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ABSTRACT 

OPTICAL STUDIES OF OXIDATIVE STRESS IN LUNG TISSUE: 

 RODENT MODELS 

 

by 

 

Reyhaneh Sepehr 

 

The University of Wisconsin-Milwaukee, 2014 

Under the Supervision of Professor Mahsa Ranji 

 

 

 Objectives: There currently exists a need for reliable measurements of tissue 

metabolic state at cellular levels. The objective of this research was to study tools capable 

of evaluating cellular redox states in intact tissue. To meet this goal, three different 

instruments (cryoimager, fluorometer, and fluorescent microscope) were used to study 

the metabolism and functions of the mitochondria at different levels and regimes (cryo, 

ex vivo, in vivo and in vitro).  

 Introduction: Through optical monitoring of autofluorescent mitochondrial 

metabolic coenzymes, as well as exogenous fluorophores, the state of mitochondria can 

be probed in real time in many intact organs and in vitro. Autofluorescent mitochondrial 

metabolic coenzymes, studied here, include NADH (nicotinamide adenine dinucleotide) 

and FAD (flavin adenine dinucleotide), and the ratio of these fluorophores, referred to as 

the mitochondrial redox ratio (RR), can be used as a quantitative metabolic marker of the 

tissue. Exogenous fluorophores include but are not limited to tetramethylrhodamine 



 

 

iii 

 

(TMRM) and Mito-SOX, which are used to evaluate the mitochondrial membrane 

potential and level of reactive oxygen species (ROS) in the mitochondria, respectively.  

 Methods: Different optical imaging and acquisition techniques were studied to 

evaluate oxidative stress in lung tissue and cells in cryogenic temperatures, in vivo, ex 

vivo, and in vitro. Though in essence the underlying technological and biological 

principles appear to be the same, imaging in each of these regimes imposed unique 

challenges requiring significantly different approaches to system design, data acquisition, 

and processing. A brief description of each technique is provided here and each is 

described in detail in the following chapters.  

 The first device utilized is a cryoimager, which sequentially slices tissue and 

acquires fluorescence images of up to five fluorophores in cryogenic temperatures (-

40
o
C). Rapid freezing of organs preserves the tissue's metabolic state and subsequent low 

temperature fluorescence imaging (cryoimaging) provides high fluorescence quantum 

yield as compared with room temperature. Sequential slicing of the tissue provides 3D 

spatial distribution of NADH and FAD fluorescence intensities throughout the tissue. 

These studies were conducted using the cryoimager in the Biophotonics Lab on different 

models of lung injuries including ischemia, hyperoxia, and BPD (bronchopulmonary 

dysplasia). 

 The second device is a fluorometer, which was designed and implemented in the 

Biophotonics Lab. It is capable of monitoring the dynamics of the metabolism of the 

tissue through the use of optical surface fluorescence measurements of NADH and FAD. 

The ratio of these fluorophores, referred to as the mitochondrial redox ratio (RR), can be 
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used as a quantitative metabolic marker of tissue. Surface fluorescence signals from 

NADH and FAD were acquired in the absence (baseline) and presence of metabolic 

perturbers (e.g. pentachlorophenol, rotenone, or potassium cyanide), in the presence of 

blood, and eventually in vivo. 

 The third instrument, a fluorescent microscope, is used to image slides and dishes 

containing stained cells (e.g. endothelial cells, perycites, or fibroblasts) from lungs, 

hearts, and retinas to study their structure and dynamics at cellular level. Images of 

retinas were classified as normal or injured using developed cytometry tools and 

morphologic parameters. For heart and lung, the dynamics of concentration of reactive 

oxygen species (mainly superoxide) and calcium is monitored over time in cultured live 

cells. 

 Results: In the cryogenic temperatures, lung treatment with KCN (inhibitor of 

Complex IV), resulted in an increase in RR and sets the upper limit of the NADH signal 

level while injured lungs (BPD model, hyperoxia and IR) showed a more oxidized chain 

compared with control lungs, and as a result more oxidative stress.  

In ex vivo fluorometric studies, an increase in RR from chain inhibitors (including KCN 

and rotenone), and a decrease in the same due to an uncoupler (PCP), all from baseline 

was observed which was consistent with the cryoimaging results. The same experiments 

in isolated perfused lungs previously treated with hyperoxia showed the same direction 

but different levels indicating the impairment in different complexes due to hyperoxia.  

Segmentation algorithm developed here showed 90% accuracy comparing to manual 

counting, and studying the cells in retina slides confirms apoptosis and oxidative stress in 
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retinas from injured mice. In live cells, studying the dynamics of calcium concentration 

in the presence of different perturbations enabled us to study the behavior of 

mitochondrial regulated calcium channels. Also, changes in the Mito-SOX channel gave 

us the dynamics of mitochondrial ROS in the presence of chain perturbers (chemicals and 

gas). 

  Conclusion: Optical instrumentation combined with signal and image processing 

tools provide quantitative physiological and structural information of diseased tissue due 

to oxidative stress. 
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1. Introduction and Background 

 Biophotonics involves the study of the interaction between optical energy and 

biological tissues [7] and, with the advancement of technology and the increasing 

understanding of biological systems, is one of the fastest growing research areas. 

Currently, the majority of research in the field of biophotonics is focused on the 

determination of tissue properties, and thus tissue disease diagnosis. 

 Although the most common imaging modalities include X-ray radiography, 

ultrasound imaging (ultrasonography), X-ray computed tomography (CT), and magnetic 

resonance imaging (MRI), optical imaging, which is compared with other modalities in 

table 1, is currently emerging as a promising new addition to medical imaging.  

 

 From the table, it can be seen that optical imaging techniques combine safe 

radiation (non-ionizing) with fast, low-cost and high-contrast imaging. Depending on the 

Table 1. Comparison of various Medical imaging Modalities [8]. 

Characteristics X-ray Ultrasonography MRI Optical imaging 

Soft-tissue contrast Poor Good Excellent Excellent 

Spatial resolution Excellent Good Good Mixed 

Maximum imaging depth Excellent Good Excellent Good 

Function None Good Excellent Excellent 

Non-ionizing radiation No Yes Yes Yes 

Data acquisition Fast Fast Slow Fast 

Cost Low Low High Low 
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regime of the optical imaging being used (absorption, fluorescence, or Raman scattering), 

it can even provide biochemical information due relation to molecular conformation. 

Optical absorption provides contrast for functional imaging since it provides information 

on the concentration of hemoglobin and oxygen saturation of hemoglobin (particularly 

important in cancer). Other optical techniques including scattering, polarization and 

Doppler effect can provide rich information regarding molecular structures of 

biomarkers, cellular size distribution, blood flow, detection of multiple contrast agents 

and opportunity for high resolution imaging [8]. 

 The research presented here includes the development of optical instruments in 

different regimes, conducting experiments, acquiring signals and images and processing 

them to extract markers for tissue metabolism as well as injuries and diseases. We 

monitored metabolic states of different tissues, mainly lungs, in diseases of clinically 

important disorders including cardiopulmonary injuries. The ultimate goal of my research 

is to translate optical imaging techniques developed to clinical avenues, and to transfer 

the instruments developed for animal models to bedsides for patient diagnosis.  

1.1. My Major Contributions 

 I have contributed in four major areas: 

1- Instrumentation: 

 I have been involved in the design and implementation of an optoelectronic 

device called fluorometer. It is designed in such a way to monitor the relative 
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concentration of two intrinsic fluorophores in the mitochondria of the cell, namely 

NADH and FAD. I have also been involved in modifying a cryoimager instrument to 

image different tissue sizes, as well as to improve magnification and resolution by 

improving the embedding, mounting and imaging of sections. 

2- Experimentation, signal and image acquisition: 

 I have assembled the required tools, and designed experimentation protocols to 

study the metabolism in different regimes of optical studies, including whole organ 

cryoimaging, ex vivo, in vivo and in vitro studies. For each regime of studies, unique 

treatment and preparation of the tissues, as well as proper imaging and acquisition 

methods are required. The tissues, cell and microscope slides were provided by the VA 

hospital, the Medical College of Wisconsin, the University of Wisconsin-Madison, and 

Aurora St. Luke's Health Center. 

3- Signal and image processing: 

 I processed raw pulses and signals acquired from fluorometry as well as the raw 

images from the cryoimager and microscope to show the dynamics of the metabolism in 

live tissue, the redox state of frozen tissue, the dynamics of calcium and reactive oxygen 

species (ROS) in live cells, and tissue properties in fixed slides. The processing was 

mostly done via algorithms I developed in Matlab with minor steps in ImageJ. 

 Also, as a side project, I have been working on the problem of figure text 

resolution detection in figures of biomedical articles in a biomedical figure search engine 

to improve the accuracy of the search engine, which is a pattern recognition problem. 

4- Interpretation of metabolic data in lung injuries: 



5 

 

 

 

 The focus of this thesis was mainly on the lung tissue and its metabolism, injuries 

and diseases. Understanding the mechanism and function of this vital organ is of great 

importance and is essential for designing experiments and injury models and interpreting 

the results. According to statistics, respiratory disease is a common and important cause 

of illness and death around the world. In the US, approximately 1 billion "common colds" 

occur each year [5]. In the UK, approximately 1 in 7 individuals are affected by some 

form of chronic lung disease, most commonly chronic obstructive pulmonary disease, 

which includes asthma, chronic bronchitis and emphysema [6]. Respiratory diseases 

(including lung cancer) are responsible for over 10% of hospitalizations and over 16% of 

deaths in Canada [7].  

Journal Publications and Conference Abstracts 

J1- R. Sepehr, K. Staniszewski, S. Audi, E. R. Jacobs, and M. Ranji, "Surface Fluorescence 

Studies of Tissue Mitochondrial Redox State in Isolated Perfused Rat Lungs," Ann 

Biomed Eng, Dec 13 2012. 

J2- R.  Sepehr, K. Staniszewski, S. Maleki, E. R. Jacobs, S. Audi, and M. Ranji, "Optical 

imaging of tissue mitochondrial redox state in intact rat lungs in two models of 

pulmonary oxidative stress" Journal of Biomedical Optics, Vol 17, No. 4, April 2012. 

J3- R. Sepehr, S. Audi, S. Maleki, K. Staniszewski, A. L. Eis, G. G. Konduri, M. Ranji ,” 
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Exposure to Hyperoxia," to be published in IEEE Journal of Translational Engineering 

in Health and Medicine, 2013. 

J5- S. Maleki, R. Sepehr, K. Staniszewski, N. Sheibani, C. M. Sorenson, and M. Ranji, 

"Mitochondrial redox studies of oxidative stress in kidneys from diabetic mice."  
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C8- R. Sepehr, et al, “Fluorescence Spectroscopy and Cryoimaging of Rat Lung Tissue 

Mitochondrial Redox State”, in Proceedings of SPIE 80870, Munich, 2011; 

1.2. Biological Background 

1.2.1. Cell Structure and the Mitochondrion 

 All biological organisms are made up of cells, the "building block of life" [9]. 

Figure 1.a shows the diagram of a typical  eukaryotic cell [3]. Many injuries and ailments 

can be traced back to irregularities in the behavior within the cell [10]. Early detection 

and treatment of such injuries could lead to a significantly lower rate of permanent 

damage as a result of such injuries and help in reducing further therapy's costs.  

 Although all sub-cellular organelles are essential for the organism to remain 

healthy and alive,  the mitochondrion (figure 1.b), the power house of the cell [11] that is 

responsible for metabolic processes [12], is perhaps the most critical. The mitochondria 

are responsible for the chemical reactions resulting in providing energy for the cells and 

are necessary for sustaining life in a biological organism [13]. 

 The metabolic process is generally achieved through a series of reactions referred 

to as aerobic respiration [14]. In this process, a chain of the mitochondrial coenzymes are 

oxidized resulting in adenosine triphosphate (ATP), which is the unit of energy for the 

cells. The amount of energy that can be supplied for the cell is positively correlated to the 

amount of oxygen present in the mitochondria, and an irregular amount of oxygen in the 

cell and its surrounding environment (oxidative stress) leads to perturbation to cell 
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functions and eventually cell death. The majority of energy in the cell is produced this 

way via the electron transport chain [12], which is represented in Figure 2 [2]. 

 

 

 The electron transport chain is a complex system of chemical reactions that take 

place in the inner mitochondrial membrane and is used to create a proton gradient across 

the membrane by pumping excess hydrogen ions into the mitochondria's "intermembrane 

space" [15]. In the electron transport chain, two proteins, NADH [16] and FADH2 (flavin 

adenine dinucleotide) [17], are oxidized through a series of protein complexes resulting 

in a release of protons, which are pumped into the intermembrane space using a portion 

of the energy released, thus creating a proton gradient. 

 Finally, ATP is generated by the escape of these protons to the intermembrane 

space through ATP synthase [12] in conjunction with adenosine diphosphate (ADP) and 

inorganic phosphate. A change in the oxidation state of these two proteins, or in another 

 

(a)                                                                     (b) 

Figure 1. Cell Structure and Mitochondrion. a) Diagram of the cell including organelles [3] and b) 

mitochondrion [5]. 
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word, a change in the concentration of the oxidized form is a direct marker of a change in 

tissue oxidation status and metabolism [18]. 

 

 Reactive oxygen species (ROS) are chemically reactive molecules containing 

oxygen. ROS form as a natural byproduct of the normal metabolism of oxygen and have 

important roles in cell signaling and homeostasis. Oxidative stress, which is often due to 

an irregularity in the amount of oxygen introduced to the mitochondria, represents an 

imbalance between production and consumption of ROS. An excessive amount of ROS 

or the production of peroxides and free radicals, can cause damage to any and all parts of 

a cell [19]. This is especially important given that a variety of diseases can disrupt the 
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Figure 2. Electron Transport Chain. Schematic representation of subunits of mitochondrial 

oxidative phosphorylation complexes. Hydrogen ions are transported from the mitochondrial matrix 

across the inner mitochondrial membrane into the intermembrane space by complexes I, III, and IV. 

The movement of hydrogen ions down the electrochemical gradient is coupled to the phosphorylation 

of adenosine diphosphate (ADP) to form adenosine triphosphate (ATP) by complex V. Electrons 

from the autofluorescent reducing agent, nicotine adenine dinucleotide (NADH), move from complex 

I through ubiquinone to complex III and then complex IV via cytochrome c (Cyt c). Electrons from 

succinate, another reducing agent, enter the respiratory chain through flavin adenine dinucleotide 

(FAD), which is covalently linked to complex II of the respiratory chain. Like NADH, the reduced 

form of FAD (FADH) is autofluorescent. Rotenone (ROT) and potassium cyanide (KCN) inhibit 

complex I and IV, respectively. Pentachlorophenol (PCP) is a protonophore which increases 

membrane proton conductivity, disrupts the proton gradient across the membrane, and as a result 

uncouples mitochondrial electron transport chain from phosphorylation [146]. 
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balance of oxygen flow into and around cells, causing improper function of the 

mitochondria, and thus an increased rate of cell death via apoptosis or necrosis [20]. A 

slight increase in oxidative stress leads to mitophagy, in which the mitochondria 

degrades, but the cell manages to recycle the nutrients released. However, as oxidative 

stress increases, the cells begin to undergo apoptosis, or programmed cell death, or in 

extreme cases, necrosis, which is abnormal cell death. In many cases, the amount of 

oxygen available to a cell can accurately represent the health of the cell and be used as a 

diagnostic tool. This is especially true in cases related to mitochondrial dysfunction or 

diseases related to oxidative stress. In these cases, the oxidation state, or redox state, of 

the tissue serves as a sensitive and reliable measure for the evaluation of cell behavior 

[21]. 

1.3. Fluorescence 

1.3.1. Description of Fluorescence 

 Optical fluorescence techniques have the potential to investigate tissue health in 

real time in a non-destructive manner in intact organs both in vivo and ex vivo [22-28]. 

Using the fluorescent signals of intrinsic fluorophores present in the cell, it is possible to 

determine the oxidation status of the cell. In these studies, fluorescence spectroscopy was 

mainly used to study lung bioenergetics [29-31].  

 A fluorophore is a chemical compound which can emit photons with specific 

wavelengths when excited with specific higher-energy photons [32].  
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Figure 3. Jablonski Diagram of Fluorescence. Fluorescence as a result of molecule excitation. Green 

lines indicate excitation, yellow lines relaxation, and red lines emission of fluorescence [4]. 

 

 Molecules of fluorophores are in some initial energy state, i.e. resting state, prior 

to being exposed to a source of energy, e.g. a bright light source. When the molecule is 

exposed to a source of energy, it absorbs the energy from the incident source and goes to 

an excited energy state. Once there, a portion of the energy is lost to lattice vibrations and 

other avenues prior to the release of a photon and relaxation to the initial energy state. In 

the transition back to the ground state, there is a probability, termed the fluorescence 

quantum yield, of emitting photons of lower energy than the excitation photons, which 

can be collected by a photoelectric device to quantify the amount of energy released. This 

process can be seen in Figure 3 [4].  

 For intrinsically fluorescent molecules, there is a narrow range of photon energies 

which can cause this excitation, corresponding to the allowable energy states of the 
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molecule. Since the energy of a photon is inversely proportional to its wavelength, or 

directly proportional to the frequency, this means that only a specific range of 

wavelengths can be used to excite a given molecule. In addition, because the emitted 

fluorescent light has an energy equal to the energy released when the molecule transitions 

back to its ground state, the wavelength, or color, of this light has a narrow range.  

 Finally, since the molecule lost some energy along other pathways, the excitation 

(absorption) and emission spectra must be different, a phenomenon known as the Stokes 

shift [33]. This phenomenon can be exploited through the use of optical filters or dichroic 

mirrors to separate the excitation and emission light, so that the only signal that reaches 

the detector is the emitted fluorescence. The narrow range of both the excitation and 

emission light is actually beneficial, since multiple molecules can be monitored 

sequentially, provided that their fluorescence spectra are not completely overlapping [21]. 

1.3.2. Intrinsic Mitochondrial Fluorophores 

 In most tissues, there are several intrinsic fluorophores, including NADH, flavins, 

tryptophan, collagen, and porphyrins, which can be used as structural or physiological 

tissue parameters. Two of these fluorophores, NADH and FAD (one of the flavins), are 

of particular interest since they are essential in the metabolic pathway of the 

mitochondria, as they are located in the first two protein complexes of the electron 

transport chain [12] and can be used as markers of oxidation of the cell. The spectra of 

these auto-fluorescent coenzymes are shown in Figure 4 [34, 35].  
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 NADH only fluoresces in its reduced form, whereas FAD only fluoresces in its 

oxidized form. As a result, the ratio of these two fluorophores, called the mitochondrial 

redox ratio, is used as a marker of the oxidation state within the tissue [36]. This ratio is 

beneficial as a quantitative marker of tissue metabolism independent of the number of 

mitochondria. 

