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ABSTRACT 

PROPAGATION OF AN OPTICAL VORTEX IN FIBER ARRAYS 

WITH TRIANGULAR LATTICES 

 

by 

Muhammad Abdulrahman Abdulghani Mushref 

 

The University of Wisconsin-Milwaukee, 2014 

Under the supervision of Professor Chiu-Tai Law 

 

 

The propagation of optical vortices (OVs) in linear and nonlinear media is an important 

field of research in science and engineering. The most important goal is to explore the 

properties of guiding dynamics for potential applications such as sensing, all-optical 

switching, frequency mixing and modulation. In this dissertation, we present analytical 

methods and numerical techniques to investigate the propagation of an optical vortex in 

fiber array waveguides. Analytically, we model wave propagation in a waveguide by 

coupled mode Equations as a simplified approximation. The beam propagation method 

(BPM) is also employed to numerically solve the paraxial wave Equation by finite 

difference (FD) techniques. We will investigate the propagation of fields in a 2D 

triangular lattice with different core arrangements in the optical waveguide. In order to 

eliminate wave reflections at the boundaries of the computational area, the transparent 

boundary condition (TBC) is applied. In our explorations for the propagation properties 

of an optical vortex in a linear and a non-linear triangular lattice medium, images are 

numerically generated for the field phase and intensity in addition to the interferogram of 
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the vortex field with a reference plane or Gaussian field. The finite difference beam 

propagation method (FD-BPM) with transparent boundary condition (TBC) is a robust 

approach to numerically deal with optical field propagations in waveguides. 

In a fiber array arranged in triangular lattices, new vortices vary with respect to the 

propagation distance and the number of cores in the fiber array for both linear and 

nonlinear regimes. With more cores and longer propagation distances, more vortices are 

created. However, they do not always survive and may disappear while other new 

vortices are formed at other points. 

In a linear triangular lattice, the results demonstrated that the number of vortices may 

increase or decrease with respect to the number of cores in the array lattice. In a nonlinear 

triangular lattice, however, the number of vortices tends to increase as the core radius 

increases and decrease as the distance between cores increases. Investigations revealed 

that new vortices are generated due to the effects of the phase spiral around the new 

points of zero intensity. These points are formed due to the mode coupling of the optical 

field between the cores inside the array. 

In order to understand the dynamics of vortex generation, we examine vortex 

density, defined as the total number of vortices per unit area of the fiber array. This 

parameter is to be explored versus the propagation distance, the core radius size and the 

distance between cores. The Shack-Hartmann wavefront sensor can be employed to find 

the vortex density and the locations of vortices. Simulation results revealed that the 

vortex density increases with respect to propagation distance until saturation. It also 

increases with an increasing radius size but decreases with increasing distance between 

the array cores for linear and nonlinear regimes. 
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Chapter 1     Introduction 

 

Optical fibers form the most important component in modern telecommunications and 

data technology systems due to their high channel capacity and enhanced signal to noise 

ratio. Laser is the primary light source due to its Gaussian profile and nearly 

monochromatic features. Engineers have recently started to investigate and study the 

propagation of optical vortices in linear and nonlinear materials for possible future 

applications in sensing, frequency mixing and modulations. In this chapter, we review the 

significant works published in this field of study and also present our research 

investigation and analysis methodology. 

 

1.1     Literature review 

In 1992, optical vortex solitons were experimentally observed in a bulk self-defocusing 

Kerr nonlinear medium [1]. The wave was stationary and stable with a size that inversely 

depends on the background field strength and located at the axis of a 2π helical phase 

ramp. Pairs with opposite topological charge were also experimentally and numerically 

examined by a convective Kelvin-Helmholtz instability of dark soliton stripes [1]. 

The decay of dark soliton stripes to optical vortex solitons was investigated in 1993 

by C. Law and G. Swartzlander under long-period transverse modulation [2]. Numerical 

techniques were applied to perform nonlinear stability analysis to explore the nonlinear 

dynamics of that process. Investigations were also adjusted for verification by 

experiments by numerically determining the distance where soliton stripes transform into 
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vortex pairs [2]. 

F. Ruox investigated the dynamical behavior of optical vortices propagating as an 

electromagnetic wave by scalar diffraction theory [3]. It was observed that a single 

optical vortex propagates perpendicularly to the wave front. Two optical vortices with the 

same charges were observed to gyrate around each other during propagation. Conversely, 

two optical vortices with opposite charges were observed to drift perpendicular to the 

direction of propagation. An elementary model for the propagation of vortex pairs was 

then proposed to explain the gyration and drift phenomena [3]. 

Vortex soliton motion and steering were later examined by J. Christou et al. in 1996 

[4]. The steering of an optical vortex soliton by the superposition of a weak coherent 

background field was presented by experiments. To account for vortex motion, a model 

was derived and verified both experimentally and numerically [4]. 

Propagation dynamics of optical vortices were also studied by D. Rozas et al. in 

1997 [5]. The authors stated that optical vortices in linear or nonlinear media display 

propagation dynamics close to hydrodynamic vortex phenomena. Analytical and 

numerical methods were employed to explain and investigate the interaction between 

vortices and the background field. It was found that optical vortices with quasi-point core 

functions, such as optical vortex solitons, orbit one another at rates that are orders of 

magnitude larger compared to those with non-localized cores [5]. 

In early 2000, C. Law et al. employed numerical techniques to determine the 

waveguide dispersion and optimal size of the guided beam [6]. Authors used the 

phenomenon that an optical vortex soliton propagating in a self-defocusing nonlinear 

optical medium induces a graded-index waveguide [6]. 
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Linear and nonlinear waveguides induced by optical vortex solitons were 

investigated by A. Carlsson et al. in 2000 [7]. The study was done both numerically and 

analytically for linear and nonlinear waveguides induced by optical vortex solitons in a 

Kerr medium. Both fundamental and first-order guided modes were discussed in addition 

to other occurrences of effective defocusing and focusing nonlinearity [7]. 

A notable research study about the vortex trajectories was published in July 2000 by 

I. Freund [8]. Specific rules were formulated that limit relations between optical vortex 

trajectories on a given manifold. Possible topologies for these trajectories were also 

considered and discussed [8]. 

In 2003, J. Curtis and D. Grier explained that single-beam optical gradient force 

traps created by focusing helical modes of light are known as optical vortices [9]. They 

also discussed that the modulation of the helical pitch may yield a new class of optical 

traps. These are dynamically reconfigurable intensity distributions that may provide new 

opportunities for controlling motion in mesoscopic systems. The authors described the 

implementation of modulated vortices based on the holographic tweezer technique [9]. 

Optical vortices evolving from helicoidal integer and fractional phase steps were 

presented in 2004 by M. Berry [10]. The evolution of a wave with unit amplitude and a 

phase step 2π on the positive x axis was studied exactly and paraxially. For integer steps, 

the singularity at the origin becomes an optical vortex but far from the axis the wave is a 

diffracted wave [10]. For fractional steps, no fractional strength vortices can propagate 

but the interference between an extra diffracted wave and the scattered wave generates a 

pattern of vortex lines [10]. 

F. Flossmann and others have calculated, in 2005, the propagation dynamics of an 
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initial off-axis vortex with topological charge +1 in Laguerre-Gaussian background 

beams [11]. The intention was to investigate the propagation dynamics of optical vortices 

in that background. Initially, a vortex with a broad core was embedded in the background 

beam, the dislocation surfaces were destroyed during propagation and two vortices with 

opposite charge were created per dislocation surface in planes perpendicular to the 

propagation direction [11]. For a vortex with a narrow core, diffraction led to the birth of 

more than two vortices per dislocation surface. The authors also experimentally 

demonstrated vortex propagation and showed excellent agreement with the calculated 

intensity distributions [11]. 

When optical beams are united, optical vortices generically arise. J. Leach and others 

reported, in 2005, how several laser beams containing optical vortices could be combined 

to form optical vortex loops, links and knots embedded in a light beam [12]. They also 

described the experiments where vortex loops form these structures following a 

theoretical model originally proposed. In addition, the beams were synthesized using a 

programmable spatial light modulator and imaged using a CCD camera [12]. 

Propagation of optical vortices in coiled weakly guiding optical fibers was then 

examined in 2007 by K. Alekseyev and M. Yavorsky [13]. The structure of modes of 

regularly coiled weakly guiding optical fibers with a round cross section was determined. 

The modes were shown to be represented by two right- and left-hand polarized stable 

optical vortices [13]. In addition, the parameters for optimal coiling at which the 

transmission of vortices along the fibers was the most stable with respect to fiber 

perturbations were determined [13]. 

In early 2008, the propagation of vortex beams through weak-to-strong atmospheric 
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turbulence was simulated and analyzed by G. Gbur and R. Tyson [14]. It was 

demonstrated that the topological charge of such a beam is a robust quantity that can be 

used as an information carrier in optical communications. The advantages and limitations 

of such an approach were discussed [14]. 

C. Ke and others investigated composite optical vortices in non-collinear Laguerre-

Gaussian beams and their propagation in free space in 2008 [15]. With two Laguerre-

Gaussian beams, they investigated the composite optical vortices formed by two non-

collinear Laguerre-Gaussian beams with different phases, amplitudes, waist widths, off-

axis distances and their propagation in free space. The motion, creation and annihilation 

of composite vortices occurred in the free-space propagation and the net charge during 

the propagation were found to be unchanged [15]. 

Both propagation and diffraction of optical vortices (Laguerre-Gaussian beams) 

traversing a circular obstacle and Young’s double slit were then studied by P. Fischer and 

others in 2008 [16]. Using Young’s double slits, the authors measured the azimuthal 

index of the vortex beam even for polychromatic vortices generated by broadband 

supercontinuum radiation [16]. 

Optical vortices in self-focusing Kerr nonlinear media were additionally investigated 

in 2009 by P. Hansinger et al. [17]. The interactions of optical vortices in self-defocusing 

and self-focusing Kerr nonlinear media were compared numerically. Results showed that 

the interaction of two and three vortices with equal and alternative topological charges 

were the same in both media. However, the vortex dynamics under self-focusing 

conditions was influenced by the reshaping of the background [17]. 

Experimentally, Y. Zhang and others examined the modulated vortex solitons of 
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four-wave mixing in 2010 [18]. They demonstrated the vortex solitons of four-wave 

mixing in multi-level atomic media created by the interference patterns with superposing 

three or more waves. The modulation effect of the vortex solitons was also induced by 

the cross-Kerr nonlinear dispersion due to atomic coherence in the multi-level atomic 

system [18]. 

In late 2010, H. Dai et al. discussed the propagation dynamics of an optical vortex 

imposed on an Airy beam [19]. The general propagation dynamics of an Airy beam 

carrying unit phase singularity was demonstrated. For the optical vortex with a unit 

charge, theoretical analysis indicated that it was propagated along the parabolic 

trajectory. The acceleration velocity was twice as fast as conventional Airy beams before 

a critical position [19]. 

S. Vedad and A. Heidari presented, in 2012, an analytical and numerical 

investigation of the optical vortex solitons by a computational study [20]. They discussed 

the possibility of forming spatiotemporal vortex solitons in the dispersive inhomogeneous 

non-linear optical fibers using a graded-index Kerr medium [20]. They also used a 

variation approach to solve the multidimensional inhomogeneous non-linear Schrodinger 

Equation and showed that spatiotemporal vortex solitons can be stabilized under certain 

conditions [20]. 

In 2012, C. Alexeyev discussed the possibility of optical vortices in twisted 

anisotropic and elliptical fibers with respect to external perturbations independent on 

longitudinal coordinates [21]. They showed that the topological charge in twisted 

elliptical and anisotropic fibers proved to be robust with respect to induced material 

anisotropy [21]. By contrast, optical vortices and topological charges were unstable with 
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respect to induced z-independent ellipticity of the transverse cross-section of the fiber. In 

this case, optical vortices were found to invert their initial topological charge with 

propagation [21]. 

The effect of spatial coherence on determining the topological charge of a vortex 

beam was investigated in 2012 by C. Zhao and others [22]. It is possible to determine the 

topological charge of a vortex beam based on the Fourier transform of its intensity. Based 

on that finding, the authors demonstrated both theoretically and experimentally that this 

method was invalid for determining the topological charge of a vortex beam with low 

coherence. Furthermore, they proposed a method to determine the topological charge of a 

vortex beam with low coherence based on its complex degree of coherence [22]. 

P. Vaity and R. Singh discussed the topological charge dependent propagation of 

optical vortices under quadratic phase transformation in 2012 [23]. The authors made 

optical vortices of different topological charge and diffracted them through a quadratic 

phase mask using a spatial light modulator. This phase mask showed the diffraction in 

which the positive diffracted order performed different dynamics than the negative 

diffracted order [23]. The diffraction pattern and its orientation were found dependent on 

the charge of the vortex and its sign. The experimental results were verified and 

compared with exact analytical results with acceptable agreements [23]. 

In late 2012, J. Demas et al. studied the possibility of sensing with optical vortices in 

photonic-crystal fibers [24]. The authors demonstrated optical polarization vortex 

generation in a photonic-crystal fiber by a CO2 laser long period grating. Vortices were a 

special subclass of fiber modes that result in polarization-insensitive resonances even 

when grating perturbations were asymmetric [24]. The physics of vortex generation 
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combined with the use of structural perturbations alone in single-material fibers opened 

up a new schematic for realizing harsh-environment sensors. The authors showed that the 

temperature and polarization stability of vortex devices was maintained for prolonged 

periods of time at temperatures exceeding 1000°C [24]. 

Investigations about the propagation of a Lorentz-Gauss vortex beam through a 

paraxial ABCD optical system were described by Y. Ni and G. Zhou in 2013 [25]. An 

analytical expression of a general Lorentz–Gauss vortex beam passing through a paraxial 

ABCD optical system was derived. Numerically, the normalized intensity distribution, 

the phase distribution and the orbital angular momentum density distribution of Lorentz-

Gauss vortex beams propagating in free space were graphically demonstrated [25]. The 

influences of Gaussian waist, the width parameters of Lorentzian part, the topological 

charge on the normalized intensity distribution, the phase distribution and the orbital 

angular momentum density distribution of Lorentz–Gauss vortex beams propagating in 

free space were discussed in detail [25]. 

Also in 2013, the propagation of an Airy vortex beam in uniaxial crystals was 

explained by D. Deng and others [26]. The propagation dynamics of an Airy beam 

superimposed with a unit topological charge optical vortex was investigated. The study 

showed analytical and numerical details in uniaxial crystals orthogonal to the optical axis 

[26]. Upon propagation, the Airy vortex beam was mainly dependent on the ratio of the 

extraordinary refractive index to the ordinary refractive index [26]. Due to the anisotropic 

effect of the crystals, the acceleration was more rapid with an Airy vortex beam in the 

transversal direction along the optical axis compared to that in the other transversal 

direction [26]. 
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By means of several computer simulations, X. Li et al. explained the propagation 

properties of optical vortices in a random speckle field based on the Fresnel diffraction 

scheme in 2013 [27]. Furthermore, vortex distribution, phase distribution and the zero- 

crossing lines of the real and imaginary parts of the optical field were analyzed 

comparatively in 2D space [27]. The evolution of optical vortices was studied along 

propagation direction and the relation between vortex density and the distance was 

analyzed [27]. 

In another 2013 study, P. Jia and others investigated the sidelobe-modulated optical 

vortices for free-space communication [28]. The authors proposed and experimentally 

demonstrated a new type of free-space optical communication method. The transmitter 

encodes data into a composite computer-generated hologram which the receiver then 

decodes through a retrieved array of sidelobe-modulated optical vortices [28]. By 

employing this generation and detection technique, the usual stringent alignment and 

phase-matching requirement of the detection of optical vortices was released. Due to the 

orbital angular momentum multiplexing and spatial paralleling, this communication 

method possessed the ability to greatly increase the capacity of data transmission [28]. 

Analytical and numerical investigations for the propagation of a stationary pulse 

were discussed in 1995 by A. Buryak and N. Akhmediev [29]. The fiber arrays were 

assumed to be nonlinear in a circular symmetry which showed many types of stationary 

pulse-like stationary waves [29]. 

In 2003, J. Yang and Z. Musslimani reported the existence of fundamental and 

vortex solitons in two-dimensional optically induced waveguide arrays [30]. They found 

that fundamental solitons are largely confined to one lattice site in the strong localization 
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regime. However, fundamental and vortex solitons were spread over many lattices in the 

strong localization regime [30]. 

T. Alexander et al. revealed, in 2004, the existence of asymmetric vortex solitons in 

ideally symmetric periodic lattices [31]. Asymmetric vortex solitons are expected to exist 

in different nonlinear lattice systems [31]. 

The observation of discrete vortex solitons in optically induced photonic lattices was 

presented in 2004 by D. Neshev et al. [32]. This investigation was experimentally 

completed and demonstrated strong stabilization by the lattice in a self-focusing 

nonlinear medium [32]. 

In 2005, C. Chen et al. performed a number of experiments on Gaussian beams and 

vortices in optically induced photonic lattices [33]. They investigated the vortex-lattice 

interactions in a nonlinear medium and observed lattice twisting due to transfer of the 

angular momentum carried by the vortex beam [33]. 

The dynamics of vector solitons and vortices in two-dimensional photonic lattices 

were investigated by M. Rodas-Verde et al. in 2006 [34]. Discrete vortex solitons were 

studied with Kerr nonlinearity charge flipping instability. They discussed novel types of 

stable, incoherently coupled dipoles and vortex-soliton complexes that can be excited by 

Gaussian beams [34]. 

In 2008, B. Terhalle et al. observed multi-vortex solitons in photonic lattices [35]. 

These were topologically stable and spatially localized in optically induced hexagonal 

lattices. Experimental results confirmed numerical simulations for the propagation of 

beams in weakly deformed lattice potentials [35]. 

Moreover, B. Terhalle et al., in 2009, performed experimental investigations to 
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examine double-charge discrete vortex solitons in hexagonal lattices [36]. Vortices were 

found to be stable and induced in self-focusing nonlinear media where single-charge 

vortex solitons are unstable [36].  

