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ABSTRACT

Nonconvex Cases for Carpenter’s Rulers

by

Ke Chen

The University of Wisconsin-Milwaukee, 2014
Under the Supervision of Professor Adrian Dumitrescu

We consider the carpenter’s ruler folding problem in the plane, i.e., finding a minimum

area shape with diameter 1 that accommodates foldings of any ruler whose longest link

has length 1. An upper bound of 0.614 and a lower bound of 0.476 are known for convex

cases. We generalize the problem to simple nonconvex cases: in this setting we improve

the upper bound to 0.583 and establish the first lower bound of 0.073. A variation is to

consider rulers with at most k links. The current best convex upper bounds are 0.486

for k = 3, 4 and 0.523 for k = 5, 6. These bounds also apply to nonconvex cases. We

derive a better nonconvex upper bound of 0.296 for k = 3, 4.
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1 Introduction

A universal case for a family of sets is a set that contains a copy (under congruence

or translation) of each set in the family. Geometric questions on finding minimum

universal cases for different families of sets have been studied for over a hundred

years. Various measures of minimality such as smallest area and shortest diameter

were also considered.

L. Moser’s worm problem is one of the most famous problems of this type. It

asks for a set in the plane with minimum area that can be used to cover any curve

of length one. Meir showed that a closed semidisk of unit diameter (depicted

in Figure 1 (left)) is a universal case for all curves of unit length. It has area

π/8 < 0.3927.

1

Figure 1: A universal case (in bold lines) for Moser’s worm problem Left: a closed
semidisk of unit diameter. Right: a plane curve of length 1 contained in the case.

Poole and Gerriets [6] constructed a smaller universal case from a rhombus

(see Figure 2 (left)) whose long diagonal is of unit length and the larger angles are

120◦. It has area 1/(2
√

3) < 0.2887.

1

120◦

Figure 2: Another universal case (in bold lines) for Moser’s worm problem. Left: a
rhombus with a long diagonal of unit length and vertex angles of 60◦ and 120◦. Right:
a plane curve of length 1 contained in the case.

Better upper bounds were gradually obtained over two decades since 1970s

(see [11, 14, 15]). The current best upper bound for convex cases is 0.276, derived
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by Norwood and Poole [10]. For nonconvex cases, a better upper bound of 0.246

was achieved by Hansen [7]. The current best convex lower bound 0.2194 is due

to Wetzel [15] and dates back to 1973.

One of the oldest problems concerning universal cases was posed by Lebesgue.

The problem asks for a smallest area convex universal case that contains a congru-

ent copy of every planar set of unit diameter. A minimal universal case depicted in

Figure 3 (left) is due to Eggleston [5]. It is the union of a Reuleaux triangle with

diameter one and a unit circle where a pair of the triangle vertices is a diameter

of the circle. It has area 1.0046 . . ..

1

Figure 3: A universal case (in bold lines) for Lebesgue’s covering problem. Left: union
of a unit Reuleaux triangle and a unit circle. Right: a Reuleaux triangle with unit
diameter (shaded area) contained in the case.

Pál [12] (see also [2, Problem 1, p. 457]) proved an upper bound of 0.8454 with

his truncated hexagon (shown in Figure 4 (left)), a regular hexagon circumscribed

to a unit circle, with two corners cut off. Pál also derived a lower bound of 0.8257

which was further increased to 0.832 by Braß and Sharifi [3].

Similar problems in which translation (but no rotation) is allowed were also

studied. For the same problem, a universal case under translation is also a uni-

versal case under congruence. The direct analogue of Lebesgue’s problem asks

for a smallest universal case that contains a translate of every planar set of unit

diameter. The unit square, shown in Figure 5 (left), is known to be a universal



3

1

Figure 4: Another universal case (in bold lines) for Lebesgue’s covering problem. Left:
a regular hexagon circumscribed to a unit circle, with two corners cut off. Right: a
Reuleaux triangle with unit diameter (shaded area) contained in the case.

case under translation (and congruence). One of the oldest results for universal

cases under translation is due to Pál [13] who proved that the smallest universal

translative case for all open curves of unit length is an equilateral triangle with

height one and area 1/
√

3 (depicted in Figure 6 (left).

1

Figure 5: A universal case (in bold lines) for Lebesgue’s covering problem under transla-
tion. Left: a unit square. Right: a Reuleaux triangle with unit diameter (shaded area)
can rotate inside the square.

Another problem of finding universal (one dimensional) cases asks to determine

the shortest interval into which a chain of line segments can be folded. A chain

of line segments is called a carpenter’s ruler consists of links of different lengths

that are hinged together making it possible to fold. The problem was posed by

Hopcroft, Joseph and Whitesides in [8] where the authors proved it to be NP-

complete and provided a factor 2-approximation algorithm. In [4], Călinescu and

Dumitrescu improved this result by showing that there exists a fully polynomial-
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1

60◦ 60◦

Figure 6: Smallest area translative universal case (in bold lines) for all open curves of
unit length. Left: an equilateral triangle of unit height. Right: a unit open curve can
rotate inside the equilateral triangle.

time approximation scheme. Hopcroft et al. [8] also observed that for a ruler with

its longest link having length 1, the minimum folding length can be at least 2− ε

for all 1 ≥ ε > 0. Consider a ruler with 2n − 1 links as depicted in Figure 7, its

links have lengths 1 and 1 − ε alternatively in which n = d1/εe. The minimum

folding length of this ruler is (n− 1)ε+ 1 ≥ 2− ε.

0 ε 2ε (n− 1)ε (n− 1)ε + 1

1

· · ·

1− ε
1

1− ε

1

1

Figure 7: The minimum folding length of a ruler can be almost double the length of its
longest link.

