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ABSTRACT

ENHANCEMENT TO CAMERA CALIBRATION: REPRESENTATION,

ROBUST STATISTICS, AND 3D CALIBRATION TOOL

by

Qiaotian LI

The University of Wisconsin–Milwaukee, 2014

Under the Supervision of Professor Brian, S.R. Armstrong

This thesis demonstrates the enhancement to camera calibration in three aspects:

representation of pose, robust statistics and 3D calibration tool. Camera calibration is the

reconstruction of digital camera information based on digital images of an object in 3D

space, since the digital images are 2D projections of a 3D object onto the camera sensor.

Camera calibration is the estimation of the interior orientation (IO) parameters and exterior

orientation (EO) parameters of a digital camera. Camera calibration is an essential part of

image metrology. If the quality of camera calibration cannot be guaranteed, neither can the

reliability of the subsequent analysis and applications based on digital images.

The first enhancement of camera calibration is in representation of pose. A formal

definition of “singularity of representation” is given mathematically. An example is

offered to show how singularity can lead to difficulty or failure in optimization. The

spherical coordinate system is introduced as a representation method instead of other

widely-used representations. The spherical coordinate system represents camera poses

according to camera calibration tool images in digital image processing. With the

introduction of the v frame in digital images, the singularities of spherical coordinate

system are demonstrated mathematically.
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The application of robust statistics in optimization is the second enhancement of

camera calibration. In photogrammetry, it is typical to collect thousands of observed

data points for bundle adjustment. Unexpected outliers in observed data are unavoidable,

and thus, the algorithm accuracy may not reach our goal. The least squares estimator

is a widely used estimation method in camera calibration, but its sensitivity to outliers

makes the algorithm unreliable, and it can even fail to fit the observations. By closely

analyzing and comparing the characteristics of the least squares estimator, robust estimators

with alternative assumptions are shown to detect and de-weight outliers that are not well

processed with the classical assumptions, and provide a reliable fit to the observations.

Among all possible robust estimators, two robust estimators from M-estimator family are

applied to optimization in existing camera calibration algorithm. The robustified method

can considerably improve accuracy for camera calibration estimation.

A new metric D̄ is introduced, which is the distance between two camera calibrations

considering all of the estimated camera IO parameters. D̄ can be used to evaluate the

performance among various estimators. After applying the robust estimator, the system

improves the accuracy and performance in camera calibration up to 25%. The influence of a

robustified estimator modification is also considered. It is established that the modification

has impact on the estimation accuracy.

The third enhancement is the design and application of a 3D calibration tool for data

collection. An all-new 3D calibration tool is designed to improve camera calibration

accuracy over the 2D calibration tool. The comparison of the 3D and 2D calibration

tools is conducted experimentally and theoretically. The experimental analysis is based

on camera calibration results and the corresponding D̄ matrix, which shows that the 3D

calibration tool improves accuracy. The mathematical analysis is based on the calculated

covariance matrix of camera calibration without other impact factors. The experimental and

theoretical analyses show that the 3D calibration tool can obtain more accurate calibration

results compared with the 2D calibration tool, establishing that a carefully designed 3D
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calibration tool will yield better estimates than a 2D calibration tool.
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1

1 Introduction

1.1 Overview of Thesis Topics

In order to obtain information of an object in 3D space from its 2D digital images,

we need to know the 10 interior orientation (IO) parameters and 6 exterior orientation

(EO) parameters of a digital camera. Camera Calibration is the process by which we

reconstruct the IO and EO of the camera. The reconstruction depends on analysis of the

digital images, which involves image processing, image metrology, statistics and numerical

methods. There are several ways to do camera calibration for various applications. In close

range photogrammetry1, the most powerful method is bundle adjustment (BA), which

can take a very large sample and estimate IO and EO as a bundle [59].

The problem is that it is hard to get an accurate result, because BA leads to simultaneous

estimation of 1000 or more parameters2, and it is preferable to determine the values of

IO parameters to the fourth digit. A low-accuracy camera calibration result will affect

the next stage application such as the compensation to the blur effect of human head

motion during MRI scanning3. Reasons for performance difficulty are: possible singularity

of representation; non-Gaussian distribution of residuals; and the need for a calibration

experiment that better constrains the camera parameters.

1. The word derived from Greek words, where photo means light, gramma means something drawn
or written, metron means to measure. Thus, photogrammetry is the technology of obtaining
reliable information about physical objects and environment by procedure of recording, measuring and
interpreting photographic images.

2. If 200 images of a calibration tool with 73 landmarks are in a data set, there will be 200×6 parameters
for camera pose, 73×3 for landmarks and 10 camera interior parameters to be estimated. Thus, the total
number of estimated parameters is more than 1000.

3. This research is sponsored by NIH/NIDA R01DA021146 funding to develop a single camera motion
tracking system for MRI.
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1.2 Camera Calibration

1.2.1 Overview of Camera Calibration

Camera calibration is an essential part of image metrology. It offers the camera interior

geometry parameters (IO) and the rotation and translation (EO) of the calibration tool

relative to the camera. With IO and EO information, we can reconstruct the mapping from

3D landmarks on the calibration tool onto the camera’s image sensor. The more accurate

the estimated parameters, the better compensation can be performed for the next stage of

the application.

In the data collection stage, a camera will take photos of a camera calibration tool.

Digital images are the only data source. There are two basic sensor-object geometries:

the single-camera geometry, which is also the base of multi-camera convergent geometry,

and the dual-camera geometry. The particular geometry models the mapping from the

landmarks on the calibration tool in 3D space to its 2D image on the image sensor, which

is what to recover. The coordinates transformation among several coordinate systems is

necessary, so the choice of representation for the coordinate system is an issue.

Based on camera geometry, there are linear methods, such as the Direct Linear

Transformation, that offer a closed-form simplified solution. There are also non-linear

methods, such as bundle adjustment, that offer the recovery of the full set of camera

modeling parameters. Camera calibration itself is not necessarily linear or non-linear;

the choice depends on the application requirements and accuracy. Thus, both linear and

non-linear methods have been developed.

1.2.2 Camera Calibration in Different Applications

Mainly, two communities are using camera calibration: the computer vision (CV)

community and the photogrammetry community. There are common points and differences
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due to varying requirements.

The photogrammetry community requires higher accuracy and more parameters to

be obtained and considers high accuracy of full-range parameters to be one of its

most important concerns. The difference between photogrammetry and close-range

photogrammetry is that the latter is applied when the focal length is a perceptible part

of the camera-subject separation.

The computer vision community may only need to recover part of the IO parameters.

Some computer applications recover focal length only without any lens distortion

modeling. However, in photogrammetry, it is customary to model and recover the full

lens distortion parameters. The basic camera-object mapping geometries are used by both

communities.

1.3 Bundle Adjustment (BA) for High-accuracy Camera Calibration

Bundle adjustment is considered to be the most powerful tool for camera calibration for

close-range photogrammetry. Bundle adjustment has the advantage of estimating IO and

EO simultaneously and can accept data with no limitation on size, source, collecting time

or collector compared to conventional camera calibration. The complete set of variables

are updated and improved during the calculation, which is an optimal estimation. Bundle

adjustment requires a non-linear estimator to finish the task. Newton-like iterative method

is used as the numerical method; the least squares estimator is common. However the

robust estimator is needed due to the non-Gaussian distribution of the residuals.

1.4 Research Purpose and Approach

To enhance the performance and accuracy of camera calibration in photogrammetric

applications, I address three challenges of accurate bundle adjustment in this thesis:
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1. Singularity of representation (SoR)

Singularity of representation (SoR) exists in several research areas with usage of 3D

space representation. When SoR occurs, it can significantly degrade the performance

of algorithms. In this thesis, I discover the cases of singularity using the spherical-

maker coordinate system in camera FOV.

2. Application of robust statistics

Robustified statistics is a powerful tool for handling of outliers. Data used in the BA

algorithm can be collected at any time and from any source, and does not follow

the normal distribution strictly. However, the assumption of normal distribution

is a general precondition for classical statistics, like the least squares estimator.

Thus, a suitable robustified cost function is necessary for the improvement of bundle

adjustment. In this thesis, I find a suitable robust estimator for this estimation task

and develop a novel algorithm for the improvement of camera calibration accuracy.

3. Development of a 3D camera calibration tool.

Camera calibration can use a 2D calibration tool or a 3D calibration tool. A

3D camera calibration tool will offer extra constraint in the collected data set.

The extra information will improve the reliability of Newton-like methods in BA,

which I establish mathematically. In this section, I will calculate the expected

covariance matrix with a 3D calibration tool, conduct real experiments with the

camera calibration system, and analyze the covariance matrix numerically alongside

the covariance matrix from the 2D calibration tool.
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1.5 Thesis Organization

The thesis has six chapters. Chapter one is the introduction of this research. Chapter two is

the literature review, which covers the basics of camera geometries, camera models, camera

calibration methods, etc. Chapter three introduces a new coordinate system to represent 3D

object. The singularity of this representation is addressed in our application. Chapter four

addresses the improvement of camera calibration by introducing robust estimators. Chapter

five covers the utilization of the 3D calibration tool designed. The advantages of the 3D

calibration tool are analyzed and demonstrated in practice. In the chapter six, the major

contributions of this thesis work are listed and future work is described.
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2 Literature Review

2.1 Camera Geometries and Camera Models

2.1.1 Coordinate Representations and Coordinate Transformation of Object in 3D

space

An object in 3D space is uniquely determined by its position and orientation [39, 43].

• Positions: Cartesian coordinate system and others such as spherical coordinate

system; polar coordinate system; homogeneous coordinate system, etc.

• Orientation: Euler angles, which can be transferred to rotation matrix.

Coordinate representation of object position in 3D space

There are several different coordinate representations available for the position of a

landmark in 3D space [41, 43]. To represent the position of a landmark in 3D space,

we need to choose a coordinate system. The Cartesian coordinate system (denoted by P) is

most widely used [45].

If a transformation between coordinate systems is needed, the position of point a in the

frame A represented in Cartesian coordinate system is given [14]:

APa =


AXa

AYa

AZa

 ∈ R3 (2.1)

where AXa,
AYa,

AZa are the X, Y, Z components of APa. Thus, point a in the world

coordinate system is

wPa =


wXa

wYa

wZa

 ∈ R3. (2.2)
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The coordinate system is also known as “frame” [14]. The position of a landmark

represented by a three-dimensional coordinate representation is relative and depends on

which frame the landmark is in. In close-range photogrammetry, there are the world

coordinate frame, denoted by wP; the camera coordinate frame, denoted by cP; the

calibration tool coordinate frame, denoted by tP; the image coordinate frame, denoted by

iP; and the pixel coordinate frame, denoted by pP [41].

Coordinate representation of object orientation in 3D space

There are several different representations available for the orientation of a landmark in

3D space[41, 43]. In this representation, three angles (ω, κ, ϕ) about three axes (X, Y, Z)

are used to describe the orientation of a rigid body in 3D Euclidean space. Each would

be converted to an elementary rotation matrix. The combination of these three elementary

matrices gives us the rotation of the rigid body.

• If the axes move with the object, the rotations are in the order yaw (ϕ)→ pitch (ω)

→ roll (κ) . If the axes are fixed, then the rotations are roll → pitch → yaw. In

aviation, a positive pitch means the plane nose moves up, and a positive yaw means

it is turned to the right. A positive roll means that the right wing moves down. Thus,

the right-hand rule is used for three axes relationship.

• The pitch about x (ω) axis:

Rω =


1 0 0

0 Cx −Sx

0 Sx Cx

 ,

where Sx is sin(x) and Cx is cos(x).
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• The yaw (ϕ) about y axis

Rϕ =


Cy 0 Sy

0 1 0

−Sy 0 Cy

 ,

where Sy is sin(y) and Cy is cos(y).

• The roll (κ) about z axis

Rκ =


Cz −Sz 0

Sz Cz 0

0 0 1

 ,

where Sz is sin(z) and Cz is cos(z).

Coordinate transformation of object in 3D space

If we have the value of position of a landmark in 3D space in one frame and want to know

the position of this landmark in 3D space in the other frame, it is necessary to do coordinate

transformation from the current frame to the destination frame [14, 41]. The origin and

orientation of the current frame in the destination frame for coordinate transformation are

required.

Example:

To find cPa (the destination frame) from tPa (the current frame), we need:

• The origin of the calibration tool frame, expressed in the camera frame,

cPt̊ =


cXt̊

cYt̊

cZt̊

 (2.3)

.
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ϕ
yaw

ω
pitch

κ 
roll

Z

X

Y

Figure 2.1: Euler angles of X, Y, Z axes: pitch ω, yaw ϕ and roll κ.

• The orientation of the calibration tool frame with respect to the camera frame. The

orientation of one coordinate frame with respect to another can be expressed either

as:

(a) The Euler angles: pitch ω, roll κ and yaw ϕ values, [degrees] or [radians]. See

figure 2.1

(b) A rotation matrix, c
tR.

This notation [14] is understood as

Toframe
FromframeR (2.4)

where the "From frame” is the frame from which the vectors are coming and the “To

frame” is the frame to which the vectors are being rotated.

In calculation, a rotation matrix is preferred. However, Euler angles have the minimum

parameterization needed for estimation, are easier for humans to read, and also good for
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plotting. Euler angles and rotation matrices can be converted to each other. A rotation

from one frame to another frame is constructed by three elementary rotation matrices

corresponding to each Euler angle [14, 41] as below:

c
tR = Rκ ·Rϕ ·Rω

=


Cκ −Sκ 0

Sκ Cκ 0

0 0 1




Cϕ 0 Sϕ

0 1 0

−Sϕ 0 Cϕ




1 0 0

0 Cω −Sω

0 Sω Cω

 (2.5)

=


R11 R12 R13

R21 R22 R23

R31 R32 R33


Transformation between frames is illustrated in figure 2.2. According to vector addition

rule [14],

v3 = v2 + v1, (2.6)

where v2 = tPa is landmark a expressed in the calibration tool frame, v1 = cPt̊ is the origin

of the calibration tool frame Po
t
, which is located with respect to the camera frame, v3 is

the landmark a expressed in the camera frame. We want to transform the expression of

landmark a from the calibration tool frame to the camera frame. Note that v2 is expressed

in the camera frame instead to do the addition. Thus, the rotation matrix c
tR is needed for:

c(v2) = c
tR · t(v2). (2.7)

.
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Calibration Tool Frame

Camera Frame

Landmark a

cX

t Y

t Z

t X

v2

v1v3

cY
cZ

tPa

cPa

cPtº

Pto

Pco

Figure 2.2: Coordinate transformation: from the calibration tool (target) frame to the
camera frame.

Finally, from equation (2.6), the equation 2.8 is obtained as:

cPa = c
tR · tPa + cPt̊ , (2.8)

which is called conformal transformation in [13], for transformation from tPa to cPa (the

destination frame).

2.1.2 Camera Geometries

Simply speaking, the camera geometry describes the projection of a landmark a in

3D space onto the 2D image plane (the projection plane) along a straight line–principal

axis [13]. The 3D landmark a and its corresponding image is a pair of correspondence

points. There are three kinds of camera geometries accepted by researchers: single camera
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geometry [13, 38], dual camera geometry [13, 38, 43] and multi-station geometry[13, 38,

44].

Single camera geometry

The camera geometry with only one camera involved is based on central perspective

projection [13, 38]. Single camera geometry is the mapping of a landmark a in 3D space

onto the image plane. The mapping from 3D to 2D is along a straight line defined by tPa

and the principal point of lens Po
c
. Single camera geometry is illustrated in figure 2.3.

cZ

cY

wZ
wY

tPa

tX tY
tZ

pX

pY

iY

iX

iPa (
pPa)

cp

World Frame Calibration Tool Frame

Camera Frame

Pixel Frame

Image Plane

cX

Image Frame 90o
P i =(x0 ,y0)

o

Pc
o

wX

Figure 2.3: Single camera geometry: mapping tPa ∈ R3 onto image plane to get iPa ∈ R2.

In figure 2.3, there are two principal points. One is the principal point of lens Po
c
, which

is also the origin of camera coordinate. The other is the principal point of the imager

Po
i
= (x0, y0), which is also the the origin of image coordinate. The two principal points

defines a straight line called principal axis, which is perpendicular to the image plane. The

Z axis of the camera frame lies along the principal axis. The distance from Po
c

to Po
i

is the

effective focal length cp.
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In this geometry, there are world coordinates, target (calibration tool) coordinates,

camera coordinates, image coordinates and pixel coordinates [41]. Landmark a in 3D

space in calibration tool coordinates is expressed as

tPa =


tXa

tYa

tZa

 ∈ R3 . (2.9)

The landmark a in world coordinates is

wPa =


wXa

wYa

wZa

 ∈ R3 . (2.10)

The landmark a in camera coordinates is

cPa =


cXa

cYa

cZa

 ∈ R3 . (2.11)

The image of landmark a in image coordinates is

iPa =

 iXa

iYa

 ∈ R2 . (2.12)

The image of landmark a in pixel coordinates is

pPa =

 pXa

pYa

 ∈ R2 . (2.13)

The starting frame (“From-frame”) is calibration tool coordinates, and the destination frame
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(“To-frame”) is image or pixel coordinates. Recall the vector addition for coordinate

transformation illustrated by figure 2.2 in section 2.1.1.

To clarify the problem, the variable with a hat ˆ is denoted as the value from or

relative to estimation based on the model; the variable with a bar ¯ is denoted as the

value from or relative to measurement based on image processing; the variable without an

accent on it is the priori value for initial input of the algorithm. Therefore, starting from tPa

and camera mapping geometry [13, 38], the transformation from the calibration tool frame

( tPa ∈ R3 ) to the camera frame ( ˆcPa ∈ R3) is:

ˆcPa = c
tR · tPa + ˆcPt̊ (2.14)

Transformation from the camera frame ( cPa ∈R3 ) to the normalized image frame ( nPa ∈R3

):

ˆnPa =
ˆcPa
ˆcZa

(2.15)

where ˆnPa =
[

ˆnXa ˆnYa 1

]T

. Transformation from the normalized image frame ( nPa ∈

R3 ) to the image frame ( iPa ∈ R2 ):

ˆiPa =−cp · ˆnPa (1 : 2) (2.16)

where cp [mm] is the effective focal length.

On the other hand, starting from measurement as the pixel frame ( ¯pPa ∈ R2 ) based on

image processing [40, 42], the relationship without counting lens distortion effect4 is:

 ¯iPa

1

=


1
kx

0 −x0
kx

0 1
ky
−y0

ky

0 0 1


 ¯pPa

1

 (2.17)

4. See section 2.1.3 for more information about lens distortion.
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where matrix 
1
kx

0 −x0
kx

0 1
ky
−y0

ky

0 0 1

 (2.18)

is the camera interior orientation matrix and ¯iPa ∈ R2. In the matrix, (x0, y0) is the principal

point of the lens as well as the origin of image plane and image coordinates. (kx, ky) is the

pixel density of the imager, which represents the number of pixels in the unit length (1 mm)

of the imager in x direction and y direction.

Arrange equation (2.14), the equivalent equation is:

tPa = t
cR · ˆcPa + tPc̊, (2.19)

then it becomes

ˆcPa = t
cR−1 · ( tPa− tPc̊)

= c
tR · ( tPa− tPc̊). (2.20)

In matrix format, it is


ˆcXa

ˆcYa

ˆcZa

=


R11 R12 R13

R21 R22 R23

R31 R32 R33




tXa− tXc̊

tYa− tYc̊

tZa− tZc̊

 . (2.21)

After multiplying them, we have

ˆcXa = R11( tXa− tXc̊)+R12( tYa− tYc̊)+R13( tZa− tZc̊) (2.22)

ˆcYa = R21( tXa− tXc̊)+R22( tYa− tYc̊)+R23( tZa− tZc̊) (2.23)
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and

ˆcZa = R31( tXa− tXc̊)+R32( tYa− tYc̊)+R33( tZa− tZc̊). (2.24)

Then, substituting equation (2.22), (2.23) and (2.24) into equation (2.15) and (2.16), we get

ˆiXa =−cp ·
R11( tXa− tXc̊)+R12( tYa− tYc̊)+R13( tZa− tZc̊)
R31( tXa− tXc̊)+R32( tYa− tYc̊)+R33( tZa− tZc̊)

(2.25)

and

ˆiYa =−cp ·
R21( tXa− tXc̊)+R22( tYa− tYc̊)+R23( tZa− tZc̊)
R31( tXa− tXc̊)+R32( tYa− tYc̊)+R33( tZa− tZc̊)

(2.26)

Equations (2.25) and (2.26) let us estimate value of the landmark in image coordinates

from camera mapping geometry, while equation (2.17) allows us to measure value of the

landmark in image coordinates based on image processing technology. The equations

(2.25) and (2.26) are called the collinearity equations [13, 38]. Because the equations

are derived based on the collinearity of the landmark tPa ∈ R3, the perspective center

(the principal point of lens), and the corresponding image iPa ∈ R2. Additionally, the

rotation matrix c
tR or t

cR and translation term tPc̊ for transformation from the calibration

tool frame ( tPa) to the camera frame ( cPa) are called the camera exterior orientation (EO).

