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ABSTRACT 

 

OPTIMAL DC POWER DISTRIBUTION SYSTEM DESIGN FOR DATA CENTER 

WITH EFFICIENCY IMPROVEMENT 

by 

 

Xuechao Wang 

 

The University of Wisconsin-Milwaukee, 2014 

Under the Supervision of Professor Adel Nasiri 

 

 

Data Center Power Distribution design is very popular today focusing on improved 

energy efficiency and reduced operating cost. Conventionally data centers use low 

efficiency electrical power distribution systems with large AC power transformers, high 

power losses, and AC UPS and PDU power conversions. Most IT servers utilize low 

voltage level (12V or 48V) as the power source, which requires a step-down transformer 

and AC to DC rectifiers in every PDU. The “Proposed 380V DC Power Distribution 

System” promises to deliver high transmission efficiency and low power component cost. 

 

This is a comprehensive design including data center physical architecture and equipment 

selection, centralized rectifier design, simulation and analysis, power loss analysis, and 

power requirement and system efficiency calculations.  
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The core technical contribution is the design and simulation of a Buck-type current 

source rectifier using efficiency modeling analysis. This special converter is applied to 

data center power system to replace large scale AC transformers and distributed rectifiers. 

Related power and efficiency calculations aim to verify the viability, applicability, and 

practicality of this system design and to minimize power losses.  
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Chapter I  Introduction 

With the development of Internet business, digital information management has become 

fundamental to maintaining the common operation of academic, government and 

communicational systems. Data centers contain primarily electronic facilities for data 

processing, storage, and communications networking [1]. Besides the well-known 

“information technology” (IT) equipment, data centers have engineered electrical power 

distribution system, and conversion and backup devices to maintain a reliable and 

high-efficiency electrical energy supply for the IT equipment, lighting and air conditioner 

as well [1].  

 

1.1  Data Center Power System 

In a typical data center room, many rows of IT equipment racks are filled in parallel order. 

Usually one row of equipment rack is an individual power distribution unit, which 

contains main server, energy storage and a power conversion bays. Uninterruptible Power 

Supply (UPS), consisting of batteries and power conversions systems, acts as energy 

backup to prevent servers from experiencing power disruptions [1]. Power conversion 

happens in Power Distribution Unit (PDU), where high voltage AC input power is 

transferred to low voltage DC for servers’ power. The size of the UPS system depends on 

the electricity consumption ratings. Large energy consumption sites and highly important 
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data centers normally have a UPS for each IT equipment racks; otherwise the data center 

is vulnerable because there is only one UPS system for the whole data center. 

 

Two main input buses provide 480V/277V three phase four wire AC power to UPS units 

first before reaching the IT equipment rack [2]. To charge the batteries, electricity is 

converted from AC to DC when discharging, DC is inverted to AC. The PDU has 

step-down transformers to reduce voltage to usable levels and also convert AC to DC for 

IT loads. To proper continued operation of servers and power supply equipment, the more 

than 50% of heat generated is unnecessary and could be removed. Computer Room Air 

Conditioning (CRAC) system usually provides the data center cooling is served by the 

input bus.  

 

Power distribution in data center can be accomplished by AC or DC power. AC power 

distribution systems are widely applied in main bus installation of voltage of 120V, 208V 

or 240V [2]. However, the number of distributed converters reduced the energy efficiency 

with a high device investment. Engineers and manufacturers propose replacing AC Power 

Distribution Systems with DC Power Distribution System for high-efficiency centralized 

power conversion equipment. With the development of DC distribution technology, 

voltages of 300V, 380V, 400V and 575V have been proposed in various “forums”. 
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1.2  AC Power Distribution System 

The traditional AC power distribution system for data centers is 480V/277V three phase 

providing power to a UPS, then a PDU converts to 208V/120V for single phase branch 

circuits utilized by IT equipment [3]. Figure 1 is the one-line diagram showing this 

configuration.  

 

Figure 1. One-line diagram of typical AC Power system 

 

Based on the research of paper [4], at the baseline operating load- 50% load, overall 

efficiency is around 89.30% which is lower than the DC overall efficiency 90.35%. This 

efficiency was calculated by for three power path segments: UPS, Distribution wiring and 

IT Equipment Power Supply. The 1.05% efficiency difference between the DC and AC 

system because the IT power supply has higher efficiency. Besides UPS and wiring 

conduction losses, the AC system has a large number of distributed power electronics 

converters located in PDUs creating power loss and wasted heat.  

 

Advantages of conventional AC distribution are worldwide compatibility and 

applicability for a wide voltage range.  
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1.3  DC Power Distribution System 

As described in section 1.2, the DC power distribution system has higher efficiency 

because it has a centralized rectifier feeding a 380V DC bus, shown in the one-line 

diagram Figure 2. The IT loads utilize 48V or lower levels from simple Buck converters.  

 

Figure 2. One-line diagram of DC Power system 

 

According to [5], transformers caused up to 6% of total power losses (see Figure 3). 

These studies assumed that there are no AC power transformers in the DC distribution 

system. To authentically have a 380V DC bus and eliminate the transformers, I proposed 

the Current Source Buck-type Rectifier (CSBR). This converter can transfer AC to DC 

and lower the DC voltage level to usable voltages. Any power distribution should provide 

isolation between the high voltage supply and logic circuits. This isolation is achieved 

within the power supply conversion instead of transformers found in both traditional AC 

and DC power systems. Details of CSBR will be discussed in Chapter III.  

 



5 

 

 

 

Figure 3. Difference in losses of each section in typical AC Power system. Data source: [5].  

            

Since the system has a 380V DC bus, the energy storage model can be simplified to 

charging DC batteries directly through DC breakers. Figure 4 shows the UPS power loss 

data in AC and DC systems from LBNL and EPRI. The UPS efficiency data is based on 

system measurements which include power conversion losses.  

 

Figure 4. Difference in losses of UPS system in typical AC and DC Power system. Data source: [5].  

 

1.4  Energy Consumption Comparison 

In most existing AC data centers, power is delivered to the IT equipment as AC, which is 

converted to DC in the IT device power supply. In the proposed system, power is 

converted to DC closer to the utility supply and is distributed to load as DC. LBNL and 

EPRI conducted studies using both measurements and calculations to compare the 

projected power losses and energy efficiency differences between AC and DC 

distribution shown Figure 5. The calculated data differs from the experimental data due to 

assumptions about load. 
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Figure 5.Difference in losses of AC and DC in LBNL and EPRI. Data source: [5]. 