Călinescu and Dumitrescu [4] (see also [2, Problem 9, p. 461]) introduced a two-

dimensional version of the carpenter’s ruler folding problem in 2005: finding the

minimum area universal case for carpenter’s rulers in the plane whose diameter is

of the same length as a ruler’s longest link. More formally, a carpenter’s ruler L of

n links is a chain of n line segments with endpoints p0, p1, ..., pn, with consecutive

segments connected by hinges. For 0 ≤ i ≤ n− 1, the segment pipi+1 is a link of

the ruler. A ruler with its longest link having length 1 is called a unit ruler. A

folding of a ruler L is represented by the n − 2 angles ∠pipi+1pi+2 ∈ [0, π] for all
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0 ≤ i ≤ n− 2. A case is a planar shape whose boundary is a simple closed curve

(i.e., with no self-intersections). In particular, a case has no interior holes.

Obviously a unit ruler requires a case whose diameter is at least one; on the

other hand, there exist cases of unit diameter that allow folding of any unit ruler

inside, e.g., a disk of unit diameter, regardless of the number of links in the ruler.

A ruler L can be folded inside a case S if and only if there exists a point p ∈ S

and a folding of L such that all the points on L are in S when p0 is placed at p. In

a folded position of the ruler, its links may cross each other; an example is shown

in Figure 8 (right).

A case is said to be universal if any unit ruler (or all unit rulers) can be folded

inside it. The question asks for the minimum area of a convex universal case of

unit diameter. A disk of unit diameter and the Reuleaux triangle with one arc

removed (call it R2), were shown to be universal by the authors [4]. R2 is depicted

in Figure 8, its area is π
3
−
√
3
4

= 0.614 . . .; it is the current best upper bound for

the area of a convex universal case. For any n-link unit ruler p0, p1, ..., pn, a folding

of it inside R2 such that all pi’s lie on the circular arcs can be computed in O(n)

time. The authors [4] also achieved a lower bound of 0.375 using 3-link rulers, and

this was further improved by Klein and Lenz [9] to 0.476 using 5-link rulers.

1

1 1

p0

p1
p2

p3

p4

p5

p6

Figure 8: Left: convex universal case R2 (in bold lines). Right: folding a 6-link unit
ruler p0p1p2p3p4p5p6 into R2.

A case is k-universal if any unit ruler with at most k links can be folded into

it. In the problem of finding a universal case with minimum area, the number of

links (as well as the total length) of the rulers is irrelevant. However, it is worth
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study if fewer links in the rulers allow better bounds. In [1], Alt et al. studied

convex universal cases for rulers with a small number of links for which better

upper bounds were achieved.

Since a universal case has unit diameter, it must be contained in a lens of

radius 1, namely the intersection of two disks of unit radius passing through the

centers of each other (see Figure 9). It was shown in [9] that no subset of R2 with

a smaller area is universal. All previous work has focused on convex cases; the

lower bounds were derived using convex hull of the rulers used in the respective

arguments.

1 1− 2x

x x

1− x 1− x

Figure 9: Universal cases (in bold lines) are contained in a lens of radius 1. Left: convex
universal case R2. Right: nonconvex universal case C for some x ∈ [0, 0.5].

Călinescu and Dumitrescu [4] also asked whether the convexity of the case

makes any difference. Here we deal with nonconvex cases, i.e., cases with spikes

are allowed (see Figure 10), and give a first partial answer to this question. Our

main result concerning nonconvex universal cases is summarized in the following

theorem.

Theorem 1. There exists a (simple) nonconvex universal case C of unit diameter

and area at most 0.583. The folding of any unit ruler with n links inside C can
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be computed in O(n) time. On the other hand, the area of any simple nonconvex

universal case of unit diameter must be at least 0.073.

For the problem of finding k-universal cases, our main result for k = 4 is

summarized in the following theorem.

Theorem 2. There exists a (simple) nonconvex 4-univeral case C2 of unit diam-

eter and area at most 0.296. The folding of any unit ruler with at most 4 links

inside C2 can be computed in O(1) time.

Figure 10: A nonconvex case (in bold lines) with a folded ruler inside.

Table 1 and Table 2 summarize the known and new bounds for convex and

general (convex and nonconvex) cases respectively.

Universal 3-universal 4-universal 5-universal 6-universal
Upper bounds 0.614 0.486 0.486 0.523 0.523
Lower bounds 0.476 0.375 0.375 0.476 0.476

Table 1: Known bounds for convex cases.

Universal 3-universal 4-universal 5-universal 6-universal
Upper bounds 0.583 0.296 0.296 0.523 0.523
Lower bounds 0.073 0.038 0.038 0.073 0.073

Table 2: Known and new (in bold) bounds for nonconvex cases.

In Section 2, we prove that the nonconvex case C shown in bold lines in

Figure 11 is a universal case for any x ∈ [0, 1
2
]. Its area is at most 0.583 (achieved
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1− 2x

x x

1− x 1− x

p0

p1
p2

p3

p4

p5

p6

Figure 11: Left: nonconvex universal case C for some x ∈ [0, 0.5]; the shaded trapezoid
can be discarded. Right: folding a 6-link unit ruler p0p1p2p3p4p5p6 into C.

when x = 0.165), i.e., smaller than the area of R2. Notice that the case whose

boundary is the convex hull of C is a convex universal case whose area is at least

0.694, larger than the area of R2.

In Section 3, lower bounds for nonconvex universal cases are considered, i.e.,

only areas required by the simplicity of the case boundary are taken into account.

We first derive a lower bound of 0.038 using a suitable 3-link ruler, and then extend

the calculation to a suitable 5-link ruler and improve the lower bound to 0.073.

In Section 4, the problem of finding k-universal cases for k = 4 is considered.

We construct another nonconvex case C2 with unit diameter. It is proved to be

4-universal with an algorithm for folding unit rulers with at most 4 links inside

it. C2 has area at most 0.296, smaller than 0.486 which is the current best upper

bound for the area of a convex 4-universal case.