The method of recovering camera EO by single-camera geometry is called resection [13].

However, the disadvantage to resection is that it requires a needs good initial estimation

of the Euler angles of rotation for iterative convergence. This makes resection good only

when followed by dual-camera intersection or multi-camera bundle adjustment.

Dual camera geometry

In dual camera geometry [13, 44], there are two cameras that take images of the same

landmark, which indicates that a landmark has two images projected onto two image

sensors. This procedure is also called intersection, since the coplanarity of each landmark-

camera relationship intersects at the landmark, which gives us the coplanarity equations.

Dual camera geometry is also called epipolar geometry or stereo camera geometry.
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Image Plane 1 Image Plane 2

wZ wY

wX

World Frame

tPa

Camera
Frame 1

Camera
Frame 2

cZ1

cX1

cY1

cZ2

cX2

cY2
e1 e2
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iPa2
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o Pc2

o

tX

tZ
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Figure 2.4: Dual-camera geometry: two cameras observe the same landmark.

Dual camera geometry is illustrated in figure 2.4. Origin of each camera coordinates Po
c1

and Po
c2

are principal point of camera 1 and camera 2, respectively. Landmark a is expressed

by tPa in the calibration tool frame. Images of landmark tPa are pPa1 in camera 1 and pPa2

in camera 2. Points e1 and e2 are epipoles, which are the corresponding projection of Po
c1

,

Po
c2

onto its image plane. Landmark tPa , Po
c1

and pPa1 are on a straight line. Landmark tPa ,

Po
c2

and pPa2 are on a straight line. Po
c1

, Po
c2

and tPa define a plane called the epiploar plane.

Line l1 and l2 are the intersection of epipolar plane with image plane 1 and image plane 2.

The coplanarity equations are derived based on the coplanarity of Po
c1

, Po
c2

, tPa, pPa1 and

pPa2.

The difference between single camera geometry and dual camera geometry is that the

latter does not need the given information of tPa in order to recover camera EO. The method

for recovering camera EO by dual camera geometry is called intersection. One advantage of

dual camera geometry is that decentering distortion can be ignored [21]. Since dual camera

geometry is not used in bundle adjustment, detailed information will not be covered in this

proposal. Cooper and Robson describe epipolar geometry [13]. The book by Ma and his
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Figure 2.5: Multi-station geometry: combination of k = 1, 2, 3, · · · , nc single camera
geometries by k = 1, 2, 3, · · · , nc camera stations.

colleges [44] is another detailed source.

Multi-station geometry

Multi-station geometry is based on single camera geometry, which combines several

single-camera geometries in 3D space. Thus, each camera station and landmark has two

collinearity equations (2.25) and (2.26).

Multi-station geometry is the geometry used in bundle adjustment (BA). Multi-station

geometry based on collinearity equations plus optimization method will gain bundle

adjustment flexibility and improvement of accuracy [25]. Multi-camera geometry is shown

in figure 2.5. There are, in total, k = 1, 2, 3, · · · , nc camera positions. Each of them takes

an image of the m = 1, 2, 3, · · · , nl landmark a, so there are as many as nc images of the

mth landmark tPam = [ tXam, tYam, tZam ]T . Each projection from landmark a1, a2, · · · , am to

its image is the single camera perspective projection described in single camera geometry

[13].
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Note that there are two possibilities: 1) the camera is fixed and the calibration tool is

moving; 2) the calibration tool is fixed and the camera is moving. With the first setup,

we have a set of collinearity equations of the mth landmarks am, m = 1, 2, 3, · · · , nl on the

calibration tool from all possible k = 1, 2, 3, · · · , nc camera poses as:

ˆiX
(k)
am

=−cp ·
R(k)

11 ( tXam− tX (k)
c̊ )+R(k)

12 ( tYam− tY (k)
c̊ )+R(k)

13 ( tZam− tZ(k)
c̊ )

R(k)
31 ( tXam− tX (k)

c̊ )+R(k)
32 ( tYam− tY (k)

c̊ )+R(k)
33 ( tZam− tZ(k)

c̊ )
(2.27)

and

îY
(k)
am

=−cp ·
R(k)

21 ( tXam− tX (k)
c̊ )+R(k)

22 ( tYam− tY (k)
c̊ )+R(k)

23 ( tZam− tZ(k)
c̊ )

R(k)
31 ( tXam− tX (k)

c̊ )+R(k)
32 ( tYam− tY (k)

c̊ )+R(k)
33 ( tZam− tZ(k)

c̊ )
(2.28)

2.1.3 Camera Models

Pinhole camera model

The pinhole perspective projection for a camera is called the pinhole camera model. There

is no lens in the image setup, which makes the model ideal. The problem is that the

convergent rays from the object is limited to pass pinhole and focus on the imager. The

limitation of insufficient rays passing through the pin hole from the object leads to a very

dark image of the object on the imager . Thus, the pinhole model is considered as the

ideal camera model [40, 42], but is not physically realizable. However, researchers use

the pinhole model to simplify the mathematical relationship of the transformation between

tPa to iPa, which is more straightforward. See figure (2.6) for ideal camera pinhole model,

which maps tPa ∈ R3 to pPa ∈ R2 without modeling the distortion of the optical lens.
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Pin Hole

Ideal Pin Hole Model without

Lens Distortion

ipa ∈ R2

tpa ∈ R
3

Image Plane

principal axis 90o

Figure 2.6: The pinhole camera model: mapping tPa ∈ R3 to iPa ∈ R2 without lens
distortion.

Camera model with lens distortion

Later, researchers introduced a lens to be mounted on a camera. While, a lens mounted

on the camera will converge diverging rays from an object onto the imager and improve

the brightness of the object’s image, it will also introduce unavoidable distortion for the

object’s image due to its physical properties [5, 6, 40, 42]. Thus, it is necessary to introduce

lens distortion of the optical lens for camera modeling. In lens distortion of a camera,

the variation of magnification in angular of image of a landmark is called radial lens

distortion [13, 46]; the displacement of the image of a landmark due to misalignment of the

components of the lens is called decentering lens distortion (or tangential lens distortion)

[5, 54].

In 1954, Magrill [46] described the relationship between lens distortion and the

magnification of the image of the target (calibration tool). He developed a linear equation

that can help researchers predict the level of lens distortion. However, he only modeled

distortion for an object within sharp focus, but not less focused image of the landmark

within field of view of the camera. To improve the modeling of lens distortion for

applications, Brown [6] extended Magrill’s formula in [46] from

δrs = δr−∞−ms δ−∞ (2.29)
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to

δrs = αs δrs1 +(1+αs)δrs2 , (2.30)

where ms = f
s− f , s is the distance of the object plane on which the lens is focused; f is

the lens focal length; δrs , δr±∞ is the distortion function for focus on the object plane at

distance s or at positive or negative infinity focus; as = s2−s
s2−s1

s1− f
s− f , s1 and s2 are two arbitrary

distances of object planes; δrs1 and δrs2 are distortion functions; δrs,s′ is the distortion

function corresponding to points in an object plane at distance s
′

for a lens focused at

distance s.

Brown [5, 6] modeled the radial distortion function by a polynomial5:

δr = K1 · r3 +K2 · r5 +K3 · r7 + · · · , (2.31)

where r = || jPa||=
√

jX2
a + jY 2

a is the radius of the uncorrected image of the landmark and

where jPa is introduced as the uncorrected point in image coordinates

 ¯jPa

1

=


1
kx

0 −x0
kx

0 1
ky
−y0

ky

0 0 1


 ¯pPa

1

 (2.32)

and [K1, K2, K3] is the radial distortion coefficient. Then the distortions in x and y directions

of radial lens distortion δ jPa_radial are:

δ
jPa_radial =

 δrx

δry

=

 δr
jXa
r

δr
jYa
r

=

 jXa(K1 · r2 +K2 · r4 +K3 · r6 + · · ·)
jYa(K1 · r2 +K2 · r4 +K3 · r6 + · · ·)

 (2.33)

5. Generally, three terms K1, K2, K3 in this polynomial are the most that can be determined accurately. If
more accuracy is required, more terms can be added as user’s need.
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Figure 2.7: Radial distortion (No.1) and Tangential distortion (No.2), distortion effects
shown at 20× magnification.

and modeled decentering distortion function by a polynomial:

δ
jPa_decen =

 δx

δy

=

 P1(r2 + jX2
a )+2P2

jXa
jYa

P2(r2 + jY 2
a )+2P1

jXa
jYa

 (2.34)

where [P1, P2] are the lens decenterring distortion coefficients. The radial and tangential

distortions of the experimental camera calibration data set collected by AVT-Stingray

F033B industrial camera with Edmund 10mm lens are shown in figure 2.7.

The decentering distortion contains both radial and tangential components [5, 65].

Radial distortion changes with focus (depth of view) and field of view. The corresponding

coefficient Ki is highly correlated in its group, but has a loose relationship with EO and

other lens distortion coefficients [54].
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Figure 2.8: Camera model with lens distortion, showing iPa (or qPa)and jPa (or pPa).

A camera model with lens distortion is shown in figure 2.8: there are tPa, nPa, cPa, pPa,

jPa and iPa. We discussed about wPa, tPa, cPa, iPa and pPa in single camera geometry in

section 2.1.2. The original light without lens distortion arrives at the point iPa in the image

frame or qPa in the pixel frame. However, the lens distortion disturbs the straight path when

lights from tPa go through the lens, physically. The physical position of image of tPa on

image plane is jPa in the image frame or pPa in the pixel frame by following the curve

in bold dashed line. The relationship between ideal image, distorted image and corrected

image is illustrated in table 2.1.
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Physical Geometry with Lens Distortion
Coordinates in [pixels] Coordinates in [mm]

Points on the image plane
physically (Distorted)

¯pPa ¯jPa

Geometry with Lens Distortion Correction
Coordinates in [pixels] Coordinates in [mm]

Points data after lens
distortion correction

(Corrected)
ˆqPa ¯iPa or ˆiPa

Table 2.1: Coordinates on image plane affected by lens distortion.

In the table, ¯pPa and ¯jPa are from image metrology of digital images as observation,

which includes lens distortion. Variable ¯iPa is data derived from image metrology with

lens distortion correction. The value of ¯iPa is not ideal for landmark in pixel coordinates,

but an estimation of ideal value can be made by correcting lens distortion. Therefore, to

follow camera model with lens distortion and correction, it is necessary to rewrite equation

(2.17), which did not account for the lens distortion effect, as equation (2.35) to transform

distorted ¯pPa to distorted ¯jPa:

 ¯jPa

1

=


1
kx

0 −x0
kx

0 1
ky
−y0

ky

0 0 1


 ¯pPa

1

 . (2.35)

Next, compensation of the lens distortion effect gives the corrected landmark in pixel

coordinates ¯iPa from distorted ¯jPa:

¯iPa = ¯jPa +δ
jPa_radial +δ

jPa_decen , (2.36)

which can be expressed as

¯iPa = Lc( ¯jPa) (2.37)

where Lc denotes the forward correction model of lens distortion. The above relationship
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starts from the landmark in pixel coordinates , the observation, to the landmark in

image coordinates.

On the other hand, starting from tPa and following calculation through camera geometry

by equations (2.14), (2.15), (2.16), we have the estimated landmark in pixel coordinates

ˆiPa. The ˆqPa is a concept variable corresponding to ˆiPa. A similar relationship compared to

equation (2.35) is  ˆiPa

1

=


1
kx

0 −x0
kx

0 1
ky
−y0

ky

0 0 1


 ˆqPa

1

 (2.38)

Note that to transform the landmark in image coordinates back to the landmark in

pixel coordinates requires an iterative solution. The reason is the inverse lens distortion

model L−1
c does not exist in closed-form. This forces and allows us to apply the Newton-

like method to do optimal camera calibration with lens distortion. More information about

the Newton-like method for optimization is in section 2.3.1.

The coefficients for lens distortion modeling are called Additional Parameters (AP).

Other distortion parameters, such as affinity distortion, shear distortion, linear distortion,

prism distortion, out of plane distortion, etc, were also introduced by researchers [21, 39].

The reasons can be light sensitive rectangular elements of digital camera, non-orthogonal

image axes, issues in lens design and assembly, focal plane unflatness [40, 54]. The full

AP set consists of more than 20 parameters but only 10 thereof are used for digital cameras

[54]. The items in AP for lens distortion compensation is freely selected by users according

to their applications. But AP other than Ki, i = 1, 2, 3, · · · and Pi, i = 1, 2, · · · are either quite

negligible or are covered by radial and decentering distortion. Lens distortions are not

independent of each other, because they all from the lens itself. For example, the modeling

of barrel distortion and prism distortion can be covered by radial distortion modeling [65].

The most widely accepted modern camera model in photogrammetry are effective focal

length cp, principal distance; (x0, y0), principal point of imager; [K1, K2, K3], the radial
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distortion coefficient; and [P1, P2], the decentering distortion coefficient [6, 54].

We refer to cp, (kx, ky), and (x0, y0) mentioned in equations (2.14), (2.15), (2.16), and

(2.17), plus [K1, K2, K3] and [P1, P2], the lens distortion coefficients of the lens, as the camera

interior orientation (IO).

Camera model function of bundle adjustment

As mentioned in section 2.1, multi-station geometry is used in bundle adjustment. The

modeling function for bundle adjustment is written in below.

If we write collinearity equations (2.27) and (2.28) of multi-camera geometry again,

which are for the mth landmarks am, m = 1, 2, 3, · · · , nl on the calibration tool from all

possible k = 1, 2, 3, · · · , nc camera poses:



ˆiX
(k)
am

=−cp ·
R(k)

11 ( tXam− tX (k)
c̊ )+R(k)

12 ( tYam− tY (k)
c̊ )+R(k)

13 ( tZam− tZ(k)
c̊ )

R(k)
31 ( tXam− tX (k)

c̊ )+R(k)
32 ( tYam− tY (k)

c̊ )+R(k)
33 ( tZam− tZ(k)

c̊ )

îY
(k)
am

=−cp ·
R(k)

21 ( tXam− tX (k)
c̊ )+R(k)

22 ( tYam− tY (k)
c̊ )+R(k)

23 ( tZam− tZ(k)
c̊ )

R(k)
31 ( tXam− tX (k)

c̊ )+R(k)
32 ( tYam− tY (k)

c̊ )+R(k)
33 ( tZam− tZ(k)

c̊ )

(2.39)

The camera interior orientation and lens distortion correction coefficient are introduced

for each camera pose k = 1, 2, 3, · · · , nc. Note that the camera is fixed and the camera

calibration tool is moving during data collection phase, thus there is only one set of camera

IO but k sets of camera EO. Then, the modified equation of equation (2.39) is obtained as
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follows:

jX (k)
am +

jX (k)
am

r(k)
am

(K1 · (r
(k)
am )3 +K2 · (r

(k)
am )5 +K1 · (r

(k)
am )7)+P1((r

(k)
am )2 +( jX (k)

am )2)+2P2 · jX (k)
am

jY (k)
am

· · ·=−cp ·
R(k)

11 ( tXam− tX (k)
c̊ )+R(k)

12 ( tYam− tY (k)
c̊ )+R(k)

13 ( tZam− tZ(k)
c̊ )

R(k)
31 ( tXam− tX (k)

c̊ )+R(k)
32 ( tYam− tY (k)

c̊ )+R(k)
33 ( tZam− tZ(k)

c̊ )

jY (k)
am +

jY (k)
am
r (K1 · (r

(k)
am )3 +K2 · (r

(k)
am )5 +K1 · (r

(k)
am )7)+P2((r

(k)
am )2 +( jY (k)

am )2)+2P1 · jX (k)
am

jY (k)
am

· · ·=−cp ·
R(k)

21 ( tXam− tX (k)
c̊ )+R(k)

22 ( tYam− tY (k)
c̊ )+R(k)

23 ( tZam− tZ(k)
c̊ )

R(k)
31 ( tXam− tX (k)

c̊ )+R(k)
32 ( tYam− tY (k)

c̊ )+R(k)
33 ( tZam− tZ(k)

c̊ )
(2.40)

where r(k)
am = || jP(k)

am || =
√

( jX (k)
am )2 + jY (k)

am )2; m is for the mth landmarks am, m =

1, 2, 3, · · · , nl on the calibration tool; and k = 1, 2, 3, · · · , nc is for the kth camera station

which captured the digital images of the landmarks on the calibration tool.

If the inverse of equation (2.35)


jXa

jYa

1

=

 jPa
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ky
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
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1
kx

( pXa− x0)

1
ky

( pYa− y0)

1

 (2.41)

is substituted in to equation (2.40), we will have



1
kx

( pX (k)
am − x0)+ 1

kx
( pX (k)

am − x0) · (r
(k)
am )−1 · (K1 · (r

(k)
am )3 +K2 · (r

(k)
am )5 +K1 · (r

(k)
am )7)+ · · ·

P1((r
(k)
am )2 +( jX (k)

am )2)+2P2 · jX (k)
am

jY (k)
am =−cp ·

R(k)
11 ( tXam− tX (k)

c̊ )+R(k)
12 ( tYam− tY (k)

c̊ )+R(k)
13 ( tZam− tZ(k)

c̊ )

R(k)
31 ( tXam− tX (k)

c̊ )+R(k)
32 ( tYam− tY (k)

c̊ )+R(k)
33 ( tZam− tZ(k)

c̊ )

1
ky

( pY (k)
am − y0)+ 1

k(k)
x

( pY (k)
am − y0) · (r

(k)
am )−1 · (K1 · (r

(k)
am )3 +K2 · (r

(k)
am )5 +K1 · (r

(k)
am )7)+ · · ·

P2((r
(k)
am )2 +( jY (k)

am )2)+2P1 · jX (k)
am

jY (k)
am =−cp ·

R(k)
21 ( tXam− tX (k)

c̊ )+R(k)
22 ( tYam− tY (k)

c̊ )+R(k)
23 ( tZam− tZ(k)

c̊ )

R(k)
31 ( tXam− tX (k)

c̊ )+R(k)
32 ( tYam− tY (k)

c̊ )+R(k)
33 ( tZam− tZ(k)

c̊ )
(2.42)
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The equation (2.42) can be written as

y = f (û, x, c) , (2.43)

where y is the observed data6 or estimated data 7as the dependent variable; x is the vector

of independent variables; c is a vector of constants; and û is the IO, EO and lens distortion

coefficient parameters to be estimated8. Equation (2.42) is the explicit model for camera

calibration by bundle adjustment, while equation (2.43) is the implicit model.

2.2 Camera Calibration

2.2.1 Definition of Camera Calibration

Camera calibration is the process of recovering the relationship between a landmark a and

its image based on camera geometry in 3D space by estimating camera interior orientation

parameters, lens distortion correction coefficients, and camera exterior orientation

parameters.

The interior orientation of a camera is:

1. Principal distance cp: the distance from the perspective center to image plane.

cp = s· f
s− f , where f is the focal length of the lens as a fixed number for a certain

lens and s is object distance, which is the distance from object to lens. cp is also

called adjusted focal length or effective focal length.

2. Principal point of the lens pPi̊ =
( pXi̊,

pYi̊

)
( or (x0, y0), or (xp, yp)): the origin of the

image plane and image coordinates. It is also called the offset of the imager.

6. Observed data is the ¯pPa based on image processing of digital image of calibration tool.
7. Estimated data is the ˆpPa based on the camera model equations.
8. In linear regression point of view, u is β.
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3. Pixel density of the imager (kx, ky): the pixel density of the imager in x direction and

y direction, which is the number of pixels in the unit length (1 mm).

The lens distortion parameters are:

1. Radial distortion coefficient [K1, K2, K3]: the coefficient for lens distortion modeling

polynomial. Ki is highly correlated and varies with focal length. K1 also modeled the

barrel distortion.

2. Decentering distortion coefficient [P1, P2]: the coefficient for lens distortion

modeling polynomial. Due to a lack of centering of lens elements along the optical

axis, Pi varies with focal length, but to a lower extent than Ki; but both Ki and Pi will

be worse for long focal length.

The camera calibration interior model is denoted by χ. So, the χk of the kth camera

is χk =
[

cp kx ky x0 y0 K1 K2 K3 P1 P2 P3

]T

, and the units of each

elements of χi in order is mm, pixel
mm , pixel

mm , pixel, pixel, mm−2, mm−4, mm−6, mm−1,

mm−1 and mm−2 .