 

Where conversion happens, power losses occur. Power supplies and UPSs in either the 

AC or DC systems are responsible for the majority of losses. Usually, the power factor 

correct in modern AC power supply system which is used to control the input current and 

eliminating harmonics, can be removed from DC operation to get 1% efficiency 

promotion [5]. What is more, the Proposed DC Power System charges the battery directly 

with one less stage of conversion in the DC system, which can bring lower power losses 

in UPS than the result shown in the Fig.5 above. A detailed calculation will be described 

in Chapter III.   

 

1.5  Article Layout 

This paper is organized as follows: Chapter II will focus on the DC Power Distribution 
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Architecture, including the power supply equipment, distribution schematic and power 

flow. The power conversion model, control strategy analysis, and DC UPS formulation is 

provided in Chapter III. Based on the simulation model, Chapter IV provides the 

converter power losses calculations. Chapter V presents the system efficiency modeling 

through total power requirements and PUE calculations, and also the expected and 

potential energy cost savings. Chapter V also presents opportunities for additional 

efficiency improvement by applying renewable energy to data center power supply 

systems. Concluding remarks are given in Chapter VI.  
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Chapter II  Power Distribution Architecture   

Significant improvements in efficiency, power density and configurability have been 

achieved in data center with the development of electrical distribution equipment [6]. The 

techniques of transformer-based power supply are shown to be obsolete [7]. This chapter 

explains the physical equipment as well as the power flow and system schematic.  

 

2.1  Data Center Power Distribution Equipment 

In a data center electrical power distribution system, the equipment usually contains high 

voltage, medium voltage, and low voltage; switch gear, switchboards, panel boards, and 

power distribution units, etc. [8]. Figure 6 is a simple diagram example of an AC 

distribution system architecture. 

 

The diagram illustrates two AC voltage levels in the system, medium and low voltage 

level. The utility grid supplies the medium voltage which is stepped down to low voltage 

by a three phase transformer. The reactive compensation devices are normally installed at 

medium voltage level. The low AC voltage bus distributes electrical power to the 

different loads such as IT equipment, lighting and cooling systems. PDU converters AC 

to DC and also lower the voltage to server’s utilization level, 5V, 12V or 24V, etc. Based 

on the data center power rating, multi-megawatt data centers can specify additional 
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“rPDU” located in the server rack to share the operation in order to avoid the size of main 

PDU when it becomes too big.  

 

Figure 6. Block diagram of AC Distribution System in a typical data center [8]. 

 

Medium-voltage (MV) switchgear is generally used in large –capacity data centers with 

more than 1 MW of loads. The gear is fed directly from the utility grid, may contains 

breakers, meters, contactors and related electrical devices. Fig.7 (a) is the one-line 
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diagram of a MV switchgear line-up. For the less than 1 MV loads in data center, a 

low-voltage switchgear or a switchboard is installed and the incoming feed is connected 

with the secondary of MV transformer. Per the one-line diagram in Fig7 (b), the system 

has power control center and motor control center for the cooling pump and harmonic 

filter or power factor correction filter.   

 

Figure 7.  (a) One-line diagram of MV switchgear [8].  (b) One-line diagram of LV switchgear [8] 

 

Per the discussion in the previous Chapter, PDU is the critical equipment for distribution, 

control and monitoring the electrical power from UPS to IT racks. In AC Power systems, 

PDU with a power transformer are mainly used to step down 480VAC to 120/208VAC 

and the power rated from 50kW to 500kW [8]. A typical PDU cabinet has main circuit 

breaker, branch circuit panels, cables, surge arrestor, monitoring and communication 

modules. Fig 8 shows the Eaton Power Distribution Unit. To deliver effective power 

management and monitoring, the Eaton PDU incorporates the Eaton Energy Management 
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System, optimizing both utilization and availability down to the branch circuit level [9]. 

 

Figure 8. Eaton Floor Based Power Distribution Unit. Source: [9].  

 

Features of the advanced PDU based on the example from [9] :  

 Integrated isolation, comprehensive monitoring, and a wide array of connectivity 

options [9].  

 Unparalleled ease of use through front-access only design, top and bottom cable 

access, and spacious wire-ways [9].  

 

Bus way approach is designed for power distribution from LV switchgear to PDU, and it 

could be mounted as overhead or underground. The existing design for AC power 

distribution set the over-current protection devices on the bus to protect the system. Panel 

board is widely used to distribute the power to non-IT load, like lighting, cooling and 

office utilization. To reduce the power ratings and increase the efficiency of the power 

system, some large data centers have Rack PDUs (rPDUs) which are connected directly 
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with upstream and distributed power to IT load at different loads.  

 

2.2  Data Center Power Distribution Approaches 

With the increase of power density and quantity of IT devices in data centers, the power 

distribution approaches definitely challenged the architecture. According to the research 

done before, a summary of three power distribution approaches is discussed in this 

section [6]. Each of the PDU and the Modular distribution can be subdivided into two 

different solutions. Table 1 is the definition of the three approaches to distributing power 

to IT racks.  

Panelboard 

Distribution 

Traditional PDU Distribution Modular Distribution 

 Field-wired PDU  Floor-mount Distribution 

 Factory-configured PDU  Busway Distribution 

Table1 the category of three power distribution approaches.  

 

Panelboard is rated from 1.5KVA to 75KVA [6], specially designed for small load 

capacity installations and low capital cost. Since this approach will not be used in the 

proposed DC Power Distribution system, it won’t be introduced anymore.  

 

In a large load capacity data center, power is distributed to multiple PDUs rated from 

50kVA to 500kVA [6]. They are fed directly from centralized circuit breaker and UPS, 
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and placed along the perimeter of the space. Each IT rack enclosure uses certain branch 

circuits which are placed under-floor or over-head cables. Two main categories of 

traditional PDU systems: 

 Field-wired means that the cables go through cable trays or rigid conduit 

underneath the floor or overhead [6].  

 Factory-configured using pre-installed overhead cables assemblies to the IT rack 

[6]. 

Field-wired PDU distribution approach is always used when floor space is limited and IT 

equipment are not likely to be changed frequently. Another advantage for this method is 

lower capital cost than other factory-configured PDU and Modular Distribution. When a 

data center plans to scale or re-layout its IT device in the future, Factory-configured PDU 

would be the best choice.  

 

Comparing the traditional PDU distributions approaches, the advanced modular power 

distribution system is more efficient and flexible, also causing a higher capital cost than 

other approaches. There are two modular systems available:  

 Busway: Through overhead or underfloor using plug-in units [6].  

 Floor-mount: Using cables for branch circuits, distributing overhead in cable trays 

to IT server enclosure with pre-terminated modules that plug into finger-safe 

back-plane of PDU [6]. 
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The Busway system is usually applied in the data center which has constrained floor 

space and well defined IT layout in large facilities. The IT load running value should be 

constant because adding new cables is difficult once the busway installation is done. 

