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ABSTRACT 
 

INVERSE METHODS FOR LOAD IDENTIFICATION  
AUGMENTED BY OPTIMAL SENSOR PLACEMENT  

AND MODEL ORDER REDUCTION 
 

by 
 

Deepak Kumar Gupta 
 
 

The University of Wisconsin – Milwaukee, 2013 
Under the Supervision of Professor Anoop K. Dhingra 

 
 

Design problems require accurate characterization of loads acting on a structure. 

One way to estimate the loads is through experimentally measured structural response. 

This is known as the “inverse problem.” The instrumented structure essentially acts as its 

own transducer. It is well known that the inverse problems tend to be highly ill-

conditioned. This dissertation proposes several novel time domain and modal domain 

algorithms for estimating multiple dynamic loads exciting a structure from structural 

response measured at a finite number of optimally placed non-collocated sensors on the 

structure. The optimal placement of sensors is necessary to counter the inherent limitation 

of such inverse problems − ill-conditioning. Solution procedures based on construction of 

D-optimal design as well as sparse nature of mass, damping and stiffness matrices are 

proposed and implemented to determine the optimum locations of sensors that will 

provide the most precise load estimates. Both strain measurements using strain gages and 

acceleration measurements using accelerometers have been given due attention. 

Improvements in the load identification algorithms, based on model order reduction and 

reduced modal parameters, are further proposed to reconstruct the input forces accurately. 
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Load identification techniques based on dynamic programming and Markov 

parameters have also been studied in this work. Several limitations to these existing 

techniques have been identified. An attempt has been made in this dissertation to address 

the identified shortcomings based on D-optimal design for obtaining optimal sensor 

locations on the structure and model order reduction for computational cost reduction. 

Both experimental measurements as well as numerical simulations have been 

performed in order to validate the proposed techniques. The experimental validation is 

done using a simple beam clamped at the base and attached to a shaker head. The focus 

of this example is to reconstruct the input forces exciting the structure through the shaker 

head. Numerical simulations are performed on the computational models developed in 

finite element tool ANSYS that works in close conjunction with MATLAB. Numerical 

sensitivity analyses are further performed to study the effect of uncertainties (noise) in 

experimental data as well as in the model; the techniques are validated to be robust – 

even with the presence of noise, the applied loads are recovered accurately. 
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Chapter 1 - Introduction 
 

 

1.1 Problem Statement 

For reliable and cost effective design and analysis of structures or engineering 

equipment, it is desirable to know at the design stage the locations and magnitudes of the 

external loads transmitted to the structure. These loads may be static or time varying 

dynamic loads. The stresses induced in the structure are a function of the applied loads. 

Knowledge of the loads early in the design process is vital for design optimization and 

effective analysis that ensures the structural integrity of the product. Accurate prediction 

of the loads leads to greater confidence in numerical simulation such as finite element 

analysis which, in turn, significantly reduces the reliance on expensive and time 

consuming experimental testing. 

 

1.2 Limitations of Load Transducers 

In many instances, it is possible to introduce load transducers (load cells) between 

the structure and the load transferring body that can directly measure the loads acting on 

a structure. This method of load measurement, however, suffers from certain limitations. 

For instance, an introduction of load transducers can change the system dynamic 

characteristics leading to inaccurate load estimation. In some applications, the input load 

locations may not be accessible thereby precluding insertion of a load transducer for the 

measurement of loads being transmitted to the structure. In several other applications, 

direct measurement of the excitation loads is not feasible such as aerodynamic loads, 
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seismic excitation, explosion forces, shock loads on ship hulls, engine torque pulses, 

wind loads, fluid-flow induced forces in piping systems etc. 

 

1.3 Using Structure as a Load Transducer 

In many applications, it is possible to measure the response of the structure to the 

unknown applied loads. The response may be quantities such as displacements, 

accelerations, strains etc. that depend on the loads and their measurement is more feasible 

than measuring the loads directly. A linear relationship (also called the system transfer 

function) between the loads to be estimated and the measured quantity can then be 

employed, along with the principle of superposition, to estimate the imposed loads. The 

instrumented structure, thus, behaves as its own load transducer. The simplest example 

utilizing this principle is a simple scale system where a weight suspended at one end of a 

cantilever beam is estimated by measuring the bending strains (response) at some other 

locations in the beam.  

It is again emphasized at this point that the loads to be estimated may be static or 

dynamic, and different procedures may be needed depending upon whether static or 

dynamic loads are to be measured. It is well known that for given input time varying 

forces, structure response can be easily determined by using equations from dynamics 

and principles of elasticity. This is known as the “forward problem.” In principle, it 

should then be possible to determine the input forces from the structure response. This is 

known as the “inverse problem.” Solving the inverse problem may seem to be a 

straightforward task, but unfortunately this notion is misleading. One reason for this is 

that the inverse problem tends to be highly ill-conditioned, i.e., even very small variations 
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(noise) in the response measurement can cause large errors in the force estimation. 

Another challenge is that in the forward problem, the excitation forces are concentrated at 

a few locations on the structure and therefore, information about the forces is well known 

all over the structure. However, in the inverse problem, although a non-zero response is 

present over most of the structure, they can only be measured at a finite number of 

selected locations, with the response at the rest of the locations left untapped. Thus, the 

forward problem can be solved directly for the response, whereas the inverse problem 

poses significant challenges to solve for the input forces. Furthermore, a combination of 

different loads at different locations can result in the same level of response, while 

solution to the inverse problem, however, may not be unique. In fact, determining system 

response from input forces is working from cause to effect, whereas solving the inverse 

problem, i.e., determining the input forces from system response, is working from effect 

to cause. 

Various methods have been developed and proposed to counter the challenges 

posed by the inverse problem which will be discussed in Chapter 2. The present work is 

another attempt to develop techniques to estimate the input loads applied to a structure 

from its measured response, i.e., to solve the inverse problem. In this dissertation, the 

terms loads and forces are used interchangeably. Similarly, estimation, identification and 

recovery mean the same in the context of this document. 
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1.4 Organization of Material 

Chapter 1 presents a brief overview of the load estimation problem along with the 

identification of major challenges involved to address it. 

Chapter 2 presents a broad overview of the existing literature and work done by 

other researchers in the areas of static as well as dynamic load recovery in frequency, 

modal, and time domains. 

In Chapter 3, some basic concepts are laid out on which a large part of this thesis 

is built. Various representations into which the structural dynamics of a system can be 

cast are described. Furthermore, a detailed treatment of various model order reduction 

techniques is presented that are used extensively in later chapters. 

Chapter 4 presents an in depth investigation of static load identification technique 

using strain data from optimally placed strain gages. With the help of static load 

identification, the concepts of Candidate Set and D-optimal design algorithm are 

introduced. 

Chapter 5 develops a time domain technique for estimating dynamic loads 

exciting a structure from strain time response measured at a finite number of optimally 

placed strain gages on the structure. A novel approach is presented which utilizes the 

technique of model reduction that results in precise estimation of dynamic loads. This is 

especially useful when finite element modeling is used to study dynamics of continuous 

systems. Model reduction techniques presented in this chapter help recover applied loads 

accurately while keeping the computational costs low and without compromising on the 

accuracy. 
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Chapter 6 outlines two different algorithms for estimating time-varying loads 

acting on a structure by measuring acceleration time response at optimum locations on 

the structure. The accuracy of the load estimates is dependent on the locations of the 

accelerometers. A technique based on reduced modal parameters is proposed that results 

in higher accuracy in load estimates. 

In Chapter 7, a technique based on dynamic programming is developed to identify 

the loads applied to a structure from experimentally measured response at optimal 

accelerometer locations on the structure. Since dynamic programming implementation 

tends to be computationally expensive, a technique based on Craig-Bampton model order 

reduction is proposed in the chapter that aims to reduce computation cost. 

Chapter 8 deals with load identification using Markov parameters. An attempt is 

made to tie D-optimal design algorithm to Markov parameters technique to compute 

optimal accelerometer locations on the structure such that precise loads estimates are 

obtained. It is seen that optimum placement of accelerometer results in improvement in 

load estimates compared to the case when accelerometer locations are selected randomly. 

Finally, Chapter 9 presents some concluding remarks on this research. In addition, 

potential areas of future research on this topic are also identified. 
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Chapter 2 - Literature Review 
 

 

Over the years, several methods have been developed that can estimate the forces 

acting on the structure from its measured response without the use of intermediate load 

cells. There are several aspects of input force estimation from measured responses that 

have been explored to arrive at an efficient and accurate technique. Separate approaches 

may exist depending upon whether the forces to be estimated are static or dynamic in 

nature. A brief overview of many of the techniques is presented in this chapter. 

 

2.1 Static Load Estimation Techniques 

Static load estimation techniques are applicable to the case where the forces to be 

estimated are static in nature, i.e., they do not vary with time. These methodologies are 

limited to static linear elastic problems where the applied loads on the structure are 

estimated from the measured strains. Although, a set of static loads acting on a structure 

uniquely deforms it, the strains can only be measured at a finite number of locations on 

the deformed structure. This strain data can be used to determine the applied loads 

provided the principle of superposition holds. The precision with which the applied loads 

are estimated is dictated by the number of strain gages used along with their locations and 

angular orientations. While the gage locations on certain simple structures may be 

intuitive under certain loading conditions, the same cannot be said of a complex structure 

where a trial-and-error approach to gage placement can result in poor load estimates. This 

is because the gage may be placed at a location where it has a relatively low sensitivity to 
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the loads to be estimated. Further, for multi-degree of freedom force gages, the cross-

sensitivity (Sommerfeld and Meyer, 1999) between the gages may not be small. As a 

result, the strain data obtained from many of the gages may be of little use and the load 

estimates may not be precisely known. 

Masroor and Zachary (1991) developed a technique for determining a set of static 

loads acting on a structure from measured strains. They studied the effect of the number 

and locations of strain gages in a static load estimation problem. They formulated and 

defined a sensitivity parameter and argued that the variance of the force estimates is 

directly proportional to the sensitivity. They noted that an analysis based on all possible 

gage placements would be very time consuming and therefore, only a few groups of 

gages based on the judgment could be selected for the analysis. Since all possible gage 

location combinations were not taken into account, the sets selected for analysis were not 

guaranteed to be optimal, which in turn, might not yield the best possible load estimates. 

Wickham et al. (1995) advanced the development by Masroor and Zachary (1991) 

and proposed a technique to minimize the sensitivity parameter by casting the strain gage 

locations problem as an optimization problem that determined the optimum locations of 

the gages. They utilized the k-exchange algorithm proposed by Johnson and Nachtsheim 

(1983) to construct the D-optimal design that provided the best estimates for the input 

loads. They applied this approach to recover the loads applied to a C-spring. 

Dhingra and Hunter (2003) proposed a computational technique, in line with 

Wickham et al. (1995), which utilized optimum design of experiment technique to select 

the number, locations and angular orientations of the strain gages that will provide the 
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most precise load estimates. Their technique is capable of handling load recovery from 2-

dimensional as well as complex 3-dimensional structures. 

 

2.2 Dynamic Load Estimation Techniques 

Dynamic load estimation techniques are applicable to the case where the forces to 

be estimated are dynamic in nature, i.e., they are a function of time. This area of research 

can be further sub-classified into three domains — (i) frequency domain, (ii) modal 

model domain, and (iii) time domain. 

 

2.2.1 Frequency Domain Method 

Frequency domain methods utilize a linear relationship between the applied forces 

and the measured response as a function of frequency. This linear relationship, also 

known as transfer function of the system, is called the frequency response function of the 

system. Consider the well known convolution integral that computes system response 

from the input forces: 

ሼ(ݐ)ݔሽ = න[ℎ(ݐ − ߬)]ሼ݂(߬)ሽ݀߬௧
଴  (2.1)

 where ሼ(ݐ)ݔሽ is the (݊௦ × 1) response vector, 

 ሼ݂(ݐ)ሽ is the ൫݊௙ × 1൯ excitation force vector, 

 [ℎ(ݐ)] is the ൫݊௦ × ݊௙൯ Impulse Response Function (IRF) matrix.  

Taking the Fourier transform of Eqn. (2.1), the relation can be expressed in the frequency 

domain as: 
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ሼܺ(߱)ሽ = ሽ (2.2)(߱)ܨሼ[(߱)ܪ]

where ߱ is the circular frequency, 

           ሼܺ(߱)ሽ is the (݊௦ × 1) response vector, 

           ሼܨ(߱)ሽ is the ൫݊௙ × 1൯ excitation force vector, 

is the ൫݊௦ [(߱)ܪ]            × ݊௙൯ Frequency Response Function (FRF) matrix. 

The FRF can be obtained from experimentally measured data, or can be reconstructed 

from a modal model of the system, or can be obtained from finite element method. It 

completely defines the dynamic characteristics of the system. ሼܺ(߱)ሽ can be measured 

experimentally as any of the physical quantities—displacement, velocity, acceleration, or 

strain. The relationship between strain frequency response function and displacement 

frequency response function has been explored by several authors (Li et al., 1989; Tsang, 

1990). Once ሼܺ(߱)ሽ and [ܪ(߱)] are known, the problem now remains that of solving for ሼܨ(߱)ሽ and thereby computing the time history of the input forces ሼ݂(ݐ)ሽ using the 

inverse Fourier transform. For square ൫݊௦ = ݊௙൯ and non-singular [ܪ(߱)], Eqn. (2.2) can 

be inverted to give: ሼܨ(߱)ሽ = ଵሼܺ(߱)ሽ (2.3)ି[(߱)ܪ]

Unfortunately, this inverse problem is not as easy and straightforward as the 

mathematics suggests. Stevens (1987) presented an excellent overview of the difficulties 

posed by this class of inverse problems. Typically, FRF consists of a number of resonant 

peaks separated by anti-resonance valleys. Desanghere (1983) studied the inverse 

problem in frequency domain and the challenges involved in load estimation. His study 

suggests that at any particular frequency, especially near resonance, the response is 

dominated by a few modes and therefore, [ܪ(߱)] consists of a few dominant elements 
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(corresponding to the resonant peaks) and many small elements (corresponding to the 

anti-resonance region). This leads to ill-conditioning of the matrix [ܪ(߱)] and very small 

variations in the measurement of the response [ܺ(߱)] can cause large variations in the 

estimated input force ሼܨ(߱)ሽ.  
In Eqn. (2.3), there is exactly enough information so as to uniquely determine the 

input forces. Usually, it is possible to measure more number of response data than the 

number of unknown forces to be determined whereby the problem is over-determined ൫݊௦ > ݊௙൯. The advantage of having more number of equations than the number of 

unknowns was studied by Hillary (1983) to minimize the effect of measurement errors, 

i.e., to improve the condition of the inverse problem. A least-squares solution to the 

inverse problem was, thus, suggested to take into account more data than unknowns: ሼܨ(߱)ሽ = ሼܺ(߱)ሽ (2.4)்[(߱)ܪ]ଵି([(߱)ܪ]்[(߱)ܪ])

where [ܪ(߱)]் is the Hermitian transpose of [ܪ(߱)]. 
Bartlett and Flannelly (1979) were amongst the first researchers who employed 

the least-squares solution to estimate the forces acting on the hub of a helicopter. They 

estimated combinations of two orthogonal forces from fourteen response measurements 

at three different frequencies which were comparable to the directly measured forces. 

Okubo et al. (1985) studied the influence of noise contaminating the measured 

response as well as the FRF on the accuracy of force estimation. They applied the least-

squares technique to estimate force in a beam structure, cutting forces at cutting edge of a 

milling machine tool, forces generated on automobile engine mounts and forces 

transmitted to piping system and mounts of an air conditioner. They concluded that the 



11 

 

noise in the anti-resonance region was the greatest source of error in the input force 

identification than the noise in the resonance region. 

Starkey and Merrill (1989) investigated the reason for the errors encountered in 

predicting the forces from Eqn. (2.4). They concluded that the ill-conditioned nature of 

the equation is due to the fact that the matrix ([ܪ(߱)]்[ܪ(߱)]) is frequently near-

singular with the worst condition number near the natural frequencies of the system. The 

FRF matrix tends to be dominated by rank-one component corresponding to the dominant 

mode near resonance. 

Hillary and Ewins (1984) used accelerometers and strain gages to measure FRF 

and estimated two simultaneous sinusoidal input forces on a uniform cantilever beam as 

test piece by employing the least-squares technique. They found that the strain related 

model gave more accurate results than the acceleration related model because the strain 

responses are more influenced by the higher modes at low frequencies; therefore, they 

capture the effect of higher modes better than the acceleration responses. 