 NADH and FAD can be excited by filtering a white light such as mercury light at 

excitation wavelengths. NADH has a maximum in its excitation spectrum at around 340 

nm and an emission maximum at 460 nm, and FAD has its excitation maximum at 448 

nm and a maximum in the emission spectrum at 520 nm. The overlap between NADH 

emission and FAD excitation requires that the two fluorophores be excited and detected 

sequentially, but the fact that the emission spectra don't overlap with each other allows 

for selective detection of fluorescence between the two fluorophores. Hence, by detecting 

 

Figure 4. Excitation and emission spectra of NADH (left) and FAD (right). 
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the fluorescence of each of these fluorophores, one can obtain a measure of the oxidation 

state of cells within an organ.  

These fluorescent signals are also dependent on the concentration of mitochondria, the 

presence of absorbing factors such as blood, the movement of the tissue (in in vivo 

experiments), and the presence of interfering factors such as other endogenous 

fluorophores with the same excitation/emission spectra (namely NADPH and collagen). 

The first three factors can be effectively canceled out using redox calculations. As for the 

interfering fluorophores, since they are not involved in the mitochondrial electron 

transport chain, they would either contribute to the baseline level of the signals or are 

small enough compared to NADH and FAD fluorescent signals that they can be ignored 

(see chapter 3 for more details). As a result, the changes in the measured redox ratio are 

due to changes in the mitochondrial redox state, and are not impacted by the other 

endogenous fluorophores present in the tissue [21]. 

1.4. Florescence imaging techniques  

 Fluorescence imaging techniques provide both anatomical and functional 

information of tissue via intrinsic fluorophores or exogenous tagged proteins [60]. These 

techniques are widely used to probe tissue redox state and energy homeostasis in organs 

such as the heart [26], brain [28], kidney [27, 61], liver [62], skeletal muscle [63], cervix 

[64], and colon [65] as well as to diagnose diseases such as breast cancer tumor 

localization and oxygenation [66, 67]. Furthermore, these techniques have been shown to 
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have a high sensitivity and specificity for discriminating between diseased and non-

diseased tissue [68].  

 Fluorescence spectroscopy and imaging of  intrinsic molecules in vivo as 

intracellular oxygen indicators was first introduced by Britton Chance and colleagues 

[37-42]. Their pioneer work on spectroscopic monitoring of mitochondrial redox state in 

isolated mitochondria in vitro [38, 39], and in vivo in various organs (e.g., brain, kidney, 

heart) [43-49] has shaped our understanding of cellular bioenergetics under different 

physiological conditions. 

 Tissue metabolic state, which is an indicator of cellular oxygen consumption, can 

be extracted from fluorescence images of intrinsic fluorophores [69, 70]. The 

mitochondrial metabolic coenzymes NADH and FADH2 are the primary electron carriers 

in oxidative phosphorylation and a change in the mitochondrial redox ratio (RR = 

NADH/FAD) is an indicator of a change in lung tissue bioenergetics [18]. NADH  and 

FAD (the oxidized form of FADH2) are autofluorescent and can be monitored without 

exogenous labels by noninvasive optical techniques [25]. The fluorescence signals of 

these intrinsic fluorophores have been used as indicators of tissue metabolism in injuries 

due to hypoxia, ischemia, and cell death [71]. Ranji et al. demonstrated that the ratio of 

these fluorophores, RR, is a marker of the mitochondrial redox and metabolic state of 

myocardial tissue in intact hearts or in vivo situations [36, 72-74]. 

 Different groups have used optical monitoring of cancer tissue in different 

diseases. Mycek et al. have used optical spectroscopy in studies of pancreatic cancer in 

clinical practice [50-52]. Ramanujam et al. have shown the ability of endogenous redox 
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imaging to differentiate normal, precancerous, and cancerous squamous epithelial tissues 

by multiphoton microscopy[53, 54]. Mayevsky's group has used NADH spectroscopy 

and blood oxygenation in brain tumor metabolism studies in vivo [55, 56]. Kortum's 

group examined optical imaging for diagnosis of cervical, esophageal, and oral cancer 

[57,58]. Georgakoudi et al. have studied endogenous redox ratio in human epithelial cell 

apoptosis studies [59, 60]. we have used optical biopsy, cryoimaging and fluorescence 

spectroscopy for cardiovascular and pulmonary diseases. [34, 35, 61-67].   

1.1.  Lung tissue, injury models and diseases  

 Exposure to elevated O2 (hyperoxia) is a common and necessary therapy for adult 

and pediatric patients with acute respiratory distress syndrome (ARDS) to restore blood 

oxygen tension (PO2) to a level that sustains vital organ metabolic requirements [6, 37]. 

However, sustained exposure to high O2 concentrations (> 50%) causes lung O2 toxicity 

injury. This injury, which is the result of enhanced production of reactive O2 species 

(ROS), i.e. oxidative stress, may further impair lung function and contribute to the very 

dysfunction that it is intended to alleviate [38, 39].  

 Reactive oxygen species (ROS) have been implicated in the pathogenesis of many 

acute and chronic pulmonary disorders such as acute lung injury (ALI) in adults and 

bronchopulmonary dysplasia (BPD) in premature infants. Bacterial infection and oxygen 

toxicity, which result in pulmonary vascular endothelial injury, contribute to impaired 

vascular growth and alveolar simplification seen in the lungs of premature infants with 
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BPD. Hyperoxia induces ALI, reduces cell proliferation, causes DNA damage, and 

promotes cell death by causing mitochondrial dysfunction.  

 BPD is a chronic lung condition that affects premature infants who receive 

supplemental oxygen (hyperoxia) or ventilator support for long periods of time. Studies 

have shown that the premature lung can be acutely injured by either oxygen or 

mechanical ventilation, resulting in interference with or inhibition of lung alveolar and 

vascular development [40-42]. Premature infants are also more likely to be exposed to 

infection in utero or during postnatal life, which accelerates the subsequent development 

of BPD.  

 Lipopolysaccharide (LPS) is an endotoxin, which is derived from the cell wall of 

gram-negative bacteria and induces the release of cytokines and ROS such as superoxide, 

hydroxyl radicals, and peroxynitrite. The endothelial injury caused by LPS stimulation 

contributes to vascular remodeling by inhibiting endothelial cell proliferation, migration 

and angiogenesis, which together contribute to impaired lung growth in BPD.  

 ARDS, a manifestation of ALI, is a serious illness associated with severe and 

diffuse injury to the alveolar-capillary membrane of adult lungs. In ARDS, organs are 

deprived of the required amount of O2, which impairs their proper function. Despite the 

high morbidity and mortality rates of this illness, the mechanisms underlying the 

development of ARDS/ALI are not completely understood [43-46]. Respiratory distress 

syndrome (RDS) in neonates occurs due to surfactant deficiency and immaturity of the 

lung parenchyma and vasculature. The course of RDS is characterized by parenchymal 

lung injury, which leads to impaired gas exchange, neutrophil accumulation in the lung, 
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the expression of pro-inflammatory mediators, increased vascular permeability and 

damage to the lung epithelium and endothelium. One of the contributing factors in the 

development of ALI in neonates is exposure to bacterial infections, including endotoxins 

from gram-negative bacteria. [43-45, 47-49]. Exposure to supplemental oxygen, which is 

often used in the treatment of RDS, can also contribute to lung injury. 

 As previously reported, LPS induces elevated ROS levels in endothelial cells. 

Decreased antioxidant capacity of pulmonary vascular tissue along with increased 

production of ROS contributes to the injury seen in LPS-induced ALI/BPD [44, 50-55]. 

ROS generated by LPS exposure in endothelial cells is regarded as a key to the 

modulation of the pulmonary vascular endothelial damage, which leads to higher 

oxidative stress. Increased ROS may cause cell injury, activate the inflammatory 

response, promote cytotoxicity, and activate signaling pathways that lead to pro-apoptotic 

signaling. Thus, LPS has been considered the principal component in the induction of 

ALI and BPD in adults and premature infants, respectively [47, 50, 56, 57].  

 Ischemia-reperfusion (IR) injury of lung tissues is commonly encountered 

clinically in conditions such as lung transplantation, necrotizing pneumonias, or crush 

injury to the chest [58].  Approximately 1,500 lung transplants are successfully 

performed each year in the US [59] with many times that number lost due to prohibitive 

ischemic times.  

 In all these lung injuries, we have studied the effect of the damage on the electron 

transport chain and cell viability. We monitored the metabolic activities in these 
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clinically important cardiopulmonary disorders and injuries using optical imaging tools 

with the future goal of translation to clinical avenues. 
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Cryoimaging 
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2. Cryoimaging 

2.1. Introduction 

 The cryoimager (Barlow scientific, Olympia, WA), described and used in this 

chapter, sequentially slices the frozen tissue and acquire fluorescent images in up to five 

channels from each slice [149]. It was first developed and used in studying organ blood 

flow in small laboratory animals using microspheres [150]. The instrument determines 

regional blood flow by using the locations of fluorescent microspheres deposited in 

perfused rat hearts. Image analysis of fluorescent microspheres is much faster and less 

labor intensive than traditional indirect microsphere-based flow measurements while 

providing higher quality data [149]. The modified version of the instrument used in this 

chapter, is imaging endogenous coenzymes (NADH and FAD) concentration to acquire 

metabolic states of the tissue under study, with higher magnifications up to cell 

resolution. 

 As previously mentioned, NADH  and FAD are autofluorescent and can be 

monitored without exogenous labels by noninvasive optical techniques [25]. The 

fluorescence signals of these intrinsic fluorophores have been used as indicators of tissue 

metabolism in injuries due to hypoxia, ischemia, and cell death [71]. There is more than 

one definition for redox ratio, including the normalized redox ratio (NADH/(NADH + 

FAD)) [71]; the definition that is used in this study (NADH/FAD) is chosen since the 

FAD signal in lung tissue, as compared to the NADH signal, is significantly smaller than 
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in other organ tissues such as the heart. Thus, the normalized redox ratio would be less 

sensitive to a change in mitochondrial redox state than NADH/FAD.  

Rapid freezing of organs in liquid nitrogen temperatures preserves the tissue 

metabolic state [75]. Subsequent slicing and low temperature fluorescence imaging 

(cryoimaging) is advantageous since it provides high fluorescence quantum yield of 

NADH and FAD as compared with room temperature, and 3D spatial distribution of 

tissue NADH and FAD fluorescence intensities [36, 76, 77].  

Use of supplemental O2 in patients who suffer from hypoxemia and RDS is often 

life saving since it is necessary to restore blood pO2 to a level that supports the metabolic 

requirements of vital organs. However, prolonged exposure to higher concentrations of 

O2 or hyperoxia leads to enhanced production of ROS and lung injury at the cellular level 

associated with mitochondrial dysfunction, decreased cell proliferation, DNA damage 

and alveolar epithelial and endothelial cell death [78-83]; in another word, mitochondrial 

dysfunction is a cardinal feature of a spectrum of lung injuries including hyperoxia and 

Ischemia reperfusion (IR) [84, 85].  

We are focusing on ROS as the final causative molecule in the pathogenesis of 

lung injury caused by LPS or exposure to higher O2 concentrations. Although ROS 

generation after exposure of cells to LPS is well documented by in vitro investigations, in 

situ evidence is, so far, lacking [43, 44, 50, 51, 94]. Using optical cryoimaging, we 

investigated in situ ROS detection in intact rat lungs treated with higher O2 

concentrations and LPS. 
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Bcl-2 is the founding member of a family of proteins with anti-apoptosis and anti-

oxidant effects [91]. Expression of bcl-2 may also act as a protective mechanism for 

endothelial cells under oxidative or mechanical stress [92]. The bcl-2 knocked-out lungs 

were also compared to normal lungs as another model of BPD in mice pups. It has been 

hypothesized that mice lacking bcl-2 display a BPD-like phenotype [93]. 

Although much work has been done in cell cultures and tissue homogenates, 

studies for probing key tissue mitochondrial functions and the effect of oxidant injury in 

the intact lungs are limited [6]. Thus, the objective of this chapter was to utilize 

cryoimaging to evaluate the effects of in vivo exposure of rats to hyperoxia or lung IR on 

lung tissue mitochondrial RR. We also investigated whether the changes in metabolic 

state can be used as a marker of oxidative stress caused by bacterial lipopolysaccharide 

(LPS) exposure in neonatal rat lungs combined with hyperoxia. We investigated the 

hypothesis that the effects of LPS on the immature lung are amplified when exposed to 

hyperoxic conditions during postnatal life compared to the hypoxic in utero environment 

of the fetus [50, 86-88] and showed NADH RR serves as a quantitative marker of 

oxidative stress level in lung injury caused by clinically important conditions including 

hyperoxia and LPS exposure.  

 Neonatal rodent pups have been extensively used as a model to study the effects 

of hyperoxia on lung injury and growth. Previous studies have demonstrated an arrest of 

lung alveolar and vascular growth with the exposure of neonatal rat lungs to hyperoxia 

for a period of 7-10 days [89]. Since rat pups at birth have lung development at the 

saccular stage similar to premature babies [90], the disruption of development by 
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hyperoxia parallels the changes seen in premature babies with BPD. We therefore, 

selected this model to investigate mitochondrial redox state during hyperoxia induced 

BPD.  

 The results of this chapter will provide a basis to apply optical fluorescent 

techniques for evaluating the effects of these and other models of lung injury on lung 

tissue mitochondrial RR ex vivo and eventually in vivo.   

2.2. Tissue Preparation 

All animal experiments were performed under the approval of Institutional Animal Care 

and Use Committee (IACUC) review boards and in compliance with the National 

Research Council’s Guide for the Care and Use of Laboratory Animals at Milwaukee 

Zablocki VA Hospital, University of Wisconsin Madison and Medical College of 

Wisconsin. 

 Lung tissues from mice, neonatal rats, as well as mature rats were used in the 

frozen tissue studies. Each set of tissues has been prepared distinctly; a brief description 

of our tissue preparation protocols follows. 

2.2.1. Mice Lungs (BCL-2 knocked out) 

 Bcl-2 mutant mice were maintained and screened as previously described [95] at 

the University of Wisconsin-Madison. Briefly, bc1-2 (+/-) animals were interbred, 

producing bc1-2 (+/+), bc1-2 (+/-), and bc1-2 (-/-) mice. The genotypes of the offspring 

were determined by PCR using genomics DNA prepared from tail biopsies [96, 97]. 
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Lungs were surgically removed from mice at the age of 3 weeks and were frozen for 

subsequent cryoimaging. 

2.2.2. Hyperoxia exposure  and LPS administration in neonate rat 

Neonatal rats were randomly assigned at birth to either postnatal normoxia (21%) or 

hyperoxia exposure (90%) from birth to 10 days of postnatal age. Each group was further 

subdivided to intra-peritoneal (IP) LPS injection (10 µg) on postnatal day seven, or to IP 

injection of equal volume of saline. This study design yielded four different groups of 

rats consisting of normoxia +/- LPS and hyperoxia +/- LPS. 

 Hyperoxic rat pups were reared from birth in a Plexiglas chamber with air and 

oxygen flow at a sufficient rate (3 L/min) to prevent CO2 accumulation in the chamber. 

Openings in the chamber at the top allowed ambient air in the chamber to be replaced 

with fresh flow of gas. Air and oxygen were mixed to maintain an oxygen (O2) 

concentration of 90% inside the chamber. Ambient temperature was kept at 27 ± 1º C in 

the chamber. The chamber was large enough to house the mother and pups for 10 days. 

Since adult rats are more vulnerable to oxygen injury, mothers were taken out of the 

chamber for a period of 2 hours per day to normoxia while the pups were kept in the 

hyperoxia chamber. Cages were cleaned quickly during this interruption to hyperoxia. 

Oxygen concentration in the chamber returned to 90% level 15 minutes after the chamber 

was opened to remove or return the mother to hyperoxia chamber. Normoxic pups were 

kept in a similar chamber with 21% O2 exposure.  
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 Bacterial LPS (E. coli, 0111:B4, sigma, St. Louis, MO, USA) was suspended in 

sterile pyrogen-free 0.9% saline. A dose of 10 µg LPS or equal volume of saline (control) 

was injected IP into rat pups at 7 days postnatal age. The pups were allowed to continue 

under hyperoxia (or normoxic) condition for three additional days after the intra 

peritoneal injection of LPS or saline. 

2.2.3. Hyperoxic exposure for adult rats:  

Sprague-Dawley rats (275-350 g, males) were housed in a Plexiglass chamber maintained 

at 85% O2 balance N2 for 7 days as previously described [98]. Age-matched control rats 

were exposed to room air (21% O2) and referred to as normoxic rats. This O2 level and 

exposure period were chosen for several reasons. First, Crapo et al. provide detailed 

description of histologic and morphometric changes in lungs of rats exposed to this injury 

model [37] . Second, it has been demonstrated that rat exposure to this hyperoxia model 

alters the activities of lung tissue mitochondrial complexes I, III, and IV [98]. Third, the 

rats are unique in that if pre-exposed to 85% O2 for 7 days they develop tolerance to the 

otherwise lethal effects of exposure to 100% O2 [37, 98]. Lungs were isolated 

immediately following the seven-day exposure to controlled environmental gases.  

2.2.4. IR injury:  

Adult Sprague-Dawley rats (~300 g) were anesthetized with isoflurane, an endotracheal 

(ET) tube was secured for ventilation and the rat placed in a prone position as previously 

described [84]. The left anterior chest was opened to access the left hilum. The left hilum, 

including the main stem bronchus, left PA (pulmonary artery) and left pulmonary veins, 
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was located and clamped for 60 minutes after which time the vascular clamp was 

removed and the surgical wound closed. Lungs for imaging studies were harvested 24 

hours later, following the procedure for isolated perfused studies described before.  

