joint motion. The exploratory model is used to explore the range over which the

unidenti�able parameters, tttaE, may vary relative to those of the data model, without af-
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fecting the ability of the exploratory model to exactly �t every pose in the data set.

For the most part, the exploratory and data models have the same de�nition. All model

parameters except tt
taE have the same value in both models, and the joint angles are set

independently in each model. For quantities which may di�er between models, a subscript

(m) or (d) will mark a quantity as belonging to the exploratory or data model, respectively.

tt
ptT(d) is generated by the equation for the data model

tt
ptT(d) = tt

taT(d) · tafaT(d) ·
fa
fi T ·

fi
paT(d) ·

pa
pt T. (2.19)

Likewise, ttptT(m) is generated by the equation for the exploratory model

tt
ptT(m) = tt

taT(m) · tafaT(m) ·
fa
fi T ·

fi
paT(m) ·

pa
pt T. (2.20)

Even though ttP ◦
ta
has the same value for both models, tttaT receives a subscript (m) or (d)

because the model parameters tt
taE are allowed to di�er between models. Similarly, fiP ◦

pa

has the same value in both models, but fi
paT receives a subscript because the joint angles

may di�er between models.

The goal of the analysis is to determine the range over which tt
taE(m) and tt

taE(d) may

di�er relative to each other while the exploratory model �ts all poses in the data set. This

range will be called the region of unidenti�ability. All values of tttaE in this range �t the data

set equally well, and the optimization routine lacks a criterion to choose between them.

2.3.5 Conditions for Pose Equality

The analysis starts by �nding the conditions under which one pose of the exploratory model

may be made equivalent to a pose of the data model. It is desirable to simplify these

conditions as much as possible, reducing the work in later stages of analysis. The exploratory

and data models produce an equivalent pose when

tt
ptT(m) = tt

ptT(d). (2.21)
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Eqn 2.21 may be expanded,

tt
taT(m) · tafaT(m) ·

fa
fi T ·

fi
paT(m) ·

pa
pt T

= tt
taT(d) · tafaT(d) ·

fa
fi T ·

fi
paT(d) ·

pa
pt T,

(2.22)

allowing the cancellation of papt T ,

tt
taT(m) · tafaT(m) ·

fa
fi T ·

fi
paT(m)

= tt
taT(d) · tafaT(d) ·

fa
fi T ·

fi
paT(d).

(2.23)

The possibility of further simpli�cation is evident in the a�ne form of Eqn 2.23. That may

be reached using a more expanded form of the HTs,

tt
taT(m) =

 tt
taR(m)

ttP ◦
ta

0 0 0 1

 tt
taT(d) =

 tt
taR(d)

ttP ◦
ta

0 0 0 1


ta
faT(m) =

 ta
faR(m) 0

0 0 0 1

 ta
faT(d) =

 ta
faR(d) 0

0 0 0 1


fa
fi T =

 fa
fiR 0

0 0 0 1


fi
paT(m) =

 fi
paR(m)

fiP ◦
pa

0 0 0 1

 fi
paT(d) =

 fi
paR(d)

fiP ◦
pa

0 0 0 1

 ,

(2.24)

to arrive at
ttP ◦

ta
+ tt
taR(m) · tafaR(m) ·

fa
fiR ·

(
fi
paR(m) + fiP ◦

pa

)
= ttP ◦

ta
+ tt
taR(d) · tafaR(d) ·

fa
fiR ·

(
fi
paR(d) + fiP ◦

pa

)
.

(2.25)

ttP ◦
ta

cancels out, and the parenthetical terms in Eqn 2.25 may be expanded separately to

yield two equations,
tt
taR(m) · tafaR(m) ·

fa
fiR ·

fi
paR(m)

= tt
taR(d) · tafaR(d) ·

fa
fiR ·

fi
paR(d)

(2.26a)
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tt
taR(m) · tafaR(m) ·

fa
fiR ·

fiP ◦
pa

= tt
taR(d) · tafaR(d) ·

fa
fiR ·

fiP ◦
pa
,

(2.26b)

which indicate identity of pose between the exploratory and data models when they are both

satis�ed.

Suppose a particular pose of the data model is chosen, �xing the right hand sides of

Eqns 2.26a and 2.26b. Further suppose that, despite di�erent values for tttaR(m) and tt
taR(d),

values for ta
faEy(m) and ta

faEz(m) (which create ta
faR(m) via Eqn 2.17) may be found which

cause Eqn 2.26b to be satis�ed. Then, setting

fi
paR(m) =

(
fa
fiR

)−1
·
(
ta
faR(m)

)−1 · (tttaR(m)

)−1 · tttaR(d) · tafaR(d) ·
fa
fiR ·

fi
paR(d), (2.27)

will also satisfy Eqn 2.26a. Since the three joint angles of the spherical joint (fipaEx(m),

fi
paEy(m), and

fi
paEz(m)) are free to vary, they may create an arbitrary rotation matrix fi

paR(m)

via Eqn 2.10. Consequently, Eqn 2.27 is always feasible, and the exploratory model may

produce a pose identical to that of the data model if Eqn 2.26b is satis�ed.

Thanks to this simpli�cation, the region of unidenti�ability is given by the range over

which tt
taE(m) and tt

taE(d) may di�er relative to each other while Eqn 2.26b remains satis�ed

for every pose in the data set.

2.3.6 The Range of tt
′
P ◦
pa

If a new frame tt' is de�ned as having the orientation of the tt frame and the origin of the

ta frame, then either side of Eqn 2.26b may be written

tt′P ◦
pa

= tt
taR · tafaR ·

fa
fiR ·

fiP ◦
pa
. (2.28)

Examining the range of this quantity will elucidate the circumstances under which Eqn 2.26b

is satis�ed.
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Only the Y component of fiP ◦
pa

is non-zero, and it is given the variable φ,

fiP ◦
pa

=


0

φ

0

 , (2.29)

since it represents the length of the femur (think φ for femur). fafiR is an elementary rotation

about the X axis (See Eqn 2.9),

fa
fiR = R

(
fa
fiEx

)
, (2.30)

and for compactness we de�ne χ = fa
fiEx.

faP ◦
pa

may now be written

faP ◦
pa

=


0

cos(χ)φ

− sin(χ)φ

 =


0

Cχφ

−Sχφ

 . (2.31)

Since χ and φ are both model parameters, faP ◦
pa

is a vector of constant length φ.

The range of tt
′
P ◦
pa

is principally determined by the joint angles tafaEz and
ta
faEy, which

form ta
faR by Eqn 2.17; they rotate the vector faP ◦

pa
about the origin of the ta frame. This

can be seen in the quantity taP ◦
pa

= ta
faR · faP ◦pa,

taP ◦
pa

=


cos(tafaEy) sin(tafaEz)Cχφ+ sin(tafaEy)Sχφ

cos(tafaEz)Cχφ

sin(tafaEy) sin(tafaEz)Cχφ− cos(tafaEy)Sχφ

 . (2.32)

The range of taP ◦
pa

consists of the points on the surface of a sphere with radius φ whose Y

component lies on the interval [−Cχφ,Cχφ]. When χ does not equal 0 or some multiple of π,

this range is smaller than [−φ, φ], and some points on the spherical surface are unreachable.

The unreachable points form two spherical caps with height φ (1− Cχ) and base radius

|Sχφ|. Figure 2.2 shows the reachable portion of the spherical surface lying above the XZ

plane for φ = 0.4 meters and χ = 10◦. The portion of the surface lying below the XZ plane

is a mirror image of the portion lying above it.



62

Figure 2.2: Surface traced by taP ◦
pa
for φ = 0.4 meters and χ = 10◦.

The model parameters in tt
taE form tt

taR, which allows for the range of tt
′
P ◦
pa

to be rotated

relative to the range of taP ◦
pa
. tt′P ◦

pa
still traces out points on the surface of a sphere

with radius φ, but now it cannot reach the points on this surface whose component along

the vector tt
taR ·

[
0 1 0

]T
lies outside [−Cχφ,Cχφ]. This is relevant to the question of

parameter identi�ability, as the exploratory model cannot �t all of the poses of the data

model if some of them produce a tt′P ◦
pa

vector that the exploratory model cannot reach.

When this occurs will depend on the value of χ, the range of the data model joint angles,

and the relative orientation of tttaR(m) and tt
taR(d).

2.3.7 Simple Cases of Unidenti�ability

There are two ways to demonstrate unidenti�ability in the tttaE parameters which apply even

without limitations on the joint angles of the data model. Both are presented here as an

introduction to the methods used to determine the region of unidenti�ability.

The exploratory model is able to �t a particular pose of the data model when Eqn 2.26b
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is satis�ed. Eqn 2.26b may be rewritten

[(
tt
taR(d)

)−1 · tttaR(m)

]
· tafaR(m) ·

fa
fiR ·

fiP ◦
pa

=
[
ta
ttR(d) · tttaR(m)

]
· tafaR(m) ·

fa
fiR ·

fiP ◦
pa

=
[
ta(d)
ta(m)R

]
· tafaR(m) ·

fa
fiR ·

fiP ◦
pa

= ta
faR(d) ·

fa
fiR ·

fiP ◦
pa

(2.33)

where square brackets have been used to highlight the term of interest, ta(d)ta(m)R. This rotation

matrix allows analysis to focus on the relative orientation of the ta frames of the exploratory

and data models instead of covering all six parameters in tt
taE(m) and tt

taE(d). De�ning

taP ◦
pa(m)

= ta
faR(m) ·

fa
fiR ·

fiP ◦
pa

taP ◦
pa(d)

= ta
faR(d) ·

fa
fiR ·

fiP ◦
pa
,

(2.34)

Eqn 2.33 may be written

ta(d)
ta(m)R ·

taP ◦
pa(m)

= taP ◦
pa(d)

, (2.35)

where

taP ◦
pa(m)

=


cos(tafaEy(m)) sin(tafaEz(m))Cχφ+ sin(tafaEy(m))Sχφ

cos(tafaEz(m))Cχφ

sin(tafaEy(m)) sin(tafaEz(m))Cχφ− cos(tafaEy(m))Sχφ

 (2.36)

and

taP ◦
pa(d)

=


cos(tafaEy(d)) sin(tafaEz(d))Cχφ+ sin(tafaEy(d))Sχφ

cos(tafaEz(d))Cχφ

sin(tafaEy(d)) sin(tafaEz(d))Cχφ− cos(tafaEy(d))Sχφ

 . (2.37)

The region of unidenti�ability is de�ned by the values of ta(d)ta(m)R for which Eqn 2.35 can

be satis�ed for all values of taP ◦
pa(d)

. The simplest case is found by setting χ = 0. In this

case, taP ◦
pa(d)

traces all points on the surface of a sphere with radius φ, as does taP ◦
pa(m)

.