Boukria et al. (2011) applied the FRF technique to estimate the impact force 

magnitude and location applied to a circular plate. Tikhonov regularization was employed 

to stabilize the inverse problem. Determining the location of the impact force was based 

on the minimization of an objective function formed from the transfer function between 

several impact locations, forming a mesh structure with several measuring points. 

Apart from the ill-conditioned nature of Eqn. (2.3) near resonance, application of 

the frequency domain method in force estimation has another major drawback. The FRF 

matrix needs to be inverted at each frequency in the range of interest, which is 

computationally intensive. Clearly, a better method is desired. 
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2.2.2 Modal Model Method 

Modal model of a system is defined by its modal parameters — natural 

frequencies, corresponding mode shapes and modal damping factors. These parameters 

can be estimated experimentally from measured data, analytically for simple problems, or 

from finite element method. Genaro and Rade (1998) proposed the modal model method 

in time domain. Their approach was based upon the standard equilibrium equation in 

dynamics in modal coordinates: [↖ ܯ ↘]ሼݍሷ ሽ(ݐ) + [↖ ܥ ↘]ሼݍሶ ሽ(ݐ) + [↖ ܭ ↘]ሼ(ݐ)ݍሽ = [߶]்ሼ݂(ݐ)ሽ	 (2.5)ሼ(ݐ)ݔሽ = [߶]ሼ(ݐ)ݍሽ (2.6)

where [↖ ܯ ↘] is the diagonal modal mass matrix, 

           [↖ ܥ ↘] is the diagonal modal damping matrix, 

           [↖ ܭ ↘] is the diagonal modal stiffness matrix, 

           [߶] is the modal matrix, 

           ሼ(ݐ)ݍሽ is the vector of modal coordinates. 

The input force can then be determined by inverting Eqn. (2.5): ሼ݂(ݐ)ሽ = ([߶]்)ା([↖ ܯ ↘]ሼݍሷ ሽ(ݐ) + [↖ ܥ ↘]ሼݍሶ ሽ(ݐ) + [↖ ܭ ↘]ሼ(ݐ)ݍሽ) (2.7)

where + denotes the left pseudo-inverse. They applied this method numerically to predict 

two simultaneously applied harmonic loads, but they failed to supplement their result 

with any laboratory test data. 

The modal model method can as well be employed in the frequency domain as 

suggested by Desanghere and Snoeys (1985) where the input forces can be estimated by 

transforming the response from system coordinate to modal coordinate as: ሼܨ(߱)ሽ = ([߶]்)ା(−߱ଶ[↖ ܯ ↘] + ݅߱[↖ ܥ ↘] + [↖ ܭ ↘])[߶]ାሼܺ(߱)ሽ (2.8)
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The modal forces so obtained can then be transformed back to system coordinates by 

inverse coordinate transformation. They applied this technique to estimate forces in turbo 

compressor and longitudinal beam of a car frame. 

Okubo et al. (1985) mentioned this technique in their paper, but advocated the 

least-squares technique as the preferred method over the modal model method. They 

argued that the modal model method requires extraction of modal parameters from the 

measured FRF and that the modal parameters are not always exact because of curve 

fitting problems. This introduces inaccuracy in the resulting force identification. 

Busby and Trujillo (1987) cast the load estimation problem as a minimization 

problem of error which is defined as difference between the measured structural response 

and response predicted from the model. They used dynamic programming to solve this 

minimization problem resulting in force estimation based on a recursive reformulation of 

the governing equations. The utility of their approach was demonstrated numerically by 

applying it to a 10 degrees of freedom cantilever beam model. One of the disadvantages 

of the method is that the amount of computation increases dramatically as the order of the 

model increases. To deal with this, they proposed an eigenvalue reduction technique to 

reduce the order of the system. The reduction technique was based on elimination of 

higher modes which would lead to truncation errors. 

Hollandsworth and Busby (1989) extended the previous study by Busby and 

Trujillo (1987) by applying it to actual experimental measurements. They estimated the 

impact loads on a cantilever beam by measuring acceleration response from three 

accelerometers placed at different locations. They found significant discrepancy between 

the estimated forces and actual forces. They then applied a smoothing parameter to the 
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measured acceleration data before subjecting it to the load identification calculations. The 

authors claimed that the smoothing parameter was essential in successful load estimation. 

Hansen and Starkey (1990), working on a line similar to Starkey and Merrill 

(1989), investigated the ill-conditioned nature of the modal model method. Their study 

was based on the effect of locations of accelerometer placements on a steel beam on the 

condition number of the modal matrix. They concluded that the condition number of the 

modal matrix can be improved through proper selection of the accelerometer placement 

and modes included in the analysis. 

 

2.2.3 Time Domain Methods 

Time domain techniques are the most recent developments that aim towards 

estimating the input forces from measured response in time domain. The response of a 

structure as a function of its Impulse Response Function (IRF) and the forces acting on 

the structure is given by the convolution integral Eqn. (2.1) which is restated here for 

ease of reference: ሼ(ݐ)ݔሽ = ׬ [ℎ(ݐ − ߬)]ሼ݂(߬)ሽ݀߬௧଴   

The problem at hand is to solve this equation for unknown forces from the knowledge of 

the IRF and measured responses. Nashed (1976) showed that this deconvolution problem 

is ill-posed because the solution ݂(ݐ) does not continuously depend on the input data (ݐ)ݔ and ℎ(ݐ) and small variations in the measured data can produce large errors in the 

force estimation. Great deal of research has been devoted to develop techniques that aim 

towards deconvolving this equation to solve for the input forces. 
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Carne et al. (1992) proposed a technique referred to as the Sum of Weighted 

Acceleration Technique (SWAT) that estimates the input forces by summing the weight-

scaled measured accelerations. The weighting factors can be determined either from 

inverting the modal matrix or from the free-decay response of the structure. They 

successfully applied this technique to estimate the impact force applied by the nose of a 

weapon mockup to the weapon body. This technique suffers with a drawback that only 

sum of the input forces can be determined without any estimation of the individual loads. 

Kammer (1998) presented a method that utilizes a set of inverse system Markov 

parameters estimated from forward system Markov parameters using a linear predictive 

scheme. This computation is ill-conditioned and therefore, a regularization technique is 

employed to stabilize the computation. The inverse system Markov parameters can then 

be convolved with the measured response to estimate the input forces. This method has a 

limitation that the response sensors must be collocated with the input forces locations. 

Steltzner and Kammer (1999) suggested a technique for input force estimation 

using an Inverse Structural Filter (ISF) that processes the structural response data and 

returns an estimate of the input forces. They successfully applied the technique to 

estimate the docking forces between the space shuttle and the Russian MIR space station 

using numerically simulated response data and also acknowledged the instances in which 

this technique would fail. 

Liu et al. (2000) proposed a method to estimate the input forces with the 

assistance of a system identification algorithm. They applied the Kalman filter with a 

least-squares recursive estimator to update the estimation in real time. This method was 
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satisfactorily applied to predict input forces of a cantilever plate from response measured 

at two distinct points. 

Adams and Doyle (2002) extended the work by Busby and Trujillo (1987) and 

applied the dynamic programming approach to load estimation for complex structures. 

The approach is based on the recursive reformulation of the governing equations in 

conjunction with finite element method and applies to multiple isolated forces as well as 

distributed pressures and tractions. The method was demonstrated to reconstruct impact 

forces on a cylindrical shell and plate with a hole. 

Szwedowicz et al. (2002) as well as Mignolet and Choi (2003) have proposed 

genetic algorithm based approach for mounting strain gages on turbine blades to capture 

vibration modes. However, this approach is limited to the recovery of mode shapes and 

not the loads acting on the component. 

Ma et al. (2003) used an on-line recursive inverse method based on the Kalman 

Filter and a recursive least-squares algorithm to estimate the input forces. Finite element 

method is used to construct the state equations of the system. The method was validated 

with a cantilever beam subjected to a variety of loads. 

Hashemi and Kargarnovin (2007) formulated the force identification problem as 

an optimization problem where the objective function is calculated as the difference 

between analytical and measured responses and the decision variables are the location 

and magnitude of the applied force. Genetic Algorithm was applied to solve the 

optimization problem and the method effectively estimated the impact force acting on a 

simply supported beam. 
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Lu and Law (2007) suggested a method based on sensitivity of structural 

responses to estimate the input forces along with system parameters. The force and 

physical parameters are identified in a gradient-based model updating method based on 

dynamic response sensitivity. The method was validated with numerical simulation as 

well as experimental data from a simply supported steel beam. 

Wu and Loh (2007) formulated a method employing the Kalman filter that 

establishes a regression model between the residual innovation and the input forces, 

based on which, a recursive least-squares estimator was proposed to estimate the input 

forces. They applied this method to characterize the traffic loads induced by commercial 

vehicles on a bridge. 

Allen and Carne (2008) reviewed and compared two time domain techniques, ISF 

and SWAT, and revealed some of the deficiencies of the methods. They presented a 

number of extensions of the ISF technique which can greatly improve its performance. 

Inoue et al. (2001) presented a review of a variety of techniques that have been developed 

for the indirect estimation of magnitude of impact force along with its location and 

direction. 

 

2.3 Summary 

Though a lot of research has taken place in the field of load estimation from 

measured response of a structure, there are specific issues that need to be addressed with 

respect to computational efficiency, accuracy and practical applications. As discussed in 

Sec. 2.2.1, load estimation in frequency domain has some inherent drawbacks involved. 

The modal model method clearly has some advantages over the frequency domain 



18 

 

method, but it still suffers from the problem of ill-conditioning. Although a number of 

methods have been proposed to solve the load estimation problem in time domain, there 

is scope of further research to make the methods more suitable for real world 

applications.  

It is well established that the precision of load estimates is dictated by the 

locations of the sensors on the structure. The condition number of the inverse problem in 

load estimation can be improved and precise load estimates can be obtained through 

proper selection of the sensor placement and modes included in the analysis; still, the 

work done towards addressing this is very limited and few publications exist that focus 

on improving the condition of the inverse problem through the optimal placement of the 

sensors. This thesis is an attempt to address these identified shortcomings in the existing 

literature. 
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Chapter 3 - Theoretical Framework 
 

 

This chapter outlines the basic theories, equations and results that will be used 

frequently in the following chapters of this thesis. It is assumed throughout this work that 

the systems being dealt with are linear elastic in nature and the deformations are small 

enough so that the principle of superposition applies. 

 

3.1 Representations of Structural Dynamics of a System 

There exist a number of ways in which dynamics of a structural system can be 

represented. The inverse algorithms detailed in this work make use of some of these 

formulations. Presented next are some of the representations into which structural 

dynamics of a system can be cast. 

 

3.1.1 Second-Order ODE Representation 

The dynamic response of a physical structural system to applied loads can be 

expressed in the form of its true equations of motion as second order partial differential 

equations (PDE) called wave equations. Closed form solutions to wave equation exist for 

simple systems. When complex geometry and boundary conditions are encountered, 

analytical solutions to the wave equation become difficult to obtain. In such cases, the 

continuum of the structural system is spatially discretized into finite number of elements, 

following which, the continuous partial differential equations of motion for the structural 
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system can be written as linear second-order ordinary differential equations (ODE) in the 

matrix form as: [ܯ]ሼݔሷ ሽ(ݐ) + ሽ(ݐ)ሶݔሼ[ܥ] + ሽ(ݐ)ݔሼ[ܭ] = ሼ݂(ݐ)ሽ (3.1)

where [ܯ], [ܥ] and [ܭ] are the mass, damping and stiffness matrices respectively that are 

obtained herein from finite element method, ሼ(ݐ)ݔሽ is the displacement vector and ሼ݂(ݐ)ሽ 
is the load acting on the structure. 

 

3.1.2 Generalized Coordinates Representation 

The model of the system in physical coordinates given by Eqn. (3.1) can be 

transformed into generalized (modal) coordinates. To realize this transformation, 

consider the following free vibration equations of motion of an undamped system: [ܯ]ሼݔሷ ሽ(ݐ) + ሽ(ݐ)ݔሼ[ܭ] = ሼ0ሽ (3.2)

Assuming a harmonic solution of the form: ሼ(ݐ)ݔሽ = ሼ߶ሽ݊݅ݏ൫߱(ݐ + ଴)൯ (3.3)ݐ

where ሼ߶ሽ is a vector of constants, ߱ is the frequency (rad/s) and ݐ଴ is a constant, the 

eigenvalue problem associated with Eqn. (3.2) is given by: ([ܭ] − ߱ଶ[ܯ])ሼ߶ሽ = [0] (3.4)

The eigenvectors obtained from the solution of Eqn. (3.4) form the modal matrix [߶]. If 
the modes are normalized to the mass matrix, then: [߶]்[ܯ][߶] = ,[ܫ] [߶][ܭ]்[߶] = [߱ଶ] (3.5)

where [ܫ] is the identity matrix and: 
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[߱ଶ] = ێێۏ
ଵଶ߱ۍ 0 ⋯ 00 ߱ଶଶ ⋯ 0⋮ ⋮ ⋱ ⋮0 0 ⋯ ߱௡ଶۑۑے

ې
 

Next, using the following transformation: ሼ(ݐ)ݔሽ = [߶]ሼ(ݐ)ݍሽ (3.6)

where ሼ(ݐ)ݍሽ is the vector of Modal Participation Factors (MPF), Eqn. (3.1) can now be 

transformed into modal coordinates as: [ܯ][߶]ሼݍሷ ሽ(ݐ) + ሶݍሼ[߶][ܥ] ሽ(ݐ) + ሽ(ݐ)ݍሼ[߶][ܭ] = ሼ݂(ݐ)ሽ (3.7)

 

3.1.3 State-Space Representation 

Another way to characterize the input-output behavior of a structural system is by 

writing the second-order Eqn. (3.1) as a first-order equation or in continuous time-

invariant state-space form as: ሼݑሶ ሽ(ݐ) = ሽ(ݐ)ݑሼ[௖ܣ] + ሽ (3.8)(ݐ)ሼ݂[௖ܤ]

where ሼ(ݐ)ݑሽ is the vector of state variables, [ܣ௖] is the system matrix and [ܤ௖] is the 

input matrix for continuous case given by: 

[௖ܣ] = ൤ [0] [ܭ]ଵି[ܯ]−[ܫ]  ൨[ܥ]ଵି[ܯ]−
[௖ܤ] = ൤ ଵ൨ (3.9)ି[ܯ][0]

All physical phenomena fundamentally exist in continuous time. The 

experimentally measured response data, however, is available only at discrete time 

instants. This calls for the need to transform the continuous time-invariant state-space 
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model into a discrete time-invariant state-space model. The transformation takes the 

following form: ሼݑሽ௧௜ାଵ = ሽ௧௜ݑሼ[ௗܣ] + ሼ݂ሽ௧௜ (3.10)[ௗܤ]

where ti is the subscript over the discretized time and [ܣௗ] and [ܤௗ] are related to their 

continuous case counterparts as: [ܣௗ] = ݁[஺೎]∆௧ [ܤௗ] = [ௗܣ])ଵି[௖ܣ] − (3.11) [௖ܤ]([ܫ]

where Δt is the time increment. Equation (3.10) is the discrete linear time-invariant state-

space representation of the structural system. 

 

3.1.4 Markov Parameter Representation 

Consider the state-space model described by Eqn. (3.10); the corresponding 

system output is given by: ሼݕሽ௧௜ = ሽ௧௜ݑሼ[ௗܥ] + ሼ݂ሽ௧௜ (3.12)[ௗܦ]

where [ܥௗ] is the output matrix and [ܦௗ] is the feedforward matrix for discrete case. 

