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ABSTRACT

Statistical Hyperbolicity

of Relatively Hyperbolic Groups

by

Jeremy Osborne

The University of Wisconsin-Milwaukee, 2014
Under the Supervision of G. Christopher Hruska

In this work, we begin by defining what it means for a group to be statistically

hyperbolic. We then give several examples of groups, including non-elementary δ-

hyperbolic groups, which either are statistically hyperbolic or are not. Following

that, we define what it means for a group to be relatively hyperbolic. Finally, in

the main portion of this work, we show that groups which are relatively hyperbolic,

with a few additional conditions in place, must also be statistically hyperbolic.
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Chapter 1

Introduction

The idea of statistical hyperbolicity was first introduced by Moon Duchin, Samuel

Lelièvre, and Christopher Mooney in [DLM12]. The intuitive meaning of statistical

hyperbolicity of a group can be summed up as follows: On average, random pairs

of points x, y on a sphere of the Cayley graph of the group almost always have the

property that d(x, y) is nearly equal to d(x, e) + d(e, y) where e is the origin. More

precisely, for a group G with finite generating set S, let the function

E(G,S) := lim
n→∞

1

|Sn|2
∑

x,y∈Sn

1

n
d(x, y)

Then a finitely generated group G with finite generating set S is statistically hyper-

bolic when

E(G,S) = 2,

as in Definitions 2.1 and 2.2.

In some cases, an analgous definition to that above can be used for spaces which

do not necessarily represent the Cayley graph of a group. Many results were found

to this end in [DLM12]. Specifically, it was found that the following are statistically

hyperbolic:

• Non-elementary hyperbolic groups with any finite generating set.

• (H × K,S) when H is non-elementary hyperbolic, K is finitely generated, S
is a split finite generating set for H ×K, and with generators projected to the
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factors from S that λH > λK . (We define the growth rate, λG, for a group G

in the beginning of Chapter 5.)

• For any m, p ≥ 2, the Diestel-Leader graph DL(m, p).

• The lamplighter groups Zm ≀ Z where m ≥ 2 is finite for certain generating

sets.

• Teichmüller spaces with the Teichmüller metric. This result was due to Dow-

dall, Duchin, and Masur in [DDM14].

In [DLM12], Duchin, Lelièvre, and Mooney found that Z
d is not statistically

hyperbolic for all d ≥ 1 and any finite generating set S. Duchin and Mooney also

discovered in [DM11] that the integer Heisenberg group H(Z) with any finite gener-

ating set is not statistically hyperbolic. They further showed that E(H(Z),S) = 19
31

using the standard generating set S.

Of particular interest is that groups which are non-elementary hyperbolic are also

statistically hyperbolic. However, it was not known whether relatively hyperbolic

groups were also statistically hyperbolic. So, in the Main Theorem of this work we

see that non-elementary relatively hyperbolic groups, with one additional condition,

are indeed also statistically hyperbolic. Thus, the Main Theorem generalizes the

result for non-elementary hyperbolic groups from [DLM12].

Main Theorem. If G is a non-elementary relatively hyperbolic group with finite

generating set S and a finite set of peripheral subgroups P having the parabolic gap

property, then G is statistically hyperbolic.

For a definition of the parabolic gap property, see Definition 5.1.
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Chapter 2

Foundational Definitions and
Examples

We will begin by defining the formula for sprawl, which allows us to define statistical

hyperbolicity in groups.

Definition 2.1. [DLM12] Let G be a group with finite generating set S. The sprawl

of (G,S) is

E(G,S) := lim
n→∞

1

|Sn|2
∑

x,y∈Sn

1

n
d(x, y)

when the limit exists, where Sn is a sphere centered at the origin e ∈ G of radius

n in the Cayley graph of G. When the limit does not exist, we say that the sprawl

does not exist.

It is clear that 0 ≤ E(G,S) ≤ 2 for any finitely generated group (G,S) since

0 ≤ d(x, y) ≤ 2n for all x, y ∈ Sn. The value of E is not quasi-isometry invariant

and could vary depending on the choice of generating set, as shown in [DLM12].

Definition 2.2. [DLM12] We say a finitely generated group (G,S) is statistically

hyperbolic if the sprawl is maximal, or in other words, E(G,S) = 2.

To help give a sense of statistical hyperbolicity, E(G,S) = 2 means that, for

almost every random pair of points x, y on a sphere of the Cayley graph of the

group, d(x, y) is nearly equal to d(x, e) + d(e, y) where e is the origin.
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We now present a few examples of calculating the sprawl of a group. To begin,

we intentionally chose groups for which the calculation of the sprawl is straightfor-

ward, and then progress to the proof for non-elementary hyperbolic groups being

statistically hyperbolic.

Example 2.3. The sprawl of a free group on one generator is 1. In other words,

E(Z, {1}) = 1.

Proof. Notice that for n ≥ 1, there are only two elements in the sphere Sn. Thus,

it is clear that

E(Z, {1}) = lim
n→∞

1

|Sn|2
∑

x,y∈Sn

1

n
d(x, y)

= lim
n→∞

1

4
· 1

n
(4n)

= 1

Example 2.4. The free group on two generators with the standard generating set

is statistically hyperbolic, i.e. E(F2, {a, b}) = 2.