The exploratory model may then �t any pose of the data model, regardless of the value of

ta(d)
ta(m)R. For a model with χ = 0, the parameters tttaE are completely unidenti�able.

The next case applies even when χ 6= 0. If we set ta(d)
ta(m)R = R(Ey) (an elementary
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rotation about the Y axis, see Eqn 2.9 ) and use the relations

sin(a+ b) = sin(a) cos(b) + cos(a) sin(b)

cos(a+ b) = cos(a) cos(b)− sin(a) sin(b),

(2.38)

then ta(d)
ta(m)R ·

taP ◦
pa(m)

becomes


cos(tafaEy(m) + Ey) sin(tafaEz(m))Cχφ+ sin(tafaEy(m) + Ey)Sχφ

cos(tafaEz(m))Cχφ

sin(tafaEy(m) + Ey) sin(tafaEz(m))Cχφ− cos(tafaEy(m) + Ey)Sχφ

 . (2.39)

This quantity has the same range as taP ◦
pa(d)

regardless of the value chosen for Ey. Since

the points unreachable by taP ◦
pa(m)

are those whose component along the Y axis of ta lies

outside of [−Cχφ,Cχφ], rotating the ta frame of the exploratory model about its Y axis will

not a�ect its �t to the data set.

For the sake of later analysis, ta(d)ta(m)R is formed using the Y-X-Z sequence,

ta(d)
ta(m)R = R

(
(d)
(m)Ez

)
· R
(
(d)
(m)Ex

)
· R
(
(d)
(m)Ey

)
, (2.40)

resulting in the matrix

ta(d)
ta(m)R =


CzCy + SzSxSy SzCx −CzSy + SzSxCy

−SzCy + CzSxSy CzCx SzSy + CzSxCy

CxSy −Sx CxCy

 , (2.41)

where Sx abbreviates sin
(
(d)
(m)Ex

)
, and so on. Since the rotation parameterized by (d)

(m)Ey is

�rst in the sequence, it occurs about the Y axis of the ta frame of the exploratory model

and corresponds to the mechanism of unidenti�ability described above. A related feature of

the Y-X-Z sequence is that the second column of ta(d)ta(m)R, which gives the Y axis of ta(m) in

ta(d) coordinates, only depends on the Cardan angles (d)
(m)Ex and (d)

(m)Ez.

The above two cases of unidenti�ability apply even when the data model joint angles

ta
faEz(d) and

ta
faEy(d) are allowed vary from 0◦ to 360◦. Additional mechanisms of unidenti�-
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ability will arise if the range of these joint angles is limited.

2.3.8 Accounting for Knee Range of Motion

The range of poses in the data set is given by the range of values taken on by the joint

angles of the data model. Since the ability of the exploratory model to �t a given pose

of the data model does not depend on the joint angles of the spherical joint, fipaE, these

will be neglected in considering the range of the data set. The remaining joint angles are

ta
faEz(d) and

ta
faEy(d), which model �exion/extension (FL/EX) and internal/external rotation

(IN/EX) of the human knee, respectively.

In this analysis, knee FL/EX is limited to a range from 5◦ of hyper extension to 130◦ of

�exion, following [13, p. 443]. This results in a range of [−130◦, 5◦] for tafaEz(d), since �exion

receives a negative value in the chosen Cardan convention.

Internal/external rotation has a limited range which is dependent upon knee �exion.

Blankevoort, et al. tested this range on several knee specimens by measuring the amount

of IN/EX produced by the tibia at various degrees of �exion when loaded with a torque of

±3 Nm. The data for specimen 2 have been adapted from the graph in Figure 5 of [1] and

are reproduced in Table 2.1. They are used in this work to de�ne the positive and negative

limits on the range of tafaEy(d) in the data set.

Table 2.1: Positive and negative limits of IN/EX at various degrees of FL/EX
Flexion Angle IN/EX limit Flexion Angle IN/EX limit

0◦ −7.3◦ 0◦ 8.2◦

−5◦ −12.6◦ � �
−10◦ −14.9◦ −10◦ 14.0◦

−17.5◦ −17.2◦ −20◦ 20.0◦

−30◦ −19.1◦ −34◦ 23.1◦

−58◦ −20.5◦ −63◦ 24.0◦

−84◦ −21.9◦ −88◦ 24.5◦

−92◦ −21.4◦ −95◦ 25.4◦

−120◦ −21.4◦ −120◦ 25.4◦

The last row in Table 2.1 is not in the original data but was added to allow the data to

be extrapolated to the interval tafaEz(d) ∈ [−130◦, 5◦] with the help of splines. The splines
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Figure 2.3: Positive and negative limits of tafaEy for
ta
faEz ∈ [−130◦, 5◦]

are represented with function notation, where

SP

(
ta
faEz(d)

)
(2.42)

gives the positive limit of tafaEy(d) for a given �exion angle,

SN

(
ta
faEz(d)

)
(2.43)

gives the negative limit, and the two quantities

SP
′ (ta
faEz(d)

)
SN
′ (ta
faEz(d)

) (2.44)

are the �rst derivatives of the functions above. SP

(
ta
faEz(d)

)
and SN

(
ta
faEz(d)

)
are both

plotted in Figure 2.3.

When the limits on FL/EX and IN/EX are taken into account, the vector taP ◦
pa(d)

traces

out the surface shown in Figure 2.4. This is still a portion of the surface of a sphere with

radius φ, but now it looks like a peel from a slice of fruit. It is, however, a good approximation

to the range of values that taP ◦
pa(d)

could possibly have in a measured data set.
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Figure 2.4: Surface traced by taP ◦
pa
for φ = 0.4 meters and χ = 4◦ with knee range

of motion taken into account.

2.3.9 Bracketing the Region of Unidenti�ability

The exploratory model is able to produce a pose identical to that of the data model when

Eqn 2.35,

ta(d)
ta(m)R ·

taP ◦
pa(m)

= taP ◦
pa(d)

,

is satis�ed. The region of unidenti�ability is given by the de�nitions of ta(d)ta(m)R which allow

the range of the left hand side of Eqn 2.35 to overlap the range of the right hand side. Recall

from the discussion following Eqn 2.32 that taP ◦
pa(m)

cannot reach points whose component

along the Y axis of ta lies outside [−Cχφ,Cχφ]. The last points reachable by taP ◦
pa(m)

form

two circles of radius |Sχφ| centered about the Y axis of ta and lying in the XZ plane; one

has Y coordinate of Cχφ, the other has Y coordinate −Cχφ. These are called the positive

and negative feasible limit circles. The positive feasible limit circle is found by setting
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ta
faEz(m) = 0 in Eqn 2.36, yielding

taP ◦
pa(m)

=


sin
(
ta
faEy(m)

)
Sχφ

Cχφ

− cos
(
ta
faEy(m)

)
Sχφ

 , (2.45)

and the negative feasible limit circle is found by setting ta
faEz(m) = 180◦. ta(d)ta(m)R causes the

positive feasible limit circle to be centered around the point

Vcχφ =
ta(d)
ta(m)R ·


0

Cχφ

0

 (2.46)

and the negative feasible limit circle to be centered around −Vcχφ. The border of the region

of unidenti�ability is given by all of the de�nitions of ta(d)ta(m)R which cause one of the feasible

limit circles to lie tangent to the outside edge of the data set in such a way that ±Vcχφ is

bounded away from the data set. This section develops a procedure to �nd such de�nitions

of ta(d)ta(m)R, beginning with a mathematical description of the outside edge of the data set.

2.3.9.1 Outlining the data set

This outside edge of the data set is given by four contours, all of which are produced by

taP ◦
pa(d)

(See Eqn 2.37) at the maximal limits of tafaEy(d) and
ta
faEz(d). Contour A is given by

the full range of �exion and the positive IN/EX limit,

ta
faEz(d) ∈ [−130◦, 5◦]

ta
faEy(d) = SP

(
ta
faEz(d)

)
.

(2.47)

Contour B is given by the full range of �exion and the negative IN/EX limit,

ta
faEz(d) ∈ [−130◦, 5◦]

ta
faEy(d) = SN

(
ta
faEz(d)

)
.

(2.48)
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Contour C is given by the maximum range of IN/EX at the positive limit of �exion,

ta
faEz(d) = 5◦

ta
faEy(d) ∈ [SN (5◦) , SP (5◦)],

(2.49)

and contour D is given by the maximum range of IN/EX at the negative limit of �exion,

ta
faEz(d) = −130◦

ta
faEy(d) ∈ [SN (−130◦) ,SP (−130◦)].

(2.50)

Contours A and B are parametric curves in ta
faEz(d), while contours C and D are parametric

in ta
faEy(d). It is handy to give them the following functional forms

CA

(
ta
faEz(d)

)
CB

(
ta
faEz(d)

)
CC

(
ta
faEy(d)

)
CD

(
ta
faEy(d)

)
.