Given that unit impulse load is applied to the system at time ݐ = 0, i.e. ߜ଴ = 1, and 

assuming zero initial conditions, the impulse response at various time points is given by: 
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଴[ܪ] = ሽ଴ݑሼ[ௗܥ] + 0ߜ[ௗܦ] = ሽଵݑሼ [ௗܦ] = ሽ଴ݑሼ[ௗܣ] + 0ߜ[ௗܤ] = ଵ[ܪ] [ௗܤ] = ሽଵݑሼ[ௗܥ] + 1ߜ[ௗܦ] = ሽଶݑሼ [ௗܤ][ௗܥ] = ሽଵݑሼ[ௗܣ] + 1ߜ[ௗܤ] = ଶ[ܪ] [ௗܤ][ௗܣ] = ሽଶݑሼ[ௗܥ] + 2ߜ[ௗܦ] = ሽଷݑሼ [ௗܤ][ௗܣ][ௗܥ] = ሽଶݑሼ[ௗܣ] + 2ߜ[ௗܤ] = ଷ[ܪ] [ௗܤ]ଶ[ௗܣ] = ሽଷݑሼ[ௗܥ] + 3ߜ[ௗܦ] = ௜[ܪ] ⋮ [ௗܤ]ଶ[ௗܣ][ௗܥ] = [ௗܤ]௜ିଵ[ௗܣ][ௗܥ]  

(3.13)

Given the impulse response, the response at any time is given by the convolution of the 

input force with the impulse response as: 

ሼݕሽ௧௜ =෍[ܪ]௜௧௜
௜ୀ଴ ሼ݂ሽ௧௜ି௜ (3.14)

where the matrices [ܪ]௜ are called forward Markov parameters and summarized as: [ܪ]଴ = ௜[ܪ] [ௗܦ] = [ௗܤ]௜ିଵ[ௗܣ][ௗܥ] ݅ = 1, 2, 3… 
(3.15)

The forward Markov parameters represent the response of the discrete system to 

applied unit impulse and thus contain the dynamic properties of the system. They can 

either be obtained analytically from the discretized model of the structural system or 

experimentally by measuring the output of the system due to a known input, computing 

the corresponding frequency response function and then taking its inverse discrete 

Fourier transform. Equation (3.14) is the Markov parameter representation of the 

structural system. 
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3.2 Model Order Reduction 

Model order reduction methods (Paz, 1985), also referred to as condensation 

methods, aim at reducing the number of degrees of freedom in a model without changing 

its dynamic characteristics significantly. The technique of model order reduction will be 

used extensively in this thesis; therefore, it is imperative to discuss some of the existing 

model reduction methods before their application to dynamic load recovery is presented. 

 

3.2.1 Static Condensation 

This method, also known as Guyan reduction, was first proposed by Guyan 

(1965). The method ignores the dynamic components (both inertia and damping) of the 

model, hence the name static condensation method. In order to accomplish the reduction 

of the stiffness matrix [ܭ], the primary (master) degrees of freedom are arranged as the 

first r coordinates and the remaining eliminated or secondary (slave) degrees of freedom 

form the last s coordinates. Following this arrangement and ignoring damping, Eqn. (3.1) 

can be written using partitioning matrices as: 

൥[ܯ]௥௥ ⋮ ⋯௥௦[ܯ] ⋮ ௦௥[ܯ]⋯ ⋮ ௦௦൩[ܯ] ൝ሼݔሷ ሽ௦ൡ(ݐ)ሷݔሽ௥⋯ሼ(ݐ) + ൥[ܭ]௥௥ ⋮ ⋯௥௦[ܭ] ⋮ ௦௥[ܭ]⋯ ⋮ ௦௦൩[ܭ] ൝ሼ(ݐ)ݔሽ௥⋯ሼ(ݐ)ݔሽ௦ൡ = ൝ሼ݂(ݐ)ሽ௥⋯ሼ0ሽ ൡ (3.16)

where ሼ(ݐ)ݔሽ௥ is the displacement vector corresponding to the primary degrees of 

freedom and ሼ(ݐ)ݔሽ௦ is the displacement vector corresponding to the secondary degrees 

of freedom. To simplify the explanation, it is assumed without loss of generality that the 

external forces are zero at the secondary degrees of freedom. Using the second set of 

equations from Eqn. (3.16) and ignoring the inertia components, the eliminated or the 
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secondary degrees of freedom can be expressed in terms of the primary degrees of 

freedom as: ሼ(ݐ)ݔሽݏ = [ തܶ]ሼ(ݐ)ݔሽ(3.17) ݎ

where [ തܶ] is given by: [ തܶ] = (3.18) ݎሽ(ݐ)ݔ௦௥ሼ[ܭ]௦௦ିଵ[ܭ]−

Ignoring the inertia components in Eqn. (3.16) and substituting ሼ(ݐ)ݔሽ௦ from Eqn. (3.17) 

into Eqn. (3.16): 

൥[ܭ]௥௥ ⋮ ⋯௥௦[ܭ] ⋮ ௦௥[ܭ]⋯ ⋮ ௦௦൩[ܭ] ൥[ܫ]⋯[തܶ]൩ ሼ(ݐ)ݔሽݎ = ൝ሼ݂(ݐ)ሽ௥⋯ሼ0ሽ ൡ (3.19)

where [ܫ] is the identity matrix. Writing transformation matrix [ܶ]ீ௨௬ = ൥[ܫ]⋯[ തܶ]൩ and pre-

multiplying Eqn. (3.19) by [ܶ]ீ௨௬்  results in: [ܭ]ீ௨௬ሼ(ݐ)ݔሽݎ = ሼ݂(ݐ)ሽ௥ (3.20)

where the reduced stiffness matrix [ܭ]ீ௨௬ is expressed as a transformation of full model 

stiffness matrix [ܭ] as: [ܭ]ீ௨௬ = ܶݕݑܩ[ܶ] (3.21) ݕݑܩ[ܶ][ܭ]

In order to reduce the mass and damping matrices, it is assumed that the same 

static relationship between the primary and secondary degrees of freedom remains valid 

in the dynamic problem. The transformation given by Eqn. (3.21) can also be applied to 

reduce the mass matrix [ܯ] and the damping matrix [ܥ] as: [ܯ]ீ௨௬ = ܶݕݑܩ[ܶ] ௨௬ீ[ܥ] ݕݑܩ[ܶ][ܯ] = ܶݕݑܩ[ܶ] (3.22) ݕݑܩ[ܶ][ܥ]
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Though the static condensation method is very simple to apply, in general, it is 

not very accurate and introduces errors in the results when applied to dynamic problems. 

The magnitude of the errors depends on the relative number of degrees of freedom 

eliminated as well as on the specific choice of these degrees of freedom. 

 

3.2.2 Improved Reduced System (IRS) 

O'Callahan (1989) proposed a method for dynamic model reduction known as the 

Improved Reduced System (IRS) method. In this modified approach, an extra term is 

added to the static condensation transformation [ܶ]ீ௨௬ to account for the inertia forces. 

The modified transformation matrix [ܶ]ூோௌ is given by: [ܶ]ூோௌ = ݕݑܩ[ܶ] + ௨௬ିଵீ[ܯ]ݕݑܩ[ܶ][ܯ][ܵ] ௨௬ (3.23)ீ[ܭ]

where [ܵ] = ൤[0] [0][0]  .௦௦ିଵ൨[ܭ]
The reduced stiffness matrix [ܭ]ூோௌ, reduced mass matrix [ܯ]ூோௌ and reduced damping 

matrix [ܥ]ூோௌ  are obtained by: [ܭ]ܴܵܫ = ்ܴܵܫ[ܶ] ܴܵܫ[ܯ] ூோௌ[ܶ][ܭ] = ்ܴܵܫ[ܶ] ܴܵܫ[ܥ] ூோௌ[ܶ][ܯ] = ்ܴܵܫ[ܶ]  ூோௌ[ܶ][ܥ]

(3.24)

Friswell et al. (1995) extended the IRS method by using the transformation from 

dynamic reduction instead of static reduction as the basic transformation. The dynamic 

IRS transformation matrix [ܶ]஽ூோௌ at a given frequency ߗ is given by: [ܶ]஽ூோௌ = [ܶ]ௗ + [ܵ]ௗ[ܯ][ܶ]ௗ[ܯ]ீ௨௬ିଵ ൫[ܭ]ீ௨௬ − ௨௬൯ (3.25)ீ[ܯ]ଶߗ

where [ܵ]ௗ = ൤[0] [0][0] ௦௦[ܭ]) −  ௦௦)ିଵ൨ and[ܯ]ଶߗ
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[ܶ]ௗ = ൤ ௦௦[ܭ])−[ܫ] − ௦௥[ܭ])௦௦)ିଵ[ܯ]ଶߗ −  .௦௥)൨[ܯ]ଶߗ
The reduced stiffness, mass and damping matrices are then given by expressions similar 

to Eqn. (3.24). 

The transformation mentioned in Eqn. (3.23) relies on the reduced mass and 

stiffness matrices obtained from the static reduction. Once the transformation is 

computed, improved estimates of the reduced matrices are available from Eqn. (3.24). 

These improved estimates can be substituted back in Eqn. (3.23) to give a more accurate 

transformation matrix. For subsequent iterations, the transformation matrix can be 

obtained by: [ܶ]ூோௌ,௜ାଵ = ݕݑܩ[ܶ] + ூோௌ,௜ିଵ[ܯ]ூோௌ,௜[ܶ][ܯ][ܵ] ூோௌ,௜ (3.26)[ܭ]

where i denotes the ith iteration. The transformation [ܶ]ூோௌ,௜ is the current IRS 

transformation and [ܯ]ூோௌ,௜ and [ܭ]ூோௌ,௜ are the associated reduced mass and stiffness 

matrices given by Eqn. (3.24). A new transformation is then obtained from Eqn. (3.26) 

which then becomes the current transformation for the next iteration. The procedure 

converges to produce the reduced stiffness, mass and damping matrices. This method is 

known as the iterated IRS technique. 

 

3.2.3 Component Mode Synthesis (CMS) 

This dynamic condensation method was first proposed by Craig and Bampton 

(1968); therefore, it is also known as Craig-Bampton model order reduction method. This 

method is especially useful when substructuring is used, where the degrees of freedom of 

each substructure can be divided into two sets — boundary degrees of freedom b and 

internal degrees of freedom i. Boundary degrees of freedom of a substructure are those 
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which are common with other substructures, while internal degrees of freedom are those 

belonging only to the relevant substructure. In order to accomplish model reduction, 

boundary degrees of freedom together with some of the modal coordinates of the 

substructure constrained at its boundary are considered as primary or retained degrees of 

freedom. 

Ignoring damping, Eqn. (3.1) can be written using partitioning matrices as: 

൥[ܯ]௕௕ ⋮ ⋯௕௜[ܯ] ⋮ ௜௕[ܯ]⋯ ⋮ ௜௜[ܯ] ൩ ൝ሼݔሷ(ݐ)ሽ௕⋯ሼݔሷ(ݐ)ሽ௜ ൡ + ൥[ܭ]௕௕ ⋮ ⋯௕௜[ܭ] ⋮ ௜௕[ܭ]⋯ ⋮ ௜௜[ܭ] ൩ ൝ሼ(ݐ)ݔሽ௕⋯ሼ(ݐ)ݔሽ௜ ൡ = ൝ሼ݂(ݐ)ሽ௕⋯ሼ݂(ݐ)ሽ௜ ൡ (3.27)

where ሼ(ݐ)ݔሽ௜ is the displacement vector corresponding to the internal degrees of freedom 

and ሼ(ݐ)ݔሽ௕ is the displacement vector corresponding to the boundary degrees of 

freedom. It is proposed that ሼ(ݐ)ݔሽ௜ can be assumed to be equal to the sum of static 

modes ሼ(ݐ)ݔሽ௜௦, i.e., the deformation due to ሼ(ݐ)ݔሽ௕ when no force acts on the 

substructure, and the constrained normal modes ሼ(ݐ)ݔሽ௜௡, i.e., the natural modes of free 

vibration of the substructure when the boundary displacement vector ሼ(ݐ)ݔሽ௕ is set to 

zero. The static modes ሼ(ݐ)ݔሽ௜௦ can be obtained, assuming zero inertia effects and ሼ݂(ݐ)ሽ௜ = ሼ0ሽ, from the second set of equations in Eqn. (3.27) as: ሼ(ݐ)ݔሽ݅ݏ = ሽ௕ (3.28)(ݐ)ݔ௜௕ሼ[ܭ]௜௜ିଵ[ܭ]−

The constrained normal modes ሼ(ݐ)ݔሽ௜௡ can be computed by solving the eigenvalue 

problem −߱ଶ[ܯ]௜௜ + ௜௜[ܭ] = ሼ0ሽ. Solution of the eigenvalue problem provides the 

constrained modal matrix [߶]௖, whereby, the constrained normal modes ሼ(ݐ)ݔሽ௜௡ are 

given by: ሼ(ݐ)ݔሽ݅݊ = [߶]௖ሼ(ݐ)ݍሽ௣ (3.29)
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where p is the number of Craig-Bampton constrained normal modes. The displacement 

vector ሼ(ݐ)ݔሽ can then be expressed as: 

			ሼ(ݐ)ݔሽ = ൜ሼ(ݐ)ݔሽ௕ሼ(ݐ)ݔሽ௜ ൠ = ቊ ሼ(ݐ)ݔሽ௕−[ܭ]௜௜ିଵ[ܭ]௜௕ሼ(ݐ)ݔሽ௕ + [߶]௖ሼ(ݐ)ݍሽ௣ቋ = ܤܥ[߰] ൜ሼ(ݐ)ݔሽ௕ሼ(ݐ)ݍሽ௣ൠ (3.30)

where [߰]஼஻ is the transformation matrix that transforms the reduced coordinates to the 

full model coordinates given as: 

ܤܥ[߰] = ൤ [ܫ] ௜௕[ܭ]௜௜ିଵ[ܭ]−[0] [߶]௖൨ (3.31)

Thus the reduced stiffness matrix [ܭ]஼஻, reduced mass matrix [ܯ]஼஻ and reduced 

damping matrix [ܥ]஼஻  can be expressed as a transformation of the respective full model 

matrices as: [ܭ]஼஻ = [߰]஼஻் ஼஻[ܯ] ܤܥ[߰][ܭ] = [߰]஼஻் ஼஻[ܥ] ܤܥ[߰][ܯ] = [߰]஼஻்  ܤܥ[߰][ܥ]

(3.32)

As stated previously, static condensation produces reasonable results only at 

lower frequencies and tends to be inaccurate when applied to higher frequency range 

dynamic problems, thus, leading to errors in the analysis. Among the more accurate 

condensation techniques are dynamic reduction, component mode synthesis (CMS), 

improved reduced system (IRS) etc. that have been proposed to improve upon the Guyan 

condensation. Each of them has certain advantages and disadvantages over the others. 

Dynamic reduction (Qu, 2004) requires a guess on initial frequency which may not be 

trivial. It has been observed by Koutsovasilis and Beitelschmidt (2008) that CMS 

produces better results than dynamic reduction at higher frequencies. IRS is 

computationally intense due to the inherent iterations involved. CMS is used in this work 
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as it provides a good balance between accuracy and computational expense. The choice 

between fixed interface CMS and free interface CMS is subtle. Fixed interface CMS, also 

known as Craig-Bampton model reduction, is selected to be used in the remainder of this 

work as it has better convergence properties. 

 

3.3 Error Quantification 

A possible means to quantify the error in the recovered loads with respect to the 

applied loads is presented in this section. The percent root mean square (rms) error	ߝ%௥௠௦ in the recovered loads with respect to the actual applied loads can be calculated as: 

௥௠௦%ߝ = ۇۉ
ට∑൫ ௔݂௣௣ − ௥݂௘௖൯ଶඥ∑ ௔݂௣௣ଶ × (3.33) %ۊی100

where fapp is the applied load and frec is the reconstructed load. The above equation can be 

used to quantify errors in the load estimates. 
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Chapter 4 - Static and Quasi-Static Load 
Identification from Strain Measurements 

 

 

Measurement of strains at certain locations on a structure by strain gages and 

using these measurements to recover the loads acting on the structure by inverse analysis 

has been used extensively over the years. Strain gages provide one of the most 

inexpensive, robust and reliable methods of measuring the system responses to the 

applied loads.  It is well established (Hillary and Ewins, 1984) that the strain related 

models give more accurate results than the acceleration related models because the strain 

responses are more influenced by the higher modes at low frequencies and therefore, they 

capture the effect of higher modes better than the acceleration responses. An in depth 

investigation of the existing static load identification technique using strain 

measurements is the subject of this chapter. Sec. 4.1 introduces the technique to estimate 

the static loads applied to a structure. Sec. 4.2 builds upon the concepts presented in Sec. 

4.1 to identify a set of quasi-static loads acting on a structure. By means of static load 

estimation, this chapter also marks the introduction of Candidate set and D-optimal 

design algorithm. These developments will be used extensively in future chapters of this 

thesis when the subject of identification of dynamic loads acting on a structure will be 

taken up. 