Proof. Let n ≥ 1 and fix x ∈ Sn. Also, observe that there are four main “branches”

emanating from the origin. With x ∈ Sn being fixed, we see that for y ∈ Sn,

d(x, y) = 2n if y is on one of the three main branches that does not contain x. If

y ∈ Sn is on the main branch which also contains x, we see that d(x, y) = 2n − 2

on two out of the three “sub-branches.” Similarly, if y ∈ Sn is on the sub-branch

which also contains x, we see that d(x, y) = 2n− 4 on two out of three of “sub-sub-

branches.” Continuing this pattern and keeping x fixed, we find that

∑

y∈Sn

d(x, y) = |Sn|
(

3

4
(2n) +

1

4
· 2

3
(2n − 2) +

1

4
· 1

3
· 2

3
(2n − 4) + · · · + 0

)

= |Sn|
(

3

2
n +

1

6
(2n − 2) +

1

18
(2n − 4) + · · · + 0

)

= |Sn|
(

3

2
n +

n
∑

k=1

(

1

3

)k

(n − k)

)
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Figure 2.1: A sphere of radius 3 in the Cayley graph of F2.

Thus, we have
∑

x,y∈Sn

d(x, y) = |Sn|2
(

3

2
n +

n
∑

k=1

(

1

3

)k

(n − k)

)

. Hence,

E(F2, {a, b}) = lim
n→∞

1

|Sn|2
∑

x,y∈Sn

1

n
d(x, y)

= lim
n→∞

1

|Sn|2
· |Sn|2 ·

1

n
·
(

3

2
n +

n
∑

k=1

(

1

3

)k

(n − k)

)

= lim
n→∞

(

3

2
+

1

n
·

n
∑

k=1

(

1

3

)k

(n − k)

)

= lim
n→∞

(

3

2
+

1

n
·

n
∑

k=1

n

3k
− 1

n
·

n
∑

k=1

k

3k

)

Since
∞

∑

k=1

k

3k
=

3

4
, we see that

E(F2, {a, b}) ≥ 3

2
+

∞
∑

k=1

(

1

3

)k

= 2

Therefore, since E(F2, {a, b}) ≥ 2 and 0 ≤ E(G,S) ≤ 2 for all groups G, we
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Figure 2.2: A δ-thin triangle, ∆ = xyz, mapped to a tripod, T .

know E(F2, {a, b}) = 2.

We now wish to define hyperbolicity for groups and observe that non-elementary

δ-hyperbolic groups are, in fact, statistically hyperbolic. The following is the defi-

nition of δ-thin, which leads directly to the definition of δ-hyperbolic.

Definition 2.5. Given a geodesic triangle ∆ = xyz in a geodesic space X, by

Definition 2.16 of [GdlH90], there exists a unique tripod T = x′y′z′ with points

labeled as in Figure 2.2 where the following equations hold:

d(x, py) = d(x, pz) = d(x′, w′)

d(y, px) = d(y, pz) = d(y′, w′)

d(z, px) = d(z, py) = d(z′, w′)

Let f : ∆ → T be the natural map as in Definition 2.16 of [GdlH90]. We say that

∆ is δ-thin if, for all p′ ∈ T , diam (f−1(p′)) ≤ δ.

Now, using the definition of δ-thin, we can define a hyperbolic space, and con-

sequently, a hyperbolic group.

Definition 2.6. A geodesic space X is δ-hyperbolic for δ ≥ 0 if all geodesic triangles

in X are δ-thin. A finitely generated group G with generators S is (word) hyperbolic

if its Cayley graph, Γ = Cayley(G,S) is a hyperbolic metric space.
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Definition 2.7. A hyperbolic group G is said to be non-elementary if it is not

virtually cyclic. (A group is virtually cyclic if it contains a finite index cyclic sub-

group.)

Notice that as a result of the next theorem, if a group is a non-elementary

hyperbolic group, then it is statistically hyperbolic. We provide a more detailed

proof here than that which can be found in [DLM12]. The proof also gives a flavor

of what the proof of the Main Theorem will entail.

Theorem 2.8. [DLM12] Let G be a non-elementary δ-hyperbolic group. Then

E(G,S) = 2 for any finite generating set S.

Proof. A point z is (metrically) between two points x and y if d(x, z) + d(z, y) =

d(x, y). A set Z is between two points x and y if there exists a point z ∈ Z such

that z is between x and y.

Choose r such that 0 < r < 1 and choose x ∈ Sn. Let x′ ∈ S⌊rn⌋ be between

e and x. We wish to bound the number of w ∈ Sn which are “close” to x. We

will specifically consider any point w ∈ Sn to be close to x when the ball B2δ(x
′) is

between e and w. In other words, w is close to x if there exists w′ ∈ B2δ(x
′) ∩ S⌊rn⌋

which is between e and w. Clearly, the number of such w′ is at most |B2δ(x
′)|. Also,

since such a w′ ∈ S⌊rn⌋ is between e and w, we know d(w′, w) = n−⌊rn⌋. For a fixed

w′ of this type, we then know that the number of w ∈ Sn where the geodesic from

e to w passes through w′ can be no more than
∣

∣Sn−⌊rn⌋

∣

∣. Hence, the total number

of w ∈ Sn which are close to x is at most |B2δ| ·
∣

∣Sn−⌊rn⌋

∣

∣.