In 2009, K. Law and P. Kevrekidis studied the stable properties of higher-charge 

discrete vortices in hexagonal optical lattices [37]. They found that double-charge 

discrete vortices may be completely stable whereas single-charge vortices may exhibit 

some dynamical instability [37]. 

Laboratory experiments are carried out in 2010 by K. Murphy et al. to detect optical 

vortices using a Shack-Hartmann wavefront sensor to measure the slopes of the 

wavefront surface [38]. The use of the slope technique greatly improved the detection 

rate of vortices in an experimental setup [38]. 

In 2012, C. Huang et al. proposed a method for realizing high-spatial-resolution 

detection of singularity points in optical vortex beams [39]. Using a Shack–Hartmann 

wavefront sensor, the position of an optical vortex can be determined [39]. Optical 

experiments were also carried out to verify the proposed method. The results showed 

good linearity in detecting the position of singularity points [39]. 

B. Stoklasa et al. in 2014 showed that the Shack–Hartmann wavefront sensor can be 

instrumental in reconstructing the complete coherence properties of the signal [40]. They 

confirmed the calculations with an experimental characterization of partially coherent 

vortex beams and achieved excellent results [40]. 

 

1.2     Research methodology 

The research is mainly based on the beam propagation method (BPM) which is a 
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numerical technique in electromagnetics suitable for examining the spread of light in 

optical waveguides such as single mode or multimode fibers [41]. Mathematical analysis 

starts with the Maxwell’s Equations and the Helmholtz scalar wave Equation with a 

paraxial electric field in the form [41]: 

znjk
ezyxzyxE 00),,(),,(

−=φ                                                        (1.1) 

where, φ(x,y,z) is a slowly varying complex envelope as a function of position. 

The substitution of Equation (1.1) in the wave Equation leads to the derivation of the 

(2+1)D paraxial Helmholtz Equation or the Schrodinger Equation in the form [42]: 
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where,
22222

yxt ∂∂+∂∂=∇ , k0 and n0 are the free space wave number and the reference 

refractive index respectively and n is the refractive index of the medium. 

Numerically, the finite difference method is employed to solve Equation (1.2) using 

the Crank-Nicholson technique for better stability [42]. FORTRAN is the programming 

language used for coding and executing simulations. GNUPLOT is employed to generate 

images. In addition, a number of videos are generated for the intensity and phase of the 

propagating fields based on HDF (Hierarchical Data Format) images. 

 

1.3     Main objectives 

The major objectives to be investigated analytically and numerically in this research work 

are focused on three main goals: 

• The study of propagation dynamics of an optical vortex in an optical fiber of 

certain lengths and sizes. The intention is to find possible changes to the 
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optical vortex features as it propagates inside these types of optical fibers. 

• To achieve the former objective, we investigate the propagation dynamics of 

an optical vortex in optical fiber arrays of triangular lattices with numerical 

simulations using various indices of refraction in the core region. Our research 

aims to look for any alterations in vortex dynamics owing to fiber structures. 

• Investigate the propagation of an optical vortex in nonlinear triangular lattices 

with cores of different arrangements. 

In order to achieve these goals, FORTRAN simulation codes have been developed. 

Output data have been generated with GNUPLOT in various formats including ASCII 

data for complex field and images stored in HDF (Hierarchical Data Format). The image 

data have been used to provide videos for visualization of vortex dynamics. 

Chapter Two presents the beam propagation method (BPM) used in simulations 

along with the representation of the optical vortex. Chapter Three discusses the solution 

of the BPM by finite difference and explains the matrix Equations in addition to the 

transparent boundary condition (TBC) used in the analysis. Chapter Four presents several 

simulations for the hexagonal fiber array. It also discusses analytical solutions by coupled 

mode theory and describes the detection of a vortex field. Next, Chapter Five presents 

investigations for the triangular lattice and discusses the results of several statistical 

analyses. Finally, Chapter Six investigates the implementation and application of the 

fiber lattice with an optical vortex as a sensor using the Shack-Hartmann wavefront 

sensor. 
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Chapter 2     Wave Propagation Analyses 

 

Propagation analysis in optical waveguides is of crucial importance in understanding any 

possible changes to the features and characteristics of light. The most common analytical 

tool employed by the research community and used in studying the propagation dynamics 

of light in optical fibers is the beam propagation method. In this chapter, we present this 

numerical method with its fundamental Equations and then explain the mathematical 

representation of an optical vortex used in our research. 

 

2.1     The beam propagation method 

The beam propagation method (BPM) is a numerical technique used primarily in 

computational electromagnetics to solve for the propagation of light in optical 

waveguides under slowly varying envelope approximations [41]. The method usually 

gives acceptable results in linear and nonlinear media for relatively small longitudinal 

step size in the direction of propagation in axially varying waveguides [42, 43]. It is 

widely employed to investigate the analysis and design of different photonic devices such 

as the inhomogeneous and anisotropic liquid crystals [44]. 

Several important improvements are introduced to the BPM to enhance the speed of 

calculations and to reduce generated errors. Diagonalization of the Hermitian operator is 

proposed to enhance the accuracy of paraxial approximations [45]. In addition, a wide 

angle finite element scheme for TE and TM mode propagations is used to model step 

index and bidirectional waveguides with periodic structures with good accuracy [46]. 
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In more recent studies, a 3D full vectorial propagation method with Fourier basis 

functions in the transverse direction has achieved good accuracy even for complex 

waveguides [47,48]. In order to speed up the conventional calculations, a BPM in matrix 

form based on Fourier cosine series or expansions in the azimuthal direction and non-

paraxial propagating beams that simplify 3D problems to 2D only has been demonstrated 

with comparable correctness [49,50,51]. 

Formulation of the BPM starts with the Maxwell’s Equations in a source-free and 

charge-free medium: 
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where 1−=j , ω=2πf and f is the frequency, ε and µ are the electric permittivity in F/m 

and magnetic permeability in H/m respectively, e is the time varying electric field 

intensity vector in V/m and h is the time varying magnetic field intensity vector in A/m. 

Also, E  and H  are the electric and magnetic field complex amplitude vectors such that 

)}exp(Re{ tjEe ω=  and )}exp(Re{ tjHh ω=  respectively [42,52]. 

By taking the curl of the first two Equations in (2.1) and using the relation 
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 with 0)( =⋅∇∇ A
�

, we obtain the 

Helmholtz scalar wave Equation in frequency domain as [53]: 
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where ψ is Ex, Ey, Ez, Hx, Hy or Hz and k=k0n=2π/λ is the wave number, λ is the 
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wavelength and n is the refractive index of the medium. 

The optical field ψ can be expressed as [54]: 

znjk
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−= φψ                                                                    (2.3) 

where φ(x,y,z) is a paraxial slowly varying envelope and znjk
e 00−  is a rapidly varying part 

for the propagation of a carrier in the substrate or cladding of the optical waveguide with 

n0 refractive index. Substituting Equation (2.3) into Equation (2.2) and assuming 

022 ≈∂∂ zφ  we get: 
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where 
22222

yxt ∂∂+∂∂=∇ is the transverse Laplacian. This is the paraxial Helmholtz 

Equation or the Schrodinger Equation in (2+1)D. Both terms on the right side of Equation 

(2.4) affect the propagation of light simultaneously. The first term with 
2

t∇  represents the 

diffraction of light and the second term is the potential function set up by a waveguide or 

a nonlinear medium with n refractive index that allows the interaction of a material or 

device with the wave [55]. 

Equation (2.4) can better be expressed in normalized form as a function of (X,Y,Z) 

defined as X=x/w0, Y=y/w0 and Z=z/z0 where w0 is the waist radius and 2z0=2πw0
2
/λ is 

the depth of focus. In free space where n=n0, Equation (2.4) in normalized form is [56]: 

0
Z

42

T =
∂

Φ∂
−Φ∇ j                                                                        (2.5) 

where 
22222

T YX ∂∂+∂∂=∇  and Φ(X,Y,Z) is the normalized paraxial slowly varying 

envelope as a function of position. One of the analytical solutions of Equation (2.5) is the 

Gaussian field as a function of X and Y in the transverse direction and Z in the 



17 

 

longitudinal direction as: 
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Similar to Equation (2.5), the normalized Schrodinger Equation or paraxial 

Helmholtz Equation in inhomogeneous medium is [57]: 

( ) 0
Z

4 2

0

22

0

2

0

2

T =Φ−+
∂

Φ∂
−Φ∇ nnwkj                                          (2.7) 

where the refractive index n of the medium is a function of position as n(X,Y). 

If a high intensity optical beam propagates in a waveguide, the refractive index of 

the medium changes as a function of intensity, i.e. nonlinear effects. In a nonlinear 

medium where the refractive index of the medium is a function of intensity as n(I), the 

Schrodinger Equation is nonlinear and can be expressed in as [58,59]: 
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where n(I)=n+n2I, n2 is the optical Kerr coefficient for a Kerr nonlinear medium, I is the 

intensity as I=|φ|
2
/2η and η is the characteristic impedance. The expression 
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2 )( ηφnnnIn ≈− where η0 is the characteristic impedance in free 

space as 120π ohms. Equation (2.8) is normalized as [60]: 
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where I0 is the peak intensity. 

Equation (2.9) is the normalized nonlinear Schrodinger Equation that represents the 

propagation of light in an optical waveguide and is solved by BPM in this dissertation. 

An analytical solution for this Equation does not exist but it can be solved numerically 
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for given boundary conditions [61,62]. 

 

2.2     Vortex representation 

An optical vortex is defined as a point of zero intensity with a spiral phase change from 0 

to 2π around it along the direction of propagation [63,64]. Mathematically, the optical 

vortex can be expressed as a Laguerre-Gaussian mode of the first order given by [3]: 
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Figure 1 Intensity (a), phase (b) and intensity at Y=0 (c) of an optical vortex. 
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where U(ρ,φ,z) is the vortex optical field, A is a constant, ρ2
=x

2
+y

2
, w

2
=w0

2
[1+(z/z0)

2
] and 

w is the beam width, w0 is the waist radius, R=z[1+(z0/z)
2
] is the radius of curvature, 

φ=tan
-1

y/x, ζ=tan
-1

z/z0, 2z0=2πw0
2
/λ is the depth of focus, λ is the wavelength and k=2π/λ 

is the wave number [5]. 

 

 

 

Figure 2 Interference of a vortex with a Gaussian wave (a) and a plane wave (b). 
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transverse X and Y is shown as a round region of light with its zero intensity point at the 

center. The vortex phase is plotted in Figure 1(b) which demonstrates its change from -π 

to π around the zero intensity point and along the direction of propagation. At Y=0, the 

intensity is shown in Figure 1(c) with its point of zero intensity at X=0. 

The interference of an optical vortex with either a Gaussian wave or a plane wave 

generates a very clear dislocation in the interference fringes indicating the existence of a 

zero point optical field. This technique is used to detect any changes that may occur to a 

propagating optical vortex and provide a clear and obvious method for vortex detection in 

contrast to intensity measurements [11]. 

Figures 2(a) and 2(b) show the interferogram of an optical vortex with a Gaussian 

wave and a plane wave references respectively at z=0 for w0=5.0µm, λ=1.0µm with a 

transverse normalized resolution of ∆=∆X=∆Y=0.01. The dislocation point at the center 

in both Figures signifies the location of the optical vortex. 
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Chapter 3     Numerical Solutions 

 

Simulation of field propagation in optical waveguides based on the beam propagation 

method is a vital part in our research. Analyses start by defining the numerical method 

used for solving the partial differential Equations and techniques employed to reach a 

formulation suitable for coding. In this chapter, we present the finite difference method 

and its matrix representation. In addition, the general solution structure is discussed and 

the arrangements of the generated numerical data are shown which signify the shape of 

the output field image. 

 

3.1     Finite difference method 

Here, we start with the (2+1)D normalized linear Schrodinger Equation (2.5) in free 

space as [65]: 
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where L is a normalized differential operator on Φ(X,Y,Z). 

The Crank-Nicholson technique implies a stable formal solution of the form: 

Z)Z,Y,X()ZZ,Y,X( ∆Φ=∆+Φ Le                                             (3.2) 

where ∆Z is the longitudinal step in the direction of propagation. This is unconditionally 

stable for small values of ∆Z [66]. 

The exponential part can be approximated as: 
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By employing the discrete steps of X=Xm=m∆X, Y=Yp=p∆Y and Z=Zq=q∆Z in 

Equation (3.1) and using Equation (3.2) we get: 
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Equation (3.4) states that the transverse distribution of the field as a function of m 

and p at a longitudinal q+1 step can be obtained based on the transverse distribution of 

the field as a function of m and p at a longitudinal q step previously defined. The 

exponent employs the differential operator L in Equation (3.3) for very small values of 

∆Z. Multiplying both sides of Equation (3.4) by e
-L ∆Z/2

 and using Equation (3.3) we get: 
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Equation (3.5) forms the basic numerical solution for our problem employing the 

unconditional stability of the Crank-Nicholson technique. However, it is difficult to deal 

with numerically due to the two dimensional nature of the differential operators. In order 

to overcome this difficulty, we split them into two one dimensional operators (one for X 

direction and another for Y direction) and then implement them in matrix forms [67]. 

 

3.1.1     Split Equations 

For any functions f(x) and g(y), the finite difference representation for the second order 

derivatives are defined as: 
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Using the formulas in Equations (3.6) in Equation (3.5) we obtain: 
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where F and G are the normalized central difference operators defined in Equations 

(3.6a) and (3.6b) [68]. 

Equation (3.7) is the primary finite difference Equation used to update the original 

field Φ(m,p,q) on the transverse frame by a step of ∆Z to the field Φ(m,p,q+1). The basic 

structure of the numerical solution is to express Equation (3.7) in a matrix Equation and 

solve linear algebraic Equations to find Φ(m,p,q+1). The most numerically intense 

operation in Equation (3.7) is that both F and G operators are applied on the field 

simultaneously as a two dimensional process. 

A better manageable solution is to split these operators and only perform a single 

operator in one direction, either F or G, at each step in sequence. In that situation, two 

Equations are generated each with only one difference operator applied on the field 

instead of one Equation with two simultaneous operators as in Equation (3.7). The split F 

and G formulation starts by approximating Equation (3.7) as: 
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A new operator U is then defined such that: 
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where U is expressed as: 
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Using Equation (3.10), Equation (3.9) can be split into two Equations as: 
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where Φ*
 is an intermediate field [69]. 

Using Equation (3.6) for the central finite difference operators F and G in Equations 

(3.11a) and (3.11b), we obtain the normalized finite difference solution in spilt X and Y 

form as: 
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where A=1-α, B=1+α, C=α/2, α=j∆Z/4∆
2
 and ∆X=∆Y=∆. 

Equations (3.12a) and (3.12b) are the spilt X and Y form of Equation (3.7) that 

calculates the transverse distribution of the field in two stages. First, Φ*
 is found using 

Equation (3.12a) at the same longitudinal step q at the direction of propagation based on 

the field from the previous step with index q. Then, Φ*
 is employed in Equation (3.12b) 

to obtain the transverse distribution of the field at the next longitudinal step with index 
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q+1 along the direction of propagation. 

 

3.1.2     Matrix representation 

Equations (3.12a) and (3.12b) can be expressed in matrix form for numerical 

calculations.  The left side of each Equation is a square matrix of known elements which 

is inverted and multiplied with the vector of known field values on the right side to obtain 

the vector of unknown field values. Each field vector has lower element indices m=1, 2, 

3,....., M and p=1, 2, 3,....., P and an upper element index q=1, 2, 3,....., Q, where M and P 

are the number of sampling points on the transverse plane with M=P=N and Q is the 

number of longitudinal steps in Z, the direction of field propagation along the optical 

waveguide [70]. 

Matrix representation starts with Equation (3.12a) for p=1, 2, 3,....., N and q=1 in the 

form: 
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and then with Equation (3.12b) with m=1, 2, 3,....., N and q=1 in the form: 
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The initial field Φ1
 in Equation (3.13a) is used to find the intermediate field Φ*1

 and 
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then Equation (3.13b) is used to find the field Φ2
 after one ∆Z step in the direction of 

propagation. To simplify, all transverse field values in both Equations out of the 

computational range of m and p such as 
1*

1,0Φ  or 
1

0,1Φ = 0 are assumed to be zero [71]. 

Figure 3 Basic solutions structure in a flow chart outline. 

 

3.2     Programming and coding 

The simulation program used to solve the propagating optical field is based on the matrix 

Equations (3.13a) and (3.13b) written in FORTRAN. Figure 3 illustrates the basic flow 

chart of the solution structure with the main processing functions [72]. 

In both Equations (3.13a) and (3.13b) we have a tri-diagonal square matrix where its 
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solution is coded only once as a subroutine but is called when required by the main 

program as shown in Figure 3. The solution for a tri-diagonal matrix Equation in the 

form: 
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can be implemented easily in FORTRAN with Equation (3.14): 
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GNUPLOT is used to plot and process the data in the output file [73]. The shape and 

arrangement of the objects on the transverse plane are shown in Figure 4. The 

computational area is designed in rectangular coordinates with normalized X and Y 

boundaries. The index of refraction is n0 in the entire computational area except for the 

fiber array circular region which has a refractive index of n(X,Y) at the center of the 

rectangular area with a normalized radius R. 

The fiber core shown in Figure 4 is the numerical solution for the normalized 

Schrodinger Equation or paraxial Helmholtz Equation in inhomogeneous medium given 

in Equation (2.7). In addition to the numerical solutions presented in sections 3.1 and 3.2, 
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( )Φ− 2

0

22

0

2

0 nnwk  is a new expression that should be included with the Equations which 

account for the existence of the core material with n=n(X,Y). 

Figure 4 Image parts and arrangements. 

 

Hence, Equations (3.12a) and (3.12b) should be modified to: 
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where ( )2

0

22

0

2

0 )Y,X( nnwkT −=  represents the inhomogeneity or nonlinearity of the fiber 

material and n(X,Y) is the distribution of the refractive index of the core in the 

normalized transverse dimension. 

