
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

August 2014

Newton's Method Backpropagation for Complex-
Valued Holomorphic Neural Networks: Algebraic
and Analytic Properties
Diana Thomson La Corte
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Applied Mathematics Commons, and the Mathematics Commons

This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations
by an authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
La Corte, Diana Thomson, "Newton's Method Backpropagation for Complex-Valued Holomorphic Neural Networks: Algebraic and
Analytic Properties" (2014). Theses and Dissertations. 565.
https://dc.uwm.edu/etd/565

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Wisconsin-Milwaukee

https://core.ac.uk/display/217185101?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F565&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F565&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F565&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=dc.uwm.edu%2Fetd%2F565&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=dc.uwm.edu%2Fetd%2F565&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/565?utm_source=dc.uwm.edu%2Fetd%2F565&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu

Newton’s Method Backpropagation for

Complex-Valued Holomorphic Neural

Networks: Algebraic and Analytic Properties

by

Diana Thomson La Corte

A Dissertation Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

in

Mathematics

at

The University of Wisconsin-Milwaukee

August 2014

ABSTRACT

Newton’s Method Backpropagation for

Complex-Valued Holomorphic Neural

Networks: Algebraic and Analytic Properties

by

Diana Thomson La Corte

The University of Wisconsin-Milwaukee, 2014

Under the Supervision of Professor Yi Ming Zou

The study of Newton’s method in complex-valued neural networks (CVNNs) faces

many difficulties. In this dissertation, we derive Newton’s method backpropagation

algorithms for complex-valued holomorphic multilayer perceptrons (MLPs), and we

investigate the convergence of the one-step Newton steplength algorithm for the

minimization of real-valued complex functions via Newton’s method. The problem

of singular Hessian matrices provides an obstacle to the use of Newton’s method

backpropagation to train CVNNs. We approach this problem by developing an

adaptive underrelaxation factor algorithm that avoids singularity of the Hessian

matrices for the minimization of real-valued complex polynomial functions.

To provide experimental support for the use of our algorithms, we perform a compar-

ison of using sigmoidal functions versus their Taylor polynomial approximations as

activation functions by using the Newton and pseudo-Newton backpropagation algo-

rithms developed here and the known gradient descent backpropagation algorithm.

Our experiments indicate that the Newton’s method based algorithms, combined

with the use of polynomial activation functions, provide significant improvement in

the number of training iterations required over the existing algorithms. We also test

ii

our underrelaxation factor algorithm using a small-scale polynomial neuron and a

polynomial MLP. Finally, we investigate the application of an algebraic root-finding

technique to the case of a polynomial MLP to develop a theoretical framework for

the location of initial weight vectors that will guarantee successful training.

iii

c© Copyright by Diana Thomson La Corte, 2014

All Rights Reserved

iv

To Mom and Dad

v

Table of Contents

1 Introduction 1

2 Complex-Valued Neural Networks 5

2.1 Artificial Neurons: The Building Blocks of Neural Networks 5

2.2 Holomorphic MLPs: Definition and Network Architecture 7

2.3 The Gradient Descent Backpropagation Algorithm 9

3 The Newton’s Method Backpropagation Algorithm 14

3.1 The CR-Calculus and Newton’s Method 15

3.2 Backpropagation Using Newton’s Method 17

3.3 Backpropagation Using the Pseudo-Newton Method 27

3.4 The One-Step Newton Steplength Algorithm for Real-Valued Com-

plex Functions . 28

3.5 Experiments . 41

4 The Singular Hessian Matrix Problem 45

4.1 An Adaptive Underrelaxation Factor Algorithm for Minimization of

Real-Valued Complex Polynomial Maps via Newton’s Method 47

4.2 Application: The Artificial Neuron 53

4.3 Singular Hessian Matrices and the Multilayer Perceptron 59

5 An Algebraic Approach to the Initial Weight Problem 62

5.1 Translation of a Training Set into a Polynomial System 64

5.2 Real Root Location for a Neuron System 70

5.3 A Search Strategy for Isolation of a Real Root of a Polynomial System 74

5.4 A Polynomial System for the Multilayer Perceptron 78

6 Conclusion and Future Work 81

Bibliography 84

vi

List of Figures

2.1 An Artificial Neuron . 6

2.2 Network Architecture . 8

3.1 Graph of the sigmoidal function versus its third degree Taylor poly-

nomial . 42

4.1 Comparison of singular matrix errors and local minima for a neu-

ron trained with the pseudo-Newton backpropagation algorithm with

constant versus adaptive underrelaxation factors, with initial weights

chosen from rectangular regions in the plane R× R i 57

4.2 Comparison of singular matrix errors and local minima for a neu-

ron trained with the pseudo-Newton backpropagation algorithm with

constant versus adaptive underrelaxation factors, with initial weights

chosen from rectangular regions in the plane R i× R i 58

5.1 Basins of attraction for a neuron trained using the pseudo-Newton

backpropagation algorithm with initial weights chosen from rectan-

gular regions in the plane R× R i . 68

5.2 Basins of attraction for a neuron trained using the pseudo-Newton

backpropagation algorithm with initial weights chosen from rectan-

gular regions in the plane R i× R i 69

vii

List of Tables

3.1 XOR Training Set . 41

3.2 XOR Experiment Results: Successful Trials 43

3.3 XOR Experiment Results: Unsuccessful Trials 44

4.1 Artificial Neuron Training Set . 55

4.2 Adaptive Versus Constant Underrelaxation Factors for XOR Exam-

ple: Successful Trials . 61

4.3 Adaptive Versus Constant Underrelaxation Factors for XOR Exam-

ple: Unsuccessful Trials . 61

5.1 Solutions of the polynomial system (5.1.6) and color coding 67

viii

ACKNOWLEDGMENTS

I would first like to thank my advisor, Dr. Yi Ming Zou, for his guidance and

support throughout the process of writing this dissertation. His insights have been

inspiring and sparked many creative ideas, and his feedback on my work has always

been timely and thorough–two traits of an advisor that are invaluable to a graduate

student! I would also like to thank the rest of my dissertation committee, Drs. Allen

Bell, Jeb Willenbring, Gabriella Pinter, and Peter Hinow, for their support during

my graduate years, as well as Dr. Ian Musson for his contribution to my education

in algebra. Special thanks go to Dr. Willenbring, who introduced me to the exciting

world of algebra my freshman year in college and inspired me to specialize in this

subject, and Dr. Craig Guilbault, who welcomed me both as an undergraduate and

as a graduate student to UW-Milwaukee.

I must also acknowledge the incredible support of my family during the many

years I have been a student. To my parents Barbara and Jim, whose love and

encouragement have cheered me through the difficult periods of college and graduate

school alike. To my grandmother Liz, who has been so generous in order to help me

through this program. To my husband Jason, who has suffered through the perils

of late nights and looming deadlines by my side. And to Djehuty, who has been my

constant companion since I first started on this project, and who did his best to try

and distract me whenever he could. Now we should have a lot more time to play

ball!

ix

1

Chapter 1

Introduction

Artificial neural networks (ANNs) are mathematical models composed of intercon-

nected processing units meant to mimic biological neural networks. ANNs are dis-

tinguished from traditional computer progams by their ability to learn by example.

Presented with a data set, an ANN creates an internal representation that it can

then use to process new data. The use of fully complex-valued neural networks

(CVNNs) to solve real-valued as well as complex-valued problems in physical ap-

plications has become increasingly popular in the neural network community in

recent years [24, 36]. CVNNs suit a diverse variety of applications in mathematics,

engineering, and the sciences, including function approximation, classification prob-

lems, image compression, speech recognition, and signal processing [23]. It is thus a

worthwhile enterprise to study the training algorithms for CVNNs, as improvement

here can result in greater efficiency in applications.

Complex-valued neural networks pose unique problems as opposed to their real-

valued counterparts. Consider the problem of choosing the activation functions for

a neural network. Real-valued activation functions for real-valued neural networks

(RVNNs) are commonly taken to be everywhere differentiable and bounded. Typical

activation functions used for RVNNs are the sigmoidal, hyperbolic tangent, and

hyperbolic secant functions

f(x) =
1

1 + exp(−x)
, tanh(x) =

ex − e−x

ex + e−x
, and sech(x) =

2

ex + e−x
.

For activation functions of CVNNs, an obvious choice is to use the complex coun-

2

terparts of these real-valued functions. However, as complex-valued functions, these

functions are no longer differentiable and bounded near 0, since they have poles

near 0. Different approaches have been proposed in the literature to address this

problem.

Liouville’s Theorem tells us that there is no non-constant complex-valued func-

tion which is both bounded and differentiable on the whole complex plane [11]. On

the basis of Liouville’s Theorem, [17] asserts that an entire function is not suit-

able as an activation function for a CVNN and claims boundedness as an essential

property of the activation function. Some authors followed this same reasoning and

use the so-called “split” functions of the type f(z) = f(x + iy) = f1(x) + if2(y)

where f1, f2 are real-valued functions, typically taken to be one of the sigmoidal

functions [26, 27, 39]. Such activation functions have the advantage of easily mod-

eling data with symmetry about the real and imaginary axes. However, this yields

complex-valued neural networks which are close to real-valued networks of double

dimensions and are not fully complex-valued [24]. Amplitude-phase-type activation

functions have the type f(z) = f3(|z|) exp(iarg(z)) where f3 is a real-valued func-

tion. These process wave information well, but have the disadvantage of preserving

phase data, making the training of a network more difficult [24, 27].

Some authors forgo complex-valued activation functions entirely, choosing in-

stead to scale the complex inputs using bounded real-valued functions which are

differentiable with respect to the real and imaginary parts [2–4]. While this approach

allows for more natural grouping of data for classification problems, it requires a

modified backpropagation algorithm to train the network, and again the networks

are not fully complex-valued. Other authors choose differentiability over bounded-

ness and use elementary transcendental functions [21, 27, 28]. Such functions have

been used in CVNNs trained using the traditional gradient descent backpropaga-

tion algorithm and in other applications [10, 34, 46]. However, the problem of the

existence of poles in a bounded region near 0 presents again. Though one can try

to scale the data to avoid the regions which contain poles [32], this does not solve

the problem, since for unknown composite functions, the locations of poles are not

known a priori. The exponential function exp(z) has been proposed as an alterna-

tive to the elementary transcendental functions for some CVNNs, and experimental

evidence suggests better performance of the entire exponential function as activation

function than those with poles [42].

3

In this dissertation, we will derive the backpropagation algorithm for CVNNs

based on Newton’s method. We compare the performances of using the complex-

valued sigmoidal activation function and its Taylor polynomial approximations. Our

results give strong supporting evidence for the use of holomorphic functions as ac-

tivation functions for CVNNs. Holomorphic functions encompass a general class of

functions that are commonly used as activation functions. They allow a wide variety

of choices both for activation functions and training methods. The differentiability

of holomorphic functions leads to much simpler formulas in the backpropagation

algorithms.

We pay particular attention to the use of polynomial functions as activation func-

tions for CVNNs. Polynomials have been used in fully complex-valued functional

link networks [5, 6], however their use is limited as activation functions for fully

complex-valued networks. Polynomial functions are differentiable on the entire com-

plex plane and are underlying our computations due to Taylor’s Theorem, and they

are bounded over any bounded region. Moreover, the complex Stone-Weierstrass

Theorem implies that any continuous complex-valued function on a compact subset

of the complex plane can be approximated by a polynomial [43]. Due to the na-

ture of the problems associated with the activation functions in CVNNs, different

choices of activation functions can only suit different types of neural networks prop-

erly, and one should only expect an approach to be better than the others in certain

applications.

The use of polynomial functions as activation functions opens up possibilities

otherwise not available, such as the theoretical study of using Newton’s method

in network algorithms. Newton’s method is known to provide faster convergence

than the commonly used gradient descent method whenever applicable. However,

the study of using Newton’s method in neural networks faces difficulties due to the

complexity of the activation functions used, especially for the complex-valued net-

works. The split functions are out of consideration, since they are not differentiable.

For other complex-valued direct extensions of the real-valued activation functions,

in addition to the problem that the corresponding Hessian could be singular, which

is faced by their real counterparts, the entries of the Hessian can also hit the poles.

In this dissertation, we address two problems that arise from the study of Newton’s

method in the backpropagation algorithm for CVNNs with polynomial activation

functions: the problem of singularity of the Hessian matrices, and the sensitivity of

4

Newton’s method to the initial choice of iterates. In both cases, the polynomial ac-

tivation functions allow us to take an algebraic approach to the problems. Another

reason for studying CVNNs using polynomials as activation functions is that New-

ton’s method is closely related to the field of complex dynamical systems [19, 25].

This connection has yet to obtain sufficient attention in the complex-valued neural

network community, however this will not be developed here.

This dissertation is organized in the following manner.

In Chapter 2, we describe the basic setup of the artificial neuron and the complex-

valued multilayer perceptron (MLP) and introduce the notation we will use through-

out the remainder of the dissertation. We then describe the standard gradient de-

scent backpropagation algorithm as it pertains to our setting.

In Chapter 3, we derive a recursive algorithm given by Theorem 3.2.1 to com-

pute the entries of the Hessian matrices in the application of Newton’s method to

the backpropagation algorithm for complex-valued holomorphic MLPs. Corollary

3.3.1 gives a recursive algorithm for the application of the pseudo-Newton method

to the backpropagation algorithm based on Theorem 3.2.1. We then develop the

one-step Newton steplength algorithm for the minimization of real-valued complex

functions using Newton’s method which is given by Theorem 3.4.4, and compare our

algorithms to the standard gradient-descent algorithm for a complex-valued MLP

trained with data from the XOR problem to show the superiority of our methods.

In Chapter 4, we address the problem of singular Hessian matrices in training

a complex-valued polynomial MLP using Newton’s method. In Theorem 4.1.1, we

give an adaptive underrelaxation factor algorithm that guarantees nonsingularity of

the Hessian matrices for minimization of real-valued complex polynomial functions

using Newton’s method. Corollary 4.1.2 gives a similar result for the pseudo-Newton

method based on Theorem 4.1.1. We test our adaptive underrelaxation factor algo-

rithm for the pseudo-Newton case on both an artificial neuron and also on the XOR

problem.

In Chapter 5, we investigate the application of the algebraic root-finding algo-

rithm given in [40] to the case of complex-valued polynomial neurons and polynomial

MLPs, and we develop a theoretical framework and search strategy based on the

training set for the location of initial weight vectors that will guarantee successful

training. A search algorithm for the complex-valued polynomial neuron is given in

Proposition 5.3.3.

5

Chapter 2

Complex-Valued Neural Networks

There are a great variety of different types of artificial neural networks available for

use in different applications. Our focus is on improving training processes for a par-

ticular type of artificial neural network called a multilayer perceptron (MLP). In this

chapter, we develop the basic definitions and notation that we will use throughout

the rest of this dissertation. We describe the setup of an artificial neuron and discuss

the network architecture of complex-valued MLPs. The typical training algorithm

used for complex-valued neural networks is the gradient descent backpropagation

algorithm. We reformulate this standard training algorithm to our setting of holo-

morphic MLPs in order to gain perspective for the application of Newton’s method

to the backpropagation algorithm in Chapter 3.

2.1 Artificial Neurons: The Building Blocks of

Neural Networks

The basic unit of any artificial neural network is the artificial neuron. Mathemat-

ically, an artificial neuron is a multivariate function meant to mimic a biological

neuron. Let D1 and D2 be domains. Typically, D1 = D2 = R or C, yielding

a real- or complex-valued neuron, respectively. Computation in a generic neuron

as shown in Figure 2.1 is given as follows. The input of the neuron is the vec-

tor (x1, ..., xn) ∈ Dn
1 . The variables w1, ..., wn ∈ D1 are called the weights of the

6

x1

...

xn

"!

f g -

Q
Q
QQs

w1

�
�
��3

wn

y

Figure 2.1: An Artificial Neuron

neuron. The output of the neuron is given by

y = g (f(w1, ..., wn;x1, ..., xn)) ∈ D2,

where f : Dn
1 → D1 is a function of the weights called the propagation function of

the neuron, and g : D1 → D2 is called the activation function of the neuron. The

propagation function typically computes a linear combination of the input vectors

with the weight vectors, sometimes with an added bias term θ ∈ D1 [24]:

y = g

(
n∑
i=1

wixu + θ

)
.

In our setting, we look at complex neurons with D1 = D2 = C and we use a zero

bias term θ = 0. The neuron is trained using a training set with N data points

{(zt1, ..., ztm, dt) | t = 1, ..., N} by minimizing the sum-of-squares error function

E =
N∑
t=1

|yt − dt|2 =
N∑
t=1

(yt − dt)(yt − dt).

7

2.2 Holomorphic MLPs: Definition and Network

Architecture

A well-used type of artificial neural network is the multilayer perceptron (MLP).

An MLP is built of several layers of single neurons hooked together by a network

of weight vectors. Usually the activation function is taken to be the same among

a single layer of the network; the defining characteristic of the MLP is that in at

least one layer, the activation function must be nonlinear. If there is no nonlinear

activation function, the network can be collapsed to a two-layer network [9].

Definition 2.2.1. A holomorphic MLP is a complex-valued MLP in which the

activation function in the layer indexed by p of the network is holomorphic on some

domain Ωp ⊆ C.

Most of the publications on complex-valued neural networks with holomorphic

activation functions deal with functions that have poles. We will mainly focus on

entire functions for the purpose of applying Newton’s method. For these functions,

we do not have to worry about the entries of a Hessian matrix hitting the poles,

however the matrix itself can be singular. However, we will allow some flexibility

in our setting and set up our notation for a general L-layer holomorphic MLP as

follows (see Figure 2.2).

• The input layer has m = K0 input nodes denoted

z1 = x
(0)
1 , ..., zm = x(0)m .

• There are L− 1 hidden layers of neurons, and the pth (1 ≤ p ≤ L− 1) hidden

layer contains Kp nodes. We denote the output of node j (j = 1, ..., Kp) in

the pth layer by x
(p)
j . The inputted weights to the pth layer are denoted w

(p−1)
ji

(j = 1, ..., Kp, i = 1, ..., Kp−1), where j denotes the target node of the weight

in the pth layer and i denotes the source node in the (p − 1)th layer. With

these conventions we define the weighted net sum and the output of node j of

the pth layer by

(
x
(p)
j

)net
=

Kp−1∑
i=1

w
(p−1)
ji x

(p−1)
i and x

(p)
j = gp

((
x
(p)
j

)net)
,

8

z1

#
"

!

...

zm

#
"

!

w
(0)
11

�
�
�
��3

XXXXXz

J
J
J
J
J
J
JĴ

w
(0)
K1,1

A
A
A
A
A
A
A
A
A
A
AAU

�
�
�
�
�
�
�
�
�
�
���

w
(0)
1m

�

��
���:

Q
Q
Q
QQsw

(0)
K1,m

x
(1)
1

#
"

!

x
(1)
2

#
"

!

x
(1)
K1−1

#
"

!

x
(1)
K1

#
"

!

· · ·

· · ·

x
(L−1)
1

#
"

!

x
(L−1)
2

#
"

!

x
(L−1)
KL−1−1

#
"

!

x
(L−1)
KL−1

#
"

!

w
(L−1)
11

Q
Q
Q
Q
Q
QQs

A
A
A
A
A
A
A
A
A
A
AU

PPPPPq

w
(L−1)
C2

J
J
J
J
J
J
JĴ

�

w
(L−1)
1,KL−1−1

��
���1

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
��3

w
(L−1)
C,KL−1

y1

#
"

!

...

yC

#
"

!

Figure 2.2: Network Architecture

where gp, which is assumed to be holomorphic on some domain Ωp ⊆ C, is the

activation function for all the neurons in the pth layer.

• The output layer has C = KL output nodes denoted y1 = x
(L)
1 , ..., yC = x

(L)
C .

We define the weighted net sum and the output of node l (l = 1, ..., C) by

ynetl =

KL−1∑
k=1

w
(L−1)
lk x

(L−1)
k and yl = gL

(
ynetl

)
,

where gL, which is assumed to be holomorphic on some domain ΩL ⊆ C, is

the activation function for all the neurons in the output layer.

