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ABSTRACT

SCALABLE, EFFICIENT AND OPTIMAL DISCRETE-TIME REBALANCING

ALGORITHMS FOR LOG-OPTIMAL INVESTMENT PORTFOLIO

by

Sujit R. Das

The University of Wisconsin-Milwaukee, 2014

Under the supervision of Prof. Mukul Goyal

Portfolio rebalancing decisions are crucial to today’s portfolio managers especially in high

frequency algorithmic trading environment. These decisions must be made fast in dynamic

market conditions. We develop computational algorithms to determine optimal rebalance

frequency (ORF) of a class of investment portfolio for a finite investment horizon. We choose

log-optimal investment portfolio which is deemed to be impractical and cost-prohibitive

due to inherent need for continuous rebalancing and significant overhead of trading cost.

Optimality of such portfolio is assured only when for very long term investor horizon. We

study the question of how often a log-optimal portfolio be rebalanced for any given finite

investment horizon. We develop an analytical framework to compute the expected log of

portfolio value when a given discrete-time periodic rebalance frequency is used. For a certain

class of portfolio assets, we compute the optimal rebalance frequency. We show that it is

possible to improve investor log utility using this quasi-passive or hybrid rebalancing strategy.

Under the assumptions of geometric Brownian motion for assets and log-normality for

sum of log-normal random variables, we find that the ORF is a piecewise function of in-

vestment horizon. One can construct this rebalance strategy function, called ORF function,

up to a specified investment horizon given a limited trajectory of expected log of portfolio

ii



value (ELPV) when the initial portfolio is never rebalanced. We develop the analytical frame-

work to compute the optimal rebalance strategy in linear time, a significant improvement

from the previously proposed search-based quadratic time algorithm. Simulation studies

show that an investor can gain significantly by adopting a discrete-time rebalancing periodi-

cally using ORF in lieu of continuous rebalancing. Finally we investigate the computational

efficiency of the proposed algorithms to develop optimized versions which are scalable to

portfolios comprising of large number of assets.
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1Chapter 1

Introduction

The fifty year old Markowitz’s Nobel Prize winning proposition of mean-variance principle

has set in motion a large body of mathematical work which forms a solid foundation of the

present day investment science. Investment decisions are increasingly made by sophisticated

computationally heavy financial algorithms. These computational systems have become

the corner stone of newest branch of engineering dubbed financial engineering. Financial

engineering principles are only useful when modern computer science principles are utilized to

build real-world financial computation systems. Indeed such financial computational systems

are the foundation of almost all modern day wall-street like financial firms. Today’s typical

investor shuns the old day ”art of investment” and takes recourse to financial engineering

principles to set up and manage the investment portfolio.

Algorithmic trading systems are the foundations for many of today’s commercial pro-

prietary financial applications[1]. With increasing computational power, advanced trading

systems are built to deploy complex algorithms to make intelligent buy and sell decisions of

tradeable assets. Since the viable window for trading opportunity exists only for very short

time period, all trading decisions need to be made extremely fast in the order of seconds.

One important decision that many such trading systems have to reliably make is when and

how to rebalance an investment portfolio. Too frequent rebalancing can be cost prohibitive

due to transaction costs involved. Lethargic and procrastinated rebalancing decisions may

also prove to be costly in terms of lost opportunity to respond to market signals.



21.1 Portfolio Rebalancing

Once the portfolio is set up after determining the proper asset mix, the investor needs to

address the issue of rebalancing the portfolio. Calvet et. al. [2] have studied the behavioral

aspects of portfolio rebalancing for Swedish household investors. The changes in the house-

hold risky share is decomposed into two components, viz., passive change driven by returns

of risky assets in the absence of any trading and active changes resulting from household

rebalancing decisions. Their regression based analysis shows strong household propensity to

rebalance. Specifically, they show that wealthy and educated investors with better diversified

portfolios rebalance more actively. There is strong evidence that households rebalance by

holding on to losing stocks whose prices have fallen and selling winning stocks whose prices

have increased. This is known as disposition effect which has been examined in many papers

including [3] and [4].

Conventional rebalancing strategies have been studied extensively by both researchers

and practioners[5][6][7]. Authors Collins et. al. [8] provide an excellent survey of modern

principles and practice of rebalancing. There are three types of conventional rebalancing

techniques discussed in literature[9]. In calendar rebalancing the portfolio mix is returned to

initial asset mix in regular periodic intervals. In rebalancing to allowed range, the portfolio is

always brought back within the allowed range of drift. In the third technique called threshold

rebalancing, the portfolio is always rebalanced to the initial mix whenever it drifts beyond a

predefined range.

A sound investment philosophy needs to consider several aspects of rebalancing. Promi-

nent among them are the questions of when one should rebalance and what the portfolio

should be rebalanced to. In this context the authors in [9] have studied the historical stock

and bond return and standard deviation data between 1968 to 1991 to conclude that disci-

plined rebalancing can indeed boost returns. They conclude that it is beneficial to rebalance

frequently so as to avoid large deviations from the original mix. The study also indicates



3that a monthly periodic rebalance frequency wins over other frequencies when both portfolio

risk and return are considered. In a somewhat similar study Thompson [10] uses historical

data between 1997 to 2002 to show that annual rebalancing frequency outperforms others

such as monthly, quarterly and passive or no rebalancing. In yet another significant study,

the authors in [4] find that investors actually lose as they indulge in excessive trade.

This apparent inconsistent empirical conclusions based on historical data mining add

to the confusion in making sound rebalance decisions. Most of these exercises are at best

qualitative in nature. Practitioners have attempted formulating ad-hoc intuitive rules to

determine when to rebalance [11][12]. Although these rules do provide useful guidance to

portfolio managers, they are not based on solid mathematical or analytical foundation.

More than forty years ago, Merton[13] was the first to compute an optimal dynamic port-

folio strategy in continuous time framework. Since then, several researchers have enriched the

field either by adding mathematical sophistication to the underlying asset dynamics[14] or

optimizing for different investor utility[15]. A nagging practical issue with these continuous-

time framework is the need for constant or continuous rebalancing to the optimal portfolio.

Many researchers have studied the efficacy of discrete-time rebalancing ([16], [17], [18]).

It is found that the investor loss when the investor abandons active continuous trading for

discrete-time rebalancing may not be substantial. Using Monte Carlo simulation, Branger et.

al. in [17] conclude that in an incomplete market where derivatives are not used to construct

portfolios, the utility loss is very small due to discrete-time trading. For a 10 year horizon,

a passive buy-and-hold strategy will yield the same expected investor utility as continuous

trading needing merely about 10 basis points1 higher implied initial capital. For example,

for such a portfolio an initial investment of $100 and $101 will produce the same terminal

expected utility using continuous rebalancing and no rebalancing respectively.

Similarly, Sun et. al. in [18] developed a dynamic programming algorithm to compute

1One basis point equals one hundredth of a percentage point.



4the optimal rebalancing schedule. They show that using the schedule, the suboptimality cost

for not using continuous rebalancing is very small limited to only 5 basis points. However,

the approach is computationally burdensome and suffers from the curse of dimensionality

as the portfolio size grows. The runtime for a portfolio of five risky assets can be up to

75 minutes on a single PC. Subsequently Kriztman et. al. in [16] alleviated the scalability

issue by using a quadratic heuristic (originally proposed in [19]) without significantly raising

suboptimality cost.

In [20], Tokat explores the factors that influence a rebalancing decision when threshold

rebalancing is adopted. Important among them are the asset characteristics, viz. correlation,

volatility and expected return. For highly correlated assets, the prices move in the same

direction preventing rapid deviation from the initial mix and obviating the need for frequent

rebalancing. Higher volatility increases the risk of significant deviation from the initial mix

requiring frequent rebalancing. The portfolio also drifts towards assets with higher expected

returns as time progresses. Hence the need to rebalance frequently when there is significant

differences among the expected returns of the assets.

Length of investment horizon also plays a role in rebalancing. Longer horizon increases

the chance for portfolio deviation from the initial target mix requiring frequent rebalancing.

Tokat also explores the influence of rebalance frequency for three types of return patterns

of assets over time. In upward trending markets, less frequent rebalancing is preferred to

avoid selling strongly performing assets in order to buy poorly performing assets. In mean-

reverting markets, where the prices tend to reverse after following an upward or downward

trend, faster rebalancing at opportunistic time can produce higher portfolio return. An

asset must be bought after the price has fallen and must be sold when price has appreciated.

When asset prices follow random walks ([21]) without following any pattern, less frequent

rebalancing is better in producing higher expected portfolio return.



51.2 Research Outline

In this research, we set out to gain insight on the question of how often an initial portfolio

be adjusted. For an investor, frequent rebalancing incurs cost in both time and money. The

investor may not want to miss the opportunity to rebalance if there is a higher chance to get

a better return. On the other hand, the investor will benefit by knowing when to be passive.

Informed passivity brings worry-free investment and saves paying undue trading fees. Hence

we explore two questions: when and how often the investor needs to rebalance and, when it

is worthwhile to be passive after initial investment decision.

We assume the investor has a log utility function and chooses the log-optimal strategy

to maximize expected log of portfolio value (ELPV). Luenberger in [22] provides exhaustive

analytical treatment to compute the optimal weights that the assets need to be divided

in a continuous time framework. The investor has to continuously rebalance the portfolio

to the initial estimation of the weights in order to achieve maximal ELPV in the long

run. This form of active investment strategy is cost-prohibitive and even impractical due

to significant overhead of rebalance and trading cost. Both researchers and practitioners

generally acknowledge the severe practical limitation of this strategy due to the continuous

rebalancing condition.

Log-optimal investment strategy, also known as Kelly’s criterion, has long been of interest

to researchers in ivestment community. [23] provides an extensive treatment on the topic.

The strategy has also several limitations. The strategy is very risky in short term. The

strategy can also fare poorly with potential huge losses as a result of a sequence of bad

scenarios no matter how long the finite investment horizon is. The asset means need to be

carefully and conservatively estimated since portfolio log growth is very sensitive to these

values. Despite log-optimal strategy’s established superiority over other similar investment

strategies in the long run, it can take a very long time to compute.

We start by developing an analytical foundation for passive investment strategy wherein



6the investors do not rebalance at all. A natural question to ask if the investor can benefit

by remaining passive and delaying the rebalance decision. In other words, instead of re-

balancing the portfolio continuously to initial set of weights, can she rebalance back to the

initial portfolio weights less frequently? By doing so we must not, at any time during the

investment horizon, sacrifice the investor goal of maximizing the ELPV as achieved under

active strategy. If such a rebalancing frequency exists, then the practical limitation set by

the continuous rebalancing condition can be overcome. We show that, for certain class of

portfolio assets, such a rebalance frequency2 indeed exists. In fact the investor can choose

from a range of rebalance frequencies to rebalance her portfolio to the optimal weights. We

can compute the single rebalance frequency in this range that will maximize the ELPV for

a given investment horizon. We first compute the duration called the rebalance time during

which passive strategy offers higher ELPV. Even better, we then use instantaneous portfolio

growth as the basis for determining the passive investment duration. Both of these alter-

native rebalancing times are used to design a hybrid strategy where the initial log-optimal

portfolio can be rebalanced, not continuously but at predetermined rebalanced frequency

without ever degrading investor’s log utility criteria. We prove that the use of the improved

rebalance time will potentially offer higher overall ELPV over any other higher rebalance

time.

After establishing the analytical relationship between passive and hybrid strategies, we

present a numerical algorithm to compute the optimal rebalance frequency (ORF) that max-

imizes the ELPV for a given investment horizon. Simulation studies show that the passive

strategy analytical framework accurately estimates the ELPV. While the analytical frame-

work for hybrid strategy performs well, it demonstrates better fidelity for higher rebalance

time with shorter investment horizon.

2In this thesis the term rebalancing frequency is generously used to describe the time interval in between
two rebalancing events.



7It is necessary to contrast our approach to that followed by Kuhn and Luenberger in

[24]. The authors formulate and solve the problem of maximizing the log-optimal portfolio’s

expected log growth rate when a periodic discrete-time rebalancing is used. The result-

ing portfolio weights may differ from those in optimal continuous-time rebalancing. They

demonstrate that for long-term investors continuous rebalancing only slightly outperforms

discrete-rebalancing if the investor chooses a rebalancing interval slightly shorter than a

year. In our proposed approach, the investor maximizes the expected log growth for a more

realistic short term horizon while rebalancing periodically to the same weights used in op-

timal continuous-time rebalancing. These asset weights are not guaranteed to be optimal

when they are used with discrete-time rebalancing or when the investment horizon is finite.

We find analytical solution for finding best possible periodic discrete-time rebalancing fre-

quency to use when a finite-term investor opts to use the initial optimal asset weights optimal

for continuous-time rebalancing. In this sense, our proposed approach adheres to calendar

rebalancing to rebalance to the initial portfolio mix periodically.

Unfortunately Kuhn and Luenberger do not analyze the finite-horizon investment out-

come. They provide analytical expressions for optimal weights only for simplistic portfolio

consisting of one risky and one risk-free asset for any given periodic discrete-time rebalanced

interval.

We merely want to know if the investor can afford to wait a certain finite time τ 6= 0

to rebalance. This proposition obviates the need to continuously rebalance, yet achieves

the same or higher level of ELPV. In order to answer this question, we first analyze the

portfolio dynamics in a purely passive approach when the investor does not rebalance at

all. This is an alternative extreme approach that follows a diametrically opposite investment

philosophy about rebalancing compared to the purely active continuous rebalancing log-

optimal approach.

Outline of various chapters in this thesis is as follows. In chapter 2 we establish the basic



8notations used in thesis and review the basics of log-optimal portfolios where the investor

actively rebalances the portfolio continuously. In chapter 3 we develop the mathematical

framework for the evolution of the portfolio when the investor stops adjusting the portfolio

after initial setup. We develop the analytical framework necessary to estimate the moments

of log of portfolio growth under such passive strategy. This analysis helps us to define and

propose our initial candidates for rebalance frequency. In chapter 4 we study the use of the

rebalance frequency to periodically rebalance the portfolio to obtain higher investor utility

for log-optimal investors. We estimate the portfolio growth when a discrete-time periodic

rebalancing is adopted in this so-called hybrid strategy. After establishing the mathematical

relationship between the evolution of ELPV under passive and hybrid strategies, we compute

the optimal rebalance frequency (ORF) maximizing terminal ELPV. In the chapter 5, we use

software optimization techniques to make the search based ORF algorithm, which is by design

quadratic in time, efficient and scalable to large number of assets. In chapter 6 we establish

the mathematical foundations based on which we significantly simplify the computational

steps required for ORF. In chapter 7, using simulation we examine the accuracy of the ORF

algorithms developed in the previous chapter. Finally in chapter 8 we conclude the findings

of this dissertation outlining relevant future research topics.



9Chapter 2

Log-Optimal Portfolio And Active Rebalancing

In continuous time multi-period portfolio optimization, log-optimal portfolio appeal to

many investors. In this framework the investor seeks to maximize expected log of portfolio

value (ELPV). In this chapter we review the existing mathematical foundation behind log-

optimal strategy. After listing the basic notations in section 2.1, we review the basics of

log-optimal portfolio in section 2.2. Lastly, we present a generic algorithm to execute a

rebalancing investment strategy.

2.1 Notations

Suppose the investor has the choice of setting up an investment portfolio from a set of

N risky financial assets and a risk-free asset. Typical risky assets are stocks and funds, and

often are correlated with other risky financial assets. These risky assets i = 1, . . . , N are pro-

vided with a priori expected returns and standard deviations. We assume that returns are

stationary random variables and hence the expected return and standard deviations don’t

change over time. We consider risk-free asset i = N + 1 such as T-bills offering constant

fixed rate of return. We will use the following symbols in our mathematical derivations and

analysis for ∀i, j = 1 to N + 1.

T = investment horizon in years (periods)

µi = expected rate of return for asset i

σi = standard deviation for asset i

ρij = correlation between returns of asset i and j

σij = covariance of asset i and j = ρijσiσj

wi = proportion of investment in asset i in portfolio for log-optimal allocation



10µp(t) = expected rate of return of portfolio of assets at time t

σp(t) = standard deviation of portfolio of assets at time t

V (t) = value (in dollars) of portfolio at time t

Without loss of generality, throughout our analysis we will assume an initial value of

V (0) = 1$. For asset N + 1 which is risk-free, we will use rf = µN+1 alternatively. Since the

asset is risk free, we also have σN+1 = 0 and

ρ(N+1)j = ρj(N+1) = 0 ∀j = 1 to N (2.1)

2.2 Active Portfolio

2.2.1 Asset Price Dynamics

In this section we briefly review the well known dynamics of asset prices. For more details

and discussion of asset price modeling the reader may refer to [21] and [22]. We assume

that asset price dynamics follows Geometric Brownian motion. Geometric Brownian motion

assumption is widely used in financial assets and derivative valuations ([25]).

dS(t) = µS(t)dt+ σS(t)dz (2.2)

where

S(t) = Asset price at time t.

µ = expected rate of return of the asset expressed in decimal form.

σ = volatility of the asset price.

Variable dz = ǫ
√
dt follows Wiener process, where ǫ ∼ φ(0, 1) is the standard normal variable.

Rearranging equation 2.2, instantaneous rate of return of the asset will be,

dS(t)

S(t)
= µdt+ σdz (2.3)



11In this paper we assume both the rate of return and volatility are constants for a given

asset.

In this setting, asset price S(t) has a lognormal distribution.

ln S(t) ∼ φ[ln S(0) + (µ− σ2

2
)t, σ2t] (2.4)

The first and second terms in the above equation represent the mean and variance of the

distribution respectively. Lognormality assumption precludes any negative price for assets.

Expected value and variance of asset prices are given by the following relationships:

E[S(t)] = S(0)eµt (2.5)

V ar[S(t)] = S2(0)e2µt(eσ
2t − 1) (2.6)

Lognormality of asset prices also lead to the following relationships of expected and

variance of log of growth of asset price:

E[ln{S(t)

S(0)
}] = νt (2.7)

V ar[ln{S(t)

S(0)
}] = σ2t (2.8)

where, asset growth rate ν is given by:

ν = µ− σ2

2
(2.9)

Let the continuously compounded rate of return per annum realized between time 0 and

t be denoted by x. The asset price in terms of x is given by the following expression ([21]):

S(t) = S(0)ext (2.10)



12From equations 2.4 and 2.10, x can be characterized by the following normal distribution:

x ∼ φ
[
µ− σ2

2
,
σ2

t

]
(2.11)

Note that x is a stationary random normal variable whose variance is a function of

the time duration for which the rate of return is compounded. However, for simplicity of

notation, we will denote x without specifying the duration as a parameter. In all future

analysis, duration is always explicitly specified as a multiple of x in the context.

Risk-free asset dynamics is a special case of the risky asset dynamics described above.

From equation 2.2:

dSN+1(t) = rfSN+1(t)dt (2.12)

The future price of risk-free asset will be deterministic and follows from equation 2.10:

SN+1(t) = SN+1(0)erf t (2.13)

2.2.2 Log-optimal Portfolio

In this investment strategy, portfolio weights are continuously rebalanced to maximize the

long term growth rate of log of portfolio return. The reader can find a good treatment of

this strategy in [22]. Log-optimal and semi-log optimal portfolios are also analyzed in [26].

Since the portfolio is constructed using assets i = 1 through N +1 with each asset taking

up wi proportion of the total investment outlay, we have:

N+1∑

i=1

wi = 1 (2.14)

Note again that portfolio consists of N + 1 assets, one risk-free and N risky assets. If

V (t) is the value of the portfolio, then the instantaneous rate of return of the portfolio is

equal to the weighted sum of the instantaneous rates of returns of the individual assets, i.e.
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dV (t)

V (t)
=

N+1∑

i=1

wi

dSi(t)

Si(t)
(2.15)

Substituting equation 2.3 in equation 2.15 we get,

dV (t)

V (t)
=

N+1∑

i=1

(wiµidt+ wiσidz) (2.16)

In the above equation, the first term is a fixed term with variance 0. The second term is

a stochastic term with mean 0 and variance given by:

V ar[
N+1∑

i=1

wiσidz] = E(
N+1∑

i=1

wiσidz)
2 − (E(

N+1∑

i=1

wiσidz))
2 = E(

N+1∑

i=1

wiσidz)
2

= E(

N+1∑

i=1

wiσidz)(

N∑

j=1

wjσjdz) =

N+1∑

i,j=1

wiσijwjdt (2.17)

Note that in the above simplification, the second term goes away as it is the square of

sum of expected values of multiples of standard normal variables. The expected value of

a multiple of standard normal variable is zero ([27]). Now, we can write equation 2.16 in

the following geometric Brownian motion form analogous to the dynamics of asset price in

equation 2.2:

dV (t) = µpV (t)dt+ σpV (t)dz (2.18)

where the mean and variance of the portfolio are given by:

µp =

N+1∑

i=1

wiµi (2.19)

σp
2 =

N+1∑

i,j=1

wiσijwj (2.20)

Analogous to asset price dynamics, applying Itô’s lemma ([25]) portfolio value V (t) has

a lognormal distribution.

ln V (t) ∼ φ[ln V (0) + (µp −
σ2
p

2
)t, σ2

pt] (2.21)



14From above lognormality relationships, we can derive the expected value and variance

for the growth of portfolio and log of portfolio in the following equations:

E[V (t)] = eµpt (2.22)

V ar[V (t)] = e2µpt(eσ
2
pt − 1) (2.23)

E[ln{V (t)}] = νpt (2.24)

V ar[ln{V (t)}] = σ2
pt (2.25)

where, portfolio growth rate νp is given by:

νp = µp −
σ2
p

2
(2.26)

For notational simplicity we will use χ(t) to denote the ELPV at time t. Since V (0) = 1,

we can rewrite equations 2.24 as,

χ(t) = νpt (2.27)

In the log-optimal portfolio, the growth rate νp is maximized by solving the following

optimization problem:

maximize
w

νp

subject to

N+1∑

i=1

wi = 1



15w defines the vector of asset weights. The solution to the above optimization problem is to

select the weight of each risky asset i satisfying the following relationship ([22]):

N∑

j=1

σijwj = µi − rf (2.28)

There will be N linear equations corresponding to each risky asset with same number of

unknown weight variables. We can then solve for the values of the portfolio weights for risky

assets. Finally we can find out the portfolio weight wN+1 of the risk free asset using equa-

tion 2.14. We will extend the example used in [22] for demonstrating different investment

strategies studied in this paper. In this example, there are three risky assets, i = 1, 2 and 3.

A portfolio manager or an investor needs to specify the asset mean, variance and correlation

coefficients. She also specifies the risk free rate and investment horizon. The following is the

set of input parameters specified for this example:

1. Initial portfolio value: V (0) = $1

2. Mean vector:

µ =

[
µ1 µ2 µ3

]
=

[
0.24 0.20 0.15

]

3. Asset standard deviation vector:

Σ =

[
σ1 σ2 σ3

]
=

[
0.3000 0.2646 0.1732

]

4. Asset correlation coefficients:

ρ =




ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33




=




1.0000 0.2520 0.1925

0.2520 1.0000 −0.2182

0.1925 −0.2182 1.0000




5. Risk-free rate: rf = 0.1



166. Investment horizon: T = 30 years.

We can derive the covariance matrix from the given asset variances and correlation coef-

ficients using Matlab like syntax for matrix operations:

S = ρ. ∗ (Σ′ ∗Σ) (2.29)

In the above syntax, Σ′ is the compliment of Σ and .∗ is element-wise multiplication of

two matrices.

Using equation 2.29 we obtain:

S =




σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33




=




0.09 0.02 0.01

0.02 0.07 −0.01

0.01 −0.01 0.03




Using the above matrix notations, system of linear equations in 2.28 can be written as:

Sw = µ− rf (2.30)

We can solve the above set of linear equations easily by using a linear equation solver

package. In Matlab, we can solve for w by using the backslash or matrix left division

operator:

w = S/(µ− rf) (2.31)

For the example investment problem, we obtain:

w =




w1

w2

w3




=




1.0509

1.3818

1.7770




Using equation 2.14, we can derive the portfolio weight for risk free asset w4 = −3.2098.

The negative sign indicates that the risk free asset needs to be borrowed. A portfolio set up



17using the above weights will maximize the ELPV in the long run if the weights are always

maintained to the original value by continuously rebalancing.

The mean µopt and variance σ2
opt of the portfolio corresponding to the set of optimum

weights can be computed using equation 2.19 and 2.20 respectively:

µopt = 0.4742, σ2
opt = 0.3742

Using equation 2.26 constant growth rate νp = 0.2871.

We now summarize the above steps in the form of an computational algorithm. Algo-

rithm 1 computes the optimal weight vector and the corresponding growth rate for the active

investment strategy. The algorithm takes in the mean, variance and correlation vectors along

with the constant risk free rate. It returns the portfolio growth rate, weight vector and mean

vector to the calling procedure. Note that the output mean vector contains the risk free

rate, i.e. the mean of the risk-free asset as well.

Algorithm 1 ComputeLogOptimalParams

Require: µ,S,rf ,N
1: w← S/ (µ− rf) # equation 2.31
2: µ[N + 1]← rf
3: wSum← 0
4: for i = 1 to N do
5: wSum← wSum+ w[i]
6: end for
7: w[N + 1]← 1− wSum # equation 2.14
8: S← S # augmented with risk-free asset covariances
9: µp ← 0, vp ← 0
10: for i = 1 to N+1 do
11: µp ← µp + w[i]µ[i] # equation 2.19
12: for j = 1 to N+1 do
13: vp ← vp + w[i]σ[i, j]w[j] # equation 2.20
14: end for
15: end for
16: νp ← µp − 1

2
vp # equation 2.26

17: return νp,w,µ,S
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Figure 2.1 Moments of active portfolio value

Figure 2.1(a) plots the expected value of the portfolio in active strategy using equa-

tions 2.19 and 2.22. This seems to have rich growth potential to an investor. However,

an investor also needs to look at the risk in this strategy. One measure of the risk is the

variability or standard deviation of this portfolio value given by equation 2.23 and traced

in figure 2.1(b). We can see that the upside potential of the portfolio growth comes at the

expense of exponential increase in variability of standard deviation of the portfolio value.

The reader is reminded that the active log-optimal strategy maximizes the log of portfolio

growth. For such log investor utility, we need to look at the ELPV of portfolio over the

investment horizon as given by equation 2.27 and plotted in figure 2.2(a). The uncertainty

or risk in this estimation is given by equation 2.23 and plotted in figure 2.2(b). Notice

that unlike exponential growth of standard deviation for the portfolio growth, the standard

deviation of log of portfolio growth shows only quadratic growth.