(2.51)

The points on contour A are given by the equation

CA (ζ) =


cos (SP(ζ)) sin(ζ)Cχφ+ sin (SP(ζ))Sχφ

cos (ζ)Cχφ

sin (SP(ζ)) sin(ζ)Cχφ− cos (SP(ζ))Sχφ

 , (2.52)

where ζ stands for tafaEz(d). The tangent vector to this contour at ζ is given by

∇CA (ζ) =


[cos(ζ) cos (SP(ζ))− sin(ζ) sin (SP(ζ)) SP

′(ζ)]Cχφ+ cos (SP(ζ)) SP
′(ζ)Sχφ

− sin(ζ)Cχφ

[cos(ζ) sin (SP(ζ)) + sin(ζ) cos (SP(ζ)) SP
′(ζ)]Cχφ+ sin (SP(ζ)) SP

′(ζ)Sχφ

 .
(2.53)

The equations for CB (ζ) and ∇CB (ζ) are given by replacing SP(ζ) and SP
′(ζ) with SN(ζ)

and SN
′(ζ) in Eqns 2.52 and 2.53. Contours C and D are both given by Eqn 2.37 with

ta
faEz(d) and

ta
faEy(d) set according to Eqn 2.49 and 2.50, respectively. The tangent vector
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equation for contours C and D is given by


− sin(ζ) sin (γ)Cχφ+ cos (γ)Sχφ

0

sin(ζ) cos (γ)Cχφ+ sin (γ)Sχφ

 , (2.54)

where γ stands for tafaEy(d), and ζ is set to 5◦ for ∇CC (γ) and to −130◦ for ∇CD (γ).

2.3.9.2 A Caveat

Contours A and B have an intersection near ζ = 0◦, even though the data set has a non-zero

width at this point. This violates the assumption that contours A and B give the outer

edges of the data set. For representative model parameters χ = 4◦ and φ = 0.4 meters, the

intersection of contours A and B is given by

CA(−0.5265◦) = CB(0.5328◦) =


0.0005

0.3990

−0.0281

 (2.55)

The point given by taP ◦
pa(d)

for tafaEz(d) = ta
faEy(d) = 0 is nearby this intersection and also in

the data set; its value is

taP ◦
pa(d)

=


0

0.3990

−0.0279

 . (2.56)

The data set is plotted for ζ from −0.6◦ to 0.6◦ in Figure 2.5. Points which bound the

portion of the data set not encompassed by contours A and B are highlighted, including

points near the two listed above. The area not bounded by the contours has a maximum

extent in the X direction of about 6.5mm and a maximum extent in the Z direction of about

0.4mm; there is no appreciable variation in the Y direction. Taking this area into account

would greatly complicate the analysis. However, it is so small that it will have minimal

e�ect on the determination of the region of unidenti�ability. On the balance of these two

considerations, it is neglected.
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Figure 2.5: Data set surface and contours A (black line) and B (gray line) for ζ
from −0.6◦ to 0.6◦. Data tips surround region of surface not bounded by contours A
and B. Points near intersection of contours A and B and near taP ◦

pa(d)
at zero FL/EX and

IN/EX also shown.

2.3.9.3 Finding Vcχφ and
ta(d)
ta(m)R

This section develops the procedure to �nd a value of Vcχφ which causes the positive feasible

limit circle to lie tangent to any of the contours outlining the data set, given a point on the

contour. This procedure is set forth using contour A, but it generalizes to all four contours.

This section also describes a method for �nding a de�nition of ta(d)ta(m)R which produces Vcχφ.

When the positive feasible limit circle is tangent to the contour A at some point CA (ζ),

there is a vector v corresponding to a value of tafaEy(m) in Eqn 2.45 with the properties

Vcχφ = CA (ζ) + v (2.57a)

‖v‖ = |Sχφ| (2.57b)

v ⊥ ∇CA (ζ) (2.57c)

v ⊥ Vcχφ. (2.57d)
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Figure 2.6: Diagram of positive feasible limit circle tangent to contour A.

This situation is shown graphically in Figure 2.6. Given a value of ζ, v may be found based

on its own properties as well as those of the contour and tangent vector. Once v is found,

Vcχφ follows from Eqn 2.57a.

Since CA (ζ) connects the origin of the data model's ta frame to a point on the surface

of a sphere centered around the same origin, and ∇CA (ζ) lies in the plane which is tangent

to that sphere at point CA (ζ),

CA (ζ) ⊥ ∇CA (ζ) . (2.58)

By de�ning

v0 =
|Sχφ| · CA (ζ)

‖CA (ζ)‖
, (2.59)

we arrive at a vector with the properties of Eqns 2.57b and 2.57c. Both properties are

retained if v0 is rotated about ∇CA (ζ) by an angle θ,

vrot(θ) = v0 cos(θ) +

(
∇CA (ζ)

‖∇CA (ζ)‖
× v0

)
sin(θ), (2.60)

which is made convenient by Rodrigues' formula. Solving the equation

‖CA (ζ) + vrot(θ)‖ = Cχφ (2.61)
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for θ will yield a candidate solution, vrot(θ), for the desired vector v. There are two solutions

to Eqn 2.61, both produce a vector Vcχφ (through Eqn 2.57a) which causes the positive

feasible limit circle to lie tangent to contour A. One of these solutions allows unreachable

points of the exploratory model to lie within the feasible region of the data set, while the

other does not. This second solution, which keeps Vcχφ bounded away from the data set, is

the desired solution. In the case of contour A, the desired v vector is found near θ = −90◦

for tafaEz(d) < 0 and near θ = 90◦ for tafaEz(d) > 0. For countour B, the opposite is true. For

contours C and D, the desired v vector is found near θ = −90◦.

Once v and consequently Vcχφ have been found by the procedure above, it is desirable

to �nd a de�nition of ta(d)ta(m)R which produces Vcχφ (See Eqn 2.46). Since ta(d)
ta(m)R is de�ned

via a Y-X-Z sequence (See Eqn 2.40), Vcχφ may be written

Vcχφ =


SzCxCχφ

CzCxCχφ

−SxCχφ

 , (2.62)

where Sz abbreviates sin
(
(d)
(m)Ez

)
, and so on. From the discussion surrounding Eqn 2.39,

the Cardan angle (d)
(m)Ey may vary freely without causing ta(d)

ta(m)R to exit the region of uniden-

ti�ability. The other two Cardan angles may be derived from the vector Vcχφ according

to
(d)
(m)Ez = atan2 (Vcχφ(x), Vcχφ(y))

Cz = cos
(
(d)
(m)Ez

)
Sz = sin

(
(d)
(m)Ez

)
(d)
(m)Ex =


atan2 (−Vcχφ(z), Vcχφ(y)/Cz) , if |Cz| > |Sz|

atan2 (−Vcχφ(z), Vcχφ(x)/Sz) , otherwise.

(2.63)

The de�nition of ta(d)ta(m)R which causes the negative feasible limit circle to lie tangent to the

feasible region of the data set may be found with only one adjustment to the entire procedure
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above: The cardan angles for ta(d)ta(m)R are derived using the equations

(d)
(m)Ez = atan2 (−Vcχφ(x),−Vcχφ(y))

Cz = cos
(
(d)
(m)Ez

)
Sz = sin

(
(d)
(m)Ez

)
(d)
(m)Ex =


atan2 (Vcχφ(z),−Vcχφ(y)/Cz) , if |Cz| > |Sz|

atan2 (Vcχφ(z),−Vcχφ(y)/Sz) , otherwise,

(2.64)

which treat all components of Vcχφ as if they have the opposite sign.

In either case, ta(d)ta(m)R is formed from (d)
(m)Ex and

(d)
(m)Ez according to Eqn 2.40, with (d)

(m)Ey

free to vary.

2.3.10 Exploring the Region of Unidenti�ability

Now that the limits of the region of unidenti�ability can be found, they may be used to

explore its full extent. Some de�nitions will make this easier. If ta(d)ta(m)R is de�ned such that

it causes the positive feasible limit circle of the exploratory model to lie tangent to contour

A at CA(ζ), the vector VPA(ζ) is given by the second column of ta(d)ta(m)R � a unit vector

pointing in the direction of Vcχφ. Similarly, VNB(ζ) is given as the second column of ta(d)ta(m)R

when that matrix causes the negative feasible limit circle to lie tangent to contour B at ζ.

Since Vcχφ was de�ned in the positive direction in Eqn 2.46, VNB(ζ) is a unit vector pointing

toward the center of the positive feasible limit circle. As before, ζ = ta
faEz(d).

VPA(ζ) and VNB(ζ) correspond to limiting cases for the de�nition of ta(d)ta(m)R within the

region of unidenti�ability. A larger portion of that region can be explored by interpolating

between these cases, the procedure for which follows next. For a given ζ, the angle between

VPA(ζ) and VNB(ζ) is given by

NB
PAA(ζ) = acos

(
VPA(ζ)T · VNB(ζ)

)
, (2.65)

while the unit vector

NB
PAK(ζ) =

VPA(ζ)× VNB(ζ)

‖VPA(ζ)× VNB(ζ)‖
(2.66)
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Figure 2.7: Diagram of interpolation between VPA and VNB. �c stands for feasible
limit circle.

is mutually orthogonal to VPA(ζ) and VNB(ζ). An intermediate vector VIN (ζ, θ) given by

the rotation of VPA(ζ) about NBPAK(ζ),

VIN (ζ, θ) = VPA(ζ) cos(θ) +
(
NB
PAK(ζ)× VPA(ζ)

)
sin(θ), (2.67)

over the interval

θ ∈ [0,NBPAA(ζ)] (2.68)

interpolates between VPA(ζ) and VNB(ζ). For each θ, it can be used to produce a ta(d)
ta(m)R

matrix which lies within the region of unidenti�ability. This is done by plugging VIN (ζ, θ)

into Eqn 2.63 in place of Vcχφ and using the resultant Cardan angles in Eqn 2.40.

A simple diagram of the procedure above is shown in Figure 2.7. The procedure works

for opposite contours on the edge of the feasible region of the data set: either contours A

and B or contours C and D. It may also be applied to the vector pairs VPB(ζ) and VNA(ζ).