 

4.1 Static Load Estimation 

The static load estimation problem can be written as a system of linear equations 

as: 
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ሼߝሽ = ሼ݂ሽ (4.1)[ܣ]

where ሼߝሽ is a (݃ × 1) vector of strains measured at g distinct locations on the structure, 

is a ൫݃ [ܣ]            × ݊௙൯ sensitivity matrix, aij represents the strain at location i due to a 

unit load applied at location j, 

           ሼ݂ሽ is an ൫݊௙ × 1൯ vector of ݊௙ applied forces on the structure. 

Equation (4.1) simply states that the strain at any location on the structure can be written 

as a linear combination of strains produced at that location by each load applied 

individually. It applies to linear elastic problems and assumes that the deformations are 

small enough such that the principle of superposition holds. Assuming that [ܣ] is known 

and ሼߝሽ is measured, the least-squares estimate of the unknown forces ሼ݂ሽ is given by: ሼ݂ሽ = ሽ (4.2)ߝሼ்[ܣ]ଵି([ܣ]்[ܣ])

In practice, the strain vector is prone to measurement errors. If the errors in strain 

measurements are independently and identically distributed and the standard deviation of 

each of them is σ, then the variance-covariance matrix for the load estimates (Masroor 

and Zachary, 1991) can be obtained by: ݎܽݒ(ሼ݂ሽ) = ଵ (4.3)ି([ܣ]்[ܣ])ଶߪ

The matrix ([ܣ]்[ܣ])ିଵ is known as the sensitivity of [ܣ]. For a given variance in 

strain measurements ߪଶ, minimization of the sensitivity of [ܣ] leads to an increased 

precision in the load estimates. The sensitivity of [ܣ] is a function of the number, 

locations and angular orientations of the strain gages mounted on the structure. Therefore, 

optimal selection of the locations, angular orientations and the number of strain gages, so 

as to minimize the sensitivity of [ܣ], can lead to the minimization of the variation in the 

load estimates. A solution procedure exists that can be used to provide the most precise 
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estimates of the applied loads by the optimal selection of the locations, angular 

orientations and the number of strain gages on the structure. This procedure can be 

divided into three steps — (i) generation of the candidate set, (ii) determination of the 

number of strain gages to be used, and (iii) determination of the D-optimal design. These 

steps are discussed in detail in the following subsections. 

 

4.1.1 Generation of the Candidate Set 

Typically, there is a large number of locations on the surface of a structure on 

which strain gages can be mounted. These locations exclude the inaccessible areas such 

as the regions of load application. Each combination of strain gage location and angular 

orientation is termed a candidate point. Each candidate point provides a potential row for 

inclusion in the matrix [ܣ]. All possible combinations of the strain gage locations and the 

orientation angles constitute a set, called the candidate set. The matrix [ܣ] is such a 

subset of the candidate set that provides the most precise estimates of the applied loads. 

The number of rows g of the matrix [ܣ] represents the number of strain gages mounted 

on the structure and the number of columns ݊௙ represents the number of applied loads. 

The elements in each row of the matrix [ܣ] represent the response of a strain gage at a 

particular location and angular orientation to each individual unit load. 

The candidate set can be generated analytically for a structure of any complexity 

by utilizing the finite element model of the structure. There are some practical 

considerations that must be followed before generating the candidate set. Since the strain 

gages are to be mounted on the surface of the structure, the finite element model should 

be prepared such that surface strain information is available in all the regions being 
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considered as possible locations for the strain gages.  The surface strain information can 

easily be obtained if shell elements are used to model the structure. If shell elements are 

not used, but say 3-D solid elements are used to model the structure, then the solid 

elements can be coated with shell elements to obtain the surface strain information. The 

meshing is done such that the element size is compatible with the physical dimensions of 

the strain gages to be used.  

From a numerical standpoint, the elemental strain information is preferred over 

the nodal strain information; the reasons for this can be understood as follows. Since a 

node on the surface of the model can be a common node for up to four adjacent elements, 

the nodal strain is an average of the four elemental strains. By using the elemental strains, 

the errors due to the strain averaging are avoided. Moreover, the optimum gage 

orientation angle is measured with respect to the element coordinate system located at the 

centroid of the element. This implies that the gage orientation angle is determined 

uniquely if the elemental strain information is used; whereas for the nodal strain case, 

since the four adjacent elements can have their local coordinate system in four different 

orientations, the determination of the gage orientation angle becomes much more 

complicated. For these two reasons, it is recommended that elemental strain information 

be used for all the calculations. Further, the centroids of the shell elements are considered 

as the locations for mounting the strain gages. 

Next, unit loads are applied to the finite element model, one at a time, at the 

locations corresponding to the unknown loads to be recovered. For each applied unit 

load, strain tensors are obtained at all the elements suitable for mounting strain gages. 

Since the strain gage sensitivity varies as the gage orientation angle changes, the 
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computed strain tensors need to be transformed to determine strain values for a number of 

different gage orientations. The strain tensors can be transformed from the ݖݕݔ 

coordinate system to any ݖ′ݕ′ݔ′ coordinate system as (Budynas, 1999): [ߝ]௫ᇱ௬ᇱ௭ᇱ = ௫௬௭[ܶ]் (4.4)[ߝ][ܶ]

where [ܶ] denotes the transformation matrix that contains the direction cosines for the ݖ′ݕ′ݔ′ system with respect to the ݖݕݔ system. For the shell elements used herein, the 

element coordinate system is oriented such that the element z-axis is always normal to the 

plane of the element. Therefore, the strain transformations involve rotation about the z-

axis with the transformation matrix given as: 

[ܶ] = ൥ cos ߠ sin ߠ 0− sin ߠ cos ߠ 00 0 1൩ (4.5)

By allowing ߠ to vary from 0 to 170 degree in a pre-selected increment, say 10 degree, 

the strain tensors for all the relevant elements at the intermediate gage locations are 

obtained for each applied unit load. It is to be noted that since a strain gage is mostly 

sensitive in its axial direction, the candidate set consists of all the ݔ′-direction strain 

components, i.e., the first element of all the transformed strain tensors. 

 

4.1.2 Determination of Number of Strain Gages 

As more strain gages are used, the additional information on the strains helps to 

obtain a more precise estimate of the applied loads, but practical and financial constraints 

place limitations on the number of strain gages to be used. If the number of forces to be 

estimated is ݊௙, then the number of strain gages g must satisfy the criterion ݃ ≥ ݊௙. If ߝ௘௜ 
denotes the experimentally measured strain from gage i and ߝ௣௜ denotes the predicted 
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strain for gage i (using Eqn. (4.1)), then the estimation error for gage i is given by ݁௜ = ݃ ௣௜ and for an overconstrained system of linear equations withߝ௘௜ିߝ − ݊௙ degrees 

of freedom, the variance in strain measurement errors is given by (Chatterjee and Hadi, 

1988): 

ଶߪ = ∑ ݁௜ଶ௚௜ୀଵ݃ − ݂݊  (4.6)

Given the maximum allowable variance in strain measurement errors that is acceptable, 

the number of required strain gages can be calculated using Eqn. (4.6). 

 

4.1.3 Determination of the D-optimal Design 

For a given number of strain gages g, the candidate set is searched to determine g 

gage locations and angular orientations that provide the least variance in the load 

estimates. If the candidate points to be included in matrix [ܣ] such that the sensitivity of [ܣ] is minimized are determined by trial and error, the set so obtained may not be the 

optimum set and would lead to a higher variability in the estimated loads. Also, it would 

be too time consuming to take into account all the possible combinations of gage 

placements to arrive at the set that would produce the best estimates of the forces. 

A variety of criteria have been studied in the statistical literature (Kammer, 1991; 

Atkinson and Donev, 1992) to minimize the sensitivity of [ܣ]. The criterion of most 

relevance to the current application involves the maximization of |[ܣ]்[ܣ]|, the 

determinant of [ܣ]்[ܣ]. Design that maximizes |[ܣ]்[ܣ]| is called D-optimal design 

(Mitchell, 1974), where D denotes determinant. The D-optimality criterion is used to 
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select the best candidate points from the candidate set which will provide the most 

precise load estimates. 

In order to construct a g-point D-optimal design, the g strain gage locations and 

angular orientations that maximize |[ܣ]்[ܣ]| must be selected from the candidate set. To 

select the g-point D-optimal design, algorithms based on the principles of optimal 

augmentation and reduction of an existing design can be implemented. With optimal 

augmentation, the candidate point with maximum prediction variance is added as a row to 

the matrix. Similarly, optimal reduction of the augmented design is achieved by 

eliminating the candidate point or row of the matrix having minimum prediction 

variance. This process of augmenting and deleting candidate points in an optimal fashion 

continues until no further improvement in the objective function can be made. Such 

procedures are called exchange algorithms; two such types of procedures are the 

sequential exchange algorithm (Galil and Keifer, 1980) and the k-exchange algorithm 

(Johnson and Nachtsheim, 1983). 

The basic idea behind the sequential exchange algorithm is as follows. Given the 

candidate set, the number of strain gages g and the number of applied loads ݊௙, the first 

step is to randomly select g distinct candidate points from the candidate set to initialize 

the ൫݃ × ݊௙൯ matrix [ܣ]. Out of the remaining candidate set, a candidate point is then 

selected and the corresponding row is augmented to the matrix [ܣ] to form matrix [ܣ]ା 

such that |[ܣ]ା்[ܣ]ା| is maximum. Next, out of the g+1 rows in matrix [ܣ]ା, a row is 

deleted to arrive at matrix [ܣ]ି such that |[ܣ]ି்[ܣ]ି| is maximum. This process of 

augmenting and deleting rows continues until there is no further improvement in the 

value of |[ܣ]்[ܣ]|. The final [ܣ] so obtained is the D-optimal design and provides the 
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information on the optimum strain gage locations and angular orientations. A flowchart 

depicting this algorithm is shown in Fig. 4.1. 

As the candidate set gets bigger and bigger, increasingly large number of 

determinants and matrix inverses need to be calculated. A very naïve way to compute the 

determinant is to obtain ܯ =  This .|ܯ| and then calculate the determinant [ܣ]்[ܣ]

approach of determinant calculation is computationally very expensive. An alternate 

formula for computing the determinant |ܯା| = |ାܯ| :is [ܣ] is augmented to the matrix ்ݕ when a row |ܯ| ା| from that of[ܣ]ା்[ܣ]| = (4.7) (ݕଵିܯ்ݕ[+]1)|ܯ|

where [+] denotes addition and is replaced by subtraction in the case of deleting a row ்ݕ from [ܣ]ା. In order to be able to use Eqn. (4.7), ିܯଵ can be maintained and updated 

as the row ்ݕ is augmented to the matrix [ܣ] by: 

ା|ିଵܯ| = [−]ଵି|ܯ| (ݕଵିܯ்ݕ[+]1)்(ݕଵିܯ)(ݕଵିܯ)  (4.8)

where [−] denotes subtraction and is replaced by addition in the case of deleting a row ்ݕ from [ܣ]ା. 

Once the optimum strain gage locations and angular orientations are determined, 

strain gages are mounted at those locations and angular orientations on the structure 

before the application of the unknown loads. The strains ሼߝሽ thus measured, together with 

the optimum [ܣ] computed, are then used to estimate the unknown forces ሼ݂ሽ in 

accordance with Eqn. (4.2). 
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4.1.4 Example: Plate with a Hole 

A numerical example, the classical problem of a plate with a hole, is chosen to 

illustrate how the static load estimation method is applied in practice. The problem is to 

estimate two uniform pressure loads acting simultaneously on two orthogonal faces of a 

rectangular flat plate with a hole at its center. The plate model along with the locations 

and directions of the applied loads is shown in Fig. 4.2. The plate is of uniform thickness 

and composed of isotropic material. 

Taking advantage of the problem symmetry, a finite element model of a quarter of 

the plate was developed in ANSYS and meshed with SOLID45 element type which has 3 

degrees of freedom per node. Considering the top face of the plate as the region of 

potential strain gage placements, it was meshed with SHELL41 element type to facilitate 

evaluation of the surface strains. SHELL41 was selected as it offers 3 degrees of freedom 

per node and therefore has better compatibility with SOLID45 as compared to any other 

shell element type. The shell elements were given near zero values for the modulus of 

elasticity and the thickness so that they do not change the elastic characteristics of the 

problem. The left face of the plate was constrained in the x-direction and the lower face 

of the plate was constrained in the y-direction. Next, loads of unit magnitudes were 

applied to the right face in the x-direction and the upper face in the y-direction, one at a 

time. The mesh, boundary conditions and the two load cases are shown in Fig. 4.3. Strain 

tensors were obtained at the centroid of each shell element in the element coordinate 

system for each load case.  

All further processing of the strain data and calculations were performed in 

MATLAB. To generate the candidate set, the strain tensors were transformed using Eqn. 



40 

 

(4.4) at each shell element centroid for angular orientations ranging from 0 to 170 degree 

in 10 degree increments. Since the number of loads to be estimated was 2, the number of 

strain gages to be used must be ≥ 2; for illustration purposes, a total of 4 gages were used. 

The D-optimality criterion, as discussed in Sec. 4.1.3, was used to find the optimum gage 

locations and angular orientations for the given number of strain gages. The optimum 

gage locations and angular orientations are listed in Table 4.1. The shell element numbers 

in the region of the optimum gage locations are shown in Fig. 4.4 and the elements 

corresponding to the optimum gage locations are depicted in Fig. 4.5. It is to be noted 

that the optimum angular orientations of the strain gages are with respect to the x-axes of 

the element coordinate systems. The element coordinate systems for the shell elements in 

the region of interest are depicted in Fig. 4.6. 

Next, loads with arbitrary values of 257 and 364 were simultaneously applied to 

the finite element model and strains were calculated corresponding to the optimum strain 

gage locations and angular orientations listed in Table 4.1. Input loads were then 

estimated using Eqn. 4.2; the recovered loads were found equal to the applied loads. 

 

4.2 Quasi-Static Load Estimation 

The recovery of static loads leads to a way where quasi-static loads acting on a 

structure can be estimated. Quasi-static loading refers to time varying loading which is 

slow enough such that the inertial effects are negligible, i.e., response to the loads applied 

at a certain instant of time is independent of the loading history at all the earlier instants 

of time. Although time is associated with quasi-static analysis, it is a process of 

conducting an independent static analysis at each instant of time. The steps involved in 
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estimating the quasi-static loads are parallel to that of the estimation of static loads and 

are explained with the help of a numerical example of a bent cantilever beam. 

 

4.2.1 Example: Bent Cantilevered Beam 

The problem at hand is to recover three mutually perpendicular quasi-static loads 

acting at a point on a bent cantilevered beam. The beam model along with the applied 

load directions is shown in Fig. 4.7. A finite element model of the beam was developed in 

ANSYS using SOLID45 element type to mesh it. Considering the top and the bottom 

face of the beam as the regions of potential strain gage location sites, they were meshed 

with SHELL41 element type (for reasons mentioned in Sec. 4.1.4) so that the surface 

strain information can be obtained. The shell elements were given near zero values for 

the modulus of elasticity and the thickness so that they do not change the elastic 

characteristics of the model. The left end of the beam was fixed in all degrees of freedom. 

Next, three unit loads, each of magnitude 1, were applied to a corner node in the x, y and 

z-directions, one at a time. Figure 4.8 shows the mesh, boundary conditions and the three 

load cases. Strain tensors were obtained at the centroid of each shell element in the 

element coordinate system for each load case.  

The candidate set was generated as discussed in Sec. 4.1.1 using the obtained 

strain tensors, in line with the procedure followed in Sec. 4.1.4.  Since the number of 

loads to be estimated was 3, the number of strain gages to be used was chosen to be 4. 

The candidate set was subjected to the optimization algorithm presented in Sec. 4.1.3 to 

arrive at the D-optimal design that provides the information on the optimum strain gage 

locations and angular orientations on the structure. The optimum gage locations and 
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angular orientations with respect to the x-axes of the shell element coordinate systems are 

listed in Table 4.2. The shell elements corresponding to the optimum gage locations and 

their coordinate systems are depicted in Fig. 4.9. 

Next, three time varying loads were simultaneously applied to the beam model. 

The time history of the loads is shown in Fig. 4.10 and their description is as follows: 

• Sine wave of amplitude 5 and frequency 0.04 Hz in the x-direction. 

• Random wave in the range [-10, 10] in the y-direction. 

• Square wave of amplitude 5 and frequency 0.04 Hz in the z-direction. 

At different instants of time, strains were calculated corresponding to the optimum strain 

gage locations and angular orientations listed in Table 4.2. Each time instant constitutes 

an independent static analysis. Applied loads were then recovered as a function of time 

by processing the strain tensors generated at different instants of time using Eqn. (4.2). 