To train the network, we use a training set with N data points

{(zt1, ..., ztm, dt1, ..., dtC) | t = 1, ..., N} ,

where (zt1, ..., ztm) is the input vector corresponding to the desired output vector

(dt1, ..., dtC). As the input vector (zt1, ..., ztm) of the tth training point is propagated

9

throughout the network we update the subscripts of the network calculations with

an additional t subscript to signify that those values correspond to the tth training

point. For example, (x
(p)
tj)net, x

(p)
tj , y

net
tl , and ytl. Finally, we train the network by

minimizing the standard sum-of-squares error function

E =
1

N

N∑
t=1

C∑
l=1

|ytl − dtl|2 =
1

N

N∑
t=1

C∑
l=1

(ytl − dtl)
(
ytl − dtl

)
. (2.2.1)

2.3 The Gradient Descent Backpropagation Al-

gorithm

Minimization of the error function can be achieved through the use of the backpropa-

gation algorithm. Backpropagation trains the network by updating the output layer

weights first in each step (via an update rule from some numerical minimization algo-

rithm), then using the updated output layer weights to update the first hidden layer

weights, and so on, “backpropagating” the updates throughout the network until a

desired level of accuracy is achieved (usually, this is when the error function drops

below a pre-fixed value). In the case of real-valued neural networks, minimization

of the error function by Newton’s method is generally thought to be too computa-

tionally “expensive,” and several different methods are commonly used to approx-

imate the Hessian matrices instead of computing them directly: for example the

conjugate gradient, truncated Newton, Gauss-Newton and Levenberg-Marquardt

algorithms [1, 8, 20, 36, 48]. In contrast, for complex-valued neural networks, gradi-

ent descent methods, which are known to give stable (albeit slow) convergence, are

commonly used due to their relatively simple formulations, and a number of such

minimization algorithms exist [18,32,49].

We reformulate a backpropagation algorithm using gradient descent according

to our setting of the neural networks defined in Section II for two reasons: the

algorithm has a much simpler formulation compared with the known ones [9, 32]

due to the activation functions being taken to be holomorphic, and we will use it

for comparison purpose. A similar formulation of the backpropagation algorithm to

ours is presented in [33]. The formulas of gradient descent for complex functions

can be found in [29]. We use the following vector notation. For 1 ≤ p ≤ L, we

10

denote the weights that input into the pth layer of the network using a vector whose

components correspond to the target nodes:

w(p−1) :=
(
w

(p−1)
11 , ..., w

(p−1)
1Kp−1

, ..., w
(p−1)
Kp1

, ..., w
(p−1)
KpKp−1

)T
,

that is, the components of w(p−1) are

w(p−1) [(j − 1) ·Kp−1 + i] = w
(p−1)
ji , (2.3.1)

where j = 1, ..., Kp, i = 1, ..., Kp−1. Using this notation the update steps for back-

propagation look like

w(p−1)(n+ 1) = w(p−1)(n) + µ(n)∆w(p−1), (2.3.2)

where w(p−1)(n) denotes the weight value after the nth iteration of the training

algorithm, and µ(n) denotes the learning rate or steplength which is allowed to vary

with each iteration.

Using the gradient descent method, the update for the (p − 1)th layer of a

holomorphic complex-valued neural network is ([29], p. 60)

∆w(p−1) = −
(

∂E

∂w(p−1)

)∗
.

Suppose the activation function for the pth layer of the network, p = 1, ..., L, satisfies

g(z) = g(z).

Coordinate-wise the partial derivatives ∂E

∂w
(L−1)
lk

, taken with respect to the output

11

layer weights w
(L−1)
lk , l = 1, ..., C, k = 1, ..., KL−1, are given by

∂E

∂w
(L−1)
lk

=
∂

∂w
(L−1)
lk

[
1

N

N∑
t=1

C∑
h=1

(yth − dth)(yth − yth)

]

=
1

N

N∑
t=1

[
∂ytl

∂w
(L−1)
lk

(ytl − dtl) + (ytl − dtl)
∂ytl

∂w
(L−1)
lk

]

=
1

N

N∑
t=1

(
∂ytl
∂ynettl

∂ynettl

∂w
(L−1)
lk

+
∂ytl

∂ynettl

∂ynettl

∂w
(L−1)
lk

)(
ytl − dtl

)
=

1

N

N∑
t=1

(
ytl − dtl

)
g′L
(
ynettl

)
x
(L−1)
tk ,

so that (
∂E

∂w
(L−1)
lk

)∗
=

1

N

N∑
t=1

(ytl − dtl)g′L
(
ynettl

)
x
(L−1)
tk .

The partial derivatives

(
∂E

∂w
(p−1)
ji

)∗
, taken with respect to the hidden layer weights

w
(p−1)
ji , 1 ≤ p ≤ L− 1, j = 1, ..., Kp, i = 1, ..., Kp−1, are computed recursively. The

partial derivatives ∂E

∂w
(L−2)
ji

, taken with respect to the (L− 2)th hidden layer weights,

are computed using the updated (L− 1)th output layer weights:

∂E

∂w
(L−2)
ji

=
∂

∂w
(L−2)
ji

[
1

N

N∑
t=1

C∑
l=1

(ytl − dtl)(ytl − ytl)

]

=
1

N

N∑
t=1

C∑
l=1

[
∂ytl

∂w
(L−2)
ji

(ytl − dtl) + (ytl − dtl)
∂ytl

∂w
(L−2)
ji

]
,

12

where

∂ytl

∂w
(L−2)
ji

=
∂ytl
∂ynettl

∂ynettl

∂w
(L−2)
ji

+
∂ytl

∂ynettl

∂ynettl

∂w
(L−2)
ji

= g′L
(
ynettl

) ∂ynettl

∂x
(L−1)
tj

∂x
(L−1)
tj

∂w
(L−2)
ji

+
∂ynettl

∂x
(L−1)
tj

∂x
(L−1)
tj

∂w
(L−2)
ji


= g′L

(
ynettl

)
w

(L−1)
lj

 ∂x
(L−1)
tj

∂
(
x
(L−1)
tj

)net ∂
(
x
(L−1)
tj

)net
∂w

(L−2)
ji

+
∂x

(L−1)
tj

∂
(
x
(L−1)
tj

)net ∂
(
x
(L−1)
tj

)net
∂w

(L−2)
ji


= g′L

(
ynettl

)
w

(L−1)
lj g′L−1

((
x
(L−1)
tj

)net)
x
(L−2)
ti

and

∂ytl

∂w
(L−2)
ji

=
∂ytl

∂ynettl

∂ynettl

∂w
(L−2)
ji

+
∂ytl
∂ynettl

∂ynettl

∂w
(L−2)
ji

= g′L

(
ynettl

) ∂ynettl

∂x
(L−1)
tj

∂x
(L−1)
tj

∂w
(L−2)
ji

+
∂ynettl

∂x
(L−1)
tj

∂x
(L−1)
tj

∂w
(L−2)
ji


= g′L

(
ynettl

)
w

(L−1)
lj

 ∂x
(L−1)
tj

∂
(
x
(L−1)
tj

)net ∂
(
x
(L−1)
tj

)net
∂w

(L−2)
ji

+
∂x

(L−1)
tj

∂
(
x
(L−1)
tj

)net ∂
(
x
(L−1)
tj

)net
∂w

(L−2)
ji


= 0,

so that(
∂E

∂w
(L−2)
ji

)∗
=

1

N

N∑
t=1

(
C∑
l=1

(ytl − dtl)g′L
(
ynettl

)
w

(L−1)
lj

)
· g′L−1

((
x
(L−1)
tj

)net)
x
(L−2)
ti ,

and so on. We summarize the partial derivatives by

(
∂E

∂w
(p−1)
ji

)∗
=

1

N

N∑
t=1

E
(p)
tj x

(p−1)
ti , (2.3.3)

13

1 ≤ p ≤ L, where j = 1, ..., Kp, i = 1, ..., Kp−1, and the E
(p)
tj are given recursively by

E
(L)
tl = (ytl − dtl) g′L

(
ynettl

)
, (2.3.4)

where l = 1, ..., C, t = 1, ..., N ; and for 1 ≤ p ≤ L− 1,

E
(p)
tj =

[
Kp+1∑
α=1

E
(p+1)
tα w

(p)
αj

]
g′p

((
x
(p)
tj

)net)
, (2.3.5)

where j = 1, ..., Kp, t = 1, ..., N . The gradient descent method is well known

to be rather slow in the convergence of the error function. In the next chapter, we

derive formulas for the backpropagation algorithm using Newton’s method (compare

with [9, 32]).

14

Chapter 3

The Newton’s Method

Backpropagation Algorithm

Newton’s method has typically been avoided in neural network training due to com-

putational inefficiency in computing and inverting the Hessian matrices. This dif-

ficulty is often due to the choice of activation function: for example, the so-called

“split” activation functions provide for a very messy application of any minimization

algorithm. The use of holomorphic activation functions allows for a ready applica-

tion of Newton’s method to neural network training algorithms. In this chapter,

we develop a recursive algorithm given by Theorem 3.2.1 to efficiently compute the

entries of the Hessian matrices in the implication of Newton’s method to the back-

propagation algorithm. Corollary 3.3.1 gives a similar recursive algorithm for com-

putation of the Hessian matrices in the application of the pseudo-Newton method to

the backpropagation algorithm based on Theorem 3.2.1. The recursive algorithms

we develop are analogous to the known gradient descent backpropagation algorithm

as stated in Chapter 2, hence can be readily implemented in real-world applica-

tions. A problem with Newton’s method is the choice of steplengths to ensure the

algorithm actually converges in applications. Our setting enables us to perform

a rigorous analysis for a complex version of the one-step Newton steplength algo-

rithm for the minimization of real-valued complex functions via Newton’s method.

This gives an adaptive learning rate algorithm to apply to such minimization, which

is given in Theorem 3.4.4. We then apply our algorithms to train a small-scale

15

complex-valued MLP using the XOR data set, and compare the use of the Newton

and pseudo-Newton methods to that of the standard gradient descent backpropa-

gation algorithm. Our experiments show that the algorithms we develop use signifi-

cantly fewer iterations to achieve the same results as the gradient descent algorithm.

Newton’s method thus provides a valuable tool for fast learning for complex-valued

neural networks as a practical alternative to the gradient descent methods.

3.1 The CR-Calculus and Newton’s Method

We begin with a discussion of the CR-calculus, which we use to compute the Hessian

matrices for our application of Newton’s method to the backpropagation algorithm.

We employ the following notation from [29]. The cogradient (or R-derivative) and

conjugate cogradient (or R-derivative) operators on functions Ck → Cm are the row

operators
∂(·)
∂z

=

(
∂(·)
∂z1

, ...,
∂(·)
∂zk

)
and

∂(·)
∂z

=

(
∂(·)
∂z1

, ...,
∂(·)
∂zk

)
,

respectively, where, writing z = x + iy ∈ Ck with x,y ∈ Rk and denoting by ∂
∂xj

and ∂
∂yj

the partial derivative operators taken with respect to the real and imaginary

parts of zj = xj + iyj, respectively, the operators ∂
∂zj

and ∂
∂zj

are defined by

∂(·)
∂zj

:=
1

2

(
∂(·)
∂xj
− i∂(·)

∂yj

)
and

∂(·)
∂zj

:=
1

2

(
∂(·)
∂xj

+ i
∂(·)
∂yj

)

for j = 1, ..., k. Let

∂(·)
∂x

=

(
∂(·)
∂x1

, ...,
∂(·)
∂xk

)
and

∂(·)
∂y

=

(
∂(·)
∂y1

, ...,
∂(·)
∂yk

)
.

Set

J :=

 I iI

I −iI

 ∈M2k×2k(C),

16

where I is the k × k identity matrix. For z = x + iy ∈ Ck with x,y ∈ Rk we have

the coordinate transformations z

z

 = J

 x

y

 and

 x

y

 =
1

2
J∗

 z

z

 (3.1.1)

and the cogradient transformations

(
∂(·)
∂z

,
∂(·)
∂z

)
=

1

2

(
∂(·)
∂x

,
∂(·)
∂y

)
J∗ and

(
∂(·)
∂x

,
∂(·)
∂y

)
=

(
∂(·)
∂z

,
∂(·)
∂z

)
J. (3.1.2)

A function f : Ω ⊆ Ck → Cm is called real differentiable (R-differentiable) if it

is (Frechet) differentiable as a mapping

f(x,y) : D :=


 x

y

 ∈ R2k

∣∣∣∣∣∣∣
x,y ∈ Rk,

z = x + iy ∈ Ω

 ⊆ R2k → R2m. (3.1.3)

The partial derivatives ∂f
∂z

and ∂f
∂z

exist if and only if f is R-differentiable [29,44]. The

distinction between R-differentiability and complex differentiability is significant. In

training a neural network, our goal is to minimize the real-valued error function as

a function of the weights. Since we are using holomorphic activation functions,

the error function is in fact a real-valued R-differentiable function. Note that a

nonconstant function f : Ω ⊆ Ck → R cannot be complex differentiable as it fails

to satisfy the Cauchy-Riemann equations.

The updates for for the minimization of a function f : Ω ⊆ Ck → R using

Newton’s method are given by formula (111) of [29]:

∆z =
(
Hzz −HzzH

−1
zz Hzz

)−1 [
HzzH

−1
zz

(
∂f

∂z

)∗
−
(
∂f

∂z

)∗]
, (3.1.4)

where

Hzz =
∂

∂z

(
∂E

∂z

)∗
and Hzz =

∂

∂z

(
∂E

∂z

)∗
, (3.1.5)

where the entries of
(
∂f
∂z

)∗
are given by (2.3.3). Note that although (3.2.1) asks for the

four Hessian matrices Hzz, Hzz, Hzz, and Hzz, we have Hzz = Hzz and Hzz = Hzz.

17

Thus, to compute the Newton weight update, we need only compute the matrices

given in 3.1.5.

As a special case of the complex Newton’s method, the complex pseudo-Newton

method takes Hzz = Hzz, reducing the weight updates to something similar to the

real version of Newton’s method:

∆z = −H−1zz

(
∂f

∂z

)∗
.

3.2 Backpropagation Using Newton’s Method

In order to apply Newton’s method to the minimization of the error function 2.2.1,

we need to compute the weight updates for each layer of the network (we omit the

superscripts, which index the layers, to simplify our writing):

∆w =
(
Hww −HwwH

−1
wwHww

)−1 [
HwwH

−1
ww

(
∂E

∂w

)∗
−
(
∂E

∂w

)∗]
. (3.2.1)

We consider the entries of the Hessian matrices Hww and Hww. For the (p − 1)th

layer, the entries of Hww are given by (see (2.3.1))

Hww [(j − 1) ·Kp−1 + i, (b− 1) ·Kp−1 + a] =
∂

∂w
(p−1)
ba

(
∂E

∂w
(p−1)
ji

)∗
,

where j, b = 1, ..., Kp and i, a = 1, ..., Kp−1, and the entries of Hww are given by

Hww [(j − 1) ·Kp−1 + i, (b− 1) ·Kp−1 + a] =
∂

∂w
(p−1)
ba

(
∂E

∂w
(p−1)
ji

)∗
,

where j, b = 1, ..., Kp and i, a = 1, ..., Kp−1.

First we derive an explicit formula for the entries of the Hessians Hww. We start

with the output layer and compute ∂

∂w
(L−1)
kq

(
∂E

∂w
(L−1)
lp

)∗
, where k, l = 1, ..., C and

q, p = 1, ..., KL−1. Observe that if k 6= l, then each term (ytl− dtl)g′L
(
ynettl

)
x
(L−1)
tp in

the cogradient given by (2.3.3) and (2.3.4) does not depend on the weights w
(L−1)
kq ,

hence this entry of the Hessian will be 0. So the Hessian matrix for the output layer

18

has a block diagonal form:

Hw(L−1)w(L−1) = diag


[

∂

∂w
(L−1)
lq

(
∂E

∂w
(L−1)
lp

)∗]
1≤p≤KL−1
1≤q≤KL−1

: l = 1, ..., C

 .

Now:

∂

∂w
(L−1)
lq

(
∂E

∂w
(L−1)
lp

)∗
=

∂

∂w
(L−1)
lq

[
1

N

N∑
t=1

(ytl − dtl)g′L
(
ynettl

)
x
(L−1)
tp

]

=
1

N

N∑
t=1

(ytl − dtl)
∂g′L

(
ynettl

)
∂w

(L−1)
lq

+ g′L

(
ynettl

) ∂ytl

∂w
(L−1)
lq

x(L−1)tp

(3.2.2)

where
∂ytl

∂w
(L−1)
lq

=
∂ytl
∂ynettl

∂ynettl

∂w
(L−1)
lq

+
∂ytl

∂ynettl

∂ynettl

∂w
(L−1)
lq

= g′L
(
ynettl

)
x
(L−1)
tq

since gL is holomorphic and therefore ∂ytl
∂ynettl

= 0 (Cauchy-Riemann condition), and

similarly

∂g′L

(
ynettl

)
∂w

(L−1)
lq

=
∂g′L

(
ynettl

)
∂ynettl

∂ynettl

∂w
(L−1)
lq

+
∂g′L

(
ynettl

)
∂ynettl

∂ynettl

∂w
(L−1)
lq

= 0.

Combining these two partial derivatives with (3.2.2) gives the following formula for

the entries of the output layer Hessian matrix:

∂

∂w
(L−1)
kq

(
∂E

∂w
(L−1)
lp

)∗
=


1
N

∑N
t=1 g

′
L

(
ynettl

)
g′L (ynettl)x

(L−1)
tp x

(L−1)
tq if k = l,

0 if k 6= l.

(3.2.3)

After updating the output layer weights, the backpropagation algorithm up-

dates the hidden layer weights recursively. We compute the entries of the Hessian

19

Hw(p−1)w(p−1) for the (p− 1)th layer using (2.3.3):

∂

∂w
(p−1)
ba

(
∂E

∂w
(p−1)
ji

)∗
=

∂

∂w
(p−1)
ba

[
1

N

N∑
t=1

E
(p)
tj x

(p−1)
ti

]
=

1

N

N∑
t=1

∂E
(p)
tj

∂w
(p−1)
ba

x
(p−1)
ti .

(3.2.4)

Applying the chain rule to (2.3.5), we have

∂E
(p)
tj

∂w
(p−1)
ba

=
∂

∂w
(p−1)
ba

[(
Kp+1∑
η=1

E
(p+1)
tη w

(p)
ηj

)
g′p

((
x
(p)
tj

)net)]

= g′p

((
x
(p)
tj

)net)Kp+1∑
η=1

∂E
(p+1)
tη

∂w
(p−1)
ba

w
(p)
ηj

= g′p

((
x
(p)
tj

)net)Kp+1∑
η=1

[
∂E

(p+1)
tη

∂x
(p)
tb

∂x
(p)
tb

∂w
(p−1)
ba

+
∂E

(p+1)
tη

∂x
(p)
tb

∂x
(p)
tb

∂w
(p−1)
ba

]
w

(p)
ηj

= g′p

((
x
(p)
tj

)net)Kp+1∑
η=1

∂E
(p+1)
tη

∂x
(p)
tb

[
∂x

(p)
tb

∂(x
(p)
tb)net

∂(x
(p)
tb)net

∂w
(p−1)
ba

+
∂x

(p)
tb

∂(x
(p)
tb)net

∂(x
(p)
tb)net

∂w
(p−1)
ba

]
w

(p)
ηj

= g′p

((
x
(p)
tj

)net)Kp+1∑
η=1

∂E
(p+1)
tη

∂x
(p)
tb

g′p

((
x
(p)
tb

)net)
x
(p−1)
ta w

(p)
ηj .

(3.2.5)

In the above computation, we have used the fact that gp is holomorphic and hence

∂g′p

(
(x

(p)
tj)net

)
∂w

(p−1)
ba

= 0 and
∂x

(p)
tb

∂w
(p−1)
ba

= 0,
∂x

(p)
tb

∂(x
(p)
tb)net

= 0, and
∂(x

(p)
tb)net

∂w
(p−1)
ba

= 0. Combining (3.2.4)

and (3.2.5), we have:

∂

∂w
(p−1)
ba

(
∂E

∂w
(p−1)
ji

)∗
=

1

N

N∑
t=1

[
Kp+1∑
η=1

∂E
(p+1)
tη

∂x
(p)
tb

w
(p)
ηj

]

· g′p
((

x
(p)
tj

)net)
g′p

((
x
(p)
tb

)net)
x
(p−1)
ti x

(p−1)
ta .

(3.2.6)

Next, we derive a recursive rule for finding the partial derivatives
∂E

(p+1)
tη

∂x
(p)
tb

. For

20

computational purposes, an explicit formula for
∂E

(L)
tη

∂x
(L−1)
tb

is not necessary. What we

need is a recursive formula for these partial derivatives as will be apparent shortly.