For contours C and D, the rotation caused by γ = ta
faEy(d) has an opposite directional e�ect

for ζ > 0 compared with ζ < 0. Since ζ = 5◦ for contour C and −130◦ for contour D, it is

helpful to allow separate γ values for these two contours. Thus, VPC(γC) may be compared

with VND(γD), and VPD(γD) with VNC(γC). Consequently, the functions NDPC A(γC , γD) and

PD
NCA(γC , γD) take two arguments, but they are otherwise de�ned as in Eqn 2.65.
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Figure 2.8: NBPAA(ζ) for ζ ∈ [−130◦, 5◦].

2.4 Results

Applying some reasonable values to the quantities χ and φ, this section will provide numer-

ical results which quantify the extent of the region of unidenti�ability.

φ represents the length of the femur. Measurement of one of the author's femurs from

lateral condyle to greater trochanter yields a value of approximately 40cm. Expressed in

meters, this gives φ = 0.4. Recall that χ = fa
fiEx; it represents the angle between the knee

�exion axis and the vector pointing from the KJC to the HJC. These quantities are expected

to be close to perpendicular [20], resulting in the estimate χ = 0. This case has been covered

in the discussion following Eqn 2.37, and it isn't very interesting. We proceed with a nearby

but non-zero value χ = 4◦.

Figure 2.8 shows the value of NBPAA(ζ) for ζ = ta
faEz(d) varying from −130◦ to 5◦. NBPAA(ζ)

represents the amount of rotation permitted in ta(d)
ta(m)R between the positive feasible limit

circle lying tangent to contour A and the negative feasible limit circle lying tangent to

contour B. Figure 2.9 shows a scatter plot of the Cardan angles (d)
(m)Ex and (d)

(m)Ez as one

interpolates between these limits for ζ = −45◦. The angles (d)
(m)Ex ≈ 24◦ and (d)

(m)Ez ≈ −45◦

correspond to VPA(−45◦), while the angles (d)
(m)Ex ≈ 14◦ and (d)

(m)Ez ≈ 137◦ correspond to

VNB(−45◦); NBPAA(−45◦) ≈ 142◦.
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Figure 2.9: Cardan angles
(d)
(m)Ex and

(d)
(m)Ez which produce a

ta(d)
ta(m)R matrix within

the region of unidenti�ability. Found by interpolation between contours A and B at
ζ = −45◦.
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Figure 2.10: Cardan angles
(d)
(m)Ex and

(d)
(m)Ez which produce a

ta(d)
ta(m)R matrix within

the region of unidenti�ability. Found by interpolation between contours A and B at
multiple values of ζ.
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Figure 2.11: Angle between VPA(ζ) and VPB(ζ) (gray) as well as between CA(ζ) and
CB(ζ) (black).

Figure 2.10 shows a stack of scatter plots of (d)
(m)Ex and (d)

(m)Ez, derived by interpolation

as above, for ζ ranging from −120◦ to −10◦ at 10 degree intervals. The point of this �gure

is that ta(d)ta(m)R may vary quite broadly without a�ecting the ability of the exploratory model

to �t the data set. Interpolating between VNA(ζ) and VPB(ζ) would show even more of this

range, adding negative values for (d)
(m)Ex.

It is helpful to compare the angle between CA(ζ) and CB(ζ) with the angle between

VPA(ζ) and VPB(ζ), as Figure 2.11 does. The di�erence between the two for a given �exion

angle shows how far the exploratory model must be bounded away from the data set. This

value ranges between approximately 7 and 8 degrees. It is not always 8 degrees, as one

might expect from the value χ = 4◦, due to the curvature of CA(ζ) and CB(ζ).

The angle ND
PC A(γC , γD) gives a sense of how far ta(d)ta(m)R may vary between the positive

feasible limit circle lying tangent to contour C and the negative one lying tangent to contour

D. For γC = 2◦ and γD = −14◦, NDPC A is about 37◦. This value is expected, as ζ has a range

of 135◦, and 180◦ − 135◦ − 8◦ = 37◦. A plot of the Cardan angles found by interpolation

between VPC(2◦) and VND(−14◦) is shown in Figure 2.12. The values for γ were chosen so

that interpolation would cause (d)
(m)Ez to change much and (d)

(m)Ex to change little.
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(m)Ex and
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(m)Ez which produce a

ta(d)
ta(m)R matrix within

the region of unidenti�ability. Found by interpolation between contours C and D.

2.5 Discussion

The 5 DoF model has an intended application in the estimatiion of joint parameters at the

hip and knee as part of an optimization method. This section focuses on the consequences

of parameter unidenti�ability for this application of the 5 DoF model. Recall that an

optimization method estimates a subject's joint parameters by �nding the model parameters

which allow the kinematic model to best reproduce, or �t, the subject's movement data.

In the analysis above, the model parameters of the data model represent the true joint

parameters of the subject, while the data set takes the place of the subject's movement

data. The exploratory model stands in for the model that would be �tted to the subject's

movement data.

Much of the analysis above focused on the rotation matrix ta(d)
ta(m)R, which is de�ned as

ta(d)
ta(m)R =

(
tt
taR(d)

)−1 · tttaR(m). (2.69)

It represents the relative di�erence in orientation between the ta frames of the exploratory

and data models; by extension, it also represents the relative di�erences in the model param-

eters tttaE(m) and tt
taE(d). The point of the above analysis is to show that these parameters
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may vary widely between the exploratory and data models without a�ecting the ability of

the exploratory model to reproduce all of the poses in the data set. The implication for the

model's application is that the tt
taE parameters may vary widely relative to their true value

without a�ecting the criterion used by the optimization method to adjust the value of the

model parameters � the model's �t to the subject's data. As a result, the true value of

these parameters cannot be found by an optimization method which uses the 5 DoF model

as it is currently speci�ed.

The tttaE parameters de�ne the orientation of the tibial anatomical frame, ta. The orien-

tation of this frame has physiological relevance, as its Y axis is the axis of internal/external

rotation (IN/EX) for the knee. Improper orientation of this axis could result in kinematic

crosstalk for the joint angles at the knee. Also, the Z axis of the ta frame aligns with the

�exion axis of the knee when IN/EX is 0◦. Even if the Y axis is oriented properly, a poor

de�nition of the Z axis would cause an o�set to the knee IN/EX curve.

The 5 DoF model could potentially be used for global optimization, a technique which

imposes joint constraints on a set of movement data in an attempt to reduce the e�ects of

STA [12]. By the discussion surrounding Eqn 2.27, the de�nition of tttaR a�ects all of the

model's joint angles. Even though an inaccurate or even completely non-physiological value

for tttaR allows the model to �t a given data set, it will also create biases in fi
paEx,

fi
paEy,

fi
paEz,

ta
faEy, and

ta
faEz. Using the 5 DoF model for global optimization would result in erroneous

joint angle values unless an accurate de�nition of tttaR is available through other means.

Unlike the joint angles, there is nothing in the above analysis to suggest that the uniden-

ti�ability of tttaEx,
tt
taEy, and

tt
taEz causes bias to the other model parameters. If the other

model parameters are not biased by a de�nition of tttaR which allows the model to �t the

data set, then the 5 DoF model could still be used to estimate them. Further work is needed

to con�rm such a possibility.
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Chapter 3

A technique for estimating joint parameters at the hip and knee

without thigh marker data

Ben Tesch1,∗, Brian S.R. Armstrong1, Kristian M. O'Connor1
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3.1 Abstract

In this paper, a kinematic model of the hip and knee is �tted to motion data from the pelvis

and lower leg segments using a nonlinear optimization routine. This allows the parameters

of both joints to be estimated without reference to marker data from the thigh segment,

which is prone to a high degree of Soft Tissue Artifact (STA). Ten subjects perform �ve

trials of two movements which are designed to produce consistent joint parameter estimates.

Repeatability is reasonably good; the ten subject average of the �ve trial joint parameter

standard deviation is 3.52mm for the hip joint center location, 2.44mm for the femoral

length, and 1.67mm for the knee joint center location. The model may be �tted to any

movement produced by a subject once the subject's joint parameters have been estimated.

When �tted to a movement, the model provides an estimate of the pose of the femur which

may be used to observe STA at the thigh. This feature is demonstrated for a repeated

internal and external rotation of the hip, during which the knee is hyperextended, making

the lower leg segment a second observer thigh STA. Because the model �tting procedure is

able to compensate for unintentional knee �exion, its estimate of STA at the thigh improves

upon the estimate obtained directly from the lower leg segment. Limitations and potential

applications of the technique presented in this paper are discussed.
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3.2 Introduction

Properly de�ned Anatomical Frames (AFs) are essential for obtaining valid and repeatable

kinematics and kinetics from motion capture data. AFs are commonly de�ned by the manual

palpitation of Anatomical Landmarks (ALs), but the variability of this process can lead to

poorly reconstructed kinematics [4]. Functional methods can improve upon the reliability

of ALs by estimating certain joint parameters, such as the Hip Joint Center (HJC) or Knee

Flexion Axis (KFA), by a mathematical procedure performed on a subject's movement data

[17]. These parameters are then used in the de�nition of AFs. Functional methods are

operator independent, but they require an additional movement, such as knee �exion, to be

performed and may be biased by the e�ects of Soft Tissue Artifact (STA) [15]. Optimization

methods also estimate joint parameters from movement data, but they do so by ��tting� a

kinematic model to the data. This involves using a nonlinear optimization routine to �nd the

values for the model's parameters which allow the model to best reproduce the movements

in the data [14].

Optimization methods have an interesting property: They may �t a kinematic model

spanning multiple joints to motion data from only the most proximal and distal segments

in the model. For example, van den Bogert et al. [21] were able to �t an ankle model which

represents the talocrural and subtalar joints as revolutes to motion data from markers on

the lower leg and the shoe � the talus itself was not tracked. This work applies the same

principle to the lower limb by �tting a kinematic model of the hip and knee to motion data

from the pelvis and lower leg. This has the bene�t of removing dependence on data from the

thigh, which is generally more a�ected by STA than lower leg data [13]. The hip is modelled

as a spherical joint, and the knee as a 2 Degree of Freedom (DoF) compound hinge; the

work of Hollister et al. [8] suggests that physiological knee motion is well represented by

such a joint.