The exterior orientation of camera is:

1. Rotation matrix c
tR or t

cR and translation term tPc̊ for transformation from the

calibration tool frame ( tPa ∈ R3) to the camera frame ( cPa ∈ R3).

2.2.2 Camera Calibration Methods

Camera calibration methods can be divided into two types: conventional camera

calibration and self-calibration (auto-calibration). Conventional camera calibration

needs a test range, which may contain hundreds of landmarks. The landmarks are on

an object with known Euclidean structure. These coordinated landmarks are measured

and determined by images from a metric camera. Camera calibration should always be
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conducted using a test range [22]. The maintenance of the test range is relatively high, and

the size of target can be very large. Self-calibration (auto-calibration) is the development

of on-the-job calibration9. On-the-job calibration does not require taking the camera to

the test range for calibration. Accurate coordinated landmarks are not needed as priori

knowledge. A minimum of seven landmarks are required. It is more typical to use 50-

100 landmarks on the calibration tool. An expensive metric camera is not needed for

maintenance of the test range; a non-metric camera is enough, but it still needs a calibration

tool with landmarks. The key difference between traditional calibration and self-calibration

is the former needs Euclidean information of landmarks, which is the used constraints,

while self-calibration does need an object but does not use Euclidean information. Instead,

the IO constraints of the camera are used in self-calibration.

Camera calibration methods can also be classified by parameter estimation and

optimization algorithm other than whether the camera is calibrated “automatically”,

which are linear camera calibration methods and non-linear camera calibration methods.

Originally, camera calibration algorithm was developed in the field of photogrammetry area

first, but later it caught the attention from computer vision community, which processes

digital images collected by camera.

2.2.3 Camera Calibration Methods: Linear Algorithm

Abdel-Aziz and Karara [1] developed a method called direct linear transformation

(DLT). DLT is designed for low accuracy and reduction of data in close range

photogrammetry. After arranging equation(2.14), (2.15), and (2.16) , they gave us


iXa + l1· tXa+l2· tYa+l3· tZa+l4

l9· tXa+l10· tYa+l11· tZa+1 = 0

iYa + l5· tXa+l6· tYa+l7· tZa+l8
l9· tXa+l10· tYa+l11· tZa+1 = 0

(2.44)

9. Sometimes, on-the-job calibration is considered as self-camera calibration
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where l1, l2, · · · , l11 are parameters of coordinate transformation and are independent. Here,

we do not use an iterative method for the 11 parameters, but continue to arrange the

equations to get


iXa(l9 · tXa + l10 · tYa + l11 · tZa +1)− l1 · tXa− l2 · tYa− l3 · tZa− l4 = 0

iYa(l9 · tXa + l10 · tYa + l11 · tZa +1)− l5 · tXa− l6 · tYa− l7 · tZa− l8 = 0
(2.45)

The equations above show us that DLT approximates the non-linear estimation by linear

estimation under distortion-free assumption for conversion between tPa ∈ R3 and iPa ∈ R2.

This method is simple and easy to apply but not accurate, since it is applied by the

linearization of a non-linear model. DLT is quite sensitive to observed data noise. Later,

Marzan and Karara [48] improved the rigorousness of DLT. DLT was modified by Faugeras

and Toscani [17] and Melen [50]. Chen and his colleges [9] evaluated the accuracy of the

DLT method experimentally, suggesting that it is good to distribute control points evenly

on the target for accuracy improvement.

Caprile and Torre [8] introduced a camera calibration method using vanishing points.

This method focused on the application of computer vision by two steps. First, cp

and (x0, y0) of camera interior orientation was calculated based on a single image of a

cube. Next, camera exterior orientation was calculated based on dual-camera geometry by

matching the corresponding vanishing points in images of tPa and triangulation constraint.

No lens distortion effect was considered.

All in all, the absence of lens distortion makes linear camera calibration more popular

in research areas that do not require the rigorous output of camera calibration, such as

kinematics analysis [10, 15, 32]. The closed-form solution by linear camera calibration is

utilized to yield initial estimated data for a non-linear iterative algorithm in many two-step

hybrid camera calibration algorithms described below.
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2.2.4 Camera Calibration Methods: Non-linear and Hybrid Algorithm

Since the linear method is only good for situations with low accuracy requirements and

does not count lens distortion effect in the modeling, techniques in this group must contain

lens distortion and use a non-linear iterative method to refine calibration results. Unlike the

linear method, there is no closed-form solution for the non-linear method; the non-linear

method uses the iteration strategy to finish the task. Least squares estimation is widely used

to minimize cost function:

∑r(x)2 (2.46)

where r(x) = ŷ− ȳ = ˆiPa− ¯iPa is the residual function of the difference of estimation ŷ from

equations (2.14), (2.15), (2.16) and observation ȳ from equation (2.17).

Researchers used to use the non-linear optimization method by guessing the initial value

of parameters. However, the property of the Newton-like iterative method with the least

squares estimator requires the initial value to be within the basin of attraction for successful

and correct convergence. In other words, only a good initial guess can let the algorithm

converge to a correct result; otherwise, it will converge extremely slowly, fail to converge

or converge to a false result. Therefore, the hybrid method was developed. “hybird” refers

to the algorithm containing the linear method as the first phase and the non-linear method

as the second phase by using the output of linear phase for the initial guess. This way, the

convergence of algorithm is smoother and faster. Moreover, there is a unique method that

estimates lens distortion parameters only. Brown [6] introduced the plumb-line method for

calibrating camera with a test field, which can extract radial and decentering distortion only

but not for principal distance cp, the principal point/offset (xp, yp) and EO of camera. Most

methods will estimate camera interior orientation together.

Several hybrid methods were developed. Tsai [60] presented a hybrid method that

is considered a classical camera calibration method in computer vision. He studied the

constraint called the radial alignment constraint, which is under single camera perspective
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geometry. He assumed some parameters such as the principal point; the pixel density

in x, y directions is given. The system inputs were those offered parameters, ȳ = pPa

measured from digital image and tPa measured by microscope. Tsai considered these data

to be accurate and did not estimate them further. By the linear closed-form equations10

mentioned above, he calculated camera EO parameters (rotation matrix R and translation

Tx, Ty) as the final value. After solving the initial value of f and Tz, he used LSE to estimate

the only counted lens distortion parameter K1 with improved f and Tz. Tsai used at least

eight points of correspondence to finish calculation11. Later, Tsai and Lenz [37] counted

the principal point of the image plane as estimated parameters based on their previous

theory [60]. The method is not self-calibration, since tPa is measured by telescope as priori

knowledge.

The eight-point algorithm [28, 29, 30, 31] is considered the classical representation of

the direct relative orientation methods, which use a fundamental matrix and an essential

matrix based on dual camera geometry12. Later there are the 7-point algorithm, the 6-

point algorithm and the 5-point relative orientation algorithm [52, 57]. Hartley [28, 29, 31]

only recovered camera exterior orientation (3D reconstruction). In [31], he researched on

calibrating camera by so-called eight control points algorithm. He discussed the ambiguity

of Euclidean reconstruction from an essential matrix, which maps correspondence from

tPa to iPa. Later, he [28, 29] used projective reconstruction to find landmark-camera

( iPa j ·Mi = tPa j) correspondence projection, quasi-affine transformation to find camera

interior parameter matrix Ki
13 and v, and a Euclidean reconstruction to find the rotation

matrix Ri of camera EO by solving an 8 parameters problem. After collecting values of

Ki, Ri, tPa j , Hartley used the Levenberg-Marquart algorithm to refine all of those values.

The first reconstruction is a linear closed-form solution and is performed to obtain the

initial value for later non-linear refinement. His technique can also accept multi-views

10. The relationship of ȳ and tPa based on single camera geometry.
11. This is not our current technique, where the inputs are pPa and outputs are û.
12. See dual camera geometry subsection in 2.1.3
13. The inverse of the matrix in equation (2.17).
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and improve estimation quality. In [30], he further discussed the performance of this

classic eight-point algorithm. Note that there are no any lens distortion parameters in

this mathematical model. Thus, the disadvantage is that the non-linear lens distortion

parameters in the camera model are not easily estimated under the linear method. However,

this kind of method can be used to offer an initial guess of the rotation matrix and translation

from tPa to cPa for the non-linear method.

Weng and his colleges [65] also offered a two-step calibration procedure for a stereo

camera setup. The first calculation yields camera EO and some camera IO based on a

distortion-free (pinhole) model and then improves all the parameters under a camera model

with lens distortion. The differences between Weng’s method and Tsai’s method are: a)

Weng’s linear step gives camera EO and IO, but Tsai only computes part of them; and

b) Weng’s non-linear step can solve for all the parameters of IO and EO, but Tsai’s only

solves K1 and improves f and Tz. Weng and his colleges analyzed the influence of the

involvement of types of additional parameters, represented by polar coordinates, in the

camera model. They introduced a way to evaluate quality of camera calibration by image

resolution–normalized stereo camera error. Like Tsai’s method above, they treated a priori

knowledge of tPa as the true value for the input of their algorithm calculation.

Heikkila and Silven [34] introduced a hybrid method for camera calibration. In the

first phase, they used the DLT method introduced by Abdel-Aziz and Karara [1] to offer

the initial estimation for the camera model. In the second phase, the Levenberg-Marquart

(LM) algorithm was employed as the non-linear iterative estimation method to compute

lens distortion parameters and optimize IO and EO from DLT. In their article, the method

was described as a four-step calibration procedure. The first step was to apply the DLT

method; the second step uses the LM algorithm; the third step corrects distortion of circular

features; and the fourth step is to correct the distorted image coordinates jPa to iPa by the

an implicit correction model for lens distortion parameters. They reached the accuracy

level that “residual error less than 0.01 pixel unit” in statistics. In [33], Heikkila analyzed
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lens distortion modeling and handling in more detail than the analysis in [34]. In their

theory, a matrix of circular landmarks is used as the target and developed corresponding

a perspective projection geometry of the circular landmarks. He demonstrated his claim

by analyzing synthetic images for the forward distortion model and reverse distortion

model. He also mentioned other error sources including insufficient projection models,

illumination changes, camera electronics, and calibration tools.

Zhang [68] focused on a low-cost, flexible camera calibration for a desktop vision

system. He did not measure tPa with extra instruments as in Tsai’s method [60] or Weng’s

algorithm [65]. This was the flexible part, since only a planar calibration tool printed by

laser printer is enough for the application. His technique needed at least three views of a

planar object in different orientations. He used the homography relationship of projective

correspondence of tPa ∈ R3 and its image iPa ∈ R2. A closed-form solution is offered for

a subset of camera IO and the full set of camera EO at the first step. Then, a non-linear

estimation– the Levenberg-Marquardt algorithm is utilized to find the radial distortion Ki

of lens distortion modeling. Note that he did not recover decentering distortion coefficients

Pi.

Wang and his colleges [63, 64] developed a new model of lens distortion. According

to their claim, the model has fewer parameters to be calibrated and more explicit physical

meaning than the classical model [6]. He covered three types of distortion–radial distortion,

decentering distortion, and thin prism distortion–and the coupling relationship among each

of these three types. They express tangential distortion with a transformation consisting of

rotation and translation. The calculation procedure is from Pc ( cPa) to Pi ( iPa) to Pd ( jPa) to[
xdi ydi zdi

]T

to Pr ( jPa) =
[

U V

]T

to pPa =
[

u v

]T

. Based on experimental

analysis, they claimed that the new model reduces calculation time consumption by 20%

14 and that the longer focal length of the lens would reduce the lens distortion effect. They

also claimed that less differences in the performance of the lens distortion model.

14. In their estimation, they only estimates K1 and K2, but tangential distortion coefficient P1 and P2 are
covered in the conversion form

[
xdi ydi zdi

]T → Pr ( jPa) by equation (15).
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Rahman and Krouglic [53] describe a camera calibration method that minimizes the

error between the theoretical image points from camera model and those points determined

experimentally in distortion-free space. The so-called distortion-free method is based on

the pinhole model or after lens distortion correction. As they claim, the new method

offers improved accuracy, robustness, and efficiency over a wide range lens distortion.

They use quaternion representation for spatial orientation. In the algorithm, they use the

Gauss-Newton iterative method to minimize the difference of iP∗a and iPa, where iP∗a is

the undistorted15 landmark coordinates in the image frame and is obtained by applying

perspective projection under the pinhole model (just from calculation), iPa is the landmark

coordinates in the image frame after lens distortion correction16. Ideal data iP∗a can only

be estimated and can not be collected by anyone under any methods. Finally, they test the

influence of higher order terms in the lens distortion model on estimation.

None of the above methods developed by researchers involve bundle adjustment (BA),

even though their methods include non-linear estimation, because camera IO and EO are

not estimated as a bundle or only part of camera IO parameters are recovered. Moreover,

during the data collection stage, the bundle adjustment (BA) considers the minimum

number of parameter values to be fixed and estimates everything other than the three

landmarks as 7 constraints by minimizing the objective function in Newton-like numerical

method.

2.3 Camera Calibration: Bundle Adjustment (BA)

Currently, bundle adjustment (BA) is a standard method in the photogrammetry

community17. From the camera calibration point of view, bundle adjustment estimates

both the IO and EO of a camera simultaneously. From the computation point of view,

bundle adjustment is a large scale parameter estimation problem involving 1000 or more

15. Ideal situation without lens distortion in the model.
16. iPa = jPa +distortioncorrection term, where jPa is the distorted image coordinates–observed data.
17. The algorithms in section 2.2.3, 2.2.4, 2.2.4 are not bundle adjustment for camera calibration in close-

range photogrammetry, since the full set parameters of the lens distortion in IO is not re covered on
purpose and IO and EO are not estimated simultaneously.
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parameters for estimation. From the numerical method point of view, bundle adjustment

uses a modified Gauss-Newton algorithm to finish the optimal estimation, which is a

optimal estimation method. From experimental point of view, bundle adjustment in close-

range photogrammetry utilizes a high-level instrument, such as a high-resolution industrial

digital camera. The non-linear optimization of bundle adjustment is finished by the

Newton-like method.

2.3.1 Bundle Adjustment: Optimization by the Newton-like Algorithm

All of the Newton-like methods, regardless of their names, are based on Gauss-Newton

method. Here, “Newton-like” means each algorithm in this branch is the modification of

Gauss-Newton method described below. The goal of modification is to make calculation

more efficiently and find the real minimizer (including the avoidance of saddle point).

These algorithms modify the Gauss-Newton method in the following aspects:

• How to handle the 2nd order term in the Hessian matrix: a) Ignore the 2nd order term

or b) do other approximation instead of 2nd order term;

• How to adjust the convergence direction δx, such as steepest descent direction or

conjugate direction;

• How to do the step control for step size λ.

The Gauss-Newton method

In section 2.1.3, the implicit camera model is

y = f (x, u, c) , (2.47)

which has a cost function g(x). The Gauss-Newton method uses the least squares estimator

(LSE), which requires a SSE (sum of squared error) cost function. Thus, the corresponding
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g(x) in Gauss-Newton method is

g(u) =
1
2

M

∑
i=1
‖ri(u)‖2

2 =
1
2

R(u)T R(u) , (2.48)

where

R(u) = ȳ− ŷ = ¯pPa− ˆpPa (2.49)

is the residual function. Variable ȳ = ¯pPa is the observation from the system physically;

ŷ = ˆpPa is the estimation of the output from system modeling. So, with the statements about

camera model with lens distortion in section (2.1.3), the objective of the optimization is

to minimize the difference between experimental observation and mathematical modeling

values of the same variable. In other words, the optimal estimation for camera IO and

EO represented by u is found by minimizing the residual. However, the cost function of a

complicated system is quite expensive to compute. Thus, Taylor Series expression is used

to approximate the cost function function as below:

g(u) = g(uc)+(u−uc)g
′
(uc)+

1
2
(u−uc)2g

′′
(uc)+ · · · , (2.50)

where uc is the solution of equation (2.50).

The Gauss-Newton method chooses to keep the first three terms for precise

approximation of g(u):

g(u) = g(uc)+(u−uc)g
′
(uc)+

1
2
(u−uc)2g

′′
(u−uc) . (2.51)

An alternative way to write the above equation is

g(u) = g(uc)+∇g(uc)T (u−uc)+
1
2
(u−uc)T

∇
2g(uc)(u−uc) . (2.52)
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To minimize function g(u) is to solve g
′
(u∗) = 0 to find the corresponding uc as the

estimation of u∗, which is to minimize the residual function g(u) for optimization:

∂g(u)
∂u

= ∇g(uc)T +∇
2g(uc)(u−uc) = 0 . (2.53)

If the termination condition of iteration is reached, the current uc is the estimation of

u∗, or û = uc, the estimated minimizer. The iterative part is the cth solution u is used as the

uc+1 for next iterative step before the end of iteration. So, the iteration formula is

uc+1 = uc−
∇g(uc)
∇2g(uc)

= uc−
1

∇2g(uc)
∇g(uc) = uc +δu , (2.54)

where δu is called the Gauss-Newton descent direction as well as the updated term for the

cth solution u.

Substituting equation (2.48) into equation (2.54), we get

uc+1 = uc−∇{1
2

R(uc)T R(uc)}T
{

∇
2{1

2
R(uc)T R(uc)}

}−1

. (2.55)

The numerator term in equation (2.55) gives us:

∇{1
2

R(uc)T R(uc)}= R′(u)T R(u) = JT ε , (2.56)

where

J = R′(u)i, j =
∂ri(u)

∂u j
∈ Rnob×nû (2.57)

is the Jacobian matrix of cost function g(u), nû is the number of parameters to

be estimated, j = 1, 2, 3, · · ·nû, nob is the number of observed data points, and i =

1, 2, 3, · · ·nob.

ε = ȳ− ŷ = R(u) (2.58)

is the residual function. The denominator term in equation (2.55) gives us the Hessian
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matrix:

H = ∇
2g(u) = ∇2{1

2R(uc)T R(uc)}= R′(u)T R′(u)+
M

∑
j=1

ri(u)T
∇

2r j(u)

= R′(u)T R′(u)+R′′(u)T R(u) , (2.59)

where R′′(u) is called tensor. The problem is that this cost function is expensive to minimize

in closed-form, even with an up-to-date computer. Thus, the Gauss-Newton approximation

is performed by ignoring the second order term R′′(u)T R(x) to get the simplified Hessian

matrix:

H = ∇
2 f (u) = R′(u)T R′(u) = JT J ∈ Rnû×nû . (2.60)

This equation allows for faster calculation, since we use the first order Jacobian to

construct the second order Hessian. But it sacrifices the convergence rate from 2nd-order

convergence down to first order. However, if R(u∗) ≈ 0, the Gauss-Newton method can

also achieve second order convergence.

The approximation of ignoring R′′(u)T R(u) in equation (2.59) gives us the iteration

formula

uc+1 = uc− (JT J)−1JT
ε = uc +δu , (2.61)

where δu is

δu =−(JT J)−1∇ f (u) = −(JT J)−1JT
ε . (2.62)

Equation (2.62) is the so-called normal equation and is also known as the left pseudo-

inverse solution.
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2.3.2 Bundle Adjustment: Issues

The self-calibrating bundle adjustment was first introduced in the 1970s. Self-calibrating

bundle adjustment needs a minimal constraint to define network datum such as the IO

constraint. Therefore, an uncalibrated18 object with landmarks is needed. The important

factors in self-calibration are the geometrical arrangement of the camera stations, the

intersection angles of rays from object points to cameras, the number of landmarks seen

from a diversity of camera locations, and the spread of landmarks across the image format,

[22]. Self-camera calibration is currently widely used, since it finishes the calculation

automatically and does not require the user to be an expert in close-range photogrammetry,

which is a very flexible method.

Granshaw [25] systemically discussed the theory of bundle adjustment. He

demonstrated the improvement of estimation accuracy of using multi-station geometry

based on single camera geometry instead of dual camera geometry by analysis of the

propagation of errors during camera calibration. He also mentioned the error-free control

points for avoiding datum defects (rank deficient of the Hessian matrix), which are the fixed

(non-updated) seven parameters for absolute orientation of a camera. Without definition of

absolute orientation by seven fixed parameters, only the shape of object can be recovered,

not the position of the object with respect to the camera in 3D space. However, free

network bundle adjustment based on multi-camera geometry, which extends the Hessian

matrix in a normal equation and finds estimation by minimizing the trace of covariance

matrix (the inverse of the Hessian matrix) is promising. He showed that the performance

of multi-station bundle adjustment without control points is as good as the performance

with control points. He also gave the definition of self-calibrating bundle adjustment as

the procedure of the recovery of camera IO, EO and additional parameters without special

compensation (control points) of lens distortion for system error. While it is used to be

popular to add additional parameters (APs) to camera interior parameters to model the

18. Uncalibrated means non-priori measurement of tPa.
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lens distortion effect, researchers [54] found that unreasonable additional parameters would

lower the accuracy, and Brown’s certain parameters [6] are the most popular choice.