The applied and recovered loads are plotted in Figs. 4.11 to 4.13 and the 95% confidence 

bounds on the load estimates (Neter et al., 1990) are plotted in Figs. 4.14 to 4.16. It can 

be concluded from the plots that there was accurate recovery of the applied quasi-static 

loads. 
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Table 4.1 Optimum Gage Locations and Angular Orientations 
 

Element Number Angular Orientation (degree) 

688 90 

689 90 

937 0 

947 0 

 
 
 
 
 
 

Table 4.2 Optimum Gage Locations and Angular Orientations 
 

Element Number Angular Orientation (Degree) 

335 0 

451 0 

837 80 

901 20 
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Figure 4.1 Flowchart of the Sequential Exchange Algorithm 

Optimal A = A 

YES

NO

ܣ =  ିܣ

Is ratio = 1 

Form ିܣby deleting a row from the matrix A 
that yields the maximum value of |ିܣ்ିܣ| 

ratio = ห஺ష೅஺షหห஺೅஺ห  

Initialize the number of strain gages g 

Form ܣାby augmenting a distinct row to the matrix A from the 
candidate set that yields the maximum value of |ܣା்ܣା| 

Initialize the matrix A by randomly selecting g distinct 
candidate points from the candidate set. Each candidate 

point provides a unique row for the matrix A 
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Figure 4.2 Plate Model with Applied Loads 

 

 
Figure 4.3 Finite Element Model of Plate 
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Figure 4.4 Numbered Shell Elements 

 

 
Figure 4.5 Shell Elements Corresponding to Optimum Gage Locations 
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Figure 4.6 Shell Element Coordinate Systems 

 

 
 

 

 
Figure 4.7 Bent Cantilever Beam with Applied Loads 
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Figure 4.8 Finite Element Model of Bent Beam 

 

 
Figure 4.9 Shell Elements Corresponding to Optimum Gage Locations 
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Figure 4.10 Time History of Applied Loads 

 

 
Figure 4.11 Recovery of Sine Wave Loading 
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Figure 4.12 Recovery of Random Wave Loading 

 

 
Figure 4.13 Recovery of Square Wave Loading 
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Figure 4.14 95% Confidence Bounds on Recovered Sine Wave Load 

 

 
Figure 4.15 95% Confidence Bounds on Recovered Random Wave Load 
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Figure 4.16 95% Confidence Bounds on Recovered Square Wave Load
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Chapter 5 - Dynamic Load Identification from 
Strain Measurements 

 

 

This chapter presents a time domain technique for estimating dynamic loads 

acting on a structure from strain time response measured at a finite number of optimally 

placed strain gages on the structure. The technique utilizes model reduction to obtain 

precise load estimates. The structure essentially acts as its own load transducer. The 

approach is based on the fact that the strain response of an elastic vibrating system can be 

expressed as a linear superposition of its strain modes. Since the strain modes as well as 

the normal displacement modes are intrinsic dynamic characteristics of a system, the 

dynamic loads exciting a structure are estimated by measuring induced strain fields.  

As already discussed in the previous chapter, the accuracy of estimated loads is 

dependent on the number and placement of gages on the instrumented structure. It will be 

further shown in this chapter that the accuracy of the estimated loads also depends on the 

number of retained strain modes obtained from strain modal analysis. A solution 

procedure based on the construction of a D-optimal design is implemented to determine 

the optimum locations and orientations of strain gages that will provide the most precise 

load estimates. The concepts of D-optimal design algorithm and candidate set have 

already been presented in the previous chapter with the help of static load estimation. A 

novel approach is proposed in this chapter which makes use of model reduction 

technique, resulting in significant improvement in accuracy in the dynamic load 

estimation. Validation of the proposed approach through experimental as well as 
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numerical example problems is also presented which reveals the effectiveness and 

robustness of the technique, even in the presence of errors (noise) in strain measurements. 

 

5.1 Modal Analysis and Strain Modes 

Consider the spatially discretized linear second-order ordinary differential 

equation (ODE) of an n degrees of freedom (DOFs) structural system in the matrix form 

given by Eqn. (3.1). For simple systems, [ܯ], [ܥ] and [ܭ] may be obtained by writing the 

system equations of motion; for complex systems, they can be generated from the finite 

element model of the structure. With the availability of system response ሼ(ݐ)ݔሽ to 

dynamic loads ሼ݂(ݐ)ሽ, which as shown later will be constructed using modal analysis and 

strain measurements, ሼݔሶ(ݐ)ሽ and ሼݔሷ(ݐ)ሽ can be obtained upon successive numerical 

differentiation of ሼ(ݐ)ݔሽ. Given all the terms on the left-hand-side in Eqn. (3.1), the 

dynamic loads ሼ݂(ݐ)ሽ acting on the structure can be estimated. 

For structural continuum, the displacements ሼ(ݐ)ݔሽ at any point in a deformed 

structure are related to the strains ሼ(ݐ)ߝሽ by a linear differential operator D (Bernasconi 

and Ewins, 1989) as: ሼ(ݐ)ߝሽ = ሽ (5.1)(ݐ)ݔሼܦ

which leads to: ሼ(ݐ)ߝሽ = [߰ఌ]ሼ(ݐ)ݍሽ (5.2)

where [߰ఌ] denotes the modal strain matrix containing the strain modes. Equation (5.2) 

simply states that at any particular time, the strain response at any point on the structure 

can be expressed as a linear combination of the modal strains. It applies to linear elastic 

problems and assumes that the deformations are small enough such that the principle of 
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superposition holds. The modal strains are an intrinsic property of a structure’s dynamic 

behavior, as are the displacement mode shapes. While both strain and displacement 

modes are intrinsic dynamic characteristics of a structure and correspond to each other, it 

has been noted by Yam et al. (1996) that for sensitivity reasons, strain modal analysis is 

more useful in dynamic design of structures with features such as holes, grooves and 

cracks. 

Since, in real world applications, seldom is the case when all the modes in [߰ఌ] 
are available, one generally has a reduced number of modes m available either from 

experimental modal strain analysis or finite element modal strain analysis, leading to 

truncated ൣ ෨߰ఌ൧ retaining only m modes. Equation (5.2) then gets approximated as:  ሼ(ݐ)ߝሽ = ൣ ෨߰ఌ൧ሼݍ෤(ݐ)ሽ (5.3)

where ሼݍ෤(ݐ)ሽ is the mode participation factor for the retained modes. As will be made 

clear in due course of this chapter, it is desired to determine ሼݍ෤(ݐ)ሽ at this point. 

Assuming that ൣ ෨߰ఌ൧ is known and ሼ(ݐ)ߝሽ is measured, the least-squares estimate of ሼݍ෤(ݐ)ሽ 
is given by: 

ሼݍ෤(ݐ)ሽ = ቀൣ ෨߰ఌ൧்ൣ ෨߰ఌ൧ቁିଵ ൣ ෨߰ఌ൧்ሼ(ݐ)ߝሽ (5.4)

While the above development is presented for a discretized system, it is equally 

applicable to continuous systems spatially discretized using a finite element based 

approach. There are a number of problems associated with estimating ሼݍ෤(ݐ)ሽ, to name a 

few: 

• Each element in the vector ሼ(ݐ)ߝሽ corresponds to strain measured at a unique 

location out of the infinitely many possible locations on the structure. It is not 
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feasible to place strain gages at all the possible locations on the structure to obtain ሼ(ݐ)ߝሽ in full. 

• Some means needs to be devised that allows for estimating ሼݍ෤(ݐ)ሽ by taking strain 

measurements at few finite number of locations on the structure. 

• Since the input force locations may not be available to mount the strain gages, the 

measurements cannot be taken at or around these locations. 

• Since there can be a large number of locations on the structure where the gages 

can potentially be mounted, a natural question arises: if a finite number of gages 

is to be used, where all should they be located on the structure such that precise 

load estimates are obtained. 

The following sections outline procedures that deal with the above mentioned problems. 

 

5.2 Candidate Set 

First of all, the number of strain gages g to be used is identified based upon the 

methodology discussed in Sec. 4.1.2., i.e. ݃ ≥ ݉. Next, as described in Sec. 4.1.1, the 

candidate set is generated analytically by utilizing the finite element model of the 

structure. In this respect, a finite element model of the structure is developed following 

the recommendations reported in Sec. 4.1.1 and a modal analysis of the model is 

performed. The maximum number of modes obtainable from a finite element model is 

equal to the total number of degrees of freedom of the model, which can be a large 

number. Decision needs to be made on the number of modes to be retained to 

approximate the response of the structure; these are the modes whose MPF will be 

estimated at a later stage from the structure response to applied loads. The fraction of 
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effective modal mass captured by the retained modes can be used to decide upon the 

number of modes to be retained in the analysis. It has been observed through experience 

that sufficient number of modes must be retained in the analysis such that the Mass 

Participation Factor captured by the retained modes is at least 90%. The modal matrix [߶] for the retained modes and [ܯ], [ܥ], [ܭ] matrices are obtained from the finite 

element model. 

Each retained normal mode is then applied to the finite element model as a 

displacement load case, one at a time. Each normal mode yields the corresponding strain 

mode of the structure in accordance with Eqn. (5.3). Let the number of shell elements 

suitable for mounting strain gages be c; strain tensors are obtained at all the elements 

suitable for mounting strain gages for each load case. Since the strain gage sensitivity 

varies as the gage orientation angle changes, the computed strain tensors are transformed 

to determine strain values for a number of different gage orientations per Eqns. (4.4) and 

(4.5). The transformed strain tensors provide the candidate set ൣ ෨߰ఌ൧௖௦. It is to be noted 

that ൣ ෨߰ఌ൧௖௦ is a subset of ൣ ෨߰ఌ൧. 
 

5.3 D-optimal Design 

Since it is not possible to measure strains at all the possible locations on a 

structure, to obtain an approximate solution to Eqn. (5.4), a subset of the candidate set ൣ ෨߰ఌ൧௖௦ needs to be identified. In terms of a randomly selected subset ቂ ෨߰෨ఌቃ, the 

approximate solution to Eqn. (5.4) can be written as: 



58 

 

ሼݍ෤(ݐ)ሽ ≅ ሼݍ෤෨(ݐ)ሽ = ൬ቂ ෨߰෨ఌቃ் ቂ ෨߰෨ఌቃ൰ିଵ ቂ ෨߰෨ఌቃ் ሼ(ݐ)̃ߝሽ (5.5)

where ሼݍ෤෨(ݐ)ሽ is an approximation to ሼݍ෤(ݐ)ሽ and ሼ(ݐ)̃ߝሽ is strain vector at randomly 

chosen locations on the structure. Compare Eqn. (5.5) to Eqn. (4.2); it is important to 

realize here that ቂ ෨߰෨ఌቃ plays the same role in dynamic load recovery as [ܣ] in static load 

recovery. As stated previously, ሼ(ݐ)̃ߝሽ is prone to measurement errors and the inverse 

problem identified by Eqn. (5.5) tends to be ill-conditioned. The precision with which ሼݍ෤෨(ݐ)ሽ is estimated from measured strain response depends on the number, locations and 

angular orientations of strain gages on the structure. ቂ ෨߰෨ఌቃ needs to be such a subset of ൣ ෨߰ఌ൧௖௦ that provides the most precise estimates of ሼݍ෤෨(ݐ)ሽ. For a given number of strain 

gages g, following the D-optimal design algorithm described at length in Sec. 4.1.3, the 

candidate set ൣ ෨߰ఌ൧௖௦ is searched to determine its optimum subset [߰ఌ]௢௣௧. 
Once [߰ఌ]௢௣௧ and, in turn, optimum strain gage locations and angular orientations 

are determined, strain gages are mounted at the identified locations and angular 

orientations and time varying strain ሼ(ݐ)ߝሽ௢௣௧ is measured. ሼݍ෤෨(ݐ)ሽ, which is an 

approximation to ሼݍ෤(ݐ)ሽ, is then estimated using the deterministic form of Eqn. (5.5) as: ሼݍ෤(ݐ)ሽ ≅ ሼݍ෤෨(ݐ)ሽ = ൫[߰ఌ]௢௣௧் [߰ఌ]௢௣௧൯ିଵ[߰ఌ]௢௣௧் ሼ(ݐ)ߝሽ(5.6) ݐ݌݋

Next, ሼ(ݐ)ݔሽ is generated using Eqn. (3.6), which can then be successively 

numerically differentiated to yield ሼݔሶ ሷݔሽ and ሼ(ݐ)  ሽ can now be(ݐ)ሽ. The applied load ሼ݂(ݐ)

computed using Eqn. (3.1). Presented next are few experimental as well as numerical 

examples demonstrating the proposed approach. 
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5.4 Example – Cantilevered Beam (Experimental) 

A 12 in long, 2 in wide and 1/8 in thick cantilevered aluminum beam was 

modeled in I-DEAS® and the first five normal modes were retained for analysis. Of the 

first five retained normal modes, the third mode is a twist mode whereas the other four 

modes induce lateral vibrations in the beam. A total of 8 gages (arbitrarily selected 

number > 4) were mounted on the beam and the optimum gage locations and orientations 

are shown in Fig. 5.1. The beam was clamped at the base and attached to a shaker head 

(see Fig. 5.2). 

Two input base excitations, namely a 28 Hz sine dwell and a 171 Hz sine dwell 

were input into the shaker head and the fixture to excite the structure.  The strains at each 

drive input were measured and analyzed to arrive at the MPF ሼݍ෤(ݐ)ሽ. Since the 28 Hz 

excitation is very close to the fundamental frequency of the beam (28.178 Hz), mode 1 

dominates the overall response and overshadows all other modes by close to two orders 

of magnitude. This is borne out by the results given in Fig. 5.3 and Table 5.1. Fig. 5.3 

gives the MPF for the input 28 Hz loading for all normal modes whereas Fig. 5.4 

illustrates the recovered participation factors for all modes. The scale of MPF for mode 1 

in Fig. 5.4 is one order of magnitude higher than those for modes 2 through 5. The 

numerical values in Table 5.1 are taken at an instant of time, and give a snapshot of 

various MPF at the chosen time. It can be seen from the results in Table 5.1 that mode 1 

dominates all other modes, and its participation percentage is recovered within 5% of the 

theoretical value. It may be noted that since mode shapes are known up to a constant, the 

MPF from finite element analysis and from proposed load recovery procedure cannot be 

compared directly on a one-to-one basis. To resolve this ambiguity regarding the mode 
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shapes and MPF, the participation percentages are compared. It is seen from Table 5.1 

that the participation percentages of all modes are in good agreement with the theoretical 

values. 

An additional check on the recovery procedure as outlined herein includes 

correlating the measured and predicted strains in various gages mounted on the beam. 

Fig. 5.5 shows that the strain in gage 1 is reproduced within 0.56% error whereas for 

gage 3, the strain error is of the order of 5-10 micro-strains (Fig. 5.6). The error for gage 

3 was within the experiment’s measurement limit of about 10 micro-strains. 

Next, the beam is excited by a 171 Hz sine dwell which is not too far from the 

second frequency of 176.34 Hz. For this case, mode 2 dominates the overall response 

because the 171 Hz excitation is closer to the second frequency of the beam of 176.35 

Hz. The mode participation factors ሼݍ෤(ݐ)ሽ for all modes were computed and numerical 

values at a particular instant in time are given in Table 5.2. It was seen that MPF are 

recovered reasonably accurately. With ሼݍ෤(ݐ)ሽ known, ሼ(ݐ)ݔሽ can be computed using Eqn. 

(3.6), which can then be successively numerically differentiated to yield ሼݔሶ(ݐ)ሽ and ሼݔሷ   .ሽ can then be reconstructed using Eqn. (3.1)(ݐ)ሽ. The applied load ሼ݂(ݐ)

The example illustrates the effectiveness of the proposed approach in recovering 

the mode participation factors due to applied loads that induce significant level of 

vibration in the structure. 

 

5.5 Example – Cantilevered Beam (Numerical) 

The dynamic load estimation method is also illustrated through numerical 

simulation on a cantilevered beam where a sinusoidal load acting at one end of the beam 
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needs to be estimated. Without loss of generality, the system is assumed to be undamped. 

A finite element model of the beam was developed in ANSYS using SOLID45 elements. 