Floor-mount modular power distribution is designed for the data center without certain 

power loads and requiring flexible distribution. This solution works for retrofitting 

existing data centers too which required additional load capacity. 

 

There was a comparison of these five approaches from the perspectives of reliability, cost, 

and agility [6]. The modular distribution system is manufactory pre-assembly plug in 

units, meaning no exposure to live electrical wiring, thus highly increased reliability and 

safety. However, the capital and operating cost is 25% to 50% higher. Generally speaking, 

Modular Distribution approaches are more flexible, more manageable, more reliable and 

highly efficiency improved for the high-density data centers today [6].   

 

2.3  Data Center Power Consumption Flow 

In the previous Chapter, the power consumption flow from initial high voltage input to IT 

loads has been discussed, but the actual measurement and quantitative comparison didn’t 

show up until this section. This section provides detailed data center power flow and 

definition of Power Usage Effectiveness.  
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Figure 9. Data Center Power Flow  

In a traditional AC Power Distribution Data Center, more than half of electrical energy 

consumed by the “support equipment”, including power supply devices, cooling system 

and lighting. Therefore only less than 50% of electricity is purchased by “useful” IT load, 

the other is called “support power” or “waste power” [10]. Fig. 9 shows the power flow 

of a typical AC Power System Data Center. Power path generates large amount of heat, 

taking away by cooling system which gains electricity from power supply system with 

considerable power losses. The proposed DC Power system is trying to remove the large 

scale transformer which generating the most heat and replacing the distributed converters 

by centralized one with lower power losses.  

 

In the academic “research realm” of data center, usually efficiency is measured as the 

ratio of total facility electrical power to IT consumed power, and this metric is called 
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Power Usage Effectiveness (PUE) [10]:  

Data Center Efficiency (PUE) = Total Facility Power / IT Equipment Power 

A PUE equals 1 means no power losses during delivering, equivalent to a 100% efficient 

data center. The higher the PUE number, the lower the efficiency of whole system.  

 

Electrical 

Equipment  

IT Equipment 

(PUE=2.13) 

Chiller Humidifier CRAC 

CRAH 

PDU 

UPS 

Lighting 

&Others 

Energy 

consumption 

percentage 

47% 23% 3% 15% 9% 3% 

Table 2 The energy consumption percentage of different equipment. Data source [11] 

Data of Table 2 is based on a typical data center operating at 30%load, showing that only 

half of the energy goes into the “Useful” devices in a typical high density data center with 

PUE equals 2.13 [11]. Obviously, another half is consumed by data center physical 

infrastructure (DCPI), intending to all the support equipment. These are considered as 

inefficiency and to dramatically reduce this inefficiency is the main purpose of recent 

research on data center.  

 

2.4  The Schematic of Power Distribution 

Through the schematic figures of power distribution system, the wiring diagram becomes 

very intuitive and convenience for design and analysis. This section gives the Traditional 

AC Power Distribution Solution Schematic and the Proposed DC Power Distribution 
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Solution Schematic.  

 

 

Figure 10 Traditional AC Power System Schematic [5] 

Figure 10 is the traditional AC Power System Solution. One main and one backup input 

from the grid with media voltage. Three phase step down transformer reduced the voltage 

to 400Volts AC. Then one branch sends power to non-vital loads such as lighting and 

office regular devices. UPS system storage the energy before it arrived at the IT Rack. 

The 400V AC bus sends the power to each PDU for power conversion to usable voltage 

levels for servers. Some non-IT vital loads are connecting to the bus, like firing alarm and 

security, which also needs the backup power supply from UPS when the input is cut. The 

whole system efficiency is around 85% [5].   
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Figure 11 AC Distribution with one DC bus Schematic. 

 

Since the UPS is a high power losses device, some researchers have updated the existing 

AC schematic shown in Fig 11. This system has three buses, two 400V AC buses and one 

380V DC bus for the battery charging. This solution can reduce the conversions in UPS 

in order to increase the efficiency to 89% and add the stability for the energy storage [5]; 

however, the initial cost would be much higher than usual and not appropriate for retrofit 

of existing data center.  
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Figure 12 Proposed 380V DC Power Distribution System 

To minimize the total power conversion stages, this proposed 380V DC Power 

Distribution System could be an ideal solution. In each IT rack, the 24 Pulse transformer 

is small scale that mostly like working as a current isolation. Moreover, it is connecting 

directly to the centralized AC/DC Conversion panel so the transformer can be recognized 

as one part of the converter. The main converter is a Buck-Type Current Source Rectifier 

converting the high voltage AC input to 380V DC output. The control topology is very 

complicate which will be introduced in Chapter III. The 380V AC Bus delivers power to 

each server and battery though a simple DC to DC converter located in PDU. Vital AC 

load has DC/AC inverter, system can provide power to induction motor by DC drive. 
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There is one diode in each phase to protect the bus and equipment from overcurrent 

caused by short circuit loads, very necessary for DC system. The whole system efficiency 

can reach 90% or even higher.  

 

2.5  Optimized Date Center DC Distribution Structure  

To design a network structure that is agile, resilience and can provide as much throughput 

as possible, the key is that how the server is connected with switches and other deployed 

devices [13]. Paper [13] provides four topologies with power consumption of each to 

illustrate the best structure for data center with different load. Among these four 

topologies’ simulation results, “Balanced Tree” showed very strong and stable especially 

low power consumption performance in both high and media loads of data center. It is the 

optimized structure solution for the DC power distribution system as well. Shown in Fig 

13, the balanced tree distributes its levels evenly between each branch. It has a single 

switch in the core, as the main circuit breaker in the schematic. Usually there will be n 

switch ports connecting with terminal block of main circuit breaker. The servers are 

located in the levels from each switch. If this solution has k structure levels so the whole 

structure can have n
k 
servers. The power consumption formula [13]: 

Watts=                                           (2) 
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Figure 13 Balanced Tree [13]. 
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Chapter III  Power Conversion   

The power conversion system plays the most important role in the Data Canter Proposed 

380V DC Power Distribution System. The core converter topologies also the main 

contribute of this paper are buck type current source rectifier whose responsibility is 

converting AC to DC and voltage reduction from 10KV to 380V DC as well [14]. This 

Buck-type Current Source Rectifier applied to Data Center Power Distribution System 

may bring a significant and huge revolution in DC Power system especially for data 

centers.  

 

Paper [17] and [18] provided a modulation scheme for three-phase three-switch 

buck-type rectifier to minimize the input filter capacitor voltage ripple and DC current 

ripple with low switching losses. Paper [19] proposed a comprehensive design of a 

three-phase three switch buck-type rectifier with system modulation and control topology. 