Using (2.3.5) we have the following:

∂E
(p+1)
tη

∂x
(p)
tb

=
∂

∂x
(p)
tb

[(
Kp+2∑
α=1

E
(p+2)
tα w

(p+1)
αη

)
g′p+1

((
x
(p+1)
tη

)net)]

= g′p+1

((
x
(p+1)
tη

)net)Kp+2∑
α=1

∂E
(p+2)
tα

∂x
(p)
tb

w
(p+1)
αη

= g′p+1

((
x
(p+1)
tη

)net)Kp+2∑
α=1

Kp+1∑
β=1

∂E(p+2)
tα

∂x
(p+1)
tβ

∂x
(p+1)
tβ

∂x
(p)
tb

+
∂E

(p+2)
tα

∂x
(p+1)
tβ

∂x
(p+1)
tβ

∂x
(p)
tb

w(p+1)
αη

= g′p+1

((
x
(p+1)
tη

)net)Kp+2∑
α=1

Kp+1∑
β=1

∂E
(p+2)
tα

∂x
(p+1)
tβ

·

 ∂x
(p+1)
tβ

∂(x
(p+1)
tβ)net

∂(x
(p+1)
tβ)net

∂x
(p)
tb

+
∂x

(p+1)
tβ

∂(x
(p+1)
tβ)net

∂(x
(p+1)
tβ)net

∂x
(p)
tb

w(p+1)
αη

=

Kp+1∑
β=1

[
Kp+2∑
α=1

∂E
(p+2)
tα

∂x
(p+1)
tβ

w
(p+1)
αη

]
g′p+1

((
x
(p+1)
tη

)net)
g′p+1

((
x
(p+1)
tβ

)net)
w

(p)
βb .

(3.2.7)

This gives a recursive formula for computing the partial derivatives
∂E

(p+1)
tη

∂x
(p)
tb

. We

will combine the above calculations to give a more concise recursive algorithm for

computing the entries of the matrices Hww in Theorem 3.2.1, below.

Next we consider the Hessians Hww. Again we start with the output layer and

compute ∂

∂w
(L−1)
kq

(
∂E

∂w
(L−1)
lp

)∗
. Using the fact that ∂E

∂w
(L−1)
lp

does not depend on w
(L−1)
kq

if k 6= l, we see that the output layer Hessian H
w(L−1)w(L−1) is also block diagonal

with blocks  ∂

∂w
(L−1)
lq

(
∂E

∂w
(L−1)
lp

)∗
1≤p≤KL−1
1≤q≤KL−1

21

for l = 1, ..., C. Computing the entries in these blocks,

∂

∂w
(L−1)
lq

(
∂E

∂w
(L−1)
lp

)∗
=

∂

∂w
(L−1)
lq

[
1

N

N∑
t=1

(ytl − dtl)g′L
(
ynettl

)
x
(L−1)
tp

]

=
1

N

N∑
t=1

(ytl − dtl)
∂g′L

(
ynettl

)
∂w

(L−1)
lq

+ g′L

(
ynettl

) ∂ytl

∂w
(L−1)
lq

x(L−1)tp

where ∂ytl

∂w
(L−1)
lq

= 0, and

∂g′L

(
ynettl

)
∂w

(L−1)
lq

=
∂g′L

(
ynettl

)
∂ynettl

∂ynettl

∂w
(L−1)
lq

+
∂g′L

(
ynettl

)
∂ynettl

∂ynettl

∂w
(L−1)
lq

= g′′L

(
ynettl

)
x
(L−1)
tq .

Thus:

∂

∂w
(L−1)
kq

(
∂E

∂w
(L−1)
lp

)∗
=


1
N

∑N
t=1(ytl − dtl)g′′L

(
ynettl

)
x
(L−1)
tq x

(L−1)
tp if k = l,

0 if k 6= l.

(3.2.8)

The entries of the Hessian H
w(p−1)w(p−1) for the (p− 1)th layer can be computed

similarly. Using the cogradients (2.3.3) we have:

∂

∂w
(p−1)
ba

(
∂E

∂w
(p−1)
ji

)∗
=

1

N

N∑
t=1

∂E
(p)
tj

∂w
(p−1)
ba

x
(p−1)
ti , (3.2.9)

where j, b = 1, ..., Kp and i, a = 1, ..., Kp−1. Using (2.3.5),

∂E
(p)
tj

∂w
(p−1)
ba

=
∂

∂w
(p−1)
ba

[(
Kp+1∑
η=1

E
(p+1)
tη w

(p)
ηj

)
g′p

((
x
(p)
tj

)net)]

= g′p

((
x
(p)
tj

)net)Kp+1∑
η=1

∂E
(p+1)
tη

∂w
(p−1)
ba

w
(p)
ηj +

∂g′p

((
x
(p)
tj

)net)
∂w

(p−1)
ba

Kp+1∑
η=1

E
(p+1)
tη w

(p)
ηj ,

22

where

∂E
(p+1)
tη

∂w
(p−1)
ba

=
∂E

(p+1)
tη

∂x
(p)
tb

∂x
(p)
tb

∂w
(p−1)
ba

+
∂E

(p+1)
tη

∂x
(p)
tb

∂x
(p)
tb

∂w
(p−1)
ba

=
∂E

(p+1)
tη

∂x
(p)
tb

 ∂x
(p)
tb

∂
(
x
(p)
tb

)net ∂
(
x
(p)
tb

)net
∂w

(p−1)
ba

+
∂x

(p)
tb

∂
(
x
(p)
tb

)net ∂
(
x
(p)
tb

)net
∂w

(p−1)
ba


=
∂E

(p+1)
tη

∂x
(p)
tb

g′p

((
x
(p)
tb

)net)
x
(p−1)
ta

and

∂g′p

((
x
(p)
tj

)net)
∂w

(p−1)
ba

=

∂g′p

((
x
(p)
tj

)net)
∂
(
x
(p)
tj

)net ∂
(
x
(p)
tj

)net
∂w

(p−1)
ba

+

∂g′p

((
x
(p)
tj

)net)
∂
(
x
(p)
tj

)net
(
x
(p)
tj

)net
∂w

(p−1)
ba

=


g′′p

((
x
(p)
tj

)net)
x
(p−1)
ta if j = b,

0 if j 6= b,

so that

∂E
(p)
tj

∂w
(p−1)
ba

=



{[∑Kp+1

η=1

∂E
(p+1)
tη

∂x
(p)
tb

w
(p)
ηj

]
g′p

((
x
(p)
tj

)net)
g′p

((
x
(p)
tb

)net)
+
[∑Kp+1

η=1 E
(p+1)
tη w

(p)
ηj

]
g′′p

((
x
(p)
tj

)net)}
x
(p−1)
ta if j = b,[∑Kp+1

η=1

∂E
(p+1)
tη

∂x
(p)
tb

w
(p)
ηj

]
g′p

((
x
(p)
tj

)net)
g′p

((
x
(p)
tb

)net)
x
(p−1)
ta if j 6= b.

(3.2.10)

23

Combining (3.2.9) and (3.2.10), we get

∂

∂w
(p−1)
ba

(
∂E

∂w
(p−1)
ji

)∗

=



1
N

∑N
t=1

{[∑Kp+1

η=1

∂E
(p+1)
tη

∂x
(p)
tb

w
(p)
ηj

]
g′p((x

(p)
tj)net)g′p((x

(p)
tb)net)

+
[∑Kp+1

η=1 E
(p+1)
tη w

(p)
ηj

]
g′′p((x

(p)
tj)net)

}
x
(p−1)
ti x

(p−1)
ta if j = b,

1
N

∑N
t=1

{[∑Kp+1

η=1

∂E
(p+1)
tη

∂x
(p)
tb

w
(p)
ηj

]
g′p((x

(p)
tj)net)g′p((x

(p)
tb)net)

}
·x(p−1)ti x

(p−1)
ta if j 6= b,

(3.2.11)

where j, b = 1, ..., Kp and i, a = 1, ..., Kp+1, and the partial derivatives
∂E

(p+1)
tη

∂x
(p)
tb

can

be computed recursively:

24

∂E
(p+1)
tη

∂x
(p)
tb

=
∂

∂x
(p)
tb

[(
Kp+2∑
α=1

E
(p+2)
tα w

(p+1)
αη

)
g′p+1

((
x
(p+1)
tη

)net)]

= g′p+1

((
x
(p+1)
tη

)net)Kp+2∑
α=1

∂E
(p+2)
tα

∂x
(p)
tb

w
(p+1)
αη +

∂g′p+1

((
x
(p+1)
tη

)net)
∂x

(p)
tb

Kp+2∑
α=1

E
(p+2)
tα w

(p+1)
αη

= g′p+1

((
x
(p+1)
tη

)net)Kp+2∑
α=1

Kp+1∑
β=1

∂E(p+2)
tα

∂x
(p+1)
tβ

∂x
(p+1)
tβ

∂x
(p)
tb

+
∂E

(p+2)
tα

∂x
(p+1)
tβ

∂x
(p+1)
tβ

∂x
(p)
tb

w(p+1)
αη

+

∂g
′
p+1

((
x
(p+1)
tη

)net)
∂
(
x
(p+1)
tη

)net ∂
(
x
(p+1)
tη

)net
∂x

(p)
tb

+

∂g′p+1

((
x
(p+1)
tη

)net)
∂
(
x
(p+1)
tη

)net ∂
(
x
(p+1)
tη

)net
∂x

(p)
tb

Kp+2∑
α=1

E
(p+2)
tα w

(p+1)
αη

= g′p+1

((
x
(p+1)
tη

)net)Kp+2∑
α=1

Kp+1∑
β=1

∂E
(p+2)
tα

∂x
(p+1)
tβ

 ∂x
(p+1)
tβ

∂
(
x
(p+1)
tβ

)net ∂
(
x
(p+1)
tβ

)net
∂x

(p)
tb

+
∂x

(p+1)
tβ

∂
(
x
(p+1)
tβ

)net ∂
(
x
(p+1)
tβ

)net
∂x

(p)
tb

w(p+1)
αη

+ g′′p+1

((
x
(p+1)
tη

)net)
w

(p)
ηb

Kp+2∑
α=1

E
(p+2)
tα w

(p+1)
αη

= g′p+1

((
x
(p+1)
tη

)net)Kp+2∑
α=1

Kp+1∑
β=1

∂E
(p+2)
tα

∂x
(p+1)
tβ

g′p+1

((
x
(p+1)
tβ

)net)
w

(p)
βb w

(p+1)
αη

+ g′′p+1

((
x
(p+1)
tη

)net)
w

(p)
ηb

Kp+2∑
α=1

E
(p+2)
tα w

(p+1)
αη

=

Kp+1∑
β=1

Kp+2∑
α=1

∂E
(p+2)
tα

∂x
(p+1)
tβ

w
(p+1)
αη

 g′p+1

((
x
(p+1)
tη

)net)
g′p+1

((
x
(p+1)
tβ

)net)
w

(p)
βb

+

[
Kp+2∑
α=1

E
(p+2)
tα w

(p+1)
αη

]
g′′p+1

((
x
(p+1)
tη

)net)
w

(p)
ηb .

25

To summarize the above calculation, we have

∂E
(p+1)
tη

∂x
(p)
tb

=

Kp+1∑
β=1

Kp+2∑
α=1

∂E
(p+2)
tα

∂x
(p+1)
tβ

w
(p+1)
αη

 g′p+1

((
x
(p+1)
tη

)net)
g′p+1

((
x
(p+1)
tβ

)net)
w

(p)
βb

+

[
Kp+2∑
α=1

E
(p+2)
tα w

(p+1)
αη

]
g′′p+1

((
x
(p+1)
tη

)net)
w

(p)
ηb .

(3.2.12)

We now summarize the formulas we have derived in the following theorem.

Theorem 3.2.1 (Newton Backpropagation Algorithm for Holomorphic Neural Net-

works, [30], Theorem 4.1). The weight updates for the holomorphic MLPs with ac-

tivation functions satisfying

g(z) = g(z),

p = 1, ..., L, using the backpropagation algorithm with Newton’s method are given by

∆w(p−1) =
(
Hw(p−1)w(p−1) −H

w(p−1)w(p−1)H
−1
w(p−1)w(p−1)

H
w(p−1)w(p−1)

)−1
·
[
H

w(p−1)w(p−1)H
−1
w(p−1)w(p−1)

(
∂E

∂w(p−1)

)∗
−
(

∂E

∂w(p−1)

)∗]
,

(3.2.13)

where:

1. the entries of the Hessian matrices Hw(p−1)w(p−1) for p = 1, ..., L are given by

∂

∂w
(p−1)
ba

(
∂E

∂w
(p−1)
ji

)∗
=

1

N

N∑
t=1

γ
(p)
tjbx

(p−1)
ti x

(p−1)
ta (3.2.14)

for j, b = 1, ..., Kp and i, a = 1, ..., Kp−1, where the γ
(p)
tjb are defined for t =

1, ..., N recursively on p by

γ
(L)
tkl =

 g′L(ynettl)g′L(ynettl) if k = l,

0 if k 6= l,

26

for k, l = 1, ..., C, and for p = 1, ..., L− 1,

γ
(p)
tjb =

[
Kp+1∑
η=1

Kp+1∑
β=1

γ
(p+1)
tηβ w

(p)
ηj w

(p)
βb

]
g′p

(
(x

(p)
tj)net

)
g′p

(
(x

(p)
tb)net

)
(3.2.15)

for j, b = 1, ..., Kp+1,

2. the entries of the Hessian matrices H
w(p−1)w(p−1) for p = 1, ..., L are given by

∂

∂w
(p−1)
ba

(
∂E

∂w
(p−1)
ji

)∗
=

1

N

N∑
t=1

(
ψ

(p)
tjb + θ

(p)
tjb

)
x
(p−1)
ti x

(p−1)
ta (3.2.16)

for j, b = 1, ..., Kp and i, a = 1, ..., Kp−1, where the θ
(p)
tjb are defined for t =

1, ..., N by

θ
(L)
tkl =

 (ytl − dtl)g′′L
(
ynettl

)
if k = l,

0 if k 6= l,

for k, l = 1, ..., C, and for p = 1, ..., L− 1,

θ
(p)
tjb =


[∑Kp+1

η=1 E
(p+1)
tη w

(p)
ηj

]
g′′p

((
x
(p)
tj

)net)
if j = b,

0 if j 6= b,

(3.2.17)

for j, b = 1, ..., Kp+1, where the E
(p)
tη are given by (2.3.4) and (2.3.5), and the

ψ
(p)
tjb are defined for t = 1, ..., N recursively on p by ψ

(L)
tkl = 0 for k, l = 1, ..., C,

and for p = 1, ..., L− 1,

ψ
(p)
tjb =

[
Kp+1∑
η=1

Kp+1∑
β=1

(
ψ

(p+1)
tηβ w

(p)
βb + θ

(p+1)
tηβ w

(p)
ηb

)
w

(p)
ηj

]
g′p

((
x
(p)
tj

)net)
g′p

((
x
(p)
tb

)net)
(3.2.18)

for j, b = 1, ..., Kp+1, and

3. for the other two Hessian matrices we have H
w(p−1)w(p−1) = H

w(p−1)w(p−1) and

H
w(p−1)w(p−1) = Hw(p−1)w(p−1) .

27

Proof. 1. Setting γ
(L)
tkl as defined above, Equation (3.2.14) follows immediately

from (3.2.3). For the hidden layer Hessian matrix entries, set

γ
(p)
tjb =

[
Kp+1∑
η=1

∂E
(p+1)
tη

∂x
(p)
tb

w
(p)
ηj

]
g′p

(
(x

(p)
tj)net

)
g′p

(
(x

(p)
tb)net

)
(3.2.19)

in (3.2.6), giving us (3.2.14). Then using (3.2.7) we have

∂E
(p+1)
tη

∂x
(p)
tb

=

Kp+1∑
β=1

γ
(p+1)
tηβ w

(p)
βb . (3.2.20)

So substituting (3.2.20) into (3.2.19) we get the recursive formula (3.2.15).

2. The formula (3.2.16) for p = L follows directly from the way we defined θ
(L)
tkl ,

ψ
(L)
tkl , and equation (3.2.8). Next, define the θ

(p)
tjb as above, and set

ψ
(p)
tjb =

[
Kp+1∑
η=1

∂E
(p+1)
tη

∂x
(p)
tb

w
(p)
ηj

]
g′p

((
x
(p)
tj

)net)
g′p

((
x
(p)
tb

)net)
(3.2.21)

in (3.2.11). Substituting (3.2.21) and (3.2.17) into (3.2.11) gives us (3.2.16).

For the ψ
(p)
tjb , using (3.2.12) with our definition of the ψ

(p)
tjb in (3.2.21) we have:

∂E
(p+1)
tη

∂x
(p)
tb

=

Kp+1∑
β=1

(
ψ

(p+1)
tηβ w

(p)
βb + θ

(p+1)
tηβ w

(p)
ηb

)
(3.2.22)

so substituting (3.2.22) into (3.2.21) we get (3.2.18).

3.3 Backpropagation Using the Pseudo-Newton

Method

To simplify the computation in the implementation of Newton’s method, we can

use the pseudo-Newton algorithm, which is an alternative algorithm also known to

28

provide good quadratic convergence. For the pseudo-Newton algorithm, we take

H
w(p−1)w(p−1) = 0 = H

w(p−1)w(p−1) in (3.2.13), thus reducing the weight updates to

∆w(p−1) = −H−1
w(p−1)w(p−1)

(
∂E

∂w(p−1)

)∗
.

Convergence using the pseudo-Newton algorithm will generally be faster than gra-

dient descent. The trade off for computational efficiency over Newton’s method is

somewhat slower convergence, though if the activation functions in the holomorphic

MLP are in addition onto, the performance of the pseudo-Newton versus Newton

algorithms should be similar [29].

Corollary 3.3.1 (Pseudo-Newton Backpropagation Algorithm for Holomorphic

Neural Networks, [30], Corollary 5.1). The weight updates for the holomorphic MLP

with activation functions satisfying

g(z) = g(z),

p = 1, ..., L, using the backpropagation algorithm with the pseudo-Newton’s method

are given by

∆w(p−1) = −H−1
w(p−1)w(p−1)

(
∂E

∂w(p−1)

)∗
,

where the entries of the Hessian matrices Hw(p−1)w(p−1) for 1 ≤ p ≤ L are given by

(3.2.14) in Theorem 3.2.1.

3.4 The One-Step Newton Steplength Algorithm

for Real-Valued Complex Functions

A significant problem encountered with Newton’s method and other minimization

algorithms is the tendency of the iterates to “overshoot.” If this happens, the it-

erates may not decrease the function value at each step [38]. For functions on real

domains, it is known that for any minimization algorithm, careful choice of the

sequence of steplengths via various steplength algorithms will guarantee a descent

method. Steplength algorithms for minimization of real-valued functions on complex

29

domains have been discussed in the literature [7,21,35,47]. In [35], the problem was

addressed by imposing unitary conditions on the input vectors. In [47], steplength

algorithms were proposed for the BFGS method, which is an approximation to New-

ton’s method. With regard to applications in neural networks, variable steplength

algorithms exist for least mean square error algorithms, and these algorithms have

been adapted to the gradient descent backpropagation algorithm for fully complex-

valued neural networks with analytic activation functions [7, 18]. Fully adaptive

gradient descent algorithms for complex-valued neural networks have also been pro-

posed [21]. However, these algorithms do not apply to the Newton backpropagation

algorithm.

We provide a steplength algorithm that guarantees convergence of Newton’s

method for real-valued complex functions. Let f : Ω ⊆ Ck → R, and consider a

general minimization algorithm with sequence of iterates {z(n)} given recursively

by

z(n+ 1) = z(n)− µ(n)p(n), n = 0, 1, ..., (3.4.1)

where p(n) ∈ Ck such that−p(n) is the direction from the nth iterate to the (n+1)th

iterate and µ(n) ∈ R is the learning rate or steplength which we allow to vary

with each step. We are interested in guaranteeing that the minimization algorithm

is a descent method, that is, that at each stage of the iteration the inequality

f(z(n + 1)) ≤ f(z(n)) for n = 0, 1, ... holds. Here, we provide details of the proof

of the one-step Newton steplength algorithm for the minimization of real-valued

functions on complex domains. Our treatment follows the exposition in [38] with

notation employed from [29], with the application to the complex Newton algorithm

providing a proof of Theorem 3.4.4.

Lemma 3.4.1. Suppose that f : Ω ⊆ Ck → R is R-differentiable at z ∈ int(Ω) and

that there exists p ∈ Ck such that Re
(
∂f
∂z

(z)p
)
> 0. Then there exists a δ > 0 such

that f(z− µp) < f(z) for all µ ∈ (0, δ).