Considering the top and the bottom surfaces of the beam as the regions of potential strain 

gage locations, they were meshed using SHELL41 elements so that the surface strain 

information is available at all candidate gage locations. The shell elements were given 

near zero values for the modulus of elasticity, thickness and density so that the dynamic 

characteristics of the model remain unchanged by the addition of the shell elements. The 

left end of the beam was fixed in all degrees of freedom. The finite element model of the 

beam along with the applied load and boundary conditions is shown in Fig. 5.7. The 

beam model consisted of 160 shell elements and 200 unconstrained nodes with 3 degrees 

of freedom per node, i.e., the total number of degrees of freedom of the model was 600. 

A sinusoidal forcing function ݂(ݐ) = 8000sin(30ݐ) is applied at the free end of 

the beam. The task is to determine the optimum strain gage locations and angular 

orientations and reconstruct the input force based on the strain time response measured at 

those locations. Table 5.3 summarizes the relevant problem input data. 

A modal analysis was performed on the beam model and the response of the 

structure was approximated by retaining 7 normal modes. The modes in the transverse 

direction only were considered; they formed the modal matrix [߶]. The [ܯ] and [ܭ] 
matrices were obtained using finite element method. ANSYS provides data for [ܯ] and [ܭ] matrices in the Harwell-Boeing file format. A routine was written in MATLAB to 

convert them into the matrix format suitable for current application. Each of the retained 

modes was applied to the beam model as a displacement load case, one at a time, and 

strain tensors were obtained at all the shell elements. All further processing of the strain 
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data and calculations were performed in MATLAB. The candidate set ൣ ෨߰ఌ൧௖௦ was 

generated from the surface strains. Since the number of retained normal modes m was 7, 

the number of strain gages g was arbitrarily selected to be 9. The D-optimality criterion 

was utilized to obtain [߰ఌ]௢௣௧ and, in turn, the optimum gage locations and angular 

orientations for the given number of strain gages was determined. The shell elements 

corresponding to the optimum gage locations along with the element coordinate systems 

are shown in Fig. 5.8. 

Next, an undamped transient analysis was performed on the finite element beam 

model with the applied load ݂(ݐ). Time dependent strains ሼ(ݐ)ߝሽ௢௣௧ were obtained at the 

optimum gage locations and transformed to give strain values along optimum angular 

orientations. To simulate the real world scenario where strains are measured 

experimentally, each element in ሼ(ݐ)ߝሽ௢௣௧ was corrupted with normally distributed 

random errors with zero mean and standard deviation of 10% of its value. ሼݍ෤(ݐ)ሽ for all 

the 7 retained modes was estimated by solving Eqn. (5.6) at each instant of time. For 

comparison, the exact MPF for the retained modes were also obtained from the finite 

element analysis. Comparisons of the recovered MPF for the first, second and sixth 

retained modes with the corresponding exact MPF are shown in Figs. 5.9 to 5.11 

respectively. Even though only three representative modes are shown in Figs. 5.9 to 5.11, 

it may be noted that the MPF for all 7 retained modes are recovered precisely. Next, ሼ(ݐ)ݔሽ was generated using Eqn. (3.6), which was then numerically differentiated 

successively to yield ሼݔሶ(ݐ)ሽ and ሼݔሷ(ݐ)ሽ. Finally, the applied sinusoidal load ሼ݂(ݐ)ሽ was 

reconstructed using Eqn. (3.1). The applied and the recovered loads are plotted in Fig. 

5.12.  
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The above described approach, though seemingly promising, suffers from an 

inherent limitation. It can be inferred from the plots that even though the estimation of the 

MPF of the retained modes is relatively accurate, the estimation of the applied load is 

poor. This is due to the fact that only 7 out of the 600 possible modes were retained for 

the analysis which resulted in a large amount of truncation error. Moving from Eqn. (5.2) 

to Eqn. (5.3) results in truncation error which depends upon the number of modes 

retained. Acceptable load estimates may only be obtained by retaining a high number of 

modes in the analysis, which is rarely possible in real world problems. Figure 5.13 shows 

the load recovery plot with 15 retained modes (g = 17), which indicates sign of 

improvement in recovered load with increased number of retained modes; the recovered 

load is still far off from the applied load.  

Theoretically, the best load estimate can be obtained by retaining all the possible 

modes in the analysis; this is governed by the number of strain gages used, which, in turn, 

is limited by the number of shell elements in the model. In reality, financial and practical 

constraints place limitations on the number of strain gages utilized and thereby, on the 

number of modes whose MPF can be estimated from the strain measurements. Following 

this, the quality of the load estimation gets severely affected owing to the truncation 

error. To overcome this limitation, a novel approach based on model order reduction is 

proposed. This approach, when applied to the load recovery procedure, results in 

significant improvement in the load estimates. The proposed approach is the subject of 

discussion in the next section. 
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5.6 Load Estimation Technique using Model Order Reduction 

As described in Sec. 3.2, model order reduction methods, also referred to as 

condensation methods, aim at reducing the number of degrees of freedom in a model 

without changing its dynamic characteristics significantly. For the reasons mentioned in 

Sec. 3.2.3, fixed interface CMS, also known as Craig-Bampton model reduction, is 

chosen to be introduced here in the load identification algorithm so that precise load 

estimated are obtained.  

Having computed ሼ(ݐ)ݔሽ through Eqn. (3.6), and its derivatives as mentioned in 

the previous section, Eqns. (3.30) and (3.31) are used to obtain ൜ሼ(ݐ)ݔሽ௕ሼ(ݐ)ݍሽ௣ൠ and its 

derivatives. The applied loads can subsequently be estimated using Eqn. (3.1) re-written 

in reduced form as: 

஼஻[ܯ] ൜ሼݔሷ(ݐ)ሽ௕ሼݍሷ ሽ௣ൠ(ݐ) + ஼஻[ܥ] ൜ሼݔሶ(ݐ)ሽ௕ሼݍሶ ሽ௣ൠ(ݐ) + ஼஻[ܭ] ൜ሼ(ݐ)ݔሽ௕ሼ(ݐ)ݍሽ௣ൠ = ൜ሼ݂(ݐ)ሽ௕ሼ݂(ݐ)ሽ௣ൠ (5.7)

where the reduced stiffness matrix [ܭ]஼஻, reduced mass matrix [ܯ]஼஻ and reduced 

damping matrix [ܥ]஼஻ are given by Eqn. (3.32). It is to be noted that the DOFs 

corresponding to the load application locations must be a subset of the boundary DOFs. 

The reason the above mentioned reduction based technique results in 

improvement of the load estimates can be understood as follows. In the case of full 

model, the final load identification step can be identified effectively as Eqn. (3.7) which 

uses few available modes and their participation factors to estimate the applied loads. 

This results in large degree of error in load estimates since significant amount of dynamic 

information is lost due to mode truncation. Next, consider the case of reduced model 

where the number of condensed DOFs is purposely made equal (or nearly equal) to the 
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number of MPFs available for the full model. In such a case, the number of modes is 

equal to the number of DOFs of the reduced model, all of whose MPFs are previously 

estimated. In other words, more dynamic information is condensed into fewer number of 

modes of the reduced model than the information contained in the same number of modes 

of the full model. Therefore, Eqn. (5.7) is dynamically more complete and is expected to 

produce better load estimates than Eqn. (3.1) for the same number of available/retained 

modes. 

Presented next are two numerical examples demonstrating the efficacy of the 

proposed approach on two problems where it is shown that the applied loads are 

recovered accurately despite the presence of noise in strain measurements. 

 

5.7 Example Revisited – Cantilevered Beam (Numerical) 

The numerical example of cantilevered beam described in Sec. 5.5 was revisited 

and load identification procedure in conjunction with the Craig-Bampton model reduction 

was applied. Additional inputs for the load recovery problem are tabulated in Table 5.4. 

The procedure remains the same until the determination of ሼ(ݐ)ݔሽ and its derivatives 

using Eqn. (3.6), following which, Eqns. (3.30) and (3.31) were used to obtain ൜ሼ(ݐ)ݔሽ௕ሼ(ݐ)ݍሽ௣ൠ 
and its derivatives. The applied load was finally recovered using Eqn. (5.7). It is to be 

noted again that the DOFs corresponding to the load application locations must be a 

subset of the boundary DOFs. The actual applied load and the recovered load using the 

technique of model reduction are plotted in Fig. 5.14. The rms error using Eqn. (3.33) 

was calculated to be 3.2%. It can be seen that an excellent agreement is achieved in the 

applied and the recovered loads when Craig-Bampton model reduction was applied to the 
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load recovery procedure, with 10% error present in all 9 strain gage readings. The 

robustness of the method is further examined by re-running the analysis after introducing 

random error in the mass/stiffness matrix of the model. One such plot is depicted in Fig. 

5.15 that shows a comparison between applied and recovered loads with 5% variation in 

terms in the mass matrix. It can be inferred from the plot that the technique is quite robust 

to variations in the model also. 

 

5.8 Example – Horn Bracket 

The previous example dealt with identification of a single input load. Presented 

next is a more general numerical example where two mutually perpendicular loads acting 

on a horn bracket need to be estimated. A finite element model of the bracket was 

developed in ANSYS using SHELL181 elements. The finite element model of the 

bracket along with the applied loads and boundary conditions is shown in Fig. 5.16. The 

two holes were fixed in all degrees of freedom. The model consisted of 198 shell 

elements and 233 unconstrained nodes with 6 degrees of freedom per node, i.e., the total 

number of degrees of freedom of the model was 1398. 

Two mutually perpendicular forcing functions, ଵ݂(ݐ) = 5000sin(60ݐ) +8000sin(40ݐ) and ଶ݂(ݐ) = 6000sin(60ݐ) + 10000sin(25ݐ) are applied as shown in 

Fig. 5.16. The task again is to determine the optimum strain gage locations and angular 

orientations and reconstruct the input forces based on the strain time response measured 

at those locations. Table 5.5 summarizes the relevant problem specific input data.  

Load identification procedure in conjunction with the Craig-Bampton model 

reduction was applied to recover the two applied loads. A procedure similar to the 



67 

 

previous example was followed. The shell elements corresponding to the optimum gage 

locations along with the element coordinate systems are shown in Fig. 5.17. The numbers 

next to the elements denote the optimum angular orientations (degree) of strain gages 

with respect to the x-axes of the element coordinate systems. The applied loads and the 

recovered loads are plotted in Figs. 5.18 and 5.19. It may be noted that these figures 

correspond to the case when no error was assumed to be present in strain measurements. 

Next, to simulate a more realistic scenario where strains are measured experimentally, 

each element in ሼ(ݐ)ߝሽ௢௣௧ was corrupted with normally distributed random errors with 

zero mean and standard deviation of 10% of its value. The applied and recovered loads, 

with errors in strain measurements, are plotted in Figs. 5.20 and 5.21; the rms errors 

using Eqn. (3.33) were calculated to be 8.9% and 9.7% respectively. Once again, it can 

be inferred that the proposed approach is able to recover the applied loads fairly 

accurately. 

 

5.9 Summary 

A computational methodology is presented that allows for indirect measurement 

of dynamic loads imposed on a component by using the structure itself as a load 

transducer. This is achieved by placing strain gages on the component such that best 

possible load estimates are obtained from the measured strain information. A new 

technique based on the modal model of the structure is developed to identify dynamic 

loads from the strain response. To improve the precision of load estimates, optimum 

design of experiment techniques in conjunction with finite element method is used to 

determine the strain gage locations and orientations. It is observed that the loads 
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recovered from the unreduced model are highly underestimated due to large amount of 

truncation errors resulting from few retained modes. The number of strain gages that can 

be used places a limit on the number of modes that can be retained in the analysis. To 

overcome this limitation, a novel approach based on model reduction is proposed. 

Introduction of model reduction in load recovery results in significant improvement in 

dynamic load estimation. Numerical example results illustrate the effectiveness of the 

proposed approach in recovering time varying loads which induce significant levels of 

vibrations in the component. The proposed approach is fairly robust in the sense that the 

applied loads are recovered accurately even when significant noise (errors) is 

encountered in strain measurements. 

The real interest of the proposed method lies in the case of complicated structures 

where complex loads are acting. The proposed approach is general and can be applied to 

any structure without any assumptions regarding the complexity of the structure and/or 

the applied loads. The robustness of the approach has been demonstrated through two 

examples wherein the applied loads are recovered accurately despite the presence of 

simulated measurement errors in strain measurements. Since modal analysis and MPFs 

form the basis of the approach, care must be taken not to miss any significant modes and 

make use of engineering judgment when arriving at the MPFs. 
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Table 5.1 Beam with 28 Hz Base Excitation 

 
28 Hz dwell Experimental MPF Theoretical MPF 

Mode MPF Particip. % MPF Particip. % 

1 1.87E-02 94.9 1.16E-01 99.98 

2 -5.63E-04 2.8 1.62E-05 0.01 

3 -3.28E-04 1.7 -2.42E-14 0.00 

4 4.77E-06 0.0 -5.00E-19 0.00 

5 9.78E-05 0.5 1.14E-06 0.00 

 
 

 

 

Table 5.2 Beam with 171 Hz Base Excitation 
 

171 Hz dwell Experimental MPF Theoretical MPF 

Mode MPF Particip. % MPF Particip. % 

1 -6.50E-04 6.4 -5.60E-03 11.03 

2 -8.80E-03 87.0 4.49E-02 88.40 

3 3.06E-04 3.0 -6.50E-12 0.00 

4 -2.12E-05 0.2 -1.14E-16 0.00 

5 3.25E-04 3.0 2.51E-04 0.49 
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Table 5.3 Input Data for Cantilevered Beam Example 
 

Variable Value Variable Value 

n 600 c 160 

m 7 g 9 

 

 

 

 

Table 5.4 Input Data for Cantilevered Beam Example with CB Reduction 
 

Variable Value Variable Value Variable Value 

n 600 c 160 g 9 

m 7 b 395, 425, 469, 486 p 3 

 

 

 

 

Table 5.5 Input Data for Horn Bracket Example with CB Reduction 
 

Variable Value Variable Value Variable Value 

n 1398 c 198 g 7 

m 5 b 284, 424, 848, 1293 p 2 
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Figure 5.1 Cantilevered Beam with Optimum Gage Placement 

 
 

 
Figure 5.2 Clamped Cantilevered Beam Mounted on Shaker 
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Figure 5.3 MPF for 28 Hz Base Excitation 

 

 
Figure 5.4 Recovered MPF for 28 Hz Input 
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` 
Figure 5.5 Actual and Reconstructed Strains in Gage 1 

 

 
Figure 5.6 Actual and Reconstructed Strains in Gage 3 
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Figure 5.7 Finite Element Model of Cantilevered Beam with Applied Load 

 

 

 
Figure 5.8 Shell Elements Corresponding to Optimum Gage Locations 
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Figure 5.9 MPF for First Mode 

 

 
Figure 5.10 MPF for Second Mode 
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Figure 5.11 MPF for Sixth Mode 

 

 
Figure 5.12 Recovered Load with 7 Retained Modes 

 



77 

 

 
Figure 5.13 Recovered Load with 15 Retained Modes 

 

 

 
Figure 5.14 Recovered Load with 7 Retained Modes utilizing Model Reduction 

 

 



78 

 

 

 

 

 

 

Figure 5.15 Recovered Load with 7 Retained Modes utilizing Model Reduction 
and 5% Variation in Mass Matrix 
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Figure 5.16 Finite Element Model of Horn Bracket with Applied Loads 

 
 
 
 

 
Figure 5.17 Shell Elements Corresponding to Optimum Gage Locations with Angular Orientations 
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Figure 5.18 Applied and Recovered Load (f1) 

 

 

 

 
Figure 5.19 Applied and Recovered Load (f2) 
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Figure 5.20 Applied and Recovered Load (f1) with Strain Errors 

 

 

 

 
Figure 5.21 Applied and Recovered Load (f2) with Strain Errors 
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Chapter 6 - Dynamic Load Identification from 
Acceleration Measurements 

 

 

A detailed treatment of the load identification problem using strain measurements 

has been presented in the previous two chapters. Apart from load identification based on 

strain measurements, a significant consideration has also been given by research 

community to acceleration measurements (Ewins, 2000). Carne et al. (1992) proposed a 

technique referred to as the Sum of Weighted Acceleration Technique (SWAT) that 

estimates the input forces by summing the weight-scaled measured accelerations. Genaro 

and Rade (1998) developed a technique based on identified eigen-solutions to reconstruct 

input forces from acceleration response. Kammer (1998) used acceleration measurements 

to identify input loads based on inverse Markov parameters. In all these works, it is 

assumed that the accelerometers are collocated with the forces, which is not always 

feasible. 