Pavan et al. [12] have previously used a combined hip and knee model to remove de-

pendence on thigh marker data, and they provide the insight that this kind of model may

be used to observe STA at the thigh. Their knee model consists of a four bar linkage with

varying ligament lengths, and there was some di�culty in adapting it to individual subjects.
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The simpler knee model employed in this work, �tted to subject data with the optimization

routine of [18], yields improvements in this area.

3.3 Materials and methods

3.3.1 Notation

Homogeneous Transforms (HTs) are convenient tools for representing the relative pose of

coordinate frames. In this work, they are used to de�ne the kinematic model and to represent

motion capture data, and their notation is covered at the outset.

Given a point q and three coordinate frames a, b, and c, the 3-vector

aPq =


x

y

z

 (3.1)

represents the point q in frame a coordinates. The 4× 4 matrix b
aT transforms aPq into a b

coordinate representation, bPq
1

 = b
aT ·

aPq
1

 , (3.2)

provided a fourth element of value 1 is appended to the 3-vectors. For convenience, this is

written

bPq = b
aT · aPq, (3.3)

and the addition of the fourth element is implied. b
aT is a Homogeneous Transform (HT)

with the following structure,

b
aT =

 b
aR

bP◦
a

0 0 0 1

 , (3.4)

where baR is a 3× 3 orthogonal rotation matrix which de�nes the relative orientation of the

a and b frames; the relative position of these frames is given by bP◦
a
, which represents the
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origin of frame a (written
◦
a) in frame b coordinates. HTs may be chained together,

c
aT = c

bT · baT, (3.5)

and inverted,

a
bT = b

aT
−1. (3.6)

A rotation matrix has nine elements but only 3 DoF; its elements are not independent

from each other and are unsuitable as model parameters. Instead, the rotation matrices of

the kinematic model are composed from a sequence of three elemental rotations about a

de�ned set of axes [20]. The quantities which give the angular values of these rotations are

called Cardan angles. The operator R() is de�ned below; it turns a Cardan angle into its

associated elemental rotation,

R (Ex) =


1 0 0

0 Cx Sx

0 −Sx Cx



R (Ey) =


Cy 0 −Sy

0 1 0

Sy 0 Cy



R (Ez) =


Cz Sz 0

−Sz Cz 0

0 0 1

 ,

(3.7)

where the Cardan angle Ex corresponds to an elementary rotation about the X axis, Cy

stands for cos(Ey), and Sz stands for sin(Ez). The rotation matrix b
aR may be composed

from three Cardan angles,

b
aR = R

(
b
aEy

)
· R
(
b
aEx

)
· R
(
b
aEz

)
, (3.8)

where the Z-X-Y sequence has been used. This corresponds to a rotation of Ez radians
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about the Z axis of frame a, followed by a rotation of Ex radians about an axis mutually

perpendicular to the Z axis of frame a and the Y axis of frame b, followed by a rotation of

Ey radians about the Y axis of frame b. When de�ned in this way,

b
aR =


CzCy − SzSySx SzCy + CzSySx −SyCx

−SzCx CzCx Sx

CzSy + SzCySx SzSy − CzCySx CyCx

 , (3.9)

where Cz = cos(baEz), Sy = sin(baEy), and so on; this is equivalent to the JCS 2 sequence

in [3] and is used to encode joint angles. The matrix b
aR may be decomposed into Z-X-Y

sequence Cardan angles using the relations

b
aEx = asin

(
b
aR(2, 3)

)
b
aEy = atan2

(
−baR(1, 3), baR(3, 3)

)
b
aEz = atan2

(
−baR(2, 1), baR(2, 2)

)
,

(3.10)

where atan2(·, ·) is the two argument arctangent function.

The rotation and translation parts of a HT each have 3 DoF, and the 6-vector given by

b
aG =

 baE
bP◦

a

 =



b
aEx

b
aEy

b
aEz

bP◦
a
(x)

bP◦
a
(y)

bP◦
a
(z)


(3.11)

and the HT b
aT both fully de�ne the relative pose of the a and b frames.

3.3.2 Motion Capture Setup

Measurements are taken with a Moiré Phase Tracking (MPT) system by Metria Innovation

(Milwaukee, WI). The MPT system is composed of a single camera with integrated light
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source, a set of markers, and a computer. Engineered moiré patterns produced by each

marker allow the system to measure the marker's orientation relative to the plane of the

camera's sensor. This information, combined with measurements in the plane of the camera's

sensor, results in a 6 DoF measurement of the marker's pose and the ability to specify a

complete technical frame for each marker. This property is sketched in Figure 3.1. The MPT

system has been previously validated against a standard stereophotogrammetry system in

the context of human movement analysis by [22]. In this study, measurements are collected

at a capture rate of 60 frames per second.

Figure 3.1: Each marker is tracked with 6 DoF measurement and resolves to a
technical frame.

Due to the single-camera nature of the MPT system, marker placement follows a di�erent

strategy than used in a standard stereophotogrammetry setup. In particular, markers should

directly face the camera when the subject is at stance; if a marker tilts too far away from the

camera's line of sight during movement, its pose will not be recorded. Markers are attached

with hook and loop fastener to neoprene bands worn by subject. The bands are wrapped

around the pelvis, thigh, and lower leg; markers are placed on these bands over the iliac

crest, at mid-thigh, and over the gastrocnemius. During the collection of pilot data, visual

observations indicated that the iliac crest marker was perturbed by the gluteus medius and

tensor fasciae latae during the functional movements (For which, see Section 3.3.3). To

mitigate this phenomenon, another marker is placed over the sacrum. In order to allow this

marker to face the camera, a thick triangular spacer is held over the subject's sacrum by

the neoprene band on the pelvis. The anterior face of this spacer is padded, while small but

strong magnets are embedded in its posterior face. Complementary magnets are embedded

in the base of a T-shaped bracket which holds a marker over the spacer on the outside of

the neoprene band. Similarly, a padded block is held over the medial surface of the tibia
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by the neoprene band on the lower leg. A short arm attached to the proximal surface of

this block holds a marker anterior to the subject's leg so that it can be seen by the camera;

this marker should be less a�ected by STA than the marker over the gastrocnemius. Marker

placement is shown in Figure 3.2.

Figure 3.2: Markers placed on subject with the aid of neoprene bands, padded
blocks, and hook and loop fasteners.

For each frame of motion capture data, the MPT system records the pose of each marker

in the coordinate frame of the camera with the following HTs,

cam
pt T i,

cam
ft T i,

cam
tt T i, (3.12)

where the bar over each HT marks it as a measured quantity. pt, ft, and tt are abbreviations

for the pelvic, femoral, and tibial technical frames, respectively. These coordinate frames

correspond in pose to the markers on the pelvis, thigh, and lower leg. cam
ft T will �nd

application in investigating thigh STA. The data set to which the model is �tted contains
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the relative pose of the pt and tt frames

tt
ptT i = cam

tt T
−1
i · campt T i, (3.13)

for i = 1, 2, . . . , ndf , where i is the data frame index, and ndf is the total number of data

frames.

Several Anatomical Landmarks are collected. At the pelvis are the left and right anterior

superior iliac spine landmakrs, as well as the left and right posterior superior iliac spine

landmarks. These are used to orient the pelvic anatomical frame. The medial and lateral

femoral condyle landmarks are collected in the coordinates of the tt frame,

ttPMFC ,
ttPLFC , (3.14)

while the subject stands with the knee in full extension. The medial and lateral malleoli are

also collected; they are given by the quantities

ttPMMA and
ttPLMA. (3.15)

Data was collected on ten subjects, all of whom gave informed consent. This study also

received approval from the IRB of the University of Wisconsin�Milwaukee.

3.3.3 Functional Movements

Each subject performs two functional movements which are concatenated to form the data

set used for model �tting. The �rst of these is the Star Arc movement, which is designed

to locate the HJC [1]. The �star� portion of the movement has seven lobes; for each lobe,

the hip is exercised so that the lower limb moves away from and returns to the anatomical

position in a particular plane. One of the planes is produced by pure �exion of the hip, a

second by abduction, and a third by extension. The other four planes are evenly spaced

between these three. The �arc� portion of the movement starts at the anatomical position,

followed by hip �exion, circumduction, and hip extension to end at the anatomical position;

this causes the foot to trace out a D shape over the �oor. The knee is held in an extended
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position throughout both parts, which total 800 frames of data. The second functional

movement is a cyclical repetition of combined hip and knee �exion followed by combined

hip and knee extension. Its execution resembles operating an imaginary bicycle pedal with

one leg while standing on the other. This movement is collected in 700 frames of data; its

purpose is to produce a reasonable range of knee �exion while simultaneously exercising the

hip. In pilot data, it did a better job of constraining the estimated femur length than knee

�exion with a stationary hip joint. Both functional movements are repeated �ve times per

subject to gauge the repeatability of the estimated joint parameters.

3.3.4 Model De�nition

The kinematic model of the hip and knee is de�ned mathematically by a series of Ho-

mogeneous Transforms (HTs) between named coordinate frames. These HTs, in turn, are

constructed from three kinds of scalar quantities: model parameters, constants, and joint

angles. The joint angles are Cardan angles which encode the degrees of freedom of the

model's spherical and compound hinge joints; they may take on a di�erent value in each

frame of motion capture data. The model parameters hold the same value throughout all

data frames and represent quantities which are considered not to change during movement,

such as the length of the femur or the position of the Hip Joint Center (HJC) in the pelvis.

Constants are �xed values which are not adjusted by the optimization routine, unlike the

model parameters and joint angles.

The model's reference frames are shown in Figure 3.3. When the subject is standing in

the anatomical position, the Y axis of each reference frame points in the superior direction,

the Z axis points to the right, and the X axis points in the anterior direction. For the

atatomical frames of the knee joint (fa and ta in the �gure), this is only approximate, as

their Z axes are aligned to the �exion axis of the knee.