Proof. Let z = x + iy ∈ int(Ω) with x,y ∈ Rk. The function f : Ω ⊆ Ck → R
is R-differentiable at z if and only if f : D ⊆ R2k → R is (Frechet) differentiable

at (x,y)T ∈ int(D), where D is defined as in (3.1.3) and the (Frechet) derivative

(equal to the Gateau derivative) at (x,y)T is given by
(
∂f
∂x
, ∂f
∂y

)
. Suppose there

exists p = pR + ipI ∈ Ck with pR,pI ∈ Rk such that Re
(
∂f
∂z

(z)p
)
> 0. Then using

the coordinate and cogradient transformations (3.1.1) and (3.1.2) and the fact that

30

f is real-valued, we have the following ([29], pg. 34):

(
∂f

∂x
(x,y),

∂f

∂y
(x,y)

) pR

pI

 =

(
∂f

∂z
(z, z),

∂f

∂z
(z, z)

)
J · 1

2
J∗

 p

p


=
∂f

∂z
(z, z)p +

∂f

∂z
(z, z)p =

∂f

∂z
(z)p +

∂f

∂z
(z)p = 2Re

(
∂f

∂z
(z)p

)
> 0.

(3.4.2)

By (8.2.1) in [38] there exists a δ > 0 such that f((x,y)−µ(pR,pI)) < f(x,y) for all µ ∈
(0, δ). Viewing f again as a function on the complex domain Ω, this is equivalent to

the statement that f(z− µp) < f(z) for all µ ∈ (0, δ).

We define a stationary point of f to be a stationary point in the sense of the

function f(z) = f(x,y) : D ⊆ R2k → R. If ẑ = x̂ + iŷ with x̂, ŷ ∈ Rk, then

ẑ is a stationary point of f if and only if ∂f
∂x

(x̂, ŷ) = ∂f
∂y

(x̂, ŷ) = 0. Note that if

Re
(
∂f
∂z

(z)
)
6= 0 for z ∈ int(Ω) (i.e. z is not a stationary point), then there always

exists a p ∈ Ck such that Re
(
∂f
∂z

(z)p
)
> 0. So this result is always true in the

real domain, and the proof of Lemma 3.4.1 only translates the result from the real

domain to the complex domain.

For the sequence of iterates {z(n)} given by (3.4.1), we can find a sequence

{p(n)} such that Re
(
∂f
∂z

(z(n))p(n)
)
> 0 for n = 0, 1, By Lemma 3.4.1, for

each n there is at least one µ(n) ∈ (0,∞) such that f(z(n)− µ(n)p(n)) < f(z(n)).

At each step in the algorithm we would like to make the largest descent in the

value of f as possible, so finding a desirable steplength µ(n) to guarantee descent

translates into the real one-dimensional problem of minimizing f(z(n)− µp(n)) as

a function of µ. For each n let z(n) = x(n) + iy(n) and p(n) = pR(n) + ipI(n) with

x(n),y(n),pR(n),pI(n) ∈ Rk and write

f(z(n)− µp(n)) = f((x(n),y(n))− µ(pR(n),pI(n))).

Suppose f is twice R-differentiable on Ω. As an approximate solution to this one-

dimensional minimization problem we take µ(n) to be the minimizer of the second-

31

degree Taylor polynomial (in µ)

T2(µ) = f(x(n),y(n))− µ
(
∂f

∂x
(x(n),y(n)),

∂f

∂y
(x(n),y(n))

) pR(n)

pI(n)


+

1

2
µ2

 pR(n)

pI(n)


T

Hrr(x(n),y(n))

 pR(n)

pI(n)


(3.4.3)

where Hrr denotes the real Hessian matrix

Hrr =

(
∂

∂x
,
∂

∂y

)(
∂f

∂x
,
∂f

∂y

)T
.

If  pR(n)

pI(n)


T

Hrr(x(n),y(n))

 pR(n)

pI(n)

 > 0

then T2 has a minimum at

µ(n) =

(
∂f
∂x

(x(n),y(n)), ∂f
∂y

(x(n),y(n))
) pR(n)

pI(n)


 pR(n)

pI(n)


T

Hrr(x(n),y(n))

 pR(n)

pI(n)


. (3.4.4)

(Note this is equivalent to taking one step toward minimizing f over µ via the real

Newton algorithm.) Using a computation similar to (3.4.2) in the proof of Lemma

3.4.1, the denominator of (3.4.4) translates back into complex coordinates as ([29],

pg. 38):

 pR(n)

pI(n)


T

Hrr(x(n),y(n))

 pR(n)

pI(n)


= 2Re

{
p(n)∗Hzz(z(n))p(n) + p(n)∗Hzz(z(n))p(n)

}
.

(3.4.5)

32

Combining (3.4.4) with (3.4.5) and (3.4.2), if

Re
{

p(n)∗Hzz(z(n))p(n) + p(n)∗Hzz(z(n))p(n)
}
> 0 (3.4.6)

we can take the approximate solution to the minimization problem to be

µ(n) =
Re
{
∂f
∂z

(z(n))p(n)
}

Re
{

p(n)∗Hzz(z(n))p(n) + p(n)∗Hzz(z(n))p(n)
} . (3.4.7)

Notice that (3.4.6) is in fact both a necessary and sufficient condition to obtain an

approximate solution using (3.4.3) to the one-dimensional minimization problem of

f(z(n)− µp(n)) over µ, for if

Re
{

p(n)∗Hzz(z(n))p(n) + p(n)∗Hzz(z(n))p(n)
}
< 0,

the Taylor polynomial (3.4.3) attains only a maximum.

Since defining the sequence of steplengths {µ(n)} by (3.4.7) is only an approx-

imate method, to guarantee the descent of the iteration, we consider further mod-

ification of the steplengths. From Lemma 3.4.1, it is clear that we can choose a

sequence of underrelaxation factors {ω(n)} such that

f(z(n)− ω(n)µ(n)p(n)) < f(z(n))

which guarantees that the iteration

z(n+ 1) = z(n)− ω(n)µ(n)p(n), n = 0, 1, ... (3.4.8)

is a descent method. We describe a way to choose the sequence {ω(n)}.
Suppose Ω is open and let z(0) ∈ Ω. The level set of z(0) under f on Ω is defined

by

LCk(f(z(0))) = {z ∈ Ω | f(z) ≤ f(z(0))} , (3.4.9)

and L0
Ck(f(z(0))) is the path-connected component of LCk(f(z(0)) containing z(0).

Let ‖ · ‖Ck : Ck → R denote the Euclidean norm on Ck, with ‖z‖Ck =
√

z∗z.

33

Lemma 3.4.2 (Complex Version of the One-Step Newton Steplength Algorithm).

Let f : Ω ⊆ Ck → R be twice-continuously R-differentiable on the open set Ω.

Suppose L0
Ck(f(z(0))) is compact for z(0) ∈ Ω and that

η0h
∗h ≤ Re{h∗Hzz(z)h + h∗Hzz(z)h} ≤ η1h

∗h (3.4.10)

for all z ∈ L0
Ck(f(z(0))) and h ∈ Ck, where 0 < η0 ≤ η1. Fix ε ∈ (0, 1]. Define the

sequence {z(n)} using (3.4.8) with p(n) 6= 0 satisfying

Re

(
∂f

∂z
(z(n))(p(n))

)
≥ 0, (3.4.11)

µ(n) defined by (3.4.7), and

0 < ε ≤ ω(n) ≤ 2

γ(n)
− ε, (3.4.12)

where, setting z = z(n) and p = p(n),

γ(n)

= sup

{
Re{p∗Hzz(z− µp)p + p∗Hzz(z− µp)p}

Re{p∗Hzz(z)p + p∗Hzz(z)p}

∣∣∣∣ µ > 0, f(z− νp) < f(z)

for all ν ∈ (0, µ]

 .

(3.4.13)

Then {z(n)} ⊆ L0
Ck(f(z(0))),

lim
n→∞

Re
(
∂f
∂z

(z(n))(p(n))
)

‖p(n)‖Ck
= 0,

and limn→∞(z(n)− z(n+ 1)) = 0.

Proof. Let f : Ω ⊆ Ck → R be twice-continuously R-differentiable on the open set

Ω, and define D as in (3.1.3). Then D is open and f(x,y) : D ⊆ R2k → R is twice-

continuously differentiable on D. Let z(0) = x(0) + iy(0) ∈ Ω with x(0),y(0) ∈ Rk

34

and set

L0
R2k(f(x(0),y(0)) =


 x

y

 ∈ D
∣∣∣∣∣∣∣

x,y ∈ Rk,

z = x + iy ∈ L0
Ck(f(z(0)))

 .

It is clear that since L0
Ck(f(z(0))) is assumed to be compact, the real level set

L0
R2k(f(x(0),y(0)) is also compact.

Next, observe that for z = x + iy ∈ Ck with x,y ∈ Rk, if ‖ · ‖R2k : R2k → R
denotes the Euclidean norm on R2k, then

‖z‖2Ck = z∗z =

∥∥∥∥∥∥∥
 x

y


∥∥∥∥∥∥∥
2

R2k

.

Using this fact and (3.4.5) we see that for z = x + iy ∈ L0
Ck(f(z(0))) and h =

hR + ihI ∈ Ck with x,y,hR,hI ∈ Rk the condition (3.4.10) is equivalent to

η′0

∥∥∥∥∥∥∥
 hR

hI


∥∥∥∥∥∥∥
2

R2k

≤

 hR

hI


T

Hrr(x,y)

 hR

hI

 ≤ η′1

∥∥∥∥∥∥∥
 hR

hI


∥∥∥∥∥∥∥
2

R2k

,

where again Hrr denotes the real Hessian matrix of f(x,y) : D ⊆ R2k → R, and

0 < η′0 = η0
2
≤ η1

2
= η′1.

We have already seen in the proof of Lemma 3.4.1 (see the calculation (3.4.2))

that the condition (3.4.11) on the vectors p(n) = pR(n)+ipI(n) with pR(n),pI(n) ∈
Rk is equivalent to the real condition

(
∂f

∂x
(x(n),y(n)),

∂f

∂y
(x(n),y(n))

) pR(n)

pI(n)

 ≥ 0.

We have also seen that our choice (3.4.7) for µ(n) is equal to (3.4.4).

35

Finally, for ε ∈ (0, 1], using (3.4.5) again we have the real analogue of (3.4.13):

γ(n) = sup



 pR(n)

pI(n)


T

Hrr((x(n),y(n))− µ(pR(n),pI(n)))

 pR(n)

pI(n)


 pR(n)

pI(n)


T

Hrr(x(n),y(n))

 pR(n)

pI(n)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
µ > 0, f((x(n),y(n))− ν(pR(n),pI(n))) < f(x(n),y(n))

for all ν ∈ (0, µ]

 .

By (3.4.2),

(
∂f
∂x

(x(n),y(n)), ∂f
∂y

(x(n),y(n))
) pR(n)

pI(n)


∥∥∥∥∥∥∥
 pR(n)

pI(n)


∥∥∥∥∥∥∥
R2k

=
2Re

(
∂f
∂z

(z(n))p(n)
)

‖p(n)‖Ck
,

so applying (14.2.9) in [38],
{

(x(n),y(n))T
}
⊆ L0

R2k(f(x(0),y(0))),

lim
n→∞

(
∂f
∂x

(x(n),y(n)), ∂f
∂y

(x(n),y(n))
) pR(n)

pI(n)


∥∥∥∥∥∥∥
 pR(n)

pI(n)


∥∥∥∥∥∥∥
R2k

= 0,

and

lim
n→∞


 x(n)

y(n)

−
 x(n+ 1)

y(n+ 1)


 = 0.

Translating back to complex coordinates yields the desired conclusion.

Assume that there is a unique stationary point ẑ in L0
Ck(f(z(0)). We desire to

36

guarantee that the sequence of iterates {z(n)} converges to ẑ. Before we give condi-

tions for convergence of the complex version of the one-step Newton steplength algo-

rithm, recall that the root-convergence factors (R-factors) of a sequence {z(n)} ⊆ Ck

that converges to ẑ ∈ Ck are

Rp{z(n)} =

 lim supn→∞ ‖z(n)− ẑ‖1/nCk if p = 1,

lim supn→∞ ‖z(n)− ẑ‖1/p
n

Ck if p > 1,
(3.4.14)

and the sequence is said to have at least an R-linear rate of convergence ifR1{z(n)} <
1.

Lemma 3.4.3 (Convergence of the Complex Version of the One-Step Newton

Steplength Algorithm). Let f : Ω ⊆ Ck → R be twice-continuously R-differentiable

on the open convex set Ω and assume that L0
Ck(f(z(0)) is compact for z(0) ∈ Ω.

Assume the notation as in Lemma 3.4.2. Suppose for all z ∈ Ω,

Re{h∗Hzz(z)h + h∗Hzz(z)h} > 0 for all h ∈ Ck, (3.4.15)

and assume that the p(n) are nonzero vectors satisfying

Re

(
∂f

∂z
(z(n))p(n)

)
≥ C

∥∥∥∥∥
(
∂f

∂z
(z(n))

)T∥∥∥∥∥
Ck
‖p(n)‖Ck , n = 0, 1, ... (3.4.16)

for some fixed C > 0. Assume f has a unique stationary point ẑ in L0
Ck(f(z(0)).

Then limn→∞ z(n) = ẑ, and the rate of convergence is at least R-linear.

Proof. As in the proof of Lemma 3.4.2, given the assumptions of this lemma, f :

D ⊆ R2k → R is twice-continuously (Frechet) differentiable on the open convex set

D, and the set L0
R2k(f(x(0),y(0)) is compact for z(0) = x(0) + iy(0) ∈ Ω, where

x(0),y(0) ∈ Rk.

Using (3.4.5), for z = x + iy ∈ Ω the condition (3.4.15) is equivalent to the

condition

 h1

h2


T

Hrr(x,y)

 h1

h2

 > 0 for all

 h1

h2

 ∈ R2k with h1,h2 ∈ Rk.

37

Thus for all (x,y)T ∈ D, the real Hessian Hrr(x,y) of f is positive definite.

Also as in the proof of Lemma 3.4.2, the real versions of the definitions of µ(n)

and ω(n) given by (3.4.7) and (3.4.12), respectively, satisfy the real one-step Newton

steplength algorithm (14.2.9) in [38].

Finally, for z = x + iy ∈ Ck with x,y ∈ Rk, a simple calculation shows that

2

∥∥∥∥∥
(
∂f

∂z
(z)

)T∥∥∥∥∥
Ck

=

∥∥∥∥∥
(
∂f

∂x
(x,y),

∂f

∂y
(x,y)

)T∥∥∥∥∥
R2k

,

so using the calculation (3.4.2) in the proof of Lemma 3.4.1, the condition (3.4.16)

for the nonzero vectors p(n) = pR(n) + ipI(n) with pR(n),pI(n) ∈ Rk is equivalent

to the real condition

(
∂f

∂x
(x,y),

∂f

∂y
(x,y)

) pR(n)

pI(n)


≥ C

∥∥∥∥∥
(
∂f

∂x
(x,y),

∂f

∂y
(x,y)

)T∥∥∥∥∥
R2k

∥∥∥∥∥∥∥
 pR(n)

pI(n)


∥∥∥∥∥∥∥
R2k

.

Thus we may apply Theorem (14.3.6) in [38] and transfer back to complex coor-

dinates to obtain that limn→∞ z(n) = ẑ, where ẑ = x̂ + iŷ with x̂, ŷ ∈ Rk is the

unique stationary point of f in L0
Ck(f(z(0))), and the rate of convergence is at least

R-linear.

The following theorem gives the one-step Newton steplength algorithm to adjust

the sequence of steplengths for minimization of a real-valued complex function using

Newton’s method.

Theorem 3.4.4 (Convergence of the Complex Newton Algorithm with Complex

One-Step Newton Steplengths, [30], Theorem 6.1). Let f : Ω ⊆ Ck → R be twice-

continuously R-differentiable on the open convex set Ω and assume that L0
Ck(f(z(0)))

is compact for z(0) ∈ Ω. Suppose for all z ∈ Ω,

Re{h∗Hzz(z)h + h∗Hzz(z)h} > 0 for all h ∈ Ck.

Assume f has a unique stationary point ẑ ∈ L0
Ck(f(z(0))), and fix ε ∈ (0, 1]. Con-

38

sider the iteration

z(n+ 1) = z(n)− ω(n)µ(n)p(n), n = 0, 1, ..., (3.4.17)

where the p(n) are the nonzero complex Newton updates

p(z(n)) =−
[
Hzz(z(n))−Hzz(z(n))Hzz(z(n))−1Hzz(z(n))

]−1
·
[
Hzz(z(n))Hzz(z(n))−1

(
∂f

∂z
(z(n))

)∗
−
(
∂f

∂z
(z(n))

)∗]
,

(3.4.18)

the steplengths µ(n) are given by

µ(n) =
Re{∂f

∂z
(z(n))p(n)}

Re{p(n)∗Hzz(z(n))p(n) + p(n)∗Hzz(z(n))p(n)}
,

and the underrelaxation factors ω(n) satisfy

0 ≤ ε ≤ ω(n) ≤ 2

γ(n)
− ε, (3.4.19)

where, taking z = z(n) and p = p(n),

γ(n)

= sup

{
Re{p∗Hzz(z− µp)p + p∗Hzz(z− µp)p}

Re{p∗Hzz(z)p + p∗Hzz(z)p}

∣∣∣∣ µ > 0, f(z− νp) < f(z)

for all ν ∈ (0, µ]

 .

(3.4.20)

Then limn→∞ z(n) = ẑ, and the rate of convergence is at least R-linear.

Proof. We apply the previous results to the complex Newton algorithm. Let f :

Ω ⊆ Ck → R be twice-continuously R-differentiable on the open convex set Ω. Let

z(0) ∈ Ω and assume that the level set L0
Ck(f(z(0))) is compact. Suppose for all

39

z ∈ Ω,

Re{h∗Hzz(z)h + h∗Hzz(z)h} > 0 for all h ∈ Ck.

As in the proof of Lemma 3.4.3, this condition is equivalent to the positive def-

initeness of the real Hessian matrix Hrr(x,y) of f for all (x,y)T ∈ D. Since f

is twice-continuously R-differentiable, the Hessian operator Hrr(·) : D ⊆ R2k →
L(R2k) (where L(R2k) denotes the set of linear operators R2k → R2k) is contin-

uous. Restricting to the compact set L0
R2k(f(x(0),y(0))) we have that Hrr(·) :

L0
R2k(f(x(0),y(0))) → L(R2k) is a continuous mapping such that Hrr(x,y) is pos-

itive definite for each vector (x,y)T ∈ L0
R2k(f(x(0),y(0))). For each (x,y)T ∈

L0
R2k(f(x(0),y(0))) set

p̃(x,y) = Hrr(x,y)−1
(
∂f

∂x
(x,y),

∂f

∂y
(x,y)

)T
.

By Lemma (14.4.1) in [38], there exists a constant C > 0 such that

(
∂f

∂x
(x,y),

∂f

∂y
(x,y)

)
p̃(x,y) ≥ C

∥∥∥∥∥
(
∂f

∂x
(x,y),

∂f

∂y
(x,y)

)T∥∥∥∥∥
R2k

‖p̃(x,y)‖R2k

(3.4.21)

for all (x,y)T ∈ L0
R2k(f(x(0),y(0))). As in the proof of Lemma 3.4.3, (3.4.21) is

equivalent to the inequality

Re

(
∂f

∂z
(z)p(z)

)
≥ C

∥∥∥∥∥
(
∂f

∂z
(z)

)T∥∥∥∥∥
Ck
‖p(z)‖Ck

for all z ∈ L0
R2k(f(x(0),y(0))), where

p̃(z) = −
[
Hzz(z)−Hzz(z)Hzz(z)−1Hzz(z)

]−1
·
[
Hzz(z)Hzz(z)−1

(
∂f

∂z
(z)

)∗
−
(
∂f

∂z
(z)

)∗]

is obtained from p̃(x,y) (where z = x + iy) using the coordinate and cogradi-

ent transformations (3.1.1) and (3.1.2), respectively [29]. Suppose f has a unique

40

stationary point ẑ in L0
Ck(f(z(0))). Consider the iteration

z(n+ 1) = z(n)− ω(n)µ(n)p(n), n = 0, 1, ...,

where the p(n) are the nonzero complex Newton updates defined by p(n) = p̃(z(n)),

and assume the notation of Lemma 3.4.2. Then {z(n)} ⊆ L0
Ck(f(z(0))). The vectors

p(n) satisfy (3.4.16), so by Lemma 3.4.3 the sequence of iterates {z(n)} converges

to ẑ, and the rate of convergence is at least R-linear. Thus we have proved Theorem

3.4.4.