Before we discuss alternative investment strategies, we will outline two important well-

known properties of the log-optimal active strategy as stated in [22]. Suppose Z is an

alternative investment strategy other than log-optimal active strategy.
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Figure 2.2 Moments of active log of portfolio value

1. Log-optimal strategy maximizes the expected portfolio νp growth rate in the long run,

i.e. νp ≥ lim
t→∞

νZp (t).

2. Suppose V Z(t) is the value of portfolio at t under any investment strategy other than

log-optimal strategy. Then, E[V
Z (t)
V (t)

] ≤ 1.

An obvious, yet important characteristic of active strategy is that it satisfies reinvestment

principle. In other words, it produces identical portfolio value when the assets are liquidated

in the middle and reinvested back in the same assets in the same proportion as before. From

equation 2.22 it is easy to see how this is satisfied in active strategy. If V (0), V (t′) and V (t)

are the portfolio values at time 0, t′ and t such that 0 < t′ < t then,

E[V (t)] = E[V (0)]eµpt = E[V (0)]eµpt
′

eµp(t−t′) = E[V (t′)]eµp(t−t′) (2.32)

Algorithm 2 outlines the generic steps for executing an investment strategy that uses a

given rebalancing frequency τ . At every rebalancing time, it uses the market price for the

assets to compute the total portfolio value (step 4 through 10). In steps 11 through 13, asset



20count is recomputed after rebalancing the portfolio to the initial optimal weights. A trader

must buy and sell assets appropriately to arrive at the new asset counts. The algorithm

returns the terminal ELPV χ.

Algorithm 2 ExecuteRebalanceStrategy

Require: µ,S,rf ,N ,T ,τ
1: V = 1 # Initial investment of $1
2: [νp,w,µ, S]← ComputeLogOptimalParams(µ,Σ,ρ, rf , N)
3: for t = 0 to T by τ do
4: if t ≥ τ then
5: V ← 0
6: for j = 1 to N + 1 do
7: Obtain Pt[j]
8: V ← V + Pt[j] ∗ acnt[j] # total portfolio value
9: end for
10: end if
11: for j = 1 to N + 1 do
12: acnt[j]← w[j]V

Pt[j]
# rebalance portfolio to w

13: end for
14: end for
15: V ← 0
16: for j = 1 to N + 1 do
17: V ← V + PT [j] ∗ acnt[j] # liquidate the portfolio at horizon T
18: end for
19: χ = log(V )
20: return χ

For a practical implementation, active strategy can employ daily rebalancing to emulate

closely the effect of continuous rebalancing. Since in a typical year, there are 252 trading

days, one can set τ = 1
252

= 0.004 year. Thus, one will invoke the following command to

execute active strategy for 30 year horizon:

χ = ExecuteRebalanceStrategy(30, 0.004)

In the above statement, we have assumed that all other input parameters specific to the

given set of portfolio assets have already been provided.
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Passive Strategy And Stable Rebalancing

In the prior chapter we elaborated the log-optimal strategy for portfolio growth where the

portfolio is continuously rebalanced with a periodicity of τ = 0. Upon close scrutiny of the

growth rate of the portfolio νp specified by equation 2.26, one finds that by not rebalancing,

the portfolio effective mean µp deteriorates simultaneously decreasing the variance σ2
p . For

a short time if the second effect dominates the first, it will result in a net increase in growth

rate. During this time the investor will benefit by avoiding continuous rebalancing. In

this chapter, we will develop the framework to assess the nature of portfolio growth when

the investor sets up the portfolio with the optimal weight vector w and never rebalances

throughout the investment horizon T . Consequently, we assume the rebalance frequency

under such passive strategy to be τ =∞.

Throughout our analysis, we use the pertinent rebalance frequency as the superscript

with parameters. All parameters for passive strategy will have a superscript of ∞. In the

absence of any such superscript, the parameter pertains to active strategy. Note that the

initial investment parameters enumerated under section 2.1 will be applicable to all strategies

discussed in this thesis.

Lemma 1. Consider an initial portfolio with value $1 constructed using N risky assets with
weights wi, i = 1, . . . , N and a risk-free asset with weight w0. When left unadjusted, the
portfolio will grow such that the value V ∞(t) at any subsequent time t > 0 will be given by:

V ∞(t) =

N+1∑

i=1

wie
xit (3.1)

where xi is a random normal variable specified by equation 2.11.



22Proof. At t = 0 the value of the portfolio invested in asset i is V (0)wi. This translates to
the number of shares ni to be purchased and held for asset i at time t = 0:

ni =
wi

Si(0)

Since the portfolio remains unadjusted, the value of ni shares of asset i at time t > 0 will
be:

V ∞
i (t) =

wi

Si(0)
Si(t) =

wi

Si(0)
Si(0)exit = wie

xit (3.2)

We have used equation 2.10 in simplifying the above. Now the result in equation 3.1
follows since the portfolio value is the sum of values of constituent assets.

Hence the value of the passive portfolio is characterized by a sum of correlated random

variables as per equation 3.1. We now review some of the statistical properties of log normal

random variable. The reader can find a very good overview in [28]. A comprehensive

treatment of log-normal distribution will be found in [29].

Let Y be a normal random variable with mean m and standard deviation s.

Let X be another random variables such that:

X = eY

X is said to be a log-normal random variable since logarithm of the variable follows

normal distribution. The first two moments of X are given as below:

E[X ] = em+ s2

2 (3.3)

V ar[X ] = (es
2 − 1)E[X ]2 = (es

2 − 1)e2m+s2 (3.4)

When there are two correlated random normal variables Yi with mean mi, standard

deviation si and correlation coefficient ρ12, the covariance between the corresponding log-

normal variables Xi = eYi for i = 1, 2 are given by:
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Cov[X1, X2] = (eρ12s1s2 − 1)E[X1]E[X2] = (eρ12s1s2 − 1)em1+
s2
1

2 em2+
s2
2

2 (3.5)

Given log-normal X , one can compute the variance s2 and the mean m of the underlying

normal variable Y by using the following relationships:

s2 = ln(1 +
V ar[X ]

E[X ]2
) (3.6)

m = ln(E[X ])− 1

2
ln(1 +

V ar[X ]

E[X ]2
) = ln(E[X ])− 1

2
s2 (3.7)

Now we can proceed to compute the statistics for the passive portfolio evolution.

Lemma 2. Under passive investment strategy, the expected value of portfolio at any time
t > 0 is the weighted sum of the individual expected asset growths, i.e.,

E
[
V ∞(t)

]
=

N+1∑

i=1

wie
µit (3.8)

Proof. From equation 3.1, we can compute the passive portfolio growth as:

V ∞(t) =
N+1∑

i=1

wie
xit =

N+1∑

i=1

eln(wi)+xit

⇒ E
[
V ∞(t)

]
= E

[ N+1∑

i=1

eln(wi)+xit
]

=

N+1∑

i=1

E[eln(wi)+xit]

(3.9)

We have made use of the fact that the expected value of a sum of random variables is
same as the sum of expected values of the individual random variables ([27]). Now, given
that xi’s are normal random variables as specified in equation 2.11, ln(wi) + xit will also be
normal with the following moments:

ln(wi) + xit ∼ φ[ln(wi) + (µi −
σ2
i

2
)t, σ2

i t] (3.10)

Note that V ar(aX + b) = a2V ar(X) for any random variable X and constants a and b.
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Figure 3.1 Expected Value and Std Dev of Portfolio Growth.

We can now find out the first moment of eln(wi)+xit using log-normal properties of equa-
tion 3.3,

E[eln(wi)+xit] = eln(wi)+(µi−
σ2
i
2
)t+

σ2
i t

2 = eln(wi)+µit = wie
µit (3.11)

Substituting the above in equation 3.9 we get the desired result.

Figure 3.1(a) shows the evolution of ELPV for our example investment scenario. In this

case the passive strategy produces lower ELPV than the active strategy.

Lemma 3. Under passive investment strategy, the variance of portfolio growth at any time
t > 0 is given by:

V ar[V ∞(t)] =

N+1∑

i,j=1

wiwje
(µi+µj)t(eσijt − 1) (3.12)

Proof. Similar to lemma 2, variance of passive portfolio growth is:

V ar[V ∞(t)] =
N+1∑

i,j=1

Cov[eln(wi)+xit, eln(wj)+xjt] (3.13)

The reader may refer [30] for the rule to obtain the sum of correlated random variables.



25We use equation 3.5 and 3.11 to simplify equation 3.13:

Cov[eln(wi)+xit, eln(wj)+xjt] = (wie
µit)(wje

µjt)(eρijσi

√
tσj

√
t − 1)

= wiwje
(µi+µj)t(eρijσiσjt − 1)

= wiwje
(µi+µj)t(eσijt − 1) (3.14)

Substituting the results in equation 3.14 in equation 3.13, we obtain the desired passive
portfolio variance expression of equation 3.12.

Figure 3.1(b) shows the evolution of variance of portfolio growth for our example invest-

ment scenario. In this case the passive strategy has less variance compared to the active

strategy. This alone indicates that passive strategy will be less risky which is good for

risk-averse investors.

The reader is reminded that the active strategy is optimal only when the ELPV given in

equation 2.24 is maximized for the investor. In order to have a fair portfolio performance

comparison between active and passive strategy we need to analyze the ELPV under passive

strategy.

The problem here is to compute the first and if possible, the second moment of the log

of the portfolio growth under passive strategy. Using equation 3.1:

ln(V ∞(t)) = ln(
N+1∑

i=1

wie
xit) (3.15)

The need to characterize the sum of lognormal variables arises in many domains. There

have been many approximations to characterize the probability density function for sum

of log normal. Two analytical methods to determine the moments of sum of correlated

random variables widely used by researchers in many engineering disciplines. The first one

proposed by Fenton and Wilkinson in 1960 is still being used because of its simplicity and

analytical tractability ([31]). More recently, the second method was proposed in [32]. Both

of these methods assume that the sum of lognormal is also lognormal. [33] compare the

two approaches to formulate the outage probability in a mobile radio systems. Fenton’s

approach allows the use of closed form analytical expression for the moments of log of sum
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Figure 3.2 Expected Value and Variance of Log of Portfolio Growth.

of lognormal random variables. Schwartz and Yeh method employs a recursive algorithm to

obtain the moments. In this paper, we will adapt Fenton’s method because of its analytical

tractability.

Lemma 4. The variance of the log of portfolio growth under passive strategy is given by:

Υ∞(t) = V ar[ln(V ∞(t))] = ln
(

1 +

∑N+1
i,j=1wiwje

(µi+µj)t(eσijt − 1)

(
∑N+1

i=1 wieµit)2

)
(3.16)

Proof. We assume that sum of lognormal random variables is also lognormal as is assumed
in Fenton-Wilkinson approach. Thus as per equation 3.1 the passive portfolio growth V ∞(t)
is lognormal. This implies that log of passive portfolio growth ln(V ∞(t)) is normal.

Using lognormal property given by equation 3.6, we obtain,

Υ∞ = V ar
[
ln
(
V ∞(t)

)]
= ln

(
1 +

V ar[V ∞(t)]

E[V ∞(t)]2

)
(3.17)

Substituting the values of expected value and variance of portfolio growth from equa-
tions 3.8 and 3.12 in the above equation we obtain the desired result in equation of 3.16.

Now we derive the ELPV which is the investor utility in log-optimal investment strategy.

Lemma 5. The expected log of portfolio value (ELPV) under passive strategy is given by:

χ∞(t) = E[ln(V ∞(t))] = ln(

N+1∑

i=1

wie
µit)− 1

2
Υ∞(t) (3.18)



27Proof. The derivation is straightforward when we follow the lognormal assumption in lemma 4
and using lognormal property given by equation 3.7 and expected value equation 3.8.

The expected value thus obtained is an approximation due to the inherent log-normality

assumption in Fenton-Wilkinson’s approach. Using Jenson’s inequality ([34]) we can derive

a true upper bound.

Lemma 6. The ELPV under passive strategy will always be bounded, i.e.,

χ∞(t) ≤ ln(
N+1∑

i=1

wie
µit) (3.19)

Proof. Knowing that logarithm is a concave function and using Jensen’s inequality:

χ∞(t) = E[ln(V ∞(t))] ≤ ln(E[V ∞(t)]) (3.20)

Substituting expected value expression from equation 3.8 we obtain equation 3.19.

Notice that the estimation in equations 3.18 obtained using Fenton-Wilkinson approach

will always meet the upper bound condition of equation 3.19. This is easy to see as the first

term in equation 3.18 is the upper bound. The estimation is always going to be less than

this bound as the variance term in the equation will always be positive.

Figure 3.2(a) shows the comparison of ELPV for our example investment scenario. We

see that the passive strategy provides better performance for the initial few years. Since the

investor wants to maximize the ELPV, he will choose passive strategy over active strategy

for this initial period since the passive strategy offers higher ELPV. Passive strategy will

be seen as more favorable if we had considered the transaction cost incurred in continuous

rebalancing used in active strategy.

As a result of the log-normality assumption inherent in Fenton-Wilkinson approach, we

notice the analogous nature of the passive portfolio growth in equation 3.18 and the corre-

sponding equation under active strategy in equation 2.27. Comparing both these equations



28portfolio growth rate under passive strategy ν∞p will be given by,

ν∞p (t) =
χ∞(t)

t
=

1

t
ln(

N+1∑

i=1

wie
µit)− 1

2
(
1

t
V ar[ln(V ∞(t))]) = µ∞

p −
σ∞
p

2

2
(3.21)

where, mean µ∞
p and standard deviation σ∞

p of passive portfolio are given respectively

by,

µ∞
p (t) =

1

t
ln(

N+1∑

i=1

wie
µit) (3.22)

σ∞
p

2(t) =
1

t
V ar[ln(V ∞(t))] (3.23)

One can compare equations 3.21, 3.22 and 3.23 with their counterpart equations 2.26,

2.19 and 2.20 for active strategy. Notice that the passive portfolio mean, standard deviation

and growth rate are all time varying unlike the corresponding active strategy parameters.

This is observed in the figures 3.3(a) and 3.3(b) for our example investment portfolio. Notice

that the portfolio mean is lower than the corresponding mean in active strategy. However

due to reduced portfolio standard deviation, we can still obtain higher portfolio growth rate

under passive strategy for the initial period.

Similar to the ELPV, the growth rate in figure 3.4(a) demonstrates why the investor

should choose to remain passive and not exercise her continuous rebalancing option to max-

imize his investment potential. It is prudent to only rebalance when the growth rate starts

to fall below the active strategy.

Analogous to equations 2.22 and 2.23, we can now alternatively express the mean and

variance of passive portfolio growth as following:

E[V ∞(t)] = eµ
∞

p (t)t (3.24)
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Figure 3.3 Portfolio mean and standard deviation evolution.

V ar[V ∞(t)] = e2µ
∞

p (t)t(eσ
∞

p
2(t)t − 1) (3.25)

It is easy to show the equivalence of equations 3.8 and 3.24. Similarly, equations 3.12 and

3.25 are also equivalent.

We now end the analysis of passive strategy by looking at the mean-variance plot compar-

ison of log portfolio as shown in figure 3.4(b). Notice that for our example portfolio, the plot

for passive strategy lies above the plot for active strategy for the entire investment period.

In other words, for a given standard deviation, passive portfolio will have higher ELPV. In

this sense, the investor will find the passive strategy more favorable if she is willing to take

a given level of risk quantified by the standard deviation of log of portfolio growth.

3.1 Simple Rebalancing

As discussed previously, to attain the investor’s log-optimality goal, the investor may not

need to continuously rebalance. Figures 3.2(a) and 3.4(a) illustrate existence of opportunity

to stay passive during the period when the ELPV and corresponding growth rate are higher

than those in active strategy. We define this period τc > 0 to be the simple rebalance time.
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Figure 3.4 Growth rate and mean variance of log of portfolio.

During (0 τc), passive strategy offers higher investor log utility as captured in the following

condition:

∃τc s.t. χ∞(t) > νpt, ∀t ∈ (0 τc) (3.26)

The investor continues to use passive strategy until passive log utility drops and equals

that of active strategy. In the absence of transaction cost, this first rebalance time τc will

be determined by the point of intersection of equations 2.27 and 3.18 as in figure 3.2(a). We

can express this mathematically as follows:

χ∞(τc) = χ(τc) = νpτc, τc > 0 (3.27)

When τc exists, it is hard to obtain a closed loop solution for τc by solving equation 3.27

because of the non-linear nature of equation 3.18. However we can numerically solve the

equation to obtain τc. Algorithm 3 outlines the computational steps required to compute

the simple rebalance time τc for a given set of investment parameters. It records the time

when the passive ELPV exceeds active ELPV. This is determined in lines 20 through 22.
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Algorithm 3 ComputeSimpleRebalanceFrequency

Require: µ,S,rf ,T ,δT ,N
1: τc ← 0 # default continuous rebalancing
2: [νp,w,µ]← ComputeLogOptimalParams(µ,S, rf , N)
3: if !IsPassiveStrategyPossible(w,µ,S) then
4: return τc
5: end if
6: χ∞ ← 0, χ← 0
7: for t = 0 to T by δT do
8: X ← 0, Y ← 0
9: for i = 1 to N+1 do
10: X ← X + w[i]eµ[i]t # equation 3.8
11: for j = 1 to N+1 do # equation 3.12
12: Y ← Y + w[i]w[j]e(µ[i]+µ[j])t(eσ[i,j]t − 1)
13: end for
14: end for
15: χ∞ ← ln(X)− 1

2
ln(1 + Y

X2 ) # equation 3.18
16: χ← νpt # equation 2.27
17: if χ∞ < χ then # If passive ELPV falls below active ELPV
18: return τc ← t− δT
19: end if
20: end for
21: return τc



32For our illustrative example we find τc = 7.61 years. So, the investor’s ELPV will be higher

if the investment is unadjusted for 7.61 years than if it is to be rebalanced continuously to

the optimum weights w.

3.2 Stable Rebalancing

Is this rebalance time τc optimal? Can we do even better in maximizing ELPV? In order

to answer these questions we must investigate the robustness of τc. Note that the estimation

of τc is based on the information available at time t = 0. Will our decision to rebalance

change before the expected scheduled rebalance time τc expire?

We define a rebalance strategy to be stable if passive ELPV exceeds active ELPV through-

out the passive investment period of τc. More formally, a stable rebalancing strategy satisfies

the following condition:

E[ln(
V ∞(t, t+ dt)

V ∞(t, t)
)] ≥ E[ln(

V (t, t+ dt)

V ∞(t, t)
)], ∀t ∈ (0 τc) and dt→ 0 (3.28)

Here we have expanded our notation to denote the time when the ELPV is measured.

For example, V (t, t′) denotes the value of portfolio at time t′ estimated at time t. The

stability principle states that as the portfolio grows passively, at each time point before

the rebalancing time, the investor should always expect to get higher or equal ELPV using

passive strategy. Should her expectation of log of portfolio value using active strategy at

any time be higher during passivity, she will opt to immediately switch to active strategy by

rebalancing the portfolio to the set of initial optimal weights w. A rebalancing interval τs is

stable if the investor does not see the opportunity to switch to active strategy throughout

the open interval (0 τs).

Note that the denominator in the right hand side of equation 3.28 is V ∞(t, t), not V (t, t).

This is because up until time t portfolio follows passive strategy to attain the value of

portfolio V ∞(t, t). At this time t, the investor examines the possibility to rebalance and



33switch to active strategy if needed.

The right hand side of inequality in equation 3.28 is νpdt as growth rate νp is always con-

stant under active strategy. We now compute the left hand side of inequality in equation 3.28

in the following lemma.

Lemma 7. The time t estimation of expected log growth under passive strategy for time t+dt
will be the difference of the initial growth estimation for the investment duration t + dt and
t, i.e.

E[ln(
V ∞(t, t + dt)

V ∞(t, t)
)] = E[ln(V ∞(0, t+ dt)]− E[ln(V ∞(0, t)] (3.29)

Proof. Consider an initial investment amount of V (0). From equation 3.1, under passive
strategy

V ∞(0, t) =
N+1∑

i=1

wie
xit (3.30)

Similarly for investment duration t + dt,

V ∞(0, t+ dt) =

N+1∑

i=1

wie
xi(t+dt) (3.31)

We also know that passive strategy will adhere to reinvestment principle. In other words,
the portfolio value archived for duration t + dt will be same as the net portfolio value
achieved by first investing $1 for duration t and then reinvesting V ∞(0, t) for duration dt.
Mathematically,

V ∞(0, t+ dt) =
N+1∑

i=1

wie
xi(t)

N+1∑

i=1

wi(t)e
xi(dt) (3.32)

Note that in equation 3.32, we have to use the weights at time t that have evolved and
changed from their initial optimal values since no rebalancing to these original weights are
done in passive strategy.

Equating equations 3.31 and 3.32, we get

N+1∑

i=1

wie
xi(t+dt) =

N+1∑

i=1

wie
xi(t)

N+1∑

i=1

wi(t)e
xi(dt) (3.33)

Readjusting the terms,
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N+1∑

i=1

wi(t)e
xi(dt) =

∑N+1
i=1 wie

xi(t+dt)

∑N+1
i=1 wiexi(t)

(3.34)

From lemma 1and using equation 3.1 we can write the portfolio value estimated at time
t (instead of time 0) for the next dt as:

V ∞(t, t+ dt) = V ∞(t, t)
N+1∑

i=1

wi(t)e
xidt (3.35)

First taking logarithm and then taking expectation on both sides, we obtain:

E[ln(
V ∞(t, t+ dt)

V ∞(t, t)
)] = E[ln(

N+1∑

i=1

wi(t)e
xidt)] (3.36)

Substituting equation 3.34 in equation 3.36,

E[ln(
V ∞(t, t + dt)

V ∞(t, t)
)] = E[ln(

∑N+1
i=1 wie

xi(t+dt)

∑N+1
i=1 wiexi(t)

)]

= E[ln(

N+1∑

i=1

wie
xi(t+dt))]−E[ln(

N+1∑

i=1

wie
xi(t))] (3.37)

Using equations 3.30 and 3.31, we arrive at the desired result of equation 3.29.

We can rewrite equation 3.29 in our familiar χ(.) notation as follows:

χ∞(t, t+ dt) = χ∞(0, t+ dt)− χ∞(0, t) (3.38)

Lemma 7 proves that for the same horizon, as time passes, our estimation of passive

ELPV undergoes parallel downward shift as depicted in the ELPV contours in figure 3.5.

The active ELPV also parallel shifts downward by νpt at successive estimation time point t.

As one moves along the estimation time line, the difference between passive and active ELPV

declines. After sometime passive ELPV is no more advantageous over its active counterpart

as depicted in figure 3.5. At that time, it is no more prudent to continue the portfolio

passively and it needs to be rebalanced to the optimal set of weights. A fresh rebalance to

these weights will reset the passive growth rate to its original value.
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Figure 3.5 ELPV at future times.

Lemma 8. Portfolio rebalance time τs is stable if the initial estimation of rate of change of
passive ELPV is higher than optimal log growth rate νp during the passive investment period
(0 τs), i.e.

dχ∞(0, t)

dt
≥ νp, ∀t ∈ (0 τs) (3.39)

Proof. As noted earlier, the right hand side of equation 3.28 is νpdt. Substituting equa-
tion 3.38 in the left hand side of equation 3.28, we get ∀t ∈ (0 τs):

χ∞(0, t+ dt)− χ∞(0, t) ≥ νpdt

⇒χ∞(0, t+ dt)− χ∞(0, t)

dt
≥ νp (3.40)

Letting dt→ 0, we get the desired equation 3.39.

Above lemma 8 states a very important result. It says that one can compute the rebalance

time at time t = 0, by merely taking the derivative of passive ELPV with respect to time

t and equating it to optimal log growth rate of νp. This rebalance time τs shall be stable

in the sense that at any time t′ before τs, the passive investor’s ELPV shall be higher than

νp in the immediate future. Thus the investor has no incentive to shift to the continuous

rebalance active strategy at any time before τs.



36Intuitively the derivative of ELPV with respect to time t is the expected instantaneous

portfolio growth (EIPG) in the log domain. We will use ξ to denote expected EIPG. In this

notation, we can write,

ξ =
dχ(t)

dt
= νp (3.41)

Using equation 2.27, we see that under active strategy the EIPG ξ = νp, an invariant of

time. Using equivalent notation for passive strategy, we can write,

ξ∞(t) =
dχ∞(t)

dt
(3.42)

One needs to distinguish between EIPG and portfolio growth rate. Portfolio growth

rate is the average portfolio growth for a specified duration of time. Instantaneous portfolio

growth at any time is the incremental growth that is achieved for a infinitely small time

interval. In the context of this paper, both are defined for log of portfolio value. From

equation 3.41, under active strategy, these two measures are always equal and invariant of

time.

The lemma 8 merely states that one needs to continue using passive strategy as long as

the EIPG offered by passive strategy is higher than or equal to that under active strategy.

It also states that the stable rebalancing is possible only when the following condition is

satisfied:

∃τs s.t. ξ∞(t) > νp, ∀t ∈ (0 τs) (3.43)

Assuming that above condition is satisfied, the investor benefits by adopting passive

strategy until τs, when the need to rebalance arises. At τs, the EIPG for passive strategy



37becomes equal to that for active strategy, i.e. νp.

ξ∞(τs) = νp (3.44)

We are now set to compute τs in terms of the given initial investment parameters.

Lemma 9. The portfolio rebalance time τs is the solution of the following equation:

1

X(t)

[
X ′(t)− 1

2

X(t)Y ′(t)− 2X ′(t)Y (t)

X(t)2 + Y (t)

]
= νp (3.45)

where,
X(t) = expected portfolio value at time t, given by equation 3.8
Y (t) = variance of portfolio value at time t, given by equation 3.12

X ′(t) =
dX

dt
=

N+1∑

i=1

wiµie
µit (3.46)

Y ′(t) =
dY

dt
=

N+1∑

i,j=1

wiwje
(µi+µj)t[(µi + µj)(e

σijt − 1) + σije
σijt] (3.47)

Proof. We start with the resulting equation 3.39 of lemma 8. The stable rebalance time τs
is given by the solution of the following equation when passive EIPG equals the EIPG under
active strategy which is νp:

dχ∞(t)

dt
= νp (3.48)

Note, for simplicity we have removed the first time index from above equation and assume
initial time for these estimation.