Assume v ∈ Sn is not close to x. So, the geodesics [e, x] and [e, v] are separated by

a distance of at least 2δ at time ⌊rn⌋. By the definition of δ-thin on triangle exv, this

implies that there exist points tx, tv on the geodesic [x, v] such that d(v′, tv) ≤ δ and

d(x′, tx) ≤ δ. Also, since we know that d(x′, v′) > 2δ, the point tx must be between

x and tv on [x, v] as in Figure 2.3. Additionally, since d(v, v′) > n − ⌊rn⌋ and

d(v′, tv) ≤ δ, we know that d(v, tv) ≥ n−⌊rn⌋−δ. Similarly, d(x, tx) ≥ n−⌊rn⌋−δ.

Thus, d(x, v) ≥ d(x, tx) + d(v, tv) ≥ 2(n − ⌊rn⌋ − δ) ≥ 2(n − rn − δ). Hence,
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b

b

b

b

b

b

b

> 2δ

≤ δ

≤ δ

e

x

v

v′

x′

tv

tx

Figure 2.3: A δ-thin triangle where v ∈ Sn is not close to x ∈ Sn.

∑

x,y∈Sn

d(x, y) ≥ 2(n − rn − δ)
(

|Sn| − |B2δ| ·
∣

∣Sn−⌊rn⌋

∣

∣

)

· |Sn|

Coornaert proved in [Coo93] that for every non-elementary hyperbolic group

with a fixed, finite generating set, there are bounded coefficients of exponential

growth. Specifically, there exist c1, c2 > 0 and λ > 1 such that c1λ
n ≤ β(n) ≤ c2λ

n

for all n ∈ N where β(n) = |B(e, n)| is the growth function of the group in question

(growth function is defined in the beginning of Chapter 5). A group meeting the

conditions above is said to have definite exponential growth. Clearly, we can choose

k ∈ N such that c1λ
k > c2. Then that gives us β(n + k) ≥ c1λ

n+k > c2λ
n. By

Coornaert’s result, we have β(n − 1) ≤ c2λ
n−1. Let B be an anulus such that B =

B(e, n+k)−B(e, n−1) as in Figure 2.4. Then we can see that |B| ≥ c2λ
n−c2λ

n−1.

For each x ∈ B, choose a geodesic [e, x]. Clearly, this geodesic [e, x] and Sn have a

single point of intersection which we will call xn. This process defines a surjective

map ϕ : B → Sn by ϕ(x) = xn. Let N = |B(e, k)|. Then ϕ is at most N -to-1. So,

|Sn| ≥ 1
N
|B| ≥ 1

N
(c2λ

n − c2λ
n−1). Thus we see that
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b

b b

e xn

x

Sn+k

Sn

Sn−1

Figure 2.4: The anulus, B.

lim
n→∞

∣

∣Sn−⌊rn⌋

∣

∣

|Sn|
= lim

n→∞

β(n − ⌊rn⌋) − β(n − ⌊rn⌋ − 1)

|Sn|

≤ lim
n→∞

c2λ
n−⌊rn⌋ − c1λ

n−⌊rn⌋−1

1
N

(c2λn − c2λn−1)

= lim
n→∞

λn−⌊rn⌋−1 (c2λ − c1)

λn−1
(

c2
N

(λ − 1)
)

= lim
n→∞

1

λ⌊rn⌋
· c2λ − c1

c2
N

(λ − 1)

= 0

The previous two inequalities now give us
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E(G,S) = lim
n→∞

1

|Sn|2
∑

x,y∈Sn

1

n
d(x, y)

≥ lim
n→∞

2(n − rn − δ)
(

|Sn| − |B2δ| ·
∣

∣Sn−⌊rn⌋

∣

∣

)

· |Sn|
n |Sn|2

= lim
n→∞

2(1 − r − δ/n)
(

|Sn| − |B2δ| ·
∣

∣Sn−⌊rn⌋

∣

∣

)

|Sn|

= lim
n→∞

2(1 − r − δ/n) − lim
n→∞

2(1 − r − δ/n) · |B2δ| ·
∣

∣Sn−⌊rn⌋

∣

∣

|Sn|
= 2(1 − r)

Since r ∈ (0, 1) was arbitrary, let r → 0. Therefore, E(G,S) = 2.
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Chapter 3

Relatively hyperbolic groups.

Now that we have dealt with the concepts of sprawl and statistical hyperbolicity,

we turn our attention to relatively hyperbolic groups. It should be noted that there

are several equivalent definitions of relative hyperbolicity for groups. In this work,

we will outline the definition we believe is the simplest to present.

Definition 3.1. [Far98] Let G be a finitely generated group with generating set S
where P is a finite set of subgroups of G. For each g ∈ G and P ∈ P, we have a left

coset gP . For each such left coset, we will add a vertex v(gP ) to Γ = Cayley(G,S).

We then add edges connecting each element of gP to v(gP ). The resulting graph,

Γ̂, is known as the coned-off Cayley graph.

Definition 3.2. A graph K is fine if each edge of K is contained in only finitely

many circuits of length n for each value of n. Here, a circuit is a closed path where

there are exactly two edges ending at each vertex. In other words, it is a closed

path where each vertex is crossed over only once. The length of a circuit is the total

number of edges in the circuit.