To apply the one-step Newton steplength algorithm to the Newton’s method or

pseudo-Newton’s method backpropagation algorithm for complex-valued holomor-

phic multilayer perceptrons, at the nth iteration in the training process, the one-step

Newton steplength for the pth step in the backpropagation (1 ≤ p ≤ L) is

µp(n) =
−Re

(
∂E
∂w

∆w
)

Re
{

(∆w)∗Hww∆w + (∆w)∗Hww∆w
} , (3.4.22)

where ∆w = ∆w(p−1) is the weight update for the pth layer of the network given

by Theorem 3.2.1 or Corollary 3.3.1, respectively, and w = w(p−1). (Recall (2.3.2),

so that here p(n) = −∆w(p−1) in (3.4.17).) For the pseudo-Newton’s method back-

propagation, we set H
w(p−1)w(p−1) = H

w(p−1)w(p−1) = 0 in (3.4.18) to obtain the

pseudo-Newton updates ∆w(p−1) given in Corollary 3.3.1, but leave H
w(p−1)w(p−1)

as calculated in Theorem 3.2.1 in (3.4.22). In theory, for the nth iteration in the

training process, we should choose the underrelaxation factor ωp(n) for the pth step

in the backpropagation (1 ≤ p ≤ L) according to (3.4.19) and (3.4.20). However,

in practical application it suffices to take the underrelaxation factors to be constant

and they may be chosen experimentally to yield convergence of the error function

(see our results in Section VII). It is also not necessary in practical application to

verify all the conditions of Theorem 3.4.4. In particular we may assume that the

error function has a stationary point sufficiently close to the initial weights since

the initial weights were chosen specifically to be “nearby” a stationary point, and

that the stationary point is unique in the appropriate compact level set of the initial

weights since the set of zeros of the error function has measure zero.

41

3.5 Experiments

To test the efficiency of the algorithms in the previous sections, we will compare the

results of applying the gradient descent method, Newton’s method, and the pseudo-

Newton’s method to a holomorphic MLP trained with data from the real-valued

exclusive-or (XOR) problem (see Table 3.1). Note that the complex-valued XOR

problem has different criteria for the data set [42]. We use the real-valued XOR

problem as we desire a complex-valued network to process real as well as complex

data.

The XOR problem is frequently encountered in the literature as a test case

for backpropagation algorithms [39]. A multilayer network is required to solve it:

without hidden units the network is unable to distinguish overlapping input patterns

which map to different output patterns, e.g. (0, 0) and (1, 0) [45]. We use a two-

layer network with m = 2 input nodes, K = 4 hidden nodes, and C = 1 output

nodes. Any Boolean function of m variables can be trained to a two-layered real-

valued neural network with 2m hidden units. Modeling after the real case we choose

K = 2m, although this could perhaps be accomplished with fewer hidden units, as

2m−1 is a smaller upper bound for real-valued neural networks [22]. Some discussion

of approximating Boolean functions, including the XOR and parity problems, using

complex-valued neural networks is given in [37].

In our experiments, the activation functions are taken to be the same for both

the hidden and output layers of the network. The activation function is either the

sigmoidal function or its third degree Taylor polynomial approximation

g(z) =
1

1 + exp(−z)
or T (z) =

1

2
+

1

4
z − 1

48
z3.

Note that one can take a higher degree Taylor polynomial approximation, but this is

Input Pattern Output
0 0 0
1 0 1
0 1 1
1 1 0

Table 3.1: XOR Training Set

42

Sigmoidal Function Taylor Polynomial

Figure 3.1: The sigmoidal function (left) has two poles in a region near 0, while a
Taylor polynomial approximation (right) of the sigmoidal function is bounded on
the same region.

sufficient for our purposes. Notice that while g(z) has poles near zero, the polynomial

T (z) is analytic on the entire complex plane and bounded on bounded regions (see

Figure 3.1).

For each activation function we trained the network using the gradient de-

scent backpropagation algorithm, the Newton backpropagation algorithm, and the

pseudo-Newton backpropagation algorithm. The real and imaginary parts of the

initial weights for each trial were chosen randomly from the interval [−1, 1] accord-

ing to a uniform distribution. In each case the network was trained to within 0.001

error. One hundred trials were performed for each activation function and each

backpropagation algorithm (note that the same set of random initial weights was

used for each set of trials). For the trials using the gradient descent backpropagation

algorithm, a constant learning rate (µ) was used. It is known that for the gradient

descent algorithm for real-valued neural networks, some learning rates will result

in nonconvergence of the error function [31]. There is experimental evidence that

for elementary transcendental activation functions used in complex-valued neural

networks, sensitivity of the gradient descent algorithm to the choice of the learning

rate can result in nonconvergence of the error function as well, and this is not nec-

essarily affected by changes in the initial weight distribution [42]. To avoid these

problems, a learning rate of µ = 1 was chosen both to guarantee convergence and to

43

Activation
Function

Training
Method

Learning
Rate (µ)

Underrelaxation
Factor (ω)

Number of
Successful

Trials

Average
Number of
Iterations*

Sigmoidal
Gradient
Descent

µ = 1 None 93 1258.9

Sigmoidal Newton
One-Step
Newton

ω = 0.5 5 7.0

Sigmoidal
Pseudo-
Newton

One-Step
Newton

ω = 0.5 78 7.0

Polynomial
Gradient
Descent

µ = 1 None 93 932.2

Polynomial Newton
One-Step
Newton

ω = 0.5 53 107.9

Polynomial
Pseudo-
Newton

One-Step
Newton

ω = 0.5 99 23.7

*Over the successful trials.

Table 3.2: XOR Experiment Results: Successful Trials

yield fast convergence (as compared to other values of µ). For the trials using the

Newton and pseudo-Newton backpropagation algorithms, a variable learning rate

(steplength) was chosen according to the one-step Newton steplength algorithm

(Theorem 3.4.4) to control the problem of “overshooting” of the iterates and non-

convergence of the error function when a fixed learning rate was used. For both the

Newton and pseudo-Newton trials, a constant underrelaxation factor of ω = 0.5 was

used; this was chosen to yield the best chance for convergence of the error function.

The results are summarized in Table 3.2.

Over the successful trials, the polynomial activation function performed just as

well as the traditional sigmoidal function for the gradient descent backpropagation

algorithm and yielded more successful trials than the sigmoidal function for the

Newton and pseudo-Newton backpropagation algorithms. We define a successful

trial to be one in which the error function dropped below 0.001. We logged four dif-

ferent types of unsuccessful trials (see Table 3.3). Convergence of the error function

to a local minimum occurred when, after at least 50,000 iterations for gradient de-

scent and 5,000 iterations for the Newton and pseudo-Newton algorithms, the error

function remained above 0.001 but had stabilized to within 10−10 between successive

iterations. This occurred more frequently in the Newton’s method trails than the

gradient descent trials, which was expected due to the known sensitivity of Newton’s

method to the initial points. A blow up of the error function occurred when, after

the same minimum number of iterations as above, the error function had increased

44

Activation
Function

Training
Method

Local
Minimum

Blow
Up

Undefined
Floating

Point

Singular
Matrix

Total
Unsuccessful

Trials

Sigmoidal
Gradient
Descent

1 0 6 N/A 7

Sigmoidal Newton 0 0 68 27 95

Sigmoidal
Pseudo-
Newton

0 0 14 8 22

Polynomial
Gradient
Descent

0 0 7 N/A 7

Polynomial Newton 26 2 2 17 47

Polynomial
Pseudo-
Newton

1 0 0 0 1

Table 3.3: XOR Experiment Results: Unsuccessful Trials

to above 1010. The final value of the error function was sometimes an undefined

floating point number, probably the result of division by zero. This occurred less

frequently with the polynomial activation function than with the sigmoidal activa-

tion function. Finally, the last type of unsuccessful trial resulted from a singular

Hessian matrix (occurring only in the Newton and pseudo-Newton trials). This,

necessarily, halted the backpropagation process, and occurred less frequently with

the polynomial activation function than with the sigmoidal activation function.

As for efficiency, the Newton and pseudo-Newton algorithms required signifi-

cantly fewer iterations of the backpropagation algorithm to train the network than

the gradient descent method for each activation function. In addition to producing

fewer unsuccessful trials, the pseudo-Newton algorithm yielded a lower average num-

ber of iterations than the Newton algorithm for the polynomial activation function

and the same average number of iterations as the Newton algorithm for the sigmoidal

activation function. The network with polynomial activation function trained using

the pseudo-Newton algorithm produced the fewest unsuccessful trials. Overall, we

conclude that the use of the polynomial activation function yields more consistent

convergence of the error function than the use of the sigmoidal activation function,

and the use of the Newton and pseudo-Newton algorithms yields significantly fewer

training iterations than the use of the gradient descent method.

45

Chapter 4

The Singular Hessian Matrix

Problem

As we have seen with the XOR example, we encounter two significant problems when

training a complex-valued neural network using the Newton and pseudo-Newton

backpropagation algorithms. The existence of singular Hessian matrices results

in the halting of the backpropagation algorithm when such a singular matrix is

encountered, and convergence of the error function to a local minimum results in

the network not being properly trained (see Table 3.3). In this chapter, we focus on

the singular Hessian matrix problem as it arises in the minimization of real-valued

complex functions using Newton’s method. The existence of local minima will be

addressed in Chapter 5.

Let f : Ω ⊆ Ck → R be R-differentiable. For the remainder of this chapter,

we desire to restrict our attention to functions f that can be viewed as polynomial

maps. The Open Mapping Theorem states that the image of any non-constant

analytic function defined on an open set in the complex plane is open [11]. Since

the real line is closed in the complex plane and, for any open set U ⊆ Ω we have

f(U) ⊆ R, f cannot be a polynomial function as viewed with domain Ω ⊆ Ck. So,

consider f as a function f(x,y) : D ⊆ Rk → R, where

D :=


 x

y


∣∣∣∣∣∣∣

x,y ∈ Rk

z = x + iy ∈ Ω

 ⊆ R2k,

46

and suppose f is a polynomial map. Assume each variable x1, ..., xk, y1, ..., yk occurs

in f . Denote by

R[x,y] = R[x1, ..., xk, y1, ..., yk]

the polynomial ring in the 2k variables x1, ..., xk, y1, ..., yk, so that f ∈ R[x,y].

Consider the minimization of f via the minimization algorithm with sequence of

iterates {z(n)} given recursively by

z(n+ 1) = z(n)− ω(n)µ(n)p(n), n = 0, 1, ..., (4.0.1)

where the p(n) are the nonzero complex Newton updates

p(z(n)) = −
[
Hzz(z(n))−Hzz(z(n))Hzz(z(n))−1Hzz(z(n))

]−1
·
[
Hzz(z(n))Hzz(z(n))−1

(
∂f

∂z
(z(n))

)∗
−
(
∂f

∂z
(z(n))

)∗]
,

(4.0.2)

and the µ(n) ∈ C. Theorem 3.4.4 gives conditions on the steplengths µ(n) and

the underrelaxation factors ω(n) that guarantee convergence of the iterates to a

local minimum. However, at each iteration, this minimization algorithm requires

inversion of the matrices Hzz(z(n)) = Hzz(z(n)) and the Schur complement

H̃zz(z(n)) = Hzz(z(n))−Hzz(z(n))Hzz(z(n))−1Hzz(z(n)). (4.0.3)

If either of these matrices becomes singular, the iteration halts and the algorithm

must be restarted with a new initial iterate z(0). In this chapter, we construct

an adaptive underrelaxation factor algorithm give by Theorem 4.1.1 that avoid the

singularity of the Hessian matrices by imposing restrictions on the choice of the un-

derrelaxation factors used in the minimization of a real-valued complex polynomial

function using Newton’s method. Corollary 4.1.2 gives an adaptive underrelax-

ation factor algorithm for the minimization of a real-valued complex polynomial

function using the pseudo-Newton method based on Theorem 4.1.1. We test the

pseudo-Newton algorithm with adaptive underrelaxation factors on a neuron and a

small-scale MLP trained with the XOR dataset, and we find evidence that our algo-

rithms do in fact significantly decreases the number of singular matrix errors from

the number of such errors seen when the Newton and pseudo-Newton algorithms

47

are applied with constant underrelaxation factors.

4.1 An Adaptive Underrelaxation Factor Algo-

rithm for Minimization of Real-Valued Com-

plex Polynomial Maps via Newton’s Method

Consider the minimization of a polynomial map f : Ω ⊆ Ck → R via Newton’s

method with sequence of iterates given by (4.0.1) and (4.0.2). Suppose f has total

degree totdeg(f) = d. We first transform the iterates (4.0.1) using the CR-calculus

[29]. Define c := (z, z)T ∈ C2k for z ∈ Ck. Then

∂f

∂c
=

(
∂f

∂z
,
∂f

∂z

)
.

Define

Hcc =
∂

∂c

(
∂f

∂c

)∗
=

 Hzz Hzz

Hzz Hzz

 .

Let c(n) = (z(n), z(n))T for n = 0, 1, Assuming the Hessian matrices Hzz,

H̃zz, and Hcc are invertible at each stage of the iteration, we can rewrite (4.0.1)

equivalently using the iterates c(n) ∈ C2k as:

c(n+ 1) = c(n)− ω(n)µ(n)q(n), n = 0, 1, ..., (4.1.1)

where the q(n) are the nonzero complex Newton updates

q(n) = −Hcc(c(n))−1
(
∂f

∂c
(c(n))

)∗
. (4.1.2)

Viewing the Newton updates in this manner, we wish to guarantee the nonsingularity

of the single matrix Hcc(c(n)) at each iteration.

48

Let r = (x,y) ∈ R2k for z = x+ iy ∈ Ck. If Hrr denotes the real Hessian matrix

Hrr =
∂

∂r

(
∂f

∂r

)T
=

(
∂

∂x
,
∂

∂y

)(
∂f

∂x
,
∂f

∂y

)T
=

 Hxx Hxy

Hyx Hyy

 ,

then we have the relation

Hrr = J∗HccJ, (4.1.3)

where J is the complex 2k × 2k block matrix

J :=

 I iI

I −iI

 ∈M2k×2k(C).

Since f : D ⊆ R2k → R is a polynomial map of total degree d, each second-order

partial derivative

∂

∂xh

(
∂f

∂xi

)
,
∂

∂yl

(
∂f

∂xi

)
,

∂

∂xh

(
∂f

∂yj

)
, and

∂

∂yl

(
∂f

∂yj

)
,

where i, j, h, l = 1, ..., k, is a polynomial of total degree 0 or d − 2, depending on

the degree of f in each respective variable. As these partial derivatives form the

entries of the Hessian matrix Hrr, we have that Hrr is a matrix with entries in the

polynomial ring R[x,y]. Using (4.1.3), we see that Hcc is a matrix with entries in

the polynomial ring C[x,y], with each entry having total degree 0 or d − 2. Then

the determinant detHcc is a polynomial in C[x,y].

Let d̃ = totdeg(detHcc). Since each variable x1, ..., xk, y1, ..., yk occurs in f ,

we cannot have an entire row or column in Hrr (and hence in Hcc) be zero. Thus

detHcc 6≡ 0, and each product that occurs in the complete expansion of the deter-

minant by permutations has total degree 0 or (d− 2)2k, so allowing for cancellation

of terms, we have that

d̃ = totdeg(detHcc) ≤ (d− 2)2k.

Notice that the Hessian matrix Hcc with entries in C[x,y] is singular at the nth

49

iterate if and only if the polynomial detHcc = 0 at that iterate. Since

c = (z, z)T = (x + iy,x− iy)T ,

we can relax our notation by denoting Hcc(c(n)) = Hcc(z(n)) = Hcc(x(n),y(n))

and noting that Hcc is singular if and only if

detHcc(x(n),y(n)) = 0.

Thus, to guarantee that the Hessian matrix Hcc is nonsingular at the nth iter-

ation, we give conditions to ensure that (x(n),y(n)) does not lie in the variety

V (detHcc) ⊆ R2k.

Before we give the proposed algorithm, we state the following result, as given

in [41]. Let

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0 (4.1.4)

be a polynomial equation of degree n, where the aj, j = 1, ..., n are real or complex

coefficients with an 6= 0. If x is a root of (4.1.4), then

|x| ≤ 1 +
A

|an|
, (4.1.5)

where A = max{|a0|, |a1|, ..., |an−1|}. If, in addition, a0 6= 0, then x = 0 is not a root

of (4.1.4). So if x is a root of (4.1.4) with a0 6= 0, then we can write x = 1/y with

y 6= 0, so:

0 =
n∑
i=0

aix
i =

n∑
i=0

ai

(
1

y

)i
=

n∑
i=0

ai
yi
.

Multiplying both sides by yn yields

0 = yn
n∑
i=0

ai
yi

=
n∑
i=0

aiy
n−i =

n∑
j=0

an−jy
j,

with an−n = a0 6= 0. Using (4.1.5), we have that

|y| ≤ 1 +
A′

|a0|
,

50

where A′ = max{|an|, |an−1|, ..., |a1|}. Then

|x| = 1

|y|
≥ 1 +

A′

|a0|
=
|a0|+ A′

|a0|
. (4.1.6)

Theorem 4.1.1 (Underrelaxation Factors for the Complex Newton Algorithm for

Minimization of Polynomial Functions). Let f : Ω ⊆ Ck → R be R-differentiable

such that f : D ⊆ R2k → R is a polynomial map. Suppose the determinant detHcc :

D ⊆ C2k → C has total degree d̃. Let z(0) ∈ Ω such that detHcc(z(0)) 6= 0.

Consider the iteration

z(n+ 1) = z(n) + ω(n)µ(n)∆z(n), n = 0, 1, ..., (4.1.7)

where the ∆z(n) are the nonzero complex Newton updates

∆z(n) =− ˜Hzz(z(n))
−1
[
Hzz(z(n))Hzz(z(n))−1

(
∂f

∂z
(z(n))

)∗
−
(
∂f

∂z
(z(n))

)∗]
,

(4.1.8)

and the steplengths µ(n) ∈ C. Let

Φn(ξ) := detHcc(z(n) + ξµ(n)∆z(n)) ∈ C[ξ], n = 1, 2, 3, (4.1.9)

Suppose

Φn(ξ) =
d̃∑
l=0

b
(n)
l ξl, n = 1, 2, 3, ..., (4.1.10)

and let

ξ̂n =
|b(n)0 |

|b(n)0 |+B(n)
, where B(n) = max

1≤l≤d̃
|b(n)l |. (4.1.11)

If the underrelaxation factors ω(n) satisfy

0 ≤ ω(n) ≤ ξ̂n, (4.1.12)

then the Hessian matrices Hcc(z(n+ 1)), n = 1, 2, ..., are nonsingular.

51

Proof. Let P = (p1, ..., pk) ∈ Ck be a point and v = 〈v1, ..., vk〉 ∈ Ck a vector.

Suppose pj = pj1 + ipj2 and vj = vj1 + ivj2, with pj1, pj2, vj1, vj2 ∈ R, for j =

1, ..., k. If P1 = (p11, ..., pk1), P2 = (p12, ..., pk2) ∈ R2k and v1 = 〈v11, ..., vk1〉,
v2 = 〈v12, ..., vk2〉 ∈ R2k, then we can view P and v as elements of R2k as P =

(P1,P2) ∈ R2k and v = 〈v1,v2〉 ∈ R2k. The line in R2k through P in the direction

of v is given by [16]:

L := {(P1 + ξv1,P2 + ξv2) | ξ ∈ R} ⊆ R2k. (4.1.13)

We proceed with the proof by induction on n. Set P = z(0). Since detHcc(z(0)) 6=
0, the Hessian Hcc(z(0)) is nonsingular. Thus the complex Newton update ∆z(0)

is well-defined. Let v = µ(0)∆z(0), and for ease of notation view P and v as points

in R2k, as above. Denote by L(0) the line in R2k through z(0) in the direction of v

given by (4.1.13):

L(0) := {z(0) + ξµ(0)∆z(0) | ξ ∈ R} ⊆ R2k.

Notice that for ω(0) ∈ R, the iterate

z(1) = z(0) + ω(0)µ(0)∆z(0) ∈ L(0).

To guarantee that Hcc(z(1)) is nonsingular, it is sufficient to show that detHcc(z(1)) 6=
0, that is, z(1) 6∈ V (detHcc).

To this end, points in L(0) ∩ V (detHcc) satisfy

detHcc(z(0) + ξµ(0)∆z(0)) = 0.

Define Φ1 ∈ R[ξ] as in (4.1.9). Then, since the total degree of detHcc ∈ C[x,y] is

d̃, Φ1 has degree d̃, and we can expand Φ1 as in (4.1.10):

Φ1(ξ) =
d̃∑
l=0

b
(1)
l ξl. (4.1.14)

Since z(0) 6∈ V (detHcc), ξ = 0 is not a root of Φ1, so the constant term b
(1)
0 6= 0.

