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ABSTRACT

EARLY TRIASSIC ECHINOIDS OF THE WESTERN UNITED STATES: 
THEIR IMPLICATIONS FOR PALEOECOLOGY  

AND THE HABITABLE ZONE HYPOTHESIS FOLLOWING THE
PERMO-TRIASSIC MASS EXTINCTION

by
Jenna J. Rolle

The University of Wisconsin-Milwaukee, 2014
Under the Supervision of Margaret L. Fraiser, PhD

Confronted with global climate change and ocean acidification, our collective 

knowledge of ecosystem response during times of environmental crisis in Earth’s 

ancient past may provide insights towards combating ecological degradation in 

modern oceans. Early Triassic marine environments were characterized by oceanic 

warming due in part to elevated levels of atmospheric CO2 and periodic intervals 

of localized anoxia, resulting in an overall restructuring of faunal dominance, 

distribution, and biodiversity. Re-assembly of ecological communities during the 

Early Triassic are largely unknown; however, a previous paleoecological study by Tyler 

Beatty et al. (2008), suggests that post-extinction recovery length was minimized in 

shallow marine habitable zones. To further expand upon the investigations of Beatty 

et al., I used Early Triassic echinoids as a case study for understanding paleoecology 

on the eastern margin of Panthalassa. I hypothesized that amidst the deleterious 

environmental conditions of the Early Triassic, echinoids thrived within the habitable 

zone as an abundant member of the Modern Fauna.

Early Triassic echinoids of the western United States appear exclusively 

within shallow marine shelves, all of which contain evidence of frequent storm 
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activity. Echinoids co-occur with bivalves, brachiopods, gastropods, and other 

echinoderms, indicating that these habitats were well oxygenated enough to support 

paleocommunities of considerable diversity. The oceans of the Early Triassic provide 

only an approximate analogue for modern oceans; however, analysis of Early Triassic 

ecosystems via quantification of echinoid abundance and paleoecology may help reveal 

important patterns necessary in understanding the rapidly shifting ecosystems of our 

modern, warming oceans.
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1  Introduction

The Permo-Triassic mass extinction (PTME) was the largest biotic crisis of the 

Phanerozoic (Fig. 1) (Raup, 1979; Raup and Sepkoski, 1982; Erwin, 1994; Erwin, 1996; 

Erwin, 2000; Bambach et al., 2004), eliminating at least 78% of marine genera (Raup, 

1979; Alroy et al., 2008). Although it is debated whether the crisis represents one event or 

two successive events (Clapham et al., 2009; Song et al., 2013), numerous factors associated 

with rapid climate change led to a devastating deterioration of global ecosystems (Erwin, 

1994; Erwin, 1996; Wignall and Twitchett, 2002; Bottjer et al., 2008; Clapham et al., 

2009). The extinction and post-extinction intervals were characterized by increased 

atmospheric CO2 levels and elevated global temperatures (Joachimski et al., 2012; Sun et 

al., 2012; Song et al., 2012a), fluctuations of the oxygen minimum zone (Algeo et al., 2010; 

Brennecka et al., 2011), as well as surface ocean acidification (Knoll et al., 1996; Kidder 

and Worsley, 2004; Wignall et al., 2009). Multiple lines of direct and indirect evidence, 

including ichnofossil (Zonneveld et al., 2010) and isotopic data (Grice et al., 2005; Song et 

al., 2012a), suggest that deep-water anoxia and euxinic shallow waters facilitated a delay 

in post-extinction faunal recovery and prevented marine recovery (Knoll et al., 2007;  

Beatty et al., 2008). In all, these hypoxic marine conditions persisted for the entirety of the 

Griesbachian (252.6 – 251.2 MY) around most of the world (Kidder and Worsley, 2004) 

and continued in pulses throughout the Smithian (251.2 – 250.6 MY) and Spathian (250.6 

– 247.2 MY) (Lehrmann et al., 2006). 

The Permo-Triassic mass extinction and its aftermath were marked by a drastic 

ecological shift in which the Modern Fauna replaced the Paleozoic Fauna (Raup and 

Sepkoski, 1982). The Paleozoic Fauna refers to organisms such as brachiopods and 
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crinoids who dominated the marine realm in abundance prior to the PTME (Sepkoski 

et al., 1981; Raup and Sepkoski, 1982; Clapham et al., 2006; Stanley, 2007; Fraiser and 

Bottjer, 2007b); however, post-extinction fossil assemblages indicate a rapid replacement 

of the Paleozoic Fauna by bivalves, gastropods, and echinoids, organisms referred to as 

the Modern Fauna (Fig. 2) (Sepkoski et al., 1981; Raup and Sepkoski, 1982; Clapham et 

al., 2006; Stanley, 2007; Fraiser and Bottjer, 2007b). Further, the shift in environmental 

conditions following the Permo-Triassic mass extinction created settings more amenable 

to microbial reef proliferation as opposed to metazoan reefs composed of hard corals 

and skeletonized sponges (Fagerstrom, 1987; Hallam and Wignall, 1997; Pruss and 

Bottjer, 2004; Pruss and Bottjer, 2005). Due to the disappearance of metazoan reefs 

and subsequent replacement by microbial reefs following the PTME, the Early Triassic 

has been termed a “reef gap” (Fagerstrom, 1987; Hallam and Wignall, 1997; Pruss and 

Bottjer, 2004; Pruss and Bottjer, 2005). The prolonged aftermath was characterized by a 

complete restructuring of many components of the marine ecosystem, including; loss of 

ecologically critical taxa (Droser et al., 2000) and a simplified palaeoecology reminiscent 

of earlier eras of geological time (Bottjer et al., 1996; Bambach et al., 2004; Wagner et al., 

2007). Low taxonomic diversity, inactive utilization of ecospace, taxa adapted to reduced 

levels of oxygen, diminished body size, and the re-appearance of microbial hardened 

substrates make marine conditions of the Early Triassic comparable to those of the Late 

Cambrian (Bottjer et al., 1996; Fraiser and Bottjer, 2005a). The presence of microbial 

mats, stromatolites, and thrombolites during the Early Triassic reef gap suggests overall 

decreases in bioturbation and low abundance of mat grazing organisms (Flügel, 2002; 

Pruss and Bottjer, 2004; Sheehan and Harris, 2004; Mata and Bottjer, 2009).
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Figure 2 Normalized diversity curve displaying the trends of the three marine 
evolutionary faunas. The unlabeled area of the curve represents genera not assigned to 
any particular fauna. The red, shaded area highlights the rapid shift from the Paleozoic 
Fauna to the Modern Fauna following the PTME. Modified from Alroy et al. (2010).

Figure 1 Genus-level diversity curves of both Sepkoski (1996) and Alroy et al. (2008). 
The red, shaded area highlights the rapid loss of genera at the Permo-Triassic boundary, 
as well as the prolonged recovery following the extinction event(s). Modified from 
Alroy et al. (2008).

Sepkoski (1996)

Alroy et al. (2008)
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Even with the ever-increasing and interrelating investigation and modeling of 

Early Triassic ecosystems, livable environments and recovery patterns following the 

Permo-Triassic mass extinction remain largely unknown. Estimates of the delay in 

biotic recovery following the mass extinction range from 500 Ka to 6 Ma (Hallam, 

1991; Erwin, 1994; Erwin, 1996; Fraiser and Bottjer, 2005b; Fraiser and Bottjer, 

2007b; Fraiser and Bottjer, 2009a; Lehrmann et al., 2006; Bottjer et al., 2008; Chen 

and Benton, 2012; Hofmann et al., 2013a).

Though multiple lines of empirical evidence indicate that environmental 

stresses such as anoxia, euxinia, and hypercapnia suppressed post-extinction recovery 

globally, the severity and duration of such stresses were undoubtedly variable 

throughout the globe. For example, the frequency of fluctuations in oxygen levels 

for any given location may have occurred on the magnitude of decades to millennia, 

or as daily pulsations and isolated upwelling of anoxic or dysoxic waters (Tyson and 

Pearson, 1991; Wallace and Wirick, 1992; Beatty et al., 2008). Hofmann et al. (2013) 

suggest that low diversity of benthic organisms and the dominance of disaster taxa 

during the Early Triassic reflects the intensity of the PTME rather than the persistence 

of environmental stresses.  Even though environmental stresses during the Early 

Triassic were neither uniformly distributed nor uniformly persistent, suggesting 

that the low diversity and diminished complexity characterized by Early Triassic 

paleocommunities reflects the consequences of the intensity of the Permo-Triassic 

extinction event solely (e.g. Hofmann et al., 2013a) rather than a combined interplay 

of environmental and ecological factors seems overly simplistic given the multitude of 

factors known to affect modern ecosystems.
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Given that paleoenvironments were neither uniformly affected in magnitude 

nor duration by any known environmental pressure, it follows that recovery and 

restructuring patterns for Early Triassic fauna varied spatially and temporally (Pruss 

et al., 2006; Algeo et al., 2011; Clapham et al., 2013). Although, globally, the Early 

Triassic was characterized by delayed recovery, faunal recovery varied regionally 

based upon fluctuations in O2 and CO2 levels, sedimentation rates, as well as the 

composition and distribution of various macrofauna (Clapham et al., 2013; Algeo et al., 

2011; Pruss et al., 2006). Moreover, extinction pressures and recovery patterns were 

experienced differently between benthic and pelagic zones. Organisms living within 

the pelagic realm were likely less vulnerable to deep-water anoxia and euxinia, as 

well as periodic upwelling of such volatile waters, as compared to benthic organisms 

(Tyson and Pearson, 1991; Wallace and Wirick, 1992; Grice et al., 2005; Kump et al., 

2005; Beatty et al., 2008; Brayard et al., 2009; Grasby and Beauchamp, 2009; Song 

et al., 2012b).  Therefore, delayed recovery would be expected for benthic, shelf-

dwelling, paleocommunities as long as local, anoxic conditions persisted. 

Remarkably, ichnofossil assemblages from the northwestern margin of Pangaea 

suggest that, despite enduring ecological stresses, post-extinction recovery length 

may have been minimized in well-oxygenated, shallow marine habitable zones (Fig. 

3)(Beatty et al., 2008). The habitable zone as described by Beatty et al. (2008) is a 

nearshore, benthic region typically situated on a broad, shallow continental shelf (Fig. 

3). Often, these zones are found in large embayments distanced from deep, anoxic or 

dysoxic water, thus providing a refuge for benthic organisms where environmental 

extinction pressures diminished. Beatty et al. (2008) propose that these spatially 
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isolated environments were capable of retaining sufficient life-sustaining levels of 

wave-generated oxygen that was likely provided by frequent storm activity and are 

primarily located within lower shoreface facies and offshore transition zones (Fig. 

3). Wallace and Wrick (1992) observed that breaking waves in 38 meters of water 

maintain the potential of generating oxygen-supersaturated conditions up to depths of 

at least 19 meters and that the oxygen-rich conditions created by large breaking-wave 

events could remain for weeks. If similar rules apply, oxygen saturation within the 

habitable zone would have reached its greatest depth and degree after a storm event, 

even with reduced concentration and diffusion of atmospheric oxygen (Beatty et al., 

2008).