Definition 3.3. [Bow12] A finitely generated group G with generating set S is

relatively hyperbolic with respect to a finite set of subgroups P if the coned-off

Cayley graph Γ̂ is δ-hyperbolic and fine. The subgroups P ∈ P are the peripheral

subgroups of G and the left cosets gP where g ∈ G and P ∈ P are peripheral cosets.
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Definition 3.4. A relatively hyperbolic group G with generating set S and finite

set of peripheral subgroups P is said to be non-elementary if it is not virtually cyclic

(see Definition 2.7) and G /∈ P.

Now that we have defined what a relatively hyperbolic group is, we provide a

concrete example so the reader may more clearly visualize what such a group is like.

Example 3.5. Z
2 ∗ Z ∼= π1(T

2 ∧ S1), where T 2 is a torus and S1 a circle, is

hyperbolic relative to Z
2. It is one of the simplest examples of a group that is

relatively hyperbolic and tree-like, but not hyperbolic.
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Chapter 4

Showing Z
2 ∗ Z to be Statistically

Hyperbolic

In this chapter, we will show that Z
2 ∗Z is statistically hyperbolic using its standard

generating set. This result is a special case of the Main Theorem in which we can

give a more direct, elementary argument that does not rely on definite exponential

growth, as does the proof of Theorem 2.8 for the δ-hyperbolic case, nor does it rely

on Yang’s result in Theorem 5.2, as does the proof of the Main Theorem.

Consider the universal cover of T 2 ∧ S1 and suppose we have B(e, n), a ball of

radius n centered at the origin as shown in Figure 4.1. Define Sn to be the sphere

which is the boundary of B(e, n). We wish to define types of “planes” found in this

ball and then count the number of each type of “plane” we find. Let a plane of type

k be a bounded copy of Z
2 within the universal cover of T 2 ∧ S1 where the number

of points of the plane which intersect Sn is exactly 4k. In this section, we will refer

to a plane of type k as Pk as in Figure 4.2. We also wish to make one exception,

in the case of P0. We define P0 as above where the number of points of the plane

intersecting Sn is exactly 1. We use the notation |Pk| to mean the number of planes

of type k in B(e, n). In order to somewhat simplify the notation in the following

proofs, let us define ak = |Pn−k| when n ∈ N is fixed.

Lemma 4.1. For the group Z
2 ∗ Z with the standard generating set S where n ∈ N
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is fixed, we can find the recursive formula

ak = ak−1 + 8ak−2 + 16ak−3 + · · · + 8(k − 2)a1 + 8(k − 1)a0

for k ≥ 4 for the number of planes of each type in the universal cover of T 2 ∧ S1

where ak = |Pn−k|.

Proof. Let n ∈ N be fixed. The first observation we make is that a0 = 1, and that

Pn has the identity at its center. We will refer to this plane as the “main plane.”

Additionally, we also see that a1 = 2, since there are two planes of type n − 1

emanating from the main plane. We will refer to the set of all planes emanating

from one of the Pn−1, including the plane Pn−1 in question, as a “stem.” There

are eight planes of type n − 2 which emanate from the main plane and only one

plane of type n − 2 emanating from each stem. Thus, a2 = 10. All of the previous

observations can be made by simply looking at a ball of radius 2. From this point

forward, ak where k > 2 can be found by realizing that each Pn−(k−1) will have one

Pn−k emanating from it, each Pn−(k−2) will have 8 of the Pn−k emanating from it,

each Pn−(k−3) will have 16 of the Pn−k emanating from it, and so on, so that each

Pn−(k−j) where j ≤ k will have 8(j − 1) of the Pn−k emanating from it.

Using the steps outlined above, we can find that for k ≥ 4 we have

ak = ak−1 + 8ak−2 + 16ak−3 + · · · + 8(k − 2)a1 + 8(k − 1)a0

Corollary 4.2. For the group Z
2 ∗ Z with the standard generating set S, ak =

3ak−1 + 5ak−2 + ak−3 for k ≥ 4.

Proof. (Induction on k.) Fix n ∈ N. As our base case, let k = 4. Then,

a4 = 3a3 + 5a2 + a1

= 3 · 42 + 5 · 10 + 2

= 178

Now assume the claim is true for all values of k ≤ m−1. So, we know by Lemma

4.1
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am = am−1 + 8am−2 + 16am−3 + · · · + 8(m − 2)a1 + 8(m − 1)a0

Thus, we see that

am − am−1 = am−1 + 8am−2 + 16am−3 + · · · + 8(m − 2)a1 + 8(m − 1)a0

− am−2 − 8am−3 − · · · − 8(m − 3)a1 − 8(m − 2)a0

= am−1 + 7am−2 + 8am−3 + · · · + 8a1 + 8a0

Hence,

am = 2am−1 + 7am−2 + 8am−3 + · · · + 8a1 + 8a0

Now we see that by using our induction hypothesis and the equation above, we

have

am = 2am−1 + 7am−2 + 8am−3 + 8am−4 + 8am−5 + · · · + 8a1 + 8a0

= 3am−1 + 4am−2 + 3am−3 + 7am−4 + 8 (am−5 + · · · + a1 + a0)

= 3am−1 + 5am−2 + 2am−4 + 7am−5 + 8 (am−6 + · · · + a1 + a0)

= 3am−1 + 5am−2 + am−3

Corollary 4.3. For the group Z
2 ∗Z with the standard generating set S, there exist

λ > 1 and c > 0 such that cλn ≤ |Sn| ≤ (8n2 + 2)λn. (Specifically, λ = 2 +
√

5.)