In [15], the three-phase six switches buck-type current source rectifier was first proposed 

for 400V DC Distribution System. The total conversion efficiency is optimized towards 

to 99% with methods for calculating losses of all components at full load.  

 

In this paper, the design of the Proposed 380V DC Power Distribution System paid 

special attention to the three-phase six switches current source rectifier. The converter 
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operation theory and control topology has been updated to work with IT equipment load 

and semiconductor losses has been calculated based on the knowledge in [15].  

 

3.1  Current Source Rectifier 

In a typical AC Power Distribution System shown in Fig14, the power conversion from 

MV AC to 12V DC is 6 stages or more; however, the 380V DC Power Distribution 

System just have 3 stages with Buck-Type Current Source Rectifier [14]. In this way, 

1MW DC system can be 10% more efficient than for comparable AC technology, while 

the costing is 15% less (14). 

 

 

 

Figure 14 Detailed view of Typical AC Power System (top) and Proposed DC Power System (bottom) [14]. 

 

The three phase buck-type current source rectifier (CSR) can provide a wide output 

voltage control range from high to low voltages while allow for current limitation in the 
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case of an output short circuit [15]. That means the CSR is working as a current source to 

keep the output current under the limitation anytime to protect the overall power system 

especially the IT equipment. Both the efficiency and costing is highly increased because 

it potentially replaces all the “red” conversions in Fig 14 (top) and the power factor 

correction (PFC) is combined in the CSR. These are the advantages and benefit for 

picking up the CSR as the converter for proposed DC system.  

 

The design of a high efficiency 10KW, 380V DC output, three-phase buck-type current 

source rectifier is optimized for 480V ±10% AC input phase to phase rms voltage at 60Hz 

and peak efficiency at full load. The topology of the rectifier is given in Fig. 15. The six 

core semiconductors are designed to use high-voltage MOSFETS because they can 

provide better switching and higher efficiency performance due to lower forward voltage 

[15]. The two converter inductor is split evenly (L1=L2) between the positive and 

negative path just in order to provide symmetric attenuation impedances for harmonic 

current [15].  
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Figure 15 Conversion circuit schematic. 

  

3.2 Simulation Models  

The simulation of the converter was operated in MATLAB/SIMULINK. There were two 

simulation models with different control topologies proposed. Fig.16 is the screen capture 

of simulation model with voltage PI loop and current PI loop PWM control. Fig.17 is the 

screen capture of simulation model with DQ PWM control. Different control topologies 

with same converter model can result in large difference in voltage and current 

waveforms especially the DC’s. Detailed information of the control strategy will be 

provided in Section 3.3. 
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Figure 16 The screen capture of the converter system simulation module with current and voltage PI loop 

PWM control 



27 

 

 

 

 

Figure 17 The screen capture of the converter system simulation module DQ PWM control 
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The input power (in red) is set as 25KV three phase AC input, power rating is 10MVA, 

which is representing the typical large scale data center power system. The Primary and 

Secondary side of the Media Voltage Transformer (in pink) are 25KV and 480V AC 

respectively. The choke and filter reduced the AC side current harmonic; in the PQ 

control model, the filter (in orange) also compensated reactive power to the conversion 

system. The green rectangle in DQ model is the six pulses buck type rectifier which the 

same as the one in the PI control model. There is one Mosfet and one diode in each arm. 

In this simulation, all the components are in idea condition. The load is simplified as 

resistor just for showing the output DC voltage and current. And next chapter will focus 

on the effective on output current and voltage with different loads. Other parameters in 

these two models are listed in below tables.  

 

Choke Filter L1=L2 C1 Solver Running time 

R: 0.1ohms 

L: 2.1e-3H 

R: 0.1ohms 

L: 1e-3F 

L: 3e-2H C: 8e-2F Ode15s T= 0.5s 

Table 3 Parameter list of the PI PWM Control simulation module  

 

Choke Filter L1=L2 C1 Solver Running time 

R: 0.1ohms 

L: 12.5e-3H 

Reactive Power 

Qc: 4.5e3 Var 

L: 3e-2H C: 8e-2F Discrete 

Ts=2e-6s 

T= 1s 

Table 4 Parameter list of the DQ PWM Control simulation module  

 

 



29 

 

 

 

3.3 Control Strategy and Results 

The first PI PWM control has two loops, voltage and then the current loop. Fig. 18 is the 

diagram of this control strategy. Each loop has a same PI controller with different Kp and 

Ki listed in Table 5. The PWM carrier frequency is 33*60Hz brings the least harmonic in 

the translation system. The time period values of the triangle generator is  

𝑇 =
1

𝑓
=

1

33×60
= 5.051 × 10−4                    (3) 

Based on the operation theory from [15], the two switches of each leg receiving the same 

gate signal is simplest way to control the switches. So the trigger signal of Phase B is 120 

degree lag of Phase A and that of Phase C is 240 degree lag of Phase A.   

 

Figure 18 The diagram of the PI PWM control 

 

 The voltage loop PI controller The current loop PI controller 

Proportional gain-Kp   8 2 

Integral gain-Ki 0.05 0.005 

Table 5 Parameter list of each PI PWM Controllers  

 

Fig. 19 (upper) is the scope waveforms of input 480 V AC voltage Vabc and current Iabc; 

bottom waveforms are the output 380V DC voltage Vdc and current Idc. Before the DC 
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voltage reached the desired value, the current increased sharply to 350Amps due to the 

large inductance in the circuit and slow reaction of current loop. However, the current 

drops to zero for 0.01s before the voltage stable. These huge vibrations of the current can 

easily hit the protection relay trigger or burn the fuses in the bus. Moreover, this is also 

causing a very high reactive power which leads to an unacceptable low efficiency.  

 

 

Figure 19 The scope waveforms of input AC voltage and current(upper); output DC voltage and current 

(bottom).  

 

To overcome the entire disadvantage and improve the total conversion efficiency, taking 

the special load conditions of data center into account as well, a new control strategy has 

been developed for this Proposed DC Power Distribution System. To eliminate the 

reactive power in conversion system, space vector control theory is applied, which means 

three phase voltage Vabc and Iabc is represented by a d-q vector rotating at an arbitrary 
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angular speed. The common a-b-c rotating reference frame is converted to be rotating in 

d-q reference frame by the matrix below 

  (4) 

Angle θ (ωt) is considered between stationary speed a-axis and rotating speed d-axis. 

 
Figure 20 A-B-C stationary frame to D-Q rotating frame.  