Figure 3 Schematic cross section of a typical shoreline from northwest Pangea. The 
habitable zone is depicted with respect to shoreface position and species diversity. 
Lithologies are based upon those observed in the Lower Triassic strata of the western 
United States. Based on Beatty et al., 2008.
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1.1 Previous Work

As reported by Durham et al. (1966), Miocidaris, a genus of regular echinoid 

belonging to the family Miocidaride, was not only one of the few taxa to survive the 

PTME event, but the only genus of regular echinoid reported to persist from the 

Paleozoic into later geological time (Fig. 4) (Durham et al., 1966). Miocidaris appears 

to be globally dispersed throughout the entirety of the Triassic and persisted into 

the Lower Jurassic of France (de Brun et al., 1919). This particular, persisting genus 

evolved and diversified as slow moving, low-level epifaunal grazers who were 

facultative omnivores, feeding upon detritus and algae (Döderlein, 1887; Smith and 

Hollingworth, 1990).  Morphologically distinct, the body composition of Miocidaris 

was comprised of two columns of interambulacral plates interlocked between each 

of five columns of ambulacral plates (Fig. 5) (Durham et al., 1966). This highly 

organized body plan displays stark divergence from the contrasting and highly 

variable interamubulacral plate patterns of Paleozoic echinoids (Durham et al., 1966; 

McKinney, 1988; Erwin, 2000). 

Lenticidaris, a genus of regular echinoid also belonging to the family Miocidaridae, 

has been documented in the Lower Triassic Virgin Limestone Member of Utah during 

the Spathian of the Early Triassic, and appears, at least temporally, later than Miocidaris  

(Kier, 1968). Apart from chronological dissimilarity, Lenticidaris differs from Miocidaris 

only in that Lenticidaris’s apical surface may have been more flexible than its predecessors’, 

and its spines lack the cortex layer present within Miocidaris spines (Kier, 1968). 
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Figure 4 Stratigraphic distribution of cidaroid family and subfamily assemblages. 
The red, shaded area highlights the family, Miocidaridae, to which the genus Miocidaris 
belonged. The genetic stock from which the family Cidaridae arose was like supplied by 
Miocidaridae as opposed to that of the family Lenticidaridae, thus Lenticidaridae’s exclusion 
from the figure. Modified from Fell, (1966).

Figure 5 Morphological features of cidaroid echinoids. Modified from Fell, (1966).
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As an added detriment to paleontologists attempting to analyze an incomplete 

fossil record, the imbricated tests of echinoids disarticulate rapidly upon death (Smith 

and Hollingworth, 1990). The disarticulation of echinoids post-mortem owes, in 

part, to the shallow, wave-dominated environments in which they have evolved 

and diversified where preservation is disfavored by active erosion (Smith, 1984; 

Barnes, 1989; Moffat and Bottjer, 1999). Moreover, the preservation potential for 

regular echinoids varies greatly dependent upon plate test rigidity and the degree 

to which test plates are locked together by connective tissue (Smith, 1984; Moffat 

and Bottjer, 1999). Ambulacral plates are rarely preserved in the fossil record and as 

a result, the morphological features necessary for examining disparities in echinoid 

taxonomy are extremely limited. Echinoid spines provide limited morphological 

information and, thus, have restricted taxonomic utility. In Kier’s (1965) assessment 

of early echinoids, he states that any improvement in the method of food gathering, 

locomotion, and, perhaps, respiration would be reflected in a structural change of 

ambulacra, corresponding to a change in the usage of tubefeet. Unfortunately, those 

studying Early Triassic echinoid paleoecology are forced to make inferences based 

almost entirely upon spine debris (e.g. Moffat and Bottjer, 1999; Twitchett and Oji, 

2005; Mata and Woods, 2008). However, despite their lack of information regarding 

evolutionary trends, echinoid spines can provide useful information in regards to 

depositional setting, post-mortem transportation, and regional population abundance.

Previous studies of Early Triassic benthic marine invertebrate survivors have 

revealed that faunal assemblages belonging to shallow shelf environments generally 

contain communities with low diversity; opportunistic and disaster taxa and 
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organisms adapted to oxygen-depleted waters, like Claraia and Lingula (Rodland and 

Bottjer, 2001) in high abundance (Fraiser and Bottjer, 2007a). Further, many Early 

Triassic assemblages deposited after the initial pulse of extinction contain short-lived 

Permian survivors such as rhynchonelliform brachiopods that, in comparison to the 

bivalve Claraia, have poor regulation of metabolic oxygen consumption (Clapham et 

al., 2013). The temporal and spatial distribution of organisms without specialized low-

oxygen adaptations such as rhychonelliform brachiopods, gastropods, and echinoids 

provide insights into the variability of anoxic conditions, ocean acidification, and 

warming throughout the Early Triassic and how those deleterious factors influenced 

regional recovery. Additionally, some organisms, including echinoids, of the Early 

Triassic display a distinct reduction in overall body size in comparison to their 

Paleozoic ancestors and Modern descendants (Schubert and Bottjer, 1995; Rodland 

and Bottjer, 2001; Fraiser and Bottjer, 2004; Fraiser and Bottjer, 2005b; Payne et 

al., 2006), termed the Lilliput Effect (Urbanek, 1993; Harries and Knorr, 2009). 

Documentation of the Lilliput Effect is widespread during the immediate PTME 

aftermath (Newell, 1952; Schubert and Bottjer, 1995; Twitchett, 2007) and likely 

reflects the effects of marine anoxia, nutrient limitations, and acidification on 

organismal metabolism and ecology (Twitchett, 2007).Accordingly, the decreased 

body size of echinoids and associated biota during the Early Triassic further indicates 

that environmental limitations such as oxygen and nutrient availability affected not 

only survivorship, but also species’ specific biology, behavior, and paleoecological role 

(Twitchett, 2007).

Rodland and Bottjer (2001) and Boyer et al. (2004) positively identified 
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echinoid spines in the Dinwoody Formation of southwestern Montana and western 

Wyoming. An echinoid spine bed from the Spathian Virgin Limestone Member of 

Nevada was described by Moffat and Bottjer (1999) indicating echinoid proliferation 

into the Smithian and Spathian. The echinoid spine beds at this locality, Lost Cabin 

Springs, were deposited in a distal carbonate shelf setting where echinoid spines are 

the only macroscopic features present (Moffat et al., 1999). Additionally, as described 

by Mata and Woods (2008), echinoid debris dominates the fossil composition of 

the Lower Member of the Union Wash Formation in southeastern California. The 

Union Wash Formation was deposited as a transgressive-regressive sequence on a 

mixed carbonate-siliciclastic shelf located along the western edge of Pangaea during 

the Smithian and Spathian of the Early Triassic (Mata et al., 2008), correlating with 

the strata of the Moenkopi Formation and Virgin Limestone Member. The regular 

echinoid, Miocidaris, was distributed globally throughout the Early Triassic and has 

been documented in the Early Triassic strata of North America, Asia, and Europe 

(Paleobiology Database (PBDB), 7/1/2013).

1.2 Scientific Significance

Paleoecological studies of the PTME and Early Triassic are fundamental not 

only to our understanding of recovery and restructuring following Earth’s largest 

mass extinction, but also our collective knowledge of ecosystem response during 

times of environmental crisis, past and present. Confronted with global climate 

change and ocean acidification (Hughes, 2000; Doney et al., 2009), gaining insights 

into the mechanisms used by ancient, marine organisms faced with environmental 
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collapse and ecological restructuring is essential to our understanding of present-

day and future ecological degradation. Even though the oceans of the Early 

Triassic provide only an approximate analogue for modern oceans, analysis of Early 

Triassic paleoecology may reveal important, reoccurring, evolutionary patterns 

related to rapidly shifting environments and ecosystem response. The aims of this 

paleoecological study are: 1) to test the environmentally controlled model of a 

shallow-marine habitable zone as described by Beatty et al. (2008); and 2) to use 

echinoids as a case study for Early Triassic benthic paleoecology on the eastern margin 

of Panthalassa. This research is one of the first studies to apply and test the habitable 

zone hypothesis (Beatty et al., 2008) not only within paleoenvironments that contain 

macrofossils, as opposed to ichnofossils solely, but also within paleoenvironments 

outside arctic paleolatitudes (e.g. Schaefer, 2012). 

The habitable zone hypothesis (Beatty et al., 2008), as of yet, applies only 

regionally and has not undergone rigorous testing. Given that the data presented in 

this study are constrained to the eastern margin of Panthalassa, testing the habitable 

zone hypothesis provides the benefit of a localized constraint. Moreover, the localized 

test parameters of the habitable zone hypothesis have the potential to reveal local, 

paleoecological mechanisms that may have been masked by the generalized test 

parameters of globally averaged data sets.  

I hypothesize that habitable zones were present within the Early Triassic 

shallow-marine shelves of the western United States. The working hypothesis is 

that these habitable zones provided sufficiently oxygenated refuges from the post-

extinction pressures of dysoxia and anoxia to allow establishment of a relatively 
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diverse benthic community; the highest diversity and abundance of benthic marine 

organisms should be located within habitable zone environments as characterized by 

Beatty et al. (2008). Furthermore, given the apparent, yet limited, presence of echinoid 

spines and test material within Lower Triassic strata (Kier, 1968; Boyer et al., 2004), I 

hypothesize that amidst the deleterious environmental conditions of the Early Triassic, 

regional echinoid populations thrived within the habitable zone, allowing them to 

transition from a diverse member of the Paleozoic Fauna into an abundant member of 

the Modern Fauna. 

Evidence of echinoid survival has been documented in the Dinwoody, Thaynes, 

and Moenkopi Formations of the western U.S. (Kier, 1968; Moffat and Bottjer, 1999; 

Rodland and Bottjer, 2001; Boyer et al., 2004; Fraiser and Bottjer, 2004; Mata and 

Woods, 2008; Fraiser and Bottjer, 2009); however, relatively little is known of echinoid 

paleoecology or echinoid diversity during the Early Triassic. Thus, the data collected 

from the Lower Triassic strata of the western U.S. will provide the foundation of 

regional echinoid paleoecology in the following ways: 1) Quantification of echinoid 

abundance relative to other members of the Early Triassic paleocommunity; and 2) 

Interpretations of environmental contexts based upon analysis of measured sections and 

how depositional environments relate to the habitable zone hypothesis. The enduring 

echinoids of the extinction aftermath are evolutionarily significant because it is from 

their genetic stock that all post-Paleozoic echinoids arose (Kier, 1968). Therefore, 

focused research within the Lower Triassic strata of the western United States may 

provide insight into the adaptations that permitted echinoid survival into later geological 

time in regional and, perhaps, global contexts (Durham et al., 1966).
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2  Geologic Setting and Methods

The aftermath of the Permo-Triassic mass extinction has been recorded in 

Greisbachian, Smithian, and Spathian age strata located within the present-day 

western United States (Figs. 6 & 7) (Newell and Kummel, 1942; Kummel, 1943; 

Kummel, 1954; Paull and Paull, 1983; Paull and Paull, 1994; Carr and Paull, 1983; 

Paull et al., 1989; Rodland and Bottjer, 2001; Fraiser and Bottjer, 2007a). Strata in this 

region were deposited discontinuously during the Late Permian through the Middle 

Triassic along the eastern margin of the Panthalassa Ocean near 35°N paleolatitude 

(Fig. 8a) (Paull and Paull, 1983; Paull et al., 1989; Paull and Paull, 1994a; Fraiser and 

Bottjer, 2007a).