Notice that Equations (3.12a) and (3.16a) are identical. Nevertheless, the effect of 

inhomogeneous core material appears only in Equation (3.16b). If the fiber core is only 
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one type of material, then n(X,Y)=n as shown in Figure 4. All later derivations of the 

matrix Equations should include the effect of material properties by modifying T. 

Figure 5 Meshes of N×N rectangles. 

 

Using the same techniques, the nonlinear normalized Schrodinger Equation given in 

Equation (2.9) can be solved numerically and Equations (3.12a) and (3.12b) should be in 

the form: 
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where 0

2

,2

2

0

2

00 ηq

pmnwkIS Φ=  is the influence of the nonlinearity of the material. 

The numerical distribution of the refractive index for the fibers is possible when a 

circle is defined with a normalized radius R with its center located at (Xc,Yc) point. As 

clearly illustrated in Figure 4, all sampling points outside the circular boundary but inside 
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the computational area should have a refractive index of n0=1.0. However, all other 

points inside the circle boundary should have n(X,Y) as the refractive index of the fiber 

array. 

The assignment of the refractive index numerical values for the randomly distributed 

optical fiber array is different. The technique employed is shown in Figure 5 by 

allocating a grid on the entire computational area with rectangular cells of normalized 

size D=d/w0 where d is the actual length of the rectangular side in micrometers. For the X 

or Y axis normalized length L of the computational boundary, L=N×D where N is an 

integer and N
2
 is the total number of the rectangular cells each with a normalized area of 

D
2
 in the whole computational region as in Figure 5. The refractive index is then 

randomly or periodically assigned for each rectangular cell as n=n1 or n=n2 and the 

refractive index is set to n0=1.0 for regions outside the circular boundary. 

 

3.3     Transparent boundary condition 

Optical waves examined by the beam propagation method exhibit reflections problems by 

the computational boundaries as revealed in Figure 4. Reflections of radiated optical 

waves may interact with the original propagating field corrupting final results. In order to 

overcome this problem, waves reaching the boundaries are assumed to be radiating out of 

the computational area in a plane wave form. This approximation technique is known as 

the transparent boundary condition (TBC) [74,75,76]. 

For the right boundary radiating wave, the computation of the finite difference field 

values in the current step are based on the propagating constant from those of the 

previous  longitudinal step. Mathematically, this can be expressed as [77,78]: 
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where kx is the wave number for a plane wave radiating in the X direction. The method 

assumes the same exponential dependence between the previous step q and the next step 

q+1. From the previous step, the wave number kx can be determined and then used to find 

the field of the next step as in Equation (3.18). 

The TBC of Equation (3.18) is applied to all computational boundaries and then 

included in Equations (3.16a) and (3.16b) and later in the corresponding matrix 

Equations for programming in the FORTRAN codes. Appendices A and B present the 

codes for the linear and nonlinear BPM with TBC solutions respectively. 
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Chapter 4     Modeling 

 

The focus of our research is to find out any alterations to the features of the applied initial 

fields after some distance and explain the dynamics of the optical vortex propagation. All 

results shown and discussed in this chapter are either semi-analytical solutions from 

coupled mode Equations or numerical simulations from our BPM programs. 

 

4.1     Simulation data 

Simulation programs are coded in FORTRAN as discussed in Chapter 3 and designed to 

have a number of input parameters and output data files containing the calculated 

numerical values. Images are generated by GNUPLOT using the data files with the 

arrangements shown in Figure 5. Numbers are computed in double-precision for more 

accuracy and written in data files as tables suitable for data entering and processing for 

GNUPLOT and HDF. 

From Equation (3.16) discussed earlier, the transverse plane sampling intervals, ∆X 

and ∆Y, and the number of longitudinal steps are inputted through the parameters 

statement in our program. The image resolution and the size of the square matrix as in 

Equation (3.13) is determined by the transverse plane sampling intervals which are set to 

∆=∆X=∆Y in our program. 

Furthermore, the number of longitudinal calculation steps is implemented as a do-

loop in the FORTRAN code and it indicates how many ∆Z the field is propagated in the 

Z direction. An acceptable estimate through computer simulations for the longitudinal 
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calculation step could be ∆Z~∆/100 in order to keep possible numerical errors to an 

acceptable level. 

 

 
Figure 6 Linearly polarized modes versus V number [79]. 

 

             

Figure 7 LP modes intensity distributions [79]. 

 

Simulation data are visualized by generating the transverse image of the field 

intensity and phase as well as the transverse interferogram with a reference Gaussian 

beam and the distribution of the index of refraction in the entire computational area. As 

explained earlier, several types of optical fibers are investigated: the multimode fiber and 

the triangular lattice array of fiber cores in different periodic arrangements. 

LP01 LP11 LP02 LP21 
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The number of optical modes V that propagate in an optical fiber can be calculated 

from the relation: 

NArV  
2

λ

π
=                                                                               (4.1) 

where λ is the wavelength, r is the core radius and NA is the numerical aperture obtained 

as 22

claddingcore nnNA −= such that ncore and ncladding are the index of refraction for core and 

cladding respectively. 

Figure 6 illustrates the linearly polarized (LPl,m) modes that can propagate in a step 

index optical fiber [79]. LP01 is the first propagating mode for the single mode fiber 

where V≤2.405. On the vertical axis, b is the normalized modal propagation constant and 

the V number is on the horizontal axis. The transverse distribution of the LP modes 

intensity is also shown in Figure 7 for mode indices l,m equal to 01,11,02 and 21 

respectively [79]. 

 

4.2     Multimode fiber 

When the V number is greater than or equal to 2.405 (V≥2.405), the fiber is known as a 

multimode fiber and there should be several modes of light fields that can exist and 

propagate in that fiber. 

For simulations, let’s assume that we select the beam width w0=40µm, fiber core 

radius r=60µm, ncore=1.47, ncladding=1.0, numerical aperture NA=1.08, transverse plane 

sampling interval ∆=0.01, normalized transverse lengths of X=Y=5.0 with a matrix size 

and a resolution of 500×500 (N=500) and a wavelength of λ=633nm for the He-Ne laser 

source. 
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The longitudinal calculation step is set to ∆Z=0.0001 for z0=7.941mm. Gaussian and 

optical vortex initial fields are simulated with various input parameters such as 

eccentricity with respect to the core center and angle of incidence with respect to the fiber 

core surface. 

Figure 8(a) shows the distribution of the refractive index and the boundary between 

the core centered at the origin and the computational area. Figure 8(b) is the Gaussian 

beam centered at the origin (X=0,Y=0) in free space after a distance of 1.0z0=7.941mm 

for comparisons and Figure 8(c) shows the intensity of the beam in the multimode fiber 

after the same distance. 

Light fields demonstrates more confinement inside the core circular boundary where 

the index of refraction changes from n0=1 to ncore=1.47 as seen in Figure 8(c). 

 

 

Figure 8 Index of refraction (a), Gaussian beam (b) and field at 1.0z0 in a multimode fiber (c). 

 

Furthermore, Figure 9 shows the field distribution at propagation distance of 1.5z0 

and 2.0z0 with a Gaussian initial field. Images are computed for a multimode fiber with 

the same parameters except for a resolutions of 250×250 and a transverse calculation step 

of ∆=0.02. The intensity is higher in the region with a large index of refraction ncore 

where light is confined by the core. 

(a) (b) (c) 

n0=1            R=1.5 

n1=1.47 

In free space In multimode fiber 

1.0z0 1.0z0 
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Figure 9 Field intensity distributions at 1.5z0 and 2.0z0 in a multimode fiber. 

 

To investigate if the propagation of an optical vortex in a multimode fiber has 

different dynamics from the Gaussian beam, we perform additional simulations. The goal 

is to track the coordinates of the point of zero intensity or the point of dislocation where 

the phase spirals from -π to π. The optical vortex intensity and phase was explained 

earlier and plotted in Figure 2. 

For the same fiber used in Figure 8 we input a vortex beam. Figure 10(a) illustrates 

the intensity of the optical vortex propagating in the multimode fiber of Figure 8(a). Its 

phase is displayed in Figure 10(b). Its interferometry with a Gaussian beam at an angle of 

π/4 is also illustrated in Figure 10(c). 

1.5z0 

2.0z0 
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Figure 10 Vortex at 1.0z0 in a multimode fiber (a), phase (b) and interferogram (c). 

 

     

Figure 11 Vortex at 2.0z0 in a multimode fiber (a), phase (b) and interferogram (c). 

 

At a resolution of 250×250, Figure 11(a) illustrates the vortex field intensity at 2.0z0 

in a multimode fiber. The corresponding phase and interferogram are depicted in Figures 

11(b) and 11(c) respectively. Simulations demonstrate that the vortex is guided inside the 

fiber core with its zero point intensity moved to the core center. Although spirals of the 

vortex phase and the dislocation point are distorted, they still can be recognized. 

 

4.3     Hexagonal fiber array 

This type of fiber array has more than one hundred single mode cores in a hexagonal 

arrangement. The cores are designed very close to each other with ncore and ncladding 

indices of refractions set in free space of n0 =1.0 for ∆n=ncore-ncladding<0.005 with 

(a) (b) (c) 

Zero intensity Dislocation Phase rotation 

1.0z0 1.0z0 1.0z0 

(a) (b) (c) 

Zero intensity Phase spirals Dislocation 

2.0z0 2.0z0 2.0z0 
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V<2.405 for single mode operation according to Equation (4.1). 

 

                

 

Figure 12 Hexagonal 127 cores n(X,Y) for ncore=1.005, R=0.1, D=0.02 (a), ncore=1.005, R=0.15, 

D=0.03 (b) and ncore=1.5, ncladding=1.45, R=0.29, D=0.22 with cladding in air (c). 

 

An arrangement with an equal distance between any adjacent elements is selected 

since it can greatly simplify the calculations. All single mode cores are closely packed in 

order for light travelling along the propagation axis to be coupled among them. Figure 12 

shows the overall n(X,Y) with 127 single mode cores in a hexagonal arrangement with a 

resolution of 500×500, a transverse plane sampling interval of ∆=0.01 and w0=50µm. 

Figures 12(a) and 12(b) show two configurations of fiber array with different 

normalized core radius R=0.1, 0.15 and different normalized distance between cores of 

R=0.1 
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D=0.02, 0.03 respectively. Figure 12(c) is the arrangement used in this dissertation with 

cladding in air for R=0.29, D=0.22, ncore=1.5 and ncladding=1.45. 

 

 

 

Figure 13 Vortex field at 1.0z0, n(X,Y) for 127 cores, R=0.1, D=0.02, ncore=1.5 and ncladding=1.45 (a), 

intensity (b), phase (c) and interferogram (d). 

 

Figure 13(b) shows the optical field intensity when a vortex beam propagates in the 

fiber array with 127 cores in a hexagonal arrangement in Figure 13(a) for R=0.1, D=0.02, 

ncore=1.5 and ncladding=1.45. The optical field is calculated at 1.0z0 and a longitudinal 

calculation step of ∆Z=0.001 with w0=50µm and λ=633nm. The point of zero intensity 

can be located at the central core. 

Figures 13(c) and 13(d) show the phase and interferogram of the vortex beam with a 

plane wave at 1.0z0. We can see that the original vortex still exists and the dislocation 

point can be observed in the middle by examining the phase and interferogram. In 

Zero intensity 

(c) 

(a) (b) 

(d) 



40 

 

addition, a number of new vortices are generated in this structure with a phase change 

from –π to π as clearly shown in Figures 13(c) and 13(d). New vortices are formed in 

pairs with opposite charges. Thus, the overall charge on the transverse plane is conserved. 

The simulation is adapted to work with matrices of different sizes such as 250×250, 

500×500 and 1000×1000. A larger matrix generates improved resolution of images but 

may need more time to find the results. Image resolution is nearly satisfactory with a 

matrix size of 1000×1000 for magnifying reasons. All images have almost the same 

quality such as Figures 8, 9, 10 and 11. 

 

4.4     Analytical solutions 

The analytical solution for the hexagonal arrangement can be obtained by employing the 

coupled mode theory as a simplified approximation. The basic assumption is to consider 

that the mode of each single mode waveguide is obtained individually with amplitude as 

if there is no neighboring waveguide. With consideration of interactions with modes from 

neighboring waveguides, only the mode amplitudes vary with propagation distance. 

The total electric field can be represented as a superposition of core modes as: 

∑ −=
m

zj

mm
meyxuzazyxE

β
),()(),,(                                            (4.2) 

where m is the index for the core element with the maximum value being equal to the 

number of cores, am(z) is the amplitude as a function of z for element m,  um(x,y) is the 

transverse distribution and βm is the constant of propagation for core m. 

Taking into consideration the coupling among neighboring cores where coupling is 

strong owing to their close proximity and βm is the same for all cores, the amplitudes 

am(z) can be calculated with the following differential Equations: 
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where an(z) are the mode amplitudes for all nearest cores to the m
th

 core with mode 

amplitude of am(z) and cn are their coupling factors. 

 

 

Figure 14 |a(z)|
2
 for the middle core of Figure 13(a). 

 

Figure 14 is a plot of the analytical solution of Equations (4.3) for the changes of 

|a(z)|
2
 of the middle element located at the origin for the arrangement shown in Figure 

13(a) for R=0.1, D=0.02, ncore=1.5 and ncladding=1.45. The assumed initial conditions are 

|a(z=0)|
2
=1.0 for the middle core at the origin but zero for all other cores. 

 

4.5     Vortex detection 

The method for vortex detection can be understood by referring to the optical vortex 

Equation (2.10) that is repeated here in another mathematical form as [83,84,85]: 

jkz
eyxVU

−= ),(                                                                          (4.4) 

where V(x,y) is a wave function with real and imaginary parts as: 
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),(),(),( yxjVyxVyxV ir +=                                                      (4.5) 

Thus, vortices should lie on the zero crossings of both the real part Vr(x,y)=0 and the 

imaginary part Vi(x,y)=0 since the wave function V(x,y) is single valued in the entire 

computational region. All such zero crossings should also show a phase change from –π 

to π as explained before. 

Figure 15 Zero crossings and phase change code outline. 

 

Figure 15 is a flowchart for the FORTRAN program code used in our simulation that 

demonstrates how to determine the zero crossing points and phase change in any fiber 

arrangement based on Equation (4.4). Vr(x,y) and Vi(x,y) are assumed to be zero when 
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their amplitude is less than 1% of their peak value in Equation (4.5). In order to test the 

location of a vortex, the phase is tested at four points around the expected location. If the 

phase varies from –π to π or from π to –π, then that location is considered a point of zero 

intensity with phase singularity with a polarity of ±1. 

 

4.6     Coupling 

An optical field ψ(r) propagating in an optical single mode fiber is given by: 
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0ψ                                                            (4.6) 

where A and B are constants, J0(x) and K0(x) are the Bessel functions of the first and 

second kind with order zero and argument x respectively, p and q are real numbers and a 

is the radius of the fiber core. 

 

 

Figure 16 Gaussian field approximation. 

 

At the fiber core boundary for r=a, Equation (4.6) is used to find the relations: 
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)()( 00 qaBKpaAJ =                                                                   (4.7) 

)()( 11 qaBqKpaApJ =                                                               (4.8) 

Substituting Equation (4.7) into Equation (4.8) gives the relation: 
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=                                                                   (4.9) 

Equation (4.9) is then solved numerically to obtain p and q previously shown in 

Equation (4.6) above. 

 

 

 

Figure 17 Coupling in two cores using beam propagation (a) and mode coupling (b) methods. 

 

For the special case of p=0.557, q=0.574, A=1.0 and B=2.572, Equation (4.6) can be 

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Optical 

field 

intensity 

Optical 

field 

intensity 

Normalized longitudinal distance, Z 

Normalized longitudinal distance, Z 

(a) 

(b) 

Core 1 Core 2 

Core 1 Core 2 



45 

 

easily plotted. The objective is to approximate the Gaussian field with a width of w0 using 

the single mode field in Equation (4.6). Figure 16 illustrates a good approximation 

between both fields for w0=5.4µm and a=3µm. 

The coupling of the optical field intensity between two cores is shown in Figure 17 

using BPM and coupling methods respectively. Figures 17(a) and 17(b) demonstrate 

excellent agreements between both techniques. Calculations are obtained for a Gaussian 

initial field, w0=5.4µm, λ=1.5µm, R=0.92, D=2.0, ncore=1.5 and Z=50. 

As notices in Figure 17(a), the Gaussian approximations obtained from Equation 

(4.9) and presented in Figure 16 causes little reflections and loss of energy until field 

coupling is established at just about Z=5. 

As a consequence, the former derivation for the propagating optical field employing 

the BPM is an acceptable numerical technique for investigating the propagation in optical 

fibers. 
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Chapter 5     Triangular Lattice Fiber Array 

 

Further investigations can be achieved for any core array arrangement in the optical 

waveguide. In addition to core radius, distances and angles between cores could be varied 

and may have different effects on the propagating optical field. In this chapter, we discuss 

the triangular lattice of fiber array as a generalization to any core array assembly. We also 

present the dynamics of a propagating optical vortex in this structure with different array 

parameters. 

 

5.1     Basic arrangement 

In geometry, a triangular lattice is a two dimensional array of discrete points or cores 

described by the position vector R
�

as: 

2211 acacR
���

+=                                                                            (5.1) 

where c1 and c2 are integer constants and 
1a
�

and 
2a
�

are primitive vectors such that any 

choice of the position vector R
�

can generate a periodic lattice by varying c1 and c2 [82]. 

Figure 18 Two dimensional triangular lattice parameters. 

a1 

a2 
θ 

Lattice 

elements 
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Table 1 Parameters of the fundamental lattices [82]. 

 

Lattice type 

 

Primitive vectors Angle 

 

Geometry 

Oblique 21 aa
��

≠  θ∫90
o
 

 

 
 

Rectangular 21 aa
��

≠  θ=90
o
 

 

 
 

Centered rectangular 21 aa
��

≠  θ∫90
o
 

 

 
 

Hexagonal 21 aa
��

=  θ=120
o
 

 

 
 

Square 21 aa
��

=  θ=90
o
 

 

 
 

 

Figure 18 illustrates the triangular lattice arrangement with the vectors 
1a
�

and 
2a
�

expressed in Equation (5.1) with an angle θ between them. There are five fundamental 

shapes that can be derived from Figure 18 known as oblique, rectangular, centered 

rectangular, hexagonal and square. For more details, Table 1 shows the parameters for 
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every fundamental lattice type and its geometrical form [85]. 