 

In the simulation model, the angle θ is calculated in Phase Locked Loop (PLL) system 

which is to synchronize on a set of variable frequency, three-phase sinusoidal signals. 

Input is three phase signals, output is measured frequency (Hz), ωt and vector [sin(ωt) 

cos(ωt)] that is used in the matrix calculation called “abc to dq0 transformation”. Vdc 

Regulator collected the Vdc signal and Vref, drew the current reference in “d” vector Id. To 

improve the efficiency, the “q” vector representing the reactive power should drop to zero, 

meaning no value on q-axis. The current regulator is working as a PI controller to correct 

and generate the reference Vdq. Three phase reference voltage generator utilize the same 
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angle θ in the inverse matrix to produce the Uabc-ref for PWM generator.  

      (5)    

 

 

 
Figure 21 The schematic (upper) with parameter settings (lower left) and the subsystem of “PLL & 

Measurements” in the DQ PWM control in MATLAB/SIMULINK Model 



33 

 

 

 

 

 

 

Figure 22 The scope waveforms of input AC voltage and current (upper); output DC voltage and current 

(middle) and PWM signal (bottom) .  

 

Shown in Fig. 22, the output DC voltage increased from 0 to 380V very smoothly and 

quickly. The output DC current almost has the same appearance without any huge 

vibrations and ripples which significantly proofed that the DQ controller reducing 

reactive power effectively. The power meter also certified this conclusion, with the 

reactive power ranging from -0.25Kvar to 0.25Kvar when the voltage is stable. However 

the real power is around 14KW. So the power factor is 0.98.  
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Compare this two control strategy applying in the same six-pulse Mosfet converter, it is 

no doubt that the Space Vector DQ PWM controller effectively improved the 

performance of output voltage and current for IT devices. On the other hand, the filter can 

absorb or provide more reactive power if necessary which has a profound effect on this 

centralized converter.  

 

3.4 Voltage Source Rectifier and Buck Converters  

Three-phase Buck-Type Voltage Source Rectifier (VSR) has some attractive features like 

high power factor, nearly sinusoidal input current compared with CSR and bidirectional 

power flow ability [20]. The difference of VSR and CSR is that there is no DC side 

inductor to limit the current shown in Fig 23.  

 

 

Figure 23 The circuit schematic of Voltage Source Rectifier 
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From the MATLAB/SIMULINK simulation model, with the same Space Vector DQ 

PWM Controller from CSR, the output DC voltage and current has a negative 

performance of stability and speed. Even the AC input current waveform is sinusoidal 

and less harmonic, this type of conversion cannot be guaranteed to be stability utilized 

under a wide-range rapidly varying load which is verified in [20]. So data center, IT 

servers are extremely expensive devices and very sensitive to the current variation that 

may cause serious damage. Comparing these two converters, CSR performed better in the 

stability and Speed characteristics, and also can protect the output current from increasing 

sharply. So the Proposed DC Power Distribution System still adopts Buck Type Current 

Source Rectifier.  

 

 

 
Figure 24 The scope waveforms of input AC voltage and current (upper); output DC voltage and current 

(bottom) 
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In the system schematic of Section 2.4, simple DC to DC Buck Converters connected 

with the circuit breaker of 380V Bus and servers’ power input panel or other critical DC 

loads such as security and lighting. In [21], the Intel Servers utilized the 12V DC and 

48V DC applied in other support devices. Two different output voltage simulation models 

of Buck Converter with PWM control have been conducted in MATLAB/SIMULINK. 

Fig. 25 is the simulation schematic through IGBT as the switch. Input DC voltage is set 

as 380V DC, and load is considered as a simple resistor (2ohms). The control topology is 

very simple those to change the output level, just reset the constant reference value in the 

feedback loop and modify the LC branch (L1 and C1).  

 

 
Figure 25 the circuit schematic of Buck Converter in MATLAB/SIMULINK 
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Figure 26 the scope waveforms of output voltage and current for 48V Level (left) and 12V Level (right).  

 

3.5  DC Energy Storage 

In the data center industry, there are varied typed of uninterruptible power supplies (UPS) 

existing for AC Power Distribution systems. Different venders provided models with 

similar design and topologies but with variable performance characteristics [22].  

 

 

Figure 27 Standby AC UPS System diagram.  

The widely used UPS system for computers and servers is called Standby UPS system 

shown in Fig.27.[22] The energy storage devices like battery charge and batteries, are 

connected in parallel with the primary power delivery source. The transfer switch is set to  
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choose the AC input as default, and when primary power fails, the transfer switch can 

operate to switch the load over to the battery as backup power source in dashed path. The 

battery only starts when fault happens but always ready for that, so named as “standby”. 

 

 

Figure 28 New Designed Standby DC UPS System diagram.  

To work properly with the proposed 380V DC Distribution system, this paper designed a 

new DC UPS system. It is originally modified and updated from “standby” system but 

much simple and efficient than AC energy backup system because it doesn’t need at 

conversion or only small DC to DC Buck convert shown in Fig.28. The backup power 

devices deliver DC directly to the 380V Bus so every load can be energized even critical 

AC load. Usually one battery is 24V that means 380V output needs at least 15 batteries 

connecting in series.   
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Chapter IV Efficiency Modeling of Converter 

To design a high efficiency power distribution system, the electrical efficiency modeling 

must be built and analysis as precisely as possible in order to minimize unnecessary 

losses during the design stage. In Chapter III, the centralized CSR Buck-Type Converter 

is developed and simulated as the core part of this design. So in this Chapter, the power 

losses calculation and the effectiveness of variable loads will be provided to revise the 

performance of conversion system.  

 

4.1 Calculation of Power Losses 

The power losses of this system mainly occur in the power conversion and voltage 

transformation stages. The centralized AC to DC Rectifier has conducted nearly 50kVA 

power so the losses would be significant for efficiency optimization. However, the PDU 

internal DC to DC Buck Converters have very low KVA ratings so that the power losses 

during this conversion can be ignored. An important feature of this proposed system is 

that all LV transformers have been eliminated in order to reducing losses to zero which is 

happened in this period. The losses during transmission and on other devices can also be 

negligible based on the design guidance of [19]. On the other hand, the power conversion 

losses can be broadly divided into two categories: losses of the semiconductors and losses 

of the passive components [19].  
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Research paper [19] has provided very detailed principle analysis of semiconductor 

losses for exporting calculation formulas. This paper didn’t repeat the similar theoretical 

analysis, just applied all the calculation procedure to this special rectifier. The rms and 

average values of these series diode current IDS, rms and average values of Mosfet current 

Is, and freewheeling diode current IDF can be got from (6) to (9): [19] 