The pelvic and tibial technical frames, abbreviated pt and tt, correspond in pose to the

technical frames of the pelvic and lower leg markers. The orientation of the pelvic anatomical

frame (pa) is parameterized by the three quantities in pa
ptE. These are constants, set from

the Anatomical Landmarks (ALs) at the pelvis according to [23]. The origin of the pa frame
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Figure 3.3: Reference frames and links of kinematic model in exploded view.

(denoted
◦
pa) is placed at the HJC; it is de�ned by the three model parameters in paP ◦

pt
.

The femoral intermediate frame, �, has its origin at the Knee Joint Center (KJC). The

HJC is constrained to lie along the Y axis of the � frame; this is accomplished by making

fiP ◦
pa

(y) a model parameter and setting fiP ◦
pa

(x) and fiP ◦
pa

(z) to zero. The rotation fi
paR

traverses the spherical joint and is composed from the Cardan angles in fi
paE according

to the Z-X-Y sequence (See Eqn 3.8), as recommended by [23]. fi
paEz corresponds to hip

�exion/extension (FL/EX), fipaEx corresponds to adduction/abduction (AD/AB), and fi
paEy

corresponds to internal/external rotation (IN/EX).
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The Z axis of the femoral anatomical frame (fa) corresponds to the Knee Flexion Axis

(KFA). Since the Y axis of � points from the KJC to the HJC, fafiR is de�ned as an

elementary rotation about the X axis of �,

fa
fiR = R(fafiEx), (3.16)

in order to allow the KFA to have a non-orthogonal orientation relative to Y axis of �. This

quantity is expected to have a small value [16] and will provide an indication of the model's

physiological consistency. The translation faP ◦
fi

is set to the zero vector, 0, placing the

origin of the fa frame at the KJC.

The Y axis of the tibial anatomical frame (ta) corresponds to the Knee axis of Longi-

tudinal Rotation (KLR). The KLR and KFA are the body �xed axes recommended for the

knee joint coordinate system in [6]. Creating ta
faR from the Cardan angles in ta

faE by the

Z-X-Y sequence (See Eqn 3.8) causes ta
faEz to correspond to FL/EX occurring about the

KFA and ta
faEy to correspond to IN/EX occurring about the KLR. These two pair variables

constitute the 2 DoF of the compound hinge knee joint. tafaEx is set to 0, making the KFA

and KLR perpendicular to each other. Furthermore, taP ◦
fa

is set to 0, placing the origin of

ta at the KJC and causing the KLR and KFA to intersect.

The origin of the ta frame, coincident with the KJC, is given in tt coordinates by the

three model parameters in ttP ◦
ta
. The orientation of the ta frame is de�ned by the three

quantities in tt
taE. Due to mathematical properties of the model, which are presented in [19],

these quantities may take on a wide range of values without a�ecting the �t of the kinematic

model to a subject's movement data. Consequently, they cannot be reasonably estimated

using an optimization routine and are de�ned by the following procedure.

tt
taR is constructed according to the Y-X-Z sequence,

tt
taR = R

(
tt
taEz

)
· R
(
tt
taEx

)
· R
(
tt
taEy

)
, (3.17)
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and takes on the form

tt
taR =


CzCy + SzSxSy SzCx −CzSy + SzSxCy

−SzCy + CzSxSy CzCx SzSy + CzSxCy

CxSy −Sx CxCy

 , (3.18)

where Cz = cos
(
tt
taEz

)
, Sx = cos

(
tt
taEx

)
, and so on. The second column of this matrix,

which gives the Y axis of the ta frame in tt coordinates (call it ttV̂KLR), only depends on

two Cardan angles: tttaEx and tt
taEz.

ttV̂KLR is de�ned by the unit vector pointing from the

Ankle Joint Center (AJC) to the KJC,

ttV̂KLR =

ttP ◦
ta
− ttPAJC

‖ttP ◦
ta
− ttPAJC‖

, (3.19)

where the AJC is given by the malleolar midpoint,

ttPAJC =
1

2

(
ttPMMA + ttPLMA

)
, (3.20)

and the KJC is given by the model parameters in ttP ◦
ta
. tt
taEx and tt

taEz are derived from

ttV̂KLR with the relations

tt
taEx = asin

(
−ttV̂KLR(z)

)
tt
taEz = atan2

(
ttV̂KLR(x), ttV̂KLR(y)

)
,

(3.21)

and de�nition of tttaEy is covered in Section 3.3.5.

For each frame of motion capture data, the model equation,

tt
ptT̂i = tt

taT · tafaTi ·
fa
fi T ·

fi
paTi ·

pa
pt T , (3.22)

produces the model's estimate of the relative pose of the pt and tt frames. The hat dis-

tinguishes this estimated quantity from the analogous measured quantity tt
ptT i. Notice that

only the transforms formed from pair variables have a subscript data frame index, as the

other transforms do not vary with movement.
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3.3.5 Optimization Routine

The two-level optimization method of [18] is used to �nd the model parameter and joint

angle values which best �t the subject's data. The inner level of this method operates on

each data frame individually and �nds the joint angle values which minimize that frame's

residual,

SSQi = ‖ttptG̃i‖2, (3.23)

which is the sum of squares of that frame's residual vector,

tt
ptG̃i = tt

ptĜi − tt
ptGi. (3.24)

Here, the relative pose of the pt and tt frames given by the model (ttptT̂i) and the data (ttptT i),

have been decomposed into the 6-vectors ttptĜi and
tt
ptGi � See Eqn 3.11. The outer level of

the optimization routine searches for the model parameter values which minimize the overall

residual,

SSQ =

ndf∑
i

SSQi, (3.25)

which is the sum of squares of the overall residual vector,



tt
ptG̃1

tt
ptG̃2

...

tt
ptG̃ndf


. (3.26)

The model parameter values resulting from this search are taken as estimates of the subject's

joint parameters.

As knee �exion, modelled by the joint angle ta
faEz, approaches 0◦, hip and knee IN/EX,

modelled by fi
paEy and

ta
faEy, have an increasingly similar e�ect on tt

ptT̂ . To avoid unidenti�-

ability in these parameters, tafaEy is set to 0 when �exion is less than 15◦, which occurs when

ta
faEz > −15◦. This constraint does not seem unreasonable for unloaded, open chain move-

ments, as this sort of rotation is more likely to come from the hip at low knee �exion. When
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this constraint is active, it forces the model's knee joint to act as a plain revolute, which

provides enough constraint on the value of tttaEy to enable its estimation by the optimization

routine. tttaEy is included as a model parameter.

Since the primary movement of the knee is �exion, the position of the KJC along the

KFA is poorly constrained by movement data. To compensate for this, a penalty function,

pen, is appended to the overall residual vector. It is given by the equation

pen = taPMFC(z) + taPLFC(z), (3.27)

which constrains the KJC to lie in between the projections of the medial and lateral femoral

epicondyles onto the Z axis of the ta frame. The MFC and LFC ALs are collected when the

subject is standing with the leg extended, in which condition knee IN/EX is set to zero and

the Z axis of ta aligns with the Z axis of fa � the KFA. A similar constraint is found in [9].

The penalty function acts as a constraint by raising the overall residual when this condition

is not met, and it is given a weight, or multiplying factor, of 50 relative to the other residual

components.

Initial estimates of the model parameters are derived from the anatomical landmarks,

with the initial HJC location given by the regression equations of [7]. Initial joint angle

estimates are derived from the subject's data in the usual way, with the pa and ta frames

de�ned by the initial model parameter estimates and a thigh anatomical frame de�ned in

ft coordinates according to [2]. Knee IN/EX (tafaEy) and AD/AB (tafaEx) are initially set to

zero in all frames.

3.4 Results and Discussion

3.4.1 Repeatibility of Joint Parameter Estimates

Each subject performs �ve trials, where a trial is the execution of both functional movements

involved in model �tting. The optimization routine is run on every trial, producing �ve

estimates of each joint parameter per subject. The standard deviations of these estimates

are shown in Table 3.1 for each subject.
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Subject HJC FMR fa
fi Ex KJC tt

taEy

ID (cm) (kg) (mm) (mm) (◦) (mm) (◦)

S1 165 64 (3.51) (3.72) -4.87 (0.41) (3.18) (1.36)
S2 178 82 (4.42) (3.62) -1.22 (0.20) (2.49) (0.88)
S2b � � (1.92) (1.79) -2.43 (0.14) (1.29) (1.33)
S3 168 64 (2.45) (0.91) -3.18 (0.38) (1.64) (0.41)
S4 163 57 (2.57) (0.90) -0.30 (0.20) (1.43) (1.31)
S5 175 79 (1.97) (1.50) -1.95 (0.17) (0.76) (0.53)
S6 180 84 (3.28) (2.76) 0.25 (0.22) (1.14) (0.59)
S7 178 68 (3.51) (3.42) -3.20 (0.11) (0.71) (0.49)
S8 180 77 (4.33) (3.04) -1.27 (0.50) (0.63) (1.90)
S9 191 95 (3.95) (2.45) -1.36 (0.36) (2.51) (1.44)
S10 198 114 (6.81) (2.73) -6.96 (0.57) (2.55) (1.11)

Table 3.1: Subject information, mean value of fa
fiEx, and standard deviation in

() for all model parameters. FMR is femur length � fiP ◦
pa

(y). KJC (ttP ◦
ta
) and HJC

(paP ◦
pt
) standard deviations are 3-D.

Subjects 1 and 4 are female; the rest are male. Two collections were performed on

subject 2, due to a concern about data quality in the �rst collection. The second collection

yielded more consistent results. HJC location has a particularly high variance for subject

10, probably due to the high degree of soft tissue coverage at the pelvis for this subject.

Further, the iliac crest marker was used for subject 10, as the sacral marker seemed to be

perturbed by the gluteus maximus during movement. The iliac crest marker was also used

for subject 9, as it appeared to track the pelvis well, owing to this subject's stature and low

soft tissue coverage under the marker. The sacral marker was used for all other subjects.