2.2.5. Isolated lung perfusion in adult rats 

Lungs from adult rats from control, IR, and hyperoxic groups were all perfused before 

freezing as previously described [99] and summarized below. Each rat was anesthetized 

with pentobarbital sodium (40 mg/kg body wt. intraperitoneal), after which the chest was 

opened. Heparin (0.7 IU/g body wt.) was injected into the right ventricle. Cannulas were 

placed in the pulmonary artery and the trachea, and the pulmonary venous outflow was 

accessed via a cannula in the left atrium. The lungs were removed from the chest and 

attached to a ventilation and perfusion system. The perfusate was Krebs-Ringer 

bicarbonate solution containing (in mM) 4.7 KCl, 2.51 CaCl2, 1.19 MgSO4, 2.5 KH2PO4, 

118 NaCl, 25 NaHCO3, 5.5 glucose, and 3% bovine serum albumin (BSA) [100]. The 

ventilation gas mixture was 15% O2, 6% CO2 in N2. The perfusate was pumped (at 10 

mL/min) through the lung until it was clear of blood, after which the flow and ventilation 

were stopped. The lung was then partially deflated by disconnecting the tracheal cannula 

from the ventilation system and then rapidly frozen as described below. The ventilation 

with room air (pO2 ~ 115 mmHg) lasted for ~15 minutes, and should have no effect on 

the mitochondrial redox state since the PO2 at which mitochondrial complex IV activity is 

inhibited and the electron transport chain reduced is < 2 mmHg [18].  



28 

 

 

 

2.2.6. KCN administration 

 To determine the ability of the cryoimaging technique to detect a change in 

mitochondrial NADH and FAD redox state, as well as capturing the dynamic range of the 

metabolic state of lung, the lungs from a group of normoxic adult rats as well as from a 

group of normoxic pups were perfused ex vivo as described above.  However, instead of 

perfusion with buffer alone, these lungs were perused for 10 minutes with Krebs Ringer 

bicarbonate solution containing potassium cyanide (KCN, complex IV inhibitor, 2 mM), 

and then frozen. This treatment was employed to reduce the respiratory chain, and hence 

increase the NADH signal, decrease the FAD signal, and as a result increase RR. The 

perfusate was pumped into the lungs at a flow rate of 1 mL/min for 10 min. During this 

period, the lungs were ventilated (15% O2, 6% CO2, balance N2) at 80 breaths/min. At the 

end of the perfusion period, the lungs were rapidly frozen for cryoimaging as described 

below. 

2.2.7. Freezing Protocol and Embedding 

Freezing: Rapid freezing in chilled isopentane (2-methyl butane, Fisher Scientific, 

IL) within liquid nitrogen (LN2, -196
o
C) preserved the metabolic state of the lung tissue. 

The tissue was immersed in isopentane for one minute followed by permanent storage in 

LN2. For fluorescence imaging, the tissue was embedded in a customized black mounting 

medium (that is not fluorescent in the excitation wavelengths) and placed on a chilled 

aluminum plate to keep the tissue in place for freezing and slicing. 
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Mounting medium: The mounting medium is prepared in the Biophotonics Lab 

(UWM), using Polyvinyl Alcohol (PVA, Grade 71-30, PVOH7130, Chemical Store Inc., 

Clifton, NJ), distilled water and carbon black powder (Daniel Smith Dry Pigment, 

284030040, Daniel Smith Inc., Seattle, WA). To make one liter of the embedding 

medium, 80 g of PVA is added to 920 g of boiling distilled water and stirred to make a 

homogeneous transparent medium. The solution is then allowed to cool, and 80 g of 

carbon black is added and mixed thoroughly.  The mixture is refrigerated for 4-5 days 

before use. 

Embedding: The embedding process starts with freezing the base medium, then 

embedding the tissue and fixing its position by adding more black medium around the 

tissue. After embedding, the tissue was stored in an ultralow freezer (-80
o
C) for at least 

24h prior to imaging. The lungs were imaged within a week with each injury group 

imaged along with its corresponding control group. The plate was installed in the 

cryoimager such that the surface of the black medium is parallel to a microtome.  

2.3. Imaging and Image Processing 

2.3.1. Cryoimager 

Low temperature fluorescence imaging (cryoimaging) provides both three-

dimensional fluorescence images of cryo-preserved intact organs and a higher quantum 

yield of fluorescence of NADH and FAD as compared to room temperature [77, 101, 

102]. The cryoimager (figure 5) collects 3-D fluorescence images of frozen tissue's 



30 

 

 

 

intrinsic or extrinsic fluorophores. The instrument consists of an Aqua Exi CCD camera 

(Q-imaging, Aqua Exi, 14 bit, 6.45 µm pixel), a workstation (Dell Computer), a mercury 

arc lamp (200W, Oriel), an excitation (EX) filter wheel  (which provides up to five 

excitation wavelengths), an emission (EM) filter wheel with synchronized rotation to EX 

wheel, and a cryo-microtome. Fluorescence images are acquired with the digital camera 

(1392×1040 pixel array) with a 200-mm Nikkor lens (Nikon, Tokyo, Japan). Two 

motorized filter wheels containing excitation and emission filters are mounted in front of 

the light source and camera, respectively. The motor-driven microtome sequentially 

sections frozen tissue at the desired slice thickness while filtered light from the arc lamp 

excites fluorophores in the exposed surface of the tissue block for up to five distinct 

fluorophores. The microtome is housed in a freezer unit that maintains the sample at -

40
o
C during sample slicing and image acquisition. Computer control of the microtome 

motor and filter wheels as well as image capture and display is accomplished through 

LabVIEW (8.6 National Instruments) [103]. 

 The excitation band pass filter used for NADH is 350 nm (80 nm bandwidth, UV 

Pass Blacklite, HD Dichroic, Los Angeles, CA) and for FAD is 437 nm (20 nm 

bandwidth, 440QV21, Omega Optical, Brattleboro, VT). The emission filter for NADH is 

460 nm (50 nm bandwidth, D460/50M, Chroma, Bellows Falls, VT) and for FAD is 537 

nm (50 nm bandwidth, QMAX EM 510-560, Omega Optical, Brattleboro, VT). At each 

slice, the camera records fluorescence images of the tissue block in pixel dimensions of 

22 µm × 22 µm. The resolution in the z-direction of microtome slices can be as small as 

10 µm. For this study, a resolution of 25 µm was used in the z-direction, which resulted 
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in ~ 1000 z-slices per adult rat lung (and <1000 for rat pups and mice lung). Images are 

acquired with exposure times of 1.5 s for FAD and 1 s for NADH. Accounting for the 

time to rotate the filter wheels, as well as moving and slicing the sample, this results in 3-

4 h (depending on the size of the lung) for imaging a whole adult rat lung [103-105]. 

 

2.3.2. Calibration 

A calibration method was designed to compensate for day-to-day variation of light 

intensity, mirror angle, and non-uniformity of the illumination pattern.  

 At the beginning of each experiment and before slicing the tissue, a piece of graph 

paper was placed in the tissue position to set the focus of the lens and determine the 

 

Figure 5. Schematic of Cryoimager. This device sequentially slices the tissue, imaging the surface 

between each successive slice, in as many as 5 channels. The images are then displayed and saved to a 

computer where they can be processed to create 3D renderings of the tissue [33]. 
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resolution. Then, one image was taken with the lamp shutter closed and the camera lens 

covered, referred to as the dark image.  

 Next, a uniform fluorescent flat acrylic plate was placed in the same position and 

imaged in all channels to acquire the illumination pattern. Because of the fluorescence of 

the standard in both the NADH and FAD channels and its high resistance to 

photobleaching, it also accounts for day-to-day light intensity changes in both channels.  

The acrylic plate is also advantageous in that it allows for imaging with camera settings 

in the same range as those used for tissue without causing saturation of the resulting 

image. Acquisition of the tissue sections then followed calibration.  

 When the tissue has been completely imaged, each individual slice first has the 

dark image subtracted from it, followed by correction for the non-uniformity of the 

illumination pattern by division to the image of the flat plate captured in the same 

channel. 

2.3.3. Image Processing 

FAD and NADH autofluorescence images from each lung were processed using 

MATLAB (r2008a, The MathWorks, Inc., Natick, MA). The composite images were 

created using all the image slices for each lung, for both NADH and FAD signals. The 

ratio of NADH and FAD (RR) [74, 106], was calculated voxel by voxel, using Matlab, 

according to equation (1). 

   Redox Ratio = RR = NADH / FAD     (1) 
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 For each lung, a histogram of RR values was created, and the mean (first moment) 

of this histogram was calculated for the whole volume of the tissue according to equation 

(2).  

∑∑∑
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   (2)  

Where Nx, Ny and Nz are the number of voxels in x, y and z directions, respectively and 

the voxel size in x, y and z direction is 22µm, 22µm and 25µm, respectively. Only the 

tissue volume was included in the calculation of the mean value and the background 

(from black medium) is excluded. 

 For the IR lungs, the left and right lobes were separated to examine similarities 

and differences between the injury region and the normal region. This was performed by 

defining a plane that separates the two lobes (using the voxels' inherent coordinate 

geometry), and collecting data on either side of the plane separately [83].  

 Statistical comparisons were carried out using ANOVA followed by Tukey’s test, 

with p < 0.05 as the criterion
 
for statistical significance. 

2.4. Results 

 As the first set of imaging, mice lungs lacking bcl-2 (a BPD-like phenotype) is 

compared to normal mice lungs of the same age (21 days) and the result is presented in 

figure 6. The first two panels shows 3D rendering of NADH and FAD fluorescence 
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signals and their ratio (RR = NADH/FAD) from representative control and bcl-2 knocked 

out mice lungs. As expected, mice lacking bcl-2 shows a decreased NADH signal and 

increased FAD signal and as a result decreased RR (43%) which implies more ROS 

generation and oxidative stress. 

 

Figure 7 shows the 3D rendering of NADH and FAD fluorescence signals and their 

ratio (RR = NADH/FAD) from representatives of each of the four groups (normoxic, 

 

Figure 6. 3D representative and histograms of Bcl-2 lungs. Representative 3D reconstructions of 

lungs from each of two groups (Bcl-2 knocked out and control). From left to right, images shown are 

NADH, FAD, and mitochondrial redox ratio (RR) for bcl-2 knocked out lung (top) and control 

littermates (bottom). The histogram on NADH redox voxels distribution is also shown in the bottom 

panel, along with mean values of the two groups of lungs. 
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normoxic + KCN, hyperoxic, and IR) of adult rat lungs and figure 8 shows histograms of 

RR for the four sets of lungs in figure 7. 

 

 For the IR lung, the histogram in figure 7 is that of both the injured lobe (left 

lobe) and normal lobe like the other sets. Despite the localized nature of the IR insult, all 

 
 

Figure 7. Representative 3D reconstructions of IR and Hyperoxic lungs. Represented lungs from 

each of four groups (from top to bottom: normoxic, normoxic +  KCN, hyperoxic, and IR) is shown. 

From left to right, images shown are NADH, FAD, and mitochondrial RR [29]. 
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areas of the lung show a difference when compared to a normal lung. For each histogram, 

the mean value was calculated as described in the image processing section. In this 

figure, the counts of each bin have been normalized to the total number of pixels in the 

lung. As a result of this normalization, the value of each bin corresponds to the percent of 

voxels in the lung with intensities falling within the given range. In this manner, the 

histogram can be thought of as a scaled probability density function of mitochondrial 

redox ratio intensities for a lung. The mean values of these histograms suggest a more 

reduced mitochondrial redox state for normoxic lungs treated with KCN (which inhibits 

complex IV and hence oxidizes the chain), and more oxidized mitochondrial redox state 

for hyperoxic and IR lungs as compared to normoxic lungs.  

 

 Figure 9 shows the average ± SE (standard deviation over the number of samples) 

of the mean values of the redox ratio histograms for four groups of rats in figure 7.  Each 

lung was calibrated to correct for day-to-day variations as described in the signal 

 

Figure 8. Histogram distribution of Redox ratio for the four lungs exemplified in Figure 7 [29]. 
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processing section. In this figure, only the injured lobe of the lung was considered when 

generating the histograms of the IR lungs. Inhibition of complex IV with KCN increased 

the mean value of the RR histogram by 30% compared to normoxic lungs. On the other 

hand, hyperoxia and IR decreased the mean values of the RR histograms by 23% and 

20%, respectively, compared to normoxic lungs. 

 

 

 Figure 10 displays a bar graph plot comparing the contralateral (non-ischemic) 

lobe to the injured lobe of lungs subjected to ischemia-reperfusion. The figure shows that 

both NADH and FAD signals were decreased for the injured lobe as compared to the 

non-ischemic lobe. However, the mitochondrial redox ratio was only minimally 

impacted. 

 

Figure 9. Bar graph showing the average values and standard errors of the mean value of 

the histogram of the mitochondrial redox ratio for each of the four groups of lungs. The results show 

a difference between normoxic (NRM) and NRM + KCN (* p < 0.005), NRM and hyperoxic (HYP) 

(** p < 0.01), and NRM and IR (*** p < 0.01). p values were obtained from post-hoc testing of a 

balanced one way ANOVA using Tukey's honestly significant difference criterion [29]. 
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 Figure 11 shows the 3D volume rendering of NADH, FAD, and NADH redox for 

a representative lung from each of the normoxic+KCN, normoxic, normoxic+LPS, 

hyperoxic, and hyperoxic+LPS lung groups, in decreasing order of RR, and figure 12 

shows the NADH redox histograms of the representative lungs presented in Fig. 11. The 

normoxic lungs treated with KCN again show the highest levels of NADH RR compared 

to other lungs, establishing an upper limit for NADH RR in this study. The lungs in the 

normoxic and normoxia+LPS group (second and third rows in Fig. 11) show a lower 

concentration of FAD and a higher concentration of NADH compared to hyperoxic and 

hyperoxia+LPS groups (fourth and fifth row in Fig. 12). Thus, the NADH RR is lower 

(more oxidized) in the hyperoxia +/- LPS groups compared to the normoxic +/- LPS 

groups.  

 

Figure 10.  Bar graph plot of the mean value of normal and IR lobe in IR lungs. The results 

show a difference between non-ischemic (contralateral) and injured ischemic lobe in NADH (* p < 

0.01) and FAD (** p < 0.05). P values were obtained from a paired one-tailed student's t-test [29]. 
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Figure 11.  Volume rendering of NADH, FAD, and RR of a representative lung  in each group of 

neonate rat pups [145]. 
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The mean values of NADH RR for all the lungs are shown in a bar graph including the 

standard errors, in Figure 13. 

  

 

 

Figure 13. Bar graph showing the means and standard errors of the mean value of 

mitochondrial redox ratio for each of the five groups of lungs. The number of lungs N = 3, 5, 4, 4, 

and 4 for  normoxic+KCN, normoxic, normoxic+LPS, hyperoxic, and hyperoxic+LPS, 

respectively. The results show a significant difference between normoxic and hyperoxic (*p < 

0.01), normoxic and hyperoxic +LPS (**p < 0.01), and normoxic and normoxic+KCN lungs (***p 

< 0.01) [145].  

 

Figure 12. NADH redox histograms for a representative lungs of figure 11 [145]. 
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 KCN perfused lungs showed the highest NADH redox, which is 29% more 

reduced than that for normoxic lungs. Comparing the normoxic lungs to normoxic+LPS 

lungs, the results show no significant change in the biochemical state of the tissue, which 

indicates that stimulating the lung with LPS has no significant effect on the redox status 

of the respiratory chain of the lung. NADH RR values for hyperoxic+LPS lungs were 

lower (more oxidized) than hyperoxic lungs but were not significantly different. Thus, 

comparing the results for all lungs (hyperoxic+LPS+/- versus normoxic LPS+/-), it can be 

concluded that there is a higher level of oxidative stress in the hyperoxic+LPS lung 

versus the normal+LPS lung compared to their controls (hyperoxic and normoxic lungs, 

respectively). Comparing the mean values of normoxic versus hyperoxic lung, it can be 

seen that the NADH RR indicates a 31% more oxidized chain in hyperoxic lungs 

compared with normoxic lungs. 

 

 
Figure 14. Mean values of NADH, FAD, and RR histograms of two groups of normoxic lungs plus 

the standard deviation of the mean value for the first group. For the first group (washed lungs) the blood 

was washed out of the lungs (n=4) by perfusing with Krebs bicarbonate solution. For the second (lung 

containing blood), the lung (n=1) was not perfused and was frozen immediately after it was removed 

from the chest [145]. 
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Figure 14 demonstrates the effect of having blood present in the tissue, as would be the 

case for any in vivo study. The overall fluorescence signal decreased in both channels; 

however, the RR change is relatively small. 

2.5. Discussion 

The results of this study demonstrate the utility of cryoimaging for evaluating the redox 

status of tissue mitochondrial coenzymes NADH and FAD in intact lungs. The redox 

ratio (RR), NADH/FAD, is an index of lung tissue mitochondrial redox state, which is an 

important determinant of mitochondrial bioenergetics.  

 Oxygen therapy has been used in clinical medicine for many years despite the 

recognition of pulmonary oxygen toxicity as a problem for nearly 70 years. Cellular 

metabolism under hyperoxic conditions leads to an increase in the rate of formation of 

oxygen free radicals and results in oxygen-induced lung injury. Bacterial LPS is a major 

factor in causing ALI and induces the release of reactive oxygen species, which in turn 

may lead to higher oxidative stress in the lung tissue. LPS exposure is a common factor 

involved in ALI and results in endothelial apoptosis and mitochondrial dysfunction. Our 

hypothesis is that LPS accentuates a preexisting insult to lungs caused by hyperoxia. 

 Hyperoxia leads to enhanced production of ROS and the results revealed that both 

chronic hyperoxia and IR injury decreased lung RR due to mitochondrial dysfunction 

caused by oxidative stress. Although these two injury models produce the same 

mitochondrial dysfunction and caused oxidative stress, it is possible that they might be 
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distinguished due to the heterogeneity of the IR injury. However, the present goal of this 

study is to quantify oxidative lung injury regardless of cause.  

 Previously, it was demonstrated that adult rat exposure to 85% O2 for 7 days 

decreased complex I activity by 50% and increased complex III and IV activities by 56% 

and 90%, respectively, as compared to normoxic lungs [98]. These changes would be 

expected to lead to a more oxidized chain downstream from complex I and hence to a 

decreased RR ratio consistent with the results from this study. Although redox state of 

mitochondrial respiratory chain does not directly measure ROS, our observation suggests 

a possible mechanism for higher prevalence of lung diseases with the use of high 

concentrations of supplemental oxygen. 

 Prediction of hyperoxia induced lung injury is difficult because the susceptibility 

of individuals to hyperoxia is quite variable. Serial surface fluorescence measurements 

that can be obtained from catheter probes inserted through tube thoracostomies could 

provide critical real time information regarding the development of oxidative lung injury 

over days in patients at risk.  