Using our notations, we can rewrite equation 3.16:

V ar
[
ln
(
V ∞(t)

)]
= ln

(
1 +

Y (t)

X2(t)

)
(3.49)

Moreover, using our notations and equation 3.49, we can rewrite equation 3.18:

χ∞(t) = E
[
ln(V ∞(t))

]
= ln(X(t))− 1

2
V ar

[
ln(V ∞(t))

]

= ln(X(t))− 1

2
ln
(

1 +
Y (t)

X2(t)

)
(3.50)
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Figure 3.6 EIPG comparison with passive strategy.

Taking the first derivative of equation 3.50, we get:

dχ∞(t)

dt
=
X ′(t)

X(t)
− 1

2

X2(t)

X2(t) + Y (t)

(
1 +

Y (t)

X2(t)

)′

=
X ′(t)

X(t)
− 1

2

X2(t)

X2(t) + Y (t)

( Y (t)

X2(t)

)′

=
X ′(t)

X(t)
− 1

2

X2(t)

X2(t) + Y (t)

X2(t)Y ′(t)− 2X(t)X ′(t)Y (t)

X4(t)

=
X ′(t)

X(t)
− 1

2

1

X2(t) + Y (t)

X(t)Y ′(t)− 2X ′(t)Y (t)

X(t)

=
1

X(t)

[
X ′(t)− 1

2

X(t)Y ′(t)− 2X ′(t)Y (t)

X(t)2 + Y (t)

]
(3.51)

Figure 3.6 plots the EIPG for passive strategy following equation 3.51 for our example

investment scenario. As per lemma 9 non-zero intersection of the passive and the active

EIPG curves give the stable rebalance time τs = 3.7 for the portfolio.

Notice that the simple rebalance time τc = 7.61 determined by algorithm 3 is much

longer. Even though the investor can attain the same ELPV as active strategy by remaining



39passive for τc = 7.61 years, after τs = 3.7 years, her incremental ELPV shall be smaller

compared to that offered by active strategy. We will soon see that by rebalancing earlier

after τs = 3.7 years, she can increase the potential gain measured in terms of ELPV.

We now define ψ∞(t) = χ∞(t)−χ(t) which is the excess growth relative to active strategy.

We show that the excess passive growth ψ∞(t) is a monotonously increasing function for

0 < t < τs.

Lemma 10. ψ∞(t), the excess growth produced by passive strategy is increasing in the range
t ∈ (0 τs).

Proof. We need to prove that ψ′∞(t) > 0, ∀t ∈ (0 τs). Let’s start with the derivative of
ψ∞(t).

ψ′∞(t) =
d(χ∞(t)− νpt)

dt
=
d(χ∞(t))

dt
− νp = ξ∞(t)− νp (3.52)

By definition of passive strategy, one needs to continue without rebalancing till ξ∞(t) > νp.
Using equation 3.43, ξ∞(t) > νp, ∀t ∈ (0 τs) implying ψ′∞(t) > 0.

Lemma 11. ψ∞(t), the excess growth produced by passive strategy is maximized at τs.

Proof. In order to prove that τs is a relative maxima, we need to prove the following two:

ψ′∞(τs) = 0 (3.53)

ψ′′∞(τs) < 0 (3.54)

Proof for equation 3.53 is straightforward:

ψ′∞(τs) = ξ∞(τs)− ξ(τs) = ξ∞(τs)− νp = 0 (3.55)

We have used the results of lemma 10 above. Hence we proved equation 3.53.
To prove equation 3.54, we will use fundamental definition of differentiation.

ψ′′∞(τs) = lim
dτ→0

ψ′∞(τs + dτ)− ψ′∞(τs)

dτ
= lim

dτ→0

(χ′∞(τs + dτ)− νp)− (χ′∞(τs)− νp)
dτ

= lim
dτ→0

χ′∞(τs + dτ)− χ′∞(τs)

dτ
= lim

dτ→0

ξ∞(τs + dτ)− ξ∞(τs)

dτ
(3.56)

By definition of stable strategy ξ∞(τs) = νp and ξ∞(τs + dτ) < νp. Therefore ψ′′∞(τs) < 0,
proving equation 3.54.

We summarize the computational steps in the form of algorithm 4 required to compute

τs.
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Algorithm 4 ComputeStableRebalanceFrequency

Require: µ,S,rf ,N ,T ,δT
1: τs ← 0 # default continuous rebalancing
2: [νp,w,µ,S]← ComputeLogOptimalParams(µ,S, rf , N)
3: if !IsPassiveStrategyPossible(w,µ,S) then
4: return τs
5: end if
6: ψ ← 0
7: for t = 0 to T by δT do
8: X ← 0, Y ← 0
9: for i = 1 to N+1 do
10: X ← X + w[i]eµ[i]t # equation 3.8
11: for j = 1 to N+1 do
12: # equation 3.12

13: Y ← Y + w[i]w[j]e(µ[i]+µ[j])t(eσ[i,j]t − 1)
14: end for
15: end for
16: χ∞ ← ln(X)− 1

2
ln(1 + Y

X2 ) # equations 3.17 and 3.18
17: ψprev ← ψ, ψ ← χ∞ − νpt
18: if ψ ≤ ψprev then # lemma 11
19: # reached stable rebalance time
20: return τs ← t
21: end if
22: end for
23: return τs



413.3 Eligibility For Discrete-Time Rebalancing

Thus far we have not shed any light on conditions for the existence of rebalance time

allowing an investor to take advantage of passive investment strategy. First, without going

through formal mathematical proof, we will discuss the existence of initial rebalance time

τc. When τc does not exist, then the opportunity to remain passive during certain duration

of investment horizon will not be possible. In this case, the investor has to continuously

rebalance in order to maximize her log utility for the given horizon. For rebalance time τc

to exist the following two conditions must hold:

χ∞(τc − dτc) > χ(τc − dτc) where, 0 < dτc < τc and dτc → 0 (3.57a)

χ∞(τc + dτc) < χ(τc + dτc) where, 0 < dτc < τc and dτc → 0 (3.57b)

From equation 2.27, χ(t) is a monotonically increasing function for t ≥ 0 since its first

derivative, the portfolio growth rate νp is a positive constant. This assumes the investor is

profit seeking and chooses the assets for positive growth rate only. We also know that at t = 0,

χ(t) = χ∞(t) = ln[V (0)] = 0. Hence, if equation 3.18 is a monotonically decreasing function

for the given set of input investment parameters, then condition specified in equation 3.57a

will never be satisfied for any t > 0. If, however, equation 3.18 is monotonically increasing

with its first derivative or slope higher than νp, then opportunity to remain passive exists.

In other words, opportunity for passive strategy exists if the time zero EIPG is higher under

passive strategy. However, this is not sufficient to establish the existence condition as it

turns out that at t = 0, the EIPG is same for both passive and active strategy.

Lemma 12. Time zero EIPG are equal under passive and active strategies, i.e.

ξ∞(0) = ξ = νp (3.58)

Proof. Using equation 3.51,

ξ∞(0) =
dχ∞(t)

dt
|t=0 =

1

X(0)
[X ′(0)− 1

2

X(0)Y ′(0)− 2X ′(0)Y (0)

X(0)2 + Y (0)
] (3.59)



42Substituting t = 0 in equations 3.8, 3.12, 3.46 and 3.47 respectively, we obtain:

X(0) =

N+1∑

i=1

wi = 1 (3.60a)

Y (0) = 0 (3.60b)

X ′(0) =

N+1∑

i=1

wiµi (3.60c)

Y ′(0) =

N+1∑

i,j=1

wiwjσij (3.60d)

Substituting the above set of values in equation 3.59, we obtain:

ξ∞(0) =
N+1∑

i=1

wiµi −
1

2

N+1∑

i,j=1

wiwjσij = µp −
σ2
p

2
= νp = ξ (3.61)

We have used the relationships of equations 2.19, 2.20 and 2.26 in the above derivation.

We now know two properties of EIPG. First, active strategy has constant EIPG, νp.

Secondly, as per lemma 12, both active and passive strategy start out with the same EIPG

at time zero. Consequently, to obtain higher passive ELPV for a non-zero initial time interval,

the passive portfolio must have an increasing EIPG at time zero. Founded on this premise,

we establish the condition for existence of opportunity to stay passive and rebalance in the

following lemma.

Lemma 13. Passive strategy is feasible only when the EIPG is an increasing function at
time t = 0 satisfying the following relationship:

[X ′′(0)−X ′(0)
2
]− 1

2
[Y ′′(0)− Y ′(0)

2
] + 2X ′(0)Y ′(0) ≥ 0 (3.62)

where X ′(0) and Y ′(0) are given by equations 3.60c and 3.60d respectively. X ′′(0) and Y ′′(0)
are the time zero values of the second derivatives of X(t) and Y (t) respectively and are given
as follows:

X ′′(0) =
N+1∑

i=1

wiµi
2 (3.63a)

Y ′′(0) =

N+1∑

i,j=1

wiwjσij [2(µi + µj) + σij ] (3.63b)



43Proof. ξ∞(t) is an increasing function at t = 0 when its first derivative is positive. Hence
differentiating equation 3.51, we obtain:

dξ∞(t)

dt
=

d

dt

1

X

(
X ′ − 1

2

XY ′ − 2X ′Y

X2 + Y

)

=
d

dt

(X ′

X
− 1

2

Y ′

X2 + Y
+

X ′Y

X(X2 + Y

)

=
X ′′X −X ′X ′

X2
− 1

2

Y ′′(X2 + Y )− Y ′(2XX ′ + Y ′)

(X2 + Y )2

+
(X ′′Y +X ′Y ′)X(X2 + Y )−X ′Y (3X2X ′ +XY ′ +X ′Y )

X2(X2 + Y )2

(3.64)

For clarity, we have omitted time t from the variable notations above. For example, X above
denotes X(t). Using equations 3.60a and 3.60b, the value of the derivative of equation 3.64
at t = 0 will be given by:

dξ∞(t)

dt
|t=0 = X ′′(0)−X ′(0)

2 − 1

2
Y ′′(0) +X ′(0)Y ′(0) +

1

2
Y ′(0)

2
+X ′(0)Y ′(0)

= [X ′′(0)−X ′(0)
2
]− 1

2
[Y ′′(0)− Y ′(0)

2
] + 2X ′(0)Y ′(0) (3.65)

X ′′(0) in equation 3.63a is obtained by differentiating equation 3.46 and substituting t = 0:

X ′′(t) =
d2X

dt2
=

N+1∑

i=1

wiµi
2eµit (3.66)

Similarly, Y ′′(0) in equation 3.63b is obtained by differentiating equation 3.47 and sub-
stituting t = 0:

Y ′′(t) =
d2Y

dt2
=

N+1∑

i,j=1

wiwj(µi + µj)e
(µi+µj)t[(µi + µj)(e

σijt − 1) + σije
σijt]

+ wiwje
(µi+µj)t[σij(µi + µj)e

σijt + σ2
ije

σijt]

(3.67)

Hence, according lemma 13, the opportunity to take advantage of intermittent rebal-

ancing and adherence to passive strategy is entirely determined by the set of asset mean

and covariance characteristics. We now present this result in the form of the following

algorithm 5.
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Algorithm 5 IsPassiveStrategyPossible

Require: w,µ,S,N
1: X ′ ← 0, X ′′ ← 0, Y ′ ← 0, Y ′′ ← 0
2: for i = 1 to N+1 do
3: X ′ ← X ′ + w[i]µ[i] # equation 3.60c
4: X ′′ ← X ′′ + w[i]µ[i]2 # equation 3.63a
5: for j = 1 to N+1 do
6: Y ′ ← Y ′ + w[i]w[j]σ[i, j] # equation 3.60d #

equation 3.63b
7: Y ′′ ← Y ′′ + w[i]w[j]σ[i, j](2(µ[i] + µ[j]) + σ[i, j])
8: end for
9: end for
10: # equation 3.62

11: if (X ′′ −X ′2)− 1
2
(Y ′′ − Y ′2) + 2X ′Y ′ ≥ 0 then

12: return true
13: else
14: return false
15: end if
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Hybrid Strategy And Optimal Rebalancing

There is little incentive for the investor to resort to continuous rebalancing if passive

strategy yields equal or higher portfolio growth for a given finite horizon. As depicted in

figure 3.2(a), for the example portfolio, passive strategy outperforms active strategy for

the initial investment period of 7.61 years determined by the point of intersection of equa-

tions 2.24 and 3.18. This initial passive investment period will be longer if transaction costs

are to be considered.

Thus far, we have analyzed the nature of log of portfolio growth when the investor opts

to remain passive without performing any rebalancing. We have shown that for certain

assets characteristics the investor can get higher ELPV during the initial investment period.

During this investment period, which we term as rebalance time, the investor should not opt

to rebalance the portfolio. First, we derived the initial rebalance time τc when the ELPV is

higher under passive strategy. Then, we designed a stable rebalance time τs when the EIPG

of portfolio is higher under passive strategy. One can show that for any given set of assets

τs ≤ τc.

We now explore the nature of the portfolio growth after the first rebalance to determine

the subsequent rebalance times. While determining the set of rebalance points or times, we

must ensure that the investor utility, i.e. the ELPV, must not fall below the baseline value

obtained using active rebalancing strategy. We define such investment strategy, the investor

uses intermittent non-continuous rebalancing to maintain equal or higher ELPV throughout

the investment horizon. In the simple approach, she will wait to rebalance as long as the

ELPV remains higher than the corresponding active strategy value. In the stable rebalancing



46approach, she will only rebalance when the EIPG dips below the corresponding value of νp

under active strategy. Our goal is to find the periodic frequency τ = τo at which the investor

can rebalance the portfolio to the initial optimal weights to maximize portfolio growth for

the intended investment horizon. The frequency τ is the time interval measured in years.

Under such a hybrid strategy the portfolio is rebalanced periodically every τ years till the

end of investment horizon. We use superscript τ 6=∞ to denote a hybrid strategy that uses

τ as the rebalance frequency.

We use superscript τ 6= ∞ to denote a hybrid strategy that uses τ as the rebalance

frequency. Note that during the initial simple rebalance time period (0 τc], hybrid strategy

growth is identical to that of passive strategy. Thus we must satisfy equations 3.26 and 3.27.

Using the expanded notation, the time 0 estimation of the ELPV satisfies the following two

conditions:

χτc(0, δt) > νpδt, where 0 < δt < τc (4.1)

χτc(0, τc) = νpτc (4.2)

From fundamental definition,

χτc(0, δt) = E[ln(V ∞(0, δt))]

= E[

N+1∑

i=1

wie
xiδt)]

= E[ln(
N+1∑

i=1

wie
xiδt)]

= E[ln(

N+1∑

i=1

wie
xiδt)] (4.3)

Hence, equation 4.1 implies,

E[ln(

N+1∑

i=1

wie
xiδt)] > νpδt (4.4)



47Similarly, from fundamental definition we can derive:

χτc(0, τc) = E[ln(
N+1∑

i=1

wie
xiτc)] (4.5)

Hence, combining equations 4.2 and 4.5 we obtain:

E[ln(

N+1∑

i=1

wie
xiτc)] = νpτc (4.6)

4.1 Simple Hybrid Strategy

Theorem 1. Let τc, the initial simple rebalance time satisfying equation 3.26 and 3.27 exist
(and which can be computed using algorithm 3). Then iτc will also be a rebalance time for
simple hybrid strategy, where i ∈ N.

Proof. We need to prove that for all i ∈ N, i.e. for initial and all subsequent rebalance
periods, (iτc (i+ 1)τc], the following two conditions analogous to equations 4.1 and 4.2 must
also hold.

χτc(iτc, iτc + δt) > νp(iτc + δt), ∀i ∈ N, δt < τc (4.7)

χτc(iτc, (i+ 1)τc) = νp((i+ 1)τc), ∀i ∈ N (4.8)

We will prove both of these equations by the method of induction. For initial step when
i = 0, both equations 4.7 and 4.8 becomes equations 4.1 and 4.2 respectively. By definition
of τc these will be true. For the inductive step, assume equation 4.7 and 4.8 hold for i = k
and hence kτc is also a rebalance time. That is,

χτc(kτc, kτc + δt) > νp(kτc + δt) (4.9)

χτc(kτc, (k + 1)τc) = νp((k + 1)τc) (4.10)

Equation 4.10 indicates that (k + 1)τc is a rebalance point. At rebalance points the ELPV
will always be equal to the corresponding value under active strategy. This value will not be
driven by the time of estimation. Hence equation 4.10 can be written as:

χτc(., (k + 1)τc) = E[ln(V ∞(., (k + 1)τc))] = νp((k + 1)τc) (4.11)

We must show that equations 4.7 and 4.8 also hold for i = k + 1, i.e.

χτc((k + 1)τc, (k + 1)τc + δt) > νp((k + 1)τc + δt) (4.12)



48χτc((k + 1)τc, (k + 2)τc) = νp((k + 2)τc) (4.13)

Following similar steps as of the derivation of equation 4.3,

χτc((k + 1)τc, (k + 1)τc + δt)

= E[ln(V ∞((k + 1)τc, (k + 1)τc + δt))]

= E[ln(V ∞((k + 1)τc, (k + 1)τc)
N+1∑

i=1

wie
xiδt)]

= E[ln(V ∞((k + 1)τc, (k + 1)τc))] + E[ln(
N+1∑

i=1

wie
xiδt)] (4.14)

We have made use of the fact that (k + 1)τc is a rebalance time and hence the initial
asset weights are used. Now let’s look at the two terms in the above equation. The first
term is given by equation 4.11. The value of the second term is given by equation 4.4. Thus
we establish the required relationship given by equation 4.12. To prove equation 4.13, we
start with the LHS:

χτc((k + 1)τc, (k + 2)τc)

=E[ln(V ∞((k + 1)τc, (k + 2)τc))]

=E[ln(V ∞((k + 1)τc, (k + 1)τc)
N+1∑

i=1

wie
xiτc)]

=E[ln(V ∞((k + 1)τc, (k + 1)τc))] + E[ln(

N+1∑

i=1

wie
xiτc)] (4.15)

Once again, we have made use of the fact that (k + 1)τc is a rebalance time and hence the
initial asset weights are used. As before, the first term is given by equation 4.11. The value
of the second term is given by equation 4.6. Thus we establish the required relationship
given by equation 4.13 and hence the equation 4.8.

This completes the proof of the theorem establishing the need to rebalance the assets to
the initial optimal weights w at a periodic interval of τc.

As per theorem 1 under simple hybrid strategy the portfolio needs to be rebalanced at

τc, 2τc, 3τc, . . . regular time intervals in order to attain or exceed investor log utility for a

given finite investment horizon. This is illustrated in figure 4.1(a) for our example investment

portfolio. The portfolio only needs to be rebalanced successively at 7.61, 15.22 and 22.83

years during the 30 year investment period.
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Figure 4.1 Expected value and growth rate of log portfolio.

We now determine the ELPV under hybrid strategy when the portfolio is rebalanced

periodically. Using the next theorem, we show that one can compute the ELPV for hybrid

strategy using the ELPV from passive strategy. Hence, we name this theorem as the passive

to hybrid growth map theorem. The theorem is applicable for all rebalancing scenarios

including simple and stable rebalancing. Before we state and prove the theorem, we will

state and prove two hypothesis concerning periodic rebalancing. The first one is called the

law of additive growth whereas the second one is termed as law of multiplicative growth. First

we state and prove the law of additive growth.

Lemma 14. Passive portfolio growth is additive, i.e.

χτ (kτ + t′) = χτ (kτ) + χ∞(t′), ∀k ∈ N
+, τ ∈ R

+, and 0 < t′ < τ (4.16)

where kτ is the most recent time when the portfolio is rebalanced and t′ is the time for which
the portfolio grows passively after kτ .

Proof. Since kτ is the most recent rebalance time, the portfolio growth at kτ + t′ is given
by:

V τ (kτ + t′) = V τ (kτ)

N+1∑

i=1

wie
xi(t

′) (4.17)
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χτ (kτ + t′) = χτ (kτ) + E[ln(

N+1∑

i=1

wie
xi(t

′))] = χτ (kτ) + χ∞(t′) (4.18)

Lemma 15. Portfolio growth multiplies with the number of times periodic rebalancing is
executed, i.e

χτ (kτ) = kχ∞(τ), ∀k ∈ N
+, τ ∈ R

+ (4.19)

where τ is the periodic rebalance frequency.

Proof. We prove this lemma by method of induction. For the base case k = 1, equation 4.19
is trivially true. We then assume equation 4.19 holds for k and prove below that it also holds
for k + 1. For k + 1, we need to prove,

χτ (k + 1τ) = (k + 1)χ∞(τ) (4.20)

We start with RHS of above equation 4.20:

(k + 1)χ∞(τ) = kχ∞(τ) + χ∞(τ) = χτ (kτ) + χ∞(τ), as equation 4.19 holds for k.

= χτ (kτ + τ), applying law of additive growth, lemma 14

= χτ (k + 1τ) = LHS (4.21)

That completes the proof of equation 4.19 by induction.

Theorem 2. Assume that χτ (t) = χ∞(t), ∀ t ∈ (0 τ ] is known following equation 3.18.
Then ∀ t > τ > 0,

χτ (t) =

{
νpt if τ = 0
kχ∞(τ) + χ∞(t′) otherwise

(4.22)

where t = kτ + t′, k = ⌊t/τ⌋ and t′ = t mod τ .

Proof. At the very outset, note that we consciously treat τ = 0 case to be same as the active
strategy for consistency of results between different strategies. Additionally while computing
k and t′, we avoid divide-by-zero scenarios. We only need to prove:

χτ (kτ + t′) = kχ∞(τ) + χ∞(t′) (4.23)

We start with LHS of above equation 4.23.

χτ (kτ + t′) = χτ (kτ) + χ∞(t′), applying law of additive growth, lemma 14

= kχ∞(τ) + χ∞(t′), applying law of multiplicative growth, lemma 15 = LHS
(4.24)
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egy ELPVs. It states that under any hybrid strategy where rebalancing is done with peri-

odicity of τ , the expected log of portfolio growth at subsequent rebalancing points can be

obtained by multiplying the ELPV at the first rebalance point by the number of times the

portfolio has been rebalanced to the initial optimal weights. Once we obtain the ELPV at the

last rebalance point, growth for any additional time t′ < τ will occur following the passive

trajectory identical to the initial rebalance period. An important aspect of this lemma is

that the proposition is true for any positive finite value of period rebalance frequency τ , not

just simple or stable rebalance frequencies. For any hybrid strategy with periodic rebalance

frequency τ , once the passive χ∞ trajectory is calculated for the initial duration up to the

first rebalance time, i.e. [0 τ ], we can completely construct the χτ trajectory for any future

investment horizon.

For our example portfolio, after 30 years, the ELPV will be 8.6125 and 8.632 under active

and simple hybrid strategy respectively. In terms of the ELPV, throughout the investment

period, we expect to outperform the continuous rebalance active strategy. We will now

prove this assertion using the next lemma. In real life investment, the performance of hybrid

strategy will even be better once we factor in the cost of rebalancing.

Lemma 16. Simple hybrid strategy will always outperform active strategy, i.e. χτc(t) ≥ χ(t).

Proof. Using the results of growth map theorem 2:

χτc(t) = kχ∞(τc) + χ∞(t′) (4.25)

where t = kτc + t′, k = ⌊t/τc⌋ and t′ = t mod τc.
Using the same notations,

χ(t) = νpt = νp(kτc + t′) = kνpτc + νpt
′ = kχ(τc) + χ(t′) (4.26)

By definition, during the initial rebalance period [0 τc), passive strategy outperforms active
strategy, i.e.

χ∞(t′) ≥ χ(t′), ∀t′ ∈ [0 τc) (4.27)
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Figure 4.2 ELPV and EIPG in stable hybrid strategy

We know from equation 3.27,

χ∞(τc) = χ(τc) (4.28)

Using the relations of equations 4.25 through 4.28, we obtain χτc(t) ≥ χ(t).

4.2 Stable Hybrid Strategy

Similar to theorem 1, we will now derive subsequent stable rebalance times for stable

hybrid strategy.

Theorem 3. Let τs, the initial stable rebalance time satisfying equation 3.43 exists (and
which can be computed using algorithm 4). Then iτs will also be a rebalance time for a stable
hybrid strategy, where i is the set of natural numbers including 0, i.e. i ∈ N.

The proof is similar to the proof of theorem 1. For brevity we provide the proof in

appendix A.1. Figure 4.2(b) shows the evolution of EIPG under stable hybrid strategy.

The growth is never allowed to slip below the corresponding value νp under active strategy.

Under such a strategy the EIPG during the entire investment horizon always remains higher

or equal to that under active strategy. Using lemma 2, we can obtain the ELPV under stable

hybrid strategy as follows:

χτs(t) = ksχ
∞(τs) + χ∞(t′s) (4.29)
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Figure 4.3 Illustration of excess growth at rebalance frequency τs and τx.

where t = kτs + t′s, ks = ⌊ t
τs
⌋ and t′s = t mod τs. As shown in figure 4.2(a), stable hybrid

strategy yields higher expected log of portfolio growth. We will formalize this property in

the form of theorem 4 below.

Theorem 4. Stable hybrid strategy will always outperform a hybrid strategy with higher
rebalancing frequency, i.e. for any investment horizon t > τx, χτs(t) > χτx(t), ∀τx > τs.

Proof. Using the results of theorem 2:

χτs(t) = ksχ
∞(τs) + χ∞(t′s) (4.30)

where t = ksτs + t′s, ks = ⌊ t
τs
⌋ and t′s = t mod τs. Similarly,

χτx(t) = kxχ
∞(τx) + χ∞(t′x) (4.31)

where t = kxτx + t′x, kx = ⌊ t
τx
⌋ and t′x = t mod τx. Figure 4.3 depicts the two different

rebalance frequencies under consideration relative to the simple rebalance point τc. We need
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χτs(t) > χτx(t)

⇒ksχ∞(τs) + χ∞(t′s) > kxχ
∞(τx) + χ∞(t′x)

⇒ks[χ(τs) + ψ∞(τs)] + [χ(t′s) + ψ∞(t′s)] > kx[χ(τx) + ψ∞(τx)] + [χ(t′x) + ψ∞(t′x)]

⇒ks[νpτs + ψ∞(τs)] + [νpt
′
s + ψ∞(t′s)] > kx[νpτx + ψ∞(τx)] + [νpt

′
x + ψ∞(t′x)]

⇒νp[ksτs − kxτx] + [ksψ
∞(τs)− kxψ∞(τx)] > νp[t

′
x − t′s] + [ψ∞(t′x)− ψ∞(t′s)]

⇒νp[t− t′s − t + t′x] + [ksψ
∞(τs)− kxψ∞(τx)] > νp[t

′
x − t′s] + [ψ∞(t′x)− ψ∞(t′s)]

⇒ksψ∞(τs)− kxψ∞(τx) > ψ∞(t′x)− ψ∞(t′s) (4.32)

Since, τs < τx, we know that ks ≥ kx. Let’s define △k = ks − kx and substitute in the
above inequality.