2 Upper Bound

The upper bound in Theorem 1 will be proved using the simple nonconvex shape

C shown in Figure 12. C is constructed as follows.

• |ac| = |af | = |bg| = 1

• |bd| = |cd| = |ef | = |eg| = x, x ∈ [0, 1
2
]

• Arcs ab and gf are centered at e with radii 1− x and x respectively
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• Arcs ag and bc are centered at d with radii 1− x and x respectively

Notice that when x = 1
2
, C becomes a disk with diameter 1; and when x = 0,

C is identical to R2. We show below that for any x ∈ [0, 1
2
], C is a universal case

with diameter 1. Choosing x = 0.165 yields a universal case with area ≤ 0.583;

notice that this area is smaller than 0.614 . . ., the area of R2, the current smallest

convex universal case.

a

f c

b
de

g x

x

x

x

1− 2x

1− x 1− x

Figure 12: Nonconvex universal case C (in bold lines).

2.1 Diameter of C

We show that C has diameter 1 for any x ∈ [0, 1
2
]. The diameter is given by a pair

of points on the convex hull, thus it suffices to consider points on arcs ab, bc, fg,

ga and segment cf . Let p and p′ be two points on the convex hull of C.

Fix p on arc ab. If p′ is on arc ab, |pp′| ≤ |ab| < |ac| = 1. If p′ is on arc

bc or segment cf , |pp′| ≤ |ac| = 1. If p′ is on arc fg, extend segment pe until

it intersects arc fg at point p′′. If p′ = p′′, |pp′| = |pe| + |ep′′| = 1; otherwise,

segments pe, ep′, pp′ form a triangle, thus, |pp′| < |pe| + |ep′| = |ae| + |ef | = 1. If

p′ is on arc ga, |pp′| ≤ |bg| = 1.

Fix p on arc bc. If p′ is on segment cf , |pp′| ≤ |bf | < |bg| = 1. If p′ is on arc

fg, |pp′| ≤ |bg| = 1. By symmetry, C has diameter 1.
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2.2 Algorithm for folding a ruler inside C

We show that the folding of any unit ruler with n links inside C can be computed

in O(n) time. We adapt the algorithm introduced in [4] to work with our case C.

Fix the first free endpoint at some (arbitrary) point p on a circular arc. Iteratively

fix the next point of the ruler at some intersection point between the arcs of C

and the circle centered at p with radius the length of the current link.

Notice that for any point p on the circular arcs of C, and for any t ∈ [0, 1],

there exists at least one point p′ on these arcs such that |pp′| = t. This guarantees

the existence of the intersection points used in the iterative steps of the above

algorithm.

2.3 Minimum area of C

The area of C is the sum of areas of the sectors dag, dbc, eab and efg minus the

area of the triangle ∆ade. In the triangle ∆ade, we have ∠ade = arccos 1−2x
2−2x . The

sectors dag and eab have the same area (1−x)2
2

arccos 1−2x
2−2x . The sectors dbc and

efg have the same area x2

2
arccos 1−2x

2−2x .

The triangle ∆ade has area 1−2x
4

√
3− 4x. It follows that

area(C) = 2area(sector dag) + 2area(sector dbc)− area(∆ade)

= (1− x)2 arccos
1− 2x

2− 2x
+ x2 arccos

1− 2x

2− 2x
− 1− 2x

4

√
3− 4x

= (1− 2x+ 2x2) arccos
1− 2x

2− 2x
+

2x− 1

4

√
3− 4x.

Taking derivatives yields

d(area(C))

dx
= (4x− 2) arccos

1− 2x

2− 2x
+

3− 7x+ 5x2

(1− x)
√

3− 4x
.
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0.1 0.2 0.3 0.4
x0.55

0.60

0.65

0.70

0.75

areaHCL

0.1 0.2 0.3 0.4
x

-0.5

0.5

1.0

dHareaHCLL
d x

Figure 13: A plot of area(C) (left) and its derivative (right).

Solving for d(area(C))
dx

= 0 yields a single root x = 0.165 . . ., at which C has the

smallest area, area(C) ≤ 0.583 (see Figure 13).

3 Lower Bound

We start with Lemma 1 (in Subsection 3.1), which gives a lower bound of 0.038

for the area required by a suitable 3-link ruler. As it turns out, this lower bound

is the best possible for all 3-link rulers. Lemma 1 will be reused when deriving

a lower bound for 5-link rulers (in Subsection 3.2), improving this first bound to

0.073.

3.1 Lower Bound with One 3-Link ruler

For 3-link rulers, it is sufficient to consider the sequence of lengths 1, t, 1 with

t ∈ (0, 1). Indeed, given a folding of ruler 1, t, 1, and an arbitrary unit 3-link ruler

with links a, t, b, make the t-links of the two rulers coincide, and fold the a- and

b-links over the two unit links; the resulting folding is a valid one in the same case

required by the 1, t, 1 ruler.

For the 3-link ruler with link lengths 1, t, 1, the two 1-links must intersect

otherwise the diameter constraint will be violated, see Figure 14. The shaded

triangle is the only area that counts for the nonconvex lower bound.
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1
1− a

1

t
α

β

1− b p0(cosα, sinα)

p1(0, 0) p2(t, 0)

p3(t− cos β, sin β)

b a
q

Figure 14: For a 3-link ruler 1, t, 1, where t is fixed, the area of the shaded triangle is
minimized when |p0p3| = |p1p3| = 1.

Lemma 1. For any t ∈ (0, 1), the shaded triangle in Figure 14 is minimized when

α = arccos t
2
− π

3
and β = arccos t

2
.