 The IR model also causes a depression in complex I activity which would also be 

expected to oxidize the chain and decrease RR [21]. Our results show that RR decreased 

equally for both the ischemic and non-ischemic lungs. This suggests that the IR injury 

was not limited to the ischemic lung. This is consistent with previous results which 

demonstrated an increase in caspase 3 activity and influx of neutrophils in both lungs in 

this IR model [84], demonstrating bilateral injury. The anesthesia "preconditioning" 

effects on the IR lungs tissue caused by isoflurane are minimized after 24 hour recovery 
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period following the surgery. The left (ischemic and reperfused) and right (non-ischemic) 

lungs would exhibit identical preconditioning effects if there are any.  

 Because IR is associated with alveolar hemorrhage [84, 85] and in vivo estimates 

of RR would unavoidably be acquired in the presence of blood, we determined the effect 

of blood on RR as follows.  We conducted cryoimaging for one control lung which was 

not washed free of blood and compared its NADH, FAD and RR to those of control lungs 

that were washed of blood. Figure 14 demonstrates the effect of having blood present in 

the tissue, as would be the case for any in vivo study. The result of this experiment is 

consistent with the results from a study by Chance et al. in which they showed that 

perfusion of isolated organs (e.g. liver) with perfusate containing red blood cells 

decreases NADH and FAD signals but does not change the redox ratio [36]. They 

concluded that the RR in the presence of blood is still a faithful indicator of oxidation-

reduction and can compensate for interfering factors such as light scattering, hemoglobin, 

etc. that exist under in vivo conditions [36] still several methods exist to correct for these 

factors [108, 109] (more on this subject in chapter 3 for in vivo fluorometry studies).  

 In order to show the dynamic range of mitochondrial redox state, we 

demonstrated changes in the redox ratio of normoxic adult rat lung when perfused with 

KCN (potassium cyanide), as a negative control (the most reduced state). KCN is a 

complex IV inhibitor of the respiratory chain which reduces the chain, and hence 

provides an upper boundary on NADH RR [29, 110, 111]. KCN was chosen since in a 

previous study [111], comparing perfusion with KCN, anoxia (95% N2 and 5% CO2) and 

CO (95% CO, 5% CO2), the KCN group showed the largest inhibitory effect on the 
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redox state of the lung tissue. In the present study, hyperoxia and KCN had the opposite 

effects on lung NADH RR, which was higher (more reduced) in KCN+normoxic lungs 

and lower (more oxidized) in hyperoxic lungs as compared to that in normoxic neonate 

lungs [29]. 

 Cytosolic NADPH, which has the same fluorescence characteristics as NADH, 

could be contributing to the signal attributed to NADH in this study. However, Chance et 

al. demonstrated that the fluorescence signal originates mostly from NADH in the 

mitochondria and the contribution of NADPH - present in cytosol - is very small [112]. 

The fluorescence signal is mainly from NADH since its quantum yield is much higher 

than NADPH (1.25 to 2.5), its concentration is 5 times larger than NADPH, and is the 

only one affected by metabolic perturbations [113-115]. Thus, NAPDH contribution to 

the NADH signal and the change in the NADH signal due to hyperoxia or IR in this study 

is assumed to be small and was ignored. 

 Other endogenous flurophores that may contribute to the NADH signal include 

collagen and elastin, which are present in the tissue [116]. However unlike NADH, 

collagen and elastin contribution would not be expected to change with variations in 

mitochondrial redox state [116, 117]  

The current study demonstrates the utility of RR to detect lung mitochondrial oxidant 

injury under ideal conditions that optimize the quantum yields of NADH and FAD and 

minimize the effects of confounding factors such as blood. We have not evaluated the 

effect of temperature on the quantum yields of NADH and FAD. However, Chance et al. 

addressed this question and demonstrated a high correlation between the RR values in 
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room temperature compared to cryogenic temperatures [36]. In addition, we have 

developed a fluorometer to measure lung surface NADH and FAD signals from an 

isolated perfused lung at 37
o
C and the results using this system in presented in the next 

chapter. 
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Chapter 3 

Ex vivo and in vivo studies - 

Fluorometry: Fluorescence spectroscopy 
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3. Ex vivo and in vivo studies - Fluorometry: Fluorescence 

spectroscopy 

3.1. Introduction 

 Fluorometry is the monitoring of concentrations of fluorophores using their 

fluorescence properties. We designed a fiber-optic-based optoelectronic fluorometer to 

measure emitted fluorescence from the previously mentioned auto-fluorescent electron 

carriers NADH and FAD of the mitochondrial electron transport chain (ETC). We 

evaluated the fluorometer by measuring the fluorescence intensities of NADH and FAD 

at the surface of rat lungs both isolated perfused (ex vivo) and in IR injury (in vivo).  

 This technique was first implemented by Chance, et al [119] in the early 1950s to 

monitor biochemical states of NADH in vitro and later in 1970s in vivo in rat brains. The 

first implementation (figure 15.a) of this device used a pneumatic wheel to time share 

signals from fluorescence and reflectance on one photomultiplier tube (PMT). The device 

showed the ability to monitor concentrations on NADH in vivo (figure 15.b). His group 

then advanced their design (figure 15.c) to use a separate PMT for reflectance and gain. 

This design first split the signal using a trifurcated fiber bundle, but was later modified to 

split the signal using a beamsplitter (figure 15.d). Similar devices have been designed by 

other groups [109, 120-122], as well. We have designed our fluorometer in Biophotonics 

Lab and modified it over time. Further details of each design is provided before and a 
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summary along with the description of the final design is presented in the following 

section [21]. 

  

 The objective of the fluorometry studies is to demonstrate the utility of these 

optical fluorescence techniques to evaluate lung tissue mitochondrial redox state 

(NADH/FAD) in isolated perfused rat lungs in control and injured lungs with high 

 
(a)                                                                            (b) 

 
(c)                                                                            (d) 

Figure 15. Previous fluorometer designs. Early designs of fluorometer devices used by Chance, et 

al. a) schematic of original implementation. b) Picture of a. c) Second iteration of fluorometer. d) 

Current implementation [1]. 
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sensitivity, and quantify the impact of blood on NADH and FAD fluorescence signals 

and their ratio and finally in vivo evaluation of IR injury. Isolated perfused lungs are 

particularly attractive to study in this regard since perfusate and/or ventilation gas 

composition can be altered to modify the oxido-reductive state of tissue mitochondria. 

 Our results demonstrate the ability of these techniques to detect a change in lung 

tissue mitochondrial redox state in isolated perfused lungs. We further utilized optical 

fluorometry to evaluate the effect of rat exposure to hyperoxia (>95% O2 for 48 hours) on 

lung tissue mitochondrial redox status in a nondestructive manner in intact lungs, with a 

long term goal of understanding the role of mitochondrial dysfunction in the pathogenesis 

of lung O2 toxicity as well as developing a diagnostic modality of oxygen toxicity.       

3.2. Fluorometer 

3.2.1. Optoelectronic design 

 The fiber-optic-based fluorometer device designed for this study has undergone 

several improvements and iterations over our original design [19, 20]. The initial design 

included a pneumatic filter wheel which was used both for filtering of excitation and 

emission fluorescence. However, to eliminate the need for compressed air to use the 

device, the second design replaced the pneumatic filter wheel with two synchronized 

electric filter wheels. After further investigation, it became apparent that the use of 

separate detectors for each fluorophore would be beneficial. Therefore, the emission filter 

wheel was supplanted by the combination of a dichroic mirror and static filters. Finally, 
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to correct for interfering factors such as hemodynamics, a beam splitter was added to 

detect diffuse reflectance from the tissue. A schematic for this iteration of the fluorometer 

device used in this study is shown in Figure 16.a. Excitation light is generated from a 

mercury arc lamp (Intensilight, Nikon, Tokyo, Japan), and coupled to a liquid light guide. 

The light is then fed into a filter wheel (Lambda-3, Sutter Instrument, CA), where the 

appropriate excitation wavelength can be selected. On the other side of this filter wheel is 

one leg of a bifurcated fiber bundle (Newport Instrument, NJ) with a distal end of 3.2 mm 

inner diameter. This distal tip is brought into contact with the tissue under investigation 

to deliver the appropriate excitation light and collect the corresponding fluorescence 

emission. The emitted light, along with reflection of the excitation is then delivered 

through the other leg of the bifurcated fiber bundle to the detection optics. After the light 

exits the fiber bundle, it is collimated and split using a beam splitter (UVBS14-1, 

Newport Instruments, CA). Half of the light is then incident on an avalanche photodiode 

(PDA25K, ThorLabs, NJ) for detection of reflected light. The other half of the light then 

passes through a dichroic mirror (DMLP505R, ThorLabs, NJ) to separate the NADH and 

FAD channels. In either of the channels, the light is then filtered to select the emitted 

fluorescence, remove any remaining reflection as background, and is finally incident on a 

photomultiplier tube (PMT; PMM02, ThorLabs, NJ). Synchronization of excitation and 

detection is achieved through the use of a custom LabVIEW program. To optimally 

excite the fluorophores of interest, NADH and FAD, using the mercury arc lamp, the 

excitation filters used were centered at 370 nm (FF01-370/36, Semrock, NY) and 452 nm 

(FF01-452/45, Semrock, NY), with bandwidths of 40 nm and 50 nm, respectively. The 
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dichroic mirror used to separate the emission of each fluorophore has its transition 

wavelength at 505 nm. Finally, the filters used to detect the emitted fluorescence are 

centered at 460 (D460/40M, Chroma, VT) and 520 nm (D520/40M, Chroma, VT), 

respectively, each with a bandwidth of 40 nm. To control all of the hardware used, as 

well as record the necessary signals and display them in real time, a LabVIEW program 

has been designed as well [21]. The fluorometer is used in a dark room to minimize stray-

light effects [71, 73, 123]. At the beginning of each experiment, NADH and FAD 

fluorescence standards were measured to account for day-to-day variations in light 

intensity. Surface fluorescence was then measured by placing the fiber optic probe 

against the pleural surface of the right lobe (figure 18.a). 

 

  
(a)                                                                 (b) 

Figure 16. a) Fluorometer Schematic [146] and b) actual implementation. 
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3.2.2. Signal processing 

 The stored files containing the recorded data are saved to the computer in 

National Instrument's "technical data management stream" (TDMS) file format. This type 

of file is ideal in that it is optimized for rapid storage of measurement data, and the output 

can be relatively easily read. To read the files, our chosen method is to import the TDMS 

file into the familiar excel format, where the first sheet of a workbook contains 

information about the data, such as sampling rate and the time of collection, and the 

second sheet contains the saved data. 

 From here, the data is easily read into MATLAB, where it can be managed to 

allow for powerful and easy display customization. However, we must again sort through 

the data to eliminate the zeros and pulses to show the actual trend of the data (figure 

17.a). This is done by looping through the data one column at a time, and extracting the 

maximum value of each pulse (figure 17.b). This is achieved by defining the start and end 

point of any pulse as the first and last values after or before a zero. This trend was then 

smoothed out using a fourth order median filter followed by a fourth order moving average 

filter. The resulting NADH and FAD signals were then normalized by dividing each by its 

baseline value (signal level in the absence of any metabolic inhibitor or uncoupler). The 

normalized signals were then used to calculate the mitochondrial RR, RR = (normalized 

NADH)/(normalized FAD), which has a baseline value of 1. 

Reflectance signal: For experiments in which blood was added to the perfusate as well as in 

vivo studies, the NADH and FAD reflectance signals were also measured in both channels. 

The quenching effect of blood on the surface fluorescence NADH and FAD signals was then 
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corrected for, either by dividing the normalized reflectance signals by the normalized 

fluorescence signals or by subtraction of the reflectance signals from the fluorescence signals 

[124] according to the following equations, respectively.  

Normalized NADH Fluorescence / Normalized NADH Reflectance

Normalized NADH Fluorescence / Normalized NADH Reflectance
RR =

   (3) 

(Normalized NADH Fluorescence Normalized NADH Reflectance+1)

(Normalized NADH Fluorescence Normalized NADH Reflectance+1)
RR

−
=

−
   (4) 

Statistical evaluation of data: Data are presented as means ± standard error (SE) unless 

otherwise stated. Statistical comparisons were carried out in each group using a two-tailed 

student's t-test or one way ANOVA followed by Tukey’s HSD (Honestly Significant 

Difference) post-hoc test, with p < 0.05 as the criterion for statistical significance. 

 

 

Figure 17. Fluorometry data processing. Extraction of the trend of fluorescent signals from the raw 

data produced by the fluorometer. Top shows the final trend of the data and bottom step of signal 

processing to get the final result shown on top: a) Raw data recorded. b) Detection of maximum value 

of pulses corresponding to active channel periods. c) Extraction and filtering of data trend. 
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3.2.1. Fluorometer linear response  

 To evaluate the linearity and sensitivity of the fluorometer to a change in NADH 

or FAD signal, we measured the NADH and FAD fluorescence signals in cuvettes 

containing aqueous solution with different NADH and/or FAD concentrations. The range 

of NADH and FAD concentrations studied encompassed the NADH and FAD 

concentrations in lung tissue [6, 125]. In one cuvette, the solution of fixed 6.7 µM 

NADH, and incrementally added FAD, led to concentrations ranging from 0-270 nM. 

Similarly, the second cuvette with fixed 30nM FAD solution, and sequentially added 

NADH resulted in concentrations ranging from 0-26 µM. The tip of the fluorometer 

probe was placed in contact with the wall of the cuvette, and the experiments were 

performed in a dark room to minimize background signal due to ambient light. 

3.3. Tissue Preparation and signal acquisition 

3.3.1. Materials 

 Fatty-acid free bovine serum albumin (Standard Powder, BSA) was purchased 

from Serologicals Corp. (Gaithersburg, MD). All other reagent grade chemicals were 

purchased from Sigma Chemical Company. 

3.3.2. Chain perturbation in control and hyperoxic lungs ex vivo 

 For normoxic (control) lung studies, adult male Sprague-Dawley rats (Charles 

River; 300-350 g) were exposed to room air. For the hyperoxic lung studies, age matched 
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rats were housed in a Plexiglass chamber maintained at >95% O2 for 48 hours (hyperoxic) 

[126]. The total gas flow was 3.5 liters/min and the chamber CO2 level was maintained at 

< 0.5%. The temperature within the chamber was 20-22
o
C. Every other day, the rats were 

weighed, and their cage, food, water, and CO2 absorbent were changed. All rats were 

kept on a 12:12-h light-dark cycle. A total of 17 normoxic and 16 hyperoxic rats were 

studied. All the lungs were perfused clear of blood with the perfusion-ventilation 

langendorff system described in the previous chapter. The isolated perfused lung 

preparation allows for manipulation of lung tissue mitochondrial redox state without 

disrupting the multi-cellular environment of the lung through the addition of metabolic 

inhibitor(s) to the recirculating perfusate and/or alteration of the composition of the 

ventilation gas [127]. 

 For a given lung, NADH and FAD surface fluorescence signals were first 

acquired under resting conditions (lung perfused with control perfusate and ventilated 

with 15% O2, 6% CO2 balance N2 ventilation gas), and then following the addition of one 

or more of the following agents (rotenone, potassium cyanide, and pentachlorophenol) to 

the recirculation perfusate. Rotenone (20 µM) was used to inhibit mitochondrial complex 

I activity, which would be expected to increase NADH signal by reducing the chain 

upstream from complex I, and decrease FAD signal from lipoamide dehydrogenase 

(LipDH) [128], which is an element of the pyruvate dehydrogenase complex [129]. As a 

mitochondrial complex IV inhibitor, potassium cyanide (KCN, 2 mM) would be expected 

to reduce the chain upstream from complex IV and hence increase NADH signal and 

decrease FAD signal from LipDH, succinate dehydrogenase (complex II), and electron 
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transfer flavoproteins (ETF) which are the main sources of FAD signal [128]. Uncoupled 

mitochondrial condition was achieved by the addition of pentachlorophenol (PCP, 

mitochondrial uncoupler; 3 mM) to the recirculating perfusate and by ventilation of the 

lungs with 95% O2: 5% CO2 to maximize the oxidation of the electron transport chain. As 

a protonophore, PCP should oxidize the chain and hence decrease NADH signal and 

increase FAD signal. In some experiments, KCN was added after the initial addition of 

rotenone or PCP. The above concentrations of rotenone, KCN, and PCP were chosen to 

achieve maximal inhibition or uncoupling and hence maximal changes in NADH and/or 

FAD signal [6, 99]. 

3.3.3. Lung perfusion with blood 

 To evaluate the quenching effect of blood on the NADH and FAD signals, surface 

fluorescence measurements were carried out in a separate group of lungs first perfused 

with control perfusate, then following the addition of autologous blood to the 

recirculating perfusate in ~ 0.5 ml increments to achieve perfusate hematocrit (Hct) levels 

of ~ 0.5%, 1.0%, 1.5%, 2%, 2.5%, 3.5%, and 4%.  This range of perfusate hematocrit was 

chosen based on the results of a previous study by Chance et. al [36]. At the end of this 

protocol, KCN was added to the recirculating blood-containing perfusate to evaluate the 

ability of the system to detect a change in NADH, FAD, and RR = NADH/FAD in the 

presence of red blood cells (4 % Hct). 
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3.3.4. Ischemia reperfusion injury in rat lungs in vivo 

 Male Sprague-Dawley rats (275-350 g; Charles River) were used for this study. 

Rats were anesthetized with isoflurane, an ET tube was secured for ventilation and the rat 

was placed in a prone position as previously described [15]. The ventilation gas was 

room air. The left anterior chest was opened to access the left hilum including the main 

stem bronchus, left PA (pulmonary artery) and left pulmonary veins. Next, surface 

NADH and FAD fluorescence signals were acquired by placing the fiber optic probe 

against the pleural surface of the left lobe (figure 18.b). Once the signal settled to a stable 

level, a vascular clamp was carefully placed across the hilum for 10 minutes, after which 

time it was removed. Signals were collected continuously prior to, during and following 

clamping.  

 

3.3.5. Complex I and II Assays: 

For a separate sets of normoxic and hyperoxic lungs the activities of mitochondrial 

complex I and II were determined as previously described [21, 22]. Briefly, lungs were 

        

(a)      (b) 

Figure 18. Probe head on the lung during an (a) ex vivo and (b) in vivo experiment. 
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isolated and washed free of blood with perfusate containing (in mM) 4.7 KCl, 2.51 

CaCl2, 1.19 MgSO4, 2.5 KH2PO4, 118 NaCl, 25 NaHCO3, 5.5 glucose, and 2.5% Ficoll. 