Proof. From Lemma 4.1 and Corollary 4.2, we have |Pn−k| = ak = 3ak−1 + 5ak−2 +

ak−3 for k ≥ 4 where a1 = 2, a2 = 10, and a3 = 42. Thus, the characteristic equation

of ak is x3 = 3x2+5x+1. Hence, the roots of the equation are x = −1, 2+
√

5, 2−
√

5.

Thus, we know that

|Pn−k| = ak = c1(−1)k + c2(2 +
√

5)k + c3(2 −
√

5)k
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for some c1, c2, c3 ∈ R. Using the initial conditions, we find that

|Pn−k| = ak =
5 −

√
5

5
(2 +

√
5)k +

5 +
√

5

5
(2 −

√
5)k

Putting it all together, we now see that for a sphere of radius n,

|Sn| = 4n|Pn| + 4(n − 1)|Pn−1| + · · · + 4(n − k)|Pn−k|
+ · · · + 4|P1| + |P0|

= |P0| +
n−1
∑

k=0

4(n − k)|Pn−k|

=
5 −

√
5

5
(2 +

√
5)n +

5 +
√

5

5
(2 −

√
5)n

+
n−1
∑

k=0

4(n − k)

(

5 −
√

5

5
(2 +

√
5)k +

5 +
√

5

5
(2 −

√
5)k

)

≤ 5 −
√

5

5
(2 +

√
5)n +

5 +
√

5

5
(2 +

√
5)n

+
n−1
∑

k=0

4(n − k)

(

5 −
√

5

5
(2 +

√
5)k +

5 +
√

5

5
(2 +

√
5)k

)

= 2(2 +
√

5)n +
n−1
∑

k=0

4(n − k)
(

2(2 +
√

5)k
)

≤ 2(2 +
√

5)n + 8n2(2 +
√

5)n

= (8n2 + 2)(2 +
√

5)n

Clearly, we also see that

|Sn| ≥
5 −

√
5

5
(2 +

√
5)n ≥ 1

2
(2 +

√
5)n

Theorem 4.4. The group Z
2 ∗ Z with standard generating set S is statistically

hyperbolic.
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b

b

b

b

b

b

e

yx

H
π(e)

π(x) π(y)

Figure 4.3: Triangle ∆exy in Cayley(Z2 ∗ Z,S)

Proof. Choose r ∈ (0, 1) and x ∈ Sn. For each g ∈ Sn, we define the set Ag =
{

g′ ∈ S⌊rn⌋|d(e, g′) + d(g′, g) = d(e, g)
}

. Note that Γ(G,S) has a tree-like structure.

So, every embedded loop must lie in a single copy of Z
2. This gives us that Ag must

lie in a single copy of Z
2 for all g ∈ Sn.

Now choose y ∈ Sn such that Ax and Ay are contained in different peripheral

cosets and consider the triangle ∆exy. Let H be the set of all peripheral cosets

which intersect both [e, x] and [e, y]. Define H ∈ H to be the peripheral coset where

d(x,H) ≤ d(x,H ′) and d(y,H) ≤ d(y,H ′) for all H ′ ∈ H.

Let Γ(G,S) = Cayley(G,S) be the Cayley graph of G with standard generating

set S and let π : Γ → H be the nearest point projection map. We know this map

exists due to the tree-like structure of Cayley(G,S). So, π(x), π(y), and π(e) are as

labeled in Figure 4.3.

By way of contradiction, suppose π(e) /∈ B(e, ⌊rn⌋). Then Ax = Ay = Aπ(e).

This contradicts the assumption that Ax and Ay are contained in different periph-

eral cosets. Also by way of contradiction, suppose π(e) ∈ B(e, ⌊rn⌋) and that

π(x), π(y) /∈ B(e, ⌊rn⌋). Thus, Ax ⊆ H and Ay ⊆ H. This also contradicts our as-

sumption of the choice of y ∈ Sn. Hence, assuming that Ax and Ay are in different

peripheral cosets implies that π(e) ∈ B(e, ⌊rn⌋) and that at least one of {π(x), π(y)}
is in B(e, ⌊rn⌋).

Without loss of generality, assume π(x) ∈ B(e, ⌊rn⌋). Thus, any geodesic be-

tween x and y must pass through x′ ∈ S⌊rn⌋ for some x′ ∈ Ax. So, assuming that
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Ax and Ay are in different peripheral cosets gives us

d(x, y) ≥ d(x, x′) + d(x′, y)

≥ n − ⌊rn⌋ + n − ⌊rn⌋
≥ 2(n − rn)

Assuming that x ∈ Sn is fixed, we wish to set a lower bound on the number

of choices for y ∈ Sn where Ax and Ay are in different peripheral cosets. We will

accomplish this by bounding the number of z ∈ Sn for which Ax and Az are in the

same peripheral coset. Let B(e, n) denote a ball of radius n with its center at e. Let