Proof. By symmetry, we can assume that α ≤ β. Denote the area of the shaded

triangle ∆p1p2q by S. Since the triangle has base t, its height h determines the

area. The height h is the distance between p1p2 and the intersection point between

p0p1 and p2p3. For any fixed α ∈ [arccos t
2
−π

3
, arccos t

2
], the area is minimized when

β is minimized without violating the diameter constraint |p0p3| ≤ 1. Denote this

angle by β(α); β(α) is a monotonically decreasing function that can be determined

by computing the intersection of two circles of radius 1 centered at p0 and p2. In

the following discussion, we will refer to this angle by β.

It suffices to express the area S as a function of two parameters, t and α. In

fact, h cotα + h cot β = t or

h =
t

cotα + cot β
.

So

S(t, α) =
th

2
=

t2

2(cotα + cot β)
.
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Taking derivative with respect to α, we have

dS(t, α)

dα
=

t2

2(cotα + cot β)2

(
1

sin2 α
+

1

sin2 β

dβ

dα

)
.

To see that S is minimized when α is minimized, we need to show that dS(t,α)
dα

> 0,

i.e.,

1

sin2 α
+

1

sin2 β

dβ

dα
> 0, or

dβ

dα
> − b

2

a2
.

Suppose p1 is fixed at (0, 0), p2 is at (t, 0), then p0 has coordinates (cosα, sinα),

p3 has coordinates (t− cos β, sin β). Since |p0p3| = 1, we have

(t− cos β − cosα)2 + (sin β − sinα)2 = 1, or

t2 + 1− 2t cos β − 2t cosα + 2 cos(α + β) = 0.

Taking derivative with respect to α, we have

2t sin β
dβ

dα
+ 2t sinα− 2 sin(α + β)(1 +

dβ

dα
) = 0, or

dβ

dα
=

sin(α + β)− t sinα

t sin β − sin(α + β)
.

Notice that in the shaded triangle ∆p1p2q,

a

sinα
=

b

sin β
=

t

sin(α + β)
.

So

dβ

dα
= −1− a

1− b .
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Thus dS(t,α)
dα

> 0 is equivalent to

dβ

dα
= −1− a

1− b > −
b2

a2
, or

b2 − b3 > a2 − a3.

This inequality holds if 0 < a < 2/3 and a < b < (1− a)/2 +
√

(1 + 3a)(1− a)/2.

We know this is true since in triangle ∆p0p3q, (1 − a) + (1 − b) > 1. Recall

α ≤ β, so a ≤ b. If a > 1/2, (1 − a) + (1 − b) ≤ 2(1 − a) < 1, so a ≤ 1/2. And

b < 1− a < (1− a)/2 +
√

(1− a)2/2.

Observe that α and the correspondingly β are determined when |p1p3| = 1

(see Figure 14). Moreover, this value of α is the minimum possible; indeed, if α

is getting smaller, either |p0p3| or |p1p3| will violate the diameter constraint. In

the isosceles triangle ∆p1p2p3, we have β = α + ∠p0p1p3 and cos β = t
2
. In the

equilateral triangle ∆p0p1p3, we have ∠p0p1p3 = 60◦. So β = α+ π
3

= arccos t
2
.

Now we are ready to show our first lower bound on simple nonconvex cases.

By Lemma 1,

S(t, α) ≥ U(t) :=
t2

2(cot(arccos t
2
− π

3
) + cot arccos t

2
)
. (1)

It is easy to check that U(0.676) ≥ 0.038, as desired. For t ∈ (0, 1), U(t)

attains its maximum value for t = 0.676 . . ., and this is the best possible bound

for a single 3-link ruler.

3.2 Lower Bound with One 5-link Ruler

Consider a special ruler with 5 links of lengths 1, 0.6, 1, 0.6, 1 as shown in

Figure 15. Recall that all the 1-links must pairwise intersect. Since the ruler is

symmetric, w.l.o.g., we can assume that β ≥ γ. The following lemma gives a
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better lower bound using this ruler.

1

1
1

p0

p1

p2 (0,0) p3 (1,0)

p4

p5

α

β γ

δ

t t

x

y

Figure 15: Legend for the 5-link ruler used (in bold lines).

Lemma 2. The minimum area of a simple (nonconvex) case of unit diameter

required by folding the ruler 1, 0.6, 1, 0.6, 1 inside it is at least 0.073.

Proof. Put t = 0.6. The Cartesian coordinate is set up as follows: fix the origin

at p2 and let the x-axis pass through p3. We have p2 = (0, 0), p3 = (1, 0),

p1 = (t cos β, t sin β) and p4 = (1− t cos γ, t sin γ). Recall that the case is required

to be simple, i.e., no self-intersections or holes are allowed. According to the

analysis of 3-link rulers, β, γ ∈ [arccos t
2
− π

3
, arccos t

2
]. We distinguish four cases

according to the angles β and γ.

Case 1: The two t-links do not intersect. This case includes the situation that

p3p4 is folded below p2p3. As shown in Figure 16 (left), each shaded triangle is

minimized using Lemma 1.

β = γ = arccos
t

2
= 72.54 . . .◦ , α = δ = arccos

t

2
− π

3
= 12.54 . . .◦ .

Observe that this is not a valid folding since the two 1-links p0p1 and p4p5 do

not intersect. However, it gives a valid lower bound since for any fixed β and γ,

increasing α or δ (to make the 1-links intersect) will increase the total area. By
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(1), the lower bound for Case 1 is

2U(t) =
t2

cot(arccos t
2
− π

3
) + cot arccos t

2

≥ 0.074.

p0

p1

p2 p3

p4

p5

α

β γ

δ

q0

q1

p0

p1

p2 p3

p4

p5

α
β γ

δ
q2

Figure 16: Case 1 (left) and Case 2 (right): the lower bounds are given by the shaded
areas in each case.

Case 2: The two t-links intersect and both β and γ are at least 16◦. As shown in

Figure 16 (right), increasing β or γ will enlarge the upper shaded area consisting

of the triangles ∆q0p1p2 and ∆q0p3q1. The area of the triangle below p2p3 will

decrease but we simply ignore it when computing the lower bound in this case.