Lungs were then removed from the perfusion system, weighed, minced, and 

homogenized with buffer (pH 7.2) containing (in mM) 225 mannitol, 75 sucrose, 5 3-[N-

morpholino] propanesulfonic acid, 20 ethylene glycol-bis (B-aminoethyl ether)-

N,N,N’,N’-tetraacetic acid,  2% fatty-acid free BSA,  and 0.02 ml per ml protease 

inhibitor cocktail set III (Calbiochem, La Jolla, CA), utilizing a Polytron tissue 

homogenizer. Lung homogenates were centrifuged at 1,500 g for 5 min at 4°C, and the 

resulting supernatants were centrifuged again at 13,000 g for 30 min at 4°C to obtain a 

crude mitochondrial fraction (P2). The P2 fractions were washed twice by resuspension 

in 8 ml ice-cold homogenization buffer without BSA and then centrifuged (13,000 g for 

20 min at 4°C). The final P2 fractions were resuspended in 1-ml BSA-free 

homogenization buffer. Mitochondrial complex I (NADH dehydrogenase) activity (nmol 

NADH oxidized·min
–1

·mg protein
–1

) was determined as the difference between the rates 

of NADH oxidation in the presence and absence of rotenone over the linear portion of the 

reaction progress curve as we have previously described [21]. Mitochondrial complex II 

(succinate-coenzyme Q reductase) activity was determined as the difference between the 

rates of reduction of the artificial electron acceptor 2,6-dichlorophenolindophenol 

(DCPIP) in the presence and absence of thenoyltrifluoroacetone (TTFA, complex II 

inhibitor) over the linear portion with succinate as donor [22]. The protein concentrations 

were determined colorimetrically as previously described [21].  
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3.4. Results 

3.4.1. System Linearity 

 In order to verify that the response of the fluorometer has a linear relationship 

with the concentration of the fluorophores of interest, the sensitivity curves of each 

fluorophore were determined and plotted as shown in figure 19. In one plot, sequentially 

increasing concentrations of NADH were tested and plotted while the concentration of 

FAD was held approximately constant. The second plot, on the other hand, contains data 

from sequentially increasing concentrations of FAD while the concentration of NADH is 

held approximately constant. The values of the coefficient of determination, R
2
, (0.999 

for NADH and 0.996 for FAD) demonstrates a linear response to a change in the 

concentration of NADH (or FAD) in the presence of FAD (or NADH) over a wide range 

of NADH and FAD concentrations. The results presented here from the fluorometer 

indicate that it has great potential as a diagnostic tool in clinical settings. The linearity of 

the response of both the NADH and FAD signals to increasing concentrations of either 

fluorophore is essential to this possibility. The importance of this linearity is especially 

useful given that the range of concentrations used is similar to the range seen in typical 

tissue, meaning that the device is capable of detecting changes in the concentration of 

either fluorophore in tissue. In addition, the figure shows that changing the concentration 

of one fluorophore has a minimal impact on the signal corresponding to the other 

fluorophore. 
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3.4.2. Chain perturbations using inhibitors and uncouplers 

For both normoxic and hyperoxic lungs, the response of both NADH and FAD lung 

surface signals to lung perfusion with rotenone, KCN, or PCP appeared within a minute 

of adding the chemical to the perfusate reservoir (figure 20). 

 An increase (from baseline) in NADH fluorescence signal indicates reduction of 

the electron transport chain (figure 20), whereas an increase in the FAD fluorescence 

signal indicates oxidation of the electron transport chain. In this study, the change in 

NADH signal in the presence of rotenone or KCN is considered a measure of 

mitochondrial complex I activity, and the change in the FAD signal in the presence of 

KCN is considered a measure of mitochondrial complex II activity. 

 
(a)                                                                       (b) 

Figure 19. Fluorometer Linearity Response. Linearity response of the fluorometer when tested on 

sequentially increasing concentrations of FAD (a) or NADH (b). While one fluorophore concentration is 

increased, the other is held approximately constant to show the minimal crosstalk of the system. The 

fluorescence signal intensity is normalized to a concentration typically found in tissue [110]. 
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 For normoxic lungs (figure 20 and table 2), lung perfusion with rotenone 

(complex I inhibitor) reduced the electron transport chain (ETC) upstream from complex 

I resulting in an increase in NADH signal by 20.2 ± 2.3 (SE) %, with no effect on FAD 

signal. Lung perfusion with KCN (complex IV inhibitor) reduced the ETC resulting in a 

21.7 ± 2.5 % increase in NADH and 6.8 ± 1.6 % decrease in FAD. Lung perfusion with 

PCP, which uncoupled ETC from phosphorylation, decreased NADH signal by 19.7 ± 

2.1% with no effect on FAD signal. The addition of KCN to PCP-treated lungs  reversed 

the effect of PCP on the redox status of the ETC, increasing NADH signal by 25.7 ± 

2.6% and decreasing FAD signal by −9.3 ± 1.0%.  

 

 

Figure 20. Representative fluorometer response to perfusion with chemical inhibitors and 

uncouplers in a normoxic lung [110]. 
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In the presence of rotenone, KCN resulted in a small but significant decrease (−3.3 ± 

0.8%) in lung surface FAD signal and increase (4.6 ± 1.0%) on NADH signal as 

compared to values in the presence of rotenone only. 

3.4.1. Chain perturbations in hyperoxic lungs 

 For hyperoxic lungs (figure 21, table 2), lung perfusion with rotenone increased 

NADH signal by 7.5 ± 1.1%, which is 63% lower than in normoxic lungs, with no effect 

on FAD signal. Lung perfusion with KCN increased NADH by 9.2 ± 1.2%, which is 58% 

lower than in normoxic lungs. KCN effect on FAD signal in hyperoxic lungs was not 

significantly different from that in normoxic lungs.    

 

 

Figure 21. Representative fluorometer response to perfusion with chemical inhibitors and 

uncouplers in a hyperoxic lung [146].   



64 

 

 

 

 Lung perfusion with PCP had the same qualitative and quantitative effects on 

NADH and FAD signals as in normoxic lungs. The addition of KCN to PCP-treated 

hyperoxic lungs increased NADH by 9.0 ± 1.0%, which is 65% smaller than that in 

normoxic lungs. Furthermore, KCN decreased FAD signal by 4.2 ± 0.7%, which is 55% 

smaller than in normoxic lungs. These results are consistent with a more reduced chain 

upstream from complex I and II in hyperoxic lungs as compared to normoxic lungs, and 

suggest a decrease in complex I and II activities in hyperoxic lungs.  

 

Table 3 shows that complex I and II activities normalized to protein were ~ 77% and 63% 

lower, respectively, in P2 fractions derived from hyperoxic than those of normoxic lungs. 

 

Table 2. The effects of metabolic inhibitors and uncoupler on the lung tissue surface FAD and NADH 

fluorescence signals of normoxic and hyperoxic rats [146].  

 

FAD % NADH% RR (NADH/FAD)% 

NRM HYP NRM HYP NRM HYP 

PCP 1.4 ± 1.0 -2  ± 1.3 -25.4 ±3.7
 δ
 -26.2 ±1.9

 δ
 -27.2 ±2.9

 δ
 -23.8 ±3.1

δ
 

Rotenone 0.3 ± 0.3 -0.3 ± 0.3 21.5 ± 2.5
δ
 7.5 ±1.1

*δ
 21.3 ±2.7

 δ
 7.8 ± 1.1

*δ
 

KCN -7.4 ±1.8
 δ
 -5.4 ± 0.7

 δ
 21.7 ± 2.5

δ
 9.2 ±1.2

*δ
 31 ±2.1

 δ
 14.8 ±1.6

*δ
 

PCP+KCN -9.6 ±1.1
 δ
 -4.2 ± 0.7

*δ
 27.2 ± 2

 δ
 9 ± 1

 *δ
 38.9 ±0.8

 δ
 13.2 ±1.3

*δ
 

Rotenone+ KCN -3.1 ±0.9 -3.8 ±0.6
 δ
 4.0 ±0.9 2.8 ±1.2 7.0 ±0.3

 δ
 5.8 ±1.1

 δ
 

• Values are mean ± SE.  

• The number of lungs for each condition is greater than 4 (5,6,4,4,7,5,4,5,6,4 for PCP in 

normal and hyperoxic lungs, rotenone in normal and hyperoxic lungs, KCN in normal and 

hyperoxic lungs, PCP followed by KCN in normal and hyperoxic lungs and rotenone 

followed by KCN in normal and hyperoxic lungs, respectively ).  

• * : p<0.05 (two-tailed student's t-test) between normal and hyperoxic lungs. 

• δ: p<0.05 (two-tailed student's t-test) showing each condition is significantly different than 

zero. 
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3.4.2. Effect of Blood 

 Perfusion of the lungs with buffer results in clean fluorescence signals, but the 

effect of blood should be considered for in vivo studies. To evaluate the ability of the 

fluorometer to operate in vivo, the fluorometer was tested in the presence of blood. The 

sequentially increasing amount of blood was studied to determine its effect on the signals, 

as well as evaluate a few methods to compensate for this effect. Figure 23 shows surface 

Table 3. Mitochondrial complex I and complex II activity measured in P2 fractions of lung homogenate 

[146]. 

 Complex I 

(nmol/min/mg protein) 

Complex II 

(nmol/min/mg protein) 

Normoxic      37.6 ± 3.2           79.1 ± 5.9 

Hyperoxic        8.6 ± 0.7
*
           28.5 ± 2.3

* 
 

Values are mean ± SE. n = 4 and 3 for normoxic and hyperoxic lungs, respectively. *indicates value 

significantly different from the corresponding normoxic value (p < 0.05; t-test). 

 

Figure 22. Bar graph of the fluorometer response (RR) to perfusion with uncouplers and inhibitors 

in normoxic and hyperoxic lungs. The p values (one-way student t-test) shows the significant changes 

between normal and hyperoxic lungs. 
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fluorescent signals of the lung before (left) and after correction using division (middle) 

and subtraction (right) methods.  

 Addition of blood to the control perfusate quenched the lung surface NADH and 

FAD signals (Figure 23). Increasing perfusate hematocrit (Hct) level from 0% (control 

perfusate) to 1% decreased NADH and FAD signal by ~40%. Further increases in 

perfusate Hct had a smaller effect on the signals, with the NADH and FAD signals 

approaching a steady state value at ~ 4% perfusate hematocrit. This exponential 

relationship between the degree of quenching of NADH and FAD fluorescence signal and 

perfusate Hct level is consistent with Beer’s law [130]. The effect of blood on RR was 

relatively small and was independent of perfusate Hct within the range of Hct studied. 

This result is consistent with results by Chance et al. [36]. 

 The majority of this large attenuation in the fluorescence signals due to the 

change in the blood concentration is corrected in the corrected signals. It is notable that 

the NADH redox is independent of the blood concentration and is almost constant 

throughout the experiment. The results in figure 23 also show that correcting the NADH 

or FAD normalized fluorescence signal using corresponding reflectance signals did not 

completely eliminate the quenching effect of blood, especially that which occurred 

between 0% and 1% Hct. 

To further evaluate the ability of the fluorometer to measure the signals in the presence of 

blood, KCN was administered to the lung following perfusion containing blood at 4% 

hematocrit. This level of hematocrit was chosen since the previous result indicates that 

the fluorescence signals are independent of blood concentration past this point. Figure 24 
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shows that potassium cyanide increased RR by ~26% in a lung perfused with blood-

containing perfusate (4% Hct). This increase in RR is within the 31 ± 2.1 % (SE) range 

measured in lungs perfused with blood-free perfusate (table 2). 

 

3.4.1. Ischemia reperfusion in vivo 

 Figure 25 shows representative surface fluorescence data (NADH, FAD and 

mitochondrial RR) from in vivo lung tissue, under control conditions and after clamping 

and unclamping of the left hilum. The data show that clamping, which reduces the chain 

(and as a result reduces NADH and FADH2) increased NADH signal, decreased FAD, 

and thus increased RR by 60%. The return of the fluorescence signals toward their 

original baseline as a result of unclamping indicates that the effect of clamping on lung 

surface NADH and FAD fluorescence is reversible by unclamping the left hilum (for 

short clamping intervals). 

 
Figure 23. Lung surface NADH, FAD, and RR signals in the presence of blood. The figure shows 

basline followed by sequantial addition of blood up to 4% hematocrit to isolated perfused lungs. Left is 

the raw fluorescent signals and right is the corrected signals using the division method described in 

Equation 1 [147].  
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Figure 25. Fluorometry in vivo experiment. Lung surface NADH (top panel), FAD (middle panel), and 

mitochondrial redox ratio (RR) (bottom panel) signals for baseline, followed by clamping the left hilum 

and subsequent unclamping after 10 minutes [147].  

 
Figure 24. Chemical Addition in the Presence of Blood. Response of the fluorometer to KCN and 

PCP in the presence of blood. Although blood initially decreases both of the fluorescence signals, the 

change due to the addition of KCN and PCP is detected with similar percentage changes as what was 

seen in the case without blood [147]. 
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3.5. Discussion 

 The results of this study demonstrate the ability of optical fluorescence techniques 

to detect a change in the redox state of the mitochondrial electron transport chain as 

measured by lung surface NADH and FAD fluorescent signals. The measured changes in 

NADH and FAD surface fluorescence following lung treatment with rotenone, KCN, or 

PCP are qualitatively consistent with the known effects of these metabolic inhibitors on 

the redox status of the mitochondrial electron transport chain. 

3.5.1. Metabolic Inhibitors 

Optical fluorescence techniques have been widely used to probe tissue redox state and 

energy homeostasis in organs such as the heart and liver, but have not been fully used in 

lungs [6]. The lung tissue presents a greater challenge for quantitative fluorescence 

studies than metabolically active tissues such as the heart or liver. The reasons include 

the low mitochondrial density of lung cells compared with metabolically active organs 

such as the heart [131, 132], the lungs’ air content and high perfusion to metabolic needs 

ratio, and the lungs' high collagen content which contributes to high background 

fluorescence [6]. To the best of our knowledge, the 1976 study by Fisher et al. [6] is the 

only study in the literature in which lung surface fluorometry was used to probe the redox 

status of lung tissue NADH. They reported relatively small changes in the NADH signal 

(table 3) in response to lung treatment with metabolic inhibitors that are known to oxidize 

or reduce the mitochondrial electron transport chain. As shown in table 3, the results of 

the present study represent a substantial improvement in our ability to detect a change in 
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NADH redox status in response to lung treatment with metabolic inhibitors as compared 

to what Fisher et al. [6] had reported. This increased sensitivity is mostly due to the use 

of optical fibers and highly sensitive PMTs. The fiber-optic design injects light into the 

tissue allowing fluorescence emission to be more heavily weighted from the 

mitochondrial containing parenchymal tissue than from the surface connective tissue 

fluorescence as is the case with the lens-based optics approach used by Fisher et al. [6]. 

 

 Our assumption in this study is that changes in the mitochondrial pool of NADH 

is a  key contributor to the measured changes in the NADH fluorescence signal since the 

metabolic inhibitors target the mitochondrial electron transport chain [133, 134]. 

However, cytosolic NADH also contributes to the lung surface NADH signal. There are 

multiple processes that determine cytosolic NADH concentration, including NADH 

reduction during glycolysis, and NADH oxidation by lactate dehydrogenase. Another 

important cytosolic process that alters both cytosolic and mitochondrial NADH 

concentration is the malate-aspartate shuttle which transfers electrons across the 

mitochondrial membrane from cytosolic NADH, which is oxidized to NAD
+
, to 

mitochondrial NAD
+
, which is reduced to NADH [135]. Lung treatment with rotenone, 

Table 4. The comparison of the percentage change in the NADH signal in the presence of metabolic 

inhibitors and uncoupler in the lung tissue surface fluorescence between our fluorometer and previous 

results (Fisher et al. [6]) [110].  

Treatment N %Change in NADH 

(Fisher and Chance[6]) 

N %Change in NADH  

(Present study) 

Potassium cyanide 11 6.7 ±  0.7 6 22.0 ± 2.9 

Amytal/(Rotenone) 5 5.0 ±  1.2 4 21.5 ± 2.5 

Pentachlorophenol 3 -4.3 ±  0.5 5 -25.4 ± 3.7 

   Values are mean ± SE  for N experiments. 
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KCN, or PCP decreases mitochondrial ATP production, stimulates glucoses [136, 137], 

and hence could alter cytosolic NADH concentration. Data in this report do not permit us 

to distinguish the contribution of these sources of NADH to the signal used to calculate 

RR values. 

 NADPH, which has the same fluorescence characteristics as NADH, may also 

contribute to the lung surface signal attributed to NADH in this study. The major 

cytosolic source is the pentose pathway, which requires glucose [128, 138, 139]. Other 

cytosolic sources include the malic enzyme and NADP
+
 dependent isocitrate 

dehydrogenase [128, 138, 139]. These enzymes use citrate acid cycle metabolites to 

generate NADPH, and hence do not require glucose. Mitochondrial NADPH is generated 

by energy-dependent mitochondrial nicotinamide nucleotide transhydrogenase, which 

catalyzes the interconversion of NADH to NADPH. Fisher et al. [139] showed that 

treatment of isolated perfused rabbit lungs with potassium cyanide, an uncoupler, or 

antimycin (complex III inhibitor) decreased the rate of the NADPH dependent mixed-

function oxidation of p-nitroanisole to p-nitrophenol by 50% to 77% with glucose as 

substrate. Thus, the increase in lung surface NADH signal in the presence of cyanide 

(Table 1) cannot be attributed to an increase in the NADPH signal since cyanide 

decreased the rate of the NADPH-dependent mixed-function oxidation of p-nitroanisole 

to p-nitrophenol [139]. On the other hand, the decrease in measured lung surface NADH 

signal in the presence of the uncoupler (table 2) could be in part due to a decrease in 

NADPH since lung treatment with the uncoupler decreased the rate of the NADPH 

dependent reaction. However, the fact that KCN and PCP had opposite effect on the lung 
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surface NADH signal (table 1), but the same effect on the rate of the NADPH-dependent 

reaction may suggest that NADPH is not contributing much to the measured NADH 

signal.  

 Unlike the NADH signal which has cytosolic and mitochondrial components, the 

FAD signal derives only from the mitochondria [140]. To the best of our knowledge, this 

study is the first to measure lung surface FAD fluorescence. Compared to NADH, the 

change in the FAD signal in response to lung treatment with the various metabolic 

inhibitors was relatively small (table 1). One reason could be due to the lower lung tissue 

concentration of FAD as compared to NADH. In fact, the FAD baseline signal is small 

relative to the NADH signal as evidenced by the difference in signal amplification for the 

NADH and FAD channels (10
3
 for NADH compared to ~6 x 10

5
 for FAD). 