Investigations for the propagation dynamics of an optical vortex in a triangular 

lattice is carried out according to the hexagonal arrangement shown in Figure 18. 

 

5.2     Two-core array 

The simplest form for any array type shown in Figure 18 or Table 1 contains only two 

cores each with a normalized radius R and a normalized distance D between them. The 

primary objective is to investigate the propagation dynamics of an optical vortex in a dual 

core waveguide and look for any possible changes in the original field or newly generated 

vortices. 

Numerical simulations are performed for an array with R=0.4, D=0.1, ncore=1.05, 

ncladding=1.04, and a beam with a width of w0=5.0µm and wavelength of λ=1.5µm, i.e. 

≈= λ2

00 πwz 52.36µm. In order to increase coupling between the cores, the distance D is 

assumed to be very small and a very high ∆n=0.01 is considered. 

Figure 19 shows a sequence of images for the intensity and phase of an optical 

vortex beam propagating in a two core linear fiber array. The original optical vortex 

remains in its place and keeps its sense of rotation with new vortices generated at the 

boundaries of the cores. Conservation of charge is maintained as two new vortices with 

opposite spiral directions are generated keeping the overall polarity to +1. 

The intensity sequence of images reveals that the optical fields are more coupled to 

the cores as the vortex propagates. The phase images show that the original vortex 

continues in the same location. However, new vortices bounce at the cores boundaries. 
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 Intensity Sequence, X:-3 to 3, Y:-3 to 3 Phase Sequence, X:-3 to 3, Y:-3 to 3 

Z=10.0 

  

Z=12.0 

  

Z=13.0 

  

Z=15.0 

  

Z=17.0 

  

Z=18.0 

  

Figure 19 Image sequences (intensity and phase) showing creation of vortices in linear 2 cores 

fiber array for R=0.4, D=0.1, ncore=1.05 and ncladding=1.04. 
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 Intensity Sequence, X:-3 to 3, Y:-3 to 3 Phase Sequence, X:-3 to 3, Y:-3 to 3 

Z=10.0 

  

Z=12.0 

  

Z=13.0 

  

Z=15.0 

  

Z=17.0 

  

Z=18.0 

  

Figure 20 Image sequences (intensity and phase) showing creation of vortices in nonlinear 2 

cores fiber array for R=0.4, D=0.1, ncore=1.05, ncladding=1.04 and n2I0=0.001. 
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The sequence of images for the intensity and phase for the nonlinear propagation in a 

two-core array is shown in 

nonlinearity n2I0=0.001 

results obtained from Figure

 

5.3     Multi-core array

The approach discussed in earlier chapters and the methods used to produce field 

distributions are employed to investigate the propagation of an optical vortex in 

lattices. Both linear and nonlinear lattices 

Figure 21 are modeled with

 

 

Figure 21 Lattice structure

 

An example for the 

arrangement in a normalized rectangular coordinates

normalized radius of each core as R=

2R 2R+D 

The sequence of images for the intensity and phase for the nonlinear propagation in a 

core array is shown in Figure 20. Numerical simulations are 

 and ∆n=0.01. Figure 20 shows almost the same features and 

Figure 19. 

rray 

The approach discussed in earlier chapters and the methods used to produce field 

distributions are employed to investigate the propagation of an optical vortex in 

lattices. Both linear and nonlinear lattices with the fiber array arrangements sho

modeled with Equations (2.7) and (2.9) respectively. 

tructure with an array of 19 cores in a hexagonal arrangement.

An example for the triangular lattice structure is shown in Figure 

in a normalized rectangular coordinates, X=x/w0 and 

normalized radius of each core as R=r/w0 and a normalized distance between cores as 

X 

Y 

n0=1.0 
ncore 

60
o
 each angle 

ncladding 
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The sequence of images for the intensity and phase for the nonlinear propagation in a 

Numerical simulations are carried out for 

20 shows almost the same features and 

The approach discussed in earlier chapters and the methods used to produce field 

distributions are employed to investigate the propagation of an optical vortex in triangular 

with the fiber array arrangements shown in 

arrangement. 

 21 for a 19 core 

 Y=y/w0, with a 

and a normalized distance between cores as 
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D=d/w0 where w0 is the beam width and r and d are in µm. The index of refraction of 

each core is assumed to be very close to that of free space with a difference of 

005.0≈∆=− nnn claddingcore approximately and n0=1.0 for free space [84]. 

 

5.3.1     Linear lattices 

Numerical solutions are performed using Equation (2.7) for ncore=1.5, ncladding=1.495, 

∆n=0.005, beam width of w0=5.0µm and wavelength of λ=1.5µm with ≈= λ2

00 πwz

52.36µm. Single mode cores are assumed with a V number as 405.2π2 <= λrNAV

where 12.0
22 ≈−= claddingcore nnNA is the optical numerical aperture. 

The linear propagation of an optical vortex field in 61 cores in a hexagonal array 

with R=0.4 (r=Rw0=2.0µm), D=0.2 (d=Dw0=1.0µm) at Z=8 (z=Zz0=418.88µm) is shown 

in Figure 22 for a resolution of N=1000 for the transverse plane of ∆=0.02 and 

longitudinal step size of ∆Z=0.005. 

Figure 22 (b) is n(X,Y) and Figure 22(a) is a magnified image of the field intensity 

with spots of light in some cores. Since the cores are very close to each other at a 

constant distance, the field is coupled between them as it propagates. The phase of the 

propagated vortex field with charges of +1 or -1 of newly generated vortices is shown as 

a magnified image in Figure 22(c) where they demonstrate a phase change from –π to π. 

The total charge or polarity of vortices should be conserved to +1 which is the charge of 

the initial transmitted optical vortex field. New optical vortices are generated in pairs but 

then annihilate as they propagate inside the optical fiber array [87]. 
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Figure 22 Intensity (a), n(X,Y) (b), phase (c) and interferogram (d) for 61 cores array with �=-1 

charge and �=+1 charge for ncore=1.5, ncladding=1.495, Z=8, R=0.4 and D=0.2. 
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Figure 23 Intensity (a), n(X,Y) (b), phase (c) and interferogram (d) for 61 cores array with �=-1 

charge and �=+1 charge for ncore=1.5, ncladding=1.495, Z=11, R=0.4 and D=0.2. 
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Topological charge should be always conserved when new vortices are formed and 

then annihilated in pairs with opposing charges. In Figure 22, conservation of charge is 

confirmed as 7*(+1)+6*(-1)=+1 where there are 7 vortices with +1 charge and 6 vortices 

with -1 charge. Figure 22(d) is the magnified image of the interferogram with a plane 

wave reference at an angle of π/4 with respect to the X axis which displays the 

dislocation points of new vortices at similar locations to that shown in Figure 22(c). 

 

Table 2 New vortices at various Z’s for R=0.4 and D=0.2 (polarities are in parentheses). 

Z 37 cores 61 cores 91 cores 127 cores 

0.0 1(+1) 1(+1) 1(+1) 1(+1) 

1.0 9(+5,-4) 11(+6,-5) 15(+8,-7) 21(+11,-10) 

2.0 11(+6,-5) 21(+11,-10) 35(+18,-17) 41(+21,-20) 

3.0 13(+7,-6) 23(+12,-11) 31(+16,-15) 41(+21,-20) 

4.0 11(+6,-5) 23(+12,-11) 35(+18,-17) 41(+21,-20) 

5.0 21(+11,-10) 31(+16,-15) 39(+20,-19) 49(+25,-24) 

6.0 21(+11,-10) 29(+15,-14) 37(+19,-18) 49(+25,-24) 

7.0 19(+10,-9) 29(+15,-14) 37(+19,-18) 49(+25,-24) 

8.0 25(+13,-12) 35(+18,-17) 45(+23,-22) 53(+27,-26) 

9.0 23(+12,-11) 33(+17,-16) 47(+24,-23) 53(+27,-26) 

10.0 29(+15,-14) 39(+20,-19) 49(+25,-24) 57(+29,-28) 

11.0 27(+14,-13) 39(+20,-19) 49(+25,-24) 57(+29,-28) 

12.0 25(+13,-12) 37(+19,-18) 47(+24,-23) 57(+29,-28) 

13.0 35(+18,-17) 41(+21,-20) 53(+27,-26) 61(+31,-30) 

14.0 37(+19,-18) 47(+24,-23) 55(+28,-27) 65(+33,-32) 

15.0 41(+21,-20) 49(+25,-24) 57(+29,-28) 69(+35,-34) 

16.0 41(+21,-20) 49(+25,-24) 61(+31,-30) 69(+35,-34) 

17.0 45(+23,-22) 57(+29,-28) 69(+35,-34) 73(+37,-36) 

18.0 49(+25,-24) 59(+30,-29) 69(+35,-34) 79(+40,-39) 

19.0 55(+28,-27) 63(+32,-31) 71(+36,-35) 81(+41,-40) 

20.0 59(+30,-29) 69(+35,-34) 79(+40,-39) 87(+44,-43) 

 

Moreover, Figure 23 shows the propagated optical vortex field at Z=11 for 127 

linear cores array with R=0.4, D=0.2, a resolution of N=1000 with ∆=0.016 and 
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longitudinal step size ∆Z=0.005. Figure 23(b) is n(X,Y) and Figure 23(a) is a magnified 

image of the field intensity with the spots of light coupled and spread in more near cores 

compared to the case in Figure 22(a). The corresponding phase from –π to π is shown in 

Figure 23(c) with 6 new pairs of vortices around the first vortex at the origin. Again, the 

conservation of charge holds. Figure 23(d) shows the interferogram of the vortex field 

with a plane wave reference at an angle of π/4 with respect to the X axis that reveals the 

points of dislocations for each created vortex. 

 

 

Figure 24 vortex density with respect to Z for different number of cores for ncore=1.5, 

ncladding=1.495, R=0.4 and D=0.2. 

 

The approach used to generate Figures 22 and 23 is employed to investigate the 

generation of new vortices with respect to Z when the number of cores, core radius R and 

distance D are varied. Some results are listed in Table 2 for Z from 0.0 to 20.0 when the 

number of cores is 37, 61, 91 and 127 respectively and visualized as vortex density in 
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Figure 24 for R=0.4 and D=0.2 with the same number of cores. The vortex density is 

defined as the number of vortices per unit area of the fiber array. Polarities (either + or -) 

of newly generated vortices are also recorded in Table 2 which clearly demonstrate and 

confirm the conservation of charge. 

 

Table 3 New vortices at various R’s for Z=8.0 and D=0.2 (polarities are in parentheses). 

R 37 cores 61 cores 91 cores 127 cores 

0.2 21(+11,-10) 27(+14,-13) 39(+20,-19) 47(+24,-23) 

0.3 23(+12,-11) 31(+16,-15) 43(+22,-21) 51(+26,-25) 

0.4 25(+13,-12) 35(+18,-17) 45(+23,-22) 53(+27,-26) 

 

 

Figure 25 Vortex density with respect to R for different number of cores for ncore=1.5, 

ncladding=1.495, Z=8.0 and D=0.2. 

 

As revealed by these Figures, the generation of new vortices is very dynamic and 
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vortices may not exist continually and may possibly vanish with other new vortices 

generated at different locations. 

 

Table 4 New vortices at various D’s for Z=8.0 and R=0.4 (polarities are in parentheses). 

 

 

 

Figure 26 Vortex density with respect to D for different number of cores for ncore=1.5, 

ncladding=1.495, Z=8.0 and R=0.4. 

 

Table 2 shows the data at Z=8.0 with differences in the number of new vortices as 

the number of cores is varied. Core radius may also affect the number of newly generated 

vortices as illustrated in Table 3 and visualized as vortex density in Figure 25 for R=0.2, 
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D 37 cores 61 cores 91 cores 127 cores 

0.2 25(+13,-12) 35(+18,-17) 45(+23,-22) 53(+27,-26) 

0.3 23(+12,-11) 31(+16,-15) 41(+21,-20) 51(+26,-25) 

0.4 21(+11,-10) 31(+16,-15) 41(+21,-20) 51(+26,-25) 
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there are more cores. In addition, variation of the distance between cores could show 

some changes in the number of new vortices as shown in Table 3 and visualized as vortex 

density in Figure 26 for various D’s when 0.4, R=0.4 and Z=8.0. 

 

5.3.2     Nonlinear lattices 

Numerical solutions are obtained using the normalized nonlinear Schrodinger Equation 

(2.9) for a positive nonlinearity n2I0=0.0001 and 005.0=∆n . Simulations are evaluated 

for ncore=1.5, ncladding=1.495, beam width of w0=5.0µm and wavelength of λ=1.5µm with 

≈= λ2

00 πwz 52.36µm. Single mode cores are also assumed with a V number as

405.2π2 <= λrNAV where 12.0
22 ≈−= claddingcore nnNA is the numerical aperture. 

The propagation of the optical vortex field in this nonlinear medium is shown in 

Figure 27 at Z=8 (z=Zz0=418.88µm) for 61 cores in a hexagonal arrangement array with 

R=0.4 (r=Rw0=2.0µm), D=0.2 (d=Dw0=1.0µm), a resolution of N=1000 with ∆=0.02 and 

longitudinal steps size ∆Z=0.005. Figure 27(b) shows n(X,Y). Figure 27(a) is a 

magnified image of the field intensity showing the spots of light in some cores. The 

optical field is coupled among them as it propagates in the array because the cores are 

very close to each other. The corresponding phase of the vortex field changing from –π to 

π corresponding to charges of +1 or -1 is shown in Figure 27(c). Similar to the linear 

medium, the topological charge should be always conserved when new optical vortices 

are formed and then annihilated in pairs with opposing charges. In this case, conservation 

is confirmed as 3*(+1)+2*(-1)=+1 where there are 3 vortices with +1 charge and 2 

vortices with -1 charge. 
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Figure 27 Intensity (a), n(X,Y) (b), phase (c) and interferogram with a plane wave reference (d) 

for 61 cores array with �=-1 charge and �=+1 charge at Z=8.0. 
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Figure 28 Intensity (a), n(X,Y) (b), phase (c) and interferogram with a plane wave reference (d) 

for 127 cores array with �=-1 charge and �=+1 charge at Z=11. 
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Figure 27(d) is the interferogram with a plane wave reference at an angle of π/4 with 

respect to the X axis with the dislocation points of individual new optical vortices at 

comparable locations to that shown in Figure 27(c). 

 

Table 5 New vortices at various Z’s for R=0.4 and D=0.2 (polarities are in parentheses). 

Z 37 cores 61 cores 91 cores 127 cores 

0.0 1(+1) 1(+1) 1(+1) 1(+1) 

1.0 9(+5,-4) 11(+6,-5) 15(+8,-7) 21(+11,-10) 

2.0 13(+7,-6) 21(+11,-10) 37(+19,-18) 41(+21,-20) 

3.0 13(+7,-6) 23(+12,-11) 33(+17,-16) 43(+22,-21) 

4.0 13(+7,-6) 23(+12,-11) 37(+19,-18) 43(+22,-21) 

5.0 21(+11,-10) 31(+16,-15) 41(+21,-20) 51(+26,25) 

6.0 21(+11,-10) 29(+15,-14) 37(+19,-18) 51(+26,25) 

7.0 21(+11,-10) 31(+16,-15) 37(+19,-18) 51(+26,25) 

8.0 27(+14,-13) 35(+18,-17) 47(+24,-23) 55(+28,-27) 

9.0 25(+13,-12) 35(+18,-17) 47(+24,-23) 55(+28,-27) 

10.0 31(+16,-15) 39(+20,-19) 51(+26,25) 59(+30,-29) 

11.0 29(+15,-14) 41(+21,-20) 51(+26,25) 59(+30,-29) 

12.0 31(+16,-15) 39(+20,-19) 49(+25,-24) 59(+30,-29) 

13.0 37(+19,-18) 43(+22,-21) 55(+28,-27) 63(+32,-31) 

14.0 37(+19,-18) 49(+25,-24) 57(+29,-28) 67(+34,-33) 

15.0 41(+21,-20) 51(+26,25) 59(+30,-29) 71(+36,-35) 

16.0 43(+22,-21) 51(+26,25) 63(+32,-31) 71(+36,-35) 

17.0 47(+24,-23) 59(+30,-29) 69(+35,-34) 75(+38,-37) 

18.0 51(+26,25) 59(+30,-29) 69(+35,-34) 79(+40,-39) 

19.0 57(+29,-28) 65(+33,-32) 73(+37,-36) 83(+42,-41) 

20.0 61(+31,-30) 71(+36,-35) 81(+41,-40) 87(+44,43) 

 

Furthermore, Figure 28 shows the optical vortex field at Z=11 for 127 cores array 

with R=0.4, D=0.2, N=1000 resolution with ∆=0.04 and ∆Z=0.005. Figure 28(b) shows 

n(X,Y). Figure 28(a) is a magnified image of the optical field intensity with the spots of 

light coupled into cores and spreading more to neighboring cores compared to the case 

shown in Figure 27(a). The phase of the field from –π to π is shown as in Figure 28(c) 
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with new pairs of vortices forming around the first vortex at the origin. Figure 28(c) again 

demonstrates the conservation of charge. Figure 28(d) also shows the interferogram of 

the vortex field with a plane wave reference at an angle of π/4 with respect to the X axis 

that shows the points of dislocation for each new vortex. 

 

 

Figure 29 vortex density with respect to Z for different number of cores for ncore=1.5, 

ncladding=1.495, R=0.4 and D=0.2. 

 

The method for the generation of Figures 27 and 28 is employed to investigate the 

change in vortex density with respect to Z when the number of cores, core radius R and 

distance D are varied. Some results are listed in Table 5 for Z from 0 to 20.0 when the 

number of cores is 37, 61, 91 and 127 respectively and visualized as vortex density in 

Figure 29 for R=0.4 and D=0.2 for the same number of cores. Polarities (either + or -) of 

newly generated vortices are also recorded in Table 5 which clearly demonstrates and 

confirms the conservation of charge. 
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As illustrated in Table 5, the production of new vortices is extremely dynamic with 

respect to Z and the number of cores. More vortices are created as the number of cores 

increases and the beam propagates to farther distances. New vortices start to appear at 

shorter propagation distance but even more new vortices are produced when the number 

of cores is higher. However, new vortices may not exist all the time and could disappear 

with other new vortices generated at different sites. 