Similar to the case of 3-link rulers, when β = γ = 16◦, α should be minimized

under the constraint |p0p3| ≤ 1 otherwise the area of the upper right small triangle

∆q1p1q2 will increase. In this configuration, triangle ∆q0p1p2 has height t sin β.

Its base |p2q0| is the difference between the projections of the segments p2p1 and

q0p1 on the x-axis, and ∠p1q0p3 = α + β. It follows that

b = |p2q0| = t cos β − t sin β

tan(α + β)
. (2)
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Triangle ∆q0p3q1 has base 1−b. Its height h equals to the y-coordinate of q1 which

is the intersection point of lines p0p1 and p3p4. The equation of line p0p1 is

y = tan(α + β)(x− t cos β) + t sin β.

The equation of line p3p4 is

y = (1− x) tan γ.

The y-coordinate of their intersection is

h =
(t sin β + (1− t cos β) tan(α + β)) tan γ

tan γ + tan(α + β)
. (3)

The total shaded area is the sum of the two areas of triangles ∆q0p1p2 and ∆q0p3q1,

namely

bt sin β + (1− b)h
2

≥ 0.073. (4)

Case 3: The two t-links intersect and β ≥ 16◦, γ ≤ 16◦. In this case, the lower

p1

p2 p3

p4

p5

α
β γδ

p0

q1 q0

q2

p1

p2 p3

p4

p5

α
β γδ

p0

Figure 17: Case 3: area above (left) and area below (right). The lower bound is given
by the sum of the two shaded areas.
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bound consists of two parts, the minimum shaded areas above and below p2p3,

denoted by Sa and Sb respectively.

As shown in Figure 17 (left), with a similar argument as in Case 2, the minimum

shaded area above p2p3 is achieved when β = 16◦, γ = arccos t
2
− π

3
(which is the

minimum value) and α is minimized under the constraint |p0p3| ≤ 1. Plugging in

these values into (2), (3) and (4) in Case 2 yields Sa ≥ 0.067.

Observe that when β and γ increase, α and δ can take smaller values under the

constraints |p0p3| ≤ 1, |p2p5| ≤ 1 and thus form a smaller triangle below p2p3. So

the area of triangle ∆q0q1q2 is minimized when both β and γ take the maximum

values, i.e., γ = 16◦ and β is chosen such that p4 lies on p1p2 (p1p2 and p3p4 need

to intersect). Then, both α and δ are minimized under the diameter constraints.

This configuration is shown in Figure 17 (right). Similar to (2), we have

|p2q0| = t cos β − t sin β

tan(α + β)
,

|q1p3| = t cos γ − t sin γ

tan(γ + δ)
.

(5)

The base of triangle ∆q0q1q2 is b = |p2q0| + |q1p3| − 1. The height h of this

triangle is the absolute value of the y-coordinate of q2, the intersection point of

lines p0p1 and p4p5. The equation of line p0p1 is

y = tan(α + β)(x− t cos β) + t sin β.

The equation of line p4p5 is

y = tan(γ + δ)(1− t cos γ − x) + t sin γ.
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Solving for their intersection point gives

h =
tan(α + β) tan(γ + δ)(t cos β + t cos γ − 1)

tan(α + β) + tan(γ + δ)

− t tan(γ + δ) sin β + t tan(α + β) sin γ

tan(α + β) + tan(γ + δ)
. (6)

It follows that Sb = 1
2
hb ≥ 0.006, and consequently, the minimum total shaded

area is Sa + Sb ≥ 0.073.

Case 4: both β and γ are no more than 16◦. Notice that since t = 0.6, the

two t-links must intersect. Similar to Case 3, the lower bound is calculated as

p1

p2 p3

p4
αβ γδ

p0 = p5

p1

p2 p3

p4

p5

α
β γ

δ

p0

Figure 18: Case 4: area above (left) and area below (right). The lower bound is given
by the sum of the two shaded areas.

the sum of minimized areas of shaded triangles above and below p2p3. For the

triangle above p2p3, recall that β and γ both have the minimum possible value,

arccos t
2
− π

3
, as shown in Figure 18 (left). The minimized isosceles triangle above

p2p3 has base 1 and height tanβ
2

. Its area is

Sa =
tan(arccos t

2
− π

3
)

4
≥ 0.055.
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The area of the triangle below p2p3 is minimized when both β and γ take the

maximum value (16◦). Using (5) and (6) in Case 3 and α = δ, β = γ, the triangle

below p2p3 has base

b = 2

(
t cos β − t sin β

tan(α + β)

)
− 1

and height

h =
(2t cos β − 1) tan(α + β)

2
− t sin β.

Its area is Sb = hb
2
≥ 0.019. The minimum total shaded area is Sa + Sb ≥ 0.074.

In summary, by Cases 2 and 3 of the analysis, the minimum nonconvex area

required by folding the ruler 1, 0.6, 1, 0.6, 1 within a case of unit diameter is at

least 0.073.

4 k-universal Cases

In this section, we consider the problem of finding k-universal cases of minimum

areas. Let Ak be the smallest area of a convex k-universal case and Bk be the

smallest area of an arbitrary (convex or nonconvex) k-universal case. For any

k ∈ N, Bk ≤ Ak. Additionally, ∀i < j ∈ N, Ai ≤ Aj, Bi ≤ Bj. Our goal is to find

better bounds for Bk. This problem was first studied by Alt et al. [1], in which

the authors proved that A3 ≤ A4 < 0.486 and A5 ≤ A6 ≤ 0.523. With a simple

nonconvex case C2 (see Figure 22), we derive a better upper bound, B4 < 0.296,

which is smaller than the current best upper bound of A4 < 0.486.

Replacing an circular arc in R2 (Figure 8) with its chord results in the case

R1, depicted in Figure 19, a sector with radius one and center angle 60◦, its area

is π/6. Alt et al. [1] proved that R1 is 6-universal but not 7-universal. Thus,

A6 ≤ area(sector abc) = π/6 = 0.532 . . ..