 Sources of redox-sensitive flavoprotein (FAD) include succinate dehydrogenase 

(complex II), lipoamide dehydrogenase (LipDH), and electron transfer flavoprotein 

(ETF) [141, 142].  Treatment with rotenone (complex I inhibitor), which raises 

mitochondrial NADH/NAD
+
, should decrease LipDH flavoprotein fluorescence signal 

[128]. In the present study, rotenone had no effect on FAD signal (table 2), suggesting 

that lung mitochondrial LipDH does not contribute much to the measured lung surface 

flavoprotein signal.         

 The contribution of ETF, a fatty-acid oxidizing flavoprotein, to the measured 

flavoprotein signal can be evaluated by lung treatment with potassium cyanide (complex 

IV inhibitor), which reduces ETF, and complex II flavoprotein signal [128]. Thus, the 

cyanide-dependent decrease in FAD signal measured in the present study (table 2) could 
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be due to ETF and/or complex II flavoprotein signal. For lung tissue, glucose is the major 

oxidizable substrate under normal physiological conditions [139]. Since glucose was the 

only oxidizable substrate in our perfusate, change in FAD signals (Table 1) in the 

presence of cyanide should be attributed to complex II flavoprotein rather than ETF 

flavoprotein.  

 The contributions of complex II, LipDH, and ETF to the measured lung surface 

flavoprotein signal in the present study are different from those reported by Kunz and 

Kunz [141]. Whether this difference in the contributions of these flavoprotein enzymes is 

attributable to a difference between intact lungs and isolated mitochondria, tissue 

differences [142], or other factors, is not known. Finally, lung treatment with PCP had no 

effect on the FAD surface fluorescence signal (table 3). This could be because most of 

the flavoproteins (FAD + FADH2) are in the oxidized (FAD) form.   

 The measured changes in NADH and FAD fluorescence signals in response to the 

treatments in the present study are qualitatively and quantitatively similar to those 

obtained from rat hippocampal slices [143]. Gerich et al. showed that treatment with 

rotenone (20 µM) increased NADH signal by ~ 10% with no effect on FAD. Potassium 

cyanide (100 µM or 1 mM) increased NADH by ~ 20% and decreased FAD signal by ~ 

9%. Treatment with the uncoupler carbonyl cyanide 4-(trifluoromethoxy) 

phenylhydrazone (FCCP, 1 µM) decreased NADH by ~ 12% with no effect on FAD. 

Using isolated rat ventricular trabeculae, Brandes and Bers [135] demonstrated using 

fluorescence spectroscopy that treatment with KCN increased NADH/NAD
+
 by 31%, 
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whereas treatment with the uncoupler FCCP decreased the ratio by 49%. These results 

are again consistent with the results from the present study (table 2).  

 The lung surface optical imaging data measured in this study does not provide 

information about the specific types of lung cells contributing to the measured NADH 

and FAD signals, although endothelial cells would be expected to contribute significantly 

because of their relatively large surface area and fraction of total lung cells [37]. 

Although determining the contributions of specific lung cell types to the measured signal 

is potentially important, the global oxidoreductive state of the lung tissue is a highly 

valuable piece of information irrespective of the individual cell types contributing to the 

redox ratio. Another limitation of optical surface fluorescence imaging is that it may not 

detect deeper than 500 µm, with an initial diameter of 3.2 mm, for a volume of ~ 4 mm
3
. 

However, this resolution is more than sufficient for determining the RR of parenchymal 

tissue which has a thickness (air to plasma) of 1.6 µm [37]. That said, central lung lesions 

without pleural extension would not be expected to be detected by surface fluorescence 

measurements such as those used in the present study. 

3.5.2. Hyperoxic lungs 

Hyperoxic lung fluorometry demonstrates the utility of optical fluorescent studies for 

evaluating the effect of subacute rat exposure to hyperoxia on the redox state of lung 

tissue mitochondrial electron transport chain (ETC) in a non-destructive manner in 

isolated perfused lungs. The results suggest a hyperoxia-induced decrease in complex I 

and II activities, and demonstrate the ability of this approach to detect a change in 

mitochondrial redox state in the early phase of hyperoxic lung injury.   



75 

 

 

 

NADH signal and complex I activity: 

 Surface fluorometry results establish that rat exposure to >95% O2 for 48 hours 

decreased the change in NADH signal in the presence of KCN or rotenone by 58% and 

63%, respectively, as compared to those of normoxic lungs. A similar decrease (65%) in 

NADH signal was also measured following the addition of KCN to PCP-treated 

hyperoxic lungs as compared to normoxic lungs. Rotenone- or KCN-induced change in 

NADH signal is a measure of complex I activity. Thus these result suggest that the ETC 

upstream from complex I is more reduced in intact hyperoxic lungs than in normoxic 

lungs, and that complex I activity is lower in hyperoxic lungs. This is consistent with the 

77% decrease in mitochondrial complex I activity per mg protein which is measured in 

P2 fractions derived from hyperoxic lungs as compared to normoxic lung.  

 The measured hyperoxia-induced change in complex I redox state (table 3) could 

be due to a change in complex I protein and/or change in rate of NADH production. The 

latter could result from impairment to the Krebs cycle and/or change in cytoslic 

NADH/NAD
+
 which could affect mitochondrial NADH level via the malate-aspartate 

shuttle. However, the hyperoxia-induced change in complex I redox state is most likely 

due to a change in complex I protein since for the complex I assay (P2 fraction), the 

NADH concentration used was the same for both normoxic and hyperoxic lung 

mitochondrial preparations (P2 fractions). The results of this assay (Table 2) show that 

the measured hyperoxia-induced change in complex I activity is qualitatively and 

quantitatively consistent with the hyperoxia-induced change in complex I redox state 

measured on the surface of the lung (table 2).  
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 The sulfhydryl-containing Krebs cycle enzymes pyruvate and alpha-ketoglutarate 

dehydrogenase and their coenzymes CoA and lipoic acid are sensitive to oxidative stress  

[23]. Previous studies evaluated the effect of rat exposure to 100% O2 for 24 hrs on these 

and other Krebs cycle enzymes [15, 23, 24]. Gardner et al. [24] reported a 73% decrease 

in lung aconitase activity after 24 hrs of rate exposure to 100% O2. This decrease is 

consistent with the increase in citrate level (aconitase substrate) in lung tissue under the 

same exposure conditions as reported by Bassett et al. [23]. This impairment to the Krebs 

cycle could affect NADH supplied to the electron transport chain and in turn complex I 

redox state. However it is not known whether this impairment to aconitase activity 

persists after 48 hrs of exposure to 100% O2 or whether it is sufficient to account for the 

measured hyperoxia-induced change in complex I redox state. In another study, Bassett et 

al. [15] reported that rat exposure to 100% O2 for 24 hrs had no effect on the activities of 

the Krebs cycle enzymes succinate dehydrogenase, isocitrate dehydrogenase or α-

glycerophosphate dehydrogenase. In the present study we report a 64% decrease in 

succinate dehydrogenase (complex II) activity after 48 hrs of exposure to 100% O2. 

Additional studies would be needed to evaluate the effect of rat exposure to 100% O2 for 

48 hrs on the activities of Krebs cycle enzymes isocitrate dehydrogenase, α-

glycerophosphate dehydrogenase, and aconitase to determine the potential contribution of 

impaired production of NADH by the Krebs cycle to the measured change in complex I 

redox state.   

 Fisher AB [16] reported that rat exposure to 100% O2 for 48 hrs increased lung 

lactate production rate (78%) and lactate to pyruvate ratio (108%). Since lactate to 
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pyruvate ratio is proportional to cytosolic NADH/NAD
+
, the increase in lactate to 

pyruvate ratio suggests an increase in cytosolic NADH transported to the mitochondria 

matrix via the malate-aspartate shuttle. This shuttle provide more cytosolic NADH to 

mitochondria when the cytosolic NADH/NAD
+
 is higher than in the mitochondrial 

matrix. Thus the hyperoxia-induced increase in cytosolic NADH/NAD
+
 could contribute 

to the measured change in complex I redox state in hyperoxic lungs. 

 Rat exposure to hyperoxia had no effect on the change in NADH signal in the 

presence of PCP as compared to that in normoxic lungs as a measure of the coupling 

between ETC and phosphorylation. This observation implies that rat treatment with 

hyperoxia (>95% O2 for 48 hours) did not alter the coupling between respiration and 

phosphorylation in lung tissue despite the apparent decrease in complex I activity. 

However, since the ETC upstream from complex I is more reduced in hyperoxic lungs 

than in normoxic lungs, one would expect a larger PCP-induced decrease in NADH 

signal in hyperoxic lung. Currie et al. demonstrated that rat exposure to 100% O2 for 48 

hours decreased ADP-stimulated O2 consumption (state 3) by ~50% with a-ketoglutarate 

as an NAD-linked substrate [25]. Together these results support a decreased tightness of 

coupling between respiration and phosphorylation in hyperoxic lungs as compared to 

normoxic lungs. 

 There is ample evidence that increased production of reactive oxygen species 

(ROS) is a major pathophysiological factor in the genesis of hyperoxic lung injury [3, 26-

28]. Thus, one strategy that cells may have evolved to protect against hyperoxic lung 

injury is to mitigate the activities of ROS sources [12, 29-31]. Mitochondrial electron 
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transport complex I is a major source of ROS [3, 27, 32]. Moreover, studies have shown 

that the rate of ROS formation at complex I in endothelial cells increased with an 

increase in O2 tension, and that complex I inactivation using rotenone decreased ROS 

generation in sheep pulmonary microvascular endothelial cells exposed to hyperoxia 

(100% O2 for 30 min) [27, 32, 33]. Thus the measured decrease in complex I could be an 

adaptive mechanism by the cells to decrease the rate of ROS formation at complex I 

under hyperoxic conditions. 

 On the other hand, the measured decrease in complex I activity could represent 

hyperoxia-induced injury leading to increases in the rate of ROS formation. 

Mitochondrial DNA (mDNA) is highly sensitive to ROS [34]. Hyperoxia-induced 

increase in the rate of ROS formation could damage mDNA  and as a result compromise 

complex I activity since 7 out of 45  subunits of complex I are encoded by mDNA [34, 

35]. Hyperoxia-induced increase in ROS formation could also cause direct damage to 

complex I activity by oxidizing cardiolipin, which is sensitive to ROS [36, 37]. This 

phospholipid is important for the function of complex I [38]. In addition, oxidation of this 

lipid could lead to increase in the loss of electrons at complex I and in the rate of 

mitochondrial superoxide formation at complex I [36, 37]. 

 Ratner et al. demonstrated that exposure of neonatal mice to hyperoxia (75% O2 

for 72 hours) decreases complex I activity in lung homogenates by ~70%, and that this 

decrease compromises mitochondrial oxidative phosphorylation and contributes to 

alveolar development arrest [7]. Fisher AB [16] showed that rat exposure to 100% O2 for 

48 hours had no effect on lung tissue ATP content as compared to normoxic lungs, 
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although there was an increase (105%) in lactate/pyruvate ratio indicating an increase in 

ATP production via glycolysis. He suggested that the increased lactate/pyruvate ratio 

could be due to demand for glycolytic ATP and/or decrease in ATP production via 

oxidative phosphorylation which is compensated for by an increase in ATP production 

via glycolysis.  

 

FAD signal and complex II activity: 

Compared to NADH, the measured change in the FAD signal in response to lung 

treatment with the metabolic inhibitors was relatively small for normoxic and hyperoxic 

lungs (Table 1). One reason for this observation could be lower lung tissue concentration 

of FAD as compared to NADH. In fact, the FAD baseline signal is small relative to the 

NADH signal as evidenced by the difference in signal amplification for the NADH and 

FAD channels (10
3
 for NADH compared to ~6 x 10

5
 for FAD) [18]. 

 Lung treatment with KCN, which reduces the ETC upstream from complex IV, 

should reduce complex II and as a result decrease FAD signal. Just as a change in NADH 

tracks complex I activity, a change in FAD signal reflect complex II activity. Rat 

exposure to hyperoxia had no significant effect on the change in FAD signal in the 

presence of KCN as compared to that in lungs from normoxic rats. However, the change 

in FAD signal following the addition of KCN to PCP-treated lungs was 56% lower in 

hyperoxic lungs than normoxic lungs. It could be that lung treatment with PCP, which 

simulates the flow of reducing equivalents through the chain, fully oxidized the chain and 

as a result exposed the difference in the capacities of complex II between normoxic and 
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hyperoxic lungs. Regardless, this apparent decrease in complex II activity is consistent 

with the 63% decrease in mitochondrial complex II activity per mg protein in P2 fractions 

derived from hyperoxic lungs as compared to normoxic lung (Table 2).  

 The measured hyperoxia-induced change in FAD signal in the presence of (PCP + 

KCN) could be due to a direct oxidant-induced inhibition of complex II or indirect 

inhibition of complex II by impairment of Krebs cycle enzymes/coenzymes that result in 

a decrease in succinate concentration or increase in the concentration of oxaloacetate 

(OAA). Complex II activity is inhibited by a high level of OAA. However the results of 

the mitochondrial isolates (P2 fractions) suggest that the hyperoxia-induced change in 

complex II redox state is most likely due to impairment of complex II itself since for this 

assay the concentrations of succinate and the electron acceptor (DCPIP) used were the 

same for the mitochondrial isolates from both normoxic and hyperoxic lungs and should 

be in excess of what is required for maximal function of complex II. The measured 

decrease in complex II activity using this assay (Table 2) is qualitatively and 

quantitatively consistent with the measured hyperoxia-induced decrease in FAD signal in 

the presence of PCP + KCN as a measure of complex II activity (Table 1).  

 Complex II is the only ETC complex that is completely encoded by nuclear DNA 

[39]. Hence, damage to mDNA due to hyperoxia-induced increase in the rate of ROS 

formation should have no effect on complex II. Since electrons channeled through 

complex II produce 4-fold more mitochondrial superoxide than electrons channeled 

through complex I [40], the apparent decrease in complex II activity could be a means by 

the cells to reduce ROS formation under hyperoxic conditions.  
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 Additional studies are needed to evaluate the effect of the depression in complex I 

and complex II activities observed in hyperoxic lungs on ROS production at complex I 

and III and mitochondrial bioenergetics, and to determine whether this depression is an 

injury or an adaptive response to the hyperoxic environment.   

Sources of NADH and FAD surface fluorescent signals: 

 Our assumption in this study is that changes in the mitochondrial pool of NADH 

is a  key contributor to the measured changes in the NADH fluorescence signal since the 

metabolic inhibitors we used target the mitochondrial electron transport chain [18]. 

Another source of NADH signal is the cytosolic pool of NADH. Fisher et al. [41] 

demonstrated that rat lung treatment with KCN increased lung lactate/pyruvate by 4-fold. 

In this study, lung perfusion with KCN increased lung surface NADH signal by 22% in 

normoxic lungs. Since lactate/pyruvate ratio reflects cytosolic NADH/NAD
+ 

[42, 43], this 

suggests that cytosolic NADH did not contribute significantly to the measured lung 

surface NADH signal.  

 Unlike the NADH signal which has cytosolic and mitochondrial components, the 

FAD signal derives only from the mitochondria [18, 44]. Sources of redox-sensitive 

flavoprotein (FAD) include succinate dehydrogenase (complex II), lipoamide 

dehydrogenase (LipDH), and electron transfer flavoprotein (ETF) [18, 45, 46]. However, 

as previously discussed, most of the measured lung surface FAD signal is from complex 

II flavin [18].  

 Fisher AB  demonstrated that rat exposure to 100% O2 for 48 hours stimulated 

glycolysis as measured by ~105% increase in the lung lactate/pyruvate ratio [16]. Since 
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this ratio is a measure of cytosolic NADH/NAD
+
, this suggest that lung tissue cytoplasm 

is more reduced in hyperoxic lungs than normoxic lungs. Thus, coupled with the results 

of the present study, the data document that both tissue cytosolic and mitochondrial 

compartments are more reduced in hyperoxic lungs than normoxic lungs.  

 The hyperoxia-induced decrease in complex I and II activities in the present study 

represents a relatively early in situ metabolic consequence of hyperoxia in that it precedes 

effects on lung histology, hemodynamic and functional endpoints observed with rat 

exposure to >95% O2 for > 48 hours [8, 47]. Of the few studies evaluating the metabolic 

consequences of hyperoxia in the 18-48  hr period, a decrease in serotonin clearance and 

an increase in lactate production have been observed in lungs from rats exposed to 100% 

O2 for 18 and 36 hrs, respectively [16, 48].  Audi et al. reported that rat exposure to 

hyperoxia (85% O2 for 48 hours) results in 47% decrease in the capacity of complex I 

mediated coenzyme Q1 (amphipathic homolog of ubiquinone)  reduction on passages 

through the pulmonary circulation as compared to that in lungs of normoxic rats [11]. 

Additionally, Klein et al. demonstrated a decrease in the metabolism of prostaglandin E2 

metabolism in intact lungs of rats exposed to > 97% O2 for 36 hrs [49].  

3.5.1. Blood Effect 

Since in vivo estimates of RR are unavoidably acquired in the presence of blood, we 

determined the effect of blood in perfusate on NADH and FAD lung surface fluorescence 

signal, and on RR. The results of the study show an exponential relationship of the 

quenching effect of red blood cells on NADH and FAD fluorescence signals, consistent 

with Beer’s law [130].  However, the effect of blood on RR is relatively small and 
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appears to be independent of blood hematocrit level. Although the range of Hct studied 

(0-4%) is much lower than rat blood Hct  (44%) [131], the plateau seen in the results at 

4% Hct (Figure 5) indicates that higher perfusate Hct will have a minimal additional 

quenching effect on the NADH and FAD fluorescence signals. These results are 

consistent with those from a study by Chance et al. in which they showed that perfusion 

of isolated organs (e.g., liver) with perfusate containing blood (0-4% Hct) decreased 

NADH and FAD signals but did not change the redox ratio [36]. Thus, we expect that the 

presence of blood in perfusate will have no significant effect on the percentage changes 

in RR (tables 2 and 3). 

3.5.1. In vivo studies 

 Ischemia-reperfusion is a clinically relevant injury and its effects on lung tissue 

mitochondrial redox is evaluated here using optical fluorometry in vivo. Under ischemic 

conditions (cessation of both blood flow and ventilation), insufficient oxygen supply to 

the mitochondrial chain should induce reduction in the mitochondrial chain and restoring 

blood and oxygen flow should reoxidize the chain. The surface fluorometry results are 

consistent with the expected effects of ischemic conditions in lung tissue. 