52

Using (4.1.6), if ξ is a root of (4.1.14), then

|ξ| ≥ |b(1)0 |
|b(1)0 |+B(1)

, where B(1) = max
1≤l≤d̃

|b(1)l |.

If we set

ξ̂1 =
|b(1)0 |

|b(1)0 |+B(1)
,

and if we choose ω(0) ∈ R with 0 < ω(0) < ξ̂1, then

z(0) + ω(0)µ(0)∆z(0) ∈ L(0)− V (detHcc).

Thus detHcc(z(1)) 6= 0, so the Hessian matrix Hcc is nonsingular.

Assuming detHcc(z(n)) 6= 0 and repeating this argument for the nth iteration of

Newton’s method, it follows that given the choice (4.1.12) of underrelaxation factor

ω(n) for the nth iteration, the Hessian matrix Hcc(z(n+ 1)) is nonsingular.

For the pseudo-Newton algorithm, we take Hzz = Hzz = 0 and we obtain the

following corollary.

Corollary 4.1.2 (Underrelaxation Factors for the Complex Pseudo-Newton Algo-

rithm for Minimization of Polynomial Functions). Let f : Ω ⊆ Ck → R be as in

Theorem 4.1.1. Suppose the determinant detHzz : D ⊆ C2k → C has total degree

d̃. Let z(0) ∈ Ω such that detHzz(z(0)) 6= 0. Consider the iteration (4.1.7), where

the ∆z(n) are the nonzero complex pseudo-Newton updates

∆z(n) = −Hzz(z(n))−1
(
∂f

∂z
(z(n))

)∗
and the steplengths µ(n) ∈ C. Define Φn by (4.1.9) and expand Φn as in (4.1.10).

Define ξ̂n as in (4.1.11). If the underrelaxation factors ω(n) satisfy

0 ≤ ω(n) ≤ ξ̂n,

then the Hessian matrices Hzz(z(n+ 1)), n = 1, 2, ..., are nonsingular.

53

Proof. For the pseudo-Newton method,

Hcc(z(n)) =

 Hzz(z(n)) 0

0 Hzz(z(n))

 ,

so

detHcc(z(n)) = detHzz(z(n)) detHzz(z(n))

= detHzz(z(n))detHzz(z(n))

= |detHzz(z(n))|2 .

Thus Hcc(z(n)) is nonsingular if and only if Hzz(z(n)) is nonsingular, so we may

apply Theorem 4.1.1.

4.2 Application: The Artificial Neuron

The simplest case of the artificial neural network is the artificial neuron, and we

can gain some valuable perspective in applying Theorem 4.1.1 to this basic building

block of the artificial neural network. Consider a complex-valued artificial neuron

with m inputs (see Figure 2.1). As in Section 2.1, denote the inputs by x1, ..., xm

and the weights by w1, ..., wm. Let g : C → C be the activation function for the

neuron, and suppose g is a polynomial of degree n with real coefficients given by

g(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0,

where ai ∈ C for i = 1, ..., n and an 6= 0. Then the output of the neuron is given by

y, where

y = g

(
m∑
i=1

wixi

)
.

We train the neuron with the training set {(zt1, ..., ztm, dt) | t = 1, ..., N} by applying

the Newton or pseudo-Newton backpropagation algorithm (Theorem 3.2.1, Corollary

54

3.3.1, respectively) to the error function

E =
1

N

N∑
t=1

|yt − dt|2 =
1

N

N∑
t=1

(yt − dt)
(
yt − dt

)
.

Note that we can readily apply Theorem 3.2.1 or Corollary 3.3.1, since g has real

coefficients, hence the condition g(z) = g(z) holds.

Let w = (w1, ..., wm) be the weight vector for the neuron. Using the Newton

algorithm in the neuron case, the weight update is given by

∆w(n) = −ω(n)µ(n) [Hww(w(n))−Hww(w(n))Hww(w(n))Hww(w(n))]−1

·
[
Hww(w(n))Hww(w(n))−1

(
∂f

∂w
(w(n))

)∗
−
(
∂f

∂w
(w(n))

)∗]
,

where the µ(n) are the learning rates given by the complex one-step Newton step-

length algorithm (Theorem 3.4.4), and the ω(n) are the underrelaxation factors. Let

wj = wj1+iwj2, xtj = xtj1+ixtj2, and dt = dt1+idt2 for j = 1, ...,m and t = 1, ..., N .

Since the activation function g is a polynomial in one variable with real coefficients,

we have the following:

yt = g

(
m∑
j=1

wjwtj

)
= g

(
m∑
j=1

(wj1 + iwj2)(xtj1 + ixtj2)

)

and

yt = g

(
m∑
j=1

(wj1 + iwj2)(xtj1 + ixtj2)

)
= g

(
m∑
j=1

(wj1 − iwj2)(xtj1 − ixtj2)

)
,

55

so that

E =
1

N

N∑
t=1

(yt − dt)
(
yt − dt

)
=

1

N

N∑
t=1

[
g

(
m∑
j=1

(wj1 + iwj2)(xtj1 + ixtj2)

)
− (dt1 + idt2)

]

·

[
g

(
m∑
j=1

(wj1 − iwj2)(xtj1 − ixtj2)

)
− (dt1 − idt2)

]

is a real-valued polynomial in w11, ..., wm1, w12,, ..., wm2 when viewed as a function

of the real and imaginary parts of the weights. In particular, E has real coefficients

(that is, E ∈ R[w11, ..., wm1, w12,, ..., wm2]) when viewed as a polynomial in the real

and imaginary parts of the weights, since

E =
1

N

N∑
t=1

(yt − dt)
(
yt − dt

)
=

1

N

N∑
t=1

(
yt − dt

)
(yt − dt) = E.

Hence we can apply Theorem 4.1.1 and choose underrelaxation factors ω(n) satis-

fying (4.1.12).

We look at the particular case of training a neuron with the pseudo-Newton

algorithm with underrelaxation factors given by Corollary 4.1.2, which allows for an

easier and more direct application in simulations. Suppose we have a neuron with

m = 2 inputs and activation function given by the third-degree Taylor polynomial

g(z) =
1

2
+

1

4
z − 1

48
z3

to the standard sigmoidal activation function. We train the neuron using the train-

ing set given in Table 4.1. In order to see the improvement obtained in applying

Corollary 4.1.2 to the pseudo-Newton backpropagation training algorithm, we com-

Input Vector Output
(1, 2) 1

(0,−1) 0

Table 4.1: Artificial Neuron Training Set

56

pare the graphs of the singular matrix errors obtained in using constant versus

adaptive underrelaxation factors when choosing initial weights for the backpropaga-

tion algorithm from cross sections of the complex weight space C2. We trained the

neuron using the pseudo-Newton backpropagation algorithm with adaptive complex

one-step Newton steplengths (Theorem 3.4.4).

Figures 4.1 and 4.2 show rectangular regions in C2 taken from the planes R×R i
and R × R i, respectively, which are color coded to represent initial weights corre-

sponding to singular matrix errors and local minima. The horizontal axis represents

the choice of w1 from, respectively, the real line R and the imaginary line R i, and the

vertical axis represents the choice of w2 from the imaginary line R i. The magenta

regions correspond to initial weights that result in singular matrix errors. The cyan

regions correspond to initial weights that result in convergence of the error function

to a local minimum. The white regions correspond to initial weights that result

in successful training of the neuron, that is, convergence of the error function to

a global minimum of zero. The graphs on the left represent the training of the

neuron using a constant underrelaxation factor of ω = 0.5, and the graphs on the

right represent the training of the neuron using the adaptive underrelaxation factor

algorithm given by Corollary 4.1.2.

We observe a significant decrease in the regions corresponding to singular matrix

errors when applying our adaptive underrelaxation factor algorithm. This indicates

experimental evidence that Corollary 4.1.2 does in fact decrease the frequency of

singular matrix errors in training a complex neuron. It is interesting to note, how-

ever, an expansion of the regions corresponding to convergence of the error function

to local instead of global minima. Avoidance of local minima is addressed in the

next chapter. The fact that the pattern of the region of convergence to local minima

obtained when applying this adaptive underrelaxation factor algorithm somewhat

mimics the pattern of the region of singular matrix errors obtained when applying

a constant underrelaxation factor warrants further investigation.

57

Constant Underrelaxation Factors Adaptive Underrelaxation Factors

(A)

(B)

(C)

Singular Matrix Error Local Minimum

Figure 4.1: These graphs show the singular matrix errors and local minima obtained
when choosing initial weights (w1, w2) from the regions (A) [−20, 20] × [−20, 20] i,
(B) [−5, 5] × [−5, 5] i, and (C) [−1, 1] × [−1, 1] i for the complex neuron trained
using Table 4.1. The horizontal axis represents the choice of w1 from the real line
R, and the vertical axis represents the choice of w2 from the imaginary line R i. The
singular matrix errors are eliminated in using the adaptive underrelaxation factors.

58

Constant Underrelaxation Factors Adaptive Underrelaxation Factors

(A)

(B)

Singular Matrix Error Local Minimum

Figure 4.2: These graphs show the singular matrix errors and local minima obtained
when choosing initial weights (w1, w2) from the regions (A) [−20, 20] i× [−20, 20] i
and (B) [−5, 5] i × [−5, 5] i for the complex neuron trained using Table 4.1. The
horizontal axis represents the choice of w1 from the imaginary line R i, and the
vertical axis represents the choice of w2 from the imaginary line R i. The singular
matrix errors are eliminated in using the adaptive underrelaxation factors.

59

4.3 Singular Hessian Matrices and the Multilayer

Perceptron

We apply our underrelaxation factor algorithm to a complex-valued multilayer per-

ceptron, and we test our algorithm on a two-layer MLP trained with the XOR data

set (Table 3.1).

Definition 4.3.1. A complex-valued polynomial MLP is a complex-valued

MLP in which the activation function in each layer of the network is a polynomial.

We employ the same notation as used in Chapter 2 for an L-layer holomorphic

MLP (see Figure 2.2). For a polynomial MLP, we assume that the activation func-

tion of the pth layer of the network is a polynomial gp ∈ C[z] for p = 1, ..., L. Let

np be the degree of the polynomial gp. In our setting, we assume that

gp(z) = a(p)np z
np + a

(p)
np−1z

np−1 + · · ·+ a
(p)
1 z + a

(p)
0 ,

where a
(p)
i ∈ R for i = 0, ..., np, so that gp(z) = gp (z), allowing us to apply the

Newton and pseudo-Newton backpropagation algorithms to train the network. The

input layer of the network has m nodes and the output layer has C nodes, and we

train the network using a training set with N data points

{(zt1, ..., ztm, dt1, ..., dtC | t = 1, ..., N} ,

where (zt1, ..., ztm) is the input vector for the tth training point which corresponds

to the desired output vector (dt1, ..., dtC). We minimize the error function

E =
1

N

N∑
t=1

C∑
l=1

|ytl − dtl|2 =
1

N

N∑
t=1

C∑
l=1

(ytl − dtl)
(
ytl − dtl

)
,

where ytl denotes the actual output of the network at node l when we apply the

input vector corresponding to the tth training point for l = 1, ..., C and t = 1, ..., N .

For p = 1, ..., L, set w
(p−1)
kl = w

(p−1)
kl1 + iw

(p−1)
kl2 , where w

(p−1)
kl1 , w

(p−1)
kl2 ∈ R, for

k = 1, ..., Kp and l = 1, ..., Kp−1. Denote the weight vector for the pth layer of

the network by w(p−1) as in (2.3.1), and let w(p−1) = w
(p−1)
1 + iw

(p−1)
2 . Since the

60

activation function in each layer of the network is a polynomial, we have that for

the pth layer, p = 1, ..., L, the output of the kth node, k = 1, ..., Kp, is

x
(p)
k = gp

(
Kp−1∑
l=1

(
w

(p−1)
kl1 + iw

(p−1)
kl2

)(
x
(p−1)
l1 + ix

(p−1)
l2

))
,

where x
(p−1)
l = x

(p−1)
l1 + ix

(p−1)
l2 for l = 1, ..., Kp−1 with x

(p−1)
l1 , x

(p−1)
l2 ∈ R. Hence

each x
(p)
k for k = 1, ..., Kp represents a polynomial in the variables w

(p−1)
kl1 , w

(p−1)
kl2 for

l = 1, ..., Kp−1. Recursively, then, a calculation similar to (4.2) shows that the error

function is in fact a real-valued polynomial in the real variables

(w
(0)
1 , ...,w

(L−1)
1 ,w

(0)
2 , ...,w

(L−1)
2)

corresponding to the real and imaginary parts of the weights. In particular, E has

real coefficients, again because, similar to (4.2),

E =
1

N

N∑
t=1

C∑
l=1

(ytl − dtl)
(
ytl − dtl

)
=

1

N

N∑
t=1

C∑
l=1

(
ytl − dtl

)
(ytl − dtl) = E.

Hence we can apply Theorem 4.1.1 at each stage of the Newton or pseudo-Newton

backpropagation algorithm.

We revisit the XOR example to compare our methodology to the current stan-

dard of using a constant underrelaxation factor. Tables 4.2 and 4.3 show our results

in training the two-layer polynomial network given in Section 5 of Chapter 3 with

activation function

g(z) =
1

2
+

1

4
z − 1

48
z3

using the gradient descent method with constant learning rate (µ = 1), Newton’s

method with one-step Newton steplengths and constant underrelaxation factors

(ω = 0.5), and the pseudo-Newton method with one-step Newton steplengths and

both constant (ω = 0.5) and adaptive underrelaxation factors. The real and imag-

inary parts of the initial weights were chosen randomly from the interval [−1, 1]

according to a uniform distribution, and the network was trained to within 0.05

error. Five hundred trials of each method were performed.

We see a marked improvement in using the pseudo-Newton method with adap-

61

Training
Method

Learning
Rate (µ)

Underrelaxation
Factor (ω)

Number of
Successful

Trials

Average
Number of
Iterations*

Gradient
Descent

µ = 1 N/A 499 419.8

Newton
One-Step
Newton

ω = 0.5 348 164.9

Pseudo-
Newton

One-Step
Newton

ω = 0.5 500 11.1

Pseudo-
Newton

One-Step
Newton

Adaptive 420 91.9

*Over the successful trials.

Table 4.2: Adaptive Versus Constant Underrelaxation Factors for XOR Example:
Successful Trials

Training
Method

Local
Minimum

Blow
Up

Undefined
Floating

Point

Singular
Matrix

Total
Unsuccessful

Trials
Gradient
Descent
ω N/A

0 0 1 0 1

Newton
ω = 0.5

99 6 2 45 152

Pseudo-
Newton
ω = 0.5

0 0 0 0 0

Pseudo-
Newton

ω Adaptive
80 0 0 0 0

Table 4.3: Adaptive Versus Constant Underrelaxation Factors for XOR Example:
Unsuccessful Trials

tive underrelaxation factors over Newton’s method with constant underrelaxation

factors in the number of singular matrix errors. Here, however, the pseudo-Newton

method with constant underrelaxation factors outperforms all other methods. As

with the neuron example, we observe a cost in using adaptive underrelaxation fac-

tors of an increase in trials resulting in convergence of the error function to a local

minimum. Our results indicate further experiments and investigation are necessary

to determine the usefulness, costs, and employability of our methods.

62

Chapter 5

An Algebraic Approach to the

Initial Weight Problem

As we have seen in our previous experiments, a significant obstacle to the successful

training of any artificial neural network is the existence of local minima of the

error function. In particular, the complex one-step Newton steplength algorithm

(Theorem 3.4.4) only guarantees convergence of a real-valued function with complex

domain to a local minimum when using the Newton or pseudo-Newton method to

minimize the function. A similar problem occurs with the typical gradient descent

method, and in fact most minimization algorithms will only guarantee convergence

to a local minimum. However, successful training of an artificial neural network

requires that the real-valued error function be minimized to within a fixed tolerance

of the global minimum of zero. It is evident in our experiments, and in fact more

widely in the literature, that convergence to a local versus global minimum relies

heavily on the choice of the initial weights. In fact, Newton’s method is well-known

to be particularly sensitive to the choice of the initial iterate, which leads to problems

both with overshooting (see Theorem 3.4.4) as well as blow-ups and convergence to

the local minimum closest to the initial iterate instead of a global minimum [38]. In

what follows, we take an algebraic approach to address this initial weight problem

for complex-valued polynomial neural networks.

We employ a constrained approach to narrow the domain from which to choose

initial weights to aid in artificial neural network training. In training an artifi-

63

cial neural network, we desire to approximate a function of the input vectors that

matches the training set. Because of this, it is important that the data be main-

tained throughout the training process. Typical backpropagation holds the training

set constant at each step while updating the weights, relying on the entire training

set to compute the error function. This process of utilizing the entire training set to

train a network is sometimes referred to as batch training [15]. In incremental train-

ing, by contrast, a network is trained using only one data point at a time. Here the

phenomenon of interference results in the network “forgetting” previously learned

data, and preservation of the original data set becomes even more necessary. Some

authors take the approach of choosing a constraint based on the original data set,

then performing a constrained incremental training algorithm to train the network

in order to preserve the original data set [13, 14]. We follow a similar idea here,

however we continue to use batch training with the backpropagation algorithm. We

choose constraints based on the original training set which will allow us to narrow

the region from which we choose random initial weights and which guarantees exis-

tence of a global minimum of zero for the error function in that region. Since our

focus is on complex-valued neural networks with polynomial activation functions, we

can employ techniques from algebraic geometry to find such a region that satisfies

our conditions.

In what follows, we first apply this approach to a complex-valued polynomial

neuron for which we have a simpler formulation of the error function, and we develop

a theoretical framework to aid in choosing a region from which to choose the initial

weights based on algebraic methods. We propose a search strategy in Proposition

5.3.3 that allows us to choose a rectangular region from which we can randomly

choose initial weights, and then we extend our results to complex-valued polynomial

MLPs.

64

5.1 Translation of a Training Set into a Polyno-

mial System

We consider again a complex-valued artificial neuron as shown in Figure 2.1 with m

inputs x1, ..., xm, m weights w1, ..., wm, and output y defined by

y = g

(
m∑
i=1

wixi

)
,

where g ∈ C[z] is a polynomial of degree n. Let

g(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0,

and suppose further that a0, a1, ..., an ∈ R, so that g(z) = g (z). As we have pre-

viously seen in Chapter 4, this allows us to apply the Newton backpropagation

algorithm (Theorem 3.2.1) to train the neuron. Recall that we typically train the

neuron using a training set

T = {(zt1, ..., ztm, dt) | t = 1, ..., N}

by minimizing the standard real-valued sum-of-squares error function

E =
1

N

N∑
t=1

|yt − dt|2. (5.1.1)

Since the neuron has a polynomial activation function, we can instead take an

algebraic rather than numerical approach to the problem of training the neuron.

For t = 1, ..., N , the training point (zt1, ..., ztm, dt) represents a desired input-output

pair that the neuron should replicate to within a desired tolerance once the neuron

is trained. That is, the approximation

dt ≈ g

(
m∑
i=1

wizti

)

65

should hold for t = 1, ..., N to within a specified tolerance once the final weights

w1, ..., wm are determined via the backpropagation algorithm. If the error function

(5.1.1) is in fact minimized to zero, then for each training point, we have yt−dt = 0,

that is,

dt = yt = g

(
m∑
i=1

wizti

)
.

So for a polynomial neuron, minimization of the error function to a global minimum

value of zero is equivalent to finding the zeros of the polynomial system

{
g

(
m∑
i=1

wizti

)
− dt = 0 | t = 1, ..., N

}
(5.1.2)

of N polynomial equations in the m weight vectors w1, ..., wm. Let h1, ..., hN ∈
C[w1, ..., wm], where

ht(w1, ..., wm) := g

(
m∑
i=1

w1zti

)
− dt (5.1.3)

is the polynomial corresponding to the tth training point for t = 1, ..., N . Then the

system (5.1.2) can be rewritten as

h1(w1, ..., wm) = · · · = hN(w1, ..., wm) = 0. (5.1.4)

Thus, we can take the algebraic approach of training the neuron by finding the zeros

of the system (5.1.4).