The Lower Triassic Dinwoody Formation of Wyoming and southern Montana 

unconformably overlies the Middle Permian Phosphoria and Park City Formations 

and records the northeastern-most extent of the widespread and rapid Griesbachian 

transgression onto the Wyoming shelf (Schock, 1981; Paull and Paull, 1983; Paull and 

Paull, 1986; Schubert and Bottjer, 1995; Rodland and Bottjer, 2001). The Dinwoody 

basin remained a sublet basin through the Early Triassic with an overall pattern of 

three transgressions and a final regression through to the Late Triassic (Fig. 9) (Paull 

and Paull, 1994a; Paull and Paull, 1994b; Boyer et al., 2004). The earliest deposition 

of Griesbachian strata is dominated by laminated mudstone, with increasing levels of 

silt during regression, followed by an increase to limestone upsection (Schock, 1981; 

Paull and Paull, 1983; Paull and Paull, 1986; Schubert and Bottjer, 1995; Rodland and 

Bottjer, 2001; Boyer et al., 2004). The Woodside Formation, which is synonymous 

with the Red Peak Formation, intertongues along the north and eastern regions of the 
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Dinwoody basin (Fig. 6) (Paull et al., 1989). The Woodside and Red Peak Formations 

contain high amounts of terrigenous silts and sandstones transported westward into the 

basin and, thus, have a distinct lithologies and red colorations (Kummel, 1954; Paull 

and Paull, 1983; Paull et al., 1989). The Dinwoody Formation reaches its maximum 

thickness in southeastern Idaho where it is conformably overlain by the Thaynes 

Formation (Boutwell, 1907; Kummel, 1954; Paulls et al. 1989). The contact between 

the Dinwoody and Thaynes Formations, identified by the appearance of an ammonoid-

bearing, Meekoceras, limestone interval, defines the top of the Griesbachian and 

Dienerian and the base of the Smithian (Newell and Kummel, 1942; Kummel, 1943; 

Kummel, 1954; Paull and Paull, 1983; Paull et al., 1989). 

Deposition of the Thaynes Formation began in the second transgression 

during the Smithian and continued through the third, final transgression from the 

Spathian until the end of the Early Triassic (Paull et al., 1989; Boyer et al., 2004). The 

majority of the Thaynes Formation directly overlies the intertonguing Woodside and 

Red Formations and only in its northwestern extent does it overly the Dinwoody 

Formation directly (Fig. 6) (Paull et al., 1989). The Thaynes has a larger proportion 

of limestone lithologies in comparison to the mud-rich Dinwoody Formation below 

(Paull et al., 1989).
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Figure 7 Temporal distribution and general stratigraphy of the Lower Triassic strata of 
the Moenkopi Formation. The Virgin Limestone Member was examined in this study. 
Modified from Boyer et al. (2004).
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strata of the Dinwoody Basin. The Dinwoody and Thaynes Formations were examined 
in this study. Modified from Paull et al. (1989) and Boyer et al. (2004).
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Figure 8 Paleogeography and localities of Lower Triassic strata examined in this study. 
(A) Paleogeography of the Early Triassic (approximately 252 Ma). Study area located 
on the northwestern margin of Pangea outlined by orange box. (2) Lower Triassic 
strata exposed in present-day, western United States. Dark grey shading indicates 
outcrop exposures of the Dinwoody Formation. Light grey shading indicates outcrop 
exposures of the Thaynes Formation in the North and analogous strata in the South 
(e.g. Moenkopi Formation). Starred locations indicate outcrop exposures where 
echinoid remains have been positively identified. Blue: Hidden Pasture and Blacktail 
Creek; Green: Montpelier Canyon and Bear Lake; Red: White Hills; Yellow: Lost 
Cabin Springs. Modified from Scotese (1994), Fraiser and Bottjer (2007) Fraiser and 
Bottjer (2009).
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The Thaynes Formation is equivalent to the Moenkopi Formation (Fig. 7) (e.g. 

Boyer et al., 2004). The Moenkopi represents both the second and third, Smithian and 

Spathian, respectively, regional transgressions in the southwestern U.S. (Dean, 1981; 

Boyer et al. 2004). The Virgin Limestone Member in southwestern Utah and southern 

Nevada represents the Spathian portion of the Moenkopi Formation examined in this 

study (Kummel, 1954; Reif and Slatt, 1979; Boyer et al. 2004). The third trangressive 

event (Spathian) resulted in the most extensive shallow seaway in the western United 

States during the Early Triassic (Carr and Paull, 1983). The Moenkopi Formation is 

composed largely of limestone lithologies. 

Figure 9  Sequential, reconstructed images of western North American paleogeography 
spanning 50 million years from the Late Permian until the Late Triassic. Modified 
from Blakely: http://cpgeosystems.com/paleomaps.html (2010).

Greisbachian age strata and the associated fauna were examined at two sites in 

southern Montana (Hidden Pasture and Blacktail Creek) (Appendix A & B), and one 

site in eastern Idaho (Bear Lake) (Fig. 8b) (Appendix C). Smithian and Spathian age 

strata and the associated faunas of the Dinwoody Basin are represented by the Thaynes 

Formation at Hidden Pasture, MT and Montpellier, Idaho (Fig. 8b) (Appendix B & 
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D). The examined strata of the Moenkopi Formation, the Virgin Limestone Member 

of White Hills, Utah and Lost Cabin Springs, Nevada (Fig. 8b) (Appendix E & F), 

are contemporaneous to the Thaynes Fm. of the Dinwoody Basin, but were deposited 

along the Panthalassan shoreline southwest of the basin.

Fieldwork was conducted May to June 2013 in southwestern Montana, 

southeastern Idaho, southwestern Utah, and southern Nevada (Fig. 8b) (Appendix 

A-F). Stratigraphic columns were measured and fossils were collected at two sections 

each of the Dinwoody Formation, the Thaynes Formation, and the Virgin Limestone 

Member.  A total of 1130 m of section were measured in the Lower Triassic strata; 

each measured section was at least 2-3km apart so as to gain a lateral perspective of 

environments and paleoecology. To determine the abundance of echinoids relative 

to other marine benthic invertebrates, 85 hand samples were collected preferentially 

from 16 echinoid-bearing beds (determined by field observation of spine and test 

material), but neighboring beds where echinoid debris was not readily visible were 

also sampled.  On average, 12 kg of limestone was sampled from each field site. 

Thin sections were made for 25 samples from 25 distinct, separate beds collected 

from the Dinwoody Fm., Thaynes Fm., and Virgin Limestone Member of the Moenkopi 

Fm. Nine samples were analyzed from the Dinwoody Fm., seven from the Thaynes Fm., 

and nine from the Virgin Limestone Member, thus providing an even temporal survey 

of the Early Triassic. The majority of the sampled beds are of wackestone and packstone 

lithologies. Point counts in thin sections were performed to determine the proportion 

of fossil material relative to matrix (e.g. calcite cement, spar, quartz, micrite, intraclasts), 

as well as the proportion of echinoid material relative to that of other taxa (Fig. 10) 
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(Appendix G-K). Counts were made using Flügel’s (1982) solid grain point-counting 

method using a Zeiss Axioskop 40 microscope and mechanical stepping stage. 

A

B

Figure 10 (A) Photomicrograph of three echinoid spines in a micritic matrix from 
the Dinwoody Fm. at Hidden Pasture, MT. Spines in the lower, left corner are cross- 
sections whereas the spine in the upper, right corner is a longitudinal section. Spines 
have been recrystallized and phosphatized. (B) Photomicrograph of an echinoid spine 
from the Dinwoody Fm. at Blacktail Creek, MT in a micritic matrix displaying full 
birefringence. Pictured echinoids (A and B) likely belong to the genus Miocidaris. Both 
scale bars are 250μm.
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At least 300 points at 1 mm increments were counted per thin section and 

only material (e.g. fossils, matrix, and grains) that fell directly beneath the cross hairs 

was counted (Payne et al., 2006; Jacobsen et al., 2011). One-mm increments were 

chosen so as to accommodate the largest grain fraction present in the analysis (sensu 

Van der Plas and Tobi, 1965).When the same fossil, matrix, or grain appeared under 

consecutive cross hairs, it was counted again to quantify proportions as accurately as 

possible. 

Point count data of Early Triassic echinoids and associated taxa were analyzed 

with the paleontological statistic software PAST (Hammer and Harper, 2001). 

Ecological metrics including Shannon Index (H’), Simpson Index (1-D), and evenness 

(H’/Hmax) were used to quantify echinoid abundance and overall paleoecology of 

the Greisbachian, Smithian, and Spathian in eastern Panthalassa. The estimates of 

biodiversity herein will be measures of alpha diversity, as each bed at a given locality 

was considered a sample of a single community (Kidwell and Flessa, 1996). The 

Shannon Index (H’) is a measure of order or disorder of a system (Shannon, 1948); in 

terms of an ecological study, order is characterized by the number of individuals in 

each group of organisms per sample (Shannon and Weaver, 1949; Fraiser and Bottjer, 

2007a). The Simpson’s Index (1-D) quantifies the diversity, or dominance, of a sample, 

taking into account the number of different groups of taxa (e.g. genus) present and 

the abundance of organisms in each group (Simpson, 1949). Simpson’s Index (1-D) 

measures the probability that two randomly selected individuals from a sample will 

belong to the same group (Simpson, 1949; Fraiser and Bottjer, 2007a). Evenness values 

(H’/Hmax) measure how similar the abundances of different groups of organisms are 
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while normalizing for species richness and are calculated using the Shannon Index 

paired with the number of groups examined (Shannon and Weaver, 1949; Hammer 

and Harper, 2008). These metrics provide varying ways of determining which 

taxonomic groups are numerically dominant in each thin section and, in turn, each 

corresponding bed (Fraiser and Bottjer, 2007a). As previous paleoecological studies 

have demonstrated, determining which taxa are ecologically dominant, or rather, 

determining the most abundant members of a community, may be more important 

than analysis of species richness alone (Fraiser and Bottjer, 2005b). Determining 

ecological dominance within a community provides an understanding of both short-

term and long-term fluctuations in community structure resulting from changes in 

energy flow and species composition (Grime, 1997;  Symstad et al., 1998;  Downing 

and Leibold, 2002; Fraiser and Bottjer, 2005b). Accordingly, clarifying echinoid 

abundance in Early Triassic paleocommunities allows us to better understand their 

importance in community structure following the Permo-Triassic mass extinction. A 

two-sample Z test and t-test were performed to determine if fluctuations in echinoid 

abundance and faunal composition throughout the sampled beds at a given locality 

were statistically significant (Appendix L-Q). Rarefaction curves based upon point 

count data were produced for each bed to ensure paleoecological analyses were 

representative of the paleocommunities (Appendix R-V). 

To test the habitable zone hypothesis, lithologies and sedimentary structures 

were documented in the field and in the laboratory to determine in which 

environments fossil accumulations occurred. Particular care was taken to note beds 

in which echinoid debris was found, as well as all accompanying and neighboring 
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faunas. At each field location, sections were measured at the meter scale from the 

earliest depositions of Lower Triassic strata until the strata could no longer be traced. 

Measurements of strike, dip and thickness were taken using a Brunton compass and 

Jacob’s staff. Lithologies were determined using the Dunham classification system as 

follows: Mudstone (M), wackestone (W), packstone (P), and grainstone (G). Semi-

quantitative measurements of ichnofabric were documented for each bed using the 1 

through 5 ichnofabric index (ii) scale for shelf environments as described by Bottjer 

and Droser (1991). Field measurements for each section were used to construct 

stratigraphic columns of which meter-scale changes in lithologies, visible sedimentary 

structures, and fossil accumulations are indicated.
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Figure 11 The entire exposure of the incomplete Dinwoody Formation at Blacktail 
Creek, Montana. Because the base of the Dinwoody Fm. is not exposed at this site, the 
dotted line indicates the approximate location of the base of the Dinwoody and base 
from which the measured section begins. Echinoid debris was found in beds highlighted 
in yellow. Photomosaic modified from Schaefer (2012, unpublished manuscript).
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3  Results: Stratigraphic Analysis

3.1 Blacktail Creek, Montana

The 60 m-thick Blacktail Creek section contains the basal portion of the 

Dinwoody Formation and records a shallowing-upwards succession from distal ramp 

mudstone and siltstone to fossiliferous, lower-shoreface packstone. The base of the 

Griesbachian age strata at Blacktail Creek lies above the chert-rich strata of the Middle 

Permian Phosphoria Formation separated by a 15 m covered interval and contains 20 

m of Claraia-bearing siltstones (Figs. 11 & 12). 