Further replacing half of the remaining circular arc in R1 with a line segment
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1
a b

c

1

60◦ p5

p0

p3

p1

p2

p4

p6

Figure 19: Left: 6-universal case R1 (in bold lines). Right: folding a 6-link unit ruler
p0p1p2p3p4p5p6 into R1.

a b

d

c

1

1

30◦
30◦

p0

p1

p2

p3

p4

Figure 20: Left: 4-universal case R1/2 (in bold lines). Right: folding a 4-link unit ruler
p0p1p2p3p4 into R1/2.

produces the case R1/2 shown in Figure 20. R1/2 consists of the sector abc with

radius one and center angle 30◦ and the isosceles triangle ∆acd with base |ac| = 1

and height |bd|/2 = 1/2. R1/2 was shown to be 4-universal but not 5-universal in

[1]. Thus, A4 ≤ area(sector abc) + area(∆acd) = π/12 + 1/4 = 0.512 . . ..

1
a b

c

d

x

x

α
β

e

o

p3 p1

p4

p0

p2

Figure 21: Left: convex 4-universal case S2 (in bold lines). Right: folding a 4-link unit
ruler p0p1p2p3p4 into S2.

Alt et al. [1] improved the upper bounds of A4 with a better 4-universal case

S2 depicted in Figure 21. S2 is constructed as follows. |ab| = 1, pick an arbitrary
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point c on the circular arc ob, let x = |bc|. Draw a circle centered at c with radius

x, let it intersect arc oa at point d. Notice that d exists only if |oc| ≤ |cb|. So

c must be at the middle point of arc ob or higher, i.e., ∠cab ≥ 30◦. In ∆abc,

|bc| = x, |ac| = |ab| = 1. Thus |bc| = |cd| = x ≥
√

2−
√

3 = 0.517 . . .. Similar

to the universal case C introduced in Section 2, S2 is proved to be 4-universal

with any value of x ∈ [
√

2−
√

3, 1]. Notice that when x = 1, S2 becomes the

6-universal case R1; when c lies at the middle of the arc ob, S2 is identical to

R1/2.

The minimum area of S2 was claimed (without proof) to be approximately

0.485. We confirm this result by providing full details in Section 4.1. However,

we observe that the shaded triangle ∆ade in Figure 21 (left) is not necessary

for the folding algorithm introduced in [1]. If we discard this triangle, a family

of nonconvex cases abcde with parameter x can be obtained. In Section 4.2, we

1a b

c

d = o

e

x

x

30◦ p0

p1

p2

p4

p3

Figure 22: Left: nonconvex 4-universal case C2 (in bold lines). Right: folding a 4-link
unit ruler p0p1p2p3p4 into C2.

prove that for x =
√

2−
√

3 = 0.517 . . ., i.e., c is at the middle point of arc ob,

the nonconvex case C2 shown in Figure 22 has the smallest area 0.295 . . . in this

family. In Section 4.3, we show that C2 is a 4-universal but not 5-universal case.

Thus, the upper bound of B4 is improved from 0.486 to 0.296.
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4.1 Area of S2

In preparation for calculating the area of C2, we provide the missing details in [1]

for calculating the minimum area of S2. In Section 4.2, the area of C2 is derived

based on the following calculations. The area of S2 is the sum of the areas of its

three parts: the isosceles triangles ∆bcd, ∆abd and the circular segment cb. In

∆bcd, α = arccos 1
2x

and its area is
√
4x2−1
4

. In isosceles triangle ∆abc, β = arccos x
2

and its area is x
4

√
4− x2. The area of the circular segment cb is the area of the

circular sector abc minus the area of ∆abc, i.e., π
2
−arccos x

2
− x

4

√
4− x2. In ∆abd,

∠abd = β−α, its area is sin(β−α)/2 = sin
(
arccos x

2
− arccos 1

2x

)
/2. In summary,

area(S2) = area(∆bcd) + area(∆abd) + area(circular segment cb)

=

√
4x2 − 1

4
+ sin

(
arccos

x

2
− arccos

1

2x

)
/2

+
π

2
− arccos

x

2
− x

4

√
4− x2.

Taking derivative yields,

d(area(S2))

dx
=

4 + x2

4
√

4− x2
−
√

4− x2
4

+
x√

4x2 − 1

−
(

1

2x
√

4x2 − 1
+

1

2
√

4− x2
)

cos

(
arccos

x

2
− arccos

1

2x

)
.

0.6 0.7 0.8 0.9
x0.48

0.49

0.50

0.51

0.52

areaHS2L

0.6 0.7 0.8 0.9
x

-0.2

-0.1

0.1

0.2

dHareaHS2LL
d x

Figure 23: A plot of area(S2) (left) and its derivative (right).
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Solving for d(area(S2))
dx

= 0 yields two roots in [0.5, 1] (see Figure 23). When

x = 0.743 . . ., S2 has the smallest area area(S2) ≤ 0.486.

4.2 Area of C2

1
a b

c

d

x

x

α
β

e

o

1a b

c

d = o

e

x

x

30◦ α
β

Figure 24: Derive C2 from S2. Left: S2 (in bold lines) with the shaded triangle dis-
carded. Right: C2 (in bold lines) has minimum area 0.295 . . . when c lies in the middle
of the circular arc bd.

Due to the subtraction of triangle ∆ade, we need to calculate the area of

triangle ∆abe instead of ∆abd which is used in the area formula of S2. In ∆abc

(see Figure 24 (left)), ∠bac = π − 2β. In ∆abe, ∠abe = β − α and

∠aeb = π − ∠bae− ∠abe = π − (π − 2β)− (β − α) = β + α.

So
|be|

sin(π − 2β)
=

|ab|
sin(β + α)

=
1

sin(β + α)
, or |be| = sin(2β)

sin(β + α)
.