As we have done previously, let wj = wj1 + iwj2 where wj1, wj2 ∈ R for j =

1, ...,m, and set w = (w1, ..., wm), w1 = (w11, ..., wm1), and w2 = (w12, ..., wm2) so

that w = w1 + iw2. For each training point (zt1, ..., ztm, dt) for t = 1, ..., N , let

ztj = ztj1 + iztj2 where ztj1, ztj2 ∈ R for j = 1, ...,m, and dt = dt1 + idt2 where

66

dt1, dt2 ∈ R. Then for t = 1, ..., N , we can expand (5.1.3) and write

ht(w) = ht(w1, ..., wm)

= g

(
m∑
j=1

(wj1 + iwj2)(ztj1 + iztj2)

)
− (dt1 + idt2)

= ht1(w11, ..., wm1, w12, ..., wm2) + iht2(w11, ..., wm1, w12, ..., wm2)

= ht1(w1,w2) + iht2(w1,w2)

where ht1, ht2 ∈ R[w1,w2]. Then ht(w) = 0 if and only if ht1(w1,w2) = 0 and

ht2(w1,w2) = 0, so the complex system (5.1.4) can be rewritten as the real system

{ht1(w1,w2) = 0 and ht2(w1,w2) = 0 | t = 1, ..., N} (5.1.5)

of 2N polynomial equations in the 2m real variables w11, ..., wm1, w12, ..., wm2.

Before we develop a theoretical framework for root location for the complex

neuron, we revisit our neuron example from Section 2 of Chapter 4. Recall that we

train a neuron with m = 2 inputs and polynomial activation function

g(z) =
1

2
+

1

4
z − 1

48
z3

using the training set given in Table 4.1. In our current setting, minimization of the

error function

E =
1

2

(
|y1 − d1|2 + |y2 − d2|2

)
is equivalent to finding the zeros of the polynomial system


h1(w1, w2) := g(w1 + 2w2)− 1 =

1

2
+

1

4
(w1 + 2w2)−

1

48
(w1 + 2w2)

3 − 1 = 0,

h2(w1, w2) := g(−w2)− 0 =
1

2
+

1

4
(−w2)−

1

48
(−w2)

3 − 1 = 0.

(5.1.6)

For purposes of illustration, we can explicitly solve (5.1.6) to find the nine solutions

listed in Table 5.1. Figures 5.1 and 5.2 show rectangular regions in C2 taken from

67

w1 w2
Color

Coding
4.208

10.519− 1.130i
10.519 + 1.130i

−4.208
Teal
Pink

Orange
−2.104 + 1.130i
−2.104 + 3.391i
−8.415 + 2.261i

2.104− 1.130i
Green
Yellow

Red
−2.104− 1.130i
−2.104− 3.391i
−8.415− 2.261i

2.104 + 1.130i
Blue
Cyan

Purple

Table 5.1: Solutions of the polynomial system (5.1.6) and color coding

the planes R × R i and R i × R i, respectively, which are color coded to represent

the basins of attraction of choice of initial weights corresponding to each of the

nine roots for the neuron trained using the pseudo-Newton method with complex

one-step Newton steplengths. Note that all of the roots are not represented in these

particular sections of the weight space. As in Figures 4.1 and 4.2, the graphs on

the left correspond to the use of a constant underrelaxation factor ω = 0.5, and the

graphs on the right correspond to the use of the adaptive underrelaxation factor

algorithm given by Corollary 4.1.2. White regions represent singular matrix errors,

and grey regions represent convergence of the error function to a local minimum.

Note the similarity in the basins of attraction obtained when using a constant

versus an adaptive underrelaxation factor. In the next section, we develop a method

that will allow us to choose initial weights from regions entirely contained within

the basins of attraction of the roots of our system. For this example, we note in

particular that the typical choice of initial weights taken randomly from a region

near the origin is likely to result in many singular matrix errors and local minima

(see Figure 5.1(C)), so this is a region we wish to avoid. We see that the typical

choice of initial weights is not always sufficient to successfully train a neuron (or,

more generally, a network).

68

Constant Underrelaxation Factors Adaptive Underrelaxation Factors

(A)

(B)

(C)

Singular Matrix Error Local Minimum

Figure 5.1: These graphs show the basins of attraction of the zeros of (5.1.6) given
in Table 5.1 for initial weights (w1, w2) chosen from the regions (A) [−20, 20] ×
[−20, 20] i, (B) [−5, 5] × [−5, 5] i, and (C) [−1, 1] × [−1, 1] i. The horizontal axis
represents the choice of w1 from the real line R, and the vertical axis represents the
choice of w2 from the imaginary line R i. There is a slight increase in area of the
basins of attraction as well as a significant decrease in singular matrix errors when
an adaptive versus constant underrelaxation factor is used.

69

Constant Underrelaxation Factors Adaptive Underrelaxation Factors

(A)

(B)

Singular Matrix Error Local Minimum

Figure 5.2: These graphs show the basins of attraction of the zeros of (5.1.6) given
in Table 5.1 for initial weights (w1, w2) chosen from the regions (A) [−20, 20] i ×
[−20, 20] i and (B) [−5, 5] i × [−5, 5] i. The horizontal axis represents the choice of
w1 from the real line R, and the vertical axis represents the choice of w2 from the
imaginary line R i. There is a slight increase in area of the basins of attraction
as well as a significant decrease in singular matrix errors when an adaptive versus
constant underrelaxation factor is used.

70

5.2 Real Root Location for a Neuron System

In training a complex-valued neuron or neural network, the initial weights are often

chosen with the real and imaginary parts randomly chosen from the interval [0, 1]

or some other pre-chosen interval. However, it is typically not guaranteed that such

randomly chosen initial weights lie “near” a global minimum of the error function.

In this section, we describe the technique of real root isolation and location from [40]

using the notation and exposition as outlined in [12] to choose a region R ⊆ R2m

that contains a zero of (5.1.5) which corresponds to a global minimum of the error

function (5.1.1). We can then randomly choose the real and imaginary parts of

initial weights from the region R and employ the Newton’s method back propaga-

tion algorithm to the neuron in order to minimize the error function to this global

minimum.

We begin by noting that, in fact, since R[w1,w2] ⊆ C[w1,w2], the polynomials

ht1, ht2 for t = 1, ..., N are in fact complex polynomials in the 2m complex variables

w11, ..., wm1, w12, ..., wm2. As the variables w11, ..., wm1, w12, ..., wm2 actually repre-

sent the real and imaginary parts of the weight vectors w1, ..., wm, we are searching

for the real roots of the complex system (5.1.5). Hence the technique of real root

location and isolation we follow is appropriate in this setting. In what follows, we

thus work in the polynomial ring C[w1,w2].

Let I ⊆ C[w1,w2] be the ideal generated by the polynomials ht1, ht2 for t =

1, ..., N :

I := 〈h11, h12, ..., hN1, hN2〉.

Then the variety V (I) ⊆ C2m is equal to the set of zeros of the complex system

(5.1.5). We may assume from this point forward without loss of generality that

V (I) is finite as follows. Suppose V (I) is infinite. We may then add constraint

polynomials h̃1, ..., h̃r ∈ R[w1,w2] for some r ∈ N to define

Ĩ := 〈h11, h12, ..., hN1, hN2, h̃1, ..., h̃r〉

such that the variety V (Ĩ) is finite. Then I ⊆ Ĩ, so V (Ĩ) ⊆ V (I) and thus points in

R2m that are zeros of the system

h11 = h12 = · · · = hN1 = hN2 = h̃1 = · · · = h̃r = 0 (5.2.1)

71

are also zeros of the original system (5.1.5). Since our neuron setup only requires us

to find one root of the system (5.1.5) and not all the roots, it is sufficient to locate a

root of the system (5.2.1). Hence in what follows we can replace I with Ĩ to isolate

and locate a real root of the system. Finiteness of the variety V (I) guarantees that

we can find a rectangle R ⊆ R2m that contains no more than one of the points in

V (I).

Define the algebra A to be

A := C[w1,w2]/I.

By the Finiteness Theorem (see Chapter 2, Section 2 of [12]), since V (I) is a finite

set, A is finite dimensional over C. We wish to find a basis for A over C. To this

end, fix a natural ordering on the 2m variables w11, ..., wm1, w12, ..., wm2 as

w11 > ... > wm1 > w12 > ... > wm2, (5.2.2)

and choose a monomial order < based off of (5.2.2). Let lt(I) denote the set of

leading terms of all the elements of I with respect to the monomial order <; that

is,

lt(I) = {lt(f) |f ∈ I},

where lt(f) denotes the leading term of the polynomial f with respect to <. Let

α = (α11, ..., αm1, α12, ..., αm2) ∈ N2m, and let

wα = wα11
11 · · ·wαm1

m1 w
α12
12 · · ·wαm2

m2

denote the monomial in w11, ..., wm1, w12, ..., wm2 of multi-degree α. Then the set of

monomials

B := {wα |wα 6∈ 〈lt(I)〉}

form a basis for A and this set is finite. Let dimCA = a. Letting G denote a

Groebner basis for I with respect to < (so that 〈lt(G)〉 = 〈lt(I)〉, the set

B := {wα(i) | i = 1, ..., a and wα(i) 6∈ 〈lt(G)〉}

72

serves as a basis for A.

Let p ∈ C[w1,w2], and define the map mp : A→ A to be multiplication by p in

the algebra A. If q ∈ A denotes the residue of q ∈ C[w1,w2] modulo I, then

mp(q) = pq ∈ A.

The map mp : A→ A is a linear map [12]. We denote also by mp the matrix of the

linear map mp with respect to B. Next, we define the symmetric bilinear form on

A (see again [12]) S : A× A→ C by

S(p, q) = Tr(mpmq) = Tr(mpq) (5.2.3)

for p, q ∈ A. For f ∈ C[w1,w2], let Sf : A × A → C be the bilinear form on A

defined by

Sf (p, q) = S(fp, q) = Tr(mfpmq) = Tr(mfpq) (5.2.4)

for p, q ∈ A.

Let σ(Sf) and ρ(Sf) denote the signature and rank, respectively, of Sf with

respect to the basis B of A. Using our notation, we state the following theorem.

Theorem 5.2.1 ([40], Theorem 2.1). Let k ⊆ R be a field and suppose V (I)

is a finite affine algebraic variety defined by I = 〈h11, ..., hm1, h12, ..., hm2〉, where

hjk ∈ k[w1,w2] for j = 1, ...,m, k = 1, 2. Then, for f ∈ k[w1,w2],

σ(Sf) = #{p ∈ V (I) ∩ R2m | f(p) > 0} −#{p ∈ V (I) ∩ R2m | f(p) < 0}

and

ρ(Sf) = #{p ∈ V (I) ∩ C2m | f(p) 6= 0},

where σ denotes the signature and ρ denotes the rank of the associated bilinear form

Sf .

For a given polynomial f ∈ R[w1,w2], Theorem 5.2.1 yields the following infor-

mation about the finite variety V (I) (again see [12]). Suppose f 6∈ I.

1. For the constant polynomial 1 ∈ R[w1,w2], the bilinear form S1 : A×A→ C

73

is defined by

S1(p, q) = S(1p, q) = Tr(m1pmq) = Tr(mpq) (5.2.5)

for p, q ∈ A. The signature of this form is

σ(S1) = #{p ∈ V (I) ∩ R2m | 1 > 0} −#{p ∈ V (I) ∩ R2m | 1 < 0}

= #{p ∈ V (I) ∩ R2m | 1 > 0}

= #{p ∈ V (I) ∩ R2m},

(5.2.6)

giving the number of real points in the variety V (I). If σ(S1) = 0, then the

system (5.1.5) has no real solutions. Since the real system (5.1.5) is equivalent

to the complex system (5.1.4), this implies that (5.1.4) has no solution, and

thus that the associated error function (5.1.1) does not attain a global mini-

mum of zero. Hence, the neuron is untrainable. So, to go forward with this

approach, we require that σ(S1) > 0.

2. The rank

ρ(Sf) = #{p ∈ V (I) ∩ R2m | f(p) 6= 0}

gives the number of points in the variety V (I) at which the polynomial f does

not vanish. Since f 6∈ I, we cannot have V (I) ⊆ V (f), for if so, then

I = I(V (I)) ⊇ I(V (f)) = 〈f〉,

where I(X) denotes the ideal of polynomials which vanish on the set X ⊆
C2m [16]. Therefore f ∈ I, a contradiction. In particular, calculation of the

rank ρ(Sf) provides a check that, in fact, f 6∈ I, and we avoid some extra

computations.

3. Let

n+
f := #{p ∈ V (I) ∩ R2m | f(p) > 0}

and

n−f := #{p ∈ V (I) ∩ R2m | f(p) < 0}

74

Then the signature of Sf can be written as

σ(Sf) = n+
f − n

−
f . (5.2.7)

The signature of the form Sf2 is

σ(Sf2) = #{p ∈ V (I) ∩ R2m | (f(p))2 > 0} −#{p ∈ V (I) ∩ R2m | (f(p))2 < 0}

= #{p ∈ V (I) ∩ R2m | (f(p))2 > 0}

= n+
f + n−f .

(5.2.8)

Thus the two signatures σ(Sf) and σ(Sf2) give enough information to find the

number of points in V (I) at which f is positive and the number of points in

V (I) at which f is negative. In particular, combining (5.2.7) and (5.2.8), we

have

n−f =
σ(Sf2)− σ(Sf)

2
. (5.2.9)

We employ the above algorithm in our setting to isolate a point of the variety

V (I) as outlined in the following section.

5.3 A Search Strategy for Isolation of a Real Root

of a Polynomial System

We employ the calculations 1 – 3 in the previous section to develop a search strategy

to isolate a point in the variety V (I) in the following manner. Recall that without

loss of generality, we may assume that V (I) is finite via the addition of constraints

given in (5.2.1) to the ideal I. We revisit this approach here to isolate a single

root of the system (5.1.5). Assume that V (I) contains at least one point (this may

be checked, as in the previous section, by computing the signature σ(S1), where

S1 is the bilinear form defined by (5.2.5) on A = C[w1,w2]/I). We now choose

75

constraints l1, ..., ls ∈ R[w1,w2] such that the system

h11 = h12 = · · · = hm1 = hm2 = l1 = · · · ls = 0 (5.3.1)

has exactly one solution. In particular, such polynomials l1, ..., ls exist, for if P =

(p11, ..., pm1, p12, ..., pm2) ∈ V (I), then if

ljk(w1, w2) = ljk(w11, ..., wm1, w12, ..., wm2) = wjk − pjk

for j = 1, ...,m and k = 1, 2, then the system

h11 = h12 = · · · = hm1 = hm2 = l11 = l12 = · · · = lm1 = lm2 = 0

has exactly one solution, namely, P .

Remark 5.3.1. Note that we likely do not know the location of such a point P ; in

fact this is what we are trying to find. So here we just provide the existence of such

constraint polynomials, and in general the polynomials l1, ..., ls used will not have

this form.

Remark 5.3.2. Define the ideal

J = 〈h11, h12, ..., hm1, hm2, l1, ..., ls〉. (5.3.2)

We can determine the number of real points in V (J) in the same way we determined

the number of real points in V (I) in the previous section, employing the following

notation. Let AJ = C[w1,w2]/J . Since I ⊆ J , V (I) ⊇ V (J), so V (J) is finite. By

the Finiteness Theorem ([12]), AJ is finite dimensional, so given a basis BJ for AJ

with respect to our order <, we may define the bilinear form SJ : AJ×AJ → C as in

(5.2.3), and subsequently SJf as in (5.2.4) for an arbitrary polynomial f ∈ R[w1,w2].

Then the signature σ(SJ1) computes the number of real points in the variety V (J).

Once we have an ideal J such that V (J) contains exactly one point, we wish to

isolate a rectangular region R ⊆ R2m. For each wjk with j = 1, ...,m and k = 1, 2,

76

we can isolate a strip of width less than a prefixed ε > 0 of the form

Rjk := {(w11, ..., wm1, w12, ..., wm2) | ajk ≤ wjk ≤ bjk}

for some ajk ≤ bjk with bjk− ajk < ε that contains a point of V (J) using a bisection

method as outlined in Proposition 5.3.3. Then, since V (J) contains exactly one

point, the intersection

R =
2⋂

k=1

m⋂
j=1

Rjk (5.3.3)

must contain this point.

Proposition 5.3.3 (A Search Strategy for the Isolation of a Real Root of a Poly-

nomial System in Rn). Let I = 〈g1, ..., gr〉 ⊆ R[x1, ..., xn] = R[x] be such that

V (I) ⊆ Cn is finite and V (I) contains at least one real solution. Let x1 > · · · > xn

and fix a monomial order < on R[x1, ..., xn].

1. Find polynomials l1, ..., ls ∈ R[x] such that V (J) contains exactly one point,

where

J := 〈g1, ..., gr, l1, ..., ls〉.

Set AJ = C[x]/J , and let BJ be a basis for AJ with respect to the order <.

Define the bilinear form SJ : AJ × AJ → C by (5.2.3) and SJf by (5.2.4).

2. Fix ε > 0. For each variable xi with i = 1, ..., n, we perform the following

bisection algorithm.

(a) Choose a
(0)
i < b

(0)
i and define f

(0)
i ∈ R[x] by

f
(0)
i (x1, ..., xn) = (xi − a(0)i)(xi − b(0)i).

Compute

n−
f
(0)
i

=
σ(S

(f
(0)
i)2

)− σ(S
f
(0)
i

)

2
.

If n−
f
(0)
i

= 0, choose new values for a
(0)
i < b

(0)
i and repeat step (a). If

77

n−
f
(0)
i

= 1, the level set

{x ∈ Rn | f (0)
i < 0} = {x ∈ Rn | a(0)i < xi < b

(0)
i }

contains a point in V (J). Continue on to step (b).

(b) For k ∈ N, if b
(k)
i − a

(k)
i < ε, set ai = a

(k)
i and bi = b

(k)
i and move to step

3. If b
(k)
i − a

(k)
i ≥ ε, define d

(k)
i , e

(k)
i ∈ R[x] by

d
(k)
i (x1, ..., xn) = (xi − a(k)i)

(
xi −

(
a
(k)
i + b

(k)
i

2

))

and

e
(k)
i (x1, ..., xn) =

(
xi −

(
a
(k)
i + b

(k)
i

2

))
(xi − b(k)i).

Compute n−
d
(k)
i

and n−
e
(k)
i

. There are three possibilities.

i. If n−
d
(k)
i

= 1, then the strip

{
x ∈ Rn

∣∣∣∣∣ a(k)i < xi <
a
(k)
i + b

(k)
i

2

}

contains a point in V (J). Set a
(k+1)
i = a

(k)
i and b

(k+1)
i =

a
(k)
i +b

(k)
i

2
, and

repeat step (b).

ii. If n−
e
(k)
i

= 1, then the strip

{
x ∈ Rn

∣∣∣∣∣ a(k)i + b
(k)
i

2
< xi < b

(k)
i

}

contains a point in V (J). Set a
(k+1)
i =

a
(k)
i +b

(k)
i

2
and b

(k+1)
i = b

(k)
i and

repeat step (b).

iii. If both n−
d
(k)
i

= 0 and n−
e
(k)
i

= 0, then a point in V (J) lies on the

hyperplane xi −
(
a
(k)
i +b

(k)
i

2

)
= 0. Set ai = bi =

a
(k)
i +b

(k)
i

2
and move to

step 3.

78

3. Set

Ri = {x ∈ Rn | ai < xi < bi}.

and let

R =
n⋂
i=1

Ri.

Then R contains the point in V (J).

In searching for a rectangle containing a point of V (I) in this manner by first

reducing our system to one with exactly one solution, we avoid the complexities

involved in checking multiple polynomial constraints when searching for one among

multiple possible solutions to the original system [40]. Once we have obtained the

rectangle R given by (5.3.3) of the desired width that contains the single point in

V (J), and by extension at least one point of V(I), we may then choose random

initial weights w(0) from the rectangle R and apply the Newton or pseudo-Newton

back propagation algorithm to train the network. Assuming R is contained in the

path-connected component L0
C2m(E(w(0))) of the level set LC2m(E(w(0))) of the

error function (see Equation (3.4.9)), and that L0
C2m(E(w(0))) contains no other

stationary points of the error function, Theorem 3.4.4 guarantees convergence to

the global minimum. In practice we do not check each of these assumptions, but

instead choose a small enough target width ε > 0 so that each assumption will

usually be satisfied.

5.4 A Polynomial System for the Multilayer Per-

ceptron

We now extend our approach to choosing initial weights to the complex-valued

polynomial multilayer perceptron as defined in Section 4 of Chapter 3 (see also

Figure 2.2 for the network architecture). As opposed to the polynomial neuron

case, minimization of the error function to a global minimum of zero corresponds

to the solution of a system of polynomial equations corresponding to each training

point. That is, if the error function is equal to zero, we must have ytl = dtl for

l = 1, ..., C and t = 1, ..., N . So for the tth training point (zt1, ..., ztm, dt1, ..., dtC),

79

we have for each output node corresponding to l = 1, ..., C the N equations

dtl = gL

(
KL−1∑
k=1

w
(L−1)
lk x

(L−1)
k

)
,

t = 1, ..., N , where the x
(p)
j are defined recursively as in (2.2), depending on the

input (zt1, ..., ztm).