βG(n) = |B(e, n)| and βP (n) = |B(e, n)| when we restrict our ball to be contained in

just one peripheral coset of our group. We see that |Ax| ≤ βP (⌊rn⌋) where equality

is only attained if e ∈ H. Thus, assuming Ax and Az are in the same peripheral

coset, we see that |Az| ≤ βP (⌊rn⌋). For each z′ ∈ Az, the number of elements

z ∈ Sn for which e, z′, and z lie on a geodesic is bounded by |Sn − ⌊rn⌋|. Thus,

the total number of possible z ∈ Sn for which Ax and Az lie on the same peripheral

coset is bounded above by βP (⌊rn⌋)|Sn−⌊rn⌋|. Therefore, the number of choices for

y ∈ Sn such that Ax and Ay are in different peripheral cosets is bounded below by

|Sn| − βP (⌊rn⌋)|Sn−⌊rn⌋|.
From Corollary 4.3, cλn ≤ |Sn| ≤ (8n2 +2)λn for all n for some λ > 1 and c > 0.

Hence, we see that
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E(G,S) = lim
n→∞

∑

x,y∈Sn
d(x, y)

n · |Sn|2

≥ lim
n→∞

2(n − rn) · |Sn| ·
(

|Sn| − βP (⌊rn⌋) · |Sn−⌊rn⌋|
)

n · |Sn|2

= lim
n→∞

2(1 − r) − lim
n→∞

2(1 − r)βP (⌊rn⌋)|Sn−⌊rn⌋|
|Sn|

≥ 2(1 − r) − 2(1 − r) lim
n→∞

(4rn)2(8n2 + 2)λn−⌊rn⌋

cλn

= 2(1 − r) − 64r2(1 − r)

c
lim

n→∞

(4n4 + n2)λn−⌊rn⌋

λn

= 2(1 − r) − 64r2(1 − r)

c
lim

n→∞

(4n4 + n2)

λ⌊rn⌋

= 2(1 − r)

Since r ∈ (0, 1) was arbitrary, letting r → 0 gives E(G,S) = 2.
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Chapter 5

Proof of the Main Theorem

We now wish to have a fixed setup for an arbitrary relatively hyperbolic group

which we can utilize for the remainder of this work. Let (G,S, P) denote a non-

elementary relatively hyperbolic group G with finite generating set S and a finite

set of peripheral subgroups P. Let βG(n) be the growth function for the entire group

G defined as the number of elements g ∈ G such that the word length of g, using

the generating set S, is no more than n. In other words, the growth function is

the size of a ball of radius n, or equivalently βG(n) = |B(e, n)|. Now consider the

induced growth function of each P ∈ P, denoted as βP (n), where we are continuing

to use the word metric based on the generating set S. We define βP(n) = max
P∈P

βP (n).

The growth rate of βG(n) is defined to be λG = lim
n→∞

n

√

βG(n) and the growth rate

of βP(n) is λP = lim
n→∞

n

√

βP(n). Note that the preceeding limits exist due to the

submultiplicativity of the growth functions, as can be seen in Chapter VI, Section

C of [dlH00].

Definition 5.1. (G,S, P) has the parabolic gap property if λG > λP.

Theorem 5.2. [Yan13] Given (G,S, P), there exists C > 0 such that

1

C
λn

G < βG(n) < Cλn
G for all n ≥ 0

Lemma 5.3. [DS05b] Given (G,S, P), for each L < ∞ there is a constant K =
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K(L) < ∞ such that for any two peripheral cosets gP 6= g′P ′ we have

diam (NL(gP ) ∩NL(g′P ′)) < K

with respect to the metric dS .

Definition 5.4. Let (G,S) be a group with generating set S. For a fixed x ∈ G

and N ∈ N, we call the set {x′ ∈ SN |d(e, x′) + d(x′, x) = d(e, x)} the Nth geodesic

layer of x, or simply the geodesic layer when N and x are understood. In other

words, each x′ in the geodesic layer lies on a geodesic between e and x at a distance

N from e.

After choosing r ∈ R such that 0 < r < 1, we define Ax to be the ⌊rn⌋th geodesic

layer of x for a given n ∈ N.

Lemma 5.5. Given (G,S, P) and x ∈ G, the geodesic layer Ax either is a bounded

set, or Ax is within an L-neighborhood of a single peripheral coset gP for a fixed

constant L.

Proof. Let x ∈ G and choose a geodesic c from e to x. Fix a constant L > 0. Let K

be a constant for the given L, so that for any pair of peripheral cosets gP 6= g′P ′ in G,

we have diam (NL(gP ) ∩NL(g′P ′)) < K as in Lemma 5.3. Clearly, if diam(Ax) < K

then Ax is a bounded set. However, if diam(Ax) ≥ K then Ax must be within the

L-neighborhood of a unique peripheral coset gP , by our choice of K.

Definition 5.6. [DS05a] Let G be a group and let P be a finite set of subgroups

in G. Then G is (*)-relatively hyperbolic with respect to P if there exist a finite

generating set S of G, and two constants σ and δ such that the following property

holds.

(*) For every geodesic triangle ABC in the Cayley graph of G with respect to

S, there exists a coset gP such that the closed σ-neighborhood N σ(gP ) intersects

each of the sides of the triangle, and the entrance (and exit) points A1, B1, C1 (and

B2, C2, A2) of the sides [A,B], [B,C], [C,A] in N σ(gP ) satisfy

d(A1, A2) < δ, d(B1, B2) < δ, d(C1, C2) < δ

as in Figure 5.1.
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Figure 5.1: A triangle which meets the conditions for (*)-relative hyperbolicity.