The area of ∆abe is

area(∆abe) = |ab| · |be| sin(β − α)/2

=
sin
(
2 arccos x

2

)
sin
(
arccos x

2
− arccos 1

2x

)
sin
(
arccos x

2
+ arccos 1

2x

) .
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Notice that

sin
(

2 arccos
x

2

)
=
x
√

4− x2
2

,

sin

(
arccos

x

2
− arccos

1

2x

)
=

√
4− x2 − x

√
4x2 − 1

4x

sin

(
arccos

x

2
+ arccos

1

2x

)
=

√
4− x2 + x

√
4x2 − 1

4x
.

Thus, the area of the convex case C2 is

area(C2) = area(∆bcd) + area(circular segment cb) + area(∆abe)

=

√
4x2 − 1

4
+
π

2
− arccos

x

2
− x

4

√
4− x2

+
x(4− x2)− x2

√
(4− x2)(4x2 − 1)

4
√

4− x2 + 4x
√

4x2 − 1
.

Taking derivative yields

d(area(C2))

dx
=

4 + x2

4
√

4− x2
−
√

4− x2
4

+
x√

4x2 − 1

− 4x(8x2 − 1)(4− x2)(
4
√

4− x2 + 4x
√

4x2 − 1
)2√

4x2 − 1

− 4x3
√

4x2 − 1− 32x4
√

4− x2(
4
√

4− x2 + 4x
√

4x2 − 1
)2

+
4− 3x2 − 2x

√
(4− x2) (4x2 − 1)

4
√

4− x2 + 4x
√

4x2 − 1

− x2 (8x (4− x2)− 2x (4x2 − 1))

8(4− x2)
√

4x2 − 1 + 8x(4x2 − 1)
√

4− x2
.

We verify that d(area(C2))
dx

= 0 has no real root in [
√

2−
√

3, 1]. Indeed, as shown

in Figure 25, area(C2) is a monotonically increasing function with respect to x in

this range. Thus, the area of C2 is minimized when x =
√

2−
√

3, as depicted in

Figure 24 (right). Since c lies in the middle of the circular arc bd, line segment ce
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0.6 0.7 0.8 0.9
x0.25

0.35

0.45

areaHC2L

0.6 0.7 0.8 0.9
x

0.5

1.0

dHareaHC2LL
d x

Figure 25: A plot of area(C2) (left) and its derivative (right).

is perpendicular to ed and |ed| = 1/2, |ce| =
√

7− 4
√

3/2. The minimum area of

C2 is area(sector abc) + area(∆cde) = π/12 +
√

7− 4
√

3/8 = 0.295 . . ..

4.3 C2 is 4-universal

First we show that any 3-link unit ruler p0p1p2p3 can be folded into C2 (see

Figure 26).

p0 = p3 p2

p1

p0 p3

p2

p1

Figure 26: Two cases of folding a 3-link ruler into C2 (in bold lines). Left: the middle
link is short. Right: the middle link is long.

Lemma 3. C2 is a nonconvex 3-universal case.

Proof. It is sufficient to consider rulers with links 1, t, 1 for any t ∈ (0, 1].

Case 1: t is small, i.e., t ≤ x =
√

2−
√

3. So both end points of the center

link t can be placed on the circular arc bc (see Figure 27 (left)). Since arc bc is



27

1

1

t

x

a b

c

d

e

1

1

t

x

a b

c

d

e p

Figure 27: Fold a 3-link ruler (in bold lines) into C2. Left: t ≤ x. Right: t > x.

centered at a with radius 1, both links of length one can be folded from arc bc

to a.

Case 2: t is large, i.e., |cd| = x < t ≤ 1 = |bd|. As shown in Figure 27 (right),

starting from point d, there exists a point p on arc bc such that |dp| = t. So the

1, t, 1 ruler can be placed from b to d to p to a.

Now we prove that any 4-link unit ruler p0p1p2p3p4 can be folded inside C2 (as

illustrated in Figure 28).

p1

p0

p2

p3

p4

p1

p0

p2

p3

p4

p1

p2

p3

p4

p0

Figure 28: Two cases of folding a 4-link ruler into C2 (in bold lines). Left: p2p3 is short.
Right: p2p3 is long.

Lemma 4. C2 is a nonconvex 4-universal case.

Proof. It is sufficient to consider unit rulers with links 1, t, t′, 1.

Case 1: t + t′ ≤ 1. The folding problem of this ruler can be reduced to a

folding problem of a 3-link ruler 1, t+ t′, 1 which is already solved by Lemma 3.
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Case 2: t+ t′ > 1. Without loss of generality, we assume t ≥ t′. Label the end

points of the ruler by pi, i = 0, 1, 2, 3, 4, such that |p0p1| = |p3p4| = 1, |p1p2| = t

and |p2p3| = t′. Fold the ruler such that the first two links overlap each other, i.e.,

p2 lies on p0p1. As illustrated in Figure 29 (left), we place p0p1 at bd, then p2 is on

eb otherwise t+ t′ ≤ 1. |p2d| = t ≥ t′ and |p2b| = 1− t < t′, so there exists a point

p on the circular arc bcd (notice that the arc cd is imaginary) such that |p2p| = t′.

Case 2a: p lies on arc bc. We can place p3 at p then p4 at a as illustrated in

Figure 29 (left).

Case 2b: p lies on (the imaginary) arc cd. We flip the ruler around with respect

to the axis ac. As shown in Figure 29 (right), now p0 is at d, p1 is at b and p2 is at

p′2. Point p is also flipped to point p′ on arc bc. So we can place p3 at p′, p4 at a.