(kx +△k)ψ∞(τs)− kxψ∞(τx) > ψ∞(t′x)− ψ∞(t′s)

⇒kx[ψ∞(τs)− ψ∞(τx)] +△kψ∞(τs) > ψ∞(t′x)− ψ∞(t′s) (4.33)

We will now separately consider two possible cases for the value of △k.
Case 1 - △k ≥ 1 : The worst case scenario for equation 4.33 is when we consider the
maximum possible value for the RHS expression. This will occur when ψ∞(t′s) → 0 and
ψ∞(t′x)→ ψ∞(τs)(using lemma 11). Hence it is sufficient to prove:

kx[ψ∞(τs)− ψ∞(τx)] +△kψ∞(τs) > max[ψ∞(t′x)− ψ∞(t′s)]

⇒kx[ψ∞(τs)− ψ∞(τx)] +△kψ∞(τs) > ψ∞(τs)

⇒kx[ψ∞(τs)− ψ∞(τx)] + [△k − 1]ψ∞(τs) > 0 (4.34)

Again using lemma 11, we know ψ∞(τs) > ψ∞(τx). We are considering investment
horizons t > τx. Hence kx ≥ 1. For this case, [△k − 1] ≥ 0. Lastly for valid passive
strategy we need to have positive excess growth, i.e. ψ∞(τs) > 0. With these conditions,
inequality 4.34 will always hold.
Case 2 - △k = 0 : Under this scenario, inequality 4.33 is simplified to:

kx[ψ∞(τs)− ψ∞(τx)] > ψ∞(t′x)− ψ∞(t′s) (4.35)

We now show that the above inequality 4.35 always holds since kx[ψ∞(τs)−ψ∞(τx)] > 0 and
[ψ∞(t′x)−ψ∞(t′s)] < 0. Since △k = 0, ks = kx. To prove that [ψ∞(t′x)−ψ∞(t′s)] < 0, we will
start from the definition of horizon t:

t = ksτs + t′s = kxτx + t′x
⇒kxτs + t′s = kxτx + t′x, since ks = kx

⇒kx(τx − τs) = t′s − t′x
⇒t′s − t′x > 0, since τx > τs, kx ≥ 1

⇒t′s > t′x
⇒τs > t′s > t′x, since τs > t′s
⇒ψ(τs) > ψ(t′s) > ψ(t′x), using lemma 10

⇒ψ∞(t′x)− ψ∞(t′s) < 0 (4.36)
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concerned with investment horizon t ≥ τx here. We also know by means of lemma 11 that
ψ∞(τs) > ψ∞(τx). Hence we showed that inequality 4.35 is always true since LHS is positive
whereas RHS is negative.

Corollary 1. Stable hybrid strategy will outperform simple hybrid strategy for any investment
horizon exceeding τc, i.e. χτs(t) > χτc(t), ∀t > τc.

Proposition in corollary 1 is directly evident from theorem 4. For our running investment

example, the investor will obtain ELPV of 9.447 under stable hybrid strategy as compared to

the 8.632 and 8.6125 obtained under simple hybrid and active strategy respectively. Stable

hybrid strategy yields about 9.7% higher ELPV compared to baseline active strategy whereas

simple hybrid strategy merely yields 0.23% higher ELPV.

4.3 Optimal Hybrid Strategy

The obvious question now is if there exists a rebalance frequency at which the ELPV is

maximum for a given investment horizon. The key to find the answer is to study the results

of growth map theorem 2. The theorem provides the ELPV attained for a given horizon T

when a particular rebalance frequency τ is used. We will rewrite equation 4.22 as a function

of T > 0 and τ :

χτ (T ) = ⌊T
τ
⌋χ∞(τ) + χ∞(T mod τ) (4.37)

As mentioned before, in order to indicate passive strategy we can merely set the rebalance

frequency to ∞. A hybrid strategy will have a rebalance frequency τ , such that 0 < τ < T .

We need to obtain the partial derivative of equation 4.37 with respect to τ to search for a

maxima. In its current form equation 4.37 is expressed in terms of floor and mod functions

which are non-continuous piecewise linear functions. It turns out it is difficult to differentiate

this equation. Thus, our first attempt is to follow a numerical approach to search for the

maxima of the equation.

For a given investment horizon, one can use equation 4.37 to compute the ELPV for

any value of rebalance frequency τ . Figure 4.4(a) plots χτ (30) for various values of τ . We
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years. Notice further that, the investor may use any rebalance frequency in (0 τc] to obtain

higher ELPV than if continuous rebalancing had been used. However, a rebalance frequency

τ ∈ (0 τo) is not efficient since there is always a corresponding rebalance frequency τ ′ ∈ [τo τc)

which will produce equal ELPV. More formally,

∀τ ∈ (0 τo), ∃τ ′ ∈ [τo τc) s.t. χτ (T ) = χτ ′(T ) (4.38)

The investor will pay higher transaction cost for using τ instead of τ ′. Therefore the

investor will have no incentive to use τ when she can afford to remain passive longer without

degrading her terminal ELPV. In fact, she will improve her terminal ELPV when non-zero

transaction costs are considered. Thus, investor will consider using a rebalance frequency

τ only if it is on the efficient rebalance frontier, i.e. τ ∈ (τo τc). Figure 4.4(a) depicts the

frontier as the shaded portion of the plot.

The algorithm 6 outlines the computational steps to search for the optimal rebalance

frequency (ORF) τo which maximizes the left hand side of the equation 4.37 for any given

investment horizon T . The computational burden is greatly reduced as the search needs to

be performed only in the range of τ ∈ (0 τs] as per theorem 4.

We now state the following corollary which is quite obvious from the exposition thus far.

Corollary 2. If for any given portfolio, τc, τs and τo are the simple, stable and ORFs
respectively, then the following must hold true:

τo ≤ τs ≤ τc (4.39)

The above relationship is also demonstrated in figure 4.4(a). Using algorithm 6 we can

determine the optimal frequency for various values of investment horizon. Figure 4.4(b)

illustrates the variation of τo against horizon T for our example portfolio. It is interesting to

observe the fluctuation pattern of τ for different values of T . The fluctuation is vigorous for

smaller values of T . As T increases, the amplitude of the fluctuation decreases. One would
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Algorithm 6 ComputeOptimalRebFreq

Require: µ,S,rf ,T ,δT ,N
1: [νp,w,µ,S]← ComputeLogOptimalParams(µ,S, rf , N)
2: τo ← 0, χτo ← νpT # default continuous rebalancing
3: if !IsPassiveStrategyPossible(w,µ,S) then
4: return (τo, χ

τo)
5: end if
6: m← 0, ψ ← 0
7: for t = 0 to T by δT do
8: m← m+ 1, X ← 0, Y ← 0
9: for i = 1 to N+1 do
10: X ← X + w[i]eµ[i]t # equation 3.8
11: for j = 1 to N+1 do
12: # equation 3.12

13: Y ← Y + w[i]w[j]e(µ[i]+µ[j])t(eσ[i,j]t − 1)
14: end for
15: end for
16: χ∞[m]← ln(X)− 1

2
ln(1 + Y

X2 ) # equations 3.17 and 3.18
17: if t = 0 then
18: τo = 0, χτo = νpT
19: else
20: # theorem 2

21: k ← ⌊T
t
⌋, t′ ← T mod t, m′ ← χ∞(⌊ t′

δt
+ 0.5⌋)

22: χt ← kχ∞[m] + χ∞[m′] # theorem 2
23: if χt > χτo then # look for maximum χτ

24: τo ← t, χτo ← χt

25: end if
26: end if
27: ψprev ← ψ, ψ ← χ∞[m]− νpt
28: if ψ ≤ ψprev then # lemma 10 and 11
29: # reached stable rebalance time
30: return (τo, χ

τo)
31: end if
32: end for
33: return (τo, χ

τo) # stop searching, theorem 4
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Figure 4.4 Optimal rebalancing frequency and its fluctuation with investment horizon

expect that for very large horizon, the optimal frequency will converge to a single value.

We now prove that is indeed the case. Henceforth we will call this converged frequency as

asymptotic optimal rebalance frequency and denote it by τao.

Theorem 5. For sufficiently large values of investment horizon T , the optimal frequency
will asymptotically converge to τao, the time at which instantaneous growth becomes equal to
passive portfolio growth ν∞p , i.e.

ξ∞(τao) = ν∞p (τao), where ν∞p (t) =
χ∞(t)

t
(4.40)

Proof. Using the growth map theorem 2 we can write:

χτ (T ) = ⌊T/τ⌋χ∞(τ) + χ∞(T mod τ) (4.41)

From theorem 4 we know that τo ≤ τs. Note that for optimality of τ , our interest is only
in ∀τ ≤ τs. We assume that horizon T is sufficiently large, such that T ≫ τs > τo. Thus,
⌊T
τ
⌋ ≫ 1. We also know that τ > (T mod τ) implying that χ∞(τ) > χ∞(T mod τ) since

the passive portfolio growth will always be an increasing function of time for t < τs courtesy
lemma 10. Combining these two, we get ⌊T

τ
⌋χ∞(τ) ≫ χ∞(T mod τ). In other words, the

first term involving floor function shall dominate the second term. Hence, as a first order
simplification we can ignore the second term:

χτ (T ) ≈ ⌊T
τ
⌋χ∞(τ) (4.42)



59

0 5 10 15 20 25 30
0

5

10

15

20

25

30

τ

 

 

τ
T/τ
floor(T/τ)

mod(T,τ)

(a)

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Asymptotic Optimal Rebalance Frequency 

Time t (year)

G
ro

w
th

 R
at

e

 

 

ξ=ν
p

ξ∞

ν
p
∞

τ
ao

Instantaneous Passive Growth

Average Passive Growth

(b)

Figure 4.5 Illustration of derivation of asymptotic ORF τao for T = 30 years.

Furthermore, using the illustration in figure 4.5(a), for T ≫ τ , ⌊T
τ
⌋ ≈ T

τ
. Applying this

second order of simplification, we obtain:

χτ (T ) ≈ T

τ
χ∞(τ) (4.43)

In order to determine the value of τ at which the LHS of equation 4.43 is maximized, we
take the partial derivative:

∂χτ (T )

∂τ
≈
∂
(

T
τ
χ∞(τ)

)

∂τ
≈ − T

τ 2
χ∞(τ) +

T

τ

∂χ∞(τ)

∂τ
≈ T

τ

(∂χ∞(τ)

∂τ
− 1

τ
χ∞(τ)

)
(4.44)

Setting 4.44 to zero, we obtain the value of τao at which the hybrid portfolio growth value is
maximized.

T

τao

( ∣∣∣∣
∂χ∞(τ)

∂τ

∣∣∣∣
τ=τao

− 1

τao
χ∞(τao)

)
= 0

⇒
∣∣∣∣
∂χ∞(τ)

∂τ

∣∣∣∣
τ=τao

− 1

τao
χ∞(τao) = 0, since T 6= 0 and τao 6=∞

⇒
∣∣∣∣
∂χ∞(τ)

∂τ

∣∣∣∣
τ=τao

=
1

τao
χ∞(τao)⇒ ξ∞(τao) = ν∞p (τao) (4.45)

Figure 4.5(b) illustrates the application of the above theorem to compute τao for our

example portfolio. In this case τao is found to be 1.65 years. Observe from figure 4.4(b)
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algorithm 7 to compute τao.

Algorithm 7 ComputeAsymptoticOptimalRebalanceFrequency

Require: µ,S,rf ,N ,T ,δT
1: τao ← 0 # default continuous rebalancing
2: [νp,w,µ,S]← ComputeLogOptimalParams(µ,S, rf , N)
3: if !IsPassiveStrategyPossible(w,µ,S) then
4: return τao
5: end if
6: ξ∞ ← 0,ν∞p ← 0
7: for t = δT to T by δT do
8: ξ∞prev ← ξ∞,ν∞pprev ← ν∞p
9: X ← 0, X ′ ← 0, Y ← 0, Y ′ ← 0
10: for i = 1 to N+1 do
11: X ← X + w[i]eµ[i]t # equation 3.8
12: X ′ ← X ′ + w[i]µ[i]eµ[i]t # equation 3.46
13: for j = 1 to N+1 do
14: # equation 3.12

15: Y ← Y + w[i]w[j]e(µ[i]+µ[j])t(eσ(i,j)t − 1)
16: # equation 3.47

17: Y ′ ← Y ′ + w[i]w[j]e(µ[i]+µ[j])t[(µ[i] + µ[j])(eσ[i,j]t − 1) + σ[i, j]eσ[i,j]t]
18: end for
19: end for
20: ξ∞ ← 1

X

[
X ′ − 1

2
XY ′−2X′Y

X2+Y

]
# equation 3.51

21: ν∞p ← 1
t

(
ln(X)− 1

2
ln(1 + Y

X2 )
)

# equation 3.21

22: if ξ∞ ≤ ν∞p and ξ∞prev ≥ ν∞pprev then
23: return τao = t
24: end if
25: end for
26: return τao
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Scalability and Efficiency

In the previous chapter, we investigated the possibility of discrete time trading for log-

optimal portfolios. We outlined an analytical approach and an algorithm 6 to compute

the optimal rebalance frequency (ORF) for a log-optimal investor with a finite investment

horizon. The investor will rebalance periodically to the optimal portfolio weights to maximize

the expected log of portfolio value (ELPV) for a given investment horizon. This periodic

rebalancing approach obviates the need to continuously rebalancing the portfolio which is

impractical to implement in real life investment.

A natural question to ask is if the investor can utilize Monte-Carlo simulation to com-

pute the true underlying ORF instead of using a rebalancing algorithm 6. The core issue in

simulation has always been the tradeoff between speed and accuracy[35]. The accuracy of

simulation largely depends on the number of paths and size of discrete time step. Unfortu-

nately, the speed of simulation to determine the ORF is not suitable for most modern-day

investment scenarios. It is more so in today’s era of algorithmic, micro-second and high-

frequency trading environment that demands extremely fast determination of ORF in a

dynamic changing market[36].

Later in chapter 7, we will present the Monte-Carlo simulation results for a portfolio

with three risky and one risk-free assets. Using 20, 000 Monte-Carlo paths and 0.01 year

time steps using a dual core 2.20 GHz, 4 GB Intel Pentium computer, the simulation takes a

few days to complete. This large latency is unsuitable for most dynamic investment systems.

The duration grows exponentially if we increase the asset count in the portfolio.

In this chapter, we investigate the scalability of the optimal algorithm 6. We analyze
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O(N2) algorithm. Yet the speed of the algorithm can greatly improve by performing software

optimizations. With such efficiency improvement the algorithm can be applied to large scale

financial applications with hundreds of assets in a portfolio.

The rest of this chapter is organized as follows. Section 5.1 analyzes its run time. Section

5.2 discusses various optimization steps to be applied to improve efficiency of the algorithm.

Section 5.3 presents the algorithm run time measurements and computes the gain in algo-

rithm speed attributed to the optimizations in the previous section.

5.1 Computational Analysis

For our computational analysis, we only consider the core of algorithm 6 ignoring the

computational load of one time invocation of algorithm 1 and 5 to compute the log optimal

parameters and check for existence of ORF respectively. Algorithm 6 uses only scalars

for all but one of the computed variables inside the asset loop (line 10). χ∞ in line 20 is

the only vector that needs to cache the previously computed values. The necessity of this

caching arises due to the use of growth map theorem to compute the expected value of log

of portfolio growth under hybrid strategy. Eliminating the use of unnecessary vectors makes

the algorithm more efficient since storage and access of elements become very expensive

as the size of the vectors (same as the number of assets used) grow. For example, in the

covariance matrix Σ, the first row and column have the covariances of risky assets with the

risk-free asset.

We now analyze the following three loops in the algorithm which are the key drivers of

runtime performance.

1. Outer time loop: Starts at line 7. The loop count is determined by precision of time

discretization δT . The worst case loop count occurs when stable rebalance frequency τs does

not exist for the asset class under consideration. Otherwise, the loop count is determined by

the value of stable rebalance frequency τs.
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Lt =





τs
δT

+ 1, if ∃ τs > 0;

T
δT

+ 1, otherwise;
(5.1)

2. Outer asset loop: Starts at line 10. The loop count is proportional to N + 1, the

number of risky and risk-free assets.

Lao = Lt(N + 1) (5.2)

3. Inner asset loop: Starts at line 13. The loop count depends on the outer asset loop

count. The total number of times this loop is executed given by:

Lai = Lt(N + (N − 1) + (N − 2) + · · ·+ 1)

= Lt

N(N + 1)

2
(5.3)

Equation 5.3 is translated into run time upper bound of O(N2) as well as lower bound

of Ω(N2). The reader can refer to [37] for the derivation of upper and lower bounds for

summations.

It is more insightful to investigate the number of instructions executed as part of the

algorithm. Let’s denote ηt, ηao and ηai as the number instructions executed in the respective

loops. For this exercise we count each instruction only once against the innermost loop it is

in. The total number of instructions executed during the program is given by the following

function:

φ(N) = ηtLt + ηaoLao + ηaiLai

= ηtLt + ηaoLt(N + 1) + ηaiLt

N(N + 1)

2

= Lt(ηt + ηao(N + 1) + ηai
N(N + 1)

2
)

= Lt(ηt + (N + 1)(ηao + 0.5ηaiN)) (5.4)
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reduce the total number of executed instructions φ(N) given by equation 5.4. Note that ηtLt

is a fixed cost and does not increase as we increase the size of the portfolio to include more

assets. Scanning the algorithms, we also observe that ηt consists of only a few number of

mostly simple mathematical assignments essential to the algorithm. There will not be any

substantial benefit to the overall algorithm performance by reducing ηt. On the contrary,

any reduction in ηao or ηai, especially the later will increase the performance significantly as

the size of N increases. Our optimization steps in the following section are primarily geared

towards reducing ηao and ηai.

5.2 Optimization Steps

We apply following series of incremental optimization steps to algorithm 6.

1. Use covariance matrix: This simple step to replace all ρijσiσj terms by σij terms of

the covariance matrix S eliminates large number of multiplication instructions. Each such

step involves at least 2 multiplications of double values. There are three instances of use

of these expressions. Eliminating all of them to use σij will reduce ηai by 6. We will also

replace two inputs Σ and ρ with only one input, the covariance matrix S.

2. Loop splitting, precomputing and caching: The algorithm computes and uses the values

for w[i]eµ[i]t, ∀1 ≤ i ≤ N in multiple lines (11,12,15 and 17). Note that some of these values

are recomputed during the execution. The performance will improve if these values are

precomputed and cached before the algorithm uses them. Without this caching mechanism

these are computed (N+1)(N+2)
2

times corresponding to the one diagonal half of the i-j matrix

space including the diagonal elements. With caching, however, these terms need only be

computed N + 1 times. This will save a net N(N+1)
2

times computing these terms.

The caching can be achieved by splitting the outer asset loop into two: separating the

first iteration (i.e. i = 1) from the rest. In the first iteration all N + 1 terms for w[i]eµ[i]t can

be pre-computed and cached. In the remaining part of the loop, these cached values will be
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3. Eliminate variance and covariance for risk-free asset: Note that the first iteration of

the inner and outer asset loops involve computations with risk-free assets. The variance and

co-variance terms will be zero in this iteration. Thus we eliminate the need to compute all

the variance and covariance terms, viz. Y and Y ′ inside the inner loop. This further reduces

the instruction counts ηao and ηai.

4. Common term refactoring: This is the final optimization step where common terms in

expressions are identified and factored out to compute once. For example in the inner asset

loop, the term eσ[i,j]t is a common term in both computing Y and Y ′ expressions.

Algorithm 8 outlines the resulting the optimized version to compute the ORF for log-

optimal portfolios.

5.3 Performance Measurement

We implemented both versions of the algorithms presented here in Matlab environment

for performance measurement. In our implementation we used only fundamental computa-

tional operations avoiding any usage of Matlab specific operators, such as matrix multiplica-

tion. We also implemented another version using Matlab matrix and summation operations

avoiding any explicit for-loop constructs. This matrix-based implementation takes advantage

of Matlab’s underlying Basic Linear Algebra Subprograms (BLAS) library, a set of external

linear algebra routines optimized for fast computation of low-level matrix operations. We

have presented this Matlab algorithm version in the appendix.

To obtain a fair comparison, we carefully chose the algorithm input parameters µ, S and

w so that the stable rebalance frequency τs does not exist. This ensures that each run of the

algorithm goes through till the end of the horizon T without breaking in the middle. Thus

for the given asset parameters and horizon T , we capture the worst case execution time.

We considered the horizon value of T = 10 years and δT = 0.01 for our experiments.

We ran and measured the execution time using Matlab cpu-time measurement instructions,
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Require: µ,S,rf ,T ,δT ,N
1: τo ← 0, χτo ← νpT # default continuous rebalancing
2: [νp,w,µ,S]← ComputeLogOptimalParams(µ,S, rf , N)
3: if !IsPassiveStrategyPossible(w,µ,S) then
4: return (τo, χ

τo)
5: end if
6: m← 0
7: for t = 0 to T by δT do
8: m← m+ 1
9: X ← 0, X ′ ← 0, Y ← 0, Y ′ ← 0
10: A[1]← w[1]eµ[1]t

11: X ← X + A[1], X ′ ← X ′ + µ[1]A[1]
12: for j = 2 to N+1 do
13: A[j]← w[j]eµ[j]t

14: end for
15: for i = 2 to N+1 do
16: X ← X + A[i], X ′ ← X ′ + µ[i]A[i]
17: for j = 2 to N+1 do
18: c← A[i]A[j], b← eσ[i,j]t

19: Y ← Y + c(b− 1)
20: Y ′ ← Y ′ + c((µ[i] + µ[j])(b− 1) + σ[i, j]b)
21: end for
22: end for
23: χ∞[m]← ln(X)− 1

2
ln(1 + Y

X2 ) # equations 3.17 and 3.18

24: ξ∞ ← 1
X

[X ′ − 1
2
XY ′−2X′Y

X2+Y
] # equation 3.51

25: if t = 0 then
26: χτo = νpT, τo = 0
27: else
28: k ← ⌊T

t
⌋, t′ ← T mod t, m′ ← 1 + ⌊ t′

δt
⌋ #

theorem 2
29: # theorem 2
30: χt ← kχ∞[m] + χ∞[m′]
31: if χt > χτo then # look for maximum χH

32: χτo ← χt, τo ← t
33: end if
34: if ξ∞ < νp then
35: # found stable rebalance time?
36: return (τo, χ

τo)
37: end if
38: end if
39: end for
40: return (τo, χ

τo) # stop searching, theorem 4
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and captured average execution time over 200 identical trials. The data is presented in the

following table 5.1. All the measurements are taken in a standard commercially available

dual core 2.20 GHz, 4 GB Intel Pentium personal computer.

Table 5.1 Algorithm Execution Time (Seconds) Comparison

N original matrix based optimized
2 0.0256 0.0203 0.0093
3 0.0316 0.02 0.0094
5 0.046 0.0215 0.0111
8 0.073 0.0242 0.0144

16 0.1597 0.0382 0.0286
32 0.4075 0.0861 0.0744
64 1.2634 0.2826 0.2513

128 4.2851 1.285 0.9116
256 15.9081 6.7322 3.6558
400 37.8103 16.2942 9.1331
600 83.4313 37.8169 21.8522

Figure 5.1 plots the performance data of table 5.1. Observe that even though the matrix-

based implementation offers significant speed improvement, the optimized algorithm 8 is the

most efficient one. Speed improvement is specially significant for large values of N . In order

to compute magnitude of speed improvement, we fitted a polynomial curve of degree 2 (i.e.

aN2 + bN + c) corresponding to runtime of O(N2) to each of the curves in figure 5.1.

The fitting for each curve is very tight with negligible error estimates. Table 5.2 presents

the polynomial coefficients for each algorithm. To quantify the speed gain we neglected the

lower order coefficients b and c to define the speed gain over the original algorithm as the

coefficient ratio a of original algorithm to optimized algorithm. We observe that the matrix-

based algorithm offers twice the speed of the original algorithm. Algorithm 8, however wins

by offering a speed gain of 3.44 over the original one. This speed improvement is more visible

for large size of N . For instance, when the portfolio consists of 600 risky assets, ORF can

be computed within 21 seconds compared to 83 seconds taken by the original algorithm.
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Figure 5.1 Algorithm performance in seconds when asset size N increases.

Table 5.2 Polynomial Curve Coefficients and Algorithm Speed Gain
a b c Speed Gain

optimized 0.000065 -0.002834 0.067825 3.44
matrix based 0.000110 -0.002846 0.031052 2.04

original 0.000223 0.005010 0.014020 1.00

It is important to note that the speed measured and presented here is the worst case

speed. A typical investment scenario will run much faster since stable rebalance frequency

occurs much before the horizon of 10 years considered here. For our optimization and analysis

we did not consider exploiting parallelism inherent in the algorithm. Grid based computing

is the foundation of many financial application used for commercial purpose. By exploiting

the parallelism, the algorithm can be run in sub-second time interval in a multiprocessor or

grid architecture.
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Computing Optimal Rebalance Frequency Function

It turns out that periodic optimal rebalance frequency (ORF) is a function of the invest-

ment horizon. Often investment portfolio managers have to make rebalancing decisions for

funds invested by multitude of diverse investors. These investors have different preference

for the length of investment horizon. For example, a pension fund manager needs to worry

about investors of all ages. Hence the fund manager has to make rebalance decision for a

continuum of investment horizons. In such scenarios, there is a need to compute the value of

ORF function for a range of investment horizon. One can construct this rebalance strategy

function, called ORF function, up to a specified investment horizon given a limited trajectory

of expected log of portfolio value (ELPV) when the initial portfolio is never rebalanced. The

search based algorithm 8 even after software optimization is inherently quadratic in time.

The computing time rapidly explodes as the range of investment horizon expands.

Another limitation of our approach is that it assumes static return and risk characteristics

for constituent assets. The limitation can however be obviated by re-computing the ORF if

the market dynamics is changed with new values of risk and returns. For this approach to be

viable, our algorithm needs to be computationally more efficient so that ORF can be adjusted

dynamically with the change in market dynamics. Our goal is to compute ORF taking no

more than a few milliseconds for very large portfolio size. With this efficiency goal, even

smaller investment boutiques can take advantage of our proposed approach. These smaller

investment firms typically can not afford high end grid or parallel computing platforms.