The block-mounted lower leg marker was used for every subject.

The joint parameter estimates are reasonably consistent overall. The HJC shows the

largest variation among the parameters, and this is decomposed into directional components

in Figure 3.4. Variation is highest in the Superior/Inferior (S/I) direction. The single outlier

in the R/L direction comes from subject 10.

fa
fiEx quanti�es the degree to which the optimal KFA deviates from orthogonality with

respect to the vector pointing from the KJC to the HJC; it is expected to have a small value

[16]. It is not surprising that this quantity has the highest magnitude for subject 10. A large

magnitude is also recorded for this quantity in the case of Subject 1, along with the highest

variation in femur length and KJC location and the highest overall residual. These factors
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Figure 3.4: Box plot of HJC standard deviation in the Anterior/Posterior, Supe-
rior/Inferior, and Right/Left directions.

Subject 50th 75th 90th 95th 99th RMS

S6 (mm) 0.68 1.23 2.24 3.02 4.64 1.42
(◦) 0.0067 0.015 0.029 0.041 0.064 0.019

S4 (mm) 1.31 2.52 4.00 4.91 7.13 2.37
(◦) 0.013 0.029 0.051 0.065 0.098 0.03

S1 (mm) 1.83 3.32 5.26 6.73 12.69 3.48
(◦) 0.016 0.037 0.070 0.090 0.18 0.045

Table 3.2: Percentiles and RMS of position and orientation residuals for three
subjects. S1 and S6 have the highest and lowest overall residuals; S4 is close to the average.

indicate poor data quality, most likely due to STA at the pelvis. The other subjects have

reasonable values for fafiEx and lower residuals than subjects 1 and 10. Percentiles and RMS

for the position and orientation residuals of three subjects are shown in Table 3.2. Subject

1 represents a high residual, subject 6 a low residual, and subject 4 an average residual. In

general, the model �ts the data well.

3.4.2 Investigating Thigh STA

The functional movements of Section 3.3.3 are designed to exercise the hip and knee in

such a way that the model parameters are well constrained by the movement data; not

all movements are suitable for this task. That said, once the model parameters have been

estimated for a given subject, the model may be �tted to any movement the subject performs

if only the joint angles are adjusted in the �tting procedure. Conceptually, this is a form
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of global optimization [10]; it is carried out by running the inner loop of the optimization

routine on the new target movement. Once �tted to a given movement, the fa and � frames

of the model serve as observers of thigh STA through the transform

fi
ftT̂i = fi

paTi ·
pa
pt T · ptcamT i · camft T i (3.28)

or

fa
ft T̂i = fa

fi T ·
fi
ftT̂i. (3.29)

In order to test this application of the model, an additional movement is performed

consisting of repeated internal and external rotation of the hip with the knee hyper-extended.

This movement demonstrates a particular form of thigh STA: The thigh marker is known to

follow the rotation of the femur only poorly [5]. Further, because the knee is hyper-extended,

thigh STA may also be observed directly from the lower leg segment through the transform

ta
ftTi = ta

tt T · ttcamT i · camft T i, (3.30)

providing a basis of comparison for the model estimate of thigh STA.

If fiftT̂i is decomposed into fi
ftĜi using the Z-X-Y Cardan sequence, the rotation fi

ftÊy will

occur about the Y axis of the � frame, which points from the KJC to the HJC. This quantity

is ideal for observing the anticipated mechanism of thigh STA; it is plotted in Figure 3.5

alongside fi
paEy (hip IN/EX) for the hip rotation movement performed by Subject 3.

The thigh marker fails to follow the rotation of the femur by a surprising amount, and

this phenomenon is correlated to hip IN/EX, as expected. Surprisingly, the correlation

coe�cient (r = 0.997) is quite high. When observed without model �tting through ta
ftEy,

the pattern is almost identical and shows a similar correlation to hip IN/EX (r = 0.980).

The Cardan sequence which creates ta
ftEy helps compensate for some of the involuntary

knee �exion that would otherwise muddle the observation obtained directly from the data.

No such compensation is present in the translation component taP ◦
ft

(x), which, like its

counterpart in the model, fiP̂ ◦
ft

(x), is also a�ected by the poor tracking of the thigh marker.

Figures 3.6 and 3.7 show plots of these quantities alongside hip IN/EX. The correlation
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Figure 3.5: Plot of fiftÊy (◦) (black dashes) and fi
paEy (◦) (gray line) vs. data frame

index during hip rotation.

is evident in both �gures, but it is cleanest in Figure 3.7, as the model �tting procedure

compensates for unintentional knee �exion.
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Figure 3.6: Plot of taP ◦
ft

(x) (mm) (black dashes) and fi
paEx(◦) (gray line) vs. data

frame index during hip rotation. r = −0.856.

3.5 Limitations and Applications

A major weakness of functional and optimization methods is their susceptibility to bias

when STA is present. This is the motivation for removing dependence on thigh marker data
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Figure 3.7: Plot of fiP̂ ◦
ft

(x) (mm) (black dashes) and fi
paEx(◦) (gray line) vs. data

frame index during hip rotation. r = −0.996.

through model �tting. That said, pelvic STA is still a concern and is thought to be the

main source of measurement error a�ecting the optimization method presented here. The

mounting of the pelvic marker over the sacrum is an attempt to minimize STA due to muscle

�ring, but skin sliding is still possible, especially if the neoprene band is perturbed during

the functional movements. Other mounting strategies for the pelvic marker may help to

reduce potential sources of error.

Error may also arise from incomplete correspondence of the kinematic model to the true

motion of the human hip and knee. The knee model of this work is based on that of Hollister

et al. [8], who found knee motion to be well represented by a compound hinge knee joint

allowing FL/EX and IN/EX. Their model has two properties lacking in this work's model:

The Knee axis of Longitudinal Rotation (KLR) is placed anterior to the Knee Flexion Axis

(KFA) and allowed to take a non-orthogonal orientation with repsect to the KFA. A separate

kinematic model was created with two additional parameters enabling such placement of the

KLR, but the estimation of these parameters from motion data resulted in inconsistent and

non-physiological results, as well as poor conditioning of the optimization routine. Forcing

the KLR and KFA to be perpendicular is not too large of a simpli�cation; Hollister, et al.

measured the angle between these axes to vary from 87◦ to 90◦ across 6 specimens, with an

average of 88◦. The e�ect of removing the anterior placement of the KLR is unknown.
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When the pair variable ta
faEy is unconstrained, the model parameters which de�ne the

orientation of the ta frame (tttaE) may take on many di�erent values without a�ecting the

�t of the model to the data set [19]. This phenomenon has two related consequences. First,

di�erent orientations of the ta frame will produce di�erent joint angle pro�les for the same

data set, and this also a�ects the pose of the fa frame. Second, the parameters which orient

the ta frame cannot be estimated through optimization. As a result, non-physiological joint

angle values and inaccurate fa frame poses cannot be ruled out. This limits the general

applicability of the kinematic model to global optimization and thigh STA investigation.

When knee �exion is below 15◦, tafaEy is set to 0, forcing the knee model to act as a plain

revolute joint (See Section 3.3.5). In this condition, the caveats of the previous paragraph

do not apply. The model seems useful for investigating thigh STA in movements with low

knee �exion, such as the one in Section 3.4.2. This kind of movement plays an important

role in the dynamic calibration method of [11]. In this method, the subject is asked to

mimic the hip motion which occurs during walking while keeping the knee hyperextended;

this is called the Artefact Assessment Movement (AAM). During the AAM, thigh STA is

measured in a coordinate frame embedded in the lower leg, and a table is created which

indexes corrections to thigh STA by the joint angles at the hip. When the subject performs

a gait trial, the hip joint angles are measured and the corrections to thigh STA are found

in the table and applied. The results look promising. The technique presented this work

could potentially bene�t the measurement of thigh STA during the AAM of the dynamic

calibration method by compensating for involuntary movements of the knee.
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4.1 Abstract

This paper presents an optimization method which may be used to estimate the parame-

ters of anatomical joints by �tting a kinematic model to movement data. It departs from

the two-level optimization method of Sommer and Miller by estimating all of the model's

parameter and joint angle values with a single-level nonlinear optimization routine. This

allows the one-level method to calculate parameter estimates showing good agreement with

those of the two-level method at signi�cantly reduced computational cost; a speedup of

about 30× has been observed. Details of both methods are presented, along with numerical

results from a motion capture study.

4.2 Introduction

This paper presents a modi�cation to the two-level optimization method of Sommer and

Miller [6]. Optimization methods form a category of joint parameter estimation techniques

which operate by �tting a kinematic model to movement data. In this process, the parame-

ters and joint angles of a kinematic model are adjusted by a nonlinear optimization routine

to �nd the values which allow the model to best reproduce, or �t, a subject's movement

data [4]. These methods require that the relative pose of the most proximal and distal body
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segments included in the model is measured with 6 Degrees of Freedom (DoF), and that the

model has 5 or fewer DoF; the model may span multiple joints. Taking advantage of these

properties, the authors of this work have �tted a kinematic model containing a spherical hip

joint and a 2 DoF compound hinge knee joint to movement data from the pelvis and lower

leg segments [7]. This allows estimation of the joint parameters of the hip and knee without

recourse to thigh segment data, which is strongly a�ected by soft tissue artifact [3]. In the

context of �tting that model to movement data, a modi�cation to the two-level optimization

method was developed; it is called the one-level optimization method. Both the one and

two level methods are elucidated and compared to each other in this work, with details and

numerical results coming from the combined hip and knee model.