Echinoid debris appears 35 m from the base of the section in concurrence with 

a lithological change from mudstone to silt-rich wackestone. The change in lithology 

and the appearance of echinoids are accompanied by a change in faunal composition 

from predominately bivalves to linguid brachiopods and microgastropods. Echinoid 

debris continually appears through a 10 m interval that is largely covered but contains 

discontinuous outcroppings and float of wackestone (Fig. 11). Thin section samples from 

these wackestone beds contain skeletal fragments that have been highly micritized. 
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Skeletal debris increases 45 m above the base of the section producing 

packstone lithologies abundant with echinoid spines, rhynchonelliform brachiopods, 

and bivalves. Echinoid spines, through largely fragmented, are readily visible and 

abundant on bedding planes in association with brachiopod fragments through 5 m 

of limestone (Figs. 13 & 14). The disappearance of echinoid debris coincides with 

the final change in lithology from packstone to siltstone that occurs 50 m above 

the base of the section. The siltstone continues for 10 m and contains bivalves such 

as Promyalina, Eumorphotis, and Unionites as well as trace fossils such as Diplocraterion. 

Calcite replacement and slickensides also become prevalent within these beds 

indicating substantial faulting which is further confirmed by a repeated interval 

towards the top of the section (Fig. 11). 

Overall, the echinoid-bearing beds at Blacktail Creek preserve little to no 

signs of sedimentary structures; however, bed 4 shows some evidence of vertical 

bioturbation with an estimated ii of 3.
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Figure 12 Stratigraphic column for Blacktail Creek, Montana highlighting the faunal 
composition of beds analyzed in thin section. Paleoecological analysis was performed 
for all beds containing echinoids. 



27

Figure 13 Assemblage of echinoid spines and external mold of a rhynchonelliform 
brachiopod located 35 m from the base of the Dinwoody Formation at Blacktail Creek, 
Montana. Camera lens for scale.

Figure 14 Assemblage of bivalve and echinoid spine debris located 45 m from the base 
of the Dinwoody Formation at Blacktail Creek, Montana. Circled echinoid spine has 
spine insertion preserved intact. Camera lens for scale.
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3.2 Hidden Pasture, Montana

The measured section at Hidden Pasture, Montana contains the entirety of the 

Dinwoody Formation from base to top, the entirety of the intertonguing Woodside 

Formation, and a considerable portion of the Thaynes Formation (Figs. 15 &16). In 

total, 545 meters of Lower Triassic strata where measured at this locality. The basal 

strata of the Dinwoody Formation at Hidden Pasture consist of thinly laminated, 

silty, mudstone with Claraia occurrences ranging from sparse to dense accumulations 

upsection, much like the basal Dinwoody strata at Blacktail Creek.

Figure 15 Google satellite map of Hidden Pasture, Montana. The measured base of 
the section relative to the full measured interval is indicated in red. Relative locations 
of the Dinwoody, Woodside, and Thaynes boundaries are indicated in yellow.
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Figure 16 Stratigraphic column for Hidden Pasture, Montana.
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Following a covered interval, the lithologies change to fossiliferous limestone 

125 m above the base of the section.  Three limestone beds extend vertically for 15 

m and contain echinoids, bivalves, mircogastropods, and lingulid brachiopods (Figs. 

17 & 18). A bed of silty wackestone appears from 142 m to 147 m containing mainly 

bivalves and less abundantly crinoids, followed by 2.5 m of alternating and cross-

bedded packstone and silt-rich wackestone. Another 2.5 m section of alternating 

and cross-bedded packstone and silt-rich wackestone appears above a 20 m covered 

interval 172 m from the base of the section (Fig. 19). The bioclasts found within 

the packstone ledges are largely fragmented, but thin section analysis revealed the 

presence of echinoids, bivalves, crinoids, microgastropods, and lingulid brachiopods 

(see Results: Paleoecological Analysis). Hummocky cross-bedding from wave-ripples 

are visible within the alternating beds of packstone and silt-rich wackestone (Fig. 20). 

The packstone ledges at 172 m record the last occurrence of echinoid debris found 

within the Dinwoody Formation at Hidden Pasture.

From 180 m to 270 m, alternating beds of wackestone and packstone continue 

with increasing amounts of silt upsection. The bedding planes of wackestone and 

packstones within this interval contain an abundance of trace fossils, including 

Arenicolites and Rhizocarallium, as well as bivalves and lingulid brachiopods and 

numerous bedding planes contain wrinkle structures. At 270 m above the base of 

the section the lithology changes significantly to sandstone marking the boundary 

between the underlying Dinwoody Formation and the intertonguing Woodside 

Formation (Figs. 15 & 16). 
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Figure 17 Condensed stratigraphic column of Hidden Pasture, Montana highlighting 
the faunal composition of beds analyzed in thin section. Paleoecological analysis was 
performed for all beds containing echinoids. 



32

Figure 18 Bioclastic limestone displaying dense accumulations of echinoid spines 
and lingulid brachiopods located 137 m from the base of the Dinwoody Formation at 
Hidden Pasture, Montana. Echinoid spines have been circled in yellow and a lingulid 
brachiopod in orange.

Figure 19 Alternating beds of silt-rich wackestone and packstone located 147 m from 
the base of the Dinwoody Formation at Hidden Pasture, Montana.
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Figure 20 Hummocky cross-bedded silt-rich wackestone and packstone beds located 
147 m from the base of the Dinwoody Formation at Hidden Pasture, Montana.

Approximately 150 m of the Woodside Formation underlies the Thaynes 

Formation at Hidden Pasture; the base of the Thaynes Formation is identifiable by 

the appearance of Meekoceras -bearing beds 415 m from the base of the section. The 

Meekoceras-bearing packstone continues vertically for 5 m followed by a 2 m interval 

of silty, lingulid-bearing wackestone. The next limestone bed of the Thaynes, a silt-

rich wackestone, appears after a 113 m covered interval 535 m from the base of the 

measured section (Fig. 21). This wackestone bed is dominated by crinoid ossicles and 

bivalves clearly visible in the field. Thin section samples of this bed reveal the presence 

of microgastropods, rhynchonellid brachiopods, and echinoids in low abundance (see 

Results: Paleoecological Analysis).

Within 1 m, the lithology changes to a dense packstone containing abundant 

crinoid ossicles, bivalve and rhynchonellid brachiopod shell fragments, microgastropods, 

and echinoid debris (Fig. 22). The packstone shell bed continues for 9 m marking the 

end of the measured section at Hidden Pasture.
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Figure 21 The two, uppermost limestone outcrops of the Thaynes Formation at 
Hidden Pasture, Montana both containing echinoid debris.

Figure 22 Dense bioclastic limestone containing clearly visible Holocrinidae and 
Pentacrinidae ossicles located 537 m from the base of the Dinwoody Formation at 
Hidden Pasture, Montana. Camera lens for scale.
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3.3 White Hills, Utah

The 20 m-thick section at White Hills, Utah represents one of two sections 

deposited during the third, Spathian, transgressive event of the Early Triassic. The 

Spathian transgression resulted in a broad spanning, shallow seaway, depositing the 

distinct, ledge-forming, limestone beds of the Virgin Limestone Member of the 

Moenkopi Formation (Fig. 23) (Carr and Paull, 1983; Hofmann et al., 2013b). The base 

of the measured Virgin Limestone Member section is a 1 m-thick hummocky cross-

stratified, calcareous siltstone interfingered with wackestone and packstone shell beds 

(Fig. 24). The fossilferous wackestones and packstones contain unsorted shell debris of 

echinoids, crinoids, bivalves, and microgastropods, many of which remained largely 

intact (Fig. 25). 

N

Base

Bed 1
Bed 2

Bed 3

Figure 23 Complete section of the exposed Virgin Limestone Member at White Hills, 
Utah. Echinoid debris was found in beds outlined in red. 
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Figure 24 Stratigraphic column for White Hills, Utah highlighting the faunal 
composition of beds. Paleoecological analysis was performed for the echinoid-bearing 
beds at 2 m and 6.9 m. 
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Figure 25 Fossiliferous limestone with distinct echinoid spine debris and crinoid 
ossicles located 1 m from the base of the Virgin Limestone Member at White Hills, 
Utah.

Following a thin, 1 m covered interval, a 1 m-thick silt-rich, fossiliferous 

limestone unit occurs. The limestone unit contains alternating beds of rippled, cross-

stratified wackestone and dense packstone (Fig. 26). Bedding planes of the wackestone 

and packstone beds contain echinoid debris, including fully intact spines, in association 

with gastropods, crinoid ossicles, and bivalve shell debris (Figs. 27). Trace fossils such 

as Planolites and Thalassinoides are also visible upon bedding planes and beds show signs 

of bioturbation ranging from 3-4 ii. Although echinoid and crinoid debris are readily 

visible, thin section analysis revealed that bivalves and microgastropods dominate the 

wackestone and packstone in this interval (see Results: Paleoecological Analysis). These 

beds are overlain by a 3 m covered interval after which the next limestone ledge appears. 
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Figure 26 Hummocky cross-stratified wackestone located 2 m from the base of the 
Virgin Limestone Member at White Hills, Utah.

Figure 27 Packstone from the Virgin Limestone Member at White Hills, Utah. 
Echinoid spine with insertion preserved intact circled in red. Internal mold of a 
gastropod circled in white.
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The next limestone ledge appears 6 m above the base of the measured section 

and is comprised of a 1 m-thick, silt-rich mudstone that coarsens into a thin bed of 

wackestone. Ripples are present within the wackestone portion of this bed, but are not 

visible in the silt-rich mudstone below. In addition to spine fragments, intact echinoid 

test material was found in association with microgastropods and bivalve shell fragments 

(Figs. 28 & 29). Thalassinoides, Planolites, and Rhizocorralium, are present on bedding 

planes and the bed has an overall ii of 3. Unlike the previous beds, crinoid skeletal debris 

appeared absent in this bed and was later confirmed by thin section analysis. 

The top of the Virgin Limestone occurs 17 m above the base of the measured 

section and is comprised of a 2 m-thick, highly recrystallized mudstone. This unit 

appears completely devoid of sedimentary structures and the only bioclasts present 

appears to be rare bivalves. Given the excessive amount of recrystallization and 

weathering present, no interpretations were made for this bed. 

Figure 28 Piece of echinoid test with intact boss from the Virgin Limestone Member 
at White Hills, Utah.
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Figure 29 Three pieces of echinoid test with intact boss and spine fragments from the 
Virgin Limestone Member at White Hills, Utah. Note microgastropods in the lower, 
left corner.