By using mathematical analysis, we reduce the complexity of the algorithm to linear

time in two steps. First we show that the ORF can only be chosen from a finite set of
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improvement in performance for finding ORF by limiting the search space to a discrete

and countable set instead of a continuous range of numbers. Then we show that the entire

investment horizon range can be divided into non-overlapping piecewise segments. The ORF

within each horizon segment is the ratio of the investment horizon to a fixed positive integer

called the rebalance divisor. Therefore we reduce the task of computing the ORF function to

merely finding the horizon segmentation points called rebalance inflection point (RIP) and

the corresponding rebalance divisors.

The rest of the chapter is organized in the following manner. In section 6.2 we investigate

approaches to reduce the continuous time search space to a finite countable discrete space for

finding ORF. In section 6.3 we analytically compute the ORF eliminating the need for any

search-based algorithm. Using this approach we present a linear time algorithm to compute

the ORF function. We then measure and compare the computational complexity of three

increasingly sophisticated algorithms in section 6.5.

6.1 Optimal Rebalance Frequency (ORF) Function

The obvious question now is if there exists a rebalance frequency at which the ELPV is

maximum for a given investment horizon. The key to find the answer is to study the results

of growth map theorem 2. The theorem provides the ELPV attained for a given horizon T

when a particular rebalance frequency τ is used.

We need to obtain the partial derivative of equation 4.22 with respect to τ to search for

a maxima. In its current form equation 4.22 is expressed in terms of floor and mod functions

which are non-continuous piecewise linear functions. It turns out it is difficult to differentiate

this equation. Thus, our first attempt is to follow a numerical approach to search for the

maxima of the equation for a given T when τ is varied.
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τo(T ) = τ, s.t. max
0≤τ≤min(τs,T )

χτ(T ) (6.1)

Figure 4.4(b) illustrates the variation of τo(T ) when horizon T is varied from 0 to 30 years

for our example portfolio. We call τo(T ) as the ORF function for the portfolio. Observe

that ORF function is piecewise linear and shows a sawtooth like pattern of fluctuation. The

amplitude of fluctuation is larger for smaller values of T . As T increases, the amplitude

decreases. For very large horizon, the ORF converges to a single asymptotic value τao.

Theorem 5 establishes the convergence condition. For the example portfolio τao is found to

be 1.65 years. We now outline the steps needed to compute the ORF function as per the

specification in equation 6.1 in the form of algorithm 10.

Since the τo has an upper bound in τs, in the worst case the algorithm needs only

the passive trajectory χ∞ from 0 to τs. Algorithm 9 summarizes the computational steps

involved in computing the ELPV for passive portfolio. The algorithm computes the evolution

of χ∞ until stable rebalance frequency τs is found. The algorithm tracks the value of excess

growth ψ∞ to determine when τs is reached. Since we need to know the value of χ∞ only

till τs in order to compute the ORF of the portfolio. For every discrete time horizon t,

algorithm 10 searches for the ORF between 0 and min(τs, t) that yields the maximum

ELPV. There are two discrete time for-loops starting at line 3 and 5. A similar algorithm 13

to compute τm from the unimodal trajectory of ξ∞ is outlined in the appendix.

For any given horizon T , the algorithm has to examine a set of candidate rebalance

frequencies before selecting the optimal choice of τo. We define this set as rebalance frequency

domain ℑs(T ). For this algorithm ℑs(T ) contains the following elements:

ℑs(T ) = {mδt : ∀m ∈ N
+ s.t. m ≤ ⌊

min(τs, T )

δt
⌋} (6.2)

For our example portfolio we have seen the value of τs = 3.7. For a reasonable value

of δt = 0.001, the cardinality of ℑs(30) shall be ⌊min(3.7,30)

0.001
⌋ = 3, 700. Thus one has to
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Algorithm 9 ComputePassivePortfolio

Require: µ,S,w,T ,δt,N ,νp
1: m← 0, ψ ← 0, τs ← T
2: for t = 0 to T by δt do
3: m← m + 1, X ← 0, Y ← 0
4: for i = 1 to N+1 do
5: X ← X +w[i]eµ[i]t # equation 3.8
6: for j = 1 to N+1 do
7: # equation 3.12

8: Y ← Y + w[i]w[j]e(µ[i]+µ[j])t(eσ[i,j]t − 1)
9: end for
10: end for
11: χ∞[m]← ln(X)− 1

2
ln(1 + Y

X2 ) # equations 3.16 and 3.18
12: ψprev ← ψ,ψ ← χ∞[m]− νpt
13: if ψ ≤ ψprev then
14: τs ← t
15: return (χ∞, τs)
16: end if
17: end for
18: return (χ∞, τs)

Algorithm 10 ComputeORFfcn Search τo
Require: µ,S,w,T ,δt,N ,νp
1: [χ∞, τs]← ComputePassivePortfolio(µ, S,w, T, δt,N, νp)
2: m← 0
3: for t = 0 to T by δt do
4: m ← m + 1,T[m] ← t, τo[m] = 0, χτo[m] = νpt #

continuous rebalancing
5: for τ = δt to min(τs, t) by δt do
6: k ← ⌊ t

τ
⌋, t′ ← t mod τ , m′ ← χ∞(⌊ t

′

δt
+ 0.5⌋) #

theorem 2
7: χτ ← kχ∞[m] + χ∞[m′] # theorem 2
8: if χτ > χτo[m] then
9: τo[m]← t, χτo[m]← χτ

10: end if
11: end for
12: end for
13: return (T, τo, χ

τo)
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the horizon value is increased from 0 to τs = 3.7. It remains the same for any investment

horizon longer than τs = 3.7.

6.2 Reducing the Search Space

For large value of horizon T and small δt the search spaceℑs(T ), ⌊
min(τs,T )

δt
⌋ can become

very large. The algorithm needs to use a small δt for an acceptable accurate optimal solution.

A very small value of δt will provide a more precise solution at the cost of increasing the

search space and causing increasing computational burden. Our goal is to find alternative

algorithms with reduced cardinality of search space to obtain better run-time performance.

With subsequent mathematical analysis we will precisely achieve this goal. We show that

one needs to search only a much smaller set of possible candidates.

6.2.1 Discrete Rebalance Divisor

With the help of the following lemma we will see that not all time values between 0 and

τs are candidates for rebalance frequency domain.

Lemma 17. The rebalance frequency domain of any log-optimal portfolio is restricted to
only the factors of horizon T with positive integer divisors, i.e.

ℑk(T ) = {
T

k
: ∀k ∈ N

+} (6.3)

Proof. Using the results of growth map theorem 2:

χτ(T ) = k′χ∞(τ ) + χ∞(T − k′τ ) (6.4)

where τ is a rebalance frequency and k′ = ⌊T/τ⌋ ∈ N is the set of positive natural numbers
including 0. Taking the partial derivative with respect to τ , we obtain:

∂χτ(T )

∂τ
= k′∂χ

∞(τ )

∂τ
+
∂χ∞(T − k′τ )

∂τ
= k′ξ∞(τ )− k′ξ∞(T − k′τ ) (6.5)

To find the rebalance frequency τ = τo at which χτ(T ) is maximized, we set the partial
derivative in equation 6.5 to zero and solve for τo:
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k′ξ∞(τo)− k
′ξ∞(T − k′τo) = 0

⇒k′ξ∞(τo) = k′ξ∞(T − k′τo)

⇒ξ∞(τo) = ξ∞(T − k′τo)

⇒τo = T − k′τo

⇒τo =
T

k′ + 1
(6.6)

Note that k′ = 0 is true only when horizon τo ≥ T implying adherence to passive strategy.
Equation 6.6 provides generic solutions for τo. Substituting k = k′ + 1 such that k ∈ N

+

in equation 6.6 we arrive at the following relationship:

τo =
T

k
(6.7)

Hence, ℑk(T ) can only have the factors for T as specified in equation 6.3.

Corollary 3. The ELPV at τo =
(

T

k

)
is given by:

χτo(T ) = kχ∞
(T
k

)
(6.8)

Proof. The derivation is straight forward. Substituting equation 6.6 in equation 6.4, the
maximum ELPV when τo is used as the rebalance frequency:

χτo(T ) = kχ∞
(T
k

)
+ χ∞(T −

kT

k
)

= kχ∞
(T
k

)
+ χ∞(0) = kχ∞

(T
k

)
(6.9)

Lemma 17 restricts the rebalance frequency domain to only a infinite set of rational

numbers. Henceforth we describe the positive integer k as the rebalance divisor of the

portfolio. A rebalance divisor divides the prescribed horizon into k equal segments. The

portfolio has to be rebalanced after each segment to attain the terminal ELPV. In this way

the wealth grows following passive dynamics for k equal time periods. The ELPV at the

end of the passive period T

k
multiplies k fold at the end of the horizon T .
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investment T independent of any other portfolio characteristics. For example, any given port-

folio that is eligible for rebalancing and has T = 30 year investment horizon, ORF τo for a

log-optimal investor must belong to ℑk(30) = {30, 15, 10, 7.5, 6, 5, 4.3, 3.8, 3.3, 3, . . . }.

If the intended horizon is T = 12 years, then the investor must choose τo from ℑk(12) =

{12, 6, 4, 3, 2.4, 2, 1.7, 1.5, . . . }. Portfolio parameters only help determine the ORF from

the domain.

There are infinite choices of rebalance divisors. Any search algorithm has to search for

infinite possible alternative divisors to find the optimal τo. It turns out we can do even better

by finding upper and lower bounds for the rebalance divisor. Consequently we restrict the

domain ℑk(T ) to only a finite and countable set. From corollary 2 we know that τo has

portfolio specific upper bound τs such that τo ≤ τs. This leads to a lower bound kmn given

by:

kmn = max(1, ⌈
T

τs
⌉) (6.10)

The rebalance frequency domain still remains an infinite set as follows:

ℑk(T ) = {
T

k
: ∀k ∈ N

+ and k ≥ kmn} (6.11)

For our example portfolio using τs = 3.7 the domain is now reduced to {3.3, 3, 2.7, 2.5, . . . }

and {3, 2.4, 2, 1.7, 1.5, . . . } for τo for 30 and 12 year horizons respectively. We now prove

that the ORF τo will also have a lower bound which further restricts the domain to a count-

able finite set.

Lemma 18. For any given portfolio with horizon T , assume ξ∞(t) is unimodal in 0 ≤ t ≤
T with the unique maxima at τm. The ELPV χτo(T ) is maximized for ORF τo ∈ ℑk(T )
such that τo ≥ τm.

Proof. Using the results of lemma 17, we know that the ORF τo ∈ ℑk(T ). Let’s choose
two rebalance divisors k+ 1 and k. The corresponding rebalance frequencies are τ1 = T

k+1

and τ2 = T

k
belong to ℑk(T ). By definition τ1 < τ2. We need to prove that if τ1 < τm,
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(a) (b)

Figure 6.1 Two possible scenarios for deriving the lower bound for rebalance frequency.

τ2 will always outperform τ1 in generating higher ELPV for horizon T . τ2 may take any
value on either side of τm. Mathematically, it will suffice to prove the following:

χτ1(T ) < χτ2(T )

⇒(k + 1)χ∞(τ1) < kχ∞(τ2), using lemma 17

⇒
k + 1

k
χ∞(τ1) < χ∞(τ2)

⇒
1

k
χ∞(τ1) < χ∞(τ2)− χ

∞(τ1)

⇒
1

k

∫ τ1

0

ξ∞(t) dt <

∫ τ2

0

ξ∞(t) dt−

∫ τ1

0

ξ∞(t) dt (6.12)

We consider two possible scenarios for inequality 6.12 as illustrated in figure 6.1. The
first scenario in figure 6.1(a) is applicable when τ1 < τ2 ≤ τm. The LHS of inequality 6.12
is given by:

1

k

∫ τ1

0

ξ∞(t) dt

=
1

k
(Area of region 1-2-4-5)

=
1

k
(Area of region 1-3-4-5)−

1

k
(Area of region 2-3-4)

=
(1
k

)
(τ1)ξ

∞(τ1)−
ϕ1

k

=
T

k(k + 1)
ξ∞(τ1)−

ϕ1

k
(6.13)
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∫ τ2

0

ξ∞(t) dt−

∫ τ1

0

ξ∞(t) dt

=(Area of region 4-5-6-7-8)

=(Area of region 4-5-6-7) + (Area of region 4-7-8)

=(τ2 − τ1)ξ
∞(τ1) + ϕ2 =

(T
k
−

T

k + 1

)
ξ∞(τ1) + ϕ2

=
T

k(k + 1)
ξ∞(τ1) + ϕ2 (6.14)

Since ϕ1, ϕ2 > 0, comparing equations 6.13 and 6.14 we prove that inequality 6.12 holds
true.

With the help of scenario 1, we proved that the investor should prefer to use the largest
value of rebalance frequency out of all possible rebalance frequencies in the interval of 0 to
τm. This largest frequency shall have a corresponding rebalance divisor of ⌊ T

τm
⌋. We now

show that the next higher rebalance frequency shall always be a better choice for the investor
to attain higher expected utility. All rebalance frequency candidates in the interval of 0 to
τm shall be suboptimal for the investor. Therefore the ORF τo shall always be higher than
τm.

As illustrated in figure 6.1(b), τ1 is the largest rebalance frequency candidate less than
τm with a rebalance divisor of k + 1. τ2 is the next higher rebalance frequency candidate
with a rebalance divisor of k. We need to prove that the investor shall attain higher ELPV
when rebalance frequency of τ2 instead of τ1 is used.

First we reckon that for sufficiently large value of horizon T ≫ τm, k = ⌊ T

τm
⌋ ≫ 1.

For scenario 2, we can derive the values of τ1 and τ2 as follows:

τ1 =
T

k + 1
=
kτm + t′

k + 1
, where 0 ≤ t′ < τm

= τm −
τm − t

′

k + 1
(6.15a)

τ2 =
T

k
=
kτm + t′

k
= τm +

τm

k
(6.15b)

For k≫ 1, both τm−t′

k+1
and τm

k
shall be small compared to τm. Hence τ1 and τ2 will be

very close to τm. This is illustrated in figure 6.1(b) where it is assumed ξ∞(τ1) = ξ∞(τ2).
As in scenario 1, the LHS of inequality 6.12 is given by equation 6.13. We now derive the
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∫ τ2

0

ξ∞(t) dt−

∫ τ1

0

ξ∞(t) dt

=(Area of region 4-5-6-7-8)

=(Area of region 4-5-6-7) + (Area of region 4-7-8)

=(τ2 − τ1)ξ
∞(τ1) + ϕ2 =

(T
k
−

T

k + 1

)
ξ∞(τ1) + ϕ2

=
T

k(k + 1)
ξ∞(τ1) + ϕ2 (6.16)

Once again, since ϕ1, ϕ2 > 0, comparing equations 6.13 and 6.16 we prove that inequal-
ity 6.12 holds true for scenario 2. Therefore an investor will never choose any rebalancing
frequency τ < τm.

Thus we establish upper and lower bounds for the ORF as τs and τm respectively. While

τs determines the lower bound of rebalance divisor as per equation 6.10, τm determines the

upper bound kmx as per equation 6.17 below:

kmx = max(1, ⌊
T

τm
⌋) (6.17)

Figure 6.2 illustrates the values of upper and lower bounds of rebalance divisors for

various investment horizons. Notice that, for low values of horizon, ko = 1 outperforms all

other rebalance divisors. Hence the investor will follow passive strategy for such low value

of investment horizon. As the horizon increases, we observe that ko increases in steps of 1

resulting in faster ORF τo for longer horizon. As per theorem 5, for sufficiently large horizon

τo converges to τao. We refine the rebalance frequency domain further to a finite countable

set as follows:

ℑk(T ) = {
T

k
: ∀k ∈ N

+ and kmn ≤ k ≤ kmx} (6.18)

Contrast the above rebalance frequency domain ℑk(T ) to the prior domain ℑs(T ) defined

in equation 6.2. For our example portfolio, the values for τm = 0.91 and τs = 3.7 lead

to kmn = 9 and kmx = 32 for horizon T = 30 years. This restricts the rebalance
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Figure 6.2 Bounding the rebalance divisors for various investment horizons.

frequency domain to ℑk(30) = {3.3, 3, 2.7, 2.5, . . . , 1.0, 0.97, 0.94}. Thus one has to

search for only 24 possible candidates to find the optimal frequency τo(30). Similarly an

investment horizon of 12 years leads to kmn = 4 and kmx = 13. One has to search

the domain ℑk(12) = {3, 2.4, 2, 1.7, 1.5, 1.33, 1.2, 1.09, 1, 0.92} consisting of only 10

discrete values to find τo(12). There is significant reduction in search space compared to

earlier search based rebalance domain. For any horizon value ∀T ≥ 3.7, ℑs(T ) has a

cardinality of 370 and 3,700 for δt values of 0.01 and 0.001 respectively. Given ℑk(T ), one

can define the ORF similar to the version in equation 6.1 as:

τo(T ) = τ, s.t. max
kmn≤k≤kmx

kχ∞(
T

k
) (6.19)

Algorithm 11 outlines the steps to compute the trajectory of ORF function up to the specified

horizon T . It takes the portfolio parameters and returns three vectors, viz. T, the horizon

time point vector, τo, the ORF function vector for each discrete horizon time point and χτo ,

the vector containing the ELPV if the corresponding ORF were to be used. For each horizon

time point the algorithm only searches for the optimal value of rebalance divisor ko between



80Algorithm 11 ComputeORFfcn Search ko
Require: µ,S,w,T ,δt,N ,νp
1: [χ∞, τs]← ComputePassivePortfolio(µ, S,w, T, δt,N, νp)
2: τm ← ComputeTauMax(µ, S,w, T, δt, N)
3: m← 1,T[m]← 0, τo[m]← 0, χτo[m]← 0
4: for t = δt to T by δt do
5: m← m + 1,T[m]← t, τo[m]← 0, χτo[m]← νpt
6: kmn ← max(1, ⌈ t

τs
⌉), kmx ← max(1, ⌊ t

τm
⌋)

7: for k = kmn to kmx by 1 do
8: τ = t

k

9: if kχ∞(⌊ τ

δt
+ 0.5⌋) > χτo[m] then

10: τo[m]← τ, χτo[m]← kχ∞(⌊ τ

δt
+ 0.5⌋)

11: end if
12: end for
13: end for
14: return (T, τo, χ

τo)

kmn and kmx that maximizes the ELPV under hybrid strategy.

6.3 Rebalance Divisor Optimality

Comparing equation 6.1 and 6.19, we see that we have significantly reduced the search

space. In this section we will explore the possibility to completely avoid searching for the

ORF. The first step in this direction is to analyze the nature of the equation 6.19.

6.3.1 Log Utility Rebalance Contour (LURC)

The hybrid portfolio evolution is governed by the function kχ∞( t

k
). The investor has a

finite choice of such evolution paths or contours, one for each possible value of k between

kmn and kmx. For any horizon T , τo is determined by the rebalance divisor k defining the

contour that yields the maximum ELPV for t = T 1. We describe each such contour as log

utility rebalance contour (LURC). The function  L : (N+,R+) 7→ R
+ defines time evolution

1In subsequent discussions we use both t and T interchangeably. We prefer to use t when the horizon
value is used in the context of a variable of a function.
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(a) (b)

Figure 6.3 Illustrations of LURC, inflection point and EIPG of LURC.

of the kth LURC as follows:

 L(k, t) = kχ∞
( t
k

)
, ∀k ∈ N

+, ∀t ∈ R
+ (6.20)

The LURC function  L(k, t) defines evolution of ELPV if the investor adopts a hybrid strategy

rebalancing after every t

k
time interval. Due to the results of the lemmas 17 and 18, for a

given horizon, the investor needs to adopt a hybrid strategy that corresponds to one of the

finite possible LURCs to optimize his log utility.

The functional notation in general describes all the three strategies we have discussed so

far.  L(0, t) and  L(1, t) describe the ELPV under active and passive strategies respectively.

The following are some generic equivalent notations:

 L(0, t) = χ0(t) = χ(t) (6.21a)

 L(1, t) = χt(t) = χ∞(t) (6.21b)

 L(k, t) = χ
t
k (t) = kχ∞

( t
k

)
(6.21c)

Given a horizon t there are only finite such LURCs we need to consider corresponding to

all possible rebalance divisors k used in defining ℑk(t). Figure 6.3(a) illustrates conceptual



82LURCs for three values of rebalance divisors k, k+1 and k+2. Before we proceed we will

derive a few important properties of LURC.

Lemma 19. The EIPG of the kth LURC is given by:

∂  L(k, t)

∂t
= ξ∞

( t
k

)
(6.22)

Proof. The proof is straight forward. Differentiating equation 6.20 with respect t gives us
the following:

∂  L(k, t)

∂t
= k

∂χ∞( t

k
)

∂( t

k
)

∂( t

k
)

∂t
= ξ∞

( t
k

)
(6.23)

Let’s look at the nature of EIPG evolution for various LURCs. The first LURC with

k = 1 always evolves following the passive portfolio growth pattern. As we increase the

value of k, EIPG of LURC becomes increasingly flatter as illustrated in figure 6.3(b). EIPG

of all LURCs have the same maximum value of ξ∞(τm) although occurring at different

time points. The EIPG of kth LURC maximizes at kτm. Note that for a given time

interval, the area under the EIPG of kth LURC calculates the change in ELPV during the

interval. Because of the EIPG asymmetry, two different LURCs will have different levels of

performance in generating ELPV for different lengths of horizon. As an example, referring to

the figure 6.3(a), after horizon Tk,k+1, (k+1)th LURC surpasses kth LURC in performance

to generate higher ELPV.

6.3.2 Inflection Point

We describe the horizon at which two LURCs intersect as a inflection point. At any

inflection point one LURC’s performance surpasses the performance of another LURC. We

will denote the inflection point of two different LURCs for kth and k′th as Tk,k′. As an

illustration figure 6.3(a) shows three different inflection points generated by kth, (k+1)th and

(k+2)th LURCs. We describe Tk,k+a, a ∈ N
+ as the ath inflection point for the kth LURC.
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respectively for the kth LURC. Note that by definition k′th inflection point of kth LURC

is same as kth inflection point of k′th LURC. Using these notations, Tk,k′ = Tk′,k, ∀k 6=

k′, {k, k}′ ∈ N
+. As a convention, we prefer to use Tk,k′ where k < k′ to denote the

inflection point of kth and k′th LURCs.

Lemma 20. An inflection point shall have a lower bound given by:

Tk,k+a > (k + a)τm, ∀a >∈ N
+ (6.24)

Proof. For simplicity of notation, we will use Tka = Tk,k+a. We start with the definition of
Tk,k+a.

 L(k, Tka) =  L(k + a, Tka)

⇒kχ∞
(Tka

k

)
= (k + a)χ∞

( Tka

k + a

)
(6.25)

Using lemma 19 we know that EIPG for  L(k, t) is increasing and peaks at kτm. Thus
 L(k, t) has higher EIPG than that of  L(k+ a, t) when t ≤ kτm. Hence Tka > kτm since
 L(k, t) will not intersect  L(k + a, t) otherwise. Therefore,

Tka > kτm ⇒
Tka

k
> τm

⇒
Tka

k
= τm + ∆t1, for some ∆t1 > 0 (6.26a)

⇒Tka = k(τm + ∆t1) (6.26b)

We will prove the lemma’s proposition by contradiction. Suppose the proposition is not true,
i.e.

Tka ≤ (k + a)τm ⇒
Tka

k + a
≤ τm

⇒
Tka

k + a
= τm −∆t2, for some ∆t2 ≥ 0 (6.27a)

⇒Tka = (k + a)(τm −∆t2) (6.27b)

Substituting equations 6.26a and 6.27a in equation 6.25, we obtain:

kχ∞(τm +∆t1) = (k + a)χ∞(τm −∆t2) (6.28)

Furthermore, from equations 6.26b and 6.27b, we obtain:

k(τm +∆t1) = (k + a)(τm −∆t2) (6.29)
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χ∞(t) is linear and takes the form of χ∞(t) = ct for any constant c. However, we know
from equation 3.18 that χ∞(t) is not linear. This contradiction shows that the supposition
is false and so the given proposition of this lemma is true.

Lemma 21. Let Tk,k+a be the ath inflection point for the kth LURC where {k, a} ∈ N
+.

The relative performance of the kth and (k+a)th LURCs shall meet the following constraints:

 L(k, t) >  L(k + a, t), ∀0 < t < Tk,k+a (6.30a)

 L(k, t) =  L(k + a, t), ∀t = Tk,k+a (6.30b)

 L(k, t) <  L(k + a, t), ∀t > Tk,k+a (6.30c)

Proof. We know that for initial investment of one dollar, all LURCs start with zero ELPV.
From lemma 19, for any horizon t, the EIPG for kth and (k+a)th LURCs shall be given by
ξ∞( t

k
) and ξ∞( t

k+a
) respectively. From the unimodality assumption of EIPG, ξ∞( t

k
) will

be increasing till t = kτm. Observe that during the interval of (0 kτm], ξ∞( t

k+a
) is also

increasing, albeit at a slower rate. During (0 kτm], due to higher EIPG, kth LURC will have
higher ELPV than (k+ a)th LURC. Since a LURC is monotonically increasing kth LURC
will eventually catch up with (k + a)th LURC at Tk,k+a. This proves that equation 6.30a
holds.

Equation 6.30b holds from the definition of inflection point Tk,k+a.
Using the results of lemma 20, the following relationship shall always be satisfied:

Tk,k+a

k
>
Tk,k+a

k + a
> τm

⇒ξ∞
(Tk,k+a

k

)
< ξ∞

(Tk,k+a

k + a

)
(6.31)

Equation 6.31 holds since both
Tk,k+a

k
and

Tk,k+a

k+a
fall on the decreasing part of passive

EIPG curve ξ∞. Hence at Tk,k+a, (k + a)th LURC will have higher EIPG than kth

LURC. Note that at Tk,k+a both the LURCs yield equal ELPV. But due to higher EIPG
at Tk,k+a, for t > Tk,k+a, (k + a)th LURC will remain higher than kth LURC satisfying
equation 6.30c.

Lemma 22. Let Tk,k+b be the bth inflection point for the kth LURC. At Tk,k+b, kth LURC
shall have higher ELPV than higher order LURCs. Mathematically,

 L(k, Tk,k+b) >  L(k + a, Tk,k+b), ∀a > b, {k,a,b} ∈ N
+ (6.32)

Proof. For notational simplicity we will use Tkb to denote Tk,k+b. By the definition of
inflection point we can write:

kχ∞
(Tkb

k

)
= (k + b)χ∞

( Tkb

k + b

)

⇒χ∞
(Tkb

k

)
=

(k + b)

b

[
χ∞

(Tkb

k

)
− χ∞

( Tkb

k + b

)]
=

(k + b)

b
∆χk+b

k (6.33)
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Figure 6.4 Illustration for proof of lemma 22.