𝐼𝐷𝑆,𝑎𝑣𝑔 = 𝐼𝑆,𝑎𝑣𝑔 =
𝐼𝑁

𝜋
                           (6) 

𝐼𝐷𝑆,𝑟𝑚𝑠 = 𝐼𝑆,𝑟𝑚𝑠 =
𝐼𝑁

√𝑀𝜋
                          (7) 

𝐼𝐷𝐹,𝑎𝑣𝑔 = (
1

𝑀
−

3

𝜋
) 𝐼𝑁                         (8) 

𝐼𝐷𝐹,𝑟𝑚𝑠 = √(
1

𝑀2 −
3

𝑀𝜋
) 𝐼𝑁                        (9) 

Where the IN is the input phase current rms value, is always affected by the loads. To 

simplify the calculation, the load was set as 80% load. So in the scope, the phase current 

IN is read around 20Amps and the rms value IN,rms equals 20/1.732 is 12Amps.  M is 

called the modulation index, can be calculated as (10): 

𝑀 =
√2𝑉𝐷𝐶

3 𝑉𝐿−𝑁,𝑟𝑚𝑠
=

√2×380𝑉

3×(480/√3)𝑉
= 0.6467               (10) 

So the result are 𝐼𝐷𝑆,𝑎𝑣𝑔= 3.82A, 𝐼𝐷𝑆,𝑟𝑚𝑠= 8.42A, 𝐼𝐷𝐹,𝑎𝑣𝑔 = 7.10A, 𝐼𝐷𝐹,𝑟𝑚𝑠=11.48A. 

The total semiconductor losses of Mosfet PS , series diode PDS and freewheeling diode 

PDF is been calculated as below: [19] 

𝑃𝑆 = 6𝐼𝑆,𝑟𝑚𝑠
2 𝑅𝐷𝑆,𝑂𝑁

𝑛𝑆
                         (11) 

                      𝑃𝐷𝑆 = 6(𝐼𝐷𝑆,𝑟𝑚𝑠
2 𝑅𝐷

𝑛𝐷
+ 𝐼𝐷𝑆,𝑎𝑣𝑔𝑉𝐷)                (12)   
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                      𝑃𝐷𝐹 = (𝐼𝐷𝐹,𝑟𝑚𝑠
2 𝑅𝐷

𝑛𝐷𝐹
+ 𝐼𝐷𝐹,𝑎𝑣𝑔𝑉𝐷)                (13)                                

Where the RDS,ON is the Mosfet on-resistance set as 0.1Ohms; ns is the number of 

transistors paralleled for each switch equals 2; RD is the diode turn-on resistance which is 

0.01Ohms; nD is the number of devices paralleled for each diode that is same as ns=2 ; VD 

is the diode forward voltage which is 0.7V usually. When running the calculation, we can 

get the estimated power losses values: 

Mosfet Losses Ps Series Diode Losses PDS Flyback Diode Losses PDF 

21.27W 18.17W 5.63W 

Table 6 Power Losses Values of semiconductors  

 

The Semiconductor Power Losses is around 45W when the load was constant at 80% in 

this power conversion system. Actually the switching losses consist of two main portions. 

One is overlapping of current during the switch transitions; the other one is caused by the 

charging and discharging of the parasitic capacitances of the Mosfet and diodes [19]. 

When considering these factors, the turn-on losses due to overlapping of current and 

parasitic capacitors can be calculated as below: [19] 

𝑃𝑂𝑁 =
6

𝜋
𝑉𝐿−𝑁,𝑟𝑚𝑠

√3

4
𝐼𝐿𝑡𝑡𝑟𝑓𝑆𝑊                         (14) 

Where the 𝐼𝐿  is the output inductor current, 𝑡𝑡𝑟  is the switching time and 𝑓𝑆𝑊 is the 

switching frequency. But comparing the turn-on losses with conduction losses, Former 

calculation did not include these cases meaning the actual power losses would be a little 
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bit higher. However, to optimize the efficiency in the design level, the only thing could be 

controlled is the number of paralleled semiconductors. Fig.29 is from previous research 

paper [19] showing the relationship of total losses with numbers of switches and diodes 

in parallel. As can be seen, the curves are nearly flat when switch number is between 6 

and 11; diodes number is between 7 and 15. Optimal is ns=7, nd=4 which only cost 

11+26.8=37.8W. However, considering devices cost and converter implementation, the 

number was set as ns= nd=6 costing 39W just 1.2W higher than optimal pair but less cost.  

 

Figure 29 Total semiconductor power losses depending on the numbers of parallel switches and diodes.[19] 

 

The output inductors and capacitors can not only provide losses on semiconductor 

devices, but also cause losses due to winding resistance, core and high frequency. The 

losses in output capacitors caused by equivalent series resistance and by leakage current. 

Paper [19] provides very detailed formula derivation process. When taking the inductance 

current harmonics into account, the total losses PL and PC are shown below: 
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𝑃𝐿 = 𝐼𝐿
2𝑅𝐿,𝐷𝐶 + ∑

∆𝐼𝐿,𝑛
2

3

𝑛𝑡𝑜𝑡
𝑛=1 𝑅𝐿 + 𝑃𝑐𝑜𝑟𝑒                (15) 

                   𝑃𝐶 = 𝐼𝐶,𝑟𝑚𝑠
2 tan (𝛿)

2𝜋𝑓𝑆𝑊𝐶
+ 𝐼𝑙𝑒𝑎𝑘𝑉𝐶                        (16) 

When running at full load IL = 25A, the two losses plus together were less than 10W and 

can’t be improved from design step.  

 

Total losses calculated for this converter were around 55W when running at 80% load, 

giving the efficiency at 98.35%. Breakdown the total losses, semiconductors account for 

over 80% and dominate the total. The improvement of semiconductors properties would 

be the significant way to decrease losses and achieving unit efficiency.   

 

4.2 Effectiveness of Variable Loads 

In this data center power distribution system, the variable IT loads significantly affect 

overall performance of system components. Efficiency of power and other support 

equipment is not constant and not independent of IT loads. However, the converter 

should keep the output DC voltage constant and current under the limitation when the 

load varies. In this section, the effectiveness of variable loads on converter output and 

other components is provided to verity the stability performance of this data center power 

distribution system.  

 

This power conversion and transmission system is initially designed for 50KVA, however 
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considering support power equipment, power losses and safety issues, the output power 

to IT loads would reach 10KVA. In this case, the maximum current IDC approximately 

equals 10KVA/380V is 25Amps. So at full load, IDC = 25A; 80% load, IDC = 20A; 50% 

load, IDC = 12.5A; 30% load, IDC = 7.5A. Next step is to run the simulation model to 

verify if the simulation result matches the assumption.  