3.4 Lost Cabin Springs, Nevada

The measured section at Lost Cabin Springs, Nevada contains mixed carbonate 

and siliciclastic strata of the Virgin Limestone Member. Unlike the Virgin Limestone 

observed at the White Hills, UT locality, the Virgin Limestone strata at Lost Cabin 

Springs were deposited in a more distal portion of the ramp (Larson, 1966; Mata and 

Bottjer, 2011) and provide an overall more extensive section (Fig. 30). A total of one 

hundred fifty-five meters were observed at Lost Cabin Springs; however, echinoid 

debris was not observed above 65 m from the base of the measured section (Figs. 31 

& 32). Numerous shallowing-upwards sequences occur throughout the stratigraphic 
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section and are made apparent by traceable changes in lithology, sedimentary structures, 

and ichnofabric indices (Mata and Bottjer, 2011). Each parasequence generally coarsens 

upwards from laminated mudstone to bivalve and crinoid dominated packstone to 

hummocky, cross-stratified, silt-rich packstone containing dense accumulations of 

echinoid debris and microgastropods (Mata and Bottjer, 2011).
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Figure 30 Photograph of Lost Cabin Springs, Nevada field site showing the measured 
interval of the Virgin Limestone Member between the base and the top of the section.
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Figure 31 Stratigraphic column for Lost Cabin Springs, Nevada.
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Figure 32 Condensed stratigraphic column of Lost Cabin Springs, Nevada highlighting 
the faunal composition of beds. Paleoecological analysis was performed for all beds 
containing echinoids.
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The basal 14 m of the measured Virgin Limestone Member at Lost Cabin 

Springs contains three units of laminated and thin-bedded mudstones that range widely 

in ii from 1-5. The first bioclasts appear directly above the third mudstone unit in a thin 

limestone deposit containing bivalves, solely. Above the bivalve-bearing bed lies a 16 m 

unit composed largely of laminated mudstones again with ii varying from 1-5 capped 

above and below by crinoid-bearing wackestone beds. The overlying wackestone bed 

contains trace fossils Planolites and Thalassinoides in addition to the abundant ossicles 

of Holocrinus. Following a brief, 2 m covered interval the first, echinoid-bearing unit 

occurs. The 2 m limestone unit contains trough cross-stratified packstones comprised 

of dense accumulations of echinoids, microgastropods, and crinoid ossicles (Fig. 

33). Although crinoids appeared to be the most abundant faunal constituent in field 

observations, the thin section sample revealed that microgastropods account for more 

than a quarter of the faunal composition and revealed the presence of both bivalves and 

rhynchonelliform brachiopods (see Results: Paleoecological Analysis). The echinoid 

spine debris at Lost Cabin Springs differs morphologically in comparison to the debris 

observed at all other field sites in this study; the spines in both echinoid-bearing units in 

this section are squat and rounded, much like the spines of a modern pencil urchin (Fig. 

34). 
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Figure 33 (A) Cross-stratified packstone containing dense accumulations of crinoid, 
microgastropod and echinoid debris 38 m from the base of the measure section at Lost 
Cabin Springs. (B) Close-up of outcrop photograph providing a more detailed view of 
a bioclast accumulation.
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Figure 34  Close-up of echinoid-dense packstone outcrop located 38 m above the base 
of the measured Virgin Limestone Member section at Lost Cabin Springs, Nevada. 
Notice that the echinoid spines at this location are morphologically dissimilar to those 
observed at previous field localities.

A thin, crinoid-bearing packstone bed appears 48 m above the base of the 

measured section topped by a 2 m unit of laminated mudstone. Directly atop the 

laminated mudstone unit lays the first, 2 m-thick microbial mound which is easily 

identifiable due to the stacked, domal structures and stromatolitic textures unique 

to microbial structures (Fig. 35a). The second and final echinoid-bearing unit of the 

Virgin Limestone Member at Lost Cabin Springs lays directly atop the stromatolitic bed 

in a dense packstone (Fig. 35b). The 3 m-thick packstone unit displays trough cross-
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stratification and contains crinoid ossicles, microgastropods, and bivalves in addition 

to echinoid debris. Wackestones and packstones composed of crinoids, bivalves, and 

brachiopods continue upsection intermitted with laminated mudstones as water depths 

deepen and shallow, as well as two more microbial and sponge mounds which appear 87 

m and 106 m above the base of the measured section.  Although the stratigraphic section 

continues beyond the echinoid-bearing bed at 52 m, the remainder of the section will 

not be described in detail due to the scope of this study. 

Figure 35 Photographs of a microbial mound-bearing unit located 50 m from the base 
of the Virgin Limestone Member at Lost Cabin Springs, Nevada. (A) The mound-
bearing unit directly overlays a bed of laminated mudstone (B) and lays directly below 
a cross-stratified packstone containing echinoid debris.

Mudstone

Microbial
Mound

Microbial
Mound

Packstone
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4  Results: Paleoecological Analysis

 Echinoid material was positively identified in 14 of the 25 thin sections 

corresponding to eight beds of the Dinwoody Formation, two beds of the Thaynes 

Formation, and four beds of the Virgin Limestone Member. For the purpose of 

quantifying echinoid abundance in this study, only the 14 beds containing echinoid 

material have been used for paleoecological analysis (Figs. 36-40). Other identified 

taxa within the 14 beds include bivalves, gastropods, rhynchonelliform and lingulid 

brachiopods, and crinoids. Echinoids are found in paleocommunities containing 

members of the Paleozoic Fauna such as brachiopods and crinoids, paleocommunities 

with a “mixed fauna”, as well as paleocommunities largely dominated by members 

of the Modern Fauna such as gastropods and bivalves. Mixed fauna is the term that 

refers to post-extinction communities composed of a mixture of holdover, short-lived 

Permian survivors and typical Early Triassic taxa, such as opportunistic bivalves (Shen et 

al., 2011; Clapham et al., 2013). 

In addition to varying in proportion, faunal constituents were not consistently 

present between field localities and, in some cases, dissimilar between beds at a single 

locality. For example, crinoids were identified in echinoid-bearing beds at Hidden 

Pasture, MT (Figs. 37& 38); White Hills, UT (Fig. 39); and Lost Cabin Springs, NV 

(Fig. 40); but were not present in the echinoid-bearing beds at Blacktail Creek, MT 

(Fig. 36). The faunal constituents of echinoid-bearing beds of the Dinwoody Fm. 

at Blacktail Creek, MT (Fig. 36) and the Thaynes Fm. at Hidden Pasture, MT (Fig. 

38) remain consistently present, but fluctuate in proportion between beds. However, 

the echinoid-bearing beds of the Virgin Limestone Member at White Hills, UT and 
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Lost Cabin Springs, NV each lose a faunal constituent (crinoids and rhynchonelliform 

brachiopods, respectively) upsection in addition to having differing proportions of 

echinoids and associated fauna between beds (Figs. 39 & 40). Conversely, the echinoid-

bearing beds of the Dinwoody Fm. at Hidden Pasture, MT gain a faunal constituent 

upsection (gastropods), but are similarly variable in constituent proportions between 

beds (Fig. 37). 

Simpson’s Index (1-D), which accounts for dominance within a community and 

where a rank of 1.0 indicates infinite diversity, ranges from 0.55-0.79 for the 14 beds 

in which echinoids appear (Figs. 41-45). Point counts revealed that echinoid-bearing 

beds with lower 1-D values (0.55-0.69) were largely dominated by one constituent: 

Greisbachian age beds are dominated either by bivalves or brachiopods (Figs. 41 & 42); 

Smithian age beds, crinoids (Fig. 43); and Spathian age beds, gastropods (Fig. 44 &45).

Calculated evenness values (H’/Hmax) for the 14 beds in which echinoids appear 

range from 0.7-0.98 (Figs. 41-45), where a rank of 1.0 indicates an ecologically even 

community. Evenness values for echinoid-bearing beds sampled from Greisbachian 

age strata range from 0.7-0.98 (Figs. 41 & 42), evenness values of beds sampled from 

Smithian age strata range from 0.85-0.96 (Fig. 43), and evenness values of beds sampled 

from Spathian age strata range from 0.76-0.92 (Figs. 44 & 45). Accordingly, the values 

calculated for Shannon Index (H’) shows a similar range and trend to those calculated 

for evenness (Figs. 41-45). The results obtained from two-sample t-tests produced 

p-values indicating differences in faunal dominance and evenness between successive 

beds at any given locality are not statistically significant (Appendix L-Q). 
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 At Blacktail Creek, point counts reveal that echinoids constitute 20% to 37% of 

faunal composition (Fig. 46). Point counts of samples collected from the Greisbachian 

age strata of the Dinwoody Formation at Hidden Pasture indicate an overall lower 

abundance of echinoids in comparison to the contemporaneous strata at Blacktail Creek, 

MT (Fig. 47). Similarly, echinoids appear in low abundance within the Smithian age 

strata of the overlying Thaynes Formation at Hidden Pasture, MT (Fig. 47). Echinoid 

abundance varies throughout the Spathian where abundance ranges from 15-30% in the 

Virgin Limestone Member of the Moenkopi Fm. (Fig. 48 & 49). 

Figure 41 Graphic comparison of diversity indices Shannon Index (H’), Simpson Index
 (1-D), and evenness (H’/Hmax) by bed for the Dinwoody Formation at Blacktail Creek, 
Montana.
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Figure 42 Graphic comparison of diversity indices Shannon Index (H’), Simpson 
Index (1-D), and evenness (H’/Hmax) by bed for the Dinwoody Formation at Hidden 
Pasture, Montana.

Figure 43 Graphic comparison of diversity indices Shannon Index (H’), Simpson 
Index (1-D), and evenness (H’/Hmax) by bed for the Thaynes Formation at Hidden 
Pasture, Montana.
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Figure 44 Graphic comparison of diversity indices Shannon Index (H’), Simpson Index (1-
D), and evenness (H’/Hmax) by bed for the Virgin Limestone Member at White Hills, Utah.

Figure 45 Graphic comparison of diversity indices Shannon Index (H’), Simpson Index 
(1-D), and evenness (H’/Hmax) by bed for the Virgin Limestone Member at Lost Cain 
Spring, Nevada.
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With the exception of the echinoid-bearing beds sampled from the Dinwoody 

Formation at Hidden Pasture, MT, echinoid abundance appears to have been relatively 

stable throughout sampled strata. Statistical tests indicate that the positive and negative 

excursions in echinoid abundance between successive, echinoid-bearing beds at all 

field localities but one (Fig. 47) were not significant. The abundance of echinoids 

between beds in the Dinwoody Formation at Hidden Pasture, MT fluctuated quite 

extensively between beds 2,3, and 4 (Fig. 47). Echinoids comprise only 2% of the faunal 

composition of Bed 2, but are 10 times more abundant in Bed 3 where they comprise 

20% of the faunal composition (Fig. 42). Further, echinoids are nearly half as abundant 

in Bed 4 as in the previous bed (Bed 3) (Fig. 47). Statistical analysis revealed that the 

fluctuations in echinoid abundance between these three beds are significant with 

p-values < 0.05.  

Echinoid material observed and collected from all field sites except the Virgin 

Limestone Member at Lost Cabin Springs, NV, appear to belong to one or two species 

of Miocidaris. Spines belonging to Miocidaris range in diameter from 0.6-2.0 mm (Table 

1). The echinoid test material observed in the Spathian age strata of White Hills, UT 

have an average plate width of 4.6 mm, plate height of 2.3 mm, and mamelon diameter 

of 1.1 mm (Table 2). The measurably small fragments of test material and associated 

spines suggest that the echinoids preserved at White Hills, UT also belong to the genus 

Miocidaris. The echinoid spines from Lost Cabin Springs, NV appear to belong to a 

presently undetermined genus or species of echinoid. These spines range in diameter 

from 1mm-6mm and, where visible, the tips appear to round where spines from all 

other field localities taper to a sharp point (Table 1). Similar measurements of fossilized 
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echinoid debris from the western U.S. were obtained by Moffat and Bottjer (1999), 

Twitchett and Oji (2005), and Mata and Woods (2008). Based on differences in spine 

morphology, at least two different genera of echinoids are present within observed 

Lower Triassic strata. The spine debris at Hidden Pasture and Blacktail Creek, MT and 

White Hills, UT appear quite dissimilar compared to the spine debris found at Lost 

Cabin Springs, NV. Unfortunately, echinoid test material was neither observed nor 

recovered from the strata at Lost Cabin Springs, NV, so inferences in regards to genus 

disparity are only speculative based upon differences in spine morphology.  However, 

thin section analysis shows no morphological disparity in cortex composition between 

any of the echinoid spines from any field site.