Lemma 5.7. [DS05a] Every group G that is relatively hyperbolic with respect to

a finite set of finitely generated subgroups P is also (*)-relatively hyperbolic with

respect to P.

Theorem 5.8 (Main Theorem). If G is a non-elementary relatively hyperbolic

group with finite generating set S and a finite set of peripheral subgroups P having

the parabolic gap property, then G is statistically hyperbolic.

Proof. Using the assumption that G has the parabolic gap property and Theorem

5.2, we will choose constants λ > 1, C > 0 and C ′ > 0 where 1
C
λn

G < βG(n) <

Cλn
G for all n ≥ 0 and λP < λ < λG such that βP(n) ≤ C ′λn holds for sufficiently

large n as described at the beginning of this chapter. Fix a value of n ∈ N so

that the above inequalities hold. Choose x ∈ Sn and r ∈ R such that 0 < r < 1.

Let Ax =
{

x′ ∈ S⌊rn⌋|d(e, x′) + d(x′, x) = d(e, x)
}

be the ⌊rn⌋th geodesic layer of x.

Fix a geodesic from e to x and let x′ ∈ [e, x] ∩ Ax. Consider any triangle ∆exy

having the chosen geodesic [e, x] as one of its sides. We now use the setup from

Definition 5.6 to have a peripheral coset gP which lies in the “center” of ∆exy

and proceed to simplify our work by “thinning down” ∆exy until it is nearly a tri-

pod, as in Figure 5.2. In order to accomplish this, choose u, v, w ∈ gP such that
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Figure 5.2: A triangle “thinned down” almost to a tripod.

d(u,A2) < σ, d(v, C1) < σ, and d(w,B2) < σ. Then we know that d(u,A1) < σ + δ,

d(v, C2) < σ + δ, and d(w,B1) < σ + δ. We will now show that when the geodesic

[e, x] is fixed in this way, then either d(x, y) has a lower bound, or the number of

choices for y has an upper bound where d(x, y) is not sufficient for our purposes here.

Case 1 : ⌊rn⌋ ≤ d(e, u).

We know by Definition 5.6 that d(A1, A2) < δ. So, d(A1, e) ≥ d(A2, e) − δ

by the triangle inequality. Thus, d(A1, y) = d(e, y) − d(e, A1) ≤ n − d(A2, e) + δ.

We also see that d(x′, A2) = d(A2, e) − d(x′, e) = d(A2, e) − ⌊rn⌋. Thus, d(x′, y) ≤
(d(A2, e)−⌊rn⌋)+δ+(n−d(A2, e)+δ) ≤ n−⌊rn⌋+2δ. Therefore, y ∈ Bn−⌊rn⌋+2δ(x

′),

so there is a bounded number of choices for y. Specifically, for J equal to the number

of choices for such a y, we see that

J ≤ |Ax| · |Sn−⌊rn⌋+2δ|

Further, we know from Lemma 5.5 that Ax is either a bounded set or within an

L-neighborhood of a unique peripheral coset. Choose a constant L which satisfies

Lemma 5.5. If Ax is bounded, let diam(Ax) = M for some constant M ≥ 0. Then,

we would have |Ax| ≤ βG(M) ≤ CλM
G . Alternately, if Ax is not bounded, then
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Figure 5.3: Representations of S⌊rn⌋ for Cases 1, 2, and 3.

it must be within an L-neighborhood of a single peripheral coset. In this case,

|Ax| ≤ βP(⌊rn⌋) · βG(L) ≤ C ′λ⌊rn⌋ · CλL
G. For sufficiently large n, we observe that

C ′λ⌊rn⌋ · CλL
G > CλM

G . Therefore, we find that

J ≤ |Ax| · |Sn−⌊rn⌋+2δ|
≤ CC ′λ⌊rn⌋ · λL

G · (βG(n − ⌊rn⌋ + 2δ) − βG(n − ⌊rn⌋ + 2δ − 1))

≤ CC ′λ⌊rn⌋ · λL
G ·

(

Cλ
n−⌊rn⌋+2δ

G − 1

C
λ

n−⌊rn⌋+2δ−1
G

)

≤ C ′λ⌊rn⌋ · λn−⌊rn⌋+L+2δ−1
G (C2λG − 1)

Case 2 : d(e, u) < ⌊rn⌋ ≤ d(e, u) + min{d(u, v), d(u,w)}.
Let N be the number of peripheral cosets which intersect the ball B2σ+2δ(x

′).

Choose one of these N cosets, gP . Notice that for each choice of y, and each choice

of geodesic triangle ∆exy there are corresponding points u, v, w as described above.

One might, at first, think that we could get a different point u for each choice of

y. However, A2 is the point at which our chosen geodesic [e, x] first enters the closed

σ-neighborhood of gP , where gP is one of the N peripheral cosets intersecting the

ball B2σ+2δ(x
′). And u is a point chosen arbitrarily from the ball Bσ(A2). Therefore,

the number of choices for u is at most N times the size of the ball Bσ(e).
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We note that for y′ ∈ Ay, if y′ /∈ [A1, B2] but y′ ∈ [e, A1]∪[B2, y], then d(y′, A1) <

σ+δ. Thus, d(y′, gP ) < 2σ+2δ. However, if y′ ∈ [A1, B2], then d(y′, gP ) < σ. So, we

can say that in any case, d(y′gP ) < 2σ +2δ. Let y′′ ∈ gP ∩B⌊rn⌋+2σ+2δ(e). Then we

see that d(u, y′′) ≤ d(u,A1)+d(A1, y
′)+d(y′, y′′) ≤ σ+⌊rn⌋+2σ+2δ = ⌊rn⌋+3σ+3δ.