 

Full load, IDC = 25A 

 

80% load, IDC = 20A 
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50% load, IDC = 12.5A 

 

30% load, IDC = 7.5A 

 

Figure 30 Output DC Voltage and Current under variable loads 

 

In the scope waveforms as can be seen, the output DC voltage climbed to more than 

400V when the system is running at less than 50% load. So operator should run the 

system at 80% load which can bring the most stable and accurate waveforms. From the 

efficiency point, running at low load mode means the energy cost by the LC devices and 

support devices accounts for a very large proportion which definitely lower the overall 
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efficiency. Paper [10] went through the efficiency curves of almost all electrical 

equipment in data center and got the conclusion said “Efficiency of 

components-especially CRAC units and UPS-significantly decreases at lower IT loads”. 

CRAC means Computer Room Air Conditioning, on behalf of the support devices.  

 

Improving model of data center overall efficiency depends on the accurately individual 

components. Usually the common method is to set a single constant value to represent the 

efficiency which is inadequate when designing the data center power system. Let’s take 

UPS Efficiency as one example shown in Fig.31. The actual efficiency of an energized 

component is not constant, but rather looks like a function of load conditions. We prefer 

80% load for the best converter performance, and looking at this curve, UPS efficiency 

can almost reach 90% when running at the same load condition. The same conditions also 

happened on other power or support devices. 

 

Figure 31 Typical efficiency of a UPS as a function of IT loads. [10] 
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Through the simulation model’s analysis and other paper’s verification, it is confident to 

say that the minimum effectiveness of variable loads is running at 80% IT load.  
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Chapter V System Power and Efficiency 

Calculation 

After the circuit simulation design and efficiency modeling of the power conversion 

system, this chapter will discuss about the power and efficiency calculation of whole 

system. Through the calculation of total power and PUE, this paper can exhibit the 

expected energy savings in order to evaluating the electrical efficiency modeling’s 

function and comprehensive performance.  

 

5.1 Calculating Total Power Requirements 

One part of data center power system design is to match the power and cooling 

requirements of IT equipment and make sure the capacity of infrastructure equipment can 

provide it. In this section, the calculation methods for power and cooling requirements is 

provided and analysis for determining the total electrical power capacity needed to 

support this data center are presented.  

 

To design the capabilities of data center environment, regardless of the scale, should be 

start with the needs assessment. This assessment essentially builds the available capacity 

for the data applications processed by IT server. Paper [25] provides three configurations 

which are “N, N+1, 2N”, to identify additional IT internal power needs. “N” means that 
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there is no redundancy to increase availability for possible sharply increased IT load 

requirement. Time sensitive sites may have “N+1” topology for building a unit of 

redundancy in critical components and system. “2N” topology is designed for very 

important data centers applications where all the critical systems should be redundant. 

Based on the data center load profile, actual load may higher than the estimated full load 

(100% load). The calculated power requirement should have redundancy for all loads. So 

to simplify the calculation process, total calculated all loads power requirement will be 

added extra 50% electrical power capacity needed according to “N+1” topology. And the 

two buses have the same capacity. 

 

As discussed in previous Section 2.3, power flow separated into critical loads and support 

loads. Critical loads are all types of hardware devices that assembly in IT cabinet which 

has data nameplates indicating power ratings at full load. Former studies and power 

supply manufacturers confirmed that the data nameplate rating of most IT devices should 

be above the actual running load by a factor of at least 33% [25]. On the other hand, data 

center loads are not always static with the rapid development of IT industry. There should 

be a realistic estimate of future IT organization changes and update to allow proper initial 

determination of load power requirements when designing. Support loads do not need 

any redundancy such as lighting and cooling. Usually lighting load is 21.5 Watts per 

square meter [25]. The cooling load and efficiency maybe vary widely due to different 
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heat generated inside and ambient outside. To keep the calculation simple, the cooling 

system will running at full load and maximum allowed ambient. 

Table 7 Data Center Power Requirement and Power Capacity estimated calculation sheet 

 

Power Requirement 

Number Item  Calculation Subtotal Power 

1 

Critical 

loads-total IT 

load estimated  

power  

(Data nameplate power 

* 10 units *1.33)/1000 

(451*10*1.33)/1000=6KW 

2 

The critical 

loads besides 

server 

(including fire 

and security) 

100W/1000 0.1KW 

3 Future Loads #1*0.2 6KW*0.2=1.2KW 

4 Lighting  
(21.5W/m

2
 * 

100m
2
)/1000 

2.15KW 

5 

UPS, Battery, 

Switch and 

converter 

power losses  

(#1+#2+#3)*0.32+0.055 (6+0.1+1.2)*0.32+0.055=2.39

KW 

6 

Total Power to 

fill in electrical 

demands 

#1+#2+#3+#4+#5 

11.84KW 

7 Cooling #6*0.7 11.84KW*0.7=8.29KW 

8 
Total Power 

required 
#6+#7 11.84KW+8.29KW=20.13KW 

Power Capacity 

9 2N #8*1.5 20.13KW*1.5=30.20KW 
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Based on the power requirement theory discussed above, the total power consumption 

and the estimated of the electrical service needed to support all the loads in data center, 

the Table 7 included all the items and calculation. We assume the data center’s size is 100 

squares meter and it has 10 units of “Cisco UCS C200 M2 SFF” server with peak power 

usage of 451W on the data nameplate. From the table above, estimated power capacity at 

full load, peak power usage is 30.2KW which is lower than the designed power converter 

system capacity-50KVA.   

 

5.2 Calculation of Efficiency (PUE) 

Power Usage Effectiveness (PUE), as an effective energy management standard, has been 

widely recognized and utilized to determine data center infrastructure efficiency. Section 

2.3 has provided the theory and formula of PUE and one energy consumption percentage 

table as an example. In this section, the PUE definition of this DC Power Distribution 

System is proposed and calculated.  

 

PUE is Total Facility Power (or Total Input Power) divided by IT Load Power. Facility 

Power consumption units including physical infrastructure, IT loads, energy shared 

devices and neither sources. So issues exist here that caused difficulty to classify “power 

consuming subsystems”, which necessarily need a standard approach to collecting all 

power consumption values [24]. Previous research paper [24] has defined a “Three-part 
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methodology” to overcome these problems: 

 Categorize data center subsystems as either IT loads, physical infrastructure or not 

included as all [24].  

 If a sub-system’s power consumption cannot be directly measured due to load 

sharing or technical barriers, approximately estimate power consumption of these 

sub-systems through “standardized methodology” [24].  