Where, using the illustration in figure 6.4, ∆χk+b
k is given by:

∆χk+b
k = χ∞

(Tkb

k

)
− χ∞

( Tkb

k + b

)

=

∫ Tkb
k

0

ξ∞(t) dt−

∫ Tkb
k+b

0

ξ∞(t) dt (6.34)

Figure 6.4 illustrates the positions of different horizon points, viz. Tkb

k
, Tkb

k+b
and Tkb

k+a
. Note

that due to the lower and upper bounds set by lemmas 20 and 26, the following relationship
between the horizon points holds:

τs >
Tkb

k
>

Tkb

k + b
> τm (6.35)

The horizon point Tkb

k+a
may lie anywhere within (0 Tkb

k+b
]. This figure places these time points

on the right hand side of τm representing the worst case scenario that one needs to prove.
Expanding equation 6.32, we need to prove the following:

kχ∞
(Tkb

k

)
> (k + a)χ∞

( Tkb

k + a

)

⇒k
[
χ∞

(Tkb

k

)
− χ∞

( Tkb

k + a

)]
> aχ∞

( Tkb

k + a

)

⇒k∆χk+a
k > a

[
χ∞

(Tkb

k

)
−∆χk+a

k

]

⇒(k + a)∆χk+a
k > aχ∞

(Tkb

k

)
(6.36)
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k is given by:

∆χk+a
k = χ∞

(Tkb

k

)
− χ∞

( Tkb

k + a

)

=

∫ Tkb
k

0

ξ∞(t) dt−

∫ Tkb
k+a

0

ξ∞(t) dt (6.37)

Substituting the value of χ∞
(

Tkb

k

)
from equation 6.33 in equation 6.36, we need to prove

the following:

(k + a)∆χk+a
k >

a(k + b)

b
∆χk+b

k

⇒(k + a)[∆χk+a
k −∆χk+b

k ] >
k(a− b)

b
∆χk+b

k

⇒(k + a)
[ ∫ Tkb

k

0

ξ∞(t) dt−

∫ Tkb
k+a

0

ξ∞(t) dt

−

∫ Tkb
k

0

ξ∞(t) dt+

∫ Tkb
k+b

0

ξ∞(t) dt
]
>
k(a− b)

b
∆χk+b

k , using equations 6.34 and 6.37

⇒(k + a)
[ ∫ Tkb

k+b

0

ξ∞(t) dt−

∫ Tkb
k+a

0

ξ∞(t) dt
]
>
k(a− b)

b
∆χk+b

k

⇒(k + a)∆χk+a
k+b >

k(a− b)

b
∆χk+b

k (6.38)

We can simplify LHS of equation 6.38 below:

(k + a)∆χk+a
k+b

=(k + a)(Area of region 1-2-3-4-5)

=(k + a)[(Area of region 1-2-4-5) + (Area of region 2-3-4)]

=(k + a)
[( Tkb

k + b
−

Tkb

k + a

)
ξ∞

( Tkb

k + b

)
+ ϕ1

]

=(k + a)
[ (a− b)Tkb

(k + b)(k + a)
ξ∞

( Tkb

k + b

)
+ ϕ1

]

=
(a− b)Tkb

(k + b)
ξ∞

( Tkb

k + b

)
+ (k + a)ϕ1 (6.39)
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k(a− b)

b
∆χk+b

k

=
k(a− b)

b
(Area of region 4-5-6-7)

=
k(a− b)

b
[(Area of region 4-5-6-7-8) - (Area of region 4-7-8)]

=
k(a− b)

b

[(Tkb

k
−

Tkb

k + b

)
ξ∞

( Tkb

k + b

)
− ϕ2

]

=
k(a− b)

b

[ bTkb

k(k + b)
ξ∞

( Tkb

k + b

)
− ϕ2

]

=
(a− b)Tkb

(k + b)
ξ∞

( Tkb

k + b

)
−
k(a− b)

b
ϕ2 (6.40)

Since ϕ1, ϕ2 > 0, a > b and k ≥ 1, we see that the terms (k + a)ϕ1 and k(a−b)

b
ϕ2

are both positive. Comparing equations 6.39 and 6.40 we conclude that equation 6.38 holds
true.

Lemma 23. Higher order inflection points of a LURC are always longer. Equivalently if
Tk,k+a and Tk,k+b be the ath and bth reflection points respectively for the kth LURC, then
the following must be true:

Tk,k+a > Tk,k+b, ∀a > b, {k,a,b} ∈ N
+ (6.41)

Proof. We will prove this proposition by contradiction. Suppose the proposition of this
lemma is not true. Then either Tk,k+a < Tk,k+b or Tk,k+a = Tk,k+b. Let’s first suppose
Tk,k+a < Tk,k+b.

Since a > b, from lemma 22 we can write:

 L(k, Tk,k+b) >  L(k + a, Tk,k+b) (6.42)

Using the results of lemma 21, from equation 6.30c we obtain:

 L(k, t) <  L(k + a, t), ∀t > Tk,k+a (6.43)

Then under the assumption that Tk,k+b > Tk,k+a, the following must be true:

 L(k, Tk,k+b) <  L(k + a, Tk,k+b) (6.44)

This contradiction in equations 6.42 and 6.44 shows that the supposition Tk,k+a < Tk,k+b

is false.
Let’s suppose Tk,k+a = Tk,k+b. Then by fundamental definition of inflection point, at

Tk,k+b all three LURCs, viz. kth, (k + a)th and (k + b)th shall have identical ELPV.
Mathematically,

 L(k, Tk,k+b) =  L(k + a, Tk,k+b) =  L(k + b, Tk,k+b) (6.45)
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the supposition Tk,k+a = Tk,k+b is also false. Thus the given proposition of this lemma is
true.

Lemma 24. LURCs with higher rebalance divisor shall have longer inflection point of the
same order. Equivalently if Tk−a,k and Tk−b,k be the kth order reflection points for (k−a)th

and (k − b)th LURCs respectively, then the following must be true:

Tk−a,k < Tk−b,k, ∀k > a > b, {k,a,b} ∈ N
+ (6.46)

Proof. Using the results of lemma 23 we know that the following must be true:

Tk−a,k−b < Tk−a,k (6.47)

Using the results of lemma 21 and equation 6.30c we also know that the following must be
true:

 L(k − a, t) <  L(k − b, t), ∀t > Tk−a,k−b (6.48)

From equations 6.47 and 6.48 we obtain:

 L(k − a, Tk−a,k) <  L(k − b, Tk−a,k) (6.49)

By definition  L(k − a, Tk−a,k) =  L(k, Tk−a,k), i.e. at Tk−a,k the ELPV for the kth and
(k − a)th LURCs are identical. Therefore,

 L(k, Tk−a,k) <  L(k − b, Tk−a,k) (6.50)

Again using the results of lemma 21 and equation 6.30a we know that the following must be
true:

 L(k − b, t) >  L(k, t), ∀t < Tk−b,k (6.51)

Comparing equations 6.50 and 6.51, we conclude that the following relationship must hold
true:

Tk−a,k < Tk−b,k (6.52)

We now state and prove inflection points seriality theorem. Theorem 6 states that a given

LURC’s inflection points increase as the intersecting LURC’s rebalance divisor increases. For

example the inflection points of the LURC with k = 4 shall maintain an increasing sequence

of T1,4 < T2,4 < T3,4 < T4,5 < T4,6 < . . . .
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Tk,k1
> Tk,k2

, ∀k1 > k2, k 6= k1 6= k2, {k, k1, k2} ∈ N
+ (6.53)

Proof. Note that Tk,k is not defined since an inflection point has to involve two different
LURCs. There are two cases we need to consider. First case is when k > k1 > k2. For
such cases, according to lemma 24 Tk1,k > Tk2,k which is equivalent to Tk,k1

> Tk,k2
.

The second case is when k1 > k2 > k. For such cases, according to lemma 23 Tk,k1
>

Tk,k2
. To complete the proof we need to show that the maximum inflection point for first

case is less than the minimum inflection point for the second case. In other words, we need
to prove the following:

Tk−1,k < Tk,k+1 (6.54)

We will prove the proposition in equation 6.54 by contradiction. Suppose the proposition is
not true, i.e. one of the following two equations must hold:

Tk−1,k > Tk,k+1 (6.55a)

Tk−1,k = Tk,k+1 (6.55b)

According to lemma 22, (k− 1)th and kth LURCs shall have higher ELPV than (k+ 1)th

LURC for investment horizon of Tk−1,k. Mathematically,

 L(k, Tk−1,k) >  L(k + 1, Tk−1,k) (6.56)

From equation 6.30c of lemma 21, the following must hold:

 L(k, t) <  L(k + 1, t), ∀t > Tk,k+1 (6.57)

From equations 6.55a and 6.57, the following relationship must hold:

 L(k, Tk−1,k) <  L(k + 1, Tk−1,k) (6.58)

We observe that equation 6.58 contradicts equation 6.56. Therefore the proposition in equa-
tion 6.55a must be false.

Suppose equation 6.55b is true. Then substituting equation 6.55b in inequality 6.56 we
obtain:

 L(k, Tk,k+1) >  L(k + 1, Tk,k+1) (6.59)

Moreover from equation 6.30b of lemma 21, the following must hold:

 L(k, Tk,k+1) =  L(k + 1, Tk,k+1) (6.60)

Once again we arrive at contradiction in inequalities 6.59 and 6.60. Therefore equation 6.55b
must also be false. Thus the relationship in equation 6.54 holds and hence we establish the
proposition of this theorem.
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lower rebalance divisor k′ < k for any time horizon longer than inflection point Tk−1,k.
Equivalently, the following must hold true:

 L(k, t) >  L(k′, t), ∀t > Tk−1,k, k > k′, {k, k′} ∈ N
+ (6.61)

Proof. We will use induction to prove this lemma. The base case is when k = 2 with only
permissible value of k′ = 1. We must prove that:

 L(2, t) >  L(1, t), ∀t > T1,2 (6.62)

This is true due to the results of lemma 21 and equation 6.30c for k = a = 1. Assume that
the hypothesis in equation 6.61 holds for k. We also know from theorem 6 that the following
relationship holds for inflection points:

Tk,k+1 > Tk−1,k (6.63)

Using the above relationship in equation 6.63 we can rewrite slightly less restrictive form of
equation 6.61 as below:

 L(k, t) >  L(k′, t), ∀t > Tk,k+1 (6.64)

We must now prove that equation 6.61 holds for k+ 1, i.e. the following must also be true:

 L(k + 1, t) >  L(k′, t), ∀t > Tk,k+1, k + 1 > k′ (6.65)

Once again using equation 6.30c of lemma 21, for a = 1 we obtain:

 L(k + 1, t) >  L(k, t), ∀t > Tk,k+1 (6.66)

Equations 6.64 and 6.66 jointly imply that equation 6.65 is true. Thus we establish lemma 25.

Thus far we have explored important properties of LURCs, rebalance divisors and inflec-

tion points. These set of properties will enable us to derive the maximum achievable ELPV

with one of the permissible values of rebalance divisor. It turns out that the value of this

optimum rebalance divisor depends on the desired investment horizon. We can divide the

horizon into linear segments separated by predetermined inflection points. For each of the

horizon segments an optimum rebalance divisor can be assigned that maximizes the ELPV

for the horizon. Thus each non-overlapping horizon segment can be associated with a distinct

optimum rebalance divisor.

We now state and prove the rebalance divisor optimality theorem.
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between Tk−1,k and Tk,k+1. Mathematically,

 L(k, t) ≥  L(k′, t), ∀t ∈ (Tk−1,k Tk,k+1], k
′ 6= k, {k, k′} ∈ N

+ (6.67)

Proof. Combining equations 6.30a and 6.30b of lemma 21, we know that the following is
true:

 L(k, t) ≥  L(kh, t), ∀t ∈ (0 Tk,kh
], kh > k, {k, kh} ∈ N

+ (6.68)

Furthermore using lemma 25, we obtain:

 L(k, t) >  L(kl, t), ∀t > Tk−1,k, k > kl, {k, kl} ∈ N
+ (6.69)

However from inflection point seriality theorem 6, we know that the following order of in-
flection points holds:

Tk,kh
≥ Tk−1,k, ∀kh > k (6.70a)

Tk−1,k > Tk,k+1, ∀kh > k (6.70b)

Using the relationship of inequality 6.70a, a less restrictive form of inequality 6.68 is as
follows:

 L(k, t) ≥  L(kh, t), ∀t ∈ (0 Tk,k+1] (6.71)

Similarly, using the relationship of inequality 6.70b, a less restrictive form of inequality 6.69
is as follows:

 L(k, t) >  L(kl, t), ∀t ∈ (Tk−1,k Tk,k+1] (6.72)

Equations 6.71 and 6.72 jointly imply the validity of the hypothesis in equation 6.67.

6.3.3 Rebalance Inflection Point (RIP)

Figure 6.5 illustrates a subset of possible LURCs with rebalance divisors k − 1 through

k+2. These LURCs participate in determining three distinct inflection points, viz. Tk−1,k,

Tk,k+1 and Tk+1,k+2. As per theorem 7, the optimal rebalance divisor for any investment

horizon between Tk−1,k and Tk,k+1 shall be k. Therefore the maximum possible ELPV shall

be determined by kth LURC as depicted by the bold uppermost segment during this horizon

interval. Similarly the optimal rebalance divisor for any investment horizon between Tk,k+1
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Figure 6.5 Rebalance Inflection Point (RIP) and Optimal Log Utility Frontier (OLUF) (in dark
bold line).

and Tk+1,k+2 shall be k + 1. In this case (k + 1)th LURC shall determine the maximum

possible ELPV traced in bold.

The inflection points of interest here are the ones which are generated by two adjacent

LURCs. We term such a special inflection point Tk,k+1, ∀k ∈ N
+ as rebalance inflection

point (RIP). For completeness we assume T0,1 as the zeroth RIP with a value of 0. For

brevity of notation, henceforth we will drop the second subscript for specifying a RIP. Thus

Tk denotes the kth RIP equivalent to the expanded notation of Tk,k+1. In this parlance, 0

is the zeroth RIP, T1 is the first RIP and so on.

By virtue of theorem 7 the entire investment horizon axis can be divided into piecewise

intervals by the series of RIPs, {T1, T2, T3, T4, T5 . . . } with associated optimum rebalance

divisors as {1, 2, 3, 4, 5, . . . }.

From the results of lemma 20, we have already seen that the kth RIP has a lower bound

as follows:

(k + 1)τm < Tk, ∀k ∈ N
+ (6.73)
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Lemma 26. The kth RIP shall have an upper bound of kτs, i.e.

Tk < kτs, ∀k ∈ N
+ (6.74)

Proof. From the results of lemma 21 we know that for all values of t > Tk, the value of
 L(k + 1, t) exceeds  L(k, t) and vice versa. Then to prove that Tk < kτs it is suffice to
show the following:

 L(k + 1, kτs) >  L(k, kτs)

⇒(k + 1)χ∞(
kτs

k + 1
) > kχ∞(

kτs

k
)

⇒(k + 1)χ∞(τ ′
s) > kχ∞(τs) (6.75)

We have substituted τ ′
s
= k

k+1
above. Note that τ ′

s
< τs. We know from lemma 11 that

ψ∞(t) (= χ∞(t)−χ(t)), the excess growth produced by passive strategy is maximized at
τs. Therefore, the following must hold true:

ψ∞(τs) > ψ∞(τ ′
s)

⇒χ∞(τs)− χ(τs) > χ∞(τ ′
s
)− χ(τ ′

s
)

⇒χ∞(τs) > χ∞(τ ′
s
) + χ(τs)− χ(τ

′
s
)

⇒χ∞(τs) > χ∞(τ ′
s) + νpτs − νpτ

′
s, using 3.42

⇒χ∞(τs) > χ∞(τ ′
s
) + νp(τs − τ

′
s
)

⇒χ∞(τs) > χ∞(τ ′
s
) + νp(τs −

k

k + 1
τs)

⇒χ∞(τs) > χ∞(τ ′
s
) + νp

τs

k + 1
(6.76)

Substituting equation 6.76 in equation 6.75, it is suffice to show that:

(k + 1)χ∞(τ ′
s
) > k

(
χ∞(τ ′

s
) + νp

τs

k + 1

)

⇒χ∞(τ ′
s) > νp

k

k + 1
τs

⇒χ∞(τ ′
s
) > νpτ

′
s

⇒χ∞(τ ′
s
) > χ(τ ′

s
) (6.77)

By definition of stable rebalancing for all τ ′
s
< τs, ELPV will always be higher under

passive strategy compared to active strategy. Hence the above equation 6.77 will always
hold true.
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be bounded by kmn and kmx given by equations 6.10 and 6.17 respectively. We must now

examine that the choice of k as specified in rebalance divisor optimality theorem 7 conforms

to these upper and lower bounds as well.

Lemma 27. For any horizon T between RIPs Tk−1 and Tk following must hold true:

k ≥ ⌈
T

τs
⌉ (6.78a)

k ≤ ⌊
T

τm
⌋ (6.78b)

Proof. By definition of horizon T the following is true:

T ≤ Tk ⇒
T

τs
≤
Tk

τs
(6.79)

We can rewrite the inequality 6.74 as follows:

k >
Tk

τs
(6.80)

Inequalities 6.79 and 6.80 together imply the following:

k >
T

τs
(6.81)

Since k takes only positive integer values, inequality 6.81 implies inequality 6.78a. Again by
definition of horizon T the following is true:

T > Tk−1 ⇒
T

τm
>
Tk−1

τm
(6.82)

We can rewrite the inequality 6.73 as follows:

k <
Tk−1

τm
(6.83)

Inequalities 6.82 and 6.83 together imply the following:

k <
T

τm
(6.84)

Since k takes only positive integer values, inequality 6.84 implies inequality 6.78b.
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The uppermost LURC between the two adjacent RIPs determines the maximum achiev-

able ELPV following hybrid strategy. By combining these optimum contours for all the

non-overlapping horizon segments we obtain the optimal log utility frontier (OLUF) traced

in bold in figure 6.5. We can completely specify the OLUF,  Lo(t) representing the maximum

possible ELPV for all investment horizon t ∈ R as follows:

 Lo(t) =





0 if t = 0

 L(k, t) if t ∈ (Tk−1,k Tk,k+1], ∀k ∈ N
+

(6.85)

Given the OLUF specification we can compute the ORF function to determine the ORF for

any given horizon t as follows:

τo(t) =





0 if t = 0

t

k
if t ∈ (Tk−1,k Tk,k+1], ∀k ∈ N

+
(6.86)

Algorithm 12 is the final algorithm that outlines the steps to compute the ORF function.

It starts with the value of 1 as the optimal rebalance divisor. As the horizon is increased, it

checks to see if the next RIP is reached. If so, it increments the optimal rebalance divisor by

1. It also records the asymptotic ORF when the values of two consecutive RIPs are within

a specified error tolerance. It stops to look for subsequent RIPs thereafter.

6.3.5 An Example

We use our familiar four-asset portfolio example to illustrate the concepts discussed so

far. Table 6.1 presents the values of rebalance divisor, RIP, ORF at RIP and the error,

i.e the deviation of rebalance frequency from the previous iteration. Note how the error

diminish as we increase k. This is due to the rebalance frequency convergence theorem 5.

Given an error tolerance we can stop computing the RIP further since frequency Tk

k
can be

approximated to the last computed value when the tolerance is reached.
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Algorithm 12 ComputeORFfcn Search Tk

Require: µ,S,w,T ,δt,N ,νp,ǫ
1: [χ∞, τs]← ComputePassivePortfolio(µ, S,w, T, δt,N, νp)
2: m← 1,T[m]← 0, τo[m]← 0, χτo[m]← 0,k← 1,τao ← −1
3: for t = δt to T by δt do
4: m← m + 1,T[m]← t
5: if τao = −1 then
6: if kχ∞(⌊ t

kδt
+ 0.5⌋) < (k + 1)χ∞(⌊ t

(k+1)δt
+ 0.5⌋) then

7: R[k]← t # found the next RIP
8: if k > 1 then
9: if ‖R[k]

k
− R[k−1]

k−1
‖ ≤ ǫ then

10: τao ←
t

k
# asymptotic ORF reached

11: end if
12: end if
13: k← k + 1 # current optimal rebalance divisor
14: end if
15: τo[m]← t

k
, χτo[m]← kχ∞(⌊τo[m]

δt
+ 0.5⌋)

16: else
17: τo[m]← τao, χ

τo[m]← ⌊ t

τao
⌋χ∞(⌊τao

δt
+ 0.5⌋)

18: end if
19: end for
20: return (T, τo, χ

τo)

Table 6.1 Rebalance Inflection Points (RIPs)

k Tk
Tk

k
Error k Tk

Tk

k
Error

1 2.2916 2.2916 - 10 17.2725 1.7273 0.0086
2 4.0127 2.0063 0.2853 11 18.9221 1.7202 0.0071
3 5.6906 1.8969 0.1095 12 20.5713 1.7143 0.0059
4 7.3548 1.8387 0.0582 13 22.2202 1.7092 0.0050
5 9.0129 1.8026 0.0361 14 23.8690 1.7049 0.0043
6 10.6676 1.7779 0.0246 15 25.5175 1.7012 0.0038
7 12.3204 1.7601 0.0179 16 27.1659 1.6979 0.0033
8 13.9719 1.7465 0.0136 17 28.8142 1.6950 0.0029
9 15.6225 1.7358 0.0107 18 30.4624 1.6924 0.0026



97Assume that the RIPs have been computed as in table 6.1. We will now illustrate how

one determines the ORF for a specified investment horizon T . As an example consider the

specified horizon values in table 6.2. From table 6.1, we notice that the optimal rebalance

divisor for any investment horizon from 0 to 2.2916 is 1. Therefore for T = 1, the ORF

τo = T

k
= 1. Hence if the log-optimal investor desires to invest for 1 year, she should

adhere to passive strategy without any rebalancing. With the passive strategy the investor

shall have an ELPV of 0.3229. If instead the investor uses a lower rebalance frequency

of 0.8, then the ELPV shall be lowered to 0.3161. Suppose the investor has a desire to

invest till T = 6 years. From table 6.1, the optimum rebalance divisor shall be 4 since

5.6906 < T < 7.3548 implying an ORF of 1.5. This will generate 2.0862 as the ELPV.

A lower (τl) or a higher (τh) rebalancing frequency shall generate lower ELPV for this

horizon. Similarly for 30 year horizon the optimum rebalance divisor and frequency are 18

and 1.67 respectively resulting in a maximum ELPV of 9.7991. This is the same value we

have found earlier and is depicted in figure 4.4(a).

The last example investment horizon we consider is T = 40. Let’s assume that we

will accept an ORF error threshold of ǫ = 0.0026. Using table 6.1, we will use the data

for the highest RIP in the very last row. We have assumed that for this RIP the ORF

Tk

k
is very close to the asymptotic rebalance frequency τao, i.e. τao ≈

Tk

k
. Instead of

computing more higher order RIPs, we merely impute the optimum rebalance divisor by

using ⌊ T

τao
⌋. For ǫ = 0.0026, we can apply this imputation for all T > 30.4624. For

T = 40, the imputation results in an optimum rebalance divisor of 23. Note that we

would have obtained the same optimum divisor had we continued computing higher order

RIP equal to or higher than T = 40. We would have to compute six additional RIPs,

viz. 32.1105, 33.7586, 35.4065, 37.0545, 38.7023 and 40.3502 corresponding to rebal-

ance divisors of 19 through 24. This would have resulted an optimum rebalance divisor of

24 instead of the imputed value of 23.
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Table 6.2 Investment Horizon and ORF

T ko τo χτo τl χτl τh χτh

1 1 1.00 0.3229 0.80 0.3161 - -
6 4 1.50 2.0862 1.20 1.9479 1.75 1.8447

30 18 1.67 9.7991 1.58 9.7854 1.76 9.7516
40 24 1.67 13.0654 1.60 13.0390 1.74 13.0442

Appendix D.3 presents a series of Matlab functions to compute ORF function. Figure 6.6

presents the generated ORF values for various investment horizons. As expected, for suffi-

ciently long horizon values ORF converges to the asymptotic value τao. For relatively smaller

horizon values ORF fluctuates around this asymptotic value. Finally, figure 6.7 presents the

corresponding ELPV yields when the respective ORF is used to periodically rebalance the

portfolio to the initial optimal weights. Note that for all investment horizon, hybrid strategy

with discrete-time rebalancing outperforms long-optimal strategy with continuous rebalanc-

ing in generating higher ELPV.

6.4 Asymptotic Growth Rate

In the previous chapter we defined asymptotic optimal rebalance frequency τao for long-

term investors with infinite horizon, i.e. T →∞. Thus,

lim
T→∞

T (τo) = lim
T→∞

T

k
= τao (6.87)

With the help of theorem 5, we established that at τao the EIPG and portfolio growth are

same under passive strategy as specified in 4.40. What is the long run log growth rate that

is achieved when τao is used as ORF? With the help of the following lemma we show that

growth rate that can be achieved under such hybrid strategy shall be equal to the growth

rate achieved at τao when passive strategy is followed.

Lemma 28. For sufficiently large value of investor horizon, the maximum growth rate
achieved under hybrid strategy is the growth rate at τao under passive strategy.

ντao(∞) = ν∞(τao) (6.88)
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(b) Horizon = 30 Years
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(c) Horizon = 60 Years
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(d) Horizon = 100 Years

Figure 6.6 ORF profile for various lengths of horizon.

Proof. Using equation 6.8 for passive ELPV, we can compute the growth rate when τao is
used as the ORF for very long horizon:

ντao(∞) = lim
T→∞

k

T
χ∞

(T
k

)
=

1

τao
χ∞(τao), using equation 6.87

= ν∞(τao) (6.89)

Readers are reminded of the growth map theorem 2 that establishes the relationship

between passive and hybrid strategy ELPVs. Analogously lemma 28 establishes the rela-

tionship between passive and hybrid portfolio growth rates for long-run investments.

For finite horizon, we have proved that for certain class of portfolio assets, it is possible
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(b) Horizon = 30 Years
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(c) Horizon = 60 Years
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Figure 6.7 Hybrid ELPV yield for ORF values in figure 6.6.

to abandon continuous rebalancing in favor of more realistic discrete rebalancing to obtain

higher ELPV and growth rates. Intuitively one can imagine that by repeating the same finite

horizon and discretely rebalanced investment strategy for many times, we can obtain higher

ELPV and growth rates for long-run investments as well. We now formally prove this.