 

Table 6 New vortices at various R’s for Z=8.0 and D=0.2 (polarities are in parentheses). 

R 37 cores 61 cores 91 cores 127 cores 

0.2 19(+10,-9) 25(+13,-12) 37(+19,-18) 45(+23,-22) 

0.3 23(+12,-11) 31(+16,-15) 41(+21,-20) 51(+26,-25) 

0.4 27(+14,-13) 35(+18,-17) 47(+24,-23) 55(+28,-27) 

 

 

Figure 30 Vortex density with respect to R for different number of cores for ncore=1.5, 

ncladding=1.495, Z=8.0 and D=0.2. 
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new vortices as the number of cores is varied. Core radius may also affect the number of 

newly generated vortices as listed in Table 6 and depicted in Figure 30 for various R at 

Z=8.0 and D=0.2 for the same number of cores. 

The generation of new vortices is sensitive to the core radius such as the sharp 

change from one vortex to 7 vortices for 61 cores. Figure 30 shows a general tendency of 

an increase in the number of vortices as the core radius increases. In addition, the 

variation of the distance between cores could show some changes in the number of new 

vortices as listed in Table 7 and visualized in Figure 31 for various D for R=0.4 and 

Z=8.0. This parameter may have a decreasing effect as the distance increases. 

 

Table 7 New vortices at various D’s for Z=8.0 and R=0.4 (polarities are in parentheses). 

D 37 cores 61 cores 91 cores 127 cores 

0.2 27(+14,-13) 35(+18,-17) 47(+24,-23) 55(+28,-27) 

0.3 25(+13,-12) 31(+16,-15) 43(+22,21) 51(+26,-25) 

0.4 21(+11,-10) 29(+15,-14) 33(+17,-16) 49(+25,-24) 

 

 

Figure 31 Vortex density vs. D for ncore=1.5, ncladding=1.495, Z=8.0 and R=0.4. 
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Figure 32 Intensity (a), n(X,Y) (b), phase (c) and interferogram with a plane wave reference (d) 

for 61 cores array with �=-1 charge and �=+1 charge. 
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Figure 33 Intensity (a), n(X,Y) (b), phase (c) and interferogram with a plane wave reference (d) 

for 127 cores array with �=-1 charge and �=+1 charge. 
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The same analyses are also repeated for a negative nonlinearity of n2I0=-0.0001 and 

∆n=0.005. The propagated optical vortex field in this nonlinear medium is shown in 

Figure 32 at Z=8 for an array of 61 cores in hexagonal arrangement with R=0.4, D=0.2, a 

resolution of N=1000 and transverse and longitudinal calculation steps of ∆=0.02 and 

∆Z=0.01 respectively. Figure 32(b) is n(X,Y). 

Figure 32(a) is a magnified image of the optical intensity that demonstrates spots of 

light in some cores. As expected, the optical field is coupled among cores as it propagates 

because the cores are very close to each other. The phase of the vortex field with charges 

of +1 or -1 is also shown in Figure 32(c). 

As stated before, the topological charge should be always conserved when new 

optical vortices are formed and then annihilated in pairs with opposing charges. In this 

case, conservation is confirmed as 7*(+1)+6*(-1)=+1 where there are 7 vortices with +1 

charge and 6 vortices with -1 charge. 

Figure 32(d) shows the interferogram of the vortex beam with a plane wave 

reference at π/4 with respect to the X axis. The dislocation points of new optical vortices 

are found at comparable locations to that shown in Figure 32(c). 

In addition, Figure 33 shows the propagated optical vortex field at Z=8 for 127 cores 

array with R=0.4, D=0.2, a resolution of N=1000 with ∆=0.016 and ∆Z=0.005. Figure 

33(b) shows n(X,Y) and Figure 33(a) is a magnified image of the optical field intensity 

with the spots of light spread in more near cores compared to the case shown in Figure 

32(b). The phase of the field from –π to π is also shown as a magnified image in Figure 

33(c) with new pairs of vortices around the vortex at the origin which confirm the 

conservation of charge. 



69 

 

In addition, Figure 33(d) shows the interferogram with a plane wave reference at π/4 

with respect to the X axis that shows the points of dislocations for each new vortex. 

 

Table 8 New vortices at various Z’s for R=0.4 and D=0.2 (polarities are in parentheses). 

Z 37 cores 61 cores 91 cores 127 cores 

0.0 1(+1) 1(+1) 1(+1) 1(+1) 

1.0 9(+5,-4) 11(+6,-5) 17(+9,-8) 23(+12,-11) 

2.0 13(+7,-6) 23(+12,-11) 37(+19,-18) 43(+22,-21) 

3.0 15(+8,-7) 25(+13,-12) 35(+18,-17) 41(+21,-20) 

4.0 15(+8,-7) 25(+13,-12) 37(+19,-18) 41(+21,-20) 

5.0 27(+14,-13) 33(+17,-16) 41(+21,-20) 51(+26,-25) 

6.0 23(+12,-11) 31(+16,-15) 39(+20,-19) 51(+26,-25) 

7.0 23(+12,-11) 33(+17,-16) 37(+19,-18) 53(+27,-26) 

8.0 25(+13,-12) 37(+19,-18) 49(+25,-24) 55(+28,-27) 

9.0 27(+14,-13) 37(+19,-18) 49(+25,-24) 55(+28,-27) 

10.0 31(+16,-15) 39(+20,-16) 51(+26,-25) 59(+30,-29) 

11.0 29(+15,-14) 43(+22,-21) 51(+26,-25) 59(+30,-29) 

12.0 33(+17,-16) 39(+20,-19) 49(+25,-24) 59(+30,-29) 

13.0 39(+20,-16) 43(+22,-21) 57(+29,-28) 65(+33,-32) 

14.0 39(+20,-16) 49(+25,-24) 61(+31,-30) 71(+36,-35) 

15.0 47(+24,-23) 55(+28,-27) 61(+31,-30) 73(+37,-36) 

16.0 47(+24,-23) 55(+28,-27) 67(+34,-33) 75(+38,-37) 

17.0 49(+25,-24) 61(+31,-30) 73(+37,-36) 77(+39,-38) 

18.0 53(+27,-26) 61(+31,-30) 73(+37,-36) 81(+41,-40) 

19.0 57(+29,-28) 69(+35,-34) 77(+39,-38) 93(+47,-46) 

20.0 63(+32,-31) 71(+36,-35) 91(+46,-45) 97(+49,-48) 

 

As before, the method for generation of Figures 32 and 33 is used to examine the 

creation of new vortices with respect to Z when the number of cores, core radius R and 

distance D are modified. Several results are listed in Table 8 for Z from 0.0 to 20.0 when 

the number of cores is 37, 61, 91 and 127 respectively and at R=0.4 and D=0.2. Polarities 

(both + or -) of new vortices are also recorded in Table 8 to demonstrate and verify the 

conservation of charge. 
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As shown in Figure 33, the creation of new vortices is highly dynamic with respect 

to Z and the number of cores. Propagating further, vortices are formed proportional to the 

number of cores. As in former cases, new vortices could not survive continually and 

might vanish while other new vortices are generated in other sites. 

 

 

Figure 34 vortex density with respect to Z for different number of cores for ncore=1.5, 

ncladding=1.495, R=0.4 and D=0.2. 

 

As shown in Table 8, the longitudinal distance at Z=8.0 illustrates the trend for the 

number of new vortices as the number of cores is changed. Core radius also have an 

effect on the number of generated vortices as listed in Table 9 and presented as vortex 

density in Figure 35 for various R at Z=8.0 and D=0.2 with the same number of cores. 

Figure 35 confirms a tendency of the increase in the number of vortices (or vortex 

density) as the core radius increases. 

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 4.00 8.00 12.00 16.00 20.00

V
o

rt
e

x 
d

e
n

si
ty

×
1

0
1

0
(m

-2
)

Normalized longitudenal distanace Z

37 cores

61 cores

91 cores

127 cores



71 

 

Table 9 New vortices at various R’s for Z=8.0 and D=0.2 (polarities are in parentheses). 

R 37 cores 61 cores 91 cores 127 cores 

0.2 21(+11,-10) 31(+16,-15) 41(+21,-20) 51(+26,-25) 

0.3 23(+12,-11) 33(+17,-16) 45(+23,-22) 53(+27,-26) 

0.4 25(+13,-12) 37(+19,-18) 49(+25,-24) 55(+28,-27) 

 

 

Figure 35 Vortex density with respect to R for different number of cores for ncore=1.5, 

ncladding=1.495, Z=8.0 and D=0.2. 

 

Table 10 New vortices at various D’s for Z=8.0 and R=0.4 (polarities are in parentheses). 

D 37 cores 61 cores 91 cores 127 cores 

0.2 25(+13,-12) 37(+19,-18) 49(+25,-24) 55(+28,-27) 

0.3 23(+12,-11) 33(+17,-16) 45(+23,-22) 53(+27,-26) 

0.4 21(+11,-10) 31(+16,-15) 41(+21,-20) 51(+26,-25) 

 

In addition, variation of the distance between cores could affect the number of new 

vortices as listed in Table 10 and presented as vortex density in Figure 36 for various D 

for R=0.4 and Z=8.0. Figure 36 confirms the tendency of the decrease in the number of 

vortices as the distance between cores increases. 
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Figure 36 Vortex density with respect to D for different number of cores for ncore=1.5, 

ncladding=1.495, Z=8.0 and R=0.4. 
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propagation can generate local phase change around some points of zero intensity 

resulting in the creation of new vortices. Since the optical coupling among the cores is 

very dynamic with many variations along the direction of propagation, the locations of 

points of zero intensity are also changed accordingly. Any further effects of the phase 

rotation around the new locations of the zero intensity points will generate new vortices 

at new locations. On that basis, previously appearing vortices are vanished as a result of 

these modifications and vortices are usually generated at the core boundaries. 

The behavior of the optical vortex propagation in a nonlinear array shown in Figure 

38 is found to be similar to Figure 37 for a positive nonlinearity of n2I0=0.0001 and 

∆n=0.005. Similarities are explained before based on Figures 29 and 34 that demonstrate 

the unstable trend for the formation of new vortices. Unstable means that new vortices 

tend to change or collapse continually as the original optical vortex field remains at the 

center. Changes in the number of new vortices and their locations in the transverse plane 

have been observed. By contrast, the original vortex, as shown in Figures 37 and 38, 

keeps its location and charge as it propagates in the optical array. Variations are obvious 

in the surroundings with changes in newly formed vortices locations while the total 

charge is conserved. 

The sequence of images shown in Figures 39 and 40 are for an off-center vortex 

started at X=Y=1.0 for 127 cores with R=0.4 and D=0.2. The vortex is actually located at 

the next core with ncore=1.5. Computations are performed for a beam width of w0=5µm 

and a wavelength of λ=1.5µm for comparisons to Figures 37 and 38. Figure 39 illustrates 

the intensity and phase sequences of images for the vortex propagation in the linear array 

that indicates continuous spawning of new vortices. 
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Figure 37 Image sequences for the creation of vortices in a 127 linear cores for ncore=1.5, 

ncladding=1.495, Z=10, R=0.4 and D=0.2. 
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 Intensity Sequence, X:-10 to 10, Y:-10 to 10 Phase Sequence, X:-10 to 10, Y:-10 to 10 
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Figure 38 Image sequences for the creation of vortices in 127 non-linear cores for ncore=1.5, 

ncladding=1.495, Z=10, R=0.4 and D=0.2. 
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 Intensity Sequence, X:-10 to 10, Y:-10 to 10 Phase Sequence, X:-10 to 10, Y:-10 to 10 
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Figure 39 Image sequences for a 1.0 off-center vortex in 127 linear cores for ncore=1.5, 

ncladding=1.495, Z=10, R=0.4 and D=0.2. 
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 Intensity Sequence, X:-10 to 10, Y:-10 to 10 Phase Sequence, X:-10 to 10, Y:-10 to 10 
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Figure 40 Image sequences for a 1.0 off-center vortex in 127 non-linear cores for ncore=1.5, 

ncladding=1.495, Z=10, R=0.4 and D=0.2. 
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The off-set vortex has returned its position to the central core due to field coupling 

among the cores but keeps the same charge. Additional new vortices are also generated 

around the original vortex as it relocates. Similar results are noticed in Figure 40 for the 

nonlinear array with a positive nonlinearity of n2I0=0.0001 and ∆n=0.005. 

As a vortex propagates in the waveguide, points of zero intensity are first generated 

due to optical field coupling among the cores. The spiral influences of the original vortex 

phase and its rotation property may create additional new vortices at those points. All 

vortices, including the original one, exhibit constant change in their behavior on the 

transverse plane where their positions vary repeatedly in X and Y coordinates. 

In both Figures 39 and 40, the formation of new vortices is noticed at Z=7.5 under 

the influences of the phase and the structure modulation. Intensity and phase changes are 

only observed inside the array as a consequence of the variations of the spatial frequency 

due to ∆n=0.005. More new vortices are produced at Z=10, 15 and 20 respectively. The 

intensity of light is not symmetric with respect to the array structure as shown in the 

intensity image sequence of Figures 39 and 40. This situation is enhanced by repeated 

internal reflections among the cores in addition to coupling and results in a bouncy vortex 

unlike the case shown in Figures 37 and 38 above. 

More investigations on the off-center vortex field are presented in Figures 41, 42 and 

43 for X=Y=0.5 and Figures 44, 45 and 46 for X=Y=0.3 respectively for w0=5µm and 

λ=1.5µm. Linear propagation in an array with R=0.4 and D=0.2 where the vortex is first 

located between cores at X=Y=0.5 is shown as image sequences in Figure 41 for Z=1, 5, 

7.5, 15 and 20. The optical vortex started to couple to the central core near Z=7.5 and 

new vortices began to form around it at longer distances. 
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 Intensity Sequence, X:-10 to 10, Y:-10 to 10 Phase Sequence, X:-10 to 10, Y:-10 to 10 

Z=1.0 

  

Z=5.0 

  

Z=7.5 

  

Z=10.0 

  

Z=15.0 

  

Z=20.0 

  

Figure 41 Image sequences for a 0.5 off-center vortex in 127 linear cores for ncore=1.5, 

ncladding=1.495, Z=10, R=0.4 and D=0.2. 

1 1 
Original 

vortex 

2 2 

3 

4 

3 

New 

vortices 

4 

5 
5 

6 6 

Original vortex 

in a different 

position 

 



80 

 

 Intensity Sequence, X:-10 to 10, Y:-10 to 10 Phase Sequence, X:-10 to 10, Y:-10 to 10 
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Figure 42 Image sequences for a 0.5 off-center vortex in positive 127 non-linear cores for 

ncore=1.5, ncladding=1.495, Z=10, R=0.4 and D=0.2. 
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 Intensity Sequence, X:-10 to 10, Y:-10 to 10 Phase Sequence, X:-10 to 10, Y:-10 to 10 
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Figure 43 Image sequences for a 0.5 off-center vortex in negative 127 non-linear cores for 

ncore=1.5, ncladding=1.495, Z=10, R=0.4 and D=0.2. 
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 Intensity Sequence, X:-10 to 10, Y:-10 to 10 Phase Sequence, X:-10 to 10, Y:-10 to 10 
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Figure 44 Image sequences for a 0.3 off-center vortex in 127 linear cores for ncore=1.5, 

ncladding=1.495, Z=10, R=0.4 and D=0.2. 
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 Intensity Sequence, X:-10 to 10, Y:-10 to 10 Phase Sequence, X:-10 to 10, Y:-10 to 10 
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Figure 45 Image sequences for a 0.3 off-center vortex in positive 127 non-linear cores for 

ncore=1.5, ncladding=1.495, Z=10, R=0.4 and D=0.2. 
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 Intensity Sequence, X:-10 to 10, Y:-10 to 10 Phase Sequence, X:-10 to 10, Y:-10 to 10 
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Figure 46 Image sequences for a 0.3 off-center vortex in negative 127 non-linear cores for 

ncore=1.5, ncladding=1.495, Z=10, R=0.4 and D=0.2. 
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The propagation of a vortex beam in a nonlinear array is shown in Figures 42 and 43 

for n2I0=0.0001 and n2I0=-0.0001 respectively. Results similar to those of the linear array 

in Figure 41, however, are observed and new vortices are created as Z increases. 

The situation where the vortex field is off-centered by X=Y=0.3 is shown in Figures 

44, 45 and 46. The vortex is initially inside the central core but is shifted slightly from its 

central point. As illustrated in these Figures, the vortex re-positions itself to the center of 

the central core at certain Z for both linear and nonlinear cases. As the propagation 

distance increases, the original vortex does not change its location with respect to the 

array structure. New vortices are created in the same process as discussed earlier where 

points of zero intensity are first formed due to light coupling and then the phase rotation 

interacts to generate vortices at these locations. 

As discussed earlier, when the original vortex field starts inside the central core, it 

continues to propagate inside that core. In spite of that, new vortices are dynamically 

generated in pairs away from the central core at different locations near core boundaries 

on the transverse plane. 