In light of the above discussion, it can be concluded that even though significant 

amount of research has been dedicated towards identifying optimum strain gage locations 

on the structure for precise load estimation, the idea of determining optimum 

accelerometer locations has received very little attention. It is recognized (Hansen and 

Starkey, 1990) that accelerometer placement has a significant influence on the overall 

quality of results. To overcome the above mentioned shortcomings, this chapter outlines 

two different algorithms for estimating time-varying loads exciting a structure by 

measuring acceleration time response at finite number of optimum locations on the 
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structure. The accuracy of the load estimates is dependent on the locations of the 

accelerometers. 

 

6.1 Algorithm Based on Sparse Nature of [M], [C] and [K] 

In this section, an algorithm based upon the sparse nature of the mass, damping 

and stiffness matrices is proposed to help select the optimum locations of the 

accelerometers such that precise load estimates are obtained. An example dealing with 

numerical validation of the proposed approach is presented to illustrate the technique. 

 

6.1.1 Theoretical Development 

Consider the spatially discretized linear second-order ordinary differential 

equation (ODE) of an n degrees of freedom (DOFs) structural system in the matrix form 

given by Eqn. (3.1); the equation can be re-written with subscripts denoting the size of 

the matrices as: [ܯ]௡×௡ሼݔሷ ሽ௡×ଵ(ݐ) + ሶݔ௡×௡ሼ[ܥ] ሽ௡×ଵ(ݐ) + ሽ௡×ଵ(ݐ)ݔ௡×௡ሼ[ܭ] = ሼ݂(ݐ)ሽ௡×ଵ (6.1)

For simple systems, the [ܯ], [ܥ] and [ܭ] matrices may be obtained by writing the system 

equations of motion; for complex structures they can be obtained from the finite element 

model of the structure. The vector ሼݔሷ(ݐ)ሽ is obtained from experimental acceleration 

measurements whereby the vectors ሼݔሶ(ݐ)ሽ and ሼ(ݐ)ݔሽ can be obtained upon successive 

numerical integration of ሼݔሷ  ሽ. Given the terms on the left-hand-side, they can be used(ݐ)

to estimate the dynamic loads ሼ݂(ݐ)ሽ acting on the structure through Eqn. (6.1). 

It is assumed at this point that the locations of the applied loads are known 

beforehand. This is a reasonable assumption to make as the locations where the load 
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transferring body is applying loads to the structure in question are known upfront in most 

cases. With the knowledge of the locations of the applied loads, only the relevant rows of 

matrices in Eqn. (6.1) now need to be retained and the remaining rows may be ignored 

altogether. If j is the number of applied loads, then Eqn. (6.1) can be rewritten as: 					[ܯ௥௧]௝×௡ሼݔሷ ሽ௡×ଵ(ݐ) + ሶݔ௝×௡ሼ[௥௧ܥ] ሽ௡×ଵ(ݐ) + ሽ௡×ଵ(ݐ)ݔ௝×௡ሼ[௥௧ܭ] = ሼ ௥݂௧(ݐ)ሽ௝×ଵ (6.2)

where the subscript 'rt' stands for 'rows truncated'. Here, the rows of the [ܯ], [ܥ] and [ܭ] 
matrices, corresponding to the degrees of freedom where the loads are applied, are 

retained. 

For measurement of acceleration response, there can be a large number of 

potential locations on the structure where the accelerometers can be mounted. The 

accuracy of the identified loads depends on the number of accelerometers used and their 

locations on the structure. Theoretically, the best load estimates may be obtained when 

the information on the response is available at the maximum possible number of 

locations. Practically, although a non-zero response is present over most of the structure, 

they can only be measured at a finite number of selected locations, with the response at 

the rest of the locations left untapped. Discussed next is the idea of sparse nature of the [ܯ], [ܥ] and [ܭ] matrices that will be used to determine the optimum locations of 

accelerometers on the structure. 

As stated earlier, the [ܯ], [ܥ] and [ܭ] matrices can be obtained for complex 

structures using finite element method. The two approaches used extensively in finite 

element approach to derive the mass matrix are the lumped mass approach and the 

consistent mass approach.  Of the two, the lumped mass matrix is of simpler form and is 

obtained by placing concentrated masses at the nodes in the directions of the 
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displacement degrees of freedom. The concentrated masses are obtained based on the 

assumption that the material within the mean location on either side of a particular node 

behaves like a rigid body while the remainder of the element does not participate in the 

motion. This assumption leads to the exclusion of the dynamic coupling that exists 

between the degrees of freedom and, therefore, the lumped mass matrix is purely 

diagonal. The consistent mass matrix, on the other hand, is obtained by utilizing the same 

displacement model that is used for the derivation of the stiffness matrix. This makes the 

consistent mass matrix non-diagonal, but still, most of its elements are zero. The bottom 

line of this discussion is that irrespective of the method used to derive the mass matrix, it 

is always sparse. 

The global stiffness matrix of any structure is obtained by assembling the element 

stiffness matrices together. Its density (number of non-zero elements) depends on the 

number of elements sharing a particular node. Spatially, there can only be a few elements 

common to a particular node. This would make the global stiffness matrix sparse, as 

majority of its elements would become zero upon assembly. The same argument applies 

to damping matrix, leading to its sparse nature. 

Presented next is an algorithm based on sparse nature of the [ܯ], [ܥ] and [ܭ] 
matrices in conjunction with elimination that will allow for precise load identification 

through optimal placement of accelerometers at finite number of locations on the 

structure. To make the idea clear, it is convenient here to define the following terms: ሼ ூ݂(ݐ)ሽ௝×ଵ = ሽ௡×ଵ (6.3)ሼ(ݐ)ሷݔ௝×௡ሼ[௥௧ܯ] ஽݂(ݐ)ሽ௝×ଵ = ሽ௡×ଵ (6.4)ሼ(ݐ)ሶݔ௝×௡ሼ[௥௧ܥ] ா݂(ݐ)ሽ௝×ଵ = ሽ௡×ଵ (6.5)(ݐ)ݔ௝×௡ሼ[௥௧ܭ]
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Thus, from Eqn. (6.2), it is clear that: ሼ ூ݂(ݐ)ሽ + ሼ ஽݂(ݐ)ሽ + ሼ ா݂(ݐ)ሽ = ሼ ௥݂௧(ݐ)ሽ (6.6)

Next, consider Eqn. (6.3); it is important here to note that each row in ሼݔሷ(ݐ)ሽ 
corresponds to a potential accelerometer location on the structure. Having realized that 

the [ܯ], [ܥ] and [ܭ] matrices are sparse in nature, it is easy to recognize that majority of 

the elements in each row of [ܯ௥௧] in Eqn. (6.3) are zero. These zero elements, when 

multiplied by the corresponding elements in ሼݔሷ  .ሽ, do not contribute to load calculation(ݐ)

Therefore, the non-zero elements in each row of [ܯ௥௧] can be identified and the 

corresponding row indices in ሼݔሷ(ݐ)ሽ be retained as a set. Similar sets may be obtained for 

all the rows of [ܯ௥௧]. A union of all the sets so obtained (say A) will contain row indices 

of all those elements in ሼݔሷ(ݐ)ሽ that multiply with at least one non-zero element in [ܯ௥௧]. 
A similar treatment, as discussed in the previous paragraph, can be given to Eqns. 

(6.4) and (6.5), and two more sets (say B and C) can be obtained. Next, define set L as: ܮ = ܣ ∪ ܤ ∪ (6.7) ܥ

where ∪ denotes union of sets. The elements of set L denote the row indices of each of 

the vectors ሼݔሷ  ሽ that must be retained in the analysis, and the rest of(ݐ)ݔሽ and ሼ(ݐ)ሶݔሽ, ሼ(ݐ)

the rows be eliminated. In other words, the elements of set L provide information on the 

optimum accelerometer locations on the structure. Let a be the cardinal number of set L; 

a determines the number of accelerometers that must be used in the analysis.  

Accelerometers can then be mounted at determined optimum locations on the 

structure and acceleration response ሼݔሷ(ݐ)ሽ measured, which is numerically integrated 

successively to yield ሼݔሶ(ݐ)ሽ and ሼ(ݐ)ݔሽ. Next, only those columns of the [ܯ௥௧], [ܥ௥௧] and [ܭ௥௧] matrices whose indices correspond to the elements in the set L need to be retained 
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and the remaining columns can be eliminated as their participation does not affect the 

load calculation process. Equation (6.2) then becomes: 		[ܯ௥௖௧]௝×௔ሼݔሷ(ݐ)ሽ௔×ଵ + ሽ௔×ଵ(ݐ)ሶݔ௝×௔ሼ[௥௖௧ܥ] + ሽ௔×ଵ(ݐ)ݔ௝×௔ሼ[௖௥௧ܭ] = ሼ ௥݂௧(ݐ)ሽ௝×ଵ (6.8)

where the subscript 'rct' stands for 'rows and columns truncated'. The left-hand-side of 

Eqn. (6.8) is determined fully which can then be used to identify the unknown loads 

exciting the structure.  

Almost all of the load identification techniques that have been proposed 

historically (refer to Chapter 1) are based on inverse analysis that rely on matrix inversion 

at some step in the process of load recovery. The ill-conditioning of such matrices poses 

several challenges and is the major source of errors in the analysis due to noise 

magnification. The technique described in this section does not depend on any matrix 

inversion at any step and therefore, errors in acceleration measurements do not get 

magnified and remain bounded. This leads to precise load identification. 

 

6.1.2 Solution Procedure 

An outline of the solution procedure is presented next that will allow for the 

estimation of time varying loads ሼ݂(ݐ)ሽ acting on a structure by measuring accelerations 

at a finite number of optimally placed accelerometers on the structure. 

(i) Obtain the [ܯ], [ܥ] and [ܭ] matrices either analytically or through finite element 

analysis of the structure.  

(ii) Identify the locations (degrees of freedom) at which the unknown loads are 

applied. Retain only those rows of [ܯ], [ܥ] and [ܭ] matrices that correspond to 
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the identified degrees of freedom and eliminate the remaining rows. This forms 

the matrices [ܯ௥௧], [ܥ௥௧] and [ܭ௥௧]. 
(iii) Consider the first row of the matrix [ܯ௥௧]; obtain a set consisting of column 

indices of all the non-zero elements in that row. Repeat the procedure taking into 

account each row one by one, and obtain as many sets as the number of rows. 

(iv) Construct a set A by the union of all the sets obtained in step (iii). 

(v) Repeat steps (iii) and (iv) for [ܥ௥௧] and [ܭ௥௧] to obtain sets B and C respectively. 

(vi) Construct set ܮ = ܣ ∪ ܤ ∪  The elements of set L denote the optimum .ܥ

accelerometer locations (degrees of freedom) and its cardinal number determines 

the number of accelerometers to be used. 

(vii) Mount the accelerometers at the determined optimal locations and measure the 

acceleration response ሼݔሷ  ሽ(ݐ)ሶݔሽ. Numerically integrate it successively to yield ሼ(ݐ)
and ሼ(ݐ)ݔሽ. 

(viii) Retain only those columns of the [ܯ௥௧], [ܥ௥௧] and [ܭ௥௧] matrices whose indices 

correspond to the elements in the set L and eliminate the remaining columns. This 

provides the [ܯ௥௖௧], [ܥ௥௖௧] and [ܭ௥௖௧] matrices. 

(ix) Identify the unknown applied loads using Eqn. (6.8). 

 

6.1.3 Example: 15-DOF Spring-Mass System 

The dynamic load estimation method discussed above is illustrated with the help 

of a numerical simulation comprising of a 15 degrees of freedom chain like spring-mass 

system as depicted in Fig. 6.1. Without any loss of generality, the system is assumed to 

be undamped. Masses m1 and m15 are connected to fixed boundary. Starting from left to 
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right, the masses are arbitrarily assigned values ranging from 20 to 160 in increments of 

10. Similarly, starting from left to right, the springs are arbitrarily assigned stiffness 

values ranging from 1 × 10଼ to 8 × 10଼ in increments of 0.5 × 10଼. A sinusoidal forcing 

function ଻݂(ݐ) = 500sin(300ݐߨ) + 350cos(150ݐߨ) is applied to mass m7. The task was 

to determine the optimum accelerometer locations and reconstruct the input force based 

on the acceleration time response at those locations. The [ܯ], [ܥ] and [ܭ] matrices (15 × 15) were obtained by writing the equations of motion for the system. In absence of 

any experimental data, the acceleration time responses at the relevant degrees of freedom 

were calculated by analytical means.  

Before applying the solution procedure described in this work, for comparison 

purpose, two attempts for reconstructing the applied load were made based on randomly 

selected accelerometer locations. The first attempt was made by arbitrarily assuming the 

number of accelerometers to be 4. Four uniformly distributed positive integer random 

numbers ≤ 15 were generated to simulate the random locations of the accelerometers. The 

randomly generated locations were at masses 2, 7, 10 and 14. Analytical acceleration 

time responses were calculated at these locations to simulate the accelerometer 

measurements, which were then numerically integrated successively to obtain the 

velocity and displacement responses. The input force was reconstructed using Eqn. (6.8). 

The applied and reconstructed forces are plotted in Fig. 6.2. Similar attempt was made by 

increasing the number of accelerometers to 5 in anticipation of better degree of load 

identification. The randomly generated accelerometer locations for this case were at 

masses 3, 6, 7, 9 and 14. Again, the applied and reconstructed forces are plotted in Fig. 
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6.3. It can be inferred from both the plots that the load identification based on randomly 

selected accelerometer locations is very poor and does not yield acceptable results.  

Next, load identification solution procedure described in this work was applied to 

the given problem. Since the load was applied to mass m7, only row 7 in each of the 

matrices [ܯ], [ܥ] and [ܭ] was retained. This formed the matrices [ܯ௥௧]ଵ×ଵହ, [ܥ௥௧]ଵ×ଵହ 

and [ܭ௥௧]ଵ×ଵହ. In matrix [ܯ௥௧]ଵ×ଵହ, all elements but the element in column 7 were zero; 

therefore, set ܣ = ሼ7ሽ. Since the system was assumed to be undamped, all the elements in 

the matrix [ܥ௥௧]ଵ×ଵହ were zero, which led to set ܤ = ሼ∅ሽ. The elements in columns 6, 7 

and 8 in matrix [ܭ௥௧]ଵ×ଵହ were non-zero, which implied that set ܥ = ሼ6,7,8ሽ. Having 

obtained sets A, B and C, set ܮ = ܣ ∪ ܤ ∪ ܥ = ሼ6,7,8ሽ was constructed per Eqn. (6.7).  

Thus, the optimum number of accelerometers is 3, which is equal to the cardinal number 

of L, with accelerometer locations at masses 6, 7 and 8. Only those columns of the [ܯ௥௧], [ܥ௥௧] and [ܭ௥௧] matrices, whose indices correspond to the elements in the set L, were 

retained and the remaining columns were eliminated. This provided the matrices [ܯ௥௖௧]ଵ×ଷ, [ܥ௥௖௧]ଵ×ଷ and [ܭ௥௖௧]ଵ×ଷ. Next, acceleration response ሼݔሷ  ሽ at masses 6, 7 and(ݐ)

8 were obtained analytically and numerically integrated successively to yield ሼݔሶ  ሽ. Based on the response data at the optimal accelerometer locations, the applied(ݐ)ݔሽ and ሼ(ݐ)

load was reconstructed using Eqn. (6.8). The applied and reconstructed forces are plotted 

in Fig. 6.4, which shows an excellent agreement between the two sets of force values. 
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6.2 Algorithm Based on D-optimal Design and Reduced Modal 

Parameter 

The load identification algorithm presented in Sec. 6.1 has an inherent limitation - 

the accelerometers must be collocated with the force locations. In many applications, the 

force input locations may not be accessible to mount sensors. To overcome this 

limitation, this section presents a time domain technique for estimating dynamic loads 

acting on a structure from acceleration time response measured experimentally at a finite 

number of optimally placed non-collocated accelerometers on the structure. The approach 

is based on the standard equilibrium equations of motion in modal coordinates. The 

modal parameters of a system, natural frequencies, mode shapes and damping factors can 

be estimated experimentally from measured data, analytically for simple problems, or 

using finite element method. For measurement of the acceleration response, there can be 

a large number of locations on the structure where the accelerometers can be mounted, 

and the precision with which the applied loads are estimated from measured acceleration 

response may be strongly influenced by the locations selected for accelerometer 

placements. A solution approach, based on the construction of D-optimal designs, is 

presented to determine the number and optimum locations of accelerometers that will 

provide the most precise load estimates. An improvement in the algorithm, based on 

reduced modal matrix, is further proposed to reconstruct the input forces accurately. Two 

examples dealing with numerical validation of the proposed approach are presented to 

illustrate the effectiveness of the proposed technique. 
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6.2.1 Problem Formulation 

Consider again the spatially discretized linear second-order ordinary differential 

equation (ODE) of a structural system in the matrix form given by Eqn. (3.1). For simple 

systems, [ܯ], [ܥ] and [ܭ] may be obtained by writing the system equations of motion; 

for complex systems they can be generated from the finite element model of the structure. 