Triggs et al. [59] did a great job in their review of bundle adjustment (BA). They

described bundle adjustment as “the problem of refining a visual reconstruction to produce

jointly optimal 3D structure and viewing parameter (camera pose) estimates”. The word

optimal indicates bundle adjustment estimate parameters by minimizing model fitting

error. The word jointly indicates the estimation of camera IO, EO and lens distortion

simultaneously. Several issues in the application of bundle adjustment were covered by

Triggs et al. For the representation of the rotation matrix, they suggested the use of

quaternion or inclusion of a small local perturbation term δR for rotation matrix R→R ·δR

. For modeling cost function in non-linear optimization, they recommended using a robust

estimator to lower the influence of outliers due to large-scale estimation. Here, a large-

scale problem means that the bundle adjustment has hundreds or thousands of images with

tens of thousands of landmarks on images and thousands of parameters to be estimated.

The sparse method for a matrix is helpful with reasonable ordering of the matrix. For the

Hessian matrix in normal equation, they stated the first order method by the approximation

of the Hessian matrix offers much slower convergence than the second order method in

bundle adjustment. Moreover, variable scaling or preconditioning is important to get the

good-conditioned Hessian and also improves the first order problem. They pointed out

that discarding the 2nd order term is not necessary to lower the 2nd convergence rate of

Newton-like method to the 1st order method. The real reason is the significant ignorance

of the off-diagonal element of the Hessian matrix, which is possible by discarding the 2nd

order term in the Hessian matrix. They recommended the use of network design before the

experiment and quality control to evaluate the result of bundle adjustment.

2.3.3 Bundle Adjustment: Evaluation and Improvement

Over the years, researchers in the camera calibration area have worked to evaluate and
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improve camera calibration accuracy.

The evaluation of bundle adjustment

It is important to evaluate the accuracy of camera calibration after calculation. Gruen

[26] discussed the precision and reliability issues in BA. He stated that accuracy includes

two aspects: the precision, the statistical quality of the estimation and reliably, the ability

to detect errors (outliers in the data). For precision measurement, he used the variance of

each element by extracting the trace of the covariance matrix:σ2
x = tr(Covx)

nx
, σ2

y = tr(Covy)
ny

,

σ2
z = tr(Covz)

nz
. He divided reliability into internal reliability, the ability of detecting an

outlier, and external reliability, the influence of the outliers on the final estimation. The

experimental analysis recommended the rejection of non-determinable APs to improve

estimation accuracy as well as a larger convergence angle in the network can also help

to maintain reliability. He recommended that a basic configuration of network design is

four stations with two bases perpendicular to each other for avoidance of pure epipolar

plane observations. A larger base improves the external reliability significantly. However,

they use the least squares estimator but not the robust estimator.

Granshaw [25] divided the examination into two parts: the first changes in the number,

position, and orientation of the photographs, the network geometry, and the second is in

the object space control. He inspected the covariance matrix (the inverse of the Hessian

matrix) by applying matrix partitioning.

Actually, almost every researchers evaluated their claim in statistics [1, 3, 6, 8, 9, 11,

12, 17, 23, 24, 26, 33, 34, 37, 48, 50, 53, 54, 60, 65, 64, 63, 62, 68, 67].

The improvement of bundle adjustment

Beyond improvement of camera modeling and calculation algorithm, network design

had proven as an effective tool to improve the accuracy of camera calibration in

photogrammetry. Simply speaking, it addressed how to place a camera in 3D space so

it can collect better images for camera calibration.
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Fraser [18, 19, 20] formally introduced the network design and stated that the purpose

of network design, as well as network geometry, is to design the photogrammetric imaging

configuration, which involves finding the best placement of the camera in 3D space to

collect image data with the calibration tool. A good network design would improve the

final estimation accuracy. The general idea is to a) try different camera station positions

for camera calibration. b) use the calibration result to validate which network is the best

one. This will give us the general rule of camera placement. During the design, three

aspects should be considered: selection of an image scale; number of camera stations; and

the relative geometry relationship of the camera stations. Fraser gave the classification

of design stages: zero-order design (ZOD), the datum problem for optimal landmarks

coordinates; first-order design (FOD), the configuration problem for optimal network

geometry; and second-order design (SOD), the weight problem for optimal observational

precision. FOD is a major network design problem for close-range photogrammetry.

About improvement on the estimation, he concluded that: a) it is important that each

basic camera station see all the landmarks on the calibration tool. There is a trade-off

between the FOV of the camera and the focal length; b) if make k > 1, which would take

more than one at a station, this would improve the accuracy; c) the strong basic stations

configuration keeps camera calibration at a high accuracy level; and d) more camera

stations aside from the basic stations does not necessarily generate a better result, but it

does improve the precision of landmark in image coordinates.

Kenneth and Fraser[16] introduced the OLT (on-line triangulation) with sequential

estimation19 to single sensor vision metrology in application, which unlike simultaneous

least squares estimation, can monitor object precision during data acquisition and offer

estimation quality evaluation before the completion of estimation. The estimation allows

system to deal with added image during image acquisition. However, for non-linear

estimation, the sequential estimation is less powerful, which will cause the estimated

19. Sequential estimation is also called as process identification or adjustment-in-steps or phased adjustment.
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parameters vector to drift as data are added. Thus, significantly accurate initial values for

parameters are required, and a simultaneous estimation is needed for double check. They

re-emphasized that good network design will enhance the parameter recovery. In their

experiment, they collected four images (κ = 0◦, 90◦, 180◦, 270◦) at each of six camera

stations. In the experimental analysis, they compared the performance of simultaneous

adjustment and sequential adjustment in computation time and projective point precision.

They also covered the additional close-range photogrammetry applications such as the

network design.

Saadatseresht et al. [55] were looking for a method of enhancing the accuracy

performance of photogrammetric system based on network design, which can select

additional camera stations automatically (VUS and VUF automatic calculation). Under

two assumptions, they introduced visibility uncertainty prediction20 (VUP) and visibility

uncertainty spheres21 (VUS) for analysis. The authors found out that during the network

design, there are certain constraints that can impact the pick-up of the camera station and

accuracy fulfillment (AF) of the camera station. Their strategy was to redo BA for camera

calibration based on data deducted from the network and then calculate VUS and VUP22.

A car door mounted with a retro-reflective target and a box as the obstruction were used in

first test. If compared to previous conclusions in photogrammetry network design, claims

in this article are that 1) new camera station might offer better network geometry than

repeatedly grabbed images at the same camera station; 2) uniform distribution of camera

stations in the original networks would improve the visibility modeling; and 3) better VUS

and VUF are available with more camera stations.

20. By fuzzy visibility value v, v = 1 means perfectly visible; v = 0 means invisible; 0 < v < 1 means the
percentage possibility in visibility.

21. VUS is used to graphically show the visible and non-visible spot for VUP in 3D space.
22. VUP (the number of AF camera) is calculated by least-squares-based interpolation to predict the AF.
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2.4 Summary

In this chapter, literature about camera calibration is reviewed. At the beginning,

the fundamental knowledge of coordinate system is introduced, including coordinate

representation and coordinate transformation of 3D object. Next, the different types of

camera geometries and camera models are introduced. Based on the definition of camera

calibration, various camera calibration methods are reviewed in the field, such as linear

algorithms, non-linear and hybrid algorithms, and bundle adjustment. Bundle adjustment

is considered to be the most powerful technology for camera calibration calculation in

application. Detailed information about bundle adjustment algorithm is provided, and the

limitations of bundle adjustment are offered. Other researchers’ methodologies for the

improvement of bundle adjustment are also reviewed.
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3 Representation Enhancement: Spherical Coordinate

Representation

3.1 Singularity of Representation

According to section 2.1, it is clear that we need to represent the position and orientation

of landmark in 3D space first and then do the transformation to apply camera geometry

for camera calibration. The representation is required to represent the landmark uniquely.

However, singularity of representation leads to failure in the unique representation of poses

and the camera calibration calculation.

Singularity of representation arises in several research areas with usage of 3D space

representation such as kinematic control [11, 24], hand-eye problems [56, 61], and camera

calibration [59]. In kinematic control area, Gosselin and Angeles [24] classified singularity

into three types by matrix determinant in closed-loop kinematic chains. Chiaverini [11]

primarily discussed singularity and the handling of singularity in the task-priority strategy.

He introduced the augmented Jacobian matrix and developed a damped least squares

solution instead of the classic inverse kinematic solution to handle the occurrence of

singularity.

3.1.1 Definition of “Singularity of Representation” (SoR)

Singularity of representation is an important issue in camera calibration [53, 58, 59]. Triggs

et al. [59] pointed out that “parametrization singularities cause ill-conditioning and erratic

numerical behaviour.” of bundle adjustment. Ill-conditioning of the Hessian matrix

leads to failure or false convergence of the algorithm, which downgrades corresponding

reliability of the iterative algorithm. While not giving a formal definition of singularity,

Triggs et al. [59] stated that singularity prevents the representation of 3D features from
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covering the whole parameter space uniformly. The mathematical definition for singularity

of representation is:

Definition: Singularity of Representation (SoR) is defined as that a Jacobian matrix

J ∈ Rnob×nû does not have full rank rank(J) 6= nû, but rank(J) < nû, where the nob is the

number of observations and nû is the number of parameters to be estimated, nob ≥ nû.

3.1.2 Loss of One Degree of Freedom (DOF)

The source of singularity is in representation of pose and is shown in the Jacobian

matrix during calculation. Actually, this definition is also applicable to the singularity in

kinematics. In 3D space, singularity is demonstrated as the loss of one degree of freedom,

which is equal to the rank deficiency of the Jacobian matrix23.

Based on an Euler angles representation, in 3D rotation, three dimensions move freely

by an asymmetric24 order combination. For example, a common order is in y-axis→x

axis→z axis by right hand rule. Note that in the rotation order y-axis→x axis→z axis, the

movement around the y axis is the parent movement of the x and z axes. The movement of

the x axis is the parent movement of the z axis. If the rotation axis is not fixed but makes the

rotation about the axis locally, the parent movement would lead to the sub axis movement

at the same time, then to the local movement about sub axes. So movement of the y axis

affects movements of the x and z axes. Movement of the x axis affects movement of the z

axis. However, movement of the z axis can not affect movement of the x and y axes.

The problem is that the free movement would make two axes in one direction. Then

there is no difference when you move one axis or the other axis (because rotation is on one

plane). The effect is that a pose cannot be reached by movement around the x, y, and z

axes. The loss of one degree of freedom is also known as gimbal lock [27]. Gimbal lock

cannot be avoided, and different orders of representation of rotation have different poses in

gimbal lock. In other words, not every rotation can be realized by a change in Euler angles.

23. An active DOF counts one rank of the corresponding matrix.
24. The symmetric order has another six possible combinations.
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3.2 Singularity of Representation in Bundle Adjustment

3.2.1 The Jacobian Matrix and the Hessian Matrix

From the definition of singularity of representation (SoR) given above, we know that the

SoR in bundle adjustment arises with the Jacobian matrix. If the SoR gives us the ill-

conditioned Jacobian and Hessian matrices, the camera calibration may have difficulty

keeping reliability or even converging.

The Jacobian matrix of implicit camera model y = f (u, x, c) mentioned in section 2.3.1

is written as:

J =
[

dŷ
dχ̂

dŷ
d ˆwPt̊

dŷ
d ˆwSc̊

]
∈ Rnob×nû , (3.1)

where ŷ is the ˆpPa, χ̂ is the estimated camera model, ˆwSc̊ is the estimated camera pose

expressed in spherical coordinates, and ˆwPt̊ is the estimated landmark position expressed in

Cartesian coordinates25. If a singularity raises, it happens in the sub-matrix corresponding

to each camera pose:

JwSc̊ =
d ˆpPa

d ˆwSc̊
=
[

d ˆpPa
dϕ

d ˆpPa
dω

d ˆpPa
d sZa

d ˆpPa
d sϕ

d ˆpPa
d sω

d ˆpPa
d sκ

]
∈ Rnob×6 , (3.2)

where ŷ is the pPa, the landmark a in pixel coordinates, and nob
2 is the number of landmarks

observed by camera26.

An example of the Jacobian and Hessian matrices calculated by an experimental data

set that only contains three images is shown in figures 3.1 and 3.2. The black area means

a zero value, and the white area means a non-zero value, in both figures. Most spots in

the matrix are zero; thus, a sparse algorithm can save the space of storage and time of

calculation. Generally, there are many more than three images in a data set for bundle

adjustment. In figure 3.1, the part (a) is the full Jacobian matrix, derived by equation (3.1).

You can see that the parameter ordering of the full version of the Jacobian matrix in the

25. Landmarks are all points in 3D space, thus no orientation is needed.
26. Note that pPa ∈ R2, thus the number of observations is multiplied by 2.
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row from left to right is parameters of camera model, calibration tool pose, and camera

pose. Thus, the sub matrix for camera pose can be extracted from the Jacobian matrix,

which is shown in (b) of figure 3.1. The part (b) is the three sub-matrices corresponding

to each camera pose from the digital image, derived by equation (3.2). The J ˆwSc̊
matrix

is constructed by column vectors and has 73× 2 rows for each camera pose based on the

fact that each calibration tool has 73 landmarks on it. So the size of structure in part (b) of

figure 3.1 is 438×6 = 73 ·2 ·3×6.

Jacobian Matrix, Size 438X239 Jacobian Matrix of 3 Camera Poses

a b

Figure 3.1: The Jacobian matrix of û (a) and the Jacobian matrix of each camera pose (b):
the black area means a zero value and the white area means a non-zero value.

Figure 3.2 shows the Hessian matrix. In the row from left to right are parameters of the

camera model, calibration tool pose, and camera pose, derived by

H = JT · J ∈ Rnû×nû . (3.3)
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Hessian Matrix, Size 239X239

Figure 3.2: The Hessian matrix: the black area means a zero value and the white area
means a non-zero value.

Note that there are three 6×6 square sub matrices corresponding to each digital image,

which is shown in figure 3.3, and derived by

HwSc̊ = JT
wSc̊
· JwSc̊ ∈ R6×6 . (3.4)
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Hessian Matrix of 3 Camera Poses

Figure 3.3: The Hessian matrix of camera pose: the black area means a zero value and the
white area means a non-zero value.

3.2.2 Singularity of Representation in Bundle Adjustment

Mathematically, singularity would impact the bundle adjustment algorithm, because we

need to solve the normal equation:

JT J ·δx = JT · ε . (3.5)

If performing the left pseudo-inverse for an over-determined question, we have equation

(2.62):

δx = (JT J)−1 · JT · ε . (3.6)

Buss and Kim [7] pointed out that the pseudo-inverse method tends to have problems

in the neighborhoods of singularities. Due to an unachievable position with loss of one

degree of freedom, the Jacobian matrix no longer has full column rank. If the Euler angles
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are extracted from a rotation matrix which is near to a singularity position, then the pseudo-

inverse method will lead to very large and sudden changes in angles.

Singular value decomposition27 (SVD) is a sub-algorithm in bundle adjustment. If

applying SVD to the Jacobian matrix, we have:

J = U ·Σ ·V H =
r

∑
i=1

σi ·ui · vH
i , (3.7)

where J ∈ Rnob×nû and

U =
r

∑
i=1

ui ∈ Rnob×nob (3.8)

is an orthogonal matrix,

Σ =
r

∑
i=1

σi ∈ Rnob×nû (3.9)

is a matrix with non-negative real numbers on the diagonal, and

V =
r

∑
i=1

vi ∈ Rnû×nû (3.10)

is an orthogonal matrix. Correspondingly, the Hessian matrix is:

H = JT · J = (V H)T
Σ

TUT ·UΣV H = V ·ΣT
Σ ·V H . (3.11)

Since Σ is a diagonal matrix, then

H = JT · J = V ·Σ2 ·V H . (3.12)

In a non-singularity situation, the rank of singular value matrix Σ is equal to rank of the

Hessian matrix H:

rank(Σ) = rank(H) ,

27. Note that this name has no relationship with the singularity of representation.
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where the rank(Σ) is the number of non-zero diagonal entries of Σ matrix. In a singularity

situation, the Hessian matrix shown in equation (3.11) is rank deficient. Specifically, the

number of non-zero diagonal elements of Σ is less than it is in the non-singularity situation.

In other words, there are zeros in diagonal position of H. Correspondingly, forming the

inverse of the Hessian matrix as H−1 = (JT J)−1 is impossible. Thus, singularity leads to

the failure of estimation in the bundle adjustment algorithm.

3.2.3 An Example of Singularity of Representation

The observation model transforms landmark (denoted by a) position in calibration tool

coordinates (denoted by t), tPa, to landmark in pixel coordinates (denoted by q), qPa. Thus,

the transformation from tPa to qPa is done through equations (2.14), (2.15), (2.16), and

(2.17):  qPa

1

=


−cpkx 0 −cpx0

0 −cpky −cpy0

0 0 1


cPa

cPa(3)
. (3.13)

The cPa is calculated by

cPa = c
tR( tPa− tPc̊) , (3.14)

where the rotation matrix c
tR is expressed in spherical coordinates by introducing t

s R:

c
tR = c

sR · s
tR = c

sR · t
s RT = (R180◦

y ·R sϕ ·R sω ·R sκ) · (RT
ω ·RT

ϕ) (3.15)
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and

cPt̊ = − c
tR

tPc̊

= − c
sR

s
tR

t
s R


0

0

sZ

=− c
sR


0

0

sZ

=−(R180◦
y ·R sϕ ·R sω ·R sκ) ·


0

0

sZc̊



= −


−1 0 0

0 1 0

0 0 −1




Csϕ 0 S sϕ

0 1 0

−S sϕ 0 Csϕ




1 0 0

0 Csω −S sω

0 S sω Csω




Csκ −S sκ 0

S sκ Csκ 0

0 0 1

 ·


0

0

sZc̊



= −


−(CsϕCsκ +S sωS sϕS sκ) S sκCsϕ−S sωS sϕCsκ −CsωS sϕ

CsωS sκ CsωCsκ −S sω

S sϕCsκ−CsϕS sωS sκ −(S sϕS sκ +CsϕS sωCsκ) −CsϕCsω

 ·


0

0

sZc̊



=


CsωS sϕ

S sω

CsϕCsω

 · sZc̊ (3.16)

is the origin of spherical calibration tool expressed in the camera frame. Then, substituting

equations (3.14) into (3.15) , we have

cPa = (R180◦
y ·R sϕ ·R sω ·R sκ) · (RT

ω ·RT
ϕ) · ( tPa− tPc̊)

= (R180◦
y ·R sϕ ·R sω ·R sκ) · (RT

ω ·RT
ϕ · tPa−


0

0

sZc̊

)

= c
sR

RT
ω ·RT

ϕ · tPa−


0

0

sZc̊


 (3.17)
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Therefore, there is

qPa =

 −cp kx
cPa(1)
cPa(3) − cp x0

−cp ky
cPa(2)
cPa(3) − cp y0

 (3.18)

To calculate the Jacobian matrix corresponding to each camera pose, we can substitute

equation (3.18) into equation (3.2) and apply the derivative of qPa with respect to each

element of wSc̊ in equation (3.2). The derivative of observation d ˆqPa
d wSc̊

is:

JwSc̊ =
d ˆqPa

d ˆwSc̊
=
[

d ˆqPa
dϕ

d ˆqPa
dω

d ˆqPa
d sZc̊

d ˆqPa
d sϕ

d ˆqPa
d sω

d ˆqPa
d sκ

]
, (3.19)

where each column vector of d ˆqPa
d wSc̊

is:

d ˆqPa

dϕ
= −cp

 kx 0

0 ky

( 1
cPa(3)

d cPa(1 : 2)
dϕ

−
( cPa(1 : 2)

cP2
a (3)

)
d cPa(3)

dϕ

)
(3.20)

d ˆqPa

dω
= −cp

 kx 0

0 ky

( 1
cPa(3)

d cPa(1 : 2)
dω

−
( cPa(1 : 2)

cP2
a (3)

)
d cPa(3)

dω

)
(3.21)

d ˆqPa

d sZc̊
=−cp

 kx 0

0 ky

( 1
cPa(3)

d cPa(1 : 2)
d sZ

−
( cPa(1 : 2)

cP2
a (3)

)
d cPa(3)

d sZc̊

)
(3.22)

d ˆqPa

d sϕ
=−cp

 kx 0

0 ky

( 1
cPa(3)

d cPa(1 : 2)
d sϕ

−
( cPa(1 : 2)

cP2
a (3)