Figure 46 Percent echinoid abundance by bed from the Dinwoody Formation at 
Blacktail Creek, Montana. 
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Figure 48 Percent echinoid abundance by bed from the Virgin Limestone Member at 
White Hills, Utah. 

Figure 49 Percent echinoid abundance by bed from the Virgin Limestone Member at 
Lost Cabin Springs, Nevada. 
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Field Site Age Genus Spine Diameter (mm)
Blacktail Creek, MT Greisbachian Miocidaris 0.6-2.0
Hidden Pasture, MT Greisbachian Miocidaris 0.7-1.6
Hidden Pasture, MT Smithian N/A 1.0-2.0

White Hills, UT Spathian Miocidaris 1.0-1.7
Lost Cabin Springs, NV Spathian N/A 1.5-6.3

Table 1 Measured ranges of echinoid spine diameter from each field locality. 

Table 2 Measured echinoid test material from the Spathian age strata from the Virgin 
Limestone Member of the Moenkopi Formation at White Hills, Utah.

Specimen Plate Width 
(mm)

Plate Height 
(mm)

Mamelon Diameter 
(mm)

1 3.85 1.9 0.63
2 4.57 2.09 1.11
3 5.45 2.33 1.22
4 N/A 2.92 1.42

Average 4.62 2.31 1.1
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5  Discussion: Depositional Environment and Paleoecology

Echinoid debris within the Lower Triassic of the western U.S. was found 

exclusively in strata deposited in shallow marine environments. The packstone 

and wackestone lithologies in which echinoids were observed; wave-mediated 

sedimentary structures (ripples, hummocks, and cross-stratification); and evidence 

of storm events such as fragmented and abraded bioclasts support this interpretation 

of shallow marine habitable zones within the lower shoreface to offshore transition 

zone on a shallow marine ramp. Accumulations of bioclasts into shell beds, of which 

echinoids are included, as well as the disarticulated echinoid tests and spines present 

within beds of the Spathian age strata of the Virgin Limestone Member and the 

Greisbachian and Smithian age strata of the Dinwoody and Thaynes Formations 

indicate deposition within storm wave base (Kidwell and Holland, 1991). These 

findings are in concurrence with those of Twitchett and Oji (2005) whose qualitative 

observations of Lower Triassic strata in the western U.S. indicated that all known 

Early Triassic echinoids inhabited shallow, oxygenated environments within wave 

base.

5.1 Blacktail Creek, MT

The echinoid bearing beds at Blacktail Creek preserve little to no signs of 

sedimentary structures; however, many of the echinoid-bearing packstone beds 

shows some evidence of bioturbation with an estimated ichnofossil index of 3. The 

disappearance of disaster taxa such as lingulid brachiopods and the bivalve Claraia 

in conjunction with the appearance of echinoid dense packstone beds upsection 
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indicates deposition in a shallow-shelf habitable zone removed from distal, dysoxic 

waters, as echinoids require sufficiently greater amounts of oxygen for survival than 

the disaster taxa typical of the Early Triassic (Webster and Giese, 1975; Korkina et al., 

2000). Additionally, the mud-winnowed, packstone lithologies, fragmented skeletal 

debris, and coated grains identified in thin section suggest deposition within a wave-

dominated, nearshore environment. 

5.2 Hidden Pasture, MT

Similar to the Dinwoody Formation at Blacktail Creek, the thinly-laminated 

mudstone lithology, presence of framboidal pyrite, and presence of the disaster 

taxon Claraia that comprise the basal portion of the measured section at Hidden 

Pasture provide evidence of a distal, dysoxic environment. Much like the section 

at Blacktail Creek, the strata at Hidden Pasture also display a shallowing-upward 

sequence. However, the Greisbachian age strata at Hidden Pasture differ from those 

at Blacktail Creek in that the strata of Hidden Pasture contain varying abundances 

of crinoids, suggesting deposition  in a deeper, possibly basin-ward facing, portion of 

the Dinwoody Basin. Further, the continuous abundance of lingulid brachiopods, 

appearance of wrinkle structures, and limited levels of bioturbation upsection suggest 

that the environments recorded at Hidden Pasture experienced upwelling of dysoxic 

and, potentially, anoxic waters with some regularity, a phenomenon more likely to 

affect environments proximal to the basin itself (Rodland and Bottjer, 2001; Pruss 

and Bottjer, 2004; Mata and Bottjer, 2009). Investigations regarding the evolution 

of complex organisms by Gingras et al. (2011) suggest that shallow marine microbial 
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mats may have provided a source of food and oxygen, via photosynthetic bacteria, 

for organisms living within an otherwise low-oxygen setting during the Ediacaran. 

Further, the microbially hardened substrates of the Ediacaran recorded an abundance 

of horizontal burrows and traces of the newly mobile organisms (Gingras et al., 2011), 

not unlike the vertically shallow burrows and traces preserved within the Lower 

Triassic strata.

Echinoid debris appears exclusively within silt-rich wackestone and packstone 

beds of the Greisbachian age strata at Hidden Pasture. The wave-ripple cross-bedded 

wackestone and packstone beds and accumulations of shell hash within the echinoid-

bearing units suggest a depositional environment that experienced lengthy periods 

of relative sea level stability (Paull et al., 1989) punctuated by storm events and, thus, 

supports deposition on a shallow, wave dominated-shelf somewhere within the offshore 

transition zone or lower shoreface.  Echinoid debris within the Dinwoody of Hidden 

Pasture appears to cease abruptly once silt input noticeably increases (above 172 m), 

much like the trend of echinoid disappearance at Blacktail Creek. The disappearance 

of echinoids throughout both Dinwoody sections appears to coincide with increasing 

amounts of silt within the deposited beds and, thus, deeper environments. In addition 

to providing potential life sustaining levels of oxygen and nutrients, the proliferation 

of microbial mats during the reef gap of the Early Triassic may have provided firm 

substrates amenable to colonization by grazing gastropods and echinoids. Although 

gastropods and echinoids have been known to inhabit a range of environments 

throughout their respective evolutionary histories, many members of each class 

preferentially inhabit firm or rocky substrates as such substrates often provide optimal 
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grazing grounds (Schneider, 2008). Thus, the possibility exists that a significant influx 

of silt onto the shelf could have created an unlivable substrate for echinoid populations.

Echinoids do not reappear within the measured Hidden Pasture section until 

the wackestone and packstone beds of the Thaynes Formation that were deposited 

by the second transgression of the Early Triassic. A near identical pattern of benthic 

faunal colonization appears in the Thaynes Formation as in the underlying Dinwoody 

Formation. The basal beds of the Thaynes Formation at Hidden Pasture contain 

lingulid brachiopods and bear no signs of bioturbation or sedimentary structures, 

suggesting a return to distal, dysoxic waters. The ammonoid, Meekoceras, also appears 

within these basal beds suggesting that pelagic organisms, such as Meekoceras, were less 

affected by dysoxic upwelling perhaps due to their habitation in the nektonic zone. The 

two, echinoid-bearing, bioclastic wackestone and packstone beds located at the top of 

the measured, shallowing-upwards section indicate a return to a habitable zone within a 

proposed lower shoreface environment at least in this area of the basin.

5.3 White Hills, UT

The temporal and environmental trends within the Virgin Limestone Member 

of the Moenkopi Formation at White Hills, UT are markedly dissimilar to those 

observed in the Dinwoody Formation. The Virgin Limestone Member appears to have 

recorded multiple, minute instances of transgression and regression within a single, 

greater transgressive event. Unlike the strata of the Dinwoody Formation, the strata of 

the Virgin Limestone Member at White Hills show fewer signs of upwelling, dysoxia, 

or anoxia and do not contain disaster taxa or mono-specific faunal compositions 
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(Hofmann et al., 2013b). Additionally, the Spathian age strata of the Virgin Limestone 

Member displays an overall increase in diversity of trace fossils and bioturbation in 

comparison to the earlier, Greisbachian age strata (Pruss and Bottjer, 2004; Mata and 

Bottjer, 2011). This is certainly not to say that the paleocommunities recorded in the 

Virgin Limestone Member evaded the deleterious environmental conditions of the Early 

Triassic, nor can the conclusion be made that paleocommunities had fully recovered. 

Rather, the abundance and evenness of the benthic paleocommunities in this region 

suggest the presence of a more consistent habitable zone in which organisms found 

refuge. The sedimentary structures (ripples, hummocks, and cross-stratification), coated 

grains, alternating beds of silt-rich wackestone and packstone, and relatively well-

preserved echinoid fossil material point to a shallow-shelf environment within the lower 

shoreface to offshore transition zone subject to periodic storm events.

5.4 Lost Cabin Springs, NV

The general, reoccurring trend documented by the parasequences within the 

Virgin Limestone Member at Lost Cabin Springs suggests shallowing from a low 

oxygen and, thus, ecologically suppressed, distal setting to a more densely colonized 

offshore transition zone and, finally, to a wave-dominated, lower to upper shoreface 

with increased siliciclastic input (Mata and Bottjer, 2011). The stratigraphic section 

at Lost Cabin Springs also contains at least three distinct microbial and stromatolite-

sponge patch reefs, the first of which is bordered above and below by echinoid-

bearing units.  Geochemical analysis in conjunction with the presence of bivalves and 

burrows suggest that the microbial mounds within the upper units of the stratigraphic 
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section indicate an environment with sufficient oxygen to facilitate biotic recovery of 

benthic organisms (Marenco et al., 2012). In accordance with the documentation of 

echinoids in all previously discussed field localities, echinoids of the Virgin Limestone 

Member at Lost Cabin Springs are present only within silt-limited packstone units. 

Thin section samples from the two echinoid-bearing beds at Lost Cabin Springs 

reveal matrixes containing micrite and quartz; however, the amount of carbonate 

cement vastly outweighs any siliciclastic input. The cross-stratification, trough-like 

bioclast accumulations, fragmented nature of shells, and coated grains within the two 

echinoid-bearing units suggest deposition within storm-dominated environments. 

The relatively even faunal compositions of both echinoid-bearing units indicate that 

the paleoenvironments were oxygenated enough to support benthic colonization. Even 

though the Virgin Limestone Member at Lost Cabin Springs records an overall deeper 

marine facies than that at White Hills, UT the dense packstone within the section 

suggest the presence of numerous, temporality varied habitable zones as environments 

fluctuated between upper and lower shoreface to offshore transition zones.

5.5 Paleoecology of the Habitable Zone

As defined by Beatty et al. (2008), the occurrence of a habitable zone within 

a paleo-setting relies principally upon: 1) water depth relative to a benthic profile; 

2) a regular influx of wave-generated oxygen; and 3) a location some distance away 

from periodic upwelling of dysoxic/anoxic waters. The multiple transgressive and 

regressive events throughout the Early Triassic are hypothesized to have facilitated the 

formation, migration, and local disappearance of habitable zones. The appearance and 
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disappearance of the habitable zone within the Lower Triassic strata of the western 

U.S. can be tracked through notation of fluctuations in faunal diversity as it relates 

to depositional environment. For example, decreases in faunal diversity were often 

observed in beds at all field localities that displayed an increased deposition of laminar 

mud or silt, little to no evidence of colonization by benthic fauna, and an increased 

abundance of disaster taxa such as lingulid brachiopods and bivalves such as Claraia 

(Figs. 37 & 42). These features are indicative of offshore deposition where the habitable 

zone would have been eliminated due to proximity to dysoxic and anoxic waters. 