The results of this study demonstrate the utility of fluorometry for measuring lung tissue 

NADH and FAD redox state, and lung tissue mitochondrial RR in vivo. These data will 

be important for future studies designed to evaluate the effect of IR injury (e.g. lung 

transplantation, necrotizing pneumonias, or crush injury to the chest [58]) on lung tissue 

mitochondrial redox state [99].  
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Chapter 4 

In vitro and cell studies:  

Time-lapse microscopy 
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4. In vitro and cell studies: Time-lapse microscopy 

4.1. Introduction 

In this study, endothelial and fibroblast cells of mice retina, rat lung and heart were 

assessed either on fixed slides or using live cell treatment and imaging. 

 Cytometry is an image processing technique to measure various parameters of 

cells. Some of these parameters are cell size, the stage of the cell cycle, the DNA content 

of the cell, and the existence or absence of specific proteins on the cell surface or in the 

cytoplasm. It is a common method of quantifying injured retinas compared to those that 

are healthy. One way to measure the amount of injury sustained in the retina is through 

the analysis of its cellular and vascular morphological parameters [7], but quantifying 

these parameters has proven a difficult task. In addition, the current gold standard method 

for measuring all of these parameters is the tedious process of manual counting and 

analysis. This is a difficult task, which leads to errors in the quantification process, and 

prohibits the measurement of some more complex parameters. As the first stage of cell 

studies I have developed algorithms and tools to quantify these parameters (including 

number of cells and their location) automatically using Matlab. 
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 Changes in the cytoplasmic free Ca
2+

 concentration ([Ca
2+

]c) constitute one of the 

main pathways by which information is transferred from extracellular signals received by 

animal cells to intracellular sites. In eukaryotic cells, one major route for Ca
2+

 influx is 

through store-operated calcium released activated channels (CRAC), which are activated 

following a fall in Ca
2+

 content within the endoplasmic reticulum. Mitochondria are key 

regulators of this ubiquitous Ca
2+

 influx pathway [148]. In the next step, the role of 

mitochondria in regulating the activity and dynamics of calcium channels through time 

lapse fluorescence microscopy and cytometry is evaluated. The hypothesis is that 

alterations in the various ion channels of the cell membrane by chemical stress would 

result in dynamically changing concentrations of cytosolic calcium. In addition, 

inhibition of one of these channels using a mitochondrial uncoupler will result in a 

smaller change in concentration compared to normal conditions. 

 As previously discussed, reactive oxygen species (ROS) are chemically reactive 

molecules containing oxygen and have important roles in cell signaling and homeostasis. 

Oxidative stress, often due to an irregularity in the level of oxygen introduced to the 

mitochondria, represents an imbalance between production and consumption of this 

species. As the final step in cell studies, the dynamics of production of ROS are studied 

in different stress conditions (modeling oxidative stress) including the addition of chain 

perturbers (PCP and KCN) in fibroblasts to be further compared with differentiated cells. 
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4.2. Cell Preparation 

4.2.1. Fixed cells (microscope slides) 

As a preliminary test of the developed algorithm for retinal image analysis, microscope 

slides were prepared from transgenic mice eyes. The slides consisted of a total of four 

groups as follows: 3 week old complete BCL-2 gene knockout, 3 week old partial BCL-2 

gene knockout, 6 week old complete BCL-2 gene knockout, and 6 week old partial BCL-

2 gene knockout. The BCL-2 gene is one of the most important genes in regulating 

apoptosis, and is thus expected to impact the cell count and vasculature within the retina 

[7]. The complete gene knockouts generally show increased apoptosis, leading to fewer 

cells and a less dense vasculature than their wild type counterparts. Dr. Sheibani’s lab 

prepared retina samples and fixed them in 4% paraformaldehyde for at least 24 hours. 

The eyes were then bisected equatorially and the entire retina was removed under the 

dissecting microscope. Following completion of digestion, retinal vessels were flattened 

by four radial cuts and were mounted on glass slides [5]. 

4.2.2. Live cells preparation 

Fibroblasts of heart and lung and pulmonary arterial endothelial cells (PAEC) are 

cultured and kept in the incubator (5% CO2, 37
o
C) for future imaging. The bottom glass 

35 mm MatTek dishes were coated with 70 uL of 0.02% collagen in acetic acid and used 

for plating the next day. The frozen cells were thawed, the old media was removed after 

15 minutes and 5 minutes, for fibroblast and PAEC, respectively in the centrifuge (1500 

rpm), cells were counted using the hemocytometer, and the cell suspension with the 

30,000 cell/mL was prepared using fresh medium including 5 mL pen/strep, 50 mL 
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bovine serum, and 500 mL ATCC Dulbecco's Modified Eagle's Medium (DMEM) and 

was added to 4-7 dishes of MatTek dishes depending on the total number of the cells (2 

mL = 60,000 cells per dish). Some of the PAEC were plated in 4-well glass bottom 

dishes to study the effect of drugs simultaneously. Before each experiment and 

fluorescent imaging, the cells are loaded with proper fluorescent dyes (depending on the 

experiment) as described below.  

 For CRAC studies the cells were loaded with the following dyes in 2 mL DMEM 

and were incubated for 30 minutes. The main dye is Fluo-4 (2 uM), which is an 

exogenous tag used to probe calcium concentration in the GFP channel (Ex: 470, Em: 

522) in the cells. The cells were also tagged with 0.5 uM Hoechst and 2 uM TMRM 

(tetramethylrhodamine) for probing nuclei and mitochondrial membrane potential to be 

imaged in blue (Ex: 360, Em: 460) and TxR (Ex: 540, Em: 620), respectively. The dyes 

were washed twice after incubation, and KRH (10x Krebs-Ringer-Hepes Ca
2+

 free) was 

added to the MatTek dish for imaging. 

 To evaluate the production of ROS in oxidative stress models in fibroblasts, the 

cells were loaded with 0.5 uM Hoescht and 2 uM fluo-3 AM (Hoescht only for PAEC) in 

DMEM and were incubated for 30 minutes, after which they were washed then Hank's 

Balanced Salt Solution (HBSS) was added for subsequent fluorescent imaging.  
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4.3. Image acquisition and microscopy 

4.3.1. Fluorescence microscope:  

Our Nikon Ti-E inverted microscope, used in the cell studies, includes four fluorescent 

interchangeable filter cubes in addition to the standard DIC and bright-field channels. It is 

commonly used to study normal cell processes as well as those of diseases, cell signaling, 

neurobiology, molecular pathology, and so on in cellular and sub-cellular resolution.  

 The bright field images are acquired using an overhead halogen lamp, whereas the 

fluorescent images use a mercury arc lamp, to take advantage of halogen's intense peaks 

in the ultraviolet regime. Each image was acquired at a magnification of 20× to 40× to 

capture a high level of detail, while maintaining a large field of view. All images were 

acquired using a charge-coupled device camera (Q-imaging, Aqua Exi, 14 bit, 6.45 µm 

pixel) with exposure time and gain set to ensure proper use of the dynamic range of the 

camera, while avoiding saturation and photo-bleaching. The excitation spectra in the  

blue, green, and red channels are 340-380 nm, 455-485 nm, and 528-553 nm, respectively 

while the emission spectra are 435-485 nm, 500-545 nm, and 590-650 nm, again in blue, 

green, and red channels, respectively. 

4.3.2. Fixed cells imaging:  

The slides of the retina were imaged using bright field and fluorescence illumination 

using the Nikon Ti-E inverted microscope, the results of which can be seen in Figure 24. 

The figure shows an example of cellular (in bright-field) and vasculature (in TxR) images 

of the retina slides.  
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4.3.3. Live cell imaging 

 The wells of the cells were imaged in bright field illumination and three channels 

of fluorescence illumination using the microscope, the results of which can be seen in 

figures 25 and 26 for CRAC studies and ROS production studies, respectively. For each 

field of view, the bright field image is captured first, followed by a series of time-lapse 

imaging in the blue (Hoechst), green (Fluo-3 or Mito-tracker green) and red (TMRM or 

Mito-SOX) channels in 1 minute intervals to monitor nuclei, calcium concentration or 

mitochondrial ROS, and mitochondrial membrane potential or ROS levels respectively.  

 

 
Figure 25. The result of cell imaging in CRAC studies. From left to right, are cell images in bright-

field, red (TMRM), green (Fluo-3) and blue (Hoechst) fluorescent channels. 

 
(a)                                                                  (b) 

Figure 24: Example Retinal Images. Examples of the a) bright field and b) fluorescent images used to 

detect cells and vasculature, respectively. 
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 One plate of cells was loaded with Mito-SOX, Hoechst, and Mito-Tracker green 

and imaged in red, blue, and green channels, respectively, to ensure the localization of the 

Mito-SOX dye in the mitochondria by comparing the red channel to the green channel; 

the result of this is shown in figure 27. 

 

 
Figure 27. The result of mitochondria imaging. Top left and right shows Mito-tracker green and 

Mito-SOX in green and red channels, the middle panel shows cell nuclei in blue and left whole cell in 

bright-field. The bottom panel shows the overlay of different channels, left: all four channels mentioned 

above and right only red and green channels. 

 

Figure 26. The result of fibroblast imaging in ROS studies. From left to right, are cell images in 

bright-field, red (Mito-SOX), green (Fluo-3), and blue (Hoechst) fluorescent channels. 
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 For CRAC studies, the cells were treated with thapsigargin, calcium, and 

ionomycin with and without dinitrophenol (DNP) to study their effect on the calcium 

concentration within the cytoplasm as well as CRAC channel dynamics.   

 For ROS studies the cells were loaded with Mito-SOX after acquiring the baseline 

images followed by treating with KCN, Rotenone or PCP (either right after Mito-SOX or 

20 minutes after it) to study the ROS production (mainly superoxide) in the mitochondria 

as indicated by fluorescence intensity.   

 Before the addition of each drug, the old imaging medium or drug was removed 

from the plate using the insert system implemented in Biophotonics lab as shown in 

figure 28, and the new drug was added immediately using the same system. 

 

    
(a)                                                           (b) 

Figure 28. a) insert system b) in the microscope. The insert system enables us to add or remove drugs to 

the system without movement of the plate. 
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4.4. Image Processing 

The image processing techniques, including cell segmentation, were developed and tested 

on fixed cells, and later applied to live cells to detect the cells and study the dynamics of 

the cells over time. 

4.4.1. Fixed cells: Segmentation 

An image cytometry algorithm (segmentation of the cell borders) has been developed to 

analyze cells' response to oxidative stress in eyes. The details of the segmentation 

algorithm are as follows (also depicted in figure 29). First, the location of foreground 

markers (cells) is detected by applying an FIR semi-Laplacian filter, the center and 

surround filter, to enhance the contrast of the circular objects (figure 29.b). The impulse 

response of the filter emphasizes circular objects by leaving pixels in a central circle 

unchanged, while negating pixels outside of the central circle to create a high contrast 

around circular objects in the image. With the location of the cells detected by 

thresholding the filtered image (figure 29.c), a distance transform is calculated for the 

resulting image, in which each pixel value is transformed into the distance to the nearest 

cell (figure 29.d). Background markers are then computed by applying watershed 

detection on the resultant distance image from the previous stage (figure 29.e). Watershed 

detection is a technique which finds the "ridges" in an image, which in this case leads to 

areas where the distance to the nearest cell is maximal. The resulting background markers 

are the lines that separate the image into individual cells, while maintaining the maximum 

distance between any line and the nearest cell. Then the gradient of the image is 

calculated (figure 29.f) and modified so that its intensity becomes zero in both foreground 
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and background objects. Finally, the watershed transform of the modified gradient image 

is computed, which results in a binary mask containing the borders of the objects.  

 In addition to segmenting the cells, the software is capable of counting the 

number of cells, and the location and shape of each cell. 

 

 

4.4.1. live cells 

Using the segmentation algorithm described above, the borders of the cells are detected in 

the first slide of the time-lapse stack and the intensity of images in both red and green 

channels is calculated and plotted as the intensity profile over time. These graphs help us 

    
(a)                                     (b)                                     (c) 

   
(d)                                    (e)                                               (f) 

Figure 29. Step in the segmentation algorithm. a) original image b) filtered image using center and 

surround filter c) thresholding the filtered image d) distance transform of the threshold image e) watershed 

transform of part d f) gradient of the image 
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monitor the dynamics of calcium concentration in green channel, and mitochondrial 

membrane potential or ROS in red channel.  

4.5. Results 

4.5.1. fixed cells 

Automatic cell segmentation resulted in an accuracy of ~90% compared to manual cell 

detection and counting (which is the gold standard for cell detection). Figure 30 shows 

two images from two different groups of mice and figure 31 shows the overall results of 

cell detection for four fields of view from each slide. Since BCL-2 is an apoptosis 

inhibitor, this feature is expected to have different values in different classes as can be 

seen in figures 30 and 31.   

 

 
(a)                                                                             (b) 

Figure 30. Cell detection example. a) low number of cells (80, p42 BCL -/-). b) high number of cells 

(152, P21 -/+). 
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4.5.2. CRAC channels in NIH 3T3 fibroblasts 

In order to study the properties of CRAC in fibroblasts, the cells were loaded with Fluo-3 

AM, imaged in GFP and treated with tapsigargin, calcium, and ionomycin for one set, 

and with DNP, thapsigardin, calcium, and ionomycin for another set. The changes in the 

intensity of a single cell is shown in figure 32 and the results of segmentation of cell 

borders in green channel is shown in figure 33. 

 

 
 

Figure 32. Dynamics of fluo-3 intensity for one cell over time with the addition of DNP, tapsigargin, 

calcium, and ionomycin shown with arrows in the figure. 

 

 
Figure 31. Cell Count Statistics. Mean values and Standard Deviations of cell counts of retinal 

vasculature. P42 is 6 weeks, P21 is 3 weeks, BCL -/- indicates complete knockout, whereas BCL -/+ or 

+/- indicates partial knockout.  
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The dynamics of the calcium concentration over time for segmented cells is also 

calculated and plotted over time in figure 34 for the two experimental scenarios. 

  

 
Figure 34. Plotting the profile of the segmented cells over time. Red dotted lines shows addition of 

thapsigargin, calcium, and ionomycin in top, and DNP, thapsigargin, calcium, and ionomycin in the bottom 

panels over time.  

 
Figure 33. Result of segmentation on the GFP channel images of the cells. For the initial image the cells 

are automatically detected and the borders are saved and are applied to all the images in the time lapse, to be 

further used for time-lapse profile intensity. 
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4.5.3. ROS production in NIH3T3 Fibroblasts 

KCN and PCP were added to the cells loaded just with Mito-SOX and the dynamics of 

the cells in red channel (ROS production) were studied, as shown in figures 35 and 36. 

Addition of Mito-SOX increase the intensity of the cell images gradually over time in the 

fluorescent red channel, but the slope of this increase is different in the presence of chain 

perturbations. As shown in figure 36, in the presence of KCN, rapid production of ROS 

resulted in a much steeper slope compared to control, while addition of PCP resulted in a 

lower slope compared to the control dish. 

 

 
Figure 35. Dynamics of red channel (Mito-SOX) intensity for two cells over time. Addition of  Mito-

SOX is shown in the figure with an arrow. 
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4.5.4. ROS production in PAEC 

The drugs were added to PAEC with a different protocol that instead of adding them right 

after Mito-SOX, they were added 20 minutes later giving time to Mito-SOX to attach to 

the superoxide. Different concentration of drugs were used to study the proper 

concentration which cause the maximum effect but not yet is lethal for the cells. The 

same way as fibroblasts the dynamics of the cells in red channel (ROS production) were 

studied, as shown in figure 37 for rotenone. 

Addition of Mito-SOX increase the intensity of the cell images gradually over time in the 

fluorescent red channel, but the rate of this increase changes later after addition of 

different chain perturbations. As shown in figure 37, in the presence of rotenone, the rate 

of the superoxide production is increasing comparing to the wells without rotenone. Also 

by increasing the concentration of the drug, the change in the rate increases as well. 
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Figure 36. The profile of the cells in red channel over time. Mito-SOX is added to the dish 5 minute after 

the start of the imaging. The first dish (green) is imaged in the presence of Mito-SOX only while for the 

second and third dishes Mito-SOX is added at the same time with 3mM KCN (red) and 3nM PCP (blue), 

respectively.  
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4.6. Discussion 

 Optical image processing and cytometry techniques including segmentation can 

be used to quantify injury using cellular morphology for fixed microscopic slides of 

retina, and the results of the analysis allow for statistical determination of injury. The 

current gold standard method for quantifying the parameters (namely the number of cells) 

is the tedious process of manual counting, which cannot be used for real-time 

measurements and suffers from human error. However, the segmentation algorithm 

developed here automates this process and reduces the potential for human error in 
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Figure 37. Dynamics of red channel (Mito-SOX) intensity of cells over time. Addition of  Mito-SOX 

(first)  and Rotenone are shown in the figure with arrows. 
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making these measurements. Furthermore, objective processing using the automated 

algorithm removes the subjective processing errors and makes the process reproducible. 

 Thapsigargin, calcium, and ionomycin are all expected to increase the level of 

cytosolic calcium concentration (but through different mechanisms), which can be seen in 

the top panel of figure 33. Thapsigargin raises the concentration of cytosolic 

(intracellular) calcium by blocking the ability of the cell to pump calcium into the 

sarcoplasmic and endoplasmic reticula, which causes these stores to become depleted. 

Store depletion can secondarily activate plasma membrane calcium channels, allowing an 

influx of calcium into the cytosol. Ionomycin is an ionophore which is used in research to 

mark the upper limit of the calcium concentration in the cells. Addition of DNP 

uncouples oxidative phosphorylation, causing a release of calcium from mitochondrial 

stores and preventing calcium re-uptake{Barker, 2006 #1476} [151]. In the presence of 

DNP, thapsigargin and ionomycin are expected to increase the cytosolic calcium levels, 

but the addition of calcium itself is expected not to affect the level of calcium in the 

cytosol, which is the case in the bottom panel of figure 34. 