In addition, when the vortex field starts in a different core other than the central one, 

it never couples to the central core but keeps changing its location inside other cores as it 

propagates in the optical array. A critical starting point could be at the exact boundary of 

the central core. Figures 47 and 48 demonstrate the propagation and coupling dynamics 

of an optical vortex when it is first positioned at the central core boundary for a linear and 

nonlinear array respectively for w0=5µm and λ=1.5µm. 
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 Intensity Sequence, X:-10 to 10, Y:-10 to 10 Phase Sequence, X:-10 to 10, Y:-10 to 10 
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Figure 47 Image sequences for a vortex at the central core boundary in 127 linear cores for 

ncore=1.5, ncladding=1.495, Z=10, R=0.4 and D=0.2. 
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 Intensity Sequence, X:-10 to 10, Y:-10 to 10 Phase Sequence, X:-10 to 10, Y:-10 to 10 
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Figure 48 Image sequences for a vortex at the central core boundary in 127 non-linear cores for 

ncore=1.5, ncladding=1.495, Z=10, R=0.4 and D=0.2. 
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The image sequence shown in Figure 47 is from a simulation for a linear array of 

127 cores in hexagonal arrangement with R=0.4 and D=0.2. Both the field intensity and 

the phase are shown at several Z points where the most important changes of the optical 

vortex are revealed. Intensity images exhibit the coupling of the propagating field among 

cores and display several points of zero intensity on the transverse plane. The phase 

images illustrate the coupling of the original vortex to the central core where it continues 

in that location without further changes. New vortices are also observed around the 

original one with repeated variations in their number and location. 

In the linear array shown in Figure 47, the vortex started to couple to the central core 

at Z=8.5, whereas, it started to couple at Z=12.0 as shown in Figure 48 for the nonlinear 

array. The nonlinearity factor of the array could have a delaying effect on this type of 

vortex field coupling. 

 

5.5     Statistical analysis 

Fujikura image fiber is an optical waveguide containing a bundle array of several cores in 

a hexagonal arrangement [85]. The refractive index of each core and the refractive index 

of the cladding are ncore=1.5 and ncladding=1.446 respectively. The radius of each core is 

r=1.45µm and the distance between cores is d=1.1µm or R=0.29 and D=0.22 respectively 

with normalization to w0=5µm. 

For statistical analysis, the radius of the cores is assumed to have a random change 

of ±10% as r±0.1r but maintain the same distance. The simulation code is run 100 times 

for each step in Z and the vortex density is then found for each run. The vortex density is 

defined as the number of vortices per fiber array area. The mean of the vortex density is 
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calculated and plotted versus Z with the standard deviation as error bars. 

 

                         

Figure 49 Intensity (a) and phase (b) in a linear array of 127 cores for ncore=1.5, ncladding=1.446, 

Z=10, R=0.29 and D=0.22. 

 

                         

Figure 50 Intensity (a) and phase (b) in a nonlinear array of 127 cores for ncore=1.5, ncladding=1.446, 

Z=10, R=0.29 and D=0.22. 

 

Figure 49 shows the intensity and phase for a vortex at the center (0,0) and at Z=10 

under a linear regime. Images are for a fiber array of 127 cores and a vortex beam with 

w0=5µm and λ=1.5µm and the radius of the cores are r±0.1r randomly. The propagation 

in a nonlinear array is shown in Figure 50 for n2I0=0.0001 with the same parameters as in 

Figure 49. 
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The computational area as shown from Figures 49 and 50 is 196��
� = 4.9×10

-9
m

2
 or 

14×14=196 normalized and �� = ���
� �⁄ = 5.236×10

-5
m = 52.36µm. In addition, the 

calculated mean is	̅ = ∑ 	�

��� �⁄ , the variance is �� = ∑ (	� − 	̅)


��� � − 1⁄  and s is the 

standard deviation where n is the number of samples. 

 

 

Figure 51 Statistical results of vortex density with respect to propagation distance Z for ncore=1.5, 

ncladding=1.446, R=0.29 and D=0.22. 

 

Statistical analysis results are shown in Figure 51 as the mean of the linear vortex 

density vd,l and nonlinear vortex density vd,nl in number per meters squared (m
-2

) versus 

propagation distance z in meters (m). Linear and nonlinear results are shown with the 

standard deviation as error bars for number of samples n=100. Figure 51 indicates a 

continuous increase in vortex density with propagation distance. Propagation in a 

nonlinear array shows a little more vortex density with respect to distance compared to 

the linear array. 
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Linear regression analysis shows a positive slope with an increasing mean vortex 

density with propagation distance for a distance larger than 10
-4

m. That is expressed as 

([vd,l]z=0.057×10
14

z+0.364×10
10

) and ([vd,nl]z=0.057×10
14

z+0.277×10
10

) where [vd,l]z and 

[vd,nl]z are in m
-2

 and z is in meters. 

 

 

Figure 52 Statistical results of vortex density with saturation values for ncore=1.5, ncladding=1.446, 

R=0.29 and D=0.22. 

 

Table 11 Saturation data. 

z×10
-4

(m) 300 400 500 600  

vd,l×10
10

(m
-2

) 24.7 26.5 26.4 24.7 Average 25.575 

vd,nl×10
10

(m
-2

) 24.9 26.3 26.2 24.6 Average 25.5 

 

As each vortex occupies a certain amount of space on the transverse plane, there 

should be an upper limit on the vortex number. The maximum number of vortices is 

approximately the total area of the transverse plane divided by the vortex area. For the 

case of Figure 51, the vortex radius size ranges from 0.3 to 0.7 (full width half maximum 
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of 0.6 to 1.4) normalized to the beam width w0=5µm. The total area is almost 14
2
 as 

shown in Figures 49 and 50 above. Thus, the maximum number of vortices ranges from 

14
2
/0.7

2
~400 to 14

2
/0.3

2
~2177. As a result, the maximum mean vortex density ranges 

from 8.16×10
10

m
-2

 to 4.4×10
11

m
-2

 which is larger than the values shown in Figure 51. To 

reach these densities, z ranges from 0.0137m to 0.0772m according to the linear 

regression on page 91. Due to the huge number of steps for reaching this z, we limit the 

statistical analysis shown in Figure 52 to a smaller number of samples n=5 and find that 

the mean vortex density at saturation is approximately 25.0×10
10

m
-2

 for linear and 

nonlinear arrays when z>0.035m. The mean vortex density increases with respect to the 

propagation distance with almost the same slope shown in Figure 51 but then reaches its 

saturation between 400×10
-4

m and 500×10
-4

m as in Figure 52. The statistical results 

shown in Figures 51 and 52 are in acceptable agreement. Saturation data are listed in 

Table 11 where values decrease at some distance due to the annihilation of vortex pairs. 

 

 

Figure 53 Statistical vortex density vs. radius for ncore=1.5, ncladding=1.446, Z=10 and D=0.22±10%. 
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Figure 54 Statistical vortex density vs. distance for ncore=1.5, ncladding=1.446, Z=10 and 

R=0.29±10%. 

 

Figure 53 shows the statistical analysis results for the mean vortex density versus 

core radius when the distance between the cores randomly changes by ±10%. Linear 

vortex density vd,l and nonlinear vortex density vd,nl in number per meters squared (m
-2

) 

are plotted versus core radius r in meters (m) for 127 cores. 

Linear regression analysis shows a positive slope, i.e. mean vortex density increasing 

with core radius. That is expressed as ([vd,l]r=0.158×10
16

r+0.218×10
10

) and 

([vd,nl]r=0.144×10
16

r+0.311×10
10

) where [vd,l]r and [vd,nl]r are in m
-2

 and r is in meters. As 

new vortices are formed at the core boundaries, Equations for [vd,l]r and [vd,nl]r can be 

expressed as functions of the core perimeter as ([vd,l]r=0.025×10
16

[2πr]+0.218×10
10

) and 

([vd,nl]r=0.023×10
16

[2πr]+0.311×10
10

) so that the dependence of the number of vortices 

on the boundaries is represented explicitly. Since cores should not touch each other, the 

former two Equations are only possible when 0<r<d/2. 
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Similarly, Figure 54 shows the statistical analysis results for the mean vortex density 

versus distance among cores when the core radius randomly changes by ±10%. In 

addition, linear vortex density vd,l and nonlinear vortex density vd,nl in number per meters 

squared (m
-2

) are plotted versus distance among cores d in meters (m) for 127 cores. 

The regression analysis shows a negative slope, i.e. mean vortex density decreasing 

with distance among cores. That is expressed as ([vd,l]d=-0.015×10
16

d+0.554×10
10

) and 

([vd,nl]d=-0.075×10
16

d+0.59×10
10

) where [vd,l]d and [vd,nl]d are in m
-2

 and d is in meters. 

 

 

Figure 55 n(X,Y) for 127 cores with cladding in air for ncore=1.5, ncladding=1.446, R=0.4 and D=0.2. 

 

For comparison, the data in Figures 24 and 29 are re-evaluated for 127 cores with the 

same parameters as w0=5.0µm, wavelength of λ=1.5µm, normalized radius of R=0.4 and 

normalized distance of D=0.2. The simulation results are re-calculated according to the 

arrangement re-shown in Figure 55 when the 127 cores with ncore=1.5 and cladding with 

ncladding=1.446 are surrounded by are air with n0=1.0. 

Figure 56 shows the vortex density calculated from Figures 24 and 29 above. The 

curves pattern is different but still show an increasing tendency with respect to the 
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propagation distance. The vortex densities are higher for R=0.4 compared to those of 

R=0.29 which is in good agreements with the results in Figure 53. 

 

 

Figure 56 Comparison of results with respect to propagation distance. 
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Chapter 6     Implementation and Application 

 

The optical vortex is characterized by a helical wavefront and a circular dark spot with a 

point of zero intensity due to phase singularity. These features construct a robust optical 

structure that demonstrates particle like characteristics. The harmonic azimuthal phase 

ramp is not affected by light diffraction and forms an inherent property in any optical 

vortex. The point of zero intensity and the phase singularity are therefore employed to 

find the location of any optical vortex. Here, we discuss the potential implementation for 

experiments that can the count number of vortices based on our presentations in Chapters 

4 and 5. Finally, we consider possible applications of vortex counting in a fiber array. 

 

6.1 Implementation 

Work completed by simulation in Chapters 4 and 5 can be investigated experimentally to 

find out more about optical vortex dynamics. Figure 57 shows a possible experimental 

setup using a Gaussian laser beam emitted by a He-Ne source with a wavelength λ= 

632.8 nm. The optical vortex can be created using a computer generated hologram (CGH) 

placed at a desired distance from the source. The entire optical field can then be adjusted 

to a suitable beam width using defocusing lens L1 and focusing lens L2 at distance d 

before being split by a beam splitter BS1. The initial beam is divided into two portions 

travelling in different paths. In Figure 57, the portion with field of E0 propagates along 

the reference path while another portion moves along the object path and is coupled to 

the waveguide. 
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The fiber being tested could be the array bundle fiber such as the Fujikura image 

fiber discussed in Chapter 5. Both fields can then be combined again using BS2 at an 

angle θ to facilitate interference and display dislocation points. Lens L3 can be used for 

focusing the final field to a charged coupled device (CCD) camera for imaging of the 

intensity profile and the interferogram. 

Figure 57 Possible experimental setup. 

 

As shown in Figure 57, mirrors M1, M2, M3 and M4 are used to guide the path of 

the fields in the laboratory. 

 

6.2 Application 

Based on the previous statistical analysis discussed in Chapter 5, the mean vortex density 

varies with respect to the propagation distance and the core radius. The changes of the 

vortex density with respect to the core radius can be employed for sensing purposes. The 

radius of cores may differ in response to temperature changes or tension which will vary 
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the vortex density accordingly. 

The Shack-Hartmann wavefront sensor can be used to detect the number of vortices 

and then the vortex density [38-40]. Since it is integrated with a CCD camera, it replaces 

the CCD camera in the setup shown in Figure 57. The technique is fundamentally based 

on measuring the phase slopes of the incident wavefront. As shown in Figure 58, this 

type of wavefront sensor uses a lenslet array to sample the wavefront of the optical field. 

The focal points of the lenslet array may locate on, before or after the back focal plane of 

the lenslet array due to the shape of the incident wavefront. The focal points may also 

have lateral or longitudinal shifts on the focal plane due to the slope of the wavefront. 

The slope for each of these samples is defined by the location of the focal point formed 

by each lens of the array in its back focal plane. To simplify the analysis, the lenslet array 

is assumed to be a square array of lenslets each with a squared sub-aperture. The CCD 

camera is placed in the back focal plane of the lenslet array. A small sub-array of this 

detector array of the camera is dedicated to each lenslet of the lenslet array. This subarray 

is used to determine the location of the focal point produced by each lenslet [38-40]. 

 

 

Figure 58 Vortex detection by a Shack-Hartmann wavefront sensor [48]. 
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The average phase slope for each sub-aperture is given by the location of the focal 

point between the phase tilt of the incident wave in front of a lens and the location of the 

resulting focal point behind it. The overall structure of the Shack-Hartmann wavefront 

sensor is shown in Figure 58 for a vortex incident field [38-40]. 

 

 

Figure 59 Circulation of phase slopes [40]. 

 

The pixels that specify the existence of a phase singularity can be determined by the 

circulation process illustrated in Figure 59 with S as the phase slope [40]. These pixels 

can be easily counted in order to calculate the vortex density from the image captured by 

the CCD camera in the setup of Figure 57. As shown in Figure 59, the samples used in 

the circulation process are denoted by the points in the centers of the sub-apertures. The 

circulation represents a line integral performed over the four sub-apertures along a 

contour denoted by the dashed lines. The result of this circulation process is a distribution 

of the topological charges of the optical vortices. It is positive (negative) at the locations 

of optical vortices with positive (negative) topological charges and it should be zero 

where there are no vortices [38-40]. 

The complete setup previously shown in Figure 57 with the Shack-Hartmann 
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wavefront sensor of Figure 58 can be used as a temperature or tension sensor. The 

sensitivity for change in vortex density with respect to core radius r is the slope of the 

regression line in Section 5.4. As the slope soars, the sensitivity increases accordingly 

indicating that higher vortex density is found when the core radius is increased. 

 

                     

 

             
 

 

Figure 60 Intensity (a) and phase (b) in 127 cores at Z=10 for ncore=1.5, ncladding=1.446, R=0.29 and 

D=0.22, sample of the intensity (c), sample of the phase with �=-1 charge and �=+1 charge (d). 

 

For the fiber array arrangement shown in Figure 55, the intensity and phase of the 

vortex beam are shown in Figure 60(a) and Figure 60(b) respectively. These images are 

generated for λ=1.5µm, w0=5µm, R=0.29 and D=0.22 for ∆=0.02 and Z=10. The vortex 

beam then propagates to a beam magnifier and collimator and then to a lenslet array. A 

good commercially available Shack-Hartmann wavefront sensor (SHWS) can be found 

from THORLABS with a 1.3 Megapixel resolution CCD and a pixel size of 
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Fiber array 

Magnifier & 

collimator SHWS 

Free space 

4.65µm×4.65µm [86]. The microlens array in this sensor has an effective focal length of 

3.7mm and 39×31 lenses and a size of 1.0cm×1.0cm [86]. The setup for the SHWS is 

shown in Figure 61. The optical field out of the fiber array propagates in free space and 

then is optically magnified and collimated onto the SHWS. 

Figure 61 Setup for the SHWS. 

 

Figure 60(b) shows the output phase for a 127 cores fiber array at Z=10 with several 

points of phase singularity. From Table 11, the average saturation vortex density is 

almost 25.5×10
10

m
-2

 with a vortex size of 9.0×10
-12

m
2
 for beam width w0=5µm. As 

shown in Figure 58, we need at least 9 lenses to detect an optical vortex with a lenslet and 

thus we need 9×25.5×10
10

×14
2
×w0

2
~11245 lenses. The required number of lenses is 

much larger than that of the THORLABS SHWS 39×31=1209 and thus the phase image 

in Figure 60(b) cannot be processed entirely. Hence, we used the beam magnifier and 

collimator to zoom into a smaller sample region of 4w0×4w0=4×10
-10

m
2
 as shown in 

Figure 60(c) and Figure 60(d) for our analysis.  In this smaller area we need 

9×25.5×10
10

×16×w0
2
~918 lenses and thus it is possible to accurately detect phase 

singularities and find circulation fields. Moreover, the smaller area is selected in that part 

of the image shown in Figure 60(a) and Figure 60(b) in order to avoid high intensities 

that may saturate the CCD camera in the SHWS and prevent the setup from detecting the 
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number of vortices. Based on the size of the lenslet and the size of the selected area, the 

magnifier should enlarge the sample region by a factor of 4×5.0µm/0.01m=500. 

Figure 62 Circulation field flow chart. 

 

As discussed earlier, the SHWS is a convertor that generates intensity images of 

light in terms of the inputted field phase. The SHWS considered here is assumed to 

generate an intensity image similar to that of the phase image shown in Figure 60(d). The 

image out of the SHWS as from Figure 61 can be processed using the simulation 
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algorithm shown in the flow chart of Figure 62 for the circulation field computation. In 

each sub-aperture of the wavefront sensor of Figure 59, the maximum point of the field 

intensity is calculated and its location is determined. The distance is then calculated 

between the location of the maximum point of the field intensity and the middle point of 

the sub-aperture. Also, the direction of that distance is found proportional to the middle 

point of the sub-aperture. If the calculated distances and their directions form a 

circulation process, these pixels specify the existence of a phase singularity with +1 for 

clockwise circulation and -1 for counter clockwise circulation. Otherwise, there are no 

circulations if the phase singularity is zero which means that there are no vortices. 

The numerically simulated circulation field in Figure 63 has the same number of 

vortices and vortex locations as those of Figure 60(d). Vortex pairs are shown as white 

and black pixels with a polarity of +1 and -1 respectively. 

 

 

 

Figure 63 Circulation field for a magnified version of Figure 60(d) 

with �=-1 charge and �=+1 charge. 

 

Assuming that the fiber array is composed of pure silica, the thermal expansion 

coefficient is about α=4.1×10
-7

m/
o
C at 20

o
C [87]. We also assume the fiber array to be 

r=1.45µm and d=1.1µm at 20
o
C. When this fiber array is used as a temperature sensor, 
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the change in temperature ∆T affect the fiber array cross section area and induces change 

in the core radius as ∆r=α∆T as well as a change in the distance as ∆d=α∆T. For 

∆T=1
o
C, ∆r=4.1×10

-7
m and ∆d=4.1×10

-7
m. 