Further, oxygen stress caused by elevated levels of atmospheric CO2 is 

hypothesized to have acted as a key, “top-down”, exclusionary factor for shallow benthic 

paleocommunities during the Early Triassic (Fraiser and Bottjer, 2007a). Because the 

ocean provides a large sink for increased amounts of atmospheric CO2, the resulting 

shift in seawater pH and decline in seawater carbonate ion concentrations would have 

placed metabolic and physiological restrictions on benthic organism biomineralization, 

limiting the growth of calcifying marine organisms and potentially triggering their 

dissolution (Fraiser and Bottjer, 2007a; Ries, 2012). Many marine invertebrates, of 

which echinoids are included, produce skeletons comprised of high-Mg calcite, a 

mineral solubility that becomes highly vulnerable in waters with elevated levels of 

dissolved CO2 (Ries et al., 2009). As documented by the fluctuations in diversity and 

evenness throughout the echinoid-bearing beds of the observed Lower Triassic strata, 

the combined effects of distal noxious waters and elevated levels of atmospheric CO2 

ensured that recovery of benthic marine communities was not linear (Figs. 41-45). 

However, identifying environments in which echinoids and other vulnerable taxonomic 
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groups (e.g. bivalves and gastropods) constitute abundant and diverse communities can 

provide a more precise location of the habitable zone within the lower shorefaces and 

transition zones, so as to be sufficiently removed from “bottom-up” and “top-down” 

extinction pressures. 

All of the echinoid-bearing beds contain one or more additional taxa indicative 

of oxygen saturated environments such as gastropods, rhynchonelliform brachiopods, 

and crinoids. The presence of oxygen sensitive organisms amidst the wave-mediated 

sedimentary structures in the wackestone and packstone beds suggests regular aeration 

and mixing of waters by wave interaction and storm events. Further, the diversity and 

abundance of readily identifiable shell material (e.g. intact echinoid spines and test plates) 

in the echinoid-bearing beds indicates that oxygen-carrying waves did not create an 

environment so violent as to be uninhabitable by benthic fauna. Although some of the 

echinoid-bearing beds within the Dinwoody Formation at Blacktail Creek and Hidden 

Pasture, MT contain linguilid brachiopods (Figs. 36 & 37), an organism tolerant of 

low oxygen levels, their presence amongst the larger paleocommunity in these beds 

likely reflects the opportunistic nature of lingulids rather than an oxygen-depleted 

environment. 

The echinoid-bearing wackestone and packstone beds observed within 

the Lower Triassic strata contained at least 3 or more, higher taxonomic groups 

(Figs. 36-40). Alpha diversity indices H’ and 1-D suggest that some environments, 

herein determined to be habitable zones, were able to support relatively diverse 

paleocommunities with evenness and dominance values ranging from 0.7-0.98 and 

0.55-0.79, respectively (Figs. 41-45).  Investigations made by Boyer et al. (2004) of 
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the Lower Triassic strata of the western U.S. found that the taxonomic diversity of 

bioclasts was consistently low throughout the Early Triassic, but appeared to increase 

through the three Early Triassic time intervals. Their reported values for dominance 

(1/D) and evenness (H’) calculated from in-field and hand sample quantifications 

of the Greisbachian age strata at Hidden Pasture, MT range from 0-0.135 and 

0-0.303, respectively (Boyer et al., 2004).  Additionally, values are provided from 

the quantification of Spathian age strata of the Thaynes Fm. and Virgin Limestone 

Member wherein dominance (1/D) and evenness (H’) range from 0-0.674 and 

0-1.209, respectively (Boyer et al., 2004). The diversity indices calculated by Boyer et 

al. (2004) are drastically lower than the indices calculated in this study and likely reflect 

dissimilarities in quantification methods and overall objectives between studies. Firstly, 

the analyses of taxonomic diversity by Boyer et al. (2004) are based on semi-quantitative 

methods that produce quick and accurate estimates of bioclastic fabrics and depositional 

environments (Kidwell et al., 1986; Kidwell, 1991; Kidwell & Holland, 1991) in the 

field and require a relatively small sampling of bioclasts in comparison to the sampling 

requirements of point count analysis conducted in the study herein. Further, the 

methods used by Boyer et al. (2004) exclude quantification of bioclasts less than 2 mm 

in size, as shell fragments less than 2 mm in size can, in general, prove difficult to 

accurately identify in the field. Due to the overall miniaturization of organisms in the 

Early Triassic (Twitchett, 2007), taxonomic diversity estimates based on point counts 

in thin section may provide a less biased, more inclusive assessment of Early Triassic 

paleocommunities. Secondly, the purpose of this study was to identify habitable zones, 

areas with the highest taxonomic diversity, within the Lower Triassic strata of the 
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western U.S., of which the calculated diversity indices are intended to reflect. 

Habitable zones within the studied Lower Triassic strata contain faunal 

communities with evenness values suggestive of recovered communities (e.g. 0.90-0.98)

(Figs. 41-45). Moreover, the calculated evenness values suggest that habitable zones 

present within the earliest time interval of the Early Triassic, the Greisbachian (H’/

Hmax: 0.7-0.98), were just as likely to contain diverse faunal communities as habitable 

zones within later time intervals (H’/Hmax: 0.76-0.96). However, the prevalence of 

monospecific beds and dark, oxygen-depleted beds of thinly-laminated mudstone 

throughout the Lower Triassic strata indicate that the habitable zone and its diverse, 

inhabitant fauna were not sustained for any great length of time during the Early 

Triassic. Additionally, the lack of temporal discrepancy in the calculated evenness 

values indicate that evenness may not provide the best indicator of ecological recovery 

or restructuring in all cases. Instead, the habitable zone seems to have provided a brief, 

episodic window in which a few otherwise rare or absent benthic organisms could 

proliferate just enough to maintain their evolutionary progression into later geologic 

time.

The abundance of echinoids within a particular bed did not always reflect the 

overall diversity or evenness of paleocommunities within the habitable zone, as some 

instances in this study show a decoupling of echinoid abundance and faunal diversity. 

For instance, although echinoid abundance increases upsection from Bed 2 to Bed 3 

in the Dinwoody Formation at Blacktail Creek, MT (Fig. 46) and similarly from Bed 

1 to Bed 2 in the Virgin Limestone Member at White Hills, UT (Fig. 48), the faunal 

compositions between the two beds decrease in diversity and evenness, respectively 
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(Fig. 41 & 44). Similarly, even though echinoids become less abundant upsection in the 

Virgin Limestone Member at Lost Cabin Springs, NV (Fig. 49), overall faunal diversity 

and evenness increase from Bed 1 to Bed 2 (Fig. 45). The fluctuating abundances 

of faunal constituents, including echinoids, suggest that while habitable zones 

provided refuge from deleterious environmental conditions, organisms within these 

environments were not removed from the complex, selective pressures of a functioning 

ecosystem. Such an instance in which selective pressures may have favored members 

of the Modern Fauna to those of the Paleozoic Fauna can be seen in the echinoid-

bearing beds at White Hills, UT where the disappearance of crinoids coincides with an 

increasing abundances of echinoids and gastropods upsection (Figs. 39 & 48). 

Although echinoids do not constitute the dominant fauna in any of the beds 

sampled, the prevalence of echinoids, as a member of the Modern Fauna, within the 

Lower Triassic strata of the western U.S. perfectly illustrates the transition from the 

Paleozoic Fauna to the Modern Fauna following the PTME. Based upon previous 

paleoecological studies of the Lower Triassic strata of the western U.S. (e.g. Fraiser 

and Bottjer, 2007b; Clapham et al., 2013; Hofmann, 2013b) as well as the point 

counts preformed in this study, members of the Modern Fauna, namely bivalves and 

gastropods, constitute the most abundant and, often, dominant taxon throughout the 

entirety of the Early Triassic. Although neither bivalves nor gastropods are the specific 

focus of analysis in this study, their unequivocal abundance further exemplifies the 

ecological shift between Paleozoic and Modern Faunas.

Fossil records of echinoids indicate that regular echinoids, such as Miocidaris, 

preferred habitation upon firm or rocky substrates (Barnes, 1989). Moreover, 
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observations of Modern echinoid life habits provide evidence that most regular species 

preferentially inhabited high-energy environments with hard or firm substrates on 

which they can graze (Ausich and Webster, 2008; Schneider, 2008). In this study, the 

limited presence of silt in beds containing echinoids and the occurrence of filter feeding 

organisms such as crinoids and rhynchonelliform brachiopods further suggests that 

Early Triassic paleocommunities existed in habitable zones subject to regular mud-

winnowing through wave interaction. As such, a large influx of silt would have fouled 

the waters for filter feeding organisms and produced sediments potentially too soupy for 

echinoid habitation. The overall restriction of echinoids to the taxonomically diverse, 

wave-mediated, shallow water deposits of the Lower Triassic strata of the western U.S. 

deem echinoids a usable, local proxy for identification of the habitable zone. 
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6  Conclusions

The distribution of echinoids in Early Triassic, benthic paleocommunities 

appears to have relied largely on the presence or absence of habitable zones.  Echinoids 

within the Lower Triassic strata of the western U.S. appear strictly within lithologies 

that indicated shallow water deposition, often in association with wave-mediated 

sedimentary structures. Although oxygen levels constitute the fundamental selective 

ecological parameter for the habitable zone, field observations and paleoecological 

analysis suggest that sedimentation patterns as they relate to substrate may have mediated 

echinoid proliferation as well. Echinoids consistently appeared exclusively within strata 

that qualify as habitable zones, thus echinoids provide a practical proxy for identification 

of the habitable zone within Lower Triassic strata of the western United States. 

Nearly 950 species of echinoids contribute to the vast biodiversity of 

invertebrates living within modern marine systems (Kroh, 2010), thus an 

understanding of echinoid survival during the Permo-Triassic mass extinction and 

aftermath can provide insight into the evolutionary pressure currently placed upon 

marine ecosystems and aid in combating the depletion of ecologically essential 

members of struggling marine environments, like marine invertebrates. In this study, 

I have shown that even amidst deleterious environmental conditions, simple, yet 

diverse, ecological communities can persist given the proper conditions for survival.
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Appendix A

Blacktail Creek, Montana

 
Satellite Map
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Google satellite map of Blacktail Creek, Montana field site. The yellow star indicates 
the base of the section located at approximately 44°44’50.91”N 112°17’39.47”W.
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Appendix B

Hidden Pasture, Montana

Satellite Map
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Google satellite map of Hidden Pasture, Montana field site. The yellow star indicates 
the base of the section located at approximately 44°41’15.70”N 112°47’1.00”W.
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Appendix C

Bear Lake, Idaho

Satellite Map
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Google satellite map of Bear Lake, Idaho field site. The yellow star indicates the base of 
the section located at approximately 42°6'42.96"N 111°15'24.90"W.

200m

N



93

Appendix D

Montpelier Canyon, Idaho

Satellite Map
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Google satellite map of Montpelier Canyon, Idaho field site. The yellow star indicates 
the base of the section located at approximately 42°19'16.04"N 111°15'46.19"W.
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Appendix E

White Hills, Utah

Satellite Map
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Google satellite map of White Hills, Utah field site. The yellow star indicates the base 
of the section located at approximately 37° 2'59.46"N 113°41'17.70"W.
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Appendix F

Lost Cabin Springs, Nevada

Satellite Map
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Google satellite map of Lost Cabin Springs, Nevada field site. The yellow star indicates 
the base of the section located at approximately 36° 4'51.25"N 115°39'13.27"W.
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Appendix G

Dinwoody Formation

Blacktail Creek, Montana

Point Count Data
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Raw abundance of biotic and abiotic components in echinoid-bearing limestones from 
the Dinwoody Formation at Blacktail Creek, Montana. Abundances were collected 
through point counts in thin sections, each thin section corresponding to a sampled 
bed. The abundances of components obtained from each thin section are considered 
representative of the beds in which they were collected. 