)
d cPa(3)

d sϕ

)
(3.23)

d ˆqPa

d sω
=−cp

 kx 0

0 ky

( 1
cPa(3)

d cPa(1 : 2)
d sω

−
( cPa(1 : 2)

cP2
a (3)

)
d cPa(3)

d sω

)
(3.24)
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d ˆqPa

d sκ
=−cp

 kx 0

0 ky

( 1
cPa(3)

d cPa(1 : 2)
d sκ

−
( cPa(1 : 2)

cP2
a (3)

)
d cPa(3)

d sκ

)
. (3.25)

The
[

d cPa
dϕ

d cPa
dω

d cPa
d sZc̊

d cPa
d sϕ

d cPa
d sω

d cPa
d sκ

]
for each column vector in equations (3.20)-

(3.24) and (3.25) is:
d cPa

dϕ
= c

sR ·RT
ω ·

dRT
ϕ

dϕ
· tPa (3.26)

d cPa

dω
= c

sR ·
dRT

ω

dω
·RT

ϕ · tPa (3.27)

d cPa

d sZc̊
=− c

sR


0

0

1

 (3.28)

d cPa

d sϕ
= (R180◦

y ·
dR sϕ

d sϕ
·R sω ·R sκ) · (RT

ω ·RT
ϕ · tPa−


0

0

sZc̊

) (3.29)

d cPa

d sω
= (R180◦

y ·R sϕ ·
dR sω

d sω
·R sκ) · (RT

ω ·RT
ϕ · tPa−


0

0

sZc̊

) (3.30)

d cPa

d sκ
= (R180◦

y ·R sϕ ·R sω ·
dR sκ

d sκ
) · (RT

ω ·RT
ϕ · tPa−


0

0

sZc̊

) (3.31)
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One example of singularity is that if sω = +π

2 , in equation (3.29), the derivative term in

the three elementary rotation matrix

dR sϕ

d sϕ
·R sω ·R sκ =


−S sϕ 0 Csϕ

0 1 0

−Csϕ 0 −S sϕ




1 0 0

0 Csω −S sω

0 S sω Csω




Csκ −S sκ 0

S sκ Csκ 0

0 0 1



=


−S sϕCsκ +S sωCsϕS sκ S sκS sϕ +S sωCsϕCsκ CsωCsϕ

CsωS sκ CsωCsκ −S sω

−CsϕCsκ−S sϕS sωS sκ CsϕS sκ−S sϕS sωCsκ −S sϕCsω

 (3.32)

becomes

dR sϕ

d sϕ
·R sω ·R sκ =


−S sϕCsκ +CsϕS sκ S sκS sϕ +CsϕCsκ 0

0 0 −1

−CsϕCsκ−S sϕS sκ CsϕS sκ−S sϕCsκ 0

=


−S sϕ− sκ Csϕ− sκ 0

0 0 −1

−Csϕ− sκ −S sϕ− sκ 0

 ,

(3.33)

which cannot give us a unique angle value for sϕ and sκ, since the cofactor matrix depends

on sϕ− sκ, but not sϕor sκ. Therefore, the Jacobian matrix of a camera pose

JwSc̊ =
d ˆpPa

d ˆwSc̊
=
[

d ˆpPa
dϕ

d ˆpPa
dω

d ˆpPa
d sZa

d ˆpPa
d sϕ

d ˆpPa
d sω

d ˆpPa
d sκ

]
(3.34)

has a column vector corresponding to sϕ or sκ, which are not independent with the column

vector corresponding to sκ or sϕ, respectively. This is to say that Jacobian matrix will be

rank deficient.
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3.3 Singularity of Spherical Coordinate Representation

3.3.1 Spherical Coordinate Representation

In geometry, we want to uniquely determine and represent the position of a point or an

object by a representation system. For example, the number line system is used with a zero

as the origin for a point in one dimensional space while the Cartesian coordinate system

is used to represent positions in both two dimensional space and three dimensional space.

Euler angles can be used to express orientation in three dimensional space. Thus, an object

in 3D space has totally six degrees of freedom after combining position information and

orientation information: 

X

Y

Z

ω

κ

ϕ


∈ R6 , (3.35)

where ω, ϕ, and κ are the rotation angles about the X, Z, Y axes, respectively.

The spherical coordinate system is applied for representation in our application. A pose

in spherical coordinate systems is illustrated in figure 3.4.
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tZ

tX

tY

cX
cZ

cY

Bearing Ray

calibration tool frame

camera frame
Pc

o

Pt
o

ϕ ω

sZ

Figure 3.4: A pose in spherical calibration tool coordinates. The bearing ray connects the
root frame (in this case the calibration tool frame) to the object frame (in this
case the camera frame).

The spherical coordinate system is used to represent position, and Euler angles are used

to represent the orientation28. If the object (digital camera) in 3D space is expressed in the

spherical coordinate system, the camera pose in the calibration tool frame is expressed in

the spherical coordinates as:

tSc̊ =



ϕ

ω

sZ

sω

sκ

sϕ


=



tSc̊

sω

sκ

sϕ


∈ R6 , (3.36)

28. Euler angles representation is explained in section 2.1.1.
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where

tSc̊ =


ϕ

ω

sZc̊

 ∈ R3 (3.37)

is the position of camera origin in the calibration tool frame expressed in spherical

coordinates: ϕ is called azimuth, ω is called elevation, sZc̊ is the distance between the

calibration tool frame and the camera frame;
[

sω sκ sϕ

]
expresses the orientation of

the camera. A rotation matrix t
s R = Rϕ ·Rω defines the rotation from the bearing to the

calibration tool frame with two elementary rotation matrices Rω and Rϕ, as shown in figure

3.4. If the spherical representation is used to represent a point in target coordinates, these

coordinates are referred to as spherical target coordinates. For example, tSc̊ is a point in

camera coordinates defined in target coordinates using the spherical representation. As an

alternative way of representing an object in 3D space, spherical coordinate representation

introduces two more angles, ϕ and ω, compared to the expression in equation (3.35).

3.3.2 Frames: the t Frame, the c Frame, the i Frame, and the v Frame

As shown in figure 2.8, bundle adjustment after image processing of calibration tool images

requires the conversion of the landmark in target coordinates tPa into the landmark in

camera coordinates cPa and then to the landmark in image coordinates iPa. Here, three

landmarks in the target coordinate frame are selected:

tPL1 =


0

0

0

 , tPL2 =


l

0

0

 , tPL3 =


0

l

0

 (3.38)
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Then , tPa is converted to cPa by

cPa = c
sR · tPa + cPt̊

= (R180◦
y ·R sϕ ·R sω ·R sκ)(RT

ω ·RT
ϕ) · tPa + cPt̊ , (3.39)

where

c
sR = (R180◦

y ·R sϕ ·R sω ·R sκ) . (3.40)

Last, cPa is converted to iPa by

iPa =−cp ·

 cPa(1)
cPa(3)
cPa(2)
cPa(3)

 . (3.41)

An additional frame: the v frame is introduced for searching for possible singularities in

spherical coordinate system,. The v frame gives a special structure in the Jacobian matrix.

Accordingly, there is a space that contains the projection of landmarks represented in the

i frame onto the v frame. All effective landmarks in digital images of the calibration tool

can be represented in the v frame. The geometry is shown in figure 3.5.
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tx

ty

tz

L3

L1
L2

l
l

cy

cx

cZ

Image of Calibration Toolv Frame

Figure 3.5: The t frame and its axes are on the calibration tool. The v frame and its axes
are in the image of calibration tool, which is defined by three landmarks
defined by the image of three landmarks tPL j : L1 is the origin; L1 and L2 give
us tx; L1 and L3 give us ty; tz is perpendicular to tx and ty by tz = cross(tx, ty).

In figure 3.5, it is clear that L1 is the origin of the new frame; L1 and L2 give us

tx axis; L1 and L3 give us ty axis; tz axis is the perpendicular direction to tx and ty by

tz = cross(tx, ty). It is important to remember the landmark position in the v frame is

based on the transformation and projection from landmarks in the t frame due to rotation

movement of the calibration tool in 3D space. Thus, the image of tPL1 in the v frame is the

origin of the v frame. The image of tPL2 in the v frame is on the vx axis which is the image

of the tx axis in the v frame. The image of tPL3 in the v frame is on the vy axis which is the

image of the ty axis in the v frame. The position change of tPL j in the v frame is done by

moving calibration tool during the data collection stage. Note that the vx and vy axes will

not in general be orthogonal.
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The iPa obtained from tPa are:

iPL1 =

 iXL1

iYL1

, iPL2=

 iXL2

iYL2

, iPL3=

 iXL3

iYL3

 , (3.42)

so the vectors of v1 and v2 directions are:

v1 = iPL2−
iPL1 =

 iXL2

iYL2

−
 iXL1

iYL1

 (3.43)

v2 = iPL3−
iPL1 =

 iXL3

iYL3

−
 iXL1

iYL1

 (3.44)

By normalization, the normalized directions are used as the basis of the v frame:

vN
1 =

v1

||v1||
=


iXL2-iXL1
||iv1||

iYL2-iYL1
||iv1||

 (3.45)

vN
2 =

v2

||v2||
=


iXL3-iXL1
||iv2||

iYL3-iYL1
||iv2||

 (3.46)

which can be written in matrix form:

v
i m =

[
vN

1 vN
2
]−1

=


iXL2-iXL1
||iv1||

iXL3-iXL1
||iv2||

iYL2-iYL1
||iv1||

iYL3-iYL1
||iv2||


−1

=

 m11 m21

m12 m22

 (3.47)
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Then the transformation from the image frame to the v frame is performed by matrix:

v
i M =



m11 m21 0 0 0 0

m12 m22 0 0 0 0

0 0 m11 m21 0 0

0 0 m12 m22 0 0

0 0 0 0 m11 m21

0 0 0 0 m12 m22


(3.48)

Since the vN
1 and vN

2 are the basis vectors, the matrix v
i m is full rank, and thus, the matrix

v
i M is full rank. This allows us to interpret the Jacobian matrix JwSc̊ in terms of the v frame

shown in figure 3.5.

3.3.3 Structure of JwSc̊ in the v Frame

The Transformation of the Jacobian Matrix

The JwSc̊ is represented in the i frame as

JwSc̊ =


d iPL1
d wSc̊

d iPL2
d wSc̊

d iPL2
d wSc̊

=



d iXL1
dϕ

d iXL1
dω

d iXL1
d sZ

d iXL1
d sω

d iXL1
d sκ

d iXL1
d sϕ

d iYL1
dϕ

d iYL1
dω

d iYL1
d sZ

d iYL1
d sω

d iYL1
d sκ

d iYL1
d sϕ

d iXL2
dϕ

d iXL2
dω

d iXL2
d sZ

d iXL2
d sω

d iXL2
d sκ

d iXL2
d sϕ

d iYL2
dϕ

d iYL2
dω

d iYL2
d sZ

d iYL2
d sω

d iYL2
d sκ

d iYL2
d sϕ

d iXL3
dϕ

d iXL3
dω

d iXL3
d sZ

d iXL3
d sω

d iXL2
d sκ

d iXL3
d sϕ

d iYL3
dϕ

d iYL3
dω

d iYL3
d sZ

d iYL3
d sω

d iYL3
d sκ

d iYL3
d sϕ


(3.49)

The basis transformation gives us
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vJwSc̊ = v
i M · JwSc̊

=



d vXL1
dϕ

d vXL1
dω

d vXL1
d sZ

d vXL1
d sω

d vXL1
d sκ

d vXL1
d sϕ

d vYL1
dϕ

d vYL1
dω

d vYL1
d sZ

d vYL1
d sω

d vYL1
d sκ

d vYL1
d sϕ

d vXL2
dϕ

d vXL2
dω

d vXL2
d sZ

d vXL2
d sω

d vXL2
d sκ

d vXL2
d sϕ

d vYL2
dϕ

d vYL2
dω

d vYL2
d sZ

d vYL2
d sω

d vYL2
d sκ

d vYL2
d sϕ

d vXL3
dϕ

d vXL3
dω

d vXL3
d sZ

d vXL3
d sω

d vXL3
d sκ

d vXL3
d sϕ

d vYL3
dϕ

d vYL3
dω

d vYL3
d sZ

d vYL3
d sω

d vYL3
d sκ

d vYL3
d sϕ


(3.50)

To start the transformation of the Jacobian matrix to the v frame, we need convert tPa to

cPa to iPa and see what the Jacobian matrix is. Correspondingly, there is29

cPL j = c
tR · tPL j +

cPt̊

= c
sR · s

tR · tPL j +
cPt̊

= c
sR

RT
ω ·RT

ϕ · tPL j −


0

0

sZc̊


 , (3.51)

where

c
sR =


−(CsϕCsκ +S sωS sϕS sκ) S sκCsϕ−S sωS sϕCsκ −CsωS sϕ

CsωS sκ CsωCsκ −S sω

S sϕCsκ−CsϕS sωS sκ −(S sϕS sκ +CsϕS sωCsκ) −CsϕCsω

 (3.52)

29. Note that the equations are obtained by assuming tZa = 0 for each landmark.
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s
tR = RT

ω ·RT
ϕ =


1 0 0

0 Cω Sω

0 −Sω Cω




Cϕ 0 −Sϕ

0 1 0

Sϕ −Sω Cϕ

=


Cϕ 0 −Sϕ

SωSϕ Cω SωCϕ

CωSϕ −Sω CωCϕ

 .

(3.53)

Substituting landmarks L1, L2, and L3, the first landmark, iPL1 , becomes

iPL1 =−cp ·
cPL1(1 : 2)

cPL1(3)
=−cp

 Ssϕ
Csϕ

Ssω
CsϕCsω

 , (3.54)

where

cPL1 = c
sR


0

0

− sZc̊



=


−(CsϕCsκ +S sωS sϕS sκ) S sκCsϕ−S sωS sϕCsκ −CsωS sϕ

CsωS sκ CsωCsκ −S sω

S sϕCsκ−CsϕS sωS sκ −(S sϕS sκ +CsϕS sωCsκ) −CsϕCsω




0

0

− sZc̊



=


CsωS sϕ

sZc̊

S sω
sZc̊

CsϕCsω
sZc̊

 . (3.55)

Next, the second landmark, iPL2 , is

iPL2 =−cp ·
cPL2(1 : 2)

cPL2(3)
=−cp ·


cPL2(1)
cPL2(3)
cPL2(2)
cPL2(3)

 , (3.56)



68

where

cPL2 = c
sR

RT
ω ·RT

ϕ ·


l

0

0

−


0

0

sZc̊




= c
sR




Cϕ 0 −Sϕ

SωSϕ Cω SωCϕ

CωSϕ −Sω CωCϕ

 ·


l

0

0

−


0

0

sZc̊


 (3.57)

= c
sR


Cϕ · l

SωSϕ · l

CωSϕ · l− sZc̊

 .

Then, the third landmark, iPL3 , is

iPL3 =−cp ·
cPL3(1 : 2)

cPL3(3)
=−cp


cPL3(1)
cPL3(3)
cPL3(2)
cPL3(3)

 , (3.58)

where

cPL3 = c
sR

RT
ω ·RT

ϕ ·


0

l

0

−


0

0

sZc̊




= c
sR




Cϕ 0 −Sϕ

SωSϕ Cω SωCϕ

CωSϕ −Sω CωCϕ

 ·


0

l

0

−


0

0

sZc̊


 (3.59)

= c
sR


0

Cω · l

−Sω · l− sZc̊

 .
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The Structure of the Jacobian Matrix

To simplify the problem, consider the case of sϕ = 0◦, sω = 0◦, and sκ = 0◦, which gives

us:

c
sR =


−1 0 0

0 1 0

0 0 −1

 . (3.60)

This simplification shows us the plane I0 in figure 3.6. Other possible angle values of sϕ,

sω, and sκ in c
sR will tilt the image of calibration tool in 3D space, which is shown as the

plane I1, · · · , Ik in figure 3.6.

tX
tZ

tY

Bearing Ray

calibration tool frame
Pt

o

ϕ ω

sZ

I0
Ik

Principal Point

I1

Figure 3.6: A pose in spherical calibration tool coordinates and its projection on to the v
frame: I0 is the nominal plane based on sϕ = 0◦, sω = 0◦, and sκ = 0◦;
I1, · · · , Ik is the planes based on other possible sϕ, sω, and sκ values.

Because the range of tilt of I1, · · · , Ik is restricted30, the mapping of I0 to I1, · · · , Ik is a

one-to-one projection, and the result of the above simplified case on plane I0 will also be

true to other cases on plane I1, · · · , Ik.

Representing the Jacobian matrix in the v frame and assigning sϕ = 0◦, sω = 0◦, and

30. The FOV of a camera will limit the acceptable tilting angles to obtain usable digital images.
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sκ = 0◦ will offer a special structure in the Jacobian matrix vJwSc̊ . Mathematically, the

straightforward calculation of equations gives us the Jacobian matrix vJwSc̊ as:

vJwSc̊ =
[

d vPL j
dϕ

d vPL j
dω

d vPL j
d sZ

d vPL j
d sω

d vPL j
d sκ

d vPL j
d sϕ

]

=



0 0 0
d vXL1
d sω 0

d vXL1
d sϕ

0 0 0
d vYL1
d sω 0

d vYL1
d sϕ

d vXL2
dϕ

d vXL2
dω

d vXL2
d sZ

d vXL2
d sω

d vXL2
d sκ

d vXL2
d sϕ

d vYL2
dϕ

d vYL2
dω

0
d vYL2
d sω

d vYL2
d sκ

d vYL2
d sϕ

0 0 0
d vXL3
d sω

d vXL3
d sκ

d vXL3
d sϕ

0
d vYL3

dω

d vYL3
d sZ

d vYL3
d sω

d vYL3
d sκ

d vYL3
d sϕ


. (3.61)

Substituting equations (3.54), (3.56), and (3.58) into equation (3.50), the structure in

the above equation is found. First, equation (3.54) does not contain variables ϕ, ω, sZ, and

sκ, so the first two rows of vJwSc̊ have eight zeros in corresponding spots. Next, if we derive

equations for L1 in terms of
d vPL j
d sω and

d vPL j
d sϕ , there are

d vPL1

d sω
= v

i m · d
iPL1

d sω
=−cp · vi m ·

 0

1
C2

sωCsϕ

=−cp · vi m ·

 0

q

 (3.62)

and

d vPL1

d sϕ
= v

i m · d
iPL1

d sϕ
=−cp · vi m ·

 1
C2

sϕ

SsϕSsω

CsωC2
sϕ

=−cp · vi m ·

 r

w

 , (3.63)

where v
i m is a full rank 2×2 matrix,

q =
1

C2
sωCsϕ

(3.64)
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and  r

w

=

 1
C2

sϕ

SsϕSsω

CsωC2
sϕ

 . (3.65)

Accordingly, the determinant of vJwSc̊ is:

det
(vJwSc̊

)
=

d vXL1

d sϕ
· d

vYL1

d sω
·



d vXL2
dϕ

d vXL2
dω

d vXL2
d sZ

d vXL2
d sκ

d vYL2
dϕ

d vYL2
dω

0
d vYL2
d sκ

0 0 0
d vXL3

d sκ

0
d vYL3

dω

d vYL3
d sZ

d vYL3
d sκ



= q · r ·det





a b c d

e f 0 g

0 0 0 k

0 n o p




, (3.66)

where letters are used to simplify the representation of each term as a =
d vXL2

dϕ
, b =

d vXL2
dω

, c =
d vXL2
d sZ , d =

d vXL2
d sκ , e =

d vYL2
dϕ

, f =
d vYL2

dω
,g =

d vYL2
d sκ , k =

d vXL3
d sκ , n =

d vYL3
dω

, o =
d vYL3
d sZ , and p =

d vYL3
d sκ again.