However, the power distribution system in this paper is focus on the power conversion 

system, so it is unnecessary to measure and calculate impractical power consumption. IT 

loads including various hardware devices such as servers, storage equipment, networking 

gear, disaster recovery IT loads, network operation center, etc. [24]. Considering future 

loads, the total estimated power consumption by IT loads are 7.2KW based on the power 

requirement calculation in last section. On the other hand, physical infrastructure covers 

almost all the electrical devices that installed in data center. During transmission process, 

switchgears, panel boards, UPS and PDU consumed power should be count in; chillers, 

pumps and air compressors in the cooling system which support to keep a constant 

environment has been added in; at last the lighting system has outdoor lights and office 

light which has been calculated in power requirement but should be eliminated from 

physical infrastructure, so we take 70% lighting power out. Finally the PUE under full 

load conditions can be calculated as: 
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𝑃𝑈𝐸 =
𝑇𝑜𝑡𝑎𝑙 𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑃𝑜𝑤𝑒𝑟 

𝑇𝑜𝑡𝑎𝑙 𝐼𝑇 𝐿𝑜𝑎𝑑 𝑃𝑜𝑤𝑒𝑟
=

19.03𝐾𝑊

7.2𝐾𝑊
= 2.64                  (17) 

 

Some commercial companies such as Schneider Electric provide online Data Center PUE 

Calculation tools that can quickly estimate the efficiency numbers by considering all the 

parameters. IT capacity is 30kW from last section, and PUE value is 2.26, lower than the 

result shown in (17). The benefit of this online tool is that through checking some options, 

the effectiveness of PUE showed up immediately. For example, by checking in the 

“PDUs without transformers” option corresponding to Proposed DC Power Distribution 

System, PUE dropped from 2.55 to 2.26 which means this new designed centralized 

power conversion system-Buck-Type CSR is extremely successful.  
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Figure 32 Data Center Efficiency Calculator online tool.  

Source: http://www.apcmedia.com/salestools/WTOL-7CMGPL/WTOL-7CMGPL_R3_EN.swf 

 

5.3 Expected Energy Savings 

The efficiency benefit of the DC Power Distribution System has been discussed in the 

previous sections. Through reducing power conversion steps and eliminating PDU 

transformers, it could reach an efficient, low power losses system. Moreover, the power 

requirement and PUE calculation can definitely help to quantitatively compare the power 

consumption and efficiency between the modern 208 V AC System and future 380V DC 

System.  

 

To more intuitively understood the efficiency improvement and power consumption 
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reduction, this section still use the online tools “Data Center AC vs. DC Calculator” 

shown in Fig. 33. The results from this online tool are not actual conditions because the 

UPS, PDU and Power Supply efficiency are estimated values through the former 

calculations; however it is still a good reference. It is obvious can be seen that Power 

Path efficiency of 380V DC is 10% and 5% higher than modern 208V AC 415V AC 

respectively. Through power reduction figure, the power reduction of 380 V DC is 7.6% 

lower than that of 208V AC; that means in this 30KVA capacity system, in a typical cost 

of electrical power-0.12 per kW hr, the 380V DC system can save:  

30KW*7.6%*0.12$ /kW hr *8760 hrs = $2396. This attractive payback absolutely draw 

people’s attention on this DC Power System even the capital cost is higher.  
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Figure 33 Data Center AC vs DC Calculator online tool.  

Source: http://www.apcmedia.com/salestools/WTOL-7DYKX4/WTOL-7DYKX4_R1_EN.swf 

 

5.4 Opportunities for Additional Energy and Efficiency 

Savings 

The proposed 380V DC Power Distribution system has been proved in previous sections 

that the system efficiency is significantly improved and total power consumption 

especially power losses during transmission are extreme decreased. However, there are 

also some additional methods can be applied for further improvement and savings. So 

this section will introduce some opportunities maybe applied in the future.  

 

Regarding to reducing energy cost, there is a key principle to understand saying that 
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“reducing energy consumption can reduce the power capacity as well as energy cost” [11]. 

That is an implementation that saves electricity energy should be driven by reducing the 

power capacity which is mainly composed of IT load and DCPI power demands. 

However, the infrastructure costs are also primarily affected by load. Reducing energy 

consumption temporarily just focuses on DCPI, but to reducing energy consumption 

permanently, IT loads related power requirement capacity must be improved clearly.  

 

The reduction of IT equipment power consumption consists of many approaches: [11] 

 Operation respect: Retiring uncritical servers, operating management efficient 

system and platforms.  

 Component respect: Software, hardware, software and network. 

The purpose of operational improvement is to shut down the servers that have no users 

and running system with maximum advantage of power management features. Paper [1] 

table 3-6 is the “Potential Energy-Efficiency Improvement Opportunities for Servers and 

Data Center” that included all the possible improvement solutions for hardware, software 

system, network, control and heat removal. At the end of this table in “distributed 

Generation” section, there are two items called “Use renewable energy (e.g., photovoltaic 

panels)” and “Use fuel cells”.  

 

Renewable energy is becoming more and more popular and useful in power generation 
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system, not only no CO2 emission, but also can bring large scale of economic benefits. 

What is more, there are few researches working on design data center power distribution 

system with renewable as energy source. That means this topic would be one future work. 

Since the existence of a large number of data centers in the city, solar PV would be the 

best choice as energy source. The power can be delivered directly to DC bus without any 

conversion system. However, filtering the power path and energy storage for overnight 

utilizing would be technical barriers. On the other hand, fuel cells can replace UPS in 

existing data center power distribution system because they are free of charging as 

renewable source. Finally, the data center power distribution system will have little 

operation electricity cost when renewable energy is applied.  
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Chapter VI Conclusion 

Conventional electrical power distribution system of data centers are based on large scale 

of AC transformer, AC UPS and PDU power conversions in an extremely low efficiency. 

The Proposed 380V DC Power Distribution System utilized centralized AC to DC 

converters with high efficiency DC UPS and non-transformer PDU through Busway 

Distribution, brought a considerable improvement on system efficiency and power 

requirement. The main contributions of this paper can be summarized as follows: 

 Applied the Buck-type Current Source Rectifier as the Centralized Power 

Converter, and through Simulation to verify the feasibility of this solution under 

variable loads conditions.  

 According to analyzing the existing data center architecture, selected the best 

suitable power distribution equipment and approach for this DC System. 

 Through the calculation and comparison of power losses, power requirement and 

efficiency (PUE), obtained a completed and successful electrical efficiency 

modeling of The Proposed DC Power Distribution System.  

 

This compensative design significantly provided an efficient approach on the topic of 

Data Center Power Distribution, in order to achieving higher efficiency, this research will 

go on.   
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