4.3 Methods

The kinematic model is de�ned by three kinds of scalar quantities: model parameters, joint

angles (or pair variables), and constants. Constants are �xed values set a priori and not

adjusted during optimization. Model parameters are adjusted by the optimization routine

but retain the same value in every frame of movement data. Joint angles are also adjusted

and may take on a di�erent value for each frame of movement data. A frame of movement

data, for our purposes here, consists of a single measurement of the relative pose of the

segments under study at a discrete instant in time; it is given by the 6-vector

yf =



yf,1

yf,2

yf,3

yf,4

yf,5

yf,6


=



tt
ptEx

tt
ptEy

tt
ptEz

ttP ◦
pt

(x)

ttP ◦
pt

(y)

ttP ◦
pt

(z)


. (4.1)

Here, y is the data vector, and f is the data frame index; f = 1, 2, . . . , ndf , where ndf is

the number of data frames. The labels tt and pt correspond to the tibial technical frame

and pelvic technical frame, respectively; these are coordinate frames which give the pose of
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their respective segments as measured by the motion capture system during data collection.

tt
ptEx, tt

ptEy, and tt
ptEz are Cardan angles [8] which encode the relative orientation of the pt

and tt frames. ttP ◦
pt

is a three element translation vector which gives the origin of the pt

frame in the coordinates of the tt frame; its X, Y, and Z components appear in equation

(4.1).

The model parameters and constants are placed in the vectors p and q, respectively.

These values are a mix of Cardan angles and translation vector components which de�ne

properties not expected to change during movement, such as the length of the femur, or the

orientation of the pelvic bone in the pt frame. The joint angles are all Cardan angles; they

parameterize the degrees of freedom of the model's joints. They are placed in the vector a,

which is indexed similarly to y, except it has 5 joint angles per data frame � three for the

hip and two for the knee. The model function,

ŷf = m(q,p,af ), (4.2)

yields a 6-vector which gives the relative pose of the model's pt and tt frames as de�ned by

the model parameters, the constants, and the joint angles of data frame f. Both optimization

routines adjust a and p to minimize the sum of squares of the residual vector,

ỹ = ŷ − y, (4.3)

where

y =



y1

y2
...

yndf


, (4.4)

and a similar de�nition applies to ỹ, ŷ, and a.
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4.3.1 Two-Level Optimization Method

The outer level of the two-level optimization method uses a Levenberg�Marquardt (L�M)

algorithm with update step

min
s

∥∥∥∥∥∥∥
ỹ•
0

+

 J2o

√
λI

 s
∥∥∥∥∥∥∥
2

{
p

}
k+1

= s+

{
p

}
k

,

(4.5)

where where J2o is the Jacobian, λ is the L�M damping paramter, I is the identity matrix,

s is calculated using the QR factorization, and k is an iteration index. For this particular

form of update step, see [5, p. 624]. The residual vector is given as

ỹ• = ŷ• − y, (4.6)

where the superscript bullet on ŷ• indicates that it is calculated by the inner level of the

two-level optimization method. J2o is given by

J2o =


∂ŷ•1,1
∂p1

· · · ∂ŷ•1,1
∂p8

...
...

...
∂ŷ•ndf ,6

∂p1
· · ·

∂ŷ•ndf ,6

∂p8

 ; (4.7)

it is a (6 · ndf ) × 8 matrix. Derivatives of ŷ• and derivatives of the residual vector are

equivalent, since y is constant � See equation (4.6).

The inner level of the two-level method is used to calculate ŷ•. It operates one data

frame at a time, solving for the joint angles which minimize the framewise residual,

‖ỹf‖2, (4.8)
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by an L�M routine with update step

min
s

∥∥∥∥∥∥∥
ỹf
0

+

 J2i

√
λI

 s
∥∥∥∥∥∥∥
2

{
af

}
k+1

= s+

{
af

}
k

,

(4.9)

where J2i, a 6× 5 matrix, is given by

J2i =


∂ŷf,1
∂af,1

· · · ∂ŷf,1
∂af,5

...
. . .

...

∂ŷf,6
∂af,1

· · · ∂ŷf,6
∂af,5

 . (4.10)

Once the inner level converges to the optimal joint angle values, a•f , the equation

ŷ•f = m(q,p,a•f ) (4.11)

yields ŷ•f . Each iteration of the inner level requires the calculation of J2i, where analytical

derivatives are assumed, the solution of an 11× 5 system of linear equations, and one each

of a model function evaluation and 6-vector subtraction to calculate the updated value of

ỹf . Since af serves as the initial estimate for the joint angles, it makes sense to perform the

update af = a•f once a solution has been reached, improving the initial joint angle estimate

for the next evaluation of ŷ•f .

Approximating the derivatives of J2o with the centered �nite di�erence formula requires

16·ndf evaluations of ŷ•f as well as 8·ndf subtractions and scalar multiplications of a 6-vector.

As premature termination of the inner loop would cause numerical errors in the calculation

of J2o, it is desirable for the inner level to fully converge. Convergence to a gradient norm of

less than 10−10 occurs in about 7 iterations, although this �gure varies across data frames.

The update step of equation (4.5) requires the solution of a (8 + 6 ·ndf )× 8 system of linear

equations, as well as an additional ndf evaluations of ŷ•f and ndf 6-vector subtractions to

calculate the updated residual vector,ỹ•.
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4.3.2 One-Level Optimization Method

The one-level optimization method estimates the model parameter and joint angle values

using a L�M algorithm with update step

min
s

∥∥∥∥∥∥∥
ỹ
0

+

J1D
√
λI

 s
∥∥∥∥∥∥∥
2

pa

k+1

= Ds+

pa

k

,

(4.12)

whereD is (8+5·ndf )×(8+5·ndf ) diagonal matrix called the parameter scaling matrix. The

values of its diagonal elements are given by one divided by the 2-norm of the corresponding

column of the Jacobian [2, �4.2]. The product Ds forms the update which modi�es the

model parameters and all of the joint angles. J1 has the form

∂ŷ1,1
∂p1

· · · ∂ŷ1,1
∂p8

∂ŷ1,1
∂a1,1

· · · ∂ŷ1,1
∂a1,5

0 · · · 0 0 · · ·
...

...
...

...
. . .

...
...

. . .
...

...
. . .

∂ŷ1,6
∂p1

· · · ∂ŷ1,6
∂p8

∂ŷ1,6
∂a1,1

· · · ∂ŷ1,6
∂a1,5

0 · · · 0 0 · · ·
∂ŷ2,1
∂p1

· · · ∂ŷ2,1
∂p8

0 · · · 0
∂ŷ2,1
∂a2,1

· · · ∂ŷ2,1
∂a2,5

0 · · ·
...

...
...

...
. . .

...
...

. . .
...

...
. . .

∂ŷ2,6
∂p1

· · · ∂ŷ2,6
∂p8

0 · · · 0
∂ŷ2,6
∂a2,1

· · · ∂ŷ2,6
∂a2,5

0 · · ·
∂ŷ3,1
∂p1

· · · ∂ŷ3,1
∂p8

0 · · · 0 0 · · · 0
∂ŷ3,1
∂a3,1

· · ·
...

...
...

...
. . .

...
...

. . .
...

...
. . .



, (4.13)

and dimension (6 ·ndf )× (8 + 5 ·ndf ). The model parameters a�ect ŷ in every frame of data,

and the �rst 8 columns (there are 8 model parameters) of the Jacobian have 6 ·ndf elements.

Following these, there are 6 × 5 blocks arranged in a diagonal fashion, each one giving the

derivatives of ŷ with respect to the joint angles of a particular data frame. Approximating

the derivatives in J1 by the centered �nite di�erence formula requires 26 ·ndf evaluations of

the model function as well as 13 · ndf subtractions and scalar multiplications of a 6-vector.

Each update step requires solving a sparse (8 + 11 · ndf ) × (8 + 5 · ndf ) system of linear
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equations, as well as ndf model function evaluations and 6-vector subtractions to calculate

the updated residual vector, ỹ.

4.4 Results

Results are presented for the �tting of the 5 DoF model of the hip and knee to a representative

data set with 1491 frames of data. The two algorithms converge to nearly identical results for

both the model parameters and joint angles. The model parameters at solution di�ered by

less than 10−7 between methods, with units of meters for position and radians for orientation.

Joint angle di�erences were below 2× 10−5 degrees.

Both methods are reasonably well conditioned; the outer level of the two-level method has

a condition number of 37.5 with minimum and maximum singular values of σmin = 1.77 and

σmax = 66.5, while the one-level method has a condition number of 86.5 with σmin = 0.022

and σmax = 1.91. Because the two-level algorithm relegates the estimation of joint angle

values to the inner level, the parameter covariance matrix for its outer level contains only

model parameters and has dimension 8×8. The parameter covariance matrix for the one-level

algorithm contains the model parameters and all of the joint angles, attaining the dimension

(8 + 5 ·ndf )× (8 + 5 ·ndf ). This fact underlies the di�erent singular values and conditioning

between the Jacobians of the two methods; it also raises the possibility that the two-level

method could mask a poorly conditioned problem.

Calculation speed is quite di�erent between the two methods, which is most easily seen

in the calculation of the Jacobian. For the outer level of the two-level method, this takes

about 25 seconds on a machine operating at 35 G�op/s. For the one-level method on the

same machine, this takes about 0.85 seconds.

4.5 Discussion

It should be noted that Sommer and Miller used the iterative method of [1] for the inner level

of the two-level optimization method, while a plain L�M algorithm was employed in this

paper. This change from the original method saved the authors from having to reformulate

the model's spherical joint in terms of revolutes.
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In their presentation of the two-level optimization method, Sommer and Miller [6] ex-

plicitly mention the one-level method, stating that it �violates the spirit of experimental

modeling� because each additional frame of data requires more values (joint angles) to be

estimated in the outer level. They state, �rather than requiring the estimation of more ...

values, each additional [frame of] data should add to the con�dence in the computed values

of the [model] parameters.� This fails to realize that, for data measured with 6 DoF, each

additional frame of data does add to the con�dence in the estimated model parameters and

joint angles, as long as the model has 5 or fewer DoF. For a 5 DoF model with 8 model

parameters, the update step for the one-level method (equation (4.12)) is an overdetermined

linear system when the number of data frames is 9 or more.

The one-level method produces results in good agreement with the two-level method,

remains reasonably well-conditioned, and has a distinct speed advantage. For these reasons,

we recommend its use.
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