Then, the equations of term a and e are:

 a

e

 =
d vPL2

dϕ
= v

i m · d
iPL2

dϕ

= −cp · vi m ·
(

1
cPa(3)

d cPa(1 : 2)
dϕ

−
( cPa(1 : 2)

cP2
a (3)

)
d cPa(3)

dϕ

)

= −cp · vi m ·

 l·Cω− sZ·Sϕ

Z2

(l·Sω+ sZ)·Sω

Z2·Cϕ·Cω

 , (3.67)
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where

d cPL2

dϕ
= c

sR ·RT
ω ·

dRT
ϕ

dϕ
· tPa

= c
sR



−Sϕ 0 −Cϕ

SωCϕ 0 −SωSϕ

CωCϕ 0 −CωSϕ

 ·


l

0

0

−


0

0

sZc̊




= c
sR ·


−Sϕ · l

SωCϕ · l

CωCϕ · l

 (3.68)

and

Z2 = sZ− l ·Cω ·Sϕ . (3.69)

The equations of term b and f are

 b

f

 =
d vPL2

dω
= v

i m · d
iPL2

dω

= −cp · vi m ·
(

1
cPa(3)

d cPa(1 : 2)
dω

−
( cPa(1 : 2)

cP2
a (3)

)
d cPa(3)

dω

)

= −cp · vi m ·

 − l·SϕSω

Z2

(l·Sω+ sZ)·Sϕ

Z2

 , (3.70)
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where

d cPL2

dω
= c

sR ·
dRT

ω

dω
·RT

ϕ · tPa

= c
sR




0 0 0

CωSϕ −Sω CωCϕ

−SωSϕ −Cω −SωCϕ

 ·


0

l

0




= c
sR ·


0

CωSϕ · l

−SωSϕ · l

 . (3.71)

The term c is as below c

0

 =
d vPL2

d sZ
= v

i m · d
iPL2

d sZ

= −cp · vi m ·
(

1
cPa(3)

d cPa(1 : 2)
d sZ

−
( cPa(1 : 2)

cP2
a (3)

)
d cPa(3)

d sZ

)

= −cp · vi m ·

 − 1
Z2

0

 , (3.72)

where

d cPL2

d sZ
=− c

sR ·


0

0

1

=


−CsωS sϕ

−S sω

−CsϕCsω

 . (3.73)

It is easy to write

d vPL3

dϕ
=

 0

0

 . (3.74)
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Term n and o are: 0

n

 =
d vPL3

dω
= v

i m · d
iPL3

dω

= −cp · vi m ·
(

1
cPa(3)

d cPa(1 : 2)
dω

−
( cPa(1 : 2)

cP2
a (3)

)
d cPa(3)

dω

)

= −cp · vi m ·

 0

l+ sZ·Sω

(l·Sω+ sZ)·Cω

 , (3.75)

where

d cPL2

dω
== c

sR ·


0

−Sω · l

−Cω · l

 , (3.76)

and  0

o

 =
d vPL3

d sZ
= v

i m · d
iPL3

dω

= −cp · vi m ·
(

1
cPa(3)

d cPa(1 : 2)
d sZ

−
( cPa(1 : 2)

cP2
a (3)

)
d cPa(3)

d sZ

)

= −cp · vi m ·

 0

− 1
l·Sω+ sZ

 , (3.77)

where

d cPL3

d sZ
== c

sR ·


0

0

1

=


−CsωS sϕ

−S sω

−CsϕCsω

 . (3.78)
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Last, the equation of term k is

 k

−

 =
d vPL3

d sκ
= v

i m · d
iPL3

d sκ

= −cp · vi m ·
(

1
cPa(3)

d cPa(1 : 2)
d sκ

−
( cPa(1 : 2)

cP2
a (3)

)
d cPa(3)
dRoll

)

= −cp · vi m ·

 − Cω·Z2
(l·Sω+ sZ)·Cϕ

−

 , (3.79)

where
d cPL3
d sκ is shown in equation (3.31).

Equation (3.66) allows us consider the determinant of a 4×4 matrix as:

vJreduced =
[

d vPL j
dϕ

d vPL j
dω

d vPL j
d sZ

d vPL j
d sκ

]

=



d vXL2
dϕ

d vXL2
dω

d vXL2
d sZ

d vXL2
d sκ

d vYL2
dϕ

d vYL2
dω

0
d vYL2
d sκ

0 0 0
d vXL3

d sκ

0
d vYL3

dω

d vYL3
d sZ

d vYL3
d sκ


=



a b c d

e f 0 g

0 0 0 k

0 n o p


(3.80)

instead of a 6×6 matrix in equation (3.61).

3.3.4 Rank of vJwSc̊

Next, calculating the matrix determinant of equation (3.80), we obtain

det(vJreduced) =−k× (a · f ·o+ c · e ·n−b · e ·o) (3.81)
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By substituting equations (3.67), (3.70), (3.72), (3.75), (3.77), and (3.79) from section 3.3.3

into equation (3.81), we obtain

det(vJreduced) =
−
{(

CϕC2
ωS2

ϕ +S2
ω

)
· sZ−

(
CϕC3

ωSϕ +CωSϕS2
ω−Sω

)
· l
}

C2
ϕCω · ( sZ− l ·Cω ·Sϕ) · ( sZ + l ·Sω)

(3.82)

The range sZ is the distance from the camera to the calibration tool, which is at least

one meter in application, while l is the distance between landmarks tPL j on the calibration

tool, which is in millimeters. Thus, there is

sZ� l . (3.83)

so we get

( sZ− l ·Cω ·Sϕ)� 0 (3.84)

( sZ + l ·Sω)� 0 . (3.85)

Then, equation (3.82) leads to rank deficient cases as

(
CϕC2

ωS2
ϕ +S2

ω

)
· sZ−

(
CϕC3

ωSϕ +CωSϕS2
ω−Sω

)
· l = 0 (3.86)

Cϕ = 0 (3.87)

Cω = 0 (3.88)

Solving the above three equations, the conditions of singularity are

ϕ = 0◦ and ω = sin−1(− l
sZ

) (3.89)

ω = 0◦ and ϕ = sin−1(
l

sZ
) (3.90)

ϕ = 0◦ and ω = 0◦ (3.91)
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ϕ = 90◦ (3.92)

ω = 90◦ (3.93)

In the above conditions of singularity, we have

det(vJwSc̊) = 0 (3.94)

If rewriting equation (3.50), there is:

vJwSc̊ = v
i M · JwSc̊ , (3.95)

where v
i M is a full rank 6×6 matrix. Correspondingly, we can conclude that

det(JwSc̊) = 0 (3.96)

when the above angles in conditions of singularity are achieved.

Given the definition of SoR in section 3.1, there are five positions of singularity in

spherical coordinate systems shown in equation (3.89)-(3.92) and (3.93).

3.3.5 Nominal Verification of Singularity of Representation

After finding the five conditions of SoR in equations (3.89)- (3.93), the SoR cases can be

verified numerically.

If we assume sZ = 1.1 m and l = 0.05 m, in the case of ϕ = 0◦ and ω = sin−1(− l
sZ ),
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then

vJwSc̊ =



0 0 0 0 0 −22.00

0 0 0 21.98 0 0

0.05 0 −0.91 0 0 −22.05

−0.05 0 0 21.98 1 0

0 0 0 0 −1 −22.00

0 0 −0.91 22.02 0 0


. (3.97)

This matrix is rank 5. And in the case of ω = 0◦ and ϕ = sin−1( l
sZ ), the Jacobian matrix is:

vJwSc̊ =



0 0 0 0 0 −21.98

0 0 0 22.00 0 0

0 0 −0.91 0 0 −22.02

0 0.05 0 22.00 1.00 0

0 0 0 0 −1.00 −21.98

0 −0.05 −0.91 22.05 0 0


, (3.98)

which has rank 5. In the third case of ϕ = 0◦ and ω = 0◦, there is:

vJwSc̊ =



0 0 0 0 0 −22.00

0 0 0 22.00 0 0

0.05 0 −0.91 0 0 −22.05

0 0 0 22.00 1.00 0

0 0 0 0 −1.00 −22.00

0 0.05 −0.91 22.05 0 0


, (3.99)
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which also has a rank of 5. In the fourth case of ϕ = 90◦, we get:

vJwSc̊ = 1.0×1017×



0 0 0 0 0 −8.8189

0 0 0 0 0 0

−0.1633 0 0 0 0 −8.8189

0 0 0 0 0 0

0 0 0 0 −0.1603 −8.8189

0 0 0 0 0 0


, (3.100)

with rank 3. The last case of ω = 90◦ yields:

vJwSc̊ = 1.0×1017×



0 0 0 0 0 0

0 0 0 9.1455 0 0

0 0 0 0 0 0

0.1663 0 0 9.1455 0.1663 0

0 0 0 0 0 0

0 −0.163 0 9.1455 0 0


(3.101)

with rank 3. The determinate value of all the above numerical matrices is zero.

3.4 Summary

In this chapter, I give the formal definition of singularity of representation and demonstrate

cases of SoR. An example is offered to show how singularity can lead to difficulty or

failure in optimization. A new representation system, the spherical coordinate system

is introduced in bundle adjustment. With the introduction of the v frame, the Jacobian

matrix vJwSc̊ expressed in the v frame is analyzed instead of JwSc̊ in the image frame. After

substitution and calculation of equations, the determinant of vJwSc̊ leads us to a simplified

4× 4 matrix vJreduced . Next, I establish that the corresponding Jacobian matrix is not full
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rank. Furthermore, the five conditions of singularity in application are given, under which

spherical coordinate representation will reach singularity. Finally, the numerical examples

are offered corresponding to each conditions of singularity.
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4 Optimization Enhancement: Robust Statistics

4.1 Least Squares Estimation in Bundle Adjustment

4.1.1 Assumptions of the Least Squares Estimator

As stated in section 2.3.1, the non-linear estimation calculation strategy of the Gauss-

Newton method is to minimize the least squares cost function g(u) by equation (2.48). The

iterative term δu updates the estimated parameter vectors by minimizing SSE of residual.

The assumptions required for the least squares estimator to be optimal are [4, 51]:

1. Residual has constant variance;

2. Residual distribution is normal distribution;

3. Data in the sample are independent, identical distribution (i.i.d.).

A typical normal distribution PDF function is shown in figure 4.1. The normal distribution

has a very small tail area.
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Figure 4.1: Gaussian (normal) distribution.

4.1.2 Non-Gaussian Distribution of Residuals in Observations

Researchers including Triggs et al. [59] worked on the error modeling problem. Triggs

argued that the outliers31 are unavoidable in the image data used for camera calibration

and that outlines can have a significant impact on the accuracy of estimation. During

the optimization phase of camera calibration, the landmarks on the digital image of the

camera calibration tool32 with largest and smallest residual values can be identified for

the establishment of the impact from the outlines in data set. Figure 4.2 demonstrates a

landmark with large residual which has serious impact on the optimization. Figure 4.3

demonstrates a landmark with low residual.

31. Imperfectly grabbed features such as feature correspondence errors, a specularity, a shadow, poor focus
of camera, motion blur, etc.

32. This camera calibration tool is a 2D camera calibration tool, which is shown in figure 5.2 of section 5.1.1.
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High Residual, Residual:   0.0448, jFinals1:   0.1598

pX

pY

Figure 4.2: A landmark that generates a large residual value in bundle adjustment.

In figure 4.2, the pixel information yielded by the landmark is not ideal and contains an

observable curve at the edge of landmark spokes. This is where the large residual comes

from.
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Low Residual, Residual:   0.0123, jFinals1:   0.0667

pX

pY

Figure 4.3: A landmark that generates a small residual value in bundle adjustment.

The landmark in figure 4.3 is processed more accurately with accurate edge detection.

One essential part of camera calibration is the modeling of those outlines during the camera

calibration calculation. This illustrates how the robust estimator improves robustness by

de-weighting outliers created in the image process.

For least squares estimation, the standard assumption of normal distribution only

has a small tail area, as shown in figure 4.1. A distribution with a small tail area

poorly models outliers and so can have poor robustness. Thus, the widely-used least

squares estimator may be very unreliable with the influence of outliers. In bundle

adjustment, thousands of observations are collected, and more than a thousand parameters

are estimated. The observations are the measurements of landmark information expressed

in pixel coordinates– ¯pPa. The task is done by applying the image processing algorithm for
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digital images. As discussed before, the distribution of residuals

R(u) = ˆpPa− ¯pPa (4.1)

does not follow normal distribution.

Figure 4.4 contains four normal probability plots of four different experimental camera

calibration data sets collected by three individuals. Each probability plot compares the

residuals of an experimental data set and a normal distribution, which can be used to

judge whether the data follow a normal distribution. Figure 4.4 indicates that residuals

significantly depart from a normal distribution [4, 51]. The No.1 data set was collected

by a Prosilica GC1290 industrial camera with Schneider 10mm lens. The No.2, No.3,

and No.4 data sets were collected by AVT-Stingray F033B industrial camera with Edmund

10mm lens. A total of 200 images were collected for each of the four data sets with the 2D

calibration tool shown in figure 5.2 of the next section.
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Figure 4.4: Residuals does not fit a normal distribution: four different camera calibration
data sets collected by three individuals. The No.1 data set was collected by
Prosilica GC1290 industrial camera with Schneider 10mm lens. The No.2,
No.3, and No.4 data sets were collected by AVT-Stingray F033B industrial
camera with Edmund 10mm lens.

Figure 4.5 is the comparison of the residuals of the above four experimental data sets

with a normal distribution on a logarithmic scale. Hundreds of data points in the tail area lie

outside the normal distribution. The distribution of residuals is the logarithmic histogram
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in blue, and the normal distribution is the curve in red shown in figure 4.5. The inadequate

modeling of the residual function influences the performance of bundle adjustment.
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Figure 4.5: Distribution of residual function and normal distribution: four different
camera calibration data sets collected by three individuals.
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4.2 Robust Estimation in Bundle Adjustment

Triggs et al.[59] pointed out that blunders in the data may affect one or more of the

observations without affecting other observations. This fact allows a robust estimator,

with assumptions other than normality distribution, to take care of outliers by de-weighting

or eliminating them.

4.2.1 General Idea of Robust Estimation

A robustified distribution has a constant tail area compared to the normal distribution. This

property of the density function that the outlier area is constant reduces the influence of

outliers on the estimation. In robust estimation, researchers [47, 49, 35, 66] introduce a

ρ function and ψ function (if ρ is differentiable, ψ = ρ
′
) to modify the cost function of

the least squares estimator and check robust statistic parameters instead. There are several

types of robust estimators: the M-estimator, which uses the maximum likelihood function;

the L-estimator, which uses the linear combination of order statistics; the R-estimator,

which uses rank transformation; the RM estimator, which uses the repeated median; and

the LMS estimator, which uses the least median of squares.

Here, the functions from the M-estimator family, which contains a group of estimators,

are selected. A ρ function in M-estimators is defined with the following properties [47]:

• ρ(u) is a non-decreasing function of |u|.

• ρ(0) = 0.

• ∀u > 0, ρ(u) is increasing. Thus, ρ(u) < ρ(∞).

• If ρ is bounded, then there is an assumption as ρ(∞) = 1.

Correspondingly, we define the ψ function as the derivative of the ρ function in the M-

estimators:
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• ψ is odd.

• ∀u≥ 0, ψ(u)≥ 0

The functions ρ and ψ can be chosen out of the M-estimator family to provide desirable

properties in terms of efficiency and performance of bundle adjustment.

4.2.2 Robustified Iterative Estimation

By introducing a ρ = function, the cost function is as below:

ρ =
1
2

M

∑
j=1

r2
j (u) =

1
2

R(u)T R(u) , (4.2)

where R(u) = ȳ− ŷ is the residual function and j = 1, 2, · · · , nob; nob is the number of

observed data points in a camera calibration data set by image processing. The ρ function

is a function of residual R(u). The corresponding ψ function and its derivative are:

ψ(R(u)) = ρ
′
(R(u)) = JT · ε , (4.3)

where ε = R(u) is the residual function, a vector;

ψ
′
(R(u)) = (JT )

′
· ε+ JT · J , (4.4)

where (JT )
′ ·ε , the second order term, is ignored by Gauss-Newton approximation and JT J

is an approximation to the Hessian matrix. Then, we have

ψ
′
(R(u)) = JT · J . (4.5)

Correspondingly, the original formula (2.54) for iteration in Newton-like iterative

algorithm becomes:

ûc+1 = ûc−
∇ρ(R(u))
∇2ρ(R(u))

= uc +δu , (4.6)
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where

δu =− ∇ρ(R(u))
∇2ρ(R(u))

(4.7)

is the update term33 for each iteration in optimization. Note that the term dimensions are

R(u) ∈ Rnû×1 ,

∇ρ(R(u)) ∈ Rnû×1 ,

and

∇
2
ρ(R(u)) ∈ Rnû×nû .

Substituting equation (4.3) and (4.2) into (4.7), the equation (2.62) is given back as:

δu =− ∇ρ(R(u))
∇2ρ(R(u))

=−JT · ε
JT · J

∈ Rnû×1 . (4.8)

As discussed in section 2.3.1, if using the least squares estimator in bundle adjustment, the

algorithm is trying to minimize:

min{ρ(R(u))}= min
{

1
2

R(u)T R(u)
}

. (4.9)

After defining a weighting function as:

w(R(u)) =
ψ(R(u))

R(u)
, (4.10)

33. The equation (4.7) is better written as:

δu =
(
∇

2
ρ(R(u))

)−1 ·∇ρ(R(u))

for the calculation involving matrices. The fraction representation is used in equation (4.7) instead of the
matrix inversion representation here, because the former representation makes the equations clearer than
the latter.
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the robustified iteration is to minimize

w(R(u)) ·RT (u)R(u) (4.11)

instead of equation (4.9). This is how the ρ and ψ functions robustify the optimization by

applying a weighting function. Further, by substituting equation (4.2) into equation (4.10),

we have

w(R(u)) = 1 (4.12)

Plugging equation (4.12) into equation (4.11) gives equation (4.9) back.

Thus, another way to consider the Gauss-Newton method is that it adds the ρ(·) = u2

2

function to the original cost function which minimizes R(u) = || ¯pPa− ˆpPa||. So, the Gauss-

Newton method is to minimize R2(u) = || ¯pPa − ˆpPa||2 instead of R(u) = || ¯pPa − ˆpPa||.

Figures 4.6 and 4.7 show the plots of ρ(r(iu)) and w(ri(u)) when ρ = 1
2R(u)T R(u) for

the least squares estimator. The weighting function demonstrates that all residuals would

have equivalent weight during optimization phase of camera calibration. Thus, the outliers

intend to seriously impact the update term during estimation in the optimization phase.
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Figure 4.6: ρ(R(u)) of the least squares estimator.
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Figure 4.7: w(R(u)) of the least squares estimator.
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4.3 Robustified Iterative Formulas in Bundle Adjustment

4.3.1 Robustified Iterative Formulas

To avoid ending up with the least squares estimator, the ρ function is applied to equation

(4.2). The robustified cost function becomes:

fi(u) = ρ(
1
2

M

∑
i=1

r2
i (u)) = ρ(

1
2

Ri(u)T Ri(u)) , (4.13)

where i is the independent observations number34. Based on equation (4.13), the gradient

∇ f (u) is:

∇ fi(u) = ∇{1
2

ρ(Ri(u)T ·Ri(u))}=
1
2

ρ
′
(Ri(u)T ·Ri(u)) · (Ri(u)T ·Ri(u))

′

= ρ
′
(Ri(u)T ·Ri(u)) · (1

2
(Ri(u)T )

′
·Ri(u)+

1
2

Ri(u)T ·R
′
i(u))

= ρ
′
(Ri(u)T ·Ri(u)) · (Ri(u)T )

′
·Ri(u) = ρ

′
(Ri(u)T ·Ri(u)) · JT

i · εi

= ρ
′
· JT

i · εi (4.14)

and the Hessian ∇2 f (u) is:

∇
2 fi(u) = ∇

2{1
2

ρ(Ri(u)T ·Ri(u))}= ∇{ρ
′
(Ri(u)T ·Ri(u)) · ((R

′
i(u))T ·Ri(u))}

= ∇{ρ
′
(Ri(u)T ·Ri(u))} · (R

′
i(u))T ·Ri(u))+ρ

′
(Ri(u)T ·Ri(u)) ·∇{(R

′
i(u))T ·Ri(u)}

= ρ
′′
(Ri(u)T ·Ri(u)) ·∇(Ri(u)T ·Ri(u)) · (R

′
i(u))T ·Ri(u)

+ρ
′
(Ri(u)T ·Ri(u)) · {(R

′′
i (u))T ·Ri(u)+R

′
i(u))T ·R

′
i(u)}

= ρ
′′
(Ri(u)T ·Ri(u)) ·2(R

′
i(u)T ·Ri(u)) · (R

′
i(u))T ·Ri(u)

+ρ
′
(Ri(u)T ·Ri(u)) · {(R

′′
i (u))T ·Ri(u)+R

′
i(u))T ·R

′
i(u)} . (4.15)

34. The independent group is one single landmark data as
[ iPx

iPy

]
. We would accept, weight, or reject them

as a whole, without influence on other groups.
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By neglecting the second order term (R
′′
i (u))T ·Ri(u) and using ρ

′
, ρ
′′

for ρ
′
(Ri(u)T ·Ri(u))

and ρ
′′
(Ri(u)T ·Ri(u)) respectively, we get

∇
2 fi(u) ≈ ρ

′′
·2(R

′
i(u)T ·Ri(u)) · (R

′
i(u))T ·Ri(u)+ρ

′
· {R

′
i(u))T ·R

′
i(u)}

≈ ρ
′′
·2(JT

i ·Ri(u)) · JT
i ·Ri(u)+ρ

′
· JT

i · Ji

≈ 2ρ
′′
· JT

i ·Ri(u) · (Ri(u))T · Ji +ρ
′
· JT

i · Ji

≈ JT
i · {ρ

′
+2ρ

′′
·Ri(u) · (Ri(u))T} · Ji

≈ JT
i · {ρ

′
+ 2ρ

′′
· εi · εi

T} · Ji . (4.16)

Equations (4.14) and (4.16) form a very large group of equations corresponding to each

independent landmark. Thus, the iterative formula will be

uc+1 = uc−
∇ f (uc)
∇2 f (uc)

= uc−
ρ
′ · JT

i · εi

JT
i · {ρ

′+ 2ρ
′′ · εi · εiT} · Ji

. (4.17)

Given nc as the number of camera poses, nl as the number of landmarks per image, nob as

the number of observed data points, nob
2 as the number of landmarks in images, and nû as

the number of parameters to be estimated, the sizes of each symbol in the above equations

are:

Ri(u) ∈C2×1 , (4.18)

∇ fi(u) ∈Cnû×1 and ∇ f (u) ∈Cnû×1 , (4.19)

∇
2 fi(u) ∈Cnû×nû and ∇

2 f (u) ∈Cnû×nû, (4.20)

Ri(u) = εi ∈C2×1 and R(u) = ε ∈Cnob×1 , (4.21)

ρi(·) ∈C2×1 and ρ(·) ∈Cnob×1 , (4.22)

ρ
′
i(·) ∈C2×2 and ρ

′
(·) ∈Cnob×nob , (4.23)

ρ
′′
i (·) ∈C2×2 and ρ

′′
(·) ∈Cnob×nob , (4.24)



95

Ji ∈C2×nû and J ∈Cnob×nû , (4.25)

JT
i ∈Cnû×2 and JT ∈Cnû×nob , (4.26)

where each group i has two data points as iPa =

 iPx

iPy

 and C represents the real number

space.