Thus, in both cases the 4-link ruler can be folded into C2. More formally,

if p0p1 (or p1p0) is placed at bd and p2 is folded on p0p1, the distance |p2c| =√
(1/2− t)2 + (7/4−

√
3). If |p2c| ≥ t′ (Case 2a), p0 is placed at b. Otherwise

|p2c| < t′ (Case 2b), p0 is placed at d. Then in both cases, there exists a point p

on arc bc such that |p2p| = t′.

1

a b

c

p1

e

d

p0

p2

p3 = p

p4

1

a b

c
e

p1

p′2

p3 = p′

p4

p0 d

p

p2

Figure 29: Fold a 4-link ruler (in bold lines) into C2. Left: |p2c| ≤ x. Right: |p2c| > x.

Hence Theorem 2 follows. Additionally we show that there exists a ruler with

5 links that cannot be folded inside C2.

Lemma 5. C2 is not a 5-universal case.



29

Proof. Consider folding the 5-link ruler 1, 0.6, 1, 0.6, 1 into C2. The 0.6 links are

in between the 1 links so both their end points must lie on a, d or arc bc. But

since 1 > 0.6 >
√

2−
√

3, between d and some point on arc bc is the only possible

position among all the combinations. Suppose the first 0.6 link is placed in this

position, the other end points of the two 1 links adjacent to it must be placed

at b and a respectively. But the second 0.6 link must also be placed to this only

position which is impossible.

5 Summary and Future Directions

For the problem of finding minimum nonconvex universal cases for carpenter’s

rulers, we have shown:

• The area of a smallest nonconvex universal case with unit diameter is at

most 0.583.

• The area of any nonconvex universal case is at least 0.073.

• The area of a smallest nonconvex 3-universal case is at most 0.296 and at

least 0.038.

• The area of a smallest nonconvex 4-universal case is at most 0.296.

In Section 3, the best possible lower bound given by one 3-link ruler is achieved,

whereas the one given by a 5-link ruler is not. Computer experiments suggest that

5-link rulers require folding area at least 0.137; more precisely:

• The minimum folding of a 5-link ruler with lengths 1, 0.6, 1, 0.6, 1 has

(nonconvex) area at least 0.092.

• The minimum folding of a 5-link (symmetric) ruler with lengths 1, t, 1, t, 1

has area at least 0.115 when t = 0.8.
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• The minimum folding of a 5-link (asymmetric) ruler with lengths 1, t1, 1, t2, 1

has area at least 0.137 when t1 = 0.7, t2 = 0.4.

The difficulty of approaching these better bounds lies in the complicated com-

putations of nonconvex areas in many sub-cases. Note however that even the

computational results were used, the resulting lower bounds would still be far

away from the current upper bound of 0.583, which we believe is closer to the

truth.

Based on these observations, possible future research directions are:

1. Derive better lower bounds for universal cases using rulers with more links.

2. Derive better lower bounds for universal cases using combinations of multiple

rulers.

Recall that the area of R1 is 0.523 . . . which is the current best upper bound

for A5, A6 and B5, B6. In Section 4, we improved the upper bound for B4 (and

B3) to 0.296 with the nonconvex 4-universal case C2. But we also showed that

C2 is not a 5-universal case. Based on these results, following questions can be

asked:

3. Is there a 3-universal case with area smaller than the area of C2, namely 0.296?

4. Is there a 5-universal case with area smaller than the area ofR1, namely 0.523?

5. What are the tight bounds for Ak and Bk when k = 3, 4, 5 and 6?

6. Are there convex k-universal cases for k > 6 with area smaller than 0.614,

the area of the current best convex universal case R2?

7. Are there k-universal cases for k > 6 with area smaller than 0.583, the area

of the current best (nonconvex) universal case C?

8. Especially, we are interested in the connection between the problem of finding

minimum area k-universal cases and the problem of finding minimum area
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universal cases. More specifically, is there a k such that Ak (Bk) matches

the universal convex (nonconvex) bound?

Additionally, in [9], Klein and Lenz showed that no subset of R2 with smaller

area than R2 is a universal case. This is proved by using a ruler with n links where

n goes to infinity. The authors showed that the only possible folding inside R2

covers the whole area of R2. Motivated by this result, we propose the following

interesting open problems:

9. Does a similar result hold for the nonconvex universal case C?

10. Does a similar result hold for the nonconvex 4-universal case C2? Notice that

in this problem, the method with rulers having the number of links going

to infinity (which was used in [9]) is not applicable. Rulers are restricted to

have at most 4 links. However, a possible approach is to use a combination

of multiple rulers and show that no matter how the rulers are folded, C2

will be covered.
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[4] G. Călinescu and A. Dumitrescu, The carpenter’s ruler folding problem, in J.
Goodman, J. Pach and E. Welzl (editors), Combinatorial and Computational
Geometry, Mathematical Science Research Institute Publications, Cambridge
University Press, 2005, pp. 155–166.

[5] H. G. Eggleston, Minimal universal covers in En, Israel Journal of Mathemat-
ics, 1(3), 1963, pp. 149–155.

[6] J. Gerriets and G. Poole, Convex regions which cover arcs of constant length,
The American Mathematical Monthly, 81, 1974, pp. 36-41.

[7] H. C. Hansen, The worm problem (in Danish), Normat, 40, 1992, pp. 119–123.

[8] J. E. Hopcroft, D. Joseph and S. Whitesides, Movement Problems for 2-
Dimensional Linkages. SIAM Journal on Computing, 13(3), 1984, pp. 610–629.

[9] O. Klein and T. Lenz, Carpenters rule packings—a lower bound, Abstracts of
23rd European Workshop on Computational Geometry, 2007, pp. 34–37.

[10] R. Norwood and G. Poole, An Improved Upper Bound for Leo Moser’s Worm
Problem. Discrete and Computational Geometry, 29(3), 2003, pp. 409–417.

[11] R. Norwood, G. Poole and M. Laidacker, The worm problem of Leo Moser,
Discrete and Computational Geometry, 7(1), 1992, pp. 153–162.
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