Let’s assume that the linear vortex density is vd and that it changes as a function of 

radius core r and distance between the cores d as vd(r,d). Using total derivatives [88], the 

change in the number of vortices can be expressed as: 

d
d

v
r

r

v
drv dd

d ∆
∂

∂
+∆

∂

∂
=∆ ),(                                                      (6.1) 

where ∂vd/∂r and ∂vd/∂d are the slopes in Figures 53 and 54 found by regression analysis 

as 0.158 �×��
��

����
 and -0.015 �×��

��

����
 approximately. Then, the change of vortex density in the 

ranges proposed in Figures 53 and 54 for only 1
o
C change in temperature is almost 

0.06×10
10

m
-2

 with changes in core radius having stronger effects. From Figures 53 and 

54, with nominal values of r=1.45×10
-6

m and d=1.1×10
-6

m, the tolerance in vortex 

density is ±0.029×10
10

m
-2

 with a vortex density of 0.46×10
10

m
-2

 and a percentage change 

of ~13.04%±6.3%. This estimate illustrates that the setup can detect 1
o
C temperature 

change although there is a random variation of ±10% in core radius. 

Therefore, possible changes in the surrounding temperature may thermally expand 

the fiber array. As a result, the core radius r and the distance between the cores d 

increase. Since the increase in vortex density induced by the increase of r is more than 

the decrease in vortex density induced by the increase of d, the net effect is an increase in 

the vortex density detected by the SHWS. In this way, an optical vortex initially 

propagating in a fiber array can be used as a sensor. 
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Chapter 7     Recommendations and Conclusions 

 

In this research, we employed BPM to investigate the propagation of an optical vortex in 

a fiber array. The Crank-Nicholson technique was used along with the BPM for the 

stability of numerical computations. The differential operators in the paraxial wave 

Equation were then discretized by the finite difference technique. In order to eliminate 

reflections of the propagating fields by the computational boundaries, the TBC technique 

was employed assuming a plane wave incident field with a constant of propagation 

calculated from a previous numerical step. 

In addition, optical vortices generated numerically using FORTRAN codes showed 

excellent agreement with those expressed analytically by Equations based on coupled 

mode theory. Our simulation program is tested for different types of optical fibers as well 

as fiber arrays. An optical fiber with an array of multiple cores in hexagonal arrangement 

was particularly tested for the propagation of an optical vortex using BPM. Numerical 

results for arrays of two cores are compared to the semi-analytical solutions using mode 

coupled theory. 

Calculations demonstrated satisfactory results which encouraged additional 

investigations for different core arrangements. The difference in the index of refraction 

among the cores and cladding was assumed to be very small in order to minimize the 

spatial frequency for that quantity. In addition, the radius of cores was supposedly 

relatively small with a small V number in such a way that only single mode is allowed to 

propagate in each core of the fiber array. 

The simulation was modified to work with matrices of different sizes. The results 
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were evaluated for a 250×250 matrix compared to other results from 500×500 and 

1000×1000 matrices. Higher matrix sizes generate better image resolution but may 

require more running time. Final image quality was almost acceptable but a matrix size of 

1000×1000 was selected for magnifying purposes. 

Following our basic definition of the optical vortex as a point of zero intensity with a 

phase change from –π to π around it, new vortices are traced by both points of dislocation 

and phase variations. Once the zero intensity point is located, the phase around that point 

and its polarity is tested for a relative change between –π and π or vice versa. In addition, 

dislocation points are detected by the interference of the propagating field and a plane 

wave reference by an angle of π/4 with respect to the x-axis. 

Statistical analysis was completed to estimate the vortex density versus propagation 

distance, core radius and distance between the cores in the fiber array. The simulation 

was run 100 times with a random increase and decrease of 10% of the core radius. The 

averages were then calculated with the standard deviations as error bars. 

The Shack-Hartmann wavefront sensor was investigated to detect phase singularities 

in the optical field. The generated circulation field used in this simulation was employed 

to create images that determine the number of vortices and their locations. 

 

7.1     Conclusions 

The finite difference beam propagation method (FD-BPM) is a robust approach to 

numerically deal with optical field propagations in waveguides. This numerical method 

was implemented successfully with the transparent boundary condition to reduce 

reflections from the computational boundaries. We showed the validity of this method for 
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the modeling of optical vortex propagation in optical fibers. In a triangular lattice fiber 

core array, it is possible to find the number of the zero intensity points and phase change 

in response to surrounding variations. 

In a linear and nonlinear triangular lattice core arrangement, the generation of new 

vortices is very dynamic with respect to the longitudinal distance and the number of cores 

in the fiber array. As the number of cores increases and the beam propagates at longer 

distances, additional optical vortices are created. Nevertheless, new vortices could not 

exist constantly and may possibly fade away while other new vortices are produced at 

different locations. 

In a linear triangular lattice of fiber array, the generation of new vortices is sensitive 

to the cores radius and the distance between these cores. The number of new vortices 

increases with the number of cores in the array lattice. 

In a nonlinear triangular lattice, the generation of new vortices is also found to be 

sensitive to the core radius or the distance between them. However, the number of new 

vortices tends to increase as the core radius increases and decrease as the distance 

between cores increases for a positive as well as negative nonlinear coefficient. 

New vortices are generated under the effects of the phase rotation around points of 

zero intensity. The intensity of the optical field on the transverse plane is strongly 

dependent on mode coupling between the array cores and shows great variations as the 

field propagates. On that basis, the generation pattern of the new vortices is unstable as 

they are continually formed with different numbers and locations along the array 

structure. 

The original vortex field is found to continue in its central location as it propagates 
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in the lattice. However, an off-centered field to another core may exhibit some changes in 

its original location as it propagates due to coupling and reflections between the cores. 

Simulations are presented mostly based on the vortex density rather than the number 

of vortices. This is the number of vortices per unit area which allows better calculation 

flexibility compared to the number of vortices. It is found that the vortex density 

increases with respect to the core radius and decreases as the distance between cores 

increases. As a consequence, this can be employed as a temperature or tension sensor 

with the use of the Shack-Hartmann wavefront sensor. 

In our statistical analysis, the vortex density is found to increase with propagation 

distance until saturation where the entire area of the fiber array is full of vortices. 

However, farther propagation of the optical field shows a decrease in the vortex density 

below the saturation level due to the annihilation process of the vortex pairs. Statistical 

analysis also shows an increase in the vortex density with respect to the core radius which 

further confirms that new vortices are generated at the core boundaries. Statistical results 

reveal that the vortex density decreases when cores are farther away from each other in 

the fiber array. 

The overall fiber array with cores in hexagonal arrangement can be used as a 

temperature sensor with an optical vortex as an initial field. The circulation field images 

generated by the Shack-Hartmann wavefront sensor greatly facilitate the use of the vortex 

density variations to gauge changes in temperature. 

 

7.2     Future work 

For comparison purposes, this research can be completed by employing different 
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analytical or numerical procedures such as Fourier analysis or Runge-Kutta methods. The 

final outcome can be assessed and judged against the methods employed in our work to 

find any discrepancies. Another research direction based on our works could be the use of 

the random, the periodic or the hexagonal fiber in data communications or in optical 

sensing. The intention is to develop a technique to modulate one or more parameters of 

the propagating optical vortex for carrying data with the highest possible signal to noise 

ratio. 

Comparable to the work completed in this research, a number of other fiber array 

parameters can be modified such as the index of refraction. A beneficial future study 

could be the employment of a higher order optical vortex in a similar triangular lattice 

array to the one investigated in our research. 

Potential applications in sensing could be further investigated with different types of 

wavefront sensors. Better accuracy and higher sensitivity are potential areas for future 

research of the Shack-Hartmann wavefront sensor. A sensor with a wider range could 

also be a topic of study. 
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Appendix A: Linear BPM Code 

c     =================== 

c     Muhammad A Mushref 

c     PhD research in BPM 

c     =================== 

c 

c      M=Matrix size (number of points in X),L=Number of steps in Z 

c      N=numbers of holes 

       parameter(M=1000,L=1100,NN=127) 

       integer ifield,intfield,res 

       real*8 dXY,dZ,X,Y,Z,w0,la,nh,th1,th2,th3,th4, 

     +        ma(1:M,1:M),ph(1:M,1:M),pi,d,centx,centy, 

     +        hx(1:NN),hy(1:NN),v1(1:NN),v2(1:NN),hr,n(1:M,1:M), 

     +        nnn(1:M,1:M),r(1:M,1:M),energy(1:L) 

       complex*16 mmm,AA,BB,CC,alph,gsn,vor,phiA(1:M,1:M), 

     +            phiN(1:M,1:M),phiNS(1:M,1:M),phiI(1:M,1:M), 

     +            BCS(1:M,1:M),BC(1:M,1:M),A(1:M,1:M), 

     +            b(1:M),c(1:M),cp(1:M),dp(1:M) 

       gsn(X,Y,Z,centx,centy)=(zexp(-((X-centx)**2+(Y-centy)**2) 

     +                        /(1.d0-(0.d0,1.d0)*Z))) 

     +                        /(1.d0-(0.d0,1.d0)*Z) 

       vor(X,Y,Z,w0,la,centx,centy)=(dsqrt((X-centx)**2+(Y-centy)**2)/ 

     +                              (1.d0+Z**2))*dexp(-((X-centx)**2+ 

     +                              (Y-centy)**2)/(1.d0+Z**2))*zexp 

     +                              (-(0.d0,1.d0)*((2.d0*Z*(pi*w0/la) 

     +                              **2)+(((X-centx)**2+(Y-centy)**2)/ 

     +                              (Z+1.d0/Z))+datan2(Y-centy,X-centx) 

     +                              -2.d0*datan(Z))) 

       pi=3.1415926535897932384626433832795 

c 

c 

       print*,'Number of points in X and Y',M 

       print*,'Number of steps in Z',L 

       print*,'Number of holes inside core',NN 

       print*,'Enter dXY' 

       read*,dXY 

       print*,'Enter dZ' 

       read*,dZ 

       print*,'Where is the center of the beam in X' 

       read*,centx 

       print*,'Where is the center of the beam in Y' 

       read*,centy 
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       print*,'Enter raduis of core' 

       read*,hr 

       print*,'Enter distance between cores' 

       read*,d 

       print*,'Enter refractive index of cores' 

       read*,nh 

       print*,'Enter beam width w0' 

       read*,w0 

       print*,'Enter wavelength' 

       read*,la 

       print*,'Enter incident angle from Z- to X-axis' 

       read*,th1 

       print*,'Enter incident angle from Z- to Y-axis' 

       read*,th2 

       print*,'Enter interference angle from Z- to X-axis' 

       read*,th3 

       print*,'Enter interference angle from Z- to Y-axis' 

       read*,th4 

       print*,'Enter integer resolution factor' 

       print*,'1 means write every single step to data files' 

       print*,'2 means write every second step to data files' 

       print*,'3 means write every third  step to data files' 

       print*,'and so on.....' 

       read*,res 

       open(unit=12,file='locations.dat',status='old') 

       do 10 i=1,NN 

          read(12,*),v1(i),v2(i) 

          hx(i)=((v1(i)+v2(i))*(2.d0*hr+d)*sqrt(3.d0)/2.d0)+dXY*M/2.d0 

          hy(i)=((-v1(i)+v2(i))*(2.d0*hr+d)/2.d0)+dXY*M/2.d0 

10     continue 

c 

       alph=(0.d0,1.d0)*dZ/(4.d0*dXY*dXY) 

       AA=1.d0-alph 

       BB=1.d0+alph 

       CC=alph/2.d0 

c 

       do 30 i=1,M 

          do 20 j=1,M 

             n(i,j)=1.d0 

20        continue 

30     continue 

c 

       do 80 ii=1,NN 

        do 50 i=1,M 
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         do 40 j=1,M 

           r(i,j)=dsqrt((i*dXY-hx(ii))**2+(j*dXY-hy(ii))**2) 

           nnn(i,j)=nh+int(min(r(i,j),1.9d0*hr)/hr)*(n(i,j)-nh) 

40       continue 

50      continue 

        do 70 i=1,M 

           do 60 j=1,M 

              n(i,j)=nnn(i,j) 

60         continue 

70      continue 

80     continue 

c 

       do 100 i=1,M 

          do 90 j=1,M 

             A(i,j)=zexp(-(0.d0,1.d0)*dZ*((n(i,j)**2)-1.d0) 

     +              *(pi*w0/la)**2) 

90        continue 

100    continue 

c 

110    print*,'what is the initial field?' 

       print*,'1 vortex   2 Gaussian' 

       read*,ifield 

       if(ifield.eq.1) then 

        do 130 i=1,M 

           do 120 j=1,M 

              phiA(i,j)=vor(i*dXY,j*dXY,0.d0,w0,la, 

     +                  centx+dXY/2.d0,centy+dXY/2.d0)* 

     +                  zexp((0.d0,1.d0)*(2.d0*pi*w0/la)*( 

     +                  dsin(th1)*(i*dXY-centx+dXY/2.d0)+ 

     +                  dsin(th2)*(j*dXY-centy+dXY/2.d0))) 

              phiN(i,j)=phiA(i,j) 

120        continue 

130     continue 

       elseif(ifield.eq.2) then 

        do 150 i=1,M 

           do 140 j=1,M 

              phiA(i,j)=gsn(i*dXY,j*dXY,0.d0,centx,centy)* 

     +                  zexp((0.d0,1.d0)*(2.d0*pi*w0/la)*( 

     +                  dsin(th1)*(i*dXY-centx)+ 

     +                  dsin(th2)*(j*dXY-centy))) 

              phiN(i,j)=phiA(i,j) 

140        continue 

150     continue 

       else 
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        goto 110 

       endif 

160    print*,'what is the interference field?' 

       print*,'1 plane   2 Gaussian' 

       read*,intfield 

       if(intfield.eq.1) then 

        do 180 i=1,M 

           do 170 j=1,M 

              phiI(i,j)=zexp(-(0.d0,1.d0)*1800.d0*( 

     +                  dsin(th3)*(i*dXY-centx)+ 

     +                  dsin(th4)*(j*dXY-centy))) 

170        continue 

180     continue 

       elseif(intfield.eq.2) then 

        do 200 i=1,M 

           do 190 j=1,M 

              phiI(i,j)=gsn(i*dXY,j*dXY,0.d0,centx,centy)* 

     +                  zexp(-(0.d0,1.d0)*30.d0*( 

     +                  dsin(th3)*(i*dXY-centx)+ 

     +                  dsin(th4)*(j*dXY-centy))) 

190        continue 

200     continue 

       else 

        goto 160 

       endif 

c  

       do 310 ie=1,L 

           do 210 i=1,M 

              BCS(i,1)=BB*phiN(i,1)-CC*phiN(i,2) 

210        continue 

           do 220 i=1,M 

              BCS(i,M)=BB*phiN(i,M)-CC*phiN(i,M-1) 

220        continue 

           do 240 i=1,M 

              do 230 j=2,M-1 

                 BCS(i,j)=BB*phiN(i,j)-CC*(phiN(i,j+1)+ 

     +                     phiN(i,j-1)) 

230           continue 

240        continue 

           call td1(AA,CC,M,BCS,phiNS) 

c 

c 

           do 250 j=1,M 

              BC(1,j)=(BB*phiNS(1,j)-CC*phiNS(2,j))*A(1,j) 
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250        continue 

           do 260 j=1,M 

              BC(M,j)=(BB*phiNS(M,j)-CC*phiNS(M-1,j))*A(M,j) 

260        continue 

           do 280 i=2,M-1 

              do 270 j=1,M 

                 BC(i,j)=(BB*phiNS(i,j)-CC*(phiNS(i+1,j)+ 

     +                    phiNS(i-1,j)))*A(i,j) 

270           continue 

280        continue 

           call td2(AA,CC,M,BC,phiN) 

           energy(ie)=0.d0 

           do 300 i=1,M 

              do 290 j=1,M 

                 energy(ie)=energy(ie)+abs(phiN(i,j))**2 

290           continue 

300        continue 

310    continue 

c 

       open(unit=1,file='initial_field_intensity.dat',status='new') 

       open(unit=2,file='initial_field_phase.dat',status='new') 

       open(unit=3,file='analytical_field_intensity_after_propagation_ 

     +      in_freespace.dat',status='new') 

       open(unit=4,file='analytical_field_phase_after_propagationd_in_ 

     +      freespace.dat',status='new') 

       open(unit=5,file='numerical_field_intensity_after_propagation_ 

     +      in_meduim.dat',status='new') 

       open(unit=6,file='numerical_field_phase_after_propagation_in_ 

     +      meduim.dat',status='new') 

       open(unit=7,file='numerical_field_after_propagation_in_meduim_ 

     +      real_part.dat',status='new') 

       open(unit=8,file='numerical_field_after_propagation_in_meduim_ 

     +      imaginary_part.dat',status='new') 

       open(unit=9,file='n(X,Y).dat',status='new') 

       open(unit=10,file='interference_intensity.dat',status='new') 

       open(unit=11,file='interference_phase.dat',status='new') 

       open(unit=12,file='energy.dat',status='new') 

1      format(f20.16,1x,f20.16,1x,f30.27) 

       if(ifield.eq.1) then 

         do 330 i=1,M,res 

            do 320 j=1,M,res 

               write(3,1) i*dXY,j*dXY,abs(vor(i*dXY,j*dXY,L*dZ,w0,la, 

     +                               centx+dXY/2.d0,centy+dXY/2.d0))**2 

               write(4,1) i*dXY,j*dXY,datan2(dimag(vor(i*dXY,j*dXY, 
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     +                                L*dZ,w0,la,centx+dXY/2.d0, 

     +                                centy+dXY/2.d0)),dreal(vor(i*dXY, 

     +                                j*dXY,L*dZ,w0,la,centx+dXY/2.d0, 

     +                                centy+dXY/2.d0))) 

320         continue 

         write(3,1) 

         write(4,1) 

330      continue 

       else 

         do 350 i=1,M,res 

            do 340 j=1,M,res 

               write(3,1) i*dXY,j*dXY,abs(gsn(i*dXY,j*dXY,L*dZ, 

     +                                centx,centy))**2 

               write(4,1) i*dXY,j*dXY,datan2(dimag(gsn(i*dXY,j*dXY, 

     +                                L*dZ,centx,centy)),dreal(gsn 

     +                                (i*dXY,j*dXY,L*dZ,centx,centy))) 