Some people consider M-estimators to be an alternative method of parameter estimation

instead of the least squares estimator. Actually, the least squares estimator can be

considered as a special case of M-estimator [47, 66]. If we express equation (4.2) in terms

of equation (4.13), equation (4.2) becomes

ρ = u (4.27)

Correspondingly, the ρ
′
= 1 and ρ

′′
= 0, which brings us back to equations (2.56) and (2.60)

in section 2.3.1.

4.3.2 Specific Robustified Formulas

In the M-estimator family, there are many options for the implementation of robust

estimators in bundle adjustment. One type of the robust estimator model for handling

outliers is the heavy-tailed or fat-tailed distribution, in which the tail tends to zero more

slowly than in a normal distribution. One example is the Cauchy distribution:

ρ(Ri(u)) =
c2

2
log
(

1+
Ri(u)T Ri(u)

c2

)
. (4.28)

The equation (4.14) becomes

∇ fi(u) =
1

ln(10)
(

1+ Ri(u)T Ri(u)
c2

) · JT
i · ε , (4.29)
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where

ρ
′
=

1

ln(10)
(

1+ Ri(u)T Ri(u)
c2

) . (4.30)

and equation (4.16) becomes

∇
2 fi(u)≈ JT

i ·

 1

ln(10)
(

1+ Ri(u)T Ri(u)
c2

) + 2 ·

 2

ln(10) · c2 ·
(

1+ Ri(u)T Ri(u)
c2

)2

 · εi · εi
T

·Ji ,

(4.31)

where

ρ
′′
=

2

ln(10) · c2 ·
(

1+ Ri(u)T Ri(u)
c2

)2 . (4.32)

Figures 4.8 and 4.9 are plots of the Cauchy distribution and its weighting function. As

shown in figure 4.8, the Cauchy distribution is bell-shaped curve within the central region.
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Figure 4.8: ρ(ri(u)) of the Cauchy distribution based robust M-estimator.
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Figure 4.9: w(ri(u)) of the Cauchy distribution based robust M-estimator.

Another possible example is the Welsch distribution:

ρ(Ri(u)) =
c2

2

(
1− e−

Ri(u)T Ri(u)
c2

)
. (4.33)

Equation (4.14) becomes

∇ fi(u) = e−
Ri(u)T Ri(u)

c2 · JT
i · ε , (4.34)

where

ρ
′
= e−

Ri(u)T Ri(u)
c2 , (4.35)

and equation (4.16) becomes

∇
2 fi(u)≈ JT

i ·
{

e−
Ri(u)T Ri(u)

c2 + 2
(
− 2

c2 e−
Ri(u)T Ri(u)

c2

)
· εi · εi

T
}
· Ji , (4.36)

where

ρ
′′
=− 2

c2 e−
Ri(u)T Ri(u)

c2 . (4.37)

Figures 4.10 and 4.11 show the plot of a Welsch distribution and its weighting function.
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Figure 4.10: ρ(ri(u)) of the Welsch distribution based robust M-estimator.
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Figure 4.11: w(ri(u)) of the Welsch distribution based robust M-estimator.

Figure 4.12 shows the plots of the normal distribution, the Cauchy distribution and the

Welsch distribution. As you can see, within the central region, the curve of the robustified

ρ function overlaps the curve of the normal distribution. This means the robust estimator
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and the least squares estimator have the same behavior within a certain range of data.
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Figure 4.12: Distribution of the normal distribution, the Cauchy distribution, and the
Welsch distribution.

Figure 4.13 is the plot of weighting functions corresponding to the LSE, Cauchy and

Welsch distributions. The weighting curve of the Cauchy and Welsch distributions is not

a straight line at 1 but a bell-shaped curve, which indicates that outside a certain range,

the robustified estimator will substantially de-weight outliers. Note that the bell-shaped

weighting functions of the Cauchy and Welsch distributions would apply to equation (4.11)

for each update term during iteration.
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Figure 4.13: Weighting function of the normal distribution, the Cauchy distribution, and
the Welsch distribution.

Additionally, according to Ricardo et al. [47], if ψ is re-descending, this will lead us to

the re-descending M-estimator, which has decent robustness performance corresponding to

those large outliers. Figures 4.14 and 4.15 are the plots of ψ functions of the Cauchy and

Welsch distributions.
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Figure 4.14: ψ function of the Cauchy distribution.
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Figure 4.15: ψ function of the Welsch distribution.

Both of the Cauchy and Welsch distributions are re-descending. However, the re-

descending feature of the Welsch distribution is stronger than the re-descending feature

of the Cauchy distribution, since the curve of the Welsch distribution goes to zero faster
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than the curve of the Cauchy distribution. The re-descending feature that tends to zero at ∞

is preferable, as it implies that for a large sample, the ρ function increases relatively more

slowly.

4.4 D̄, a New Metric for Measuring the Distance Between Camera

Calibrations

In the existing literature, no satisfactory metric has been proposed to express camera

calibration accuracy among several results of camera calibration with consideration of

all camera IO parameters. To measure the distance between camera calibration results,

I introduce a variable D̄.

To define D̄, first the d(i, j)
k is designed as:

d(i, j)
k = || pP(i)

k −
pP( j)

k ||2 , (4.38)

where d(i, j)
k is the 2-norm of the distance between kth landmark in two camera calibrations,

whose value is in pixels; k is an index of landmark points in the image of simulated grid of

points; i and j are index of camera models χi and χ j; and

pP(i)
k =

 pPx

pPy

 ∈ R2×k , (4.39)

where the pP(i)
k is calculated by equations (2.14)-(2.17) and the unit is pixel . Section 2.1.3

talks about how to perform the calculation from tPa data by following camera geometry.

Here, the tPa data is generated by simulated grid of points. Thus, the only experimental

information in pP(i)
k calculation is each estimated camera model. This will make D̄ focus

on the evaluation of estimated camera models.
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Then, the distances vector is:

Di, j =



d(i, j)
1

d(i, j)
2
...

d(i, j)
k


∈ Rnk×1 . (4.40)

Finally, D̄, the distance between two camera calibrations, is:

D̄i, j = D̄
(
χi , χ j

)
= ||Di, j||∞ , (4.41)

where χ̂ is the camera model from each camera calibration.

For example, if there is relationship:

D̄(χ̂1, χ
∗) < D̄(χ̂2, χ

∗) , (4.42)

where χ∗ is the true camera model, as the reference, then we say χ̂1 is more accurate than

χ̂2. In table 4.1 , D̄ is used to calculate the pair-wise distance between camera calibrations

among seven different camera calibration results, which were collected by two individuals

(K1, K2, K3, K4, K5 were collected by one individual; R1 and R2 were collected by

the other individual) with an AVT-StingrayF033B industrial camera and Edmund 10mm

optical lens. The D̄ table is symmetrical with a value of 0 for all diagonal elements,

since the comparison of the ith calibration itself yields zero. In table 4.1, the root mean

square (RMS) value of each column gives the minimum and maximum distance among

camera calibration results. The camera model corresponding to the minimum RMS value

is identified as the confident good camera calibration result χ̂∗, which is the estimation of

ideal camera model, whereas the estimated camera model corresponding to the maximum
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RMS value is considered the worst camera calibration result. If there is a result considered

an outlier out of all camera calibration results according to D̄ matrix, the camera model

should be eliminated from the comparison group before identification of the confident good

camera calibration result χ̂∗.

Data Sets K1 K2 K3 K4 K5 R1 R2
K1 0 0.114 0.487 1.112 0.224 0.312 0.213
K2 0.114 0 0.539 1.152 0.250 0.349 0.178
K3 0.487 0.539 0 1.592 0.317 0.250 0.556
K4 1.112 1.152 1.592 0 1.314 1.411 1.296
K5 0.224 0.250 0.317 1.314 0 0.222 0.256
R1 0.312 0.349 0.250 1.411 0.222 0 0.406
R2 0.212 0.178 0.556 1.296 0.256 0.406 0

Table 4.1: Distances among 7 different camera calibration results with
AVT-StingrayF033B industrial camera and Edmund 10mm optical lens. K1,
K2, K3, K4, K5 were collected by one individual; R1 and R2 were collected by
the other individual.
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4.5 Performance Analysis of Robustified Optimization

4.5.1 Algorithm Performance Analysis

The setup of data collection is shown in section 5.2.1. Under the same hardware

configuration, 15 image sets were collected using a 2D calibration tool with the depth

change between front and rear positions during data collection. First, the camera calibration

was performed with the least squares estimator, and the corresponding D̄ matrix is

computed and listed in table 4.2. Next, the least squares estimator is replaced by the

two selected robustified estimators in the parameter algorithm. Then, the two 15× 15 D̄

matrices of the Welsch distribution and the Cauchy distribution are calculated accordingly.

With the 15× 15 D̄ matrices corresponding to the least squares estimator, the Cauchy

distribution and the Welsch distribution, the root mean square values for each D̄ matrix

are formed and listed in table 4.3. This table demonstrates that the performance of the

robustified estimator in bundle adjustment gains up to 20% reduction of D̄.

RMS of D̄ (pixel) Improvement Percentage
LSE 0.489 −

Welsch 0.391 20.04%
Cauchy 0.418 14.52%

Table 4.3: Performance Analysis of the LSE and Robustified Estimator.

Figure 4.16 shows the residual values generated by the robustified estimator with the

Welsch distribution and the weighting function of the Welsch distribution. As mentioned

in section 4.3, compared to the flat line weighting function of the least squares estimator

shown in figures 4.7 and 4.13, the Welsch distribution gains robustness by de-weighting

outliers in residual values, while the least squares estimator heavily weights outliers in

data.
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Figure 4.16: Residual and weighting function of the Welsch distribution.

.

4.5.2 Adjustment of the Robustified Estimators

The parameters c is tuned by 5× magnification. Figures 4.17 and 4.18 are the plots of

Welsch distribution after 5× magnification of c. It is obvious that in the figure 4.17 is the

Welsch distribution that has the least-squares-like curve within central region. Figure 4.18

is just in different scale, by which you can see that the tuning of parameters c delays the

position of bending a least-squares-like curve by comparing with figure 4.10
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Figure 4.17: The Welsch distribution after 5× magnification of c: y axis scale is 0 to 10.
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Figure 4.18: The Welsch distribution after 5× magnification of c: y axis scale is 0 to 20.

Figure 4.19 is the plot of the Welsch distribution after 1
5× magnification of c. As you

can see, it is a very sharp quadratic curve.
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Figure 4.19: The Welsch distribution after 1
5× magnification of c: y axis scale is 0 to 0.1.

Figures 4.20 and 4.21 are the combined plot of the Welsch distribution with adjustment

of the c parameters.
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Figure 4.20: The Welsch distribution with tuning the c parameters: 5×, Original, 1
5×.

Note that figure 4.21 is the magnified version of figure 4.20. Figure 4.21 is for better
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observing the overlapped curves of the modified the Cauchy distributions, since the 1
5

modification seems like a straight line in figure 4.20.
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Figure 4.21: The magnification of the Welsch distribution with tuning the c parameters:
5×, Original, 1

5×.

Similarly, figures 4.22 and 4.23 are the combined plots of the Cauchy distribution with

adjustment of the c parameters. Figure 4.23 zooms figure 4.22 for better observation of the

overlapped curves from modified the Cauchy distributions.
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Figure 4.22: The Cauchy distribution with tuning the c parameters: 5×, Original, 1
5×.
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Figure 4.23: The magnification of the Cauchy distribution with tuning the c parameters:
5×, Original, 1

5×.

By adjusting as above, we can find whether the change of a robustified estimator would
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impact the calculation accuracy. Next, I redo the camera calibration for all 15 image sets

and D̄ matrix calculation. Finally, applying RMS for all values in the D̄ matrix after tuning

robustified estimator, table 4.4 is obtained.

RMS of D̄ (pixel) Improvement Percentage
LSE 0.486 −

Welsch 0.391 20.04% (better)
Welsch 5× c 0.361 25.72% (better)
Welsch 1

5 × c 0.772 58.85% (worse)
Cauchy 0.418 14.52% (better)

Cauchy 5× c 0.367 24.49% (better)
Cauchy 1

5 × c 0.772 58.85% (worse)

Table 4.4: Performance Analysis of the LSE and Robustified Estimator.

This table demonstrates that the performance improvement of the robustified estimator

in bundle adjustment can be better if tuning c in the right way. Or, if the c is not appropriate,

the robustified estimator would lose its expected robustness.

4.6 Summary

In this chapter, the disadvantage of the least squares estimator is analyzed first. The outliers

significantly impact the estimation accuracy under least squares estimation in optimization.

Next, the advantage of robust estimator is demonstrated, and the outliers are de-weighted

by a robustified estimator. The impact of outliers is considerably less under robustified

estimation procedure in optimization. Two distributions from M-estimator family are

selected and applied to bundle adjustment. A new metric D̄ is introduced, which is the

distance between two camera calibrations with consideration of all estimated camera IO

parameters. D̄ is used to evaluate the performance among the least squares estimator and

robust estimators. After applying a robust estimator, the system improves the accuracy and

performance in camera calibration up to 25% with the analysis of experimental camera

calibration calculation results. Lastly, it is demonstrated that if the robustified estimator is

tuned properly, the accuracy can be improved further.
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5 Experimental Enhancement: 3D Calibration Tool

Bundle adjustment is performed with the goal of high accuracy estimation for camera

calibration. The bundle adjustment algorithm accepts a huge amount of observation data

and does large scale optimization. In addition to avoidance of singularity in section 3 and

improvement of outlier handling in section 4, a revolution of calibration tool used in camera

calibration is also necessary for accuracy improvement of camera calibration results.

5.1 Camera Calibration Tool

5.1.1 2D Camera Calibration Tool

Overview of 2D calibration tools

In general, a 2D calibration tool is used for camera calibration. The drawback is that the

corresponding Hessian matrix may be ill-conditioned, which is a major reason for failure

of numerical calculation in camera calibration. Various 2D calibration tools are shown in

figure 5.1. The first one, from Remondino and Fraser [54], is a planar checker board, which

is a very common planar calibration tool. The second one, from Zhang [68], is a checker

board with special dots and is used to identify the correspondence of reference points.
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1 2

Figure 5.1: 2D calibration tools: No.1 adopted from Remondino and Fraser [54]; No.2
adopted from Zhang [68].

Artwork of 2D calibration tool

The 2D calibration tool, which relies on the starburst image processing algorithm, is used

in this thesis. The 2D calibration tool is shown in figure 5.2.
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Figure 5.2: The 2D calibration tool with 1 white central starburst landmark around by four
circles and 72 black starburst landmarks.

There is one white starburst landmark surrounded by four circles in the center of the

calibration tool and seventy-two black starburst landmarks around the white starburst. In

total, there are 73 starburst landmarks on the 2D calibration tool.

5.1.2 3D Camera Calibration Tool

Overview of 3D calibration tool

A 3D calibration tool will introduce additional constraints in the parameter estimation,

yielding a better-conditioned Hessian matrix and a smaller norm value of corresponding

covariance matrix. Several 3D calibration tools used by other researchers are shown in

figure 5.3. The first is from Abraham and Hau[2]; the second is from Remondino and

Fraser [54]; the third is from Kunii and Chikatsu [36]; and the fourth is from Heikkila [33].

Various designs of a 3D calibration tool have been used. The choice of landmark features
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is up to the researchers and their system setup.

1 2

3 4

Figure 5.3: 3D calibration tools: No.1 adopted from Abraham and Hau[2]; No.2 adopted
from Remondino and Fraser [54]; No.3 adopted from Kunii and Chikatsu [36];
No.4 adopted from Heikkila [33].

Artwork of 3D calibration tool

Like the 2D calibration tool, the 3D calibration tool used in this thesis is designed to work

with the starburst image processing algorithm. It is shown in figures 5.4, 5.5 and 5.6. The
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investigated 3D calibration tool has a raised area in the center. The bundle adjustment

achieves ray intersection to within ±3 microns on the calibration tool, so elevating some

landmarks by 3 to 6 mm will be significant. Figure 5.4 shows a line drawing of the design.

Figure 5.4: Design of a 3D calibration tool.

The practical 3D calibration tool is shown in figures 5.5 and 5.6.

Figure 5.5: The 3D calibration tool with 1 white central landmark surrounded by four
circles and 68 black starburst landmarks.

As you can see, there is one white starburst landmark surrounded by four circles in the
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center of the calibration tool and sixty-eight black starburst landmarks around the white

starburst. Thus, there are a total of 69 starburst landmarks on the 3D calibration tool.

For each starburst landmark, the center point is the intersection of the five spokes of the

starburst. Figure 5.6 illustrates the raised area in the middle of 3D calibration tool, which

is measured at 5.88 mm35 higher than the rest of 3D calibration tool.

Figure 5.6: The 3D calibration tool with the raised middle area.

5.2 Camera Calibration with 2D and 3D Calibration Tools

5.2.1 Camera Calibration Experiment Setup and Data Collection

Experiment setup

Data sets used in this thesis were collected by the camera unit with a 2D calibration tool

and 3D calibration tool shown in figures 5.2, 5.5 and 5.6. The system is used to calibrate

35. Measured by a digital caliper. This value is offered during camera calibration calculation as one of those
initial values for optimization.
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motion tracking systems for prospective motion correction in MRI. The setup of camera

unit and calibration tool is shown in figure 5.7.

Figure 5.7: Camera unit (Left), Digital images displayed by PC monitor (Middle) and 2D
calibration tool (Right).

The camera unit contains a digital high performance industrial camera–Prosilica

GC1290 from Allied Vision Technologies with an Edmund 18mm lens and an LED lighting

section. The camera is a 1280×960 resolution mega pixel CCD camera and incorporates

a high-quality Sony EXview HAD CCD sensor. The pixel size is 3.75× 3.75µm . The

maximum frame rate at full resolution is 32 fps. The lighting part offers extra lighting for

calibration tool observation by camera sensor.

During the experiment, the user moves the calibration tool by following a certain

procedure to collect images of the calibration tool at different desired positions. Digital

images will be recorded by an optical cable connection between the camera unit and

computer. The user can see what the camera has recorded in LCD monitor and may adjust
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the calibration tool to the desired position in 3D space.

Data collection strategy

Currently, the collection of 200 images for each camera calibration is performed. Figures

5.8 and 5.9 show the motion strategy of the calibration tool in 3D space. The same motion

strategy is used for both the 3D and 2D calibration tools. Figure 5.8 shows that, during

image collection stage, the 3D calibration tool is tilted towards 5 directions of the camera:

the front, the top, the bottom, the right and the left in the position closer to camera unit

within the FOV of the camera unit. Then the direction adjustment is repeated by moving

backward within the FOV of the camera unit. Figure 5.9 shows that the 3D calibration tool

is also rotated at κ angle36 by 0◦, 90◦, 180◦, and 270◦. Every time after rotating the κ angle,

the user needs to repeat the movement demonstrated in figure 5.8.