Lemma 29. For a given portfolio for which asymptotic ORF τao > 0, hybrid strategy shall
generate higher growth rate than active continuously rebalanced log-optimal strategy in the
long-run. Mathematically,

ντao(∞) ≥ νp (6.90)

Proof. Using the results of lemma 28, it is sufficient to prove that:

ν∞(τao) ≥ νp (6.91)



101Using the results of theorem 5, it is sufficient to prove that:

ξ∞(τao) ≥ νp (6.92)

Since, under active strategy the EIPG is same as the constant growth rate, using equa-
tion 3.41 it is sufficient to prove that:

ξ∞(τao) ≥ ξ (6.93)

From the definition of τs, we know:

ξ∞(τ ) ≥ ξ, ∀τ ∈ [0 τs] (6.94)

Since, the upper bound for ORF is τs, we know that 0 ≤ τao ≤ τs. Hence equation 6.93
follows from equation 6.94.

6.5 Computational Efficiency ORF Function

All three algorithms to compute ORF function depend on algorithm 9 to compute the

ELPV during the horizon range of [0 τs] when passive strategy is followed. Algorithm 9

has O(N2) complexity and the computational cost rises with more assets in the investment

portfolio. This is the variable cost component of the ORF function algorithms. From the

hitherto computational analysis we know that the algorithm 9 is scalable to large number of

assets.

The rest of the ORF function algorithms excluding the one time call to algorithm 9 has

a fixed cost component, invariant of the number of assets. The complexity of the fixed cost

is driven by the length of horizon T and the time discretization value δt. We use T = T

δt

to denote the number of discrete horizon points used by the algorithm. Algorithm 10 has a

complexity of O(T2) which is quadratic in time. Let K be the domain of rebalance divisors

that algorithm 11 searches to find optimum ko. Note that K is only limited to positive

integer values between kmn and kmx. Hence the valid rebalance divisor domain K is much

smaller compared to the time domain T. Consequently algorithm 11 has a significantly

improved complexity of O (KT). Finally we designed a linear algorithm 12 which has O(T)

complexity.
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Figure 6.8 Algorithm performance comparison.

Figure 6.8(a) shows the execution timings of Matlab implementation of the three algo-

rithms. The timings are generated for our example portfolio with four assets. Small values

of δt = 0.0001 and ǫ = 0.0001 are used in order to achieve high accuracy of rebalance

strategy. The measurements are taken in a 64-bit Intel 3 GHz computer with 32 GB of

RAM.

To study the order of magnitude of performance improvements, we compare the times

taken by the algorithms to compute ORF function for 30 years of investment horizon. Algo-

rithm 10, a pure search algorithm, takes slightly more than an hour2 to compute the strategy.

In comparison, algorithm 11 that only searches optimum rebalance divisor ko, reduces the

computation time significantly to under one minute. The final algorithm 12 that searches

only the RIPs brings down the time to 6.5 seconds. Notice that for higher values of horizon,

the performance difference between the algorithms widens rapidly.

As depicted in figure 6.8(b) the variable cost of computing the ELPV is negligible in

comparison to the fixed cost of computing the ORF function. This is true even when there

is a large number of assets in the portfolio. In chapter 5, an optimized version of algorithm 9

2The right hand side time axis is in minutes and is applicable to algorithm 10.



103implementation takes less than one second for a portfolio consisting of 128 assets.
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Simulation And Error Estimation

7.1 Methodology

As part of this study, we used Monte Carlo simulation to examine the accuracy of the

analytical results presented in this paper. The simulation is run for the familiar portfolio

example with four assets. The asset price equation used in generating Monte Carlo paths is

given as follows ([21]):

S(t+ dt) = S(t)e(µ−σ2

2
)dt+σǫ

√
dt (7.1)

Alternatively one can also use equation 2.2 to generate Monte Carlo paths for correlated asset

prices. As explained in [21], equation 7.1 is valid for any value of dt whereas equation 2.2 is

accurate only when dt is very small.

To reduce variance in simulation, an antithetic variable is used ([21]). For every asset

price path generated using a set of random correlated standard normal variables ǫ, another

path using −ǫ is generated. A total of 20, 000 such Monte Carlo paths for correlated prices

are generated using a discrete time step of 0.01 year for both T and τ .

An initial $1 investment fund is distributed among the four assets as per the optimized

proportion determined by w. For each price path, the allocated funds are periodically

rebalanced to the initial optimal weights w at the specified optimal frequency. Portfolio

growth is computed as the average of the terminal portfolio values over all the price paths.

Thus as an example, for horizon 30 years, the terminal value χ̂τ(30) is computed for each

value of τ between dt to 30 years at an increment of dt. This process is repeated for each

investment horizon value T up to 30 years at an increment of dt. The true ORF, for a given



105horizon T is the frequency at which simulation produced highest portfolio value. Appendix E

lists the Matlab programs used for producing the simulation data.

We have two primary goals here. First, we want to measure the error or equivalently the

accuracy of the ORF we compute in this paper. Second, a larger goal, is to assess potential

loss to investor if she would use this ORF recommendation to execute the optimal hybrid

strategy. This loss has to be estimated by the differential wealth creation using the true

ORF τ̂o and the analytical ORF τo. For our purpose, we will use the following two functions

to estimate the loss and the percentage loss to investor respectively if τo is used as ORF:

L(t, τo) = χ̂τ̂o(t)(t)− χ̂τo(t)(t) (7.2)

%L(t, τo) =
χ̂τ̂o(t)(t)− χ̂τo(t)(t)

χ̂τ̂o(t)(t)
x 100 (7.3)

It is important to understand the significance of equation 7.2. First and foremost, we are

measuring the logarithmic loss. The first term in the numerator is the true ELPV value when

the true ORF τ̂o is used. This is the best case expected log portfolio growth that is possible

if the investor had known and used the true ORF τ̂o. The second term is the true ELPV

had the investor used the recommendation τo computed using the analytical framework. In

some sense, this is the realized ELPV for the investor. Note that we consider true χ̂ instead

of analytical χ in the second term. Investor has only control over weather to use the ORF

predicted by our analytical framework. Once used, she will obtain only the true underlying

ELPV. We assume both τ̂o and τo change with horizon t.

7.2 Active Strategy Accuracy

We validated the correctness of active strategy by setting the rebalance frequency to a

near zero value of 0.001 year for the example 4-asset portfolio. We recorded 8.5675429 as

the average log of terminal portfolio value over all the paths for an investment horizon of 30

years. This is compared against the theoretical value of νpT = 0.2871 x 30 = 8.613. The

simulated value is close to the theoretical value within 0.53% error.
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Figure 7.1 Accuracy of passive portfolio growth estimation.

7.3 Passive Strategy Accuracy

As plotted in figure 7.1(a), passive portfolio growth values from simulation closely track

the values computed analytically using equation 3.18. Analytical approach slightly overesti-

mates the portfolio growth values at the short-end of investment horizon while underestimat-

ing for longer horizons. For the entire horizon, except for the first two years, the analytical

passive portfolio growth values are within +/-5% (figure 7.1(b)) of the true values obtained

in simulation. Higher error percentages observed during the initial two year period is mostly

because of the division by very small numbers.

7.4 Growth Map Theorem Accuracy

To examine the accuracy of growth map theorem 2, hybrid portfolio growth is computed

according to the theorem for every possible combination of T and τ using the passive trajec-

tory of portfolio growth obtained in simulation as shown in figure 7.2(a). Compare this with

the corresponding values obtained in simulation. As plotted in figures 7.3, except for small

values of τ , there is very little deviation of the computed hybrid portfolio growth from the

values obtained in simulation. Small but visible error for low values of τ is attributed to the
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(a) (b)

Figure 7.2 Comparison of ELPV using growth map theorem with realized ELPV.

inherent estimation error in simulation data. For horizon values higher than 4 years, there is

very little deviation of the computed hybrid ELPV from the values obtained in simulation.

The positive spikes in error values can be attributed to small absolute values of ELPV.

7.5 Optimal Hybrid Strategy Accuracy

Similar to the analytically computed optimal frequency, the true values obtained in sim-

ulation also exhibit saw-tooth pattern especially for lower values of horizon (figure F.4(a)).

The amplitude of fluctuation diminish for large horizons. The true optimal frequencies have

a midpoint of 2.6 years compared to a more conservative analytical estimate of τao = 1.65

years. The true values suggest longer passivity with longer rebalancing intervals for investors

than the recommendations obtained analytically.

We can trace the under estimation of τao by about 0.95 years from τ̂o to the slight over

estimation of χ∞(t) in the short end as depicted in figure 7.1(a). A wide hat (̂.) is used

to denote a parameter predicted by simulation. For simplicity of exposition we assume that

this estimation error in χ∞(t) is constant e in this short end. Using the notations used in
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Figure 7.3 Percentage error in estimating hybrid ELPV using growth map theorem.
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Figure 7.4 Comparison of analytical ORF with underlying true values.
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Figure 7.5 Comparison of ELPV values realized with underlying true values.

theorem 5, we can write equation 4.43 for true ELPV for hybrid strategy as:

χ̂τ(T ) ≈
T

τ
χ̂∞(τ )

≈
T

τ

(
χ∞(τ )− e

)
(7.4)

Following derivation similar to theorem 5, equation 7.4 will be maximized when the following

condition holds:

∣∣∣∣
∂χ∞(τ )

∂τ

∣∣∣∣
τ=τ̂ao

=
1

τ̂ao

(
χ∞(τ̂ao)− e

)

⇒ξ∞(τ̂ao) = ν∞
p
(τ̂ao)−

e

τ̂ao
(7.5)

Hence, the value of τ̂ao will be obtained by the intersection point of ξ∞ curve and

ν∞
p

curve stretched downwards to adjust for the term e

τ̂ao
. Referring to the illustration in

figure 4.5(b), this intersection point τ̂ao will occur at a higher value relative to the theoretical

τao.

Figure 7.5 plots the ELPVs for optimal hybrid strategy (using τo), active strategy (using

τ = 0) and passive strategy (using τ =∞) relative to the true underlying ELPV if τ̂ were

used. Corroborating our hitherto claims, hybrid optimal strategy fares better than active
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Figure 7.6 Investor loss percentage in adopting various investment strategies.

strategy for any horizon. In spite of improved performance relative to active strategy, there

is some performance loss in real-term when we compare the output with that of underlying

true ELPV. Potential loss to investor is assessed for using a rebalancing frequency τ instead

of the true underlying optimal frequency τ̂o found in simulation. The loss is estimated by

the fraction of the log wealth the investor gives up by using τ instead of τ̂o:

L(t, τ ) =
χ̂τ̂o(t)(t)− χ̂τ(t)(t)

χ̂τ̂o(t)(t)
(7.6)

Corroborating our hitherto claims, as depicted in figure 7.6, hybrid optimal strategy fares

better than active strategy in terms of limiting investor loss. In spite of improved performance

relative to active strategy, there is small albeit observable loss in using analytically predicted

τo. The investor incurs higher loss in active continuously rebalanced strategy even without

considering the adversarial effect of transaction cost. Following hybrid optimal strategy, the

investor loss in the long run is limited to 1.6% compared to a much higher percentage of

6.2% for active strategy. As anticipated, passive strategy is far suboptimal with higher than

25% loss in the long run. The standard error estimate1 of realized portfolio growth χ̂τo(t)(t)

1The standard error estimate is square root of the ratio of variance of estimation to the number of
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Figure 7.7 Standard error of estimate of ELPV.

used in the loss calculation is small as shown in figure 7.7.

Observation of χ̂τ (30) plot in figure 7.8 offers some interesting insights. For smaller

rebalance frequency (0 < τ < 0.5), the ELPV decreases relative to continuous rebalancing

case. However, as we increase the frequency beyond this range performance of rebalancing

continues to improve and peaks at τ = 2.7 years. For higher rebalancing frequencies the

performance continues to degrade. Rebalance frequencies in the range of 1 < τ < 6.9 years

offer higher performance over continuous rebalancing case. However an investor will always

benefit to use a rebalance frequency from the rebalance efficient frontier of 2.7 ≤ τ < 6.9

years. The reader should compare this frontier predicted by simulation with 1.67 ≤ τ <

7.61 years which is computed by our analytical framework and illustrated in figure 4.4(a).

Our analytical framework’s efficient rebalance frontier includes that predicted by simulation

and slightly larger on both side of the interval.

Also note the scant deviation of ELPV computed using growth map theorem to that

produced by simulation. For most of the horizon they overlap except near the peak where

growth map theorem appears to slightly overestimate.

simulation trials ([21])
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Figure 7.8 ELPV for 30 years at various rebalancing frequencies.

Please note that approximations of the true underlying values can be improved with

increasingly smaller dt value. We can also improve the accuracy if we use higher number

of Monte Carlo paths. Note that analytically predicted values can deviate from the true

underlying values because of our central assumption of log-normality for sum of log-normal

variables under Fenton-Wilkinson method.

7.6 Real Portfolio Example

The simulation is also run for a more realistic portfolio comprising of four real risky

assets and the risk-free asset. The representative risky assets are chosen from S&P 100

stock index representing four different industry sectors. Exxon Mobile Corp (ticker: XOM),

Amgen Inc (ticker: AMGN) and Verizon Communications Inc (ticker: VZ) stocks are picked

from oil, pharmaceutical and communication industries respectively. Gold Trust exchange

traded fund (ticker: GLD) is the fourth risky asset representing the commodity market.

The portfolio parameters are computed using the historical daily stock prices for six years

recorded between 2007 and 2013.
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µ =

[
0.0799 0.1802 0.1213 0.1126

]

Σ =

[
0.2791 0.2874 0.2190 0.2472

]

ρ =




1.0000 0.5168 0.1571 0.5838

0.5168 1.0000 −0.0249 0.4126

0.1571 −0.0249 1.0000 −0.0097

0.5838 0.4126 −0.0097 1.0000




Analogous simulation results are obtained reinforcing the findings of earlier simulation

with the fictitious portfolio scenario and reinforced the hitherto conclusions on the validity

of analytical results. The simulation results are presented in appendix F.
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Conclusion And Further Research

8.1 Contradiction?

Log optimal strategy can be used in both discrete time and continuous time contexts.

In the discrete time context, one determines asset weights that will lead to maximization of

ELPV during a single rebalancing period and reverts to these weights at the beginning of each

rebalancing period. In the continuous time context, the rebalancing period is infinitesimally

small. It so happens that solving for the optimal asset weights for continuous rebalancing

is quite easy. Hence often the weights calculated for continuous rebalancing are used for

discrete time rebalancing as well. But one has to keep in mind that these weights are not

really ”log optimal” when used with discrete time rebalancing. In this thesis, we proposed

a method to calculate the rebalancing period which when used with weights calculated for

continuous rebalancing can lead to better performance than what can be achieved with

continuous rebalancing.

The assets weights that we use are optimal only for continuous time rebalancing when the

investment horizon is infinitely long. These asset weights will produce maximum log-utility

neither when they are used with discrete-time rebalancing nor when the investment horizon

is finite. In fact, the authors in [24] have analyzed the use of optimal asset weights which

is different for different discrete-time rebalancing periodic for infinitely long horizon. They

have proved that when horizon is infinite, (when using rebalancing period specific optimal

weights) larger rebalancing period reduces ELPV yield.

So for a long-term log-utility investor, the best possible outcome will be when continuous-

time rebalancing is used. In this sense, using discrete-time rebalancing will always be sub-



115optimal for long-term log-utility investors. But we also claim to have discovered a discrete

time rebalancing method that performs at least as well as the continuous time rebalancing

and some times performs even better than the continuous time rebalancing. Is there a

contradiction?

Note that our method applies to finite horizon as well. If our proposed method does

better than continuous time rebalancing over a finite horizon, one can possibly apply our

proposed method again and again over an infinite sequence of finite horizons and thus do

better than continuous time rebalancing even over the infinite horizon!

First of all log-optimality is an optimization problem to derive the optimal portfolio

composition, w, when continuous rebalancing (τ = 0) is applied and when the investment

horizon T is infinite. Another way to state, given τ = 0 and T =∞, it finds w to maximize

the portfolio log growth rate νp. It fixes τ = 0 and T =∞ and solves for w.

We assert that, for the same portfolio composition w, it is possible to obtain higher log

growth νp for a shorter T using a different τ . This is evident from the MC simulation results

for the example portfolio we picked for our study. For this portfolio, we do indeed obtain

higher νp when T is small and when no rebalancing happens ( τ = ∞). We also obtain

higher νp for medium horizon T (e.g. any value up to 30 years) when a non-zero rebalancing

frequency is applied periodically. The optimum rebalance frequency, τo seems to be function

of T in the simulation (which is in line with our analytical result). Figure F.4(a) and F.4(b)

represent the results entirely derived from MC simulation for each horizon point from 0 to

30 years.

Hence our optimization problem is framed differently from the log-optimality optimiza-

tion problem. Given w (found in the above log-optimal optimization) and a specified T (not

necessarily T =∞), find the optimum rebalance frequency, τo, to maximize the νp.

Now the question is if using w and a non-zero discrete τ , it is possible to obtain higher

νp for T <∞, is it possible to obtain higher growth when T =∞? We proved that (refer



116to section 6.4, lemmas 28 and 29) it is indeed possible to obtain higher growth when T =∞

using a non-zero discrete τ . This is in line with our earlier observation that we apply the

proposed method again and again over an infinite sequence of finite horizons and thus do

better than continuous time rebalancing even over the infinite horizon.

So far so good till we encounter Proposition 4.1 in [24] that states that continuous-time

rebalancing (τ = 0, T = ∞, w ) outperforms discrete-time rebalancing (τ 6= 0, T =∞,

w(τ )). This seems to contradict our finding that we can possibly obtain higher νp when

T = ∞ by rebalancing to the portfolio composition w using a non-zero τ . We don’t have

an absolute refutation to this contradiction other than to point out the following plausible

rationale why this proposition may not apply to our proposed method:

1. The proposition applies to portfolios when short sell is forbidden. Our approach does

permit short selling and in fact, the example portfolio has negative weights for risk-free

asset meaning that we can borrow money to invest in other risky assets.

2. The authors in [24] have mentioned that their results have been found to be accurate

(again using MC simulation) only for small (≈ 1 year) rebalancing periods. Specifi-

cally, the authors have mentioned that the analysis assumes Taylor’s approximation for

deriving the optimal weights when τ > 0. Optimal weights from the analytical results

match closely with optimal weights predicted by MC simulation only for τ < 0.5 year.

They deviate for τ > 0.5.

3. The authors have mentioned that rebalancing once a year is as good as applying contin-

uous rebalancing in log-optimal solution to achieve long term growth. For our example

portfolio, we found an asymptotic rebalancing periodic of τao = 1.6 year (not 0) to

maximize long term growth.

4. Above all, some of the results in the paper may deviate from ours since we assume

log-normality for sum of log-normals by adopting Fenton’s approach.
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In log-optimal investment strategy, to maximize the investor’s log utility in the long run,

the investor continuously rebalances to the initial optimal asset weights. A more realistic

investment proposition is to maximize the log-utility by rebalancing the portfolio periodically

at discrete non-zero time intervals for a finite desired investment horizon. We investigated

the existence of such a periodic optimal frequency by first developing an analytical framework

to study the nature of the portfolio growth if it is left passive. We used Fenton-Wilkinson

log-normality assumption for sum of log-normal variables to determine the first and second

moments of log of portfolio growth for the passive investment. The underlying log-normal

assumption in Fenton-Wilkinson approach made it possible to derive analytical expression

for passive portfolio mean and variance analogous to active strategy.

We explored and proposed three different rebalancing approaches, viz. simple, stable

and optimal rebalancing. Under these approaches, generally termed as hybrid strategy, the

investor resorts to periodic rebalancing at a chosen frequency. In the simple rebalancing

approach, the investor’s criteria is to rebalance when the passive portfolio growth falls below

the active portfolio growth. In stable rebalancing the investor can obtain higher terminal

portfolio growth by opting for higher passive instantaneous growth during the entire invest-

ment horizon. In optimal rebalancing, the investor uses the optimum periodic rebalancing

frequency that maximizes the terminal portfolio growth for the intended horizon.

We established an important relationship, called growth map theorem. For any given

investment horizon and rebalance frequency, with the help of the theorem, one can compute

the portfolio growth under hybrid strategy by merely knowing the evolution of the portfolio

growth under passive strategy. First we identified a special rebalancing frequency τs and

showed that using a different rebalancing frequency τ > τs is always suboptimal in the

sense that it produces lower terminal portfolio growth. With this premise, we described

an algorithm to compute optimal τo by first merely computing the portfolio growth in the
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the portfolio growth is found to be maximized.

We analyzed the computational latency of this algorithm that searches for ORF in the

continuous time range between 0 and τs. By applying software optimizations we were able to

more than triple the speed of the rebalance frequency computation. Yet the search algorithm

is quadratic by design. Therefore, the search speed is heavily dependent on the width of

discrete time interval used to break this continuous range. Smaller time granularity increases

the accuracy of ORF and simultaneously deteriorates the computational performance.

Further mathematical insight into log-optimal portfolio rebalancing helped us to simplify

the computation when one needs to compute ORF for a given range of horizon values. We

reduced the complexity of the ORF function algorithms from quadratic to linear time. First

we reduced the search space by showing that there is only a discrete set of finite possible

candidates for the choice of ORF. We introduced the concept of rebalance divisors which

are positive integer values. A rebalance divisor divides the investment horizon into equal

intervals. At the end of each interval the portfolio rebalancing is to be executed. For the

first interval, the portfolio growth grows following passive strategy. The terminal value of

portfolio growth is given by multiplying portfolio growth at the end of the first interval with

the rebalance divisor.

We then restricted the choice of optimal frequency τo to only those discrete factors of

horizon within the interval of [τm τs]. Upon further mathematical analysis we determined

the unique optimal rebalance divisor for any given investment horizon without resorting to

search. We introduced the concepts of LURC, RIP and OLUF. The entire horizon time

axis is divided into unique non-overlapping intervals by the series of RIPs. We then serially

assign an unique and increasing optimal rebalance divisor to each horizon interval. The

ORF is computed by finding the unique optimal rebalance divisor assigned to the horizon

interval of the specified horizon. The ORF is the ratio of the value of the given horizon



119to the unique optimal rebalance divisor. This enabled us to specify the ORF function as a

piecewise continuous function.

Finally we derived a few key asymptotic properties of hybrid strategy with periodic

discrete time rebalancing. First we showed that for sufficiently large investment horizons,

optimal frequency converges to an asymptotic value τao. At τao, the expected portfolio

growth rate is equal to the instantaneous growth when the portfolio is left to grow passively.

We then proved that in the long run hybrid strategy shall produce higher portfolio growth

rate compared to continuously rebalanced log-optimal strategy.

Simulation studies showed that our analytical framework predicts the passive portfolio

growth very accurately. It slightly underestimates at the short end while slightly overesti-

mating at the long end of the horizon. The growth map theorem also accurately transforms

the passive portfolio values to hybrid values. The discrepancy in the passive portfolio value

estimation results in a relatively smaller optimal frequency estimation. We showed that

there is considerable improvement in investor log loss when the investor uses the estimated

τo. In particular, for our portfolio example, for medium to long term investors the log loss

was found to be less than 2% compared to 6% or higher if the investor had used active

continuous rebalancing strategy.

8.3 Future Research

The above analytical framework is scalable to any number of risky assets to be considered

for portfolio construction. Nevertheless, there are several future research topics. First, it

is important to highlight the key underlying assumptions we have made to arrive at the

mathematically elegant solutions for computing ORF. First, we assumed that the asset prices

follow geometric Brownian motion and have static mean and standard deviations. Second, to

derive mathematical expressions for passive evolution of portfolio we assumed log-normality

for sum of log-normal random variables. We assumed unimodality for instantaneous growth

function in order to simplify the mathematical analysis. We ignored the effect of trading cost
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one or more of these assumptions. Further research is also needed to explore mathematical

framework to determine the existence of ORF for portfolios other than log-optimal.

A critical future research is to break the assumption that the asset return mean and

variance are static values. It is well known that the asset returns are not invariant of time

as is assumed so far [38][39]. Estimation of expected returns of the assets used to construct

the portfolio has been the subject of active research [40][41][42][43]. In real tradable assets

these characteristics may evolve dynamically, especially when the investment horizon is long.

There are several alternative models proposed in literature to make these parameters more

dynamic ([44], [45] and [39]). The authors in [46] model the variation of expected return

as first-order autoregressive process. One needs to study and apply these models to modify

our analytical framework suitably.

More recently alternative approaches have been proposed to model the non-stationary

nature of expected returns [45] and portfolio construction using time-varying expected re-

turns[44]. CAPM theory states that in equilibrium, the expected return of an assets has a

linear relationship with the market beta of the assets as given by the following expression[47]:

µ̄i = rf + (µ̄M − rf)βiM (8.1)

where, rf = risk-free rate

βiM = market beta of asset i

µ̄i and µ̄M are expected returns of assets i and market portfolio M respectively. In this

model, the asset’s βiM is he only parameter to be estimated to compute asset return. βiM

completely models asset’s risk characteristics. If βiM evolution in time can be modeled then

one can logically model evolution of asset rate of return.

As we have noted before, we have ignored the transaction cost in our models. This

simplification needs to be avoided by assuming appropriate transaction cost model suitable
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accurate rebalance frequency than the conservative estimations presented in this paper.

We also derived the condition for existence of the rebalance possibility for a given set of

input asset characteristics. The rebalance opportunity exists if the time zero instantaneous

growth under passive strategy is higher than corresponding value νp under active strategy.

If this criterion is not satisfied, the investor will prefer to follow active strategy for some

positive initial duration. Determination of an appropriate rebalancing strategy when this

criteria is violated is a future research topic.

As we have noted before, we have ignored the transaction cost in our models. This

simplification needs to be avoided by assuming appropriate transaction cost model suitable

for the analytical framework. With reasonable transaction cost one should derive more

accurate optimal frequency than the conservative estimations presented in this paper.

An alternative to obtain higher growth rate is by reducing portfolio variance by diver-

sification. For example, if we combine several stocks with the same mean and variance,

the portfolio variance will reduce and growth rate will increase. So a potential future re-

search area is to investigate whether the diversification by itself will use up the potential for

improvement that can be obtained by our proposed rebalancing method.