Thus, there is a bounded number of choices for such y′′, which in turn gives us a

bounded number of choices for y. Specifically, for J equal to the number of choices

for such a y, we see that

J ≤ N · βG(σ) · βP(⌊rn⌋ + 3σ + 3δ) · βG(2σ + 2δ) · |Sn−⌊rn⌋|

The above formulation is due to first choosing u, then allowing y′′ to be any point

in the same peripheral coset within the requisite radius, then choosing any point y′

within a radius 2σ + 2δ of y′′, followed by any point y on the sphere centered at y′

with radius n − ⌊rn⌋. Further, we find that

J ≤ N · βG(σ) · βP(⌊rn⌋ + 3σ + 3δ) · βG(2σ + 2δ) · |Sn−⌊rn⌋|
≤ N · Cλσ

G · C ′λ⌊rn⌋+3σ+3δ · Cλ2σ+2δ
G · (βG(n − ⌊rn⌋) − βG(n − ⌊rn⌋ − 1))

≤ N · Cλσ
G · C ′λ⌊rn⌋+3σ+3δ · Cλ2σ+2δ

G ·
(

Cλ
n−⌊rn⌋
G − 1

C
λ

n−⌊rn⌋−1
G

)

≤ N · C · C ′λ⌊rn⌋+3σ+3δ · λn+3σ+2δ−⌊rn⌋−1
G ·

(

C2λG − 1
)

Case 3 : ⌊rn⌋ > d(e, u) + min{d(u, v), d(u,w)}.
In this case, at least one of v, w lies in B⌊rn⌋(e). Without loss of generality,

assume v ∈ B⌊rn⌋(e). From above, d(v, C2) < σ + δ. Thus, in this case,

d(x, y) = d(x,C2) + d(C2, y)

≥ d(x, v) − d(v, C2) + d(v, y) − d(v, C2)

≥ (n − ⌊rn⌋) − (σ + δ) + (n − ⌊rn⌋) − (σ + δ)

≥ 2(n − rn − σ − δ)

So now we have established that either d(x, y) has a lower bound as in Case 3,

or the number of choices for y has an upper bound as in Cases 1 and 2. To simplify

our notation a bit, we will combine the results of Cases 1 and 2 in the following way.
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Let K be a constant so that K ≥ 2N · C · C ′λ3σ+3δ · λ3σ+2δ+L−1
G · (C2λG − 1). Then

we observe that

J ≤ K · λ⌊rn⌋ · λn−⌊rn⌋
G

Now when we calculate the sprawl, we will leave out all the choices for y for

which we did not observe a lower bound on d(x, y). Thus, we have |Sn| choices for

x ∈ Sn and |Sn| − J choices for a corresponding y ∈ Sn so that the distance from

Case 3 above is satisfied. Hence,

E(G,S) = lim
n→∞

∑

x,y∈Sn

d(x, y)

n · |Sn|2

≥ lim
n→∞

2(n − rn − σ − δ) · |Sn| · (|Sn| − J)

n · |Sn|2

≥ lim
n→∞

2(1 − r − σ/n − δ/n) ·
(

|Sn| − K · λ⌊rn⌋ · λn−⌊rn⌋
G

)

|Sn|

=
(

lim
n→∞

2(1 − r − σ/n − δ/n)
)

(

lim
n→∞

|Sn| − K · λ⌊rn⌋ · λn−⌊rn⌋
G

|Sn|

)

= 2(1 − r) lim
n→∞

(

1 − K · λ⌊rn⌋ · λn−⌊rn⌋
G

|Sn|

)

= 2(1 − r) − 2K(1 − r) lim
n→∞

λ⌊rn⌋ · λn−⌊rn⌋
G

βG(n) − βG(n − 1)

≥ 2(1 − r) − 2K(1 − r) lim
n→∞

λ⌊rn⌋ · λn−⌊rn⌋
G

Cλn
G − 1

C
λn−1

G

= 2(1 − r) − 2K(1 − r) lim
n→∞

λ⌊rn⌋ · λn−⌊rn⌋
G

λn
G(C − 1

CλG

)

= 2(1 − r) − 2K(1 − r)

C − 1
CλG

lim
n→∞

(

λ

λG

)⌊rn⌋

= 2(1 − r)

The final line above is due to the assumption that G has the parabolic gap

property and our choice of λ, which gives us that λ < λG. Finally, since r ∈ (0, 1)
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was arbitrary, letting r → 0 gives E(G,S) = 2.

So, in conclusion, we now observe that statistical hyperbolicity is a generalization

of relative hyperbolicity, assuming the group in question is non-elementary and has

the parabolic gap property.
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[DS05a] Cornelia Druţu and Mark Sapir. Relatively hyperbolic groups with rapid

decay property. Int. Math. Res. Not., (19):1181–1194, 2005.
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