36. κ = 0◦ is the initial position shown in figure 5.8.
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1 2 3

4 5 6

7 8 9

10

Figure 5.8: Digital images of the 3D calibration tool at various positions: 1, 2, 3, 4, and 5
are in the front with the tool tilting towards different directions; 6, 7, 8, 9, and
10 are in the rear with the tool tilting towards different directions.
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1 2 3

1 2 3

Figure 5.9: Digital images of the 3D calibration tool with κ angle rotation at 90◦, 180◦ and
270◦: 1, 2, and 3 are collected in the front position; 4, 5, and 6 are collected in
the rear position.

5.2.2 Image Processing in Camera Calibration

The image sets collected by following the above pattern are processed by the camera

calibration software system. The user runs image processing first for processing the

digital images–the extraction of pPa ∈ R2 for each landmark from each image, which can

be as many as 200× 73× 2 = 29200 measurement values for the 2D calibration tool or

200×69×2 = 27600 measurement values for the 3D calibration tool. Next, the measured

pPa = Ȳ and initial values of camera IO parameters are used as input for the bundle

adjustment algorithm to do camera calibration, which can estimate camera IO, EO and lens

distortion parameters simultaneously. Regarding the workload of each camera calibration

by bundle adjustment, the above setup can be taken as an example. There are 200 images of

distinct calibration tool positions. Each image contains 73 landmarks for the 2D calibration
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tool, or 69 landmarks for the 3D calibration tool. Thus, the algorithm needs to estimate 10

camera IO plus 200× 6 camera EO plus 73× 3 landmark positions for a 2D calibration

tool or 69×3 landmark positions for a 3D calibration tool, which equals 1422 parameters.

Particularly, a total of 1417 parameters need to be estimated, after subtraction of the 7

parameters mentioned by Ganshaw [25]. After image processing, a typical distribution of

pPa in the field of view (FOV) of a camera calibration data set is shown in figures 5.10 and

5.11. The image set of the 2D and 3D calibration tools contains around 200 usable images,

which almost cover the FOV of the digital camera, as shown in figures 5.11 and 5.10.
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Pass 4[1, 5], /var/working/qli/ImageSet2013AfterSummer/Session−2013.10.18_14.37.36−2D−3D−all−NT5/QLI−10−18−2013−2D−all−NT5−2
12235 Landmarks, 191 Images, 1365 Parameters, RMS Diff: 0.0114

Figure 5.10: Distribution of landmarks of a image set: Data set was collected with
Prosilica GC1290 camera and Edmund 18mm lens with the 2D calibration
tool.
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Pass 4[1, 5], /var/working/qli/ImageSet2013AfterSummer/Session−2013.10.18_14.37.36−2D−3D−all−NT5/QLI−10−18−2013−3D−all−NT5−4
12116 Landmarks, 203 Images, 1425 Parameters, RMS Diff: 0.0149

Figure 5.11: Distribution of landmarks of a image set: Data set was collected with
Prosilica GC1290 camera and Edmund 18mm lens with the 3D calibration
tool.

The diversity of the camera poses captured in one camera calibration data set is shown

in figures 5.12, 5.13, 5.14, and 5.15. For the 2D calibration tool, figure 5.12shows groups of

the camera poses acquired by rotating κ angle at 0o, 90o, 180o, and 270o; Figure 5.13 shows

groups of camera poses acquired by adjusting the range from the camera to the calibration

tool. Similarly, for the 3D calibration tool, figure 5.14 includes groups of camera poses

found by rotating κ angle at 0o, 90o, 180o, and 270o and figure 5.15 includes groups of the

camera poses found by adjusting the range from the camera to the calibration tool. Figures

5.10 , 5.12, and 5.13 indicate that the collection of around 200 images is enough to cover

possible camera poses with a 2D calibration tool. Figures 5.11, 5.14, and 5.15 describe the

same situation with the 3D calibration tool.



125

−100 −50 0 50 100
−100

−50

0

50

Azimuth [deg]

E
le

va
tio

n 
[d

eg
]

Az vs. El, 
 Roll ~= 0 [deg] (63 points)

−50 0 50
−100

−50

0

50

100

Azimuth [deg]

E
le

va
tio

n 
[d

eg
]

Az vs. El, 
 Roll ~= 90 [deg] (32 points)

−100 −50 0 50 100
−60

−40

−20

0

20

40

60

Azimuth [deg]

E
le

va
tio

n 
[d

eg
]

Az vs. El, 
 Roll ~= 180 [deg] (31 points)

−50 0 50 100
−100

−50

0

50

100

Azimuth [deg]

E
le

va
tio

n 
[d

eg
]

Az vs. El, 
 Roll ~= 271 [deg] (48 points)

Figure 5.12: Diversity of camera poses in experimental camera calibration set: Data set
was collected with Prosilica GC1290 camera and Edmund 18mm lens,
azimuth and elevation v.s. sκ angle with the 2D calibration tool.
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Figure 5.13: Diversity of camera poses in experimental camera calibration set: Data set
was collected with Prosilica GC1290 camera and Edmund 18mm
lens,azimuth and elevation v.s. range with the 2D calibration tool.
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Figure 5.14: Diversity of camera poses in experimental camera calibration set: Data set
was collected with Prosilica GC1290 camera and Edmund 18mm lens,
azimuth and elevation v.s. sκ angle with the 3D calibration tool.
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Figure 5.15: Diversity of camera poses in experimental camera calibration set: Data set
was collected with Prosilica GC1290 camera and Schneider 18mm lens,
azimuth and elevation v.s. range with the 3D calibration tool.
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5.3 Camera Calibration Results Analysis

5.3.1 Data Collection and Camera Calibration Results

The setup of data collection is shown in section 5.2.1. By using the same hardware

configuration and setup focus of the lens around 1 meter, 8 image sets are collected with the

2D calibration tool with the depth change between front and rear positions, and 8 image

sets are collected with the 3D calibration tool with the depth change between the front

and rear positions. Using the same strategy, 8 image sets by the 2D calibration tool and 8

image sets by the 3D calibration tool are collected when setting focus of the lens around 2

meters. After the bundle adjustment optimization of all the image sets, there is a total of 32

estimated camera EO and IO based on each image set. Tables 5.1 and 5.2 list the estimated

camera IO parameters for the 2D and 3D calibration tools with focus of the lens around 1

meter.

5.3.2 χ̂∗, the Estimation of Ideal Camera Model

The confident good camera calibration model χ̂∗ is found using the D̄i, j matrix as described

above. Based on a D̄i, j matrix, the camera model with the smallest root mean square

distance of all the estimated camera models is considered as the χ̂∗. Among the image sets

collected with focus of the lens at around 1 meter in section 5.3.1, the χ̂∗ is identified as

the camera calibration result of the 4th image set by the 3D calibration tool. Note that there

will be a different χ̂∗ for the image sets collected with focus of the lens around 2 meters.

5.3.3 Experimental Analysis of 2D and 3D Camera Calibration Tools

After finishing the camera calibration calculation for the 16 image sets collected with focus

of the lens around 1 meter, the D̄2D and D̄3D are calculated. The D̄i, j matrix and χ̂∗ are

calculated as mentioned in section 5.3.2. Correspondingly, table 5.3 lists the D̄2D.
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2D Set1 Set2 Set3 Set4 Set5 Set6 Set7 Set8
Set1 0 0.447 0.612 0.279 0.326 0.219 0.272 0.194
Set2 − 0 0.165 0.165 0.185 0.253 0.192 0.388
Set3 − − 0 0.327 0.293 0.388 0.335 0.550
Set4 − − − 0 0.172 0.209 0.153 0.311
Set5 − − − − 0 0.108 0.054 0.271
Set6 − − − − − 0 0.062 0.163
Set7 − − − − − − 0 0.217
Set8 − − − − − − − 0

Table 5.3: The upper triangular part of the symmetric D̄2D of the 2D calibration tool with
focus of the lens around 1 meter.

Table 5.4 lists the D̄3D.

3D Set1 Set2 Set3 Set4 Set5 Set6 Set7 Set8
Set1 0 0.159 0.222 0.154 0.182 0.217 0.311 0.178
Set2 − 0 0.295 0.227 0.053 0.374 0.288 0.113
Set3 − − 0 0.139 0.249 0.319 0.308 0.188
Set4 − − − 0 0.207 0.180 0.199 0.203
Set5 − − − − 0 0.395 0.237 0.061
Set6 − − − − − 0 0.281 0.377
Set7 − − − − − − 0 0.217
Set8 − − − − − − − 0

Table 5.4: The upper triangular part from the symmetric D̄3D of the 3D calibration tool
with focus of the lens around 1 meter.

Then, the root mean square values for the two D̄ matrices in tables 5.3 and 5.4 are

computed and shown in table 5.5.

Experimental Results RMS of D̄ (pixel) Improvement Percentage
D̄2D 0.291 −
D̄3D 0.242 16.87%

Table 5.5: Statistics of D̄ based on the 2D and 3D calibration tools, 8 image sets for each
calibration tool with focus of the lens around 1 meter.

Based on the above table, according to image sets collected under focus of the lens

around 1 meter, the 3D calibration tool offers the camera calibration result with accuracy

improved by around 16%. The camera calibration results of the 3D calibration tool are
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closer to the ideal χ∗ than the camera calibration results of the 2D calibration tool. The

improvement of the camera calibration results accuracy are repeatable based on different

image sets collected by different individuals.

By the same calculation, table 5.6 is of image sets collected under focus of lens around

2 meter. As can be seen, the improvement of the the 3D calibration tool over the 2D

calibration tool is 26.91%.

Experimental Results RMS of D̄ (pixel) Improvement Percentage
D̄2D 0.470 −
D̄3D 0.343 26.91%

Table 5.6: Statistics of D̄ based on the 2D and 3D calibration tools, 8 image sets for each
calibration tool with focus of the lens around 2 meters.

The other 16 image sets (8 for each type calibration tool) are collected by focus of the

lens around 2 meters on another day, which offers a different results. As shown in table

5.7, the improvement performance of the 3D calibration tool over the 2D calibration tool

is around 3%. Thus, the performance of the 3D and the 2D calibration tools are quite close

according to this particular experiment.

Experimental Results RMS of D̄ (pixel) Improvement Percentage
D̄2D 0.538 −
D̄3D 0.523 2.79%

Table 5.7: Statistics of D̄ based on the 2D and 3D calibration tools, 8 image sets for each
calibration tool with focus of the lens around 2 meter.

With further experiment, the unstable results with setting focus of the lens around 2

meter appears inconsistent. The unrepeatable results of improvement are believed to be

generated by motion blur in the digital images. With a longer distance of focus situation,

camera sensor is easier to capture motion blur when the user moves the camera calibration

tool in 3D space, since the longer focus of the lens means a larger f /# and slower shutter

speed.
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5.3.4 Mathematical Analysis of 2D and 3D Camera Calibration Tools

Mathematical analysis is used to simulate camera poses of the 3D calibration tool based

on camera poses of the 2D calibration tool. This would reduce other possible factors37

that would impact the camera calibration results, and thus focus on the analysis of the

performance improvement according to the different designs between the 3D and 2D

calibration tools.

Covariance matrices analysis: camera calibration estimation

Figures 5.16, 5.17, and 5.18 offer us the performance analysis of the 2D calibration tool and

the 3D calibration tool by simulating the same camera poses for both tools. Figure 5.16 is

the difference of standard deviation between the 3D calibration tool and the 2D calibration

tool during camera calibration. Figure 5.17 shows the standard deviation values in the 3D

calibration tool and the 2D calibration tool corresponding to each camera pose in 6 DOF,

represented in spherical coordinate system. Figure 5.18 compares the change of standard

deviation values in the 3D calibration tool and the 2D calibration tool corresponding

to each camera pose in 6 DOF, represented in spherical coordinate system. All three

figures indicate that the 3D calibration tool offers less uncertainty in the camera calibration

optimization.

37. For example, it is not piratical to have two image sets that contain exact same camera poses collected by
the 2D and 3D calibration tools. However, simulated the 3D calibration tool from the 2D calibration tool
can achieve this.
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Figure 5.16: Difference values of STD of the 3D and the 2D calibration tools during
camera calibration: a blue cross means the 3D calibration tool makes the
standard deviation of camera calibration smaller than the 2D calibration tool;
while a red circle means the 2D calibration tool makes STD smaller than the
3D calibration tool.
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Figure 5.17: STD values of the 3D and 2D calibration tools corresponding to camera
poses in 6 DOF: a blue cross is the STD values of the 3D calibration tool; a
red circle is the STD values of the 2D calibration tool.
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Figure 5.18: Difference of STD of the 3D and 2D calibration tools corresponding to
camera poses in 6 DOF: a blue cross means the 3D calibration tool makes the
STD of camera calibration smaller than the 2D calibration tool; while a red
circle means the 2D calibration tool makes STD smaller than the 3D
calibration tool.

Covariance matrices analysis: camera calibration results

The idea is to simulate the covariance matrix of the 3D calibration tool and generate the

camera calibration estimation. The calculation starts from the covariance matrix generated

by the camera calibration of the 2D calibration tool image sets. We are looking for the

camera model of each camera calibration result χ j:

χ j = f (χ∗, Covχ j) , (5.1)
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such that

Covχ j = E{(χ j−χ
∗) · (χ j−χ

∗)T} , (5.2)

where χ∗ is the ideal camera model as the reference; χ j is the estimated camera model

corresponding to each image set; and j = 1, 2 , · · · is the index. In the experimental data

collection, j = 1, 2 , · · · , 8, since eight 2D calibration tool image sets are collected; Covχ j

is the covariance matrix of camera calibration corresponding to each image set.

To compute χ j is to simulate observed data form Covχ j as follows:

1. Construct a normal distributed matrix A whose dimension is 12× a largenumber. In

my computation, A is 12×105

2. SVD decomposition of CovχJ to get

[U, Σ, V ] = svd(Covχ j) (5.3)

If matrix Covχ j ∈Cm×n, the SVD of Covχ j gives us

Covχ j = UΣV H =
r

∑
i=1

σiuivH
i ,

where U = (u1, · · · , um), V = (v1, · · · , vn) and Σ =

 Σ1 0

0 0

.

3. QR decomposition

[Q,R] = qr(
√

Σ×V T ) (5.4)

If B =
√

Σ×V T , then QR decomposition gives us

B = Q

 R

0

 ,
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where Q ∈Cm×m is an orthogonal matrix38 and R ∈Cn×n is called R factor of matrix

B, which is an upper triangular with non-negative diagonal entries.

4. R performs as a transformation matrix to introduce the covariance relationship

contained in Covχ j into matrix A:

χ̃ j = RT ×A , (5.5)

where χ̃ j is the transformed data which contains the covariance information39.

5. Constructing the camera model χ j:

χ̂ j = χ̂∗+ χ̃ j . (5.6)

By the Monte Carlo method, the 100 samples from χ̃ j in equation (5.6) are selected to

provide simulated χ1
j , χ2

j , · · ·χk
j. D̄i, j matrix is calculated for each 3D calibration tool and

2D calibration tool: D̄3D and D̄2D. Next, the root mean square values of D̄3D and D̄2D are

computed. Table 5.8 gives us the results:

Simulated Results RMS of D̄ (pixel) Improvement Percentage
D̄2D 0.093 −
D̄3D 0.083 10.42%

Table 5.8: Improvement of D̄ based on the 2D and 3D calibration tools: simulated χ̃ j
corresponding to covariance matrices of camera calibration.

The RMS value of D̄2D and D̄3D indicates that for each image set, the simulated D̄ of

the 2D and the 3D calibration tools is

D̄3D < D̄2D , (5.7)

38. If Q is an orthogonal matrix, thenQHQ = I.
39. Each column of the χ̃ j is a sample of χ̃.
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which means that a camera calibration based on image sets of a 3D camera calibration tool

introduces less correlation into estimation.

If we compare the improvement percentage values in tables 5.8 and 5.5 in section

5.3.3, the improvement of a 3D calibration tool is around 11%, which demonstrates the

consistency of improvement between experimental result and simulated result.

5.4 Summary

In this chapter, a new 3D calibration tool is designed to collect observations for camera

calibration. It is demonstrated that a carefully designed calibration tool will improve

estimation results compared to the estimation from a 2D calibration tool. By analyzing

the experimental results, data sets collected with the 3D calibration tool will lead to the

improvement mathematically, higher calibration accuracy, as expected. By introducing the

covariance matrices and the Monte Carlo method, the advantage of the 3D calibration tool

is analyzed without other impact factors involved as much as possible. The analysis shows

that the residual values generated by the 3D calibration tool is smaller than the covariance

matrix generated by the 2D calibration tool, as expected. This result is repeatable when

processed data sets are collected with focus of the lens around 1 meter, compared to setting

focus of the lens around 2 meters. The 3D calibration tool is superior to the 2D calibration

tool in its improvement of camera calibration accuracy.
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6 Final Chapter and Future Work

This research makes three primary contributions: (i) development of singularity of

representation definition and confirmation of new conditions for singularity in spherical

coordinate representation in application; (ii) application of the robust estimators in bundle

adjustment, experimental and theoretical evaluation of the performance of robustified

estimators; (iii) design and validation of a new 3D calibration tool. These are enhancements

to high-accuracy camera calibration technology.

6.1 Key Findings of This Research

The first contribution of this thesis is a formal definition of singularity of representation

that is offered mathematically and goes beyond a description of singularity. The spherical

coordinate system is introduced as a representation and is used to represent camera

pose during camera calibration. This coordinate representation method does contain

singularities with respect to camera FOV. This is demonstrated mathematically, laying the

foundation for avoiding singularities during camera calibration.

The second contribution is an analysis of the characteristics of the least squares and

robustified estimators. Classical estimators, with the normal distribution assumption, can

be strongly influenced by outliers, giving inaccurate results. In photogrammetry, thousands

of data points are collected for bundle adjustment. The outliers in data sets will impact the

camera calibration accuracy, which will fail to satisfy the application requirements. Robust

estimators can de-weight outliers that cannot be modeled using the classical estimator.

The good fit to the observations by robust estimators provides reliable camera calibration

results. By applying specific robustified estimator to optimization of bundle adjustment,

the robustified method is proven to significantly improve camera calibration accuracy.

The third part is the design and application of a 3D calibration tool for data collection.

16 image sets are collected, 8 for the 3D calibration tool and 8 for the 2D calibration tool.
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The experimental analysis is based on camera calibration results and the corresponding D̄

matrix, which shows that the 3D calibration tool gives us accuracy improvement. The

mathematical analysis is based on simulated results generated by a covariance matrix

of camera calibration, which shows that the 3D calibration tool gets similar accuracy

improvement to the 2D calibration tool compared to experimental analysis.

Moreover, I introduce D̄, a new metric created to measure and evaluate the distance

between camera calibrations. The utilization of this quantity offers a way to evaluate the

performance of robustified estimator, find the confident good camera calibration result as

reference, and evaluate the performance of calibration tool for data collection and camera

calibration computing.

6.2 Future Work

This research can be expanded to several sub-topics. Regarding singularity of

representation situations, it is important to check the impact of the singularity cases on

the processing system. For example, if camera calibration data sets contain a singularity,

the impact on the accuracy of the camera calibration results should be determined, and

the degradation of optimization in bundle adjustment needs to be addressed. Also, the

application should be enhanced to find the data with singularity and eliminate them, or

the system can remind users that they hit the particular conditions of singularity in those

positions in the data collection stage. This will reduce the likelihood of difficulties in

optimization calculation during bundle adjustment.

In the robustified optimization step, the algorithm can be optimized towards the

efficiency of the robustified calculation. An adaptive algorithm that can adjust itself

according to analysis of experimental camera calibration data will enhance the performance

and reliability of bundle adjustment. For example, it will be more optimal that the adaptive

algorithm can automatically tune the parameters of the robustified object function based on

the experimental camera calibration data. In chapter four, I demonstrate that tuning of the
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parameters has the potential to improve the estimation further. This will gain us the best

result according to specific experimental camera calibration data.

As for the 3D calibration tool, the work can be expanded to investigate the performance

of other landmarks layout design. For example, in my current development, there is a

raised area in the center of the 3D calibration tool; it would be interesting to design a 3D

calibration tool with raised border area instead of central area. Then, we could compare

the performance of the two versions of the 3D calibration tool. Moreover, since the 3D

calibration tool introduces extra constraint compared to a 2D calibration tool, it would also

be meaningful to investigate if camera calibration based on experimental data sets with a

3D calibration tool would need fewer images to achieve the same accuracy. This would

reduce the time-cost of data collections and accelerate camera calibration calculation speed

for the users.
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