Lastly, there are a few limitations of the algorithm that need further research. Current

algorithm, for instance, fails to compute a rebalance frequency if X, the expected value

of passive portfolio is negative. The algorithm is defined to find a rebalance frequency for

certain class of assets where at time t = 0, the instantaneous portfolio growth for passive

strategy is higher than active strategy.
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Error Amplification

Another consequence of growth map theorem 2 is that any error in the estimation of

passive strategy portfolio growth projection will lead to amplified error in portfolio growth

projection for hybrid strategy. We will quantify this error amplification in the following

lemma.

Lemma 30. Let the error in estimating the expected log of portfolio growth under passive
and hybrid strategies are as follows:

e∞(t) = χ̂∞(t)− χ∞(t) (A.1)

eτ(t) = χ̂τ(t)− χτ(t) (A.2)

where χ̂∞(t) and χ̂τ (t) are the true underlying expected log of portfolio growth values for a
given rebalance frequency of τ . Then,

eτ (t) = ke∞(τ ) + e∞(t′) (A.3)

where t = kτ + t′, k = ⌊ t
τ
⌋ and t′ = t mod τ .

Proof. We start with LHS of equation A.3:

eτ (t) = χ̂τ(t)− χτ(t) (using equation A.2)

= [kχ̂∞(τ ) + χ̂∞(t′)]− [kχ∞(τ ) + χ∞(t′)]

(using theorem 2)

= k[χ̂∞(τ )− χ∞(τ )] + [χ̂∞(t′)− χ∞(t′)]

= ke∞(τ ) + e∞(t′) (using equation A.1) (A.4)

As per lemma A.1, effect of any error in passive strategy for shorter investment hori-

zon will have noticeable error amplifying effect in hybrid strategy. As the illustration in



123figure 4.5(a) depicts, the value of rebalance frequency τ decreases and/or the value of in-

vestment horizon t increases, the value of k(= ⌊T
τ
⌋) becomes larger. This will have an

adversarial effect on the hybrid strategy estimation of portfolio growth.

We anticipate some estimation error in passive log growth estimation using equation 3.18

since there is an underlying log-normality assumption in the Fenton-Wilkinson approach to

obtain the moments of a sum of log-normal random variables. In our simulation section, we

will observe and study the effect of this error for the hybrid strategy.

A.1 Proof of Theorem 3

Proof. When i = 0, iτs = 0 is trivially true as time 0 is the very first time when the
portfolio is setup with the desired set of optimum asset weights. When i = 1, iτs = τs
is given as the first rebalance time after the initial setup. During this initial rebalancing
period (0 τs], we must satisfy equation 3.43 and 3.44. Using the expanded notation, the
time 0 estimation of the passive instantaneous portfolio growth satisfies the following two
conditions:

ξτs(0, δt) > νp, δt < τs (A.5)

ξτs(0, τs) = νp (A.6)

When i ≥ 1, i.e. for all subsequent rebalance periods, (iτs (i + 1)τs], the following two
conditions analogous to equations A.5 and A.6 must also hold.

ξτs(iτs, iτs + δt) > νp, ∀i ∈ N, δt < τs (A.7)

ξτs(iτs, (i+ 1)τs) = νp, ∀i ∈ N (A.8)

We will prove both of these equations A.7 and A.8 by the method of induction. Let’s
prove first equation A.7. The base case is when i = 0. Then equation A.7 simply becomes
equation A.5 which by definition is true. From fundamental definition,

ξτs(0, δt) =
dE[ln(V ∞(0, δt))]

dt
=
dE[ln(V ∞(0, 0)

∑N+1
i=1 wxiδt

i )]

dt

=
dE[ln(V ∞(0, 0))]

dt
+
dE[ln(

∑N+1
i=1 wxiδt

i )]

dt

=
dE[

∑N+1
i=1 wxiδt

i )]

dt
, since V ∞(0, 0) = 1 (A.9)

Hence, equation A.5 implies,

dE[ln(
∑N+1

i=1 wxiδt
i )]

dt
> νp (A.10)
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is,

ξτs(kτs, kτs + δt) > νp (A.11)

To complete the proof we must show that it also holds for i = k + 1, i.e.

ξτs((k+ 1)τs, (k + 1)τs + δt) > νp (A.12)

Following similar steps as of the derivation of equation A.9,

ξτs((k + 1)τs, (k + 1)τs + δt)

=
dE[ln(V ∞((k+ 1)τs, (k + 1)τs + δt))]

dt

=
dE[ln(V ∞((k+ 1)τs, (k + 1)τs)

∑N+1
i=1 wxiδt

i )]

dt

=
dE[ln(V ∞((k+ 1)τs, (k + 1)τs))]

dt
+
dE[ln(

∑N+1
i=1 wxiδt

i )]

dt
(A.13)

We have made use of the fact that (k+ 1)τs is a rebalance time and hence the initial asset
weights are used. Now let’s look at the two terms in the above equation. In the first term
V ∞((k+1)τs, (k+1)τs) is a deterministic value as the estimation time is same as the time
at which the portfolio value is being computed. It is same as asking for the current portfolio
value which is known at that instant and is invariant of time. Hence the derivative of a
constant (i.e. log of the constant portfolio value) will be 0. The value of the second term is
given by equation A.10. Thus we establish the required relationship given by equation A.12
and hence the equation A.7.

Now let’s prove equation A.8. The induction approach is similar to above with small
differences. The base case is when i = 0. Then equation A.8 simply becomes equation A.6
which by definition is true. Similar to the derivation of equation A.9, we can show that,

ξτs(0, τs) =
dE[

∑N+1
i=1 wxiτs

i )]

dt
(A.14)

Hence, equation A.6 implies,

dE[ln(
∑N+1

i=1 wxiτs
i )]

dt
= νp (A.15)

Now, assume equation A.8 holds for i = k and hence (k + 1)τs is also a rebalance time.
That is,

ξτs(kτs, (k + 1)τs) = νp (A.16)

To complete the proof we must show that it also holds for i = k + 1, i.e.

ξτs((k + 1)τs, (k + 2)τs) = νp (A.17)
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ξτs((k + 1)τs, (k + 2)τs) =
dE[ln(

∑N+1
i=1 wxiτs

i )]

dt
= νp, using equation A.15 (A.18)

Thus we establish the required relationship given by equation A.17 and hence the equa-
tion A.8. This completes the proof of the theorem stating that, in order to obtain stable
rebalancing, the assets need to be rebalanced to the initial optimal weights at a periodic
interval of τs.
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Algorithm To Compute τm

Algorithm 13 ComputeTauMax

Require: µ,S,w,T ,δt,N
1: m← 0, ξ∞ ← 0
2: for t = 0 to T by δt do
3: m← m + 1, X ← 0, Y ← 0, X ′ ← 0, Y ′ ← 0
4: for i = 1 to N+1 do
5: # equations 3.8 and 3.46

6: X ← X +w[i]eµ[i]t, X ′ ← X ′ +w[i]µ[i]eµ[i]t

7: for j = 1 to N+1 do
8: # equation 3.12

9: Y ← Y + w[i]w[j]e(µ[i]+µ[j])t(eσ[i,j]t − 1)
10: # equation 3.47

11: Y ′ ← Y ′ + w[i]w[j]e(µ[i]+µ[j])t[(µ[i] + µ[j])(eσ[i,j]t − 1) + σ[i, j]eσ[i,j]t]
12: end for
13: end for
14: # equation 3.51

15: ξ∞prev ← ξ∞, ξ∞ ← 1
X
[X ′ − 1

2
XY ′−2X′Y

X2+Y
]

16: if ξ∞ ≤ ξ∞
prev

then

17: return t− δt # max value is ξ∞
prev

18: end if
19: end for
20: return T
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Analytical Algorithms For ORF

Algorithm 14 ComputeOptimalRebFreqRebDiv

Require: µ,S,rf ,T ,N ,χP (t),ξP (t)
1: [νp,w, µ,S]← ComputeLogOptimalParams(µ, S, rf , N)
2: ko ← 0, τo ← 0, χτo ← νpT # default continuous rebalancing
3: if !IsPassiveStrategyPossible(w, µ, S) then
4: return (ko, τo, χ

τo)
5: end if
6: τs ← solve(ξP (t) = νp) # equation 3.44 and lemma 9
7: τm ← ComputeTauMax(µ, S,w, T, δt, N)
8: kmn ← max(1, ⌈ T

τs
⌉), kmx ← max(1, ⌊ T

τm
⌋)

9: kmx = max(1, ⌊ T

τm
⌋)

10: # search for ko
11: for k = kmn to kmx by 1 do
12: τo = 0,χτo = 0
13: χτo = 0

14: if kχ∞
(

T

k

)
> χτo then

15: ko ← k, τo ←
T

ko
, χτo ← koχ

∞(τo)

16: χτo = T

k

17: end if
18: end for
19: return (ko, τo, χ

τo)

For investment horizons between (k−1)th and kth pair of RIPs one needs to use ko = k

as the rebalance divisor to maximize the ELPV. Between two consecutive RIPs the optimum

rebalance divisor remains the same. For small investment horizon T between 0 to T1,2

optimum rebalance divisor ko is 1. The divisor is incremented to 2 for horizon starting at

T = T1,2. One continues to use 2 as the divisor for T ≤ T2,3. For investment horizon

T > T2,3 the rebalance divisor is incremented to 3 for optimum performance. Thus given
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than T . The rebalance divisor of this RIP is used as the optimum rebalance divisor ko.

Given this ko, τo = T

ko
becomes the ORF. The reader is reminded that per theorem 5 for

sufficiently long horizon, the ORF converges to τao.

Algorithm 15 ComputeOptimalRebFreqFinal

Require: µ,S,rf ,T ,N ,χP (t),ǫ
1: [νp,w, µ,S]← ComputeLogOptimalParams(µ, S, rf , N)
2: τo ← 0, χτo ← νpT # default continuous rebalancing
3: if !IsPassiveStrategyPossible(w, µ, S) then
4: return (τo, χ

τo)
5: end if
6: k← 0, Tk ← 0
7: while T > Tk do
8: k← k + 1,τk−1 ← τo

9: Tk ← solve{kχP
(

t

k

)
= (k + 1)χP ( t

k+1
)}

10: τo ←
Tk

k

11: if abs(τo − τk−1) ≤ ǫ then
12: χτo ← ⌊ T

τo
⌋χ∞(τo) # Tk converged to τao

13: return (τo, χ
τo)

14: end if
15: end while
16: τo ←

T

k
, χτo ← kχ∞(τo)

17: return (τo, χ
τo)

This logic is summarized in our final rebalance frequency computing algorithm 15. In

the while loop (line number 7 through 14), we compute the kth RIP Tk for increasing values

of k. In line 10 we compute the rebalance frequency at Tk. If both the rebalance frequencies

at RIPs of current and previous iteration converge within a specified error ǫ, then we use

the converged value as the optimum frequency. In line 12 we compute the ELPV using this

converged frequency. Note that for given horizon T we find the value of rebalance divisor

(⌊ T

τo
⌋) to compute the hybrid portfolio value. If the frequency does not converge then the

loop continues till the lowest kth RIP Tk is equal to or greater than T . In line 16 we compute

the optimum rebalance frequency for divisor k and the corresponding ELPV.



129Appendix D

Matlab Functions To Compute ORF

D.1 Check τ Existence

1 function possible = IsPassiveStrategyPossible(MU, W, S)
2 possible = false;
3

4 [x N]=size(MU); %N = number of risky + risk free assets
5 X=1; Y=0;
6 dX = sum(W'. * MU); %derivative of X
7 %derivative of Y, same as active portfolio variance
8 dY = sum(sum((W * W'). * S));
9

10 ddX = sum(W'. * MU.ˆ2); %second derivative of X
11

12 MUC = repmat(MU,N,1)+repmat(MU',1,N);
13 ddY = sum(sum((W * W'). * S. * (2 * MUC + S))); %second derivative of Y
14

15 ddX P=(ddX − dXˆ2) − 0.5 * (ddY−dYˆ2) + 2 * dX* dY;
16 if ddX P > 0
17 possible = true;
18 end

D.2 Compute ORF (Matrix Based)

1 function optTau = ComputeOptRebFreqMatrix(MU,S,T,delT,N,W,nu p)
2

3 MUC = repmat(MU,N+1,1)+repmat(MU',1,N+1);
4 XI PAS = zeros(1, T/delT + 1);
5 MUCS = MUC + S; m = 0;
6 for t = 0:delT:T
7 m = m+1; ES=exp(S * t);
8 WEMU=W.* exp(MU* t); WEMUC=WEMU'* WEMU;
9 X = sum(WEMU); X P = sum(MU.* WEMU);

10 Y=sum(sum(WEMUC.* (ES − 1)));
11 Y P = sum(sum(WEMUC.* (ES. * MUCS− MUC)));
12 XI PAS(m) = log(X) − 0.5 * log(1 + Y/ Xˆ2 );
13 X P = (X P − 0.5 * ((Y P* X − 2* X P* ...
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14 Y)/(Xˆ2+Y)))/X;
15 if t==0
16 maxXI HYD = nu p* T; optTau = 0;
17 else
18 k = floor(T/t); tp = mod(T,t);
19 tp idx = 1+round(tp/delT);
20 %compute hybrid portfolio growth
21 %using growth map theorem
22 XI HYD = k* XI PAS(m) + XI PAS(tp idx);
23 if (XI HYD > maxXI HYD)
24 maxXI HYD = XI HYD; optTau = t;
25 end
26 if (X P − nu p) < 0
27 %found stable reb freq
28 break ;
29 end
30 end
31 end

D.3 Compute ORF Function

1 close all; clear;
2

3 MU = [0.24 0.20 0.15];
4 ExpSigma 0 = [0.3000 0.2646 0.1732];
5 ExpCorrC = [1.0000 0.2520 0.1925;
6 0.2520 1.0000 −0.2182;
7 0.1925 −0.2182 1.0000];
8 rf = 0.1;
9 save portfolio params

10

11 T = 100;
12 delT=0.001;
13 eps=0.000001; %error margin to converge
14

15 %compute active log optimal portfolio params
16 [gr opt MUrf Srf MURFC MURFSC Wrft] = compute active portfolio params()
17

18 %Compute the inflection points for the given horizon T
19 [tau ao T INFL VEC KVEC] = ...
20 ComputeInflectionSet(T, 0.9, eps, MUrf, Srf, Wrft, MURFSC , MURFC)
21

22 %Now compute the profile of ORF for the horizon length
23 T VEC=[];TAU O VEC=[];TAU AO VEC=[];XH VEC=[];XA VEC=[];
24 i=1;
25 k=1; %reb divisor
26 for t=0:delT:T
27 %if horizon is long enough simply use the asymp orf
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28 if t >= max(T INFL VEC)
29 TAU O VEC(i)=tau ao; %orf = aymp orf if the horizon is long enough
30 k=floor(t/tau ao);
31 else
32 %search for the reb divisor to apply
33 while t > T INFL VEC(k)
34 k=k+1
35 end
36 TAU O VEC(i)=t/k; %orf = horizon/reb divisor
37 end
38 T VEC(i)=t;
39 TAU AO VEC(i)= tau ao; %just for plotting purpose
40

41 %hybrid portfolio ELPV
42 XH VEC(i)= ...
43 k* passive log port val function(TAU O VEC(i), MUrf, Srf, Wrft);
44

45 %active portfolio ELPV
46 XA VEC(i)=gr opt * t;
47

48 %passive portfolio ELPV
49 XP VEC(i) = passive log port val function(t, MUrf, Srf, Wrft);
50 i=i+1;
51 end
52 cd( 'C: \Publications \MyPhDThesis' );
53

54 figure
55 plot(T VEC,TAU O VEC,'−b' ,T VEC,TAU AO VEC,'−−g' , 'LineWidth' ,2)
56 h = legend( 'ORF' , 'Asymptotic ORF' ,2, 'Location' , 'Best' );
57 title( 'ORF Profile' );
58 xlabel( 'HORIZON T' )
59 ylabel( 'REB FREQ (YEAR)' )
60 xlim([0 T])
61

62 figure
63 plot(T VEC,XA VEC,'−−b' ,T VEC,XP VEC,'−.g' ,T VEC,XH VEC,'c' , 'LineWidth' ,2)
64 hold on
65 h = legend( 'active' , 'passsive' , 'hybrid' ,3, 'Location' , 'Best' );
66 set(h, 'Interpreter' , 'none' )
67 title( 'Expected Log of Portfolio Value' );
68 xlabel( 'HORIZON T' )
69 ylabel( 'ELPV' )
70 xlim([0 T])

1 function [gr opt MUrf Srf MURFC MURFSC Wrft] = ...
2 compute active portfolio params()
3

4 load portfolio params
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5 S = corr2cov(ExpSigma 0, ExpCorrC);
6

7 W = S \ (MU − rf)'; %solve for optimal weights
8 w rf = 1 − sum(W); %compute the weight of the risk free asset
9

10 Wrf = [w rf; W];
11

12 [N x] = size(W);
13

14 MUrf = [rf MU];
15

16 %compute portfolio mean
17 mu opt = MUrf * Wrf
18

19 %compute portfolio std dev
20 sig opt = sqrt(sum(sum((W * W'). * S)))
21

22 %compute portfolio growth rate
23 gr opt = mu opt −0.5 * sig optˆ2;
24

25 %construct the correlation matrix with risk −free asset
26 S sz = size(S);
27 Srf = [zeros(S sz(1),1) S];
28 S sz = size(Srf);
29 Srf = [zeros(1,S sz(2));Srf];
30

31 %the following invariants will be used in portfolio value ca lculation
32 MURFC = repmat(MUrf,N+1,1) + repmat(MUrf',1,N+1);
33 MURFSC = MURFC + Srf;
34 Wrft = Wrf';

1 %This function returns the asymptotic orf, inflection poin ts and the
2 %rebalance divisor set for any given input investment horiz on
3 %and error margin to converge. Tk0 = first inflection point g uess
4 function [tau ao T INFL VEC KVEC] = ...
5 ComputeInflectionSet(T, Tk0, eps, MUrf, Srf, Wrft, MURFSC , MURFC)
6

7 format long;
8 f asymp tau = @(t )asymp tau function(t, MUrf, Srf, Wrft, MURFSC, MURFC);
9 tau ao = fzero(f asymp tau,1.5);

10

11 T INFL VEC=[];K VEC=[];
12 k = 0; Tk = Tk0; %initial guess
13 Dk=0;
14

15 while T > Tk
16 k = k+1
17 Dkm1 = Dk;%last iteration difference
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18 Tkm1 = Tk; %last iteration inflection point
19

20 f = @(t)inflection function(t,k,MUrf, Srf, Wrft);
21 Tk = fzero(f,Tkm1)
22 Dk=Tk−Tkm1;
23 T INFL VEC(k)=Tk;K VEC(k)=k;
24 if abs(Dkm1 − Dk) <= eps
25 return ;
26 end
27 end

1 function DIFF = asymp tau function(t,MUrf, Srf, Wrft, MURFSC, MURFC)
2

3 DIFF = ...
4 passive log port val dvt function(t,MUrf, Srf, Wrft, MURFSC, MURFC) − ...
5 passive log port val function(t, MUrf, Srf, Wrft)/t;

1 function DIFF = inflection function(t, k, MUrf, Srf, Wrft)
2

3 DIFF = k * passive log port val function(t/k, MUrf, Srf, Wrft) ...
4 − (k+1) * passive log port val function(t/(k+1), MUrf, Srf, Wrft);

1 function EXP LOG PAS PORTFW = ...
2 passive log port val function(t, MUrf, Srf, Wrft)
3

4 if t==0
5 EXP LOG PAS PORTFW = 0;
6 return ;
7 end
8

9 [EXP PAS PORT VARPAS PORT ESRF WEMU WEMUC] =...
10 passive port val function(t, MUrf, Srf, Wrft);
11

12

13 EXP LOGPAS PORTFW = log(EXP PAS PORT) −...
14 0.5 * log(1 + VAR PAS PORT/ EXP PAS PORTˆ2 );

1 function EXP LOG PAS PORTFWDVT = ...
2 passive log port val dvt function(t,MUrf, Srf, Wrft, MURFSC, MURFC)
3
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4 [EXP PAS PORT VARPAS PORT ESRF WEMU WEMUC] =...
5 passive port val function(t, MUrf, Srf, Wrft);
6

7 EXP PAS PORTDVT = sum(MUrf. * WEMU);
8 VAR PAS PORTDVT = sum(sum(WEMUC.* (ESRF. * MURFSC− MURFC)));
9

10 EXP LOG PAS PORTFWDVT = (EXP PAS PORTDVT− 0.5 * ...
11 ((VAR PAS PORTDVT* EXP PAS PORT− 2* EXP PAS PORTDVT* ...
12 VAR PAS PORT)/(EXP PAS PORTˆ2+...
13 VAR PAS PORT)))/EXP PAS PORT;

1 function [EXP PAS PORT VARPAS PORT ESRF WEMU WEMUC] =...
2 passive port val function(t, MUrf, Srf, Wrft)
3

4 WEMU=Wrft. * exp(MUrf * t);
5 WEMUC=WEMU'* WEMU;
6 ESRF=exp(Srf * t);
7

8 EXP PAS PORT = sum(WEMU);
9 VAR PAS PORT = sum(sum(WEMUC.* (ESRF − 1)));
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Matlab Simulation Programs

1 close all; clear; format long; warning( 'off' , 'all' );
2

3 % inputs for simulation parameters
4 NUMMCPATH = 1;% Number of MC paths to be simulated
5 delH = 0.1;
6 HORIZON = 1;
7 STARTHOR = delH;
8 delT = 0.1; % smaller the better
9

10 %Portfolio parameters
11 MU = [0.1 0.24 0.20 0.15]; %first element is risk −free
12 ExpSigma = [0 0.3000 0.2646 0.1732];
13 ExpCorr = [1 0 0 0;
14 0 1.0000 0.2520 0.1925;
15 0 0.2520 1.0000 −0.2182;
16 0 0.1925 −0.2182 1.0000];
17 N=size(MU,2);
18

19 %construct the covariance matrix with risk −free asset
20 ExpCov = corr2cov(ExpSigma, ExpCorr);
21

22 %solve for optimal weights
23 W = ExpCov(2:N,2:N) \(MU(:,2:N) −MU(1))';
24 %compute the weight of the risk free asset
25 W = [1 − sum(W); W];
26

27 %compute portfolio mean
28 mu opt = MU* W;
29

30 %compute portfolio std dev
31 sig opt = sqrt(sum(sum((W * W'). * ExpCov)));
32

33 %compute portfolio growth rate
34 gr opt = mu opt −0.5 * sig optˆ2;
35

36 NumSamples = round(HORIZON/delT) + 1;
37 %EPSVEC =[];
38 EPSVEC = zeros(NumSamples,NUM MCPATH* N* 2);
39 %Generate correlated std random variables
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40 for NRepl=1:NUM MCPATH % Number of MC paths
41

42 randn( 'seed' ,NRepl);
43 %Set seed for the RandNormal module.
44 %Differnt see for different MC path.
45 % Refer to Hull equation 17.16 in
46 %'Basic numerical procedure' chapter
47 % for price equation
48

49 %Generate standard correlated normal variavles
50 % Note: for standard normal variables, mean = vector of 0s
51 % and std dev = vector of 1s that leads to the cov matrix which
52 % is same as the correlation matrix
53

54 EPS = mvnrnd(zeros(size(MU)), ExpCorr, NumSamples);
55 %EPSVEC = [EPSVEC EPS−EPS];%optimize it later
56 EPSVEC(:,(NRepl −1) * 2*N+1:NRepl * 2* N) = [EPS −EPS];
57 end % Number of MC paths
58

59 value = 1;
60 PRICE = ones(1,size(EPSVEC,2)); %initial unit price vector for all paths
61 idx= 0;
62 numStockInitial = (value * W')./PRICE(1,1:N);
63 NUMSTOCKVEC INIT=repmat(numStockInitial,1,2 * NUMMCPATH);
64

65 %NUMSTOCKVEC=[];
66 NUMSTOCKVEC=repmat(NUMSTOCKVEC INIT,NumSamples);
67 ELPV ALL REBFREQ = nan(NumSamples−1,NumSamples −1);
68

69 for T=STARTHOR:delH:HORIZON %for each value of horizon
70

71 idx = idx + 1;
72 %NUMSTOCKVEC = [NUMSTOCKVEC; NUMSTOCKVEC INIT];
73 %compute the next price row for all paths − keep just one price row,
74 %the latest
75

76 for c=1:size(EPSVEC,2)
77 idx2=mod(c,N);
78 if idx2==0
79 idx2=N;
80 end
81 PRICE(1,c) = PRICE(1,c) * exp((MU(idx2) −...
82 ExpSigma(idx2)ˆ2/2) * delT + ...
83 ExpSigma(idx2) * EPSVEC(idx,c) * sqrt(delT));
84

85 end;
86 f=0;
87 VALUEVEC = nan(round(T/delT),NUM MCPATH* 2);
88 for rebFreq=delT:delT:T
89 f=f+1;
90
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91 for p=1:2 * NUMMCPATH
92 %get the price for the path
93 S = PRICE(1,(p −1) * N+1:p * N);
94 numStock = NUMSTOCKVEC(f,(p −1) * N+1:p * N);
95 %compute value vector
96 value = sum(numStock . * S);
97 VALUEVEC(f,p)= value;
98

99 %Matlab is not perfect in rounding. Apply some correction
100 T = round(T/delT) * delT;
101 rebFreq= round(rebFreq/delT) * delT;
102 %check if it needs to be rebalanced at rebFreq
103 if mod(T,rebFreq) == 0
104 %rebalance! Really for next horizon!
105 NUMSTOCKVEC(f,(p −1) * N+1:p * N) = (value. * W')./S;
106 end
107 end
108 end
109 LVALUE VEC=log(VALUE VEC);
110 LVALUE VEC(imag(LVALUE VEC) ˜= 0) = NaN;
111

112 %compute ELPV for each reb freq ignoring NaN values
113 ELPV = nanmean(LVALUE VEC, 2);
114 ELPV ALL REBFREQ(1:round(T/delT),idx) = ELPV;
115 %find orf and elpv at orf
116 [elpv orf I] = nanmax(ELPV, [],1);
117 orf = delT. * I;
118 T
119 orf
120 elpv orf
121 end
122 save( 'Luen Sim' , 'ELPV ALL REBFREQ');
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Simulation Results of Real Portfolio
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Figure F.1 Analysis of simulation results for passive strategy.
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Figure F.2 Comparison of ELPV using growth map theorem with realized ELPV.
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Figure F.3 Percentage error in estimating hybrid ELPV using growth map theorem.
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