Component Bed 2 Bed 3 
(Float) Bed 4

Sparry Calcite 141 93 53

Quartz 62 18 8

Calcite Cement 71 77 62

Micrite 32 18 9

Intraclasts 0 12 21

Echinoids 24 33 68

Crinoids 0 0 0

Bivalves 23 66 73

Gastropods 16 12 36

Brachiopods 57 8 10

Ostracods 0 0 0

Conodonts 0 0 0

Total 426 337 340
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Appendix H

Dinwoody Formation

Hidden Pasture, Montana

Point Count Data
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Raw abundance of biotic and abiotic components in echinoid-bearing limestones from 
the Dinwoody Formation at Hidden Pasture, Montana. Abundances were collected 
through point counts in thin sections, each thin section corresponding to a sampled 
bed. The abundances of components obtained from each thin section are considered 
representative of the beds in which they were collected. 

Component Bed 2 Bed 3 Bed 4 Bed 5 Bed 6

Sparry Calcite 145 69 54 10 19

Quartz 34 35 54 5 10

Calcite Cement 46 74 85 43 63

Micrite 42 27 5 8 5

Intraclasts 0 0 0 0 0

Echinoids 1 24 16 41 41

Crinoids 9 11 7 27 27

Bivalves 28 29 54 56 56

Gastropods 0 0 6 41 52

Brachiopods 6 56 67 87 67

Ostracods 0 0 0 0 0

Conodonts 0 0 0 0 0

Total 311 325 315 318 340
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Appendix I

Thaynes Formation

Hidden Pasture, Montana

Point Count Data
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Raw abundance of biotic and abiotic components in echinoid-bearing limestones from 
the Thaynes Formation at Hidden Pasture, Montana. Abundances were collected 
through point counts in thin sections, each thin section corresponding to a sampled 
bed. The abundances of components obtained from each thin section are considered 
representative of the beds in which they were collected.

Component Bed 1 Bed 2

Sparry Calcite 77 49

Quartz 25 23

Calcite Cement 48 51

Micrite 10 3

Intraclasts 0 0

Echinoids 9 22

Crinoids 63 37

Bivalves 48 67

Gastropods 20 36

Brachiopods 12 34

Ostracods 0 0

Conodonts 0 0

Total 312 322
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Appendix J

Virgin Limestone Member

White Hills, Utah

Point Count Data
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Raw abundance of biotic and abiotic components in echinoid-bearing limestones from 
the Virgin Limestone Member of the Moenkopi Formation at White Hills, Utah. 
Abundances were collected through point counts in thin sections, each thin section 
corresponding to a sampled bed. The abundances of components obtained from each 
thin section are considered representative of the beds in which they were collected.

Component Bed 1 Bed 2 Bed 3

Sparry Calcite 60 60 165

Quartz 0 0 57

Calcite Cement 95 138 92

Micrite 0 5 0

Intraclasts 12 6 0

Echinoids 25 57 0

Crinoids 10 0 0

Bivalves 57 55 7

Gastropods 53 123 0

Brachiopods 0 0 0

Ostracods 0 0 0

Conodonts 0 0 0

Total 312 444 321
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Appendix K

Virgin Limestone Member

Lost Cabin Springs, Nevada

Point Count Data
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Raw abundance of biotic and abiotic components in echinoid-bearing limestones from 
the Virgin Limestone Member of the Moenkopi Formation at Lost Cabin Springs, 
Nevada. Abundances were collected through point counts in thin sections, each thin 
section corresponding to a sampled bed. The abundances of components obtained 
from each thin section are considered representative of the beds in which they were 
collected.

Component Bed 1 Bed 2

Sparry Calcite 69 38

Quartz 21 25

Calcite Cement 21 32

Micrite 8 2

Intraclasts 9 4

Echinoids 59 51

Crinoids 14 35

Bivalves 0 15

Gastropods 88 73

Brachiopods 33 26

Ostracods 0 0

Conodonts 0 0

Total 322 301
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Appendix L

Dinwoody Formation

Two Sample Z Test
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Results from tests of significance for the relative abundance of echinoids by bed. Tables 
are presented for the Dinwoody Formation at two field localities Blacktail Creek 
and Hidden Pasture, Montana. Echinoid abundances were obtained through point 
counting in thin section. All values are p-values obtained from Two Sample Z tests. 
Boldface values indicate statistically significant differences at ɑ = 0.05.

Blacktail Creek, MT P-Value

Bed 2 vs. Bed 3 0.08726

Bed 2 vs. Bed 4 0 00228

Bed 3 vs. Bed 4 0.242

Hidden Pasture, MT P-Value

Bed 2 vs. Bed 3 0 00512

Bed 2 vs. Bed 4 0.08364

Bed 2 vs. Bed 5 0 0139

Bed 2 vs. Bed 6 0 01174

Bed 3 vs. Bed 4 0 03156

Bed 3 vs. Bed 5 0.37346

Bed 3 vs. Bed 6 0.4654

Bed 4 vs. Bed 5 0.11876

Bed 4 vs. Bed 6 0.08914

Bed 5 vs. Bed 6 0.85716
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Appendix M

Thaynes Formation

Two Sample Z Test
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Results from tests of significance for the relative abundance of echinoids by bed. Table 
is presented for the Thaynes Formation at field localities Hidden Pasture, Montana. 
Echinoid abundances were obtained through point counting in thin section. All values 
are p-values obtained from Two Sample Z tests. Boldface values indicate statistically 
significant differences at ɑ = 0.05.

Hidden Pasture, MT P-Value

Bed 1 vs. Bed 2 0.08544
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Appendix N

Virgin Limestone Member

Two Sample Z Test
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Results from tests of significance for the relative abundance of echinoids by bed. Tables 
are presented for the Virgin Limestone Member of the Moenkopi Formation at two field 
localities White Hills, Utah and Lost Cabin Springs, Nevada. Echinoid abundances 
were obtained through point counting in thin section. All values are p-values obtained 
from Two Sample Z tests. Boldface values indicate statistically significant differences 
at ɑ = 0.05.

White Hill, UT P-Value

Bed 1 vs. Bed 2 0.1074

Lost Cabin Springs, NV P-Value

Bed 1 vs. Bed 4 0.27572
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Appendix O

Dinwoody Formation

T Test
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Results from tests of significance for ecological evenness of faunal composition by 
bed. Tables are presented for the Dinwoody Formation at two field localities Blacktail 
Creek and Hidden Pasture, Montana. Faunal compositions were obtained through 
point counting in thin section. All values are p-values obtained from Independent T 
tests. Boldface values indicate statistically significant differences at ɑ = 0.05.

Blacktail Creek, MT P-Value

Bed 2 vs. Bed 3 0.08726

Bed 2 vs. Bed 4 0 00228

Bed 3 vs. Bed 4 0.242

Hidden Pasture, MT P-Value

Bed 2 vs. Bed 3 0.1949

Bed 2 vs. Bed 4 0.1607

Bed 2 vs. Bed 5 0 0066

Bed 2 vs. Bed 6 0 0016

Bed 3 vs. Bed 4 0.7153

Bed 3 vs. Bed 5 0.095

Bed 3 vs. Bed 6 0.0681

Bed 4 vs. Bed 5 0.2472

Bed 4 vs. Bed 6 0.234

Bed 5 vs. Bed 6 0.8872
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Appendix P

Thaynes Formation

T Test
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Results from tests of significance for ecological evenness of faunal composition by 
bed. Table is presented for the Thaynes Formation at field locality Hidden Pasture, 
Montana. Faunal compositions were obtained through point counting in thin section. 
All values are p-values obtained from Independent T tests. Boldface values indicate 
statistically significant differences at ɑ = 0.05.

Hidden Pasture, MT P-Value

Bed 1 vs. Bed 2 0.518
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Appendix Q

Virgin Limestone Member

T Test
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Results from tests of significance for ecological evenness of faunal composition by bed. 
Tables are presented for the Virgin Limestone Member of the Moenkopi Formation 
at two field localities White Hills, Utah and Lost Cabin Springs, Nevada. Faunal 
compositions were obtained through point counting in thin section. All values are 
p-values obtained from Independent T tests. Boldface values indicate statistically 
significant differences at ɑ = 0.05.

White Hills, UT P-Value

Bed 1 vs. Bed 2 0.4457

Lost Cabin, NV P-Value

Bed 1 vs. Bed 4 0.951
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Appendix R

Dinwoody Formation

Blacktail Creek, Montana

Rarefaction Curves
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Rarefaction curves with 95% confidence intervals for three samples of Early Triassic 
fauna from the Dinwoody Formation at Blacktail Creek, Montana. Each sample 
represents a bed in which fossilized echinoid material was identified. The faunal 
composition of each bed was determined through point counts in thin section. 
Associations which level off indicate that further counts would not significantly increase 
the number of taxa found within a particular sample. Conversely, associations which 
have not yet leveled off indicate that further counts may have reveal additional taxa 
and are, thus, tentative. In all cases at this locality, sample size, or counted specimen, is 
greater than the number of taxa.
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Appendix S

Dinwoody Formation

Hidden Pasture, Montana

Rarefaction Curves
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Rarefaction curves with 95% confidence intervals for five samples of Early 
Triassic fauna from the Dinwoody Formation at Hidden Pasture, Montana. 
Each sample represents a bed in which fossilized echinoid material was 
identified. The faunal composition of each bed was determined through point 
counts in thin section. Associations which level off indicate that further counts 
would not significantly increase the number of taxa found within a particular 
sample. Conversely, associations which have not yet leveled off indicate that 
further counts may have reveal additional taxa and are, thus, tentative. In all 
cases except Bed 2 at this locality, sample size, or counted specimen, is greater 
than the number of taxa.
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Appendix T

Thaynes Formation

Hidden Pasture, Montana

Rarefaction Curves
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Rarefaction curves with 95% confidence intervals for two samples of Early Triassic fauna 
from the Thaynes Formation at Hidden Pasture, Montana. Each sample represents a bed in 
which fossilized echinoid material was identified. The faunal composition of each bed was 
determined through point counts in thin section. Associations which level off indicate that 
further counts would not significantly increase the number of taxa found within a particular 
sample. Conversely, associations which have not yet leveled off indicate that further counts 
may have reveal additional taxa and are, thus, tentative. In all cases at this locality, sample 
size, or counted specimen, is greater than the number of taxa.
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Appendix U

Virgin Limestone Member

White Hills, Utah

Rarefaction Curves
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Rarefaction curves with 95% confidence intervals for two samples of Early Triassic 
fauna from the Virgin Limestone Member of the Moenkopi Formation at White 
Hills, Utah. Each sample represents a bed in which fossilized echinoid material was 
identified. The faunal composition of each bed was determined through point counts 
in thin section. Associations which level off indicate that further counts would not 
significantly increase the number of taxa found within a particular sample. Conversely, 
associations which have not yet leveled off indicate that further counts may have reveal 
additional taxa and are, thus, tentative. In all cases at this locality, sample size, or 
counted specimen, is greater than the number of taxa.
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Appendix V

Virgin Limestone Member

Lost Cabin Springs, Nevada

Rarefaction Curves
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Rarefaction curves with 95% confidence intervals for two samples of Early Triassic 
fauna from the Virgin Limestone Member of the Moenkopi Formation at Lost Cabin 
Springs, Nevada. Each sample represents a bed in which fossilized echinoid material 
was identified. The faunal composition of each bed was determined through point 
counts in thin section. Associations which level off indicate that further counts 
would not significantly increase the number of taxa found within a particular sample. 
Conversely, associations which have not yet leveled off indicate that further counts may 
have reveal additional taxa and are, thus, tentative. In all cases at this locality, sample 
size, or counted specimen, is greater than the number of taxa.
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