 As previously discussed, KCN increases NADH and decreases FAD levels; 

basically blocks electron flow, maximizes the probability of losing electrons to oxygen, 

and causes a significant increase in the level of superoxide. On the other hand, PCP 

(which is an uncoupler) oxidizes NADH and other coenzymes, use up the oxygen and 

prevents the production of superoxide. The results of using Mito-SOX in fibroblast 

confirms these hypotheses and, as can be seen in figure 36, there is a steep slope in the 

production of superoxide under the influence of KCN compared to control, while the 

addition of PCP along with Mito-SOX shows a decrease in the level of superoxide 
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compared to control in fibroblasts. Rotenone is an inhibitor of complex I and we expect 

to see the same behavior as the one we saw for the KCN and the results shows that in the 

presence of rotenone, there is a increase in the production rate of rotenone as expected. 
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Chapter 5 

Conclusion and future direction  

 

 

 

 

 

 

 

 

 



104 

 

 

5. Conclusion and future direction 

 The tools and methods designed as part of this research, namely the fluorometer 

instrument and the acquisition protocols combined with the software and algorithms to 

process the signals and images, have shown the ability to measure the amount of injury in 

tissue and cells due to mitochondrial dysfunction, resulting in a robust and reliable in situ 

and in vitro quantification of health in the presence of oxidative stress.  

The conclusion is categorized into three sections for each imaging protocol below. 

5.1. Frozen tissue studies 

 The results of this study support the utility of optical imaging of NADH and FAD 

signals to evaluate lung tissue mitochondrial redox state. While optical determination of 

RR in tissues such as brain and myocardium is accepted [72, 73, 108], the applicability of 

these methodologies in examination of the redox state in lungs, where the density of 

mitochondria is much lower, has not been established. The potential clinical importance 

of real time optical imaging of lungs in patients with critical illnesses, patients on high 

O2, or patients with IR lung injury secondary to lung transplant or chest contusions, is 

great. Reliable fluorescence determination of the RR could be adopted in the same 

fashion that near-infrared spectroscopy (NIRS) is gaining favor as a non-invasive 

measure of tissue oxygenation in critically injured patients [118].  While NIRS is an 

indirect measure of tissue oxygenation, NADH and FAD data provide information 

regarding tissue redox and mitochondrial bioenergetics, a truer and more sensitive early 
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measure of organ function. Because NADH and FAD signals can be detected through 

fiber optic probes placed on the surface of the lung, RR data could be obtained either 

intraoperatively or through tube thoracostomies (frequently placed for clinical indications 

in patients with severe lung injury). Our studies support the capacity of fluorescence 

imaging to detect pulmonary oxidative injury, and set the stage for live tissue studies 

along with adaptation of the methods (use of reflectance measurements) required to 

translate this approach to clinical arenas.  

 The limitation of translation to in vivo and optical surface fluorescence imaging is 

that it may not detect changes deeper than 500 µm (the imaging depth is normally around 

200-300 µm). However, this resolution is more than sufficient for determining the RR of 

homogeneous parenchymal tissue, which has a thickness (air to plasma) of 1.6 µm [8] for 

lung tissue.  

 Confirming the application of aforementioned technique in diagnosis of lung 

injuries, apart from expanding the application to a wide variety of injuries and diseases, it 

is possible to use this as a monitoring technique to follow the progress of the injury or 

even effect of therapy over time which is the next step in our cryogenic experiment.  

5.2. Fluorometry for Bronchopulmonary Studies 

 In conclusion, the results of this study demonstrate the utility of optical 

fluorometry to detect a change in the redox status of lung mitochondrial coenzymes 

NADH and FAD in isolated perfused lungs over time. In the present study and previous 

studies by others and ourselves [18, 50-52], the relative change in the NADH and FAD 
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signals are reported instead of the actual signals, which are sensitive to various factors 

including probe distance from the organ surface, day-to-day variations in light intensity, 

and PMT gain settings. One approach to overcoming this limitation would be by imaging 

a phantom of known NADH and FAD concentrations at the end of a given experiment 

(lung), and then using this information to scale the measured NADH and FAD signals. 

This would allow us to compare un-normalized signals from different lungs.  

The lung surface optical imaging data do not provide information about the specific 

types of lung cells contributing to the measured NADH and FAD signals, although 

endothelial cells would be expected to contribute significantly because of their relatively 

large surface area and fraction of total lung cells [8]. Though determining the 

contributions of specific lung cell types to the measured signal is potentially important, 

the global oxido-reductive state of the lung tissue is a highly valuable piece of 

information irrespective of the individual cell types contributing to the redox ratio.  

 Over 900,000 adults receive invasive mechanical ventilation (MV) in the United 

States each year [53, 54].  Many either have acute lung injury (ALI) or have conditions 

such as shock and severe sepsis that place them at particular risk of ALI [54-59]. 

Treatment with high levels of oxygen to maintain adequate tissue oxygenation may 

further exacerbate lung injury. However, the susceptibility to lung injury (from hyperoxia 

or shock) varies widely from person to person, and there are only crude and subjective 

means of screening for or following these injuries clinically so using such instrument 

developed here make the screening objective and accurate.   

 The results of this study suggest that hyperoxia-induced mitochondrial 

dysfunction occurs prior to the inflammatory phase of lung O2 toxicity. If so, a change in 
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lung surface mitochondrial redox state, as measured using optical fluorescence 

techniques, could be used as an index of lung O2 toxicity in patients with ALI requiring 

high oxygen therapy, or to monitor the progression of ALI and its most severe form 

Acute Respiratory Distress Syndrome (ARDS), one of the most frequent causes of 

admission to the intensive care unit [60]. The fiber optic probe could be placed on the 

lung pleural surface through a small thoracotomy incision or a thoracostomy tube in 

patients with these devices in place. Alternatively, the probe might be introduced through 

an endotracheal tube, and positioned against airway epithelium. The same probe could be 

used to evaluate the efficacy of novel or existing interventions on lung tissue 

mitochondrial redox state and energy homeostasis in real time. 

 An individual with enhanced susceptibility to ARDS would be a strong candidate 

for strategies such as scrupulous attention to ventilation with low tidal volumes, 

deliberate tolerance of lower arterial oxygen, or higher carbon dioxide tensions to limit 

oxygen toxicity or barotrauma, avoidance of transfusions, etc [53-59]. These 

interventions decrease injury but incur additional risks (increased sedation, impairment of 

vital organ functions, etc.) that limit their universal and strict application in ALI patients. 

The diagnostic and therapeutic monitoring applications of this tool are important not only 

for ALI/ARDS, but also for other lung conditions, including lung cancer which is 

characterized by mitochondrial impairment (so called Warburg effect) [61], lung 

transplant related ischemia-reperfusion injury [62], or other animal models of human ALI 

[63]. Additional applications include diagnostic and therapeutic monitoring of conditions 

in other organs with high energy flux, such as heart ischemia-reperfusion injury and heart 

failure management, or intraoperative identification of ischemic intestine and others. 
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5.3. Cell cultures and microscopy 

 The current methods for detection of the retinal features from images obtained 

from fixed retina slides involve tedious manual counting and analysis. By automating this 

task, using the developed algorithm, the throughput of retinal image analysis, as well as 

the accuracy, can be increased. Manual analysis is tedious and time consuming and due to 

fatigue, leads to a high probability of errors in the detection process. As for clinical 

translation, the algorithm developed for cytometry and cell segmentation and vasculature 

processing, through further refinement, has the potential to be used in fundus camera, a 

common noninvasive method of eyes' imaging. While using this type of camera, the 

vasculature is often stained to fluoresce using a common dye, indocyanine green. Using 

the fundus camera with this stain allows for one to obtain fluorescent images of the 

retina. Although these images are of lower resolution than the images studied here, and 

the contrast between the vasculature and background is decreased, improvements in 

image processing will allow the algorithm to overcome these deficits and permit it to 

obtain similar results to those shown here. 

The next step for fixed cell studies is to extract other features regarding the vasculature 

and also improving the segmentation algorithm so that it will be able to distinguish 

between different cells types which is a project in progress by other graduate students in 

the lab. 

 Live cell studies enable us to look at the previously studied injuries at the cellular 

level. In the next step, it is intended to model injuries such as hyperoxia and hypoxia 

using controlled environment incubator and microscope gas levels. It is predicted that 
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hyperoxic condition may exacerbates the severity of lung injury in PAEC by regulating 

superoxide levels produced. 

 It is also intended to compare injured cells  to control ones. The cells are being 

prepared by inducing pulmonary hypertension in the lamb fetus in utero by pulling out 

the fetus, and occluding the ductus arteriosus by 50%, then putting the fetus back in the 

mother for one more week. The PAECs are then being harvested from the hypertensive 

lamb lungs and are grown in culture. They are expected to produce more free radicals 

comparing to control PAECs. Also monitoring the behavior of these cells under long 

hypoxic conditions followed by hyperoxic conditions is advantageous since it is a good 

model of injuries happening to the fetus at birth. The cell injuries will be studied in 

Biophotonics lab by other graduate students. 
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Abstract. Ventilation with enhanced fractions of O2 (hyperoxia) is a common and necessary 

treatment for hypoxemia in patients with lung failure, but prolonged exposure to hyperoxia causes 

lung injury. Ischemia-reperfusion (IR) injury of lung tissue is common in lung transplant or crush 

injury to the chest. These conditions are associated with apoptosis and decreased survival of lung 

tissue. The objective of this work is to use cryoimaging to evaluate the effect of exposure to 

hyperoxia and IR injury on lung tissue mitochondrial redox state in rats. The autofluorescent 

mitochondrial metabolic coenzymes nicotinamide adenine dinucleotide (NADH) and flavin 

adenine dinucleotide (FAD) are electron carriers in ATP generation. These intrinsic fluorophores 

were imaged for rat lungs using lowtemperature fluorescence imaging (cryoimaging). Perfused 

lungs from four groups of rats were studied: normoxia (control), control perfused with an 

mitochondrial complex IV inhibitor (potassium cyanide, KCN), rats exposed to hyperoxia (85% 

O2) for seven days, and from rats subjected to lung IR in vivo 24 hours prior to study. Each lung 

was sectioned sequentially in the transverse direction, and the images were used to reconstruct a 

three-dimensional (3-D) rendering. In KCN perfused lungs the respiratory chain was more 

reduced, whereas hyperoxic and IR lung tissue have a more oxidized respiratory chain than 

control lung tissue, consistent with previously measured 

mitochondrial dysfunction in both hyperoxic and IR lungs.  
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(Received 18 July 2012; accepted 28 November 2012) 

Abstract—We designed a fiber-optic-based optoelectronic fluorometer to measure emitted 

fluorescence from the auto-fluorescent electron carriers NADH and FAD of the mitochondrial 

electron transport chain (ETC). The ratio of NADH to FAD is called the redox ratio (RR = 

NADH/FAD) and is an indicator of the oxidoreductive state of tissue. We evaluated the 

fluorometer by measuring the fluorescence intensities of NADH and FAD at the surface of 

isolated, perfused rat lungs. Alterations of lung mitochondrial metabolic state were achieved by 

the addition of rotenone (complex I inhibitor), potassium cyanide (KCN, complex IV inhibitor) 

and/or pentachlorophenol (PCP, uncoupler) into the perfusate recirculating through the lung.  

Rotenone- or KCN-containing perfusate increased RR by 21and 30%, respectively. In contrast, 

PCP-containing perfusate decreased RR by 27%. These changes are consistent with the  

established effects of rotenone, KCN, and PCP on the redox status of the ETC. Addition of blood 

to perfusate quenched NADH and FAD signal, but had no effect of RR. This study  demonstrates 

the capacity of fluorometry to detect a change in mitochondrial redox state in isolated perfused 

lungs, and suggests the potential of fluorometry for use in in vivo experiments to extract a 

sensitive measure of lung tissue’s health in real-time. 
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Optical Imaging Of Lipopolysaccharide induced Oxidative 

Stress In Acute Lung Injury From Hyperoxia And Sepsis 
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Abstract. Reactive oxygen species (ROS) have been implicated in the pathogenesis of many 

acute and chronic pulmonary disorders such as acute lung injury (ALI) in adults and 

bronchopulmonary dysplasia (BPD) in premature infants. Bacterial infection and oxygen toxicity, 

which result in pulmonary vascular endothelial injury, contribute to impaired vascular growth and 

alveolar simplification seen in the lungs of premature infants with BPD. Hyperoxia induces ALI, 

reduces cell proliferation, causes DNA damage and promotes cell death by causing mitochondrial 

dysfunction. The objective of this study was to use an optical imaging technique to evaluate the 

variations in °uorescence intensities of the auto-°uorescent mitochondrial metabolic coenzymes, 

NADH and FAD in four di®erent groups of rats. The ratio of these °uorescence signals 

(NADH/FAD), referred to as NADH redox ratio (NADH RR) has been used as an indicator of 

tissue metabolism in injuries. Here, we investigated whether the changes in metabolic state can be 

used as a marker of oxidative stress caused by hyperoxia and bacterial lipopolysaccharide (LPS) 

exposure in neonatal rat lungs. We examined the tissue redox states of lungs from four groups of 

rat pups: normoxic (21% O2) pups, hyperoxic (90% O2) pups, pups treated with LPS (normoxic 

þ LPS), and pups treated with LPS and hyperoxia (hyperoxic þ LPS). Our results show that 

hyperoxia oxidized the respiratory chain as re°ected by a _43% decrease in lung tissue NADH 

RR as compared to that for normoxic lungs. LPS treatment alone or with hyperoxia had no 

significant effect on lung tissue NADH RR as compared to that for normoxic or hyperoxic lungs, 

respectively. Thus, NADH RR serves as a quantitative marker of oxidative stress level in lung 

injury caused by two clinically important conditions: hyperoxia and LPS exposure. 
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Abstract
1
  Recently we demonstrated the utility of optical fluorometry to detect a change in the 

redox status of mitochondrial autofluorescent coenzymes NADH (Nicotinamide Adenine 

Dinucleotide) and FAD (oxidized form of Flavin Adenine Dinucleotide (FADH2,)) as a measure 

of mitochondrial function in isolated perfused rat lungs (IPL). The objective of this study was to 

utilize optical fluorometry to evaluate the effect of rat exposure to hyperoxia (>95% O2 for 48 

hours) on lung tissue mitochondrial redox status of NADH and FAD in a nondestructive manner 

in IPL. Surface NADH and FAD signals were measured before and after lung perfusion with 

perfusate containing rotenone (ROT, complex I inhibitor), potassium cyanide (KCN, complex IV 

inhibitor), and/or pentachlorophenol (PCP, uncoupler). ROT- or KCN-induced increase in NADH 

signal is considered a measure of complex I activity, and KCN-induced decrease in FAD signal is 

considered a measure of complex II activity. The results show that hyperoxia decreased complex 

I and II activities by 63% and 55%, respectively, as compared to lungs of rats exposed to room air 

(normoxic rats). Mitochondrial complex I and II activities in lung homogenates were also lower 

(77% and 63%, respectively) for hyperoxic than for normoxic lungs. These results suggest that 

the mitochondrial matrix is more reduced in hyperoxic lungs than in normoxic lungs, and 

demonstrate the ability of optical fluorometry to detect a change in mitochondrial redox state of 

hyperoxic lungs prior to histological changes characteristic of hyperoxia. 

 

 

Index Terms— NADH dehydrogenase (complex I), succinate dehydrogenase (complex 

II), Flavin Adenine Dinucleotide (FADH2), Nicotinamide Adenine Dinucleotide 

(NADH), lung surface fluorometry, mitochondrial redox 
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Abstract: Diabetic nephropathy (DN) represents the most common cause of end stage renal 

disease (ESRD) and is known as a major risk factor in developing cardiovascular disease. 

Chronic hyperglycemia which occurs during diabetes, leads to overproduction of free radicals 

especially reactive oxygen species (ROS) by the mitochondria electron transport chain. 

Overproduction of ROS as a consequence of hyperglycemia, causes an increase in oxidative 

stress (OS) which then exacerbates the development and progression of diabetes and its 

complications such as renal vascular and proximal tubule cell dysfunction [1-3]. Here, we 

investigate the change in the metabolic state of the tissue which can be used as a hallmark of OS 

in different tissues in two groups of mice kidneys including a group of Akita diabetic mice 

kidneys, its corresponding wild type (WT) and one group of bcl-2 deficient (bcl-2 -/-) mice, its 

corresponding WT (bcl-2 +/+). Bcl-2 family of proteins act as an anti-apoptotic protein with anti-

oxidant effects, which are considered as a regulator of OS. bcl-2 expression decreases during 

diabetes. Akita mice, which have a mutation in the insulin 2 gene, develop type 1 diabetes as 

early as 4-weeks of age and a more sever diabetes by 5-6 weeks of age We also have used a novel 

model , Akita/TSP mice which lack thrombospondin-1 that develops much more sever diabetic 

nephropathy compared to its control mice, TSP-/-[4, 5]. In this study, 3D cryoimaging was 

utilized to obtain the fluorescence images of kidney extracted from bcl-2 -/- mice, Akita diabetic 

mice and their WTs as well as Akita/TSP and their WTs. Redox Ratio (RR) was used as a 

quantitative marker of OS in bcl-2 -/- mice as well as Akita diabetic mice of different ages. 

 

Keywords: Oxidative stress markers, diabetes, hyperglycemia, Bcl-2 family protein, 

Akita diabetic mouse model, redox ratio, fluorescence imaging. 
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Abstract: Oxidative stress (OS) and mitochondrial dysfunction contribute to photoreceptor cell 

loss in retinal degenerative disorders. The objective of this study was to investigate the metabolic 

state of the retina in a rodent model of retinitis pigmentosa using a cryofluorescence imaging 

technique. The mitochondrial metabolic coenzymes NADH and FAD are autofluorescent and can 

be monitored without exogenous labels using optical techniques. The cryofluorescence redox 

imaging technique provides a quantitative assessment of the metabolism. More specifically, the 

ratio of the fluorescence intensity of these fluorophores, (NADH/FAD), the NADH redox ratio 

(RR), is a marker of the metabolic state of the tissue. We examined the NADH RR and retinal 

function in an established rodent model of retinitis pigmentosa, the P23H rat compared to that of 

non-dystrophic Sprague-Dawley (SD) rats. The NADH RR mean values were 1.11 ± 0.03 in the 

SD normal and 0.841 ± 0.01 in the P23H retina, indicating increased OS in the P23H retina. 

Electroretinographic data revealed a significant reduction in photoreceptor function in P23H 

animals compared to SD normal rats. Thus, cryofluorescence redox imaging was used as a 

quantitative marker of OS in eyes from transgenic rats and demonstrated that alterations in the 

oxidative state of eyes occur during the early stages of RP.  

 

Keywords: Optical imaging, NADH, FAD, NADH redox ratio, Oxidative stress, 

Inherited retinal degeneration, Mitochondrial dysfunction. 
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