Let w(p−1) represent the weight vector for the pth layer of the network as given

in (2.3.1) for p = 1, ..., L. Since the activation function in each layer of the network

is a polynomial, the tth training point corresponds to the C polynomial equations

in the weight vectors w(0), ...,w(L−1), given by

htl(w
(0), ...,w(L−1)) := gL

(
KL−1∑
k=1

w
(L−1)
lk x

(L−1)
k

)
− dtl = 0

for l = 1, ..., C, where, again, the x
(p)
j are defined recursively as in (2.2). Hence,

minimizing the error function corresponds to solving the system of C ·N equations

{htl(w(0), ...,w(L−1)) = 0 | t = 1, ..., N, l = 1, ..., C} (5.4.1)

in the complex variables w(0), ...,w(L−1). Note that in the pth layer of the network

there are Kp · Kp−1 weight vectors, so the polynomial ring C[w(0), ...,w(L−1)] has

K :=
∑L

p=1Kp ·Kp−1 variables.

To transform (5.4.1) into a real system, set w
(p−1)
ba = w

(p−1)
ba1 + iw

(p−1)
ba2 , where

w
(p−1)
ba1 , w

(p−1)
ba2 ∈ R for b = 1, ..., Kp, a = 1, ..., Kp−1, and p = 1, ..., L, and let w(p−1) =

w
(p−1)
1 +iw

(p−1)
2 . Then we can expand each polynomial htl into its real and imaginary

parts via

htl(w
(0), ...,w(L−1)) = htl1(w

(0)
1 , ...,w

(L−1)
1 ,w

(0)
2 , ...,w

(L−1)
2)

+ ihtl2(w
(0)
1 , ...,w

(L−1)
1 ,w

(0)
2 , ...,w

(L−1)
2),

where htl1, htl2 ∈ R[w
(0)
1 , ...,w

(L−1)
1 ,w

(0)
2 , ...,w

(L−1)
2] for t = 1, ..., N and l = 1, ..., C.

80

Then the complex polynomial system (5.4.1) can be rewritten as the real system

{htlk(w(0)
1 , ...,w

(L−1)
1 ,w

(0)
2 , ...,w

(L−1)
2) = 0 | t = 1, ..., N, l = 1, ..., C, k = 1, 2}

of 2C · N equations in the 2K real variables w
(0)
1 , ...,w

(L−1)
1 ,w

(0)
2 , ...,w

(L−1)
2 . This

allows us to apply Proposition 5.3.3 to find a rectangular box R ⊆ R2K from which

to choose initial weights for the Newton’s method backpropagation algorithm.

81

Chapter 6

Conclusion and Future Work

Newton’s method has been significantly under-utilized in the training of ANNs due

to the computational inefficiency of computing and inverting the Hessian matri-

ces. We have developed the backpropagation algorithm using Newton’s method for

complex-valued holomorphic multilayer perceptrons. The extension of RVNNs to

CVNNs is natural and doing so allows the proper treatment of the phase informa-

tion. However, the choice of nonlinear activation functions poses a challenge in the

backpropagation algorithm. The usual complex counterparts of the commonly used

real-valued activation functions are no longer unbounded: they have poles near zero,

while other choices are not fully complex-valued functions. We proposed the use of

holomorphic activation functions, which allowed for a simple formulation of the

backpropagation algorithm using Newton’s method akin to the typical gradient de-

scent algorithm. We developed the complex one-step Newton step length algorithm

to avoid the problem of overshooting of the iterates in using Newton’s method to

minimize real-valued complex functions. To provide experimental evidence for the

choice of holomorphic functions as activation functions in addition to mathematical

reasoning, we compared the results of using the complex-valued sigmoidal function

as activation functions and the results of using its Taylor polynomial approximation

as activation functions. Our experiments showed that when Newton’s method was

used for the XOR example, Taylor polynomial approximations are better choices.

The use of complex one-step Newton steplengths further improved training itera-

tions for the XOR example.

The use of polynomials as activation functions allows the possibility of rigorous

82

analysis of performance of the algorithm, as well as making connections with other

topics of complex analysis, which are virtually nonexistent in complex-valued neu-

ral network studies so far. It also allows us to take an algebraic approach to the

study of polynomial MLPs. Singularity of the Hessian matrices poses a significant

obstacle to the use of Newton’s method in the backpropagation algorithm, as we

saw in the XOR examples. We developed an adaptive underrelaxation factor algo-

rithm for minimization of real-valued complex functions via Newton’s method that

guarantees nonsingularity of the Hessian matrices. We applied our algorithm to

an artificial neuron example as well as the XOR problem, finding that indeed the

number of singular matrix errors was significantly decreased at a cost of increasing

the frequency of the network being trained only to a local minimum. The reason

behind the increase in local minimum training errors in using our algorithm is a

problem for future work.

Newton’s method is particularly sensitive to the choice of the initial iterate, and

this was particularly evident in our XOR and neuron examples. We approached

this problem from an algebraic viewpoint for polynomial MLPs and applied an

algorithm for real root isolation and location of a polynomial system to the neuron

and MLP cases. Further experiments in using this algorithm are a subject for future

investigation.

Of particular interest for future work are the following questions and directions

of study, which arise as extensions of this dissertation.

1. How can we improve our current algorithms, including the Newton and pseudo-

Newton backpropagation algorithms as well as the complex one-step Newton

steplength algorithm and the adaptive underrelaxation factor algorithm, in

order to make them more computationally efficient and easier to implement

in real-world applications?

2. How can we efficiently implement the search algorithms given in Chapter 5?

In particular, can we develop an algebraic method to choose the constraint

polynomials that are used to reduce the variety defined by a system of poly-

nomial equations from an artificial neuron to one that contains exactly one

point?

3. Further investigation of the algebraic properties of polynomial MLPs is war-

ranted, as the use of polynomial activation functions for CVNNs opens up the

83

possibility of using additional theoretical techniques from algebraic geometry

to study and improve training algorithms for these networks.

4. Some large-scale applications of our algorithms are necessary to show further

experimental evidence of the superiority of our methods to the traditional

gradient descent backpropagation algorithm. We plan to begin experiments

using benchmark data sets from the UCI Machine Learning Repository to train

polynomial MLPs using our algorithms. In particular, implementation of the

methods in Chapter 5 is necessary in order to improve our search strategy.

Bibliography

[1] M.S. Al-Haik, H. Garmestani, and I.M. Navon. Truncated-newton training

algorithm for neurocomputational viscoplastic model. Computational methods

in applied mechanics and engineering, 192:2249–2267, 2003.

[2] Md. Faijul Amin, Md. Monirul Islam, and Kazuyuki Murase. Single-Layered

Complex-Valued Neural Networks and Their Ensembles for Real-Valued Classi-

fication Problems. In 2008 International Joint Conference on Neural Networks,

pages 2500–2506. IEEE, 2008.

[3] Md. Faijul Amin, Md. Monirul Islam, and Kazuyuki Murase. Ensemble of

single-layered complex-valued neural networks for classification tasks. Neuro-

computing, 72:2227–2234, 2009.

[4] Md. Faijul Amin and Kazuyuki Murase. Single-layered complex-valued neural

network for real-valued classification problems. Neurocomputing, 72:945–955,

2009.

[5] Md. Faijul Amin, Ramasamy Savitha, Muhammad Ilias Amin, and Kazuyuki

Murase. Complex-Valued Functional Link Network Design by Orthogonal

Least Squares Method for Function Approximation Problems. In Proceedings

of the International Joint Conference on Neural Networks, pages 1489–1496,

July/August 2011.

[6] Md. Faijul Amin, Ramasamy Savitha, Muhammad Ilias Amin, and Kazuyuki

Murase. Orthogonal least squares based complex-valued functional link net-

work. Neural Networks, 32:257–266, 2012. 2012 Special Issue.

[7] Wee-Peng Ang and B. Farhang-Boroujeny. A New Class of Gradient Adap-

tive Step-Size LMS Algorithms. IEEE Transactions on Signal Processing,

49(4):805–810, April 2001.

[8] H.S.M. Beigi and C.J. Li. Learning Algorithms for Neural Networks Based

on Quasi-Newton Methods With Self-Scaling. Journal of Dynamical Systems,

Measurement, and Control, 115:38–43, March 1993.

84

85

[9] Sven Buchholz and Gerald Sommer. On Clifford neurons and Clifford multi-

layer perceptrons. Neural Networks, 21:925–935, 2008.

[10] Kavita Burse, Anjana Pandey, and Ajay Somkuwar. Convergence Analysis of

Complex Valued Multiplicative Neural Network for Various Activation Func-

tions. In 2011 International Conference on Computational Intelligence and

Communication Systems, pages 279–282, 2011.

[11] John B. Conway. Functions of One Complex Variable I. Graduate Texts in

Mathematics. Springer Science+Business Media, Inc., New York, 2 edition,

1978.

[12] David A. Cox, John Little, and Donal O’Shea. Using Algebraic Geometry.

Springer Science+Business Media, Inc., New York, 2nd edition, 2005.

[13] Gianluca Di Muro and Silvia Ferrari. A Constrained-Optimization Approach

to Training Neural Networks for Smooth Function Approximation and System

Identificiation. In 2008 International Joint Conference on Neural Networks

(IJCNN 2008), pages 2354–2360. IEEE, 2008.

[14] Silvia Ferreri and Mark Jensenius. A Constrained Optimazation Approach to

Preserving Prior Knowledge During Incremental Training. IEEE Transactions

on Neural Networks, 19(6):996–1009, June 2008.

[15] Silvia Ferreri and Robert F. Stengel. Smooth Function Approximation Using

Neural Networks. IEEE Transactions on Neural Networks, 16(1):24–38, Jan-

uary 2005.

[16] William Fulton. Algebraic Curves: An Introduction to Algebraic Geometry. 28

January 2008. ”http://www.math.lsa.umich.edu/∼wfulton/CurveBook.pdf”.

[17] George M. Georgiou and Cris Koutsougeras. Complex Domain Backpropaga-

tion. IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal

Processing, 39(5):300–334, May 1992.

[18] Su Lee Goh and Danilo P. Mandic. A Class of Gradient-Adaptive Step Size

Algorithms for Complex-Valued Nonlinear Neural Adaptive Filters. In IEEE

International Conference on Acoustics, Speech, and Signal Processing, 2005.

Proceedings. (ICASSP ’05), volume 5, pages V/253–V/256. IEEE, May 2005.

86

[19] F.V. Haeseler and H.O. Peitgen. Newton’s Method and Complex Dynamical

Systems. Acta Applicandae Mathematicae, 13:3–58, 1998.

[20] Martin T. Hagan and Mohammad B. Menhaj. Training Feedforward Net-

works with the Marquardt Algorithm. IEEE Transactions on Neural Networks,

5(6):989–993, November 1994.

[21] Andrew Ian Hanna and Danilo P. Mandic. A Fully Adaptive Normalized Non-

linear Gradient Descent Algorithm for Complex-Valued Nonlinear Adaptive

Filters. IEEE Transactions on Signal Processing, 51(10):2540–2549, October

2003.

[22] Mohamad H. Hassoun. Fundamentals of Artificial Neural Networks. The MIT

Press, Cambridge, MA, 1995.

[23] Akira Hirose. Nature of complex number and complex-valued neural networks.

Frontiers of Electrical and Electronic Engineering in China, 6(1):171–180, 2011.

[24] Akira Hirose. Complex-Valued Neural Networks, volume 400 of Studies in Com-

putational Intelligence. Springer-Verlag Berlin Heidelberg, New York, 2nd edi-

tion, 2012.

[25] John H. Hubbard and Peter Papadopol. Newton’s Method Applied to Two

Quadratic Equations in C2 Viewed as a Global Dynamical System. Memoirs

of the American Mathematical Society, 191(891), January 2008.

[26] Hamid A. Jalab and Rabha W. Ibrahim. New activation functions for

complex-valued neural network. International Journal of the Physical Sciences,

6(7):1766–1772, April 2011.

[27] Taehwan Kim and Tülay Adali. Approximation by Fully Complex MLP Using

Elementary Transcendental Functions. In Neural Networks for Signal Process-

ing XI, 2001. Proceedings of the 2001 IEEE Signal Processing Society Work-

shop, pages 203–212. IEEE, 2001.

[28] Taehwan Kim and Tülay Adali. Fully Complex Multi-layer Perceptron Network

for Nonlinear Signal Processing. Journal of VLSI Signal Processing Systems,

32(1/2):29–43, August-September 2002.

87

[29] Ken Kreutz-Delgado. The Complex Gradient Operator and the CR-Calculus.

University of California, San Diego, Version UCSD-ECE275CG-S2009v1.0, 25

June 2009. arXiv:0906.4835v1 [math.OC], June 2009.

[30] Diana Thomson La Corte and Yi Ming Zou. Newton’s Method Backpropagation

for Complex-Valued Holomorphic Multilayer Perceptrons. To appear in the

International Joint Conference on Neural Networks (IJCNN 2014) Conference

Proceedings.

[31] Yann Le Cun, Ido Kanter, and Sara A. Solla. Eigenvalues of Covariance

Matrices: Application to Neural-Network Learning. Physical Review Letters,

66(18):2396–2399, May 1991.

[32] Henry Leung and Simon Haykin. The Complex Backpropagation Algorithm.

IEEE Transactions on Signal Processing, 39(9):2101–2104, September 1991.

[33] Hualiang Li and Tülay Adali. Complex-Valued Adaptive Signal Processing Us-

ing Nonlinear Functions. EURASIP Journal on Advances in Signal Processing,

2008, 2008.

[34] Ming-Bin Li, Guang-Bin Huang, P. Saratchandran, and N. Sundararajan. Fully

complex extreme learning machine. Neurocomputing, 68:306–314, October 2005.

[35] Jonathan H. Manton. Optimization Algorithms Exploiting Unitary Con-

straints. IEEE Transactions on Signal Processing, 50(3):635–650, March 2002.

[36] Indrajit Mukherjee and Srikanta Routroy. Comparing the performance of neural

networks developed by using Levenberg–Marquardt and Quasi-Newton with the

gradient descent algorithm for modelling a multiple response grinding process.

Expert Systems with Applications, 39:2397–2407, February 2012.

[37] Iku Nemoto and Tomoshi Kono. Complex Neural Networks. Systems and

Computers in Japan, 23(8):75–84, 1992. Translated from Denshi Joho Tsushin

Gakkai Ronbunshi, Vol. 74-D-II, No. 9, pp. 1282-1288, September 1991.

[38] J.M. Ortega and W.C. Rheinboldt. Iterative Solution of Nonlinear Equations

in Several Variables. Academic Press, Inc., New York, NY, 1970.

88

[39] Anupama Pande and Vishik Goel. Complex-Valued Neural Network in Image

Recognition: A Study on the Effectiveness of Radial Basis Function. World

Academy of Science, Engineering and Technology, 26:220–225, 2007.

[40] P. Pedersen, M.-F. Roy, and A. Szpirglas. Counting real zeros in the multi-

variate case. In F. Eyssette et al, editor, Computational Algebraic Geometry,

volume 109 of Progress in Mathematics, pages 203–224. Birkhäuser, Boston,

1993.

[41] Andrei D. Polyanin and Alexander V. Manzhirov. Handbook of Mathematics

for Engineers and Scientists. Taylor & Francis Group, LLC, Boca Raton, FL,

2007.

[42] R. Savitha and S. Suresh and N. Sundararajan and P. Saratchandran. A new

learning algorithm with logarithmic performance index for complex-valued neu-

ral networks. Neurocomputing, 72:3771–3781, 2009.

[43] Michael Reed and Barry Simon. Methods of Modern Mathematical Physics I:

Functional Analysis. Academic Press, London, 1980.

[44] Reinhold Remmert. Theory of Complex Functions. Springer-Verlag, New York,

NY, 1991.

[45] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning Internal Represen-

tations by Error Propagation. In D.E. Rumelhart and J.L. McCelland, editors,

Parallel Distributed Processing: Explorations in the Microstructure of Cogni-

tion, volume 1, chapter 8. Foundations M.I.T. Press, Cambridge, MA, 1986.

[46] R. Savitha, S. Suresh, N. Sundararajan, and H.J. Kim. Fast Learning Fully

Complex-Valued Classifiers for Real-Valued Classification Problems. In D. Liu

et al, editor, Advances in Neural Networks–ISNN 2011, Part I, volume 6675

of Lecture Notes in Computer Science, pages 602–609. Springer-Verlag Berlin

Heidelberg, 2011.

[47] Laurent Sorber, Marc Van Barel, and Lieven De Lathauwer. Unconstrained

optimization of real functions in complex variables. Technical Report TW592,

Katholieke Universiteit Leuven, Heverlee (Belgium), April 2011.

89

[48] Hao Yu and Bogdan M. Wilamowski. Levenberg-Marquardt Training. In In-

dustrial Electronics Handbook, Vol. 5: Intelligent Systems, chapter 12, pages

12–1 – 12–15. CRC Press, 2 edition, 2011.

[49] Hans Georg Zimmermann, Alexey Minin, and Victoria Kusherbaeva. Com-

parison of the Complex Valued and Ral Valued Neural Networks Trained with

Gradient Descent and Random Search Algorithms. In European Symposium on

Artificial Neural Networks, Computational Intelligence and Machine Learning,

pages 213–218, Bruges (Belgium), April 2011.

90

CURRICULUM VITAE

Diana Thomson La Corte

Education

Ph.D., Mathematics, University of Wisconsin-Milwaukee, August 2014

Advisor: Dr. Yi Ming Zou

Dissertation: Newton’s Method Backpropagation for Complex-Valued Holo-

morphic Neural Networks: Algebraic and Analytic Properties

Areas of Study: Algebra and Applied Math

M.S., Mathematics, University of Wisconsin-Milwaukee, May 2010

B.S., Mathematics, University of Wisconsin-Milwaukee, May 2007

Employment

University of Wisconsin-Milwaukee

Graduate Teaching Assistant: As Instructor of Record

Calculus and Analytic Geometry III, Spring 2014, Fall 2013

Calculus and Analytic Geometry II, Fall 2012, Fall 2011, Fall 2010, Summer

2010, Spring 2010, Summer 2009

College Algebra, Fall 2009

Intermediate Algebra, Spring 2009

Graduate Teaching Assistant: As Teaching Assistant

Survey in Calculus and Analytic Geometry, Fall 2008

University of Wisconsin-Madison

Graduate Teaching Assistant: As Teaching Assistant

Survey in Calculus and Analytic Geometry: Fall 2008

University of Wisconsin-Milwaukee

Mathematics Tutor, 2005-2007

91

Papers

“Newton’s Method Backpropagation for Complex-Valued Holomorphic Multi-

layer Perceptrons,” with Yi Ming Zou. To appear in the International Joint

Conference on Neural Networks (IJCNN 2014) Conference Proceedings.

Presentations

“Newton’s Method Backpropagation for Holomorphic Complex-Valued Neural

Networks.” Talk given at the Applied and Computational Mathematics Seminar,

University of Wisconsin-Milwaukee, February 2014.

“The Newton’s Method Backpropagation Algorithm for Holomorphic Complex-

Valued Neural Networks.” Talk presented at the AMS Session on Statistical

Modeling, Big Data, and Computing at the Joint Mathematics Meetings, Balti-

more, Maryland, January 2014.

“The Newton’s Method Backpropagation Algorithm for Complex-Valued Neu-

ral Networks.” Talk given at the Classification Society 2013 Annual Meetings,

University of Wisconsin-Milwaukee, June 2013.

Honors and Awards

University of Wisconsin-Milwaukee Morris and Miriam Marden Graduate Award,

2013. Award given for a mathematical paper of high quality. For “Newton’s

Method Backpropagation for Complex-Valued Holomorphic Multilayer Percep-

trons.”

University of Wisconsin-Milwaukee GAANN Fellowship, 2010-2013.

University of Wisconsin-Milwaukee Chancellor’s Fellowship, 2008-2010 and 2013-

2014.

University of Wisconsin-Milwaukee Alice Siu-Fun Leung Award, 2005, 2006, and

2007. Award given to outstanding undergraduate students in mathematical sci-

ences.

92

National Merit Finalist, 2003.

Membership

American Mathematical Society, 2012-Present.

	University of Wisconsin Milwaukee
	UWM Digital Commons
	August 2014

	Newton's Method Backpropagation for Complex-Valued Holomorphic Neural Networks: Algebraic and Analytic Properties
	Diana Thomson La Corte
	Recommended Citation

	tmp.1417807445.pdf.wd_z4