340         continue 

         write(3,1) 

         write(4,1) 

350      continue 

       endif 

       do 370 i=1,M,res 

          do 360 j=1,M,res 

             write(1,1) i*dXY,j*dXY,abs(phiA(i,j))**2 

             write(2,1) i*dXY,j*dXY,datan2(dimag(phiA(i,j)), 

     +                              dreal(phiA(i,j))) 

             write(5,1) i*dXY,j*dXY,abs(phiN(i,j))**2 

             write(6,1) i*dXY,j*dXY,datan2(dimag(phiN(i,j)), 

     +                              dreal(phiN(i,j))) 

             write(7,1) i*dXY,j*dXY,dreal(phiN(i,j)) 

             write(8,1) i*dXY,j*dXY,dimag(phiN(i,j)) 

             write(9,1) i*dXY,j*dXY,n(i,j) 

             write(10,1) i*dXY,j*dXY,abs(phiI(i,j)+phiN(i,j))**2 

             write(11,1) i*dXY,j*dXY,datan2(dimag(phiI(i,j)+ 

     +                               phiN(i,j)),dreal(phiI(i,j)+ 

     +                               phiN(i,j))) 

360       continue 

          write(1,1) 

          write(2,1) 

          write(5,1) 

          write(6,1) 

          write(7,1) 

          write(8,1) 

          write(9,1) 
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          write(10,1) 

          write(11,1) 

370    continue 

       do 380 i=1,L 

          write(12,*) i*dZ,energy(i)/M 

380    continue 

       end 

c 

c 

c 

c 

c 

       subroutine td1(AA,CC,M,BC,phi) 

       complex*16 mmm,AA,CC,phi(1:M,1:M),BC(1:M,1:M), 

     +            b(1:M),c(1:M),cp(1:M),dp(1:M) 

       do 10 i=1,M 

          b(i)=AA 

10     continue 

       do 20 i=1,M-1 

         c(i)=CC 

20     continue 

       c(M)=0.d0 

       cp(1)=c(1)/b(1) 

       do 50 jj=1,M 

          dp(1)=BC(1,jj)/b(1) 

          do 30 i=2,M 

             mmm=b(i)-cp(i-1)*CC 

             cp(i)=c(i)/mmm 

             dp(i)=(BC(i,jj)-dp(i-1)*CC)/mmm 

30        continue 

          phi(M,jj)=dp(M) 

          do 40 i=M-1,1,-1 

             phi(i,jj)=dp(i)-cp(i)*phi(i+1,jj) 

40        continue 

50     continue 

       return 

       end 

c 

c 

       subroutine td2(AA,CC,M,BC,phi) 

       complex*16 mmm,AA,CC,phi(1:M,1:M),BC(1:M,1:M), 

     +            b(1:M),c(1:M),cp(1:M),dp(1:M) 

       do 10 i=1,M 

          b(i)=AA 
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10     continue 

       do 20 i=1,M-1 

         c(i)=CC 

20     continue 

       c(M)=0.d0 

       cp(1)=c(1)/b(1) 

       do 50 ij=1,M 

          dp(1)=BC(ij,1)/b(1) 

          do 30 i=2,M 

             mmm=b(i)-cp(i-1)*CC 

             cp(i)=c(i)/mmm 

             dp(i)=(BC(ij,i)-dp(i-1)*CC)/mmm 

30        continue 

          phi(ij,M)=dp(M) 

          do 40 i=M-1,1,-1 

             phi(ij,i)=dp(i)-cp(i)*phi(ij,i+1) 

40        continue 

50     continue 

       return 

       end 
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Appendix B: Nonlinear BPM Code 

c     =================== 

c     Muhammad A Mushref 

c     PhD research in BPM 

c     =================== 

c 

c      M=Matrix size (number of points in X),L=Number of steps in Z 

c      N=numbers of holes 

       parameter(M=1000,L=800,NN=127) 

       integer ifield,intfield,res 

       real*8 dXY,dZ,X,Y,Z,w0,la,nh,n2,th1,th2,th3,th4, 

     +        ma(1:M,1:M),ph(1:M,1:M),pi,d,centx,centy, 

     +        hx(1:NN),hy(1:NN),v1(1:NN),v2(1:NN),hr,n(1:M,1:M), 

     +        nnn(1:M,1:M),r(1:M,1:M),energy(1:L) 

       complex*16 mmm,AA,BB,CC,alph,gsn,vor,phiA(1:M,1:M), 

     +            phiN(1:M,1:M),phiNS(1:M,1:M),phiI(1:M,1:M), 

     +            BCS(1:M,1:M),BC(1:M,1:M),A(1:M,1:M),AAA(1:M,1:M), 

     +            b(1:M),c(1:M),cp(1:M),dp(1:M) 

       gsn(X,Y,Z,centx,centy)=(zexp(-((X-centx)**2+(Y-centy)**2) 

     +                        /(1.d0-(0.d0,1.d0)*Z))) 

     +                        /(1.d0-(0.d0,1.d0)*Z) 

       vor(X,Y,Z,w0,la,centx,centy)=(dsqrt((X-centx)**2+(Y-centy)**2)/ 

     +                              (1.d0+Z**2))*dexp(-((X-centx)**2+ 

     +                              (Y-centy)**2)/(1.d0+Z**2))*zexp 

     +                              (-(0.d0,1.d0)*((2.d0*Z*(pi*w0/la) 

     +                              **2)+(((X-centx)**2+(Y-centy)**2)/ 

     +                              (Z+1.d0/Z))+datan2(Y-centy,X-centx) 

     +                              -2.d0*datan(Z))) 

       pi=3.1415926535897932384626433832795 

c 

       print*,'Number of points in X and Y',M 

       print*,'Number of steps in Z',L 

       print*,'Number of holes inside core',NN 

       print*,'Enter dXY' 

       read*,dXY 

       print*,'Enter dZ' 

       read*,dZ 

       print*,'Where is the center of the beam in X' 

       read*,centx 

       print*,'Where is the center of the beam in Y' 

       read*,centy 

       print*,'Enter raduis of core' 
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       read*,hr 

       print*,'Enter distance between cores' 

       read*,d 

       print*,'Enter refractive index of cores' 

       read*,nh 

       print*,'Enter Optical Kerr Coefficient' 

       read*,n2 

       print*,'Enter beam width w0' 

       read*,w0 

       print*,'Enter wavelength' 

       read*,la 

       print*,'Enter incident angle from Z- to X-axis' 

       read*,th1 

       print*,'Enter incident angle from Z- to Y-axis' 

       read*,th2 

       print*,'Enter interference angle from Z- to X-axis' 

       read*,th3 

       print*,'Enter interference angle from Z- to Y-axis' 

       read*,th4 

       print*,'Enter integer resolution factor' 

       print*,'1 means write every single step to data files' 

       print*,'2 means write every second step to data files' 

       print*,'3 means write every third  step to data files' 

       print*,'and so on.....' 

       read*,res 

       open(unit=12,file='locations.dat',status='old') 

       do 10 i=1,NN 

          read(12,*),v1(i),v2(i) 

          hx(i)=((v1(i)+v2(i))*(2.d0*hr+d)*sqrt(3.d0)/2.d0)+dXY*M/2.d0 

          hy(i)=((-v1(i)+v2(i))*(2.d0*hr+d)/2.d0)+dXY*M/2.d0 

10     continue 

c 

       alph=(0.d0,1.d0)*dZ/(4.d0*dXY*dXY) 

       AA=1.d0-alph 

       BB=1.d0+alph 

       CC=alph/2.d0 

       do 30 i=1,M 

          do 20 j=1,M 

             n(i,j)=1.d0 

20        continue 

30     continue 

c 

       do 80 ii=1,NN 

        do 50 i=1,M 
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         do 40 j=1,M 

           r(i,j)=dsqrt((i*dXY-hx(ii))**2+(j*dXY-hy(ii))**2) 

           nnn(i,j)=nh+int(min(r(i,j),1.9d0*hr)/hr)*(n(i,j)-nh) 

40       continue 

50      continue 

        do 70 i=1,M 

           do 60 j=1,M 

              n(i,j)=nnn(i,j) 

60         continue 

70      continue 

80     continue 

c 

       do 1000 i=1,M 

          do 900 j=1,M 

             AAA(i,j)=zexp(-(0.d0,1.d0)*dZ*((n(i,j)**2)-1.d0) 

     +              *(pi*w0/la)**2) 

900        continue 

1000    continue 

c 

90     print*,'what is the initial field?' 

       print*,'1 vortex   2 Gaussian' 

       read*,ifield 

       if(ifield.eq.1) then 

        do 110 i=1,M 

           do 100 j=1,M 

              phiA(i,j)=vor(i*dXY,j*dXY,0.d0,w0,la, 

     +                  centx+dXY/2.d0,centy+dXY/2.d0)* 

     +                  zexp((0.d0,1.d0)*(2.d0*pi*w0/la)*( 

     +                  dsin(th1)*(i*dXY-centx+dXY/2.d0)+ 

     +                  dsin(th2)*(j*dXY-centy+dXY/2.d0))) 

              phiN(i,j)=phiA(i,j) 

100        continue 

110     continue 

       elseif(ifield.eq.2) then 

        do 130 i=1,M 

           do 120 j=1,M 

              phiA(i,j)=gsn(i*dXY,j*dXY,0.d0,centx,centy)* 

     +                  zexp((0.d0,1.d0)*(2.d0*pi*w0/la)*( 

     +                  dsin(th1)*(i*dXY-centx)+ 

     +                  dsin(th2)*(j*dXY-centy))) 

              phiN(i,j)=phiA(i,j) 

120        continue 

130     continue 

       else 
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        goto 90 

       endif 

140    print*,'what is the interference field?' 

       print*,'1 plane   2 Gaussian' 

       read*,intfield 

       if(intfield.eq.1) then 

        do 160 i=1,M 

           do 150 j=1,M 

              phiI(i,j)=zexp((0.d0,1.d0)*30.d0*( 

     +                  dsin(th3)*(i*dXY-centx)+ 

     +                  dsin(th4)*(j*dXY-centy))) 

150        continue 

160     continue 

       elseif(intfield.eq.2) then 

        do 180 i=1,M 

           do 170 j=1,M 

              phiI(i,j)=gsn(i*dXY,j*dXY,0.d0,centx,centy)* 

     +                  zexp((0.d0,1.d0)*30.d0*( 

     +                  dsin(th3)*(i*dXY-centx)+ 

     +                  dsin(th4)*(j*dXY-centy))) 

170        continue 

180     continue 

       else 

        goto 140 

       endif 

c 

       do 310 ie=1,L 

           do 190 i=1,M 

              BCS(i,1)=BB*phiN(i,1)-CC*phiN(i,2) 

190        continue 

           do 200 i=1,M 

              BCS(i,M)=BB*phiN(i,M)-CC*phiN(i,M-1) 

200        continue 

           do 220 i=1,M 

              do 210 j=2,M-1 

                 BCS(i,j)=BB*phiN(i,j)-CC*(phiN(i,j+1)+ 

     +                    phiN(i,j-1)) 

210           continue 

220        continue 

           call td1(AA,CC,M,BCS,phiNS) 

c 

c 

           do 240 i=1,M 

              do 230 j=1,M 
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                 A(i,j)=zexp(-(0.d0,1.d0)*dZ* 

     +                  (w0*n2*pi/(120.d0*la**2))*abs(phiN(i,j))**2) 

230           continue 

240        continue 

c 

c 

           do 250 j=1,M 

              BC(1,j)=(BB*phiNS(1,j)-CC*phiNS(2,j))*A(1,j)*AAA(1,j) 

250        continue 

           do 260 j=1,M 

              BC(M,j)=(BB*phiNS(M,j)-CC*phiNS(M-1,j))*A(M,j)*AAA(M,j) 

260        continue 

           do 280 i=2,M-1 

              do 270 j=1,M 

                 BC(i,j)=(BB*phiNS(i,j)-CC*(phiNS(i+1,j)+ 

     +                    phiNS(i-1,j)))*A(i,j)*AAA(i,j) 

270           continue 

280        continue 

           call td2(AA,CC,M,BC,phiN) 

           do 300 i=1,M 

              do 290 j=1,M 

                 energy(ie)=energy(ie)+abs(phiN(i,j))**2 

290           continue 

300        continue 

310    continue 

c 

       open(unit=1,file='initial_field_intensity.dat',status='new') 

       open(unit=2,file='initial_field_phase.dat',status='new') 

       open(unit=3,file='analytical_field_intensity_after_propagation_ 

     +      in_freespace.dat',status='new') 

       open(unit=4,file='analytical_field_phase_after_propagationd_in_ 

     +      freespace.dat',status='new') 

       open(unit=5,file='numerical_field_intensity_after_propagation_ 

     +      in_meduim.dat',status='new') 

       open(unit=6,file='numerical_field_phase_after_propagation_in_ 

     +      meduim.dat',status='new') 

       open(unit=7,file='numerical_field_after_propagation_in_meduim_ 

     +      real_part.dat',status='new') 

       open(unit=8,file='numerical_field_after_propagation_in_meduim_ 

     +      imaginary_part.dat',status='new') 

       open(unit=9,file='n(X,Y).dat',status='new') 

       open(unit=10,file='interference_intensity.dat',status='new') 

       open(unit=11,file='interference_phase.dat',status='new') 

       open(unit=12,file='energy.dat',status='new') 
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1      format(f20.16,1x,f20.16,1x,f30.27) 

       if(ifield.eq.1) then 

         do 330 i=1,M,res 

            do 320 j=1,M,res 

               write(3,1) i*dXY,j*dXY,abs(vor(i*dXY,j*dXY,L*dZ,w0,la, 

     +                                centx+dXY/2.d0,centy+dXY/2.d0))**2 

               write(4,1) i*dXY,j*dXY,datan2(dimag(vor(i*dXY,j*dXY, 

     +                                L*dZ,w0,la,centx+dXY/2.d0, 

     +                                centy+dXY/2.d0)),dreal(vor(i*dXY, 

     +                                j*dXY,L*dZ,w0,la,centx+dXY/2.d0, 

     +                                centy+dXY/2.d0))) 

320         continue 

         write(3,1) 

         write(4,1) 

330      continue 

       else 

         do 350 i=1,M,res 

            do 340 j=1,M,res 

               write(3,1) i*dXY,j*dXY,abs(gsn(i*dXY,j*dXY,L*dZ, 

     +                                centx,centy))**2 

               write(4,1) i*dXY,j*dXY,datan2(dimag(gsn(i*dXY,j*dXY, 

     +                                L*dZ,centx,centy)),dreal(gsn 

     +                                (i*dXY,j*dXY,L*dZ,centx,centy))) 

340         continue 

         write(3,1) 

         write(4,1) 

350      continue 

       endif 

       do 370 i=1,M,res 

          do 360 j=1,M,res 

             write(1,1) i*dXY,j*dXY,abs(phiA(i,j))**2 

             write(2,1) i*dXY,j*dXY,datan2(dimag(phiA(i,j)), 

     +                              dreal(phiA(i,j))) 

             write(5,1) i*dXY,j*dXY,abs(phiN(i,j))**2 

             write(6,1) i*dXY,j*dXY,datan2(dimag(phiN(i,j)), 

     +                              dreal(phiN(i,j))) 

             write(7,1) i*dXY,j*dXY,dreal(phiN(i,j)) 

             write(8,1) i*dXY,j*dXY,dimag(phiN(i,j)) 

             write(9,1) i*dXY,j*dXY,n(i,j) 

             write(10,1) i*dXY,j*dXY,abs(phiI(i,j)+phiN(i,j))**2 

             write(11,1) i*dXY,j*dXY,datan2(dimag(phiI(i,j)+ 

     +                               phiN(i,j)),dreal(phiI(i,j)+ 

     +                               phiN(i,j))) 

360       continue 
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          write(1,1) 

          write(2,1) 

          write(5,1) 

          write(6,1) 

          write(7,1) 

          write(8,1) 

          write(9,1) 

          write(10,1) 

          write(11,1) 

370    continue 

       do 380 i=1,L 

          write(12,*) i*dZ,energy(i) 

380    continue 

       end 

c 

c 

c 

c 

c 

c 

       subroutine td1(AA,CC,M,BC,phi) 

       complex*16 mmm,AA,CC,phi(1:M,1:M),BC(1:M,1:M), 

     +            b(1:M),c(1:M),cp(1:M),dp(1:M) 

       do 10 i=1,M 

          b(i)=AA 

10     continue 

       do 20 i=1,M-1 

         c(i)=CC 

20     continue 

       c(M)=0.d0 

       cp(1)=c(1)/b(1) 

       do 50 jj=1,M 

          dp(1)=BC(1,jj)/b(1) 

          do 30 i=2,M 

             mmm=b(i)-cp(i-1)*CC 

             cp(i)=c(i)/mmm 

             dp(i)=(BC(i,jj)-dp(i-1)*CC)/mmm 

30        continue 

          phi(M,jj)=dp(M) 

          do 40 i=M-1,1,-1 

             phi(i,jj)=dp(i)-cp(i)*phi(i+1,jj) 

40        continue 

50     continue 

       return 



125 

 

       end 

c 

c 

       subroutine td2(AA,CC,M,BC,phi) 

       complex*16 mmm,AA,CC,phi(1:M,1:M),BC(1:M,1:M), 

     +            b(1:M),c(1:M),cp(1:M),dp(1:M) 

       do 10 i=1,M 

          b(i)=AA 

10     continue 

       do 20 i=1,M-1 

         c(i)=CC 

20     continue 

       c(M)=0.d0 

       cp(1)=c(1)/b(1) 

       do 50 ij=1,M 

          dp(1)=BC(ij,1)/b(1) 

          do 30 i=2,M 

             mmm=b(i)-cp(i-1)*CC 

             cp(i)=c(i)/mmm 

             dp(i)=(BC(ij,i)-dp(i-1)*CC)/mmm 

30        continue 

          phi(ij,M)=dp(M) 

          do 40 i=M-1,1,-1 

             phi(ij,i)=dp(i)-cp(i)*phi(ij,i+1) 

40        continue 

50     continue 

       return 

       end 
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