Assuming that ሼݔሷ(ݐ)ሽ is available, which will be discussed later, ሼݔሶ  ሽ can be(ݐ)ݔሽ and ሼ(ݐ)

obtained upon successive numerical integration of ሼݔሷ(ݐ)ሽ. Given all the terms on the left-

hand-side in Eqn. (3.1), they can be used to estimate the dynamic loads ሼ݂(ݐ)ሽ exciting 

the structure. There are a number of problems associated with obtaining ሼݔሷ  ሽ, to name a(ݐ)

few: 

• Each element in the vector ሼݔሷ(ݐ)ሽ corresponds to a unique DOF in the structure. It 

is not possible to place accelerometers at all the DOFs of the structure to obtain ሼݔሷ  .ሽ in full(ݐ)

• Some means needs to be devised that allows for approximating ሼݔሷ  ሽ in full by(ݐ)

taking acceleration measurements at few finite number of locations on the 

structure. 

• Since the force input locations may not be accessible to mount accelerometers, the 

acceleration measurements cannot be taken at or around those locations. 

• Since there can be a large number of locations on the structure where the 

accelerometers can potentially be mounted, a natural question arises: if finite 

number of accelerometers are to be used, where all should they be mounted on the 

structure such that precise load estimates are obtained. 

The following sections present an approach to deal with the above mentioned problems. 
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6.2.2 Modal Model 

Consider Eqn. (3.7) which is basically Eqn. (3.1) transformed into modal 

coordinates using the following modal transformations: ሼݔሷ(ݐ)ሽ = [߶]ሼݍሷ ሽ(ݐ)ሶݔሽ ሼ(ݐ) = [߶]ሼݍሶ ሽ(ݐ)ݔሽ ሼ(ݐ) = [߶]ሼ(ݐ)ݍሽ (6.9)

where [߶] is the modal matrix and ሼ(ݐ)ݍሽ is the vector of Modal Participation Factors 

(MPF). Since, in real world applications, seldom is the case when all the modes in [߶] are 

available, one generally has a reduced number of modes m available either from 

experimental modal analysis or finite element modal analysis, leading to ൣ߶෨൧. Equation 

(3.7) then gets approximated as: [ܯ]ൣ߶෨൧൛ݍሷ෨(ݐ)ൟ + ൟ(ݐ)ሶ෨ݍ෨൧൛߶ൣ[ܥ] + ሽ(ݐ)෤ݍ෨൧ሼ߶ൣ[ܭ] = ሼ݂(ݐ)ሽ (6.10)

such that ሼݔሷ(ݐ)ሽ ≅ ൛ݔሷ෨(ݐ)ൟ = ൣ߶෨൧൛ݍሷ෨(ݐ)ൟ ሼݔሶ(ݐ)ሽ ≅ ൛ݔሶ෨(ݐ)ൟ = ൣ߶෨൧൛ݍሶ෨(ݐ)ൟ ሼ(ݐ)ݔሽ ≅ ሼݔ෤(ݐ)ሽ = ൣ߶෨൧ሼݍ෤(ݐ)ሽ (6.11)

where ሼݍ෤(ݐ)ሽ is the mode participation factor for the retained modes and ሼݔ෤(ݐ)ሽ is the 

approximate reconstructed displacement vector. As will be made clear in due course of 

this chapter, it is desired to determine ൛ݍሷ෨(ݐ)ൟ at this point. The least-squares estimate of ൛ݍሷ෨(ݐ)ൟ is given by: 

൛ݍሷ෨(ݐ)ൟ = ቀൣ߶෨൧்ൣ߶෨൧ቁିଵ ൣ߶෨൧்൛ݔሷ෨(ݐ)ൟ (6.12)
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As already stated, since it is not feasible to place accelerometers at all the DOFs on the 

structure to determine ሼݔሷ  ሽ completely, the solution to Eqn. (6.12) cannot be fully(ݐ)

determined. A methodology is presented next to overcome the identified shortcoming. 

 

6.2.3 Candidate Set 

The maximum number of modes obtainable from the finite element model of a 

structure is equal to the total number of degrees of freedom of the model, which can be a 

large number. Decision needs to be made on the number of modes m to be retained to 

approximate the response of the structure; these are the modes whose MPF will be 

estimated at a later stage from the structure response to applied loads. The fraction of 

effective modal mass captured by the retained modes can be used to decide upon the 

number of modes to be retained in the analysis. It has been observed through experience 

that sufficient number of modes must be retained in the analysis such that the Mass 

Participation Factor captured by the retained modes is at least 90%. 

As more accelerometers are used, the additional information on the accelerations 

helps to obtain a more precise estimate of ൛ݍሷ෨(ݐ)ൟ, but practical and financial constraints 

place limitations on the number of accelerometers that can be used. If the number of 

mode participation factors to be estimated is m, then the inverse problem defined by Eqn. 

(6.12) must be over-determined to minimize the error in ൛ݍሷ෨(ݐ)ൟ estimates, i.e., the number 

of accelerometers a must satisfy the criterion ܽ ≥ ݉. Further refinement in the number of 

accelerometers can be made based upon the methodology discussed in Sec. 4.1.2. 

Typically, there are a large number of locations on a structure where the 

accelerometers can potentially be mounted. These locations may exclude inaccessible 
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locations such as the regions of load application. Let the DOFs associated with all the 

locations where accelerometers can potentially be mounted be called the candidate 

degrees of freedom. Define ൣ߶෨൧௖௦ to be a subset of ൣ߶෨൧ containing rows corresponding to 

the candidate DOFs only and eliminating the rest. ൣ߶෨൧௖௦ is called the candidate set. 

 

6.2.4 D-optimal Design 

Since it is not possible to measure accelerations at all the possible locations on a 

structure, to obtain an approximate solution to Eqn. (6.12), a subset of the candidate set ൣ߶෨൧௖௦ needs to be identified. In terms of a randomly selected subset ቂ߶෨෨ቃ, the approximate 

solution to Eqn. (6.12) can be written as: 

൛ݍሷ෨(ݐ)ൟ ≅ ቄݍሷ෨෨(ݐ)ቅ = ൬ቂ߶෨෨ቃ் ቂ߶෨෨ቃ൰ିଵ ቂ߶෨෨ቃ் ቄݔሷ෨෨(ݐ)ቅ (6.13)

where ቄݍሷ෨෨(ݐ)ቅ is an approximation to ൛ݍሷ෨(ݐ)ൟ and ቄݔሷ෨෨(ݐ)ቅ is a random subset of ൛ݔሷ෨(ݐ)ൟ. 
Compare Eqn. (6.13) to Eqn. (4.2); it is important to realize here that ቂ߶෨෨ቃ plays the same 

role in dynamic load recovery as [ܣ] in static load recovery. In practice, ቄݔሷ෨෨(ݐ)ቅ is prone 

to measurement errors and the inverse problem identified by Eqn. (6.13) tends to be ill-

conditioned. The accuracy of estimated ቄݍሷ෨෨(ݐ)ቅ from measured acceleration response 

depends on the number and locations of accelerometers on the structure. ቂ߶෨෨ቃ needs to be 

such a subset of ൣ߶෨൧௖௦ that provides the most precise estimates of ቄݍሷ෨෨(ݐ)ቅ. For a given 

number of accelerometers a, following the D-optimal design algorithm described at 
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length in Sec. 4.1.3, the candidate set ൣ߶෨൧௖௦ is searched to determine its optimum subset [߶]௢௣௧. 
Once [߶]௢௣௧ and, in turn, optimum accelerometer locations are determined, 

accelerometers are mounted at the identified optimum locations and acceleration ሼݔሷ ሶݔሽ௢௣௧ is measured, which can then be numerically integrated successively to obtain ሼ(ݐ)  ൟ, is then estimated(ݐ)ሷ෨ݍቅ, which is an approximation to ൛(ݐ)ሷ෨෨ݍሽ௢௣௧. ቄ(ݐ)ݔሽ௢௣௧ and ሼ(ݐ)

using the deterministic form of Eqn. (6.13) as: ൛ݍሷ෨(ݐ)ൟ ≅ ቄݍሷ෨෨(ݐ)ቅ = ൫[߶]௢௣௧் [߶]௢௣௧൯ିଵ[߶]௢௣௧் ሼݔሷ(ݐ)ሽ௢௣௧ (6.14)

Similarly, ൛ݍሶ෨(ݐ)ൟ and ሼݍ෤(ݐ)ሽ are estimated from ሼݔሶ(ݐ)ሽ௢௣௧ and ሼ(ݐ)ݔሽ௢௣௧, respectively. 

The applied load ሼ݂(ݐ)ሽ can now be computed using Eqn. (6.10). It is to be noted that in 

this approach it is not necessary that acceleration measurements be taken at locations 

where forces are applied. 

The above described approach, though seemingly promising, suffers from an 

inherent limitation. As will be shown in Sec. 6.2.6, the recovered loads get significantly 

underestimated due to errors associated with the truncation of modes. Moving from Eqn. 

(5.2) to Eqn. (5.3) results in truncation error which depends upon the number of modes 

retained. Acceptable load estimates may only be obtained by retaining a high number of 

modes in the analysis, which is rarely possible in real world problems. To overcome this 

limitation, a novel approach, which utilizes the technique of model order reduction, is 

proposed next. The approach, which when applied to the load recovery procedure, results 

in significant improvement in the load estimation. 
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6.2.5 Load Estimation Technique using Model Order Reduction 

As described in Sec. 3.2, model order reduction methods, also referred to as 

condensation methods, aim at reducing the number of degrees of freedom in a model 

without changing its dynamic characteristics significantly. For the reasons mentioned in 

Sec. 3.2.3, fixed interface CMS, also known as Craig-Bampton model reduction, is used 

here in the load identification algorithm so that precise load estimated are obtained.  

Having computed ሼݍ෤(ݐ)ሽ and its derivatives through Eqn. (6.14), Eqns. (6.11), 

(3.30) and (3.31) are used to obtain ൜ሼ(ݐ)ݔሽ௕ሼ(ݐ)ݍሽ௣ൠ and its derivatives. The applied loads can 

subsequently be estimated using Eqn. (5.7). It is to be noted that the DOFs corresponding 

to the load application locations must be a subset of the boundary DOFs. 

 

6.2.6 Example: 15-DOF Spring-Mass System with One Applied Load 

The dynamic load estimation method discussed above is illustrated with the help 

of a numerical simulation comprising of the 15 degrees of freedom chain like spring-

mass system described in Sec. 6.1.3 and shown in Fig. 6.1. A sinusoidal forcing function 

଻݂(ݐ) = 500sin(30ݐߨ) + 350cos(20ݐߨ) is applied to mass m7. The task is to determine 

the optimum accelerometer locations and reconstruct the input force based on the 

acceleration time response at those locations. Table 6.1 summarizes the relevant assumed 

inputs. 

The system response was approximated using 4 modes. A total of 5 

accelerometers were used to measure accelerations of 5 masses. The [ܯ], [ܥ] and [ܭ] 
matrices were obtained by writing the equations of motion for the system. The modal 
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matrix [߶] was obtained by solving the eigen-value problem for the system. In absence of 

any experimental data, the acceleration time responses at the relevant degrees of freedom 

were obtained by solving the ordinary differential equations numerically. All numerical 

computations were performed in a MATLAB programming environment. 

All DOFs, except the DOF where the load was applied, were selected to be the 

locations where accelerometers can potentially be mounted, i.e., the DOF corresponding 

to the applied load did not form a part of the candidate set. When subjected to the D-

optimal design algorithm, the optimum accelerometer locations were found to be at 

masses m2, m6, m9, m10 and m13. Using the acceleration data computed at the optimum 

accelerometer locations, the input force was recovered through Eqn. (6.10). Next, load 

identification procedure in conjunction with the Craig-Bampton model reduction was 

applied and the input force was recovered using Eqn. (5.7). For comparison purpose, 

static condensation was also utilized to recover the applied load in line with Eqn. (5.7). 

The actual applied load and the recovered loads using the 3 procedures are plotted in Fig. 

6.5. To study the effect of accelerometer locations on the quality of recovered loads, an 

attempt was made to reconstruct the applied load using randomly selected accelerometer 

locations. Five uniformly distributed positive integer random numbers ≤ 15 were 

generated to simulate the random locations of the accelerometers. The randomly 

generated locations were at masses m1, m2, m10, m13 and m15. The load identification 

procedure in conjunction with the Craig-Bampton model reduction was again applied in 

an attempt to reconstruct the input force using Eqn. (5.7). The applied and reconstructed 

forces are plotted in Fig. 6.6.  
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It can be seen from Fig. 6.6 that load identification based on randomly selected 

accelerometer locations is very poor and does not yield acceptable results. This gives rise 

to the need for determining the optimal accelerometer locations such that precise load 

estimates are obtained. Also, as already discussed, it can be inferred from Fig. 6.5 that the 

recovered load using Eqn. (6.10) is significantly underestimated. This is due to the fact 

that only 4 out of the 15 possible modes were retained for the analysis which resulted in a 

large amount of truncation error. Better load estimates can be obtained by increasing the 

number of retained modes in the analysis, which is not always feasible. Some sign of 

improvement was detected when static condensation was applied to the load recovery 

procedure. A significant degree of improvement in recovered loads was observed when 

Craig-Bampton model reduction was applied to the load recovery procedure. Application 

of Craig-Bampton reduction to load recovery, though promising, still seems to suffer 

from the limitation of underestimating the applied loads by a small amount. Introduced 

next is further improvement in the ongoing load identification algorithm based on 

reduced modal matrix. 

 

6.2.7 Reduced Modal Parameter Based Algorithm for Load Estimation 

Consider the reduced model equation of motion in matrix form given by Eqn. 

(5.7). A solution to the eigen-value problem for the reduced system yields the Craig-

Bampton reduced modal matrix [߶]஼஻. Since [ܯ]஼஻ and [ܭ]஼஻ are meant to capture the 

dynamic characteristics of the full model, [߶]஼஻ also captures the modal information of 

the full model. Similar to Eqn. (6.9), the reduced model can be transformed to modal 

coordinates using the following transformation: 
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൜ሼݔሷ(ݐ)ሽ௕ሼݍሷ ሽ௣ൠ(ݐ) = [߶]஼஻ሼݍሷ ሽ஼஻ (6.15)(ݐ)

where ሼ(ݐ)ݍሽ஼஻ is the MPF of the Craig-Bampton reduced normal modes. Pre-

multiplying Eqn. (6.15) by [߰]஼஻ yields: 

[߰]஼஻ ൜ሼݔሷ(ݐ)ሽ௕ሼݍሷ ሽ௣ൠ(ݐ) = [߰]஼஻[߶]஼஻ሼݍሷ ሽ஼஻ (6.16)(ݐ)

Using Eqn. (3.30) and substituting [߶]௨ for [߰]஼஻[߶]஼஻ gives: ሼݔሷ ሽ(ݐ) = ሷݍሼݑ[߶] ሽ஼஻ (6.17)(ݐ)

Compare Eqn. (6.17) to Eqn. (6.11). It must be noted that [߶]௨ captures the dynamic 

characteristics of the system better than ൣ߶෨൧ as none of the modes in [߶]௨ have been 

truncated. Therefore, computation of ሼݔሷ  ሽ using Eqn. (6.17) is expected to be more(ݐ)

accurate than using Eqn. (6.11). Again, similar to Eqns. (6.12) and (6.13), ሼݍሷ  ሽ஼஻ needs(ݐ)

to be determined from Eqn. (6.17) by measuring acceleration at optimum locations on the 

structure. Following the procedure described in Sec. 6.2.3 and 6.2.4 and treating [߶]௨_௖௦, 
a subset of [߶]௨, as the candidate set, optimum subset [߶]௨_௢௣௧ of the candidate set is 

determined by D-optimal design and thereby optimum locations for accelerometer 

placement are identified. 

Next, accelerometers are mounted at the identified optimum locations on the 

structure and ሼݔሷ(ݐ)ሽ௢௣௧ is measured, which can then be numerically integrated 

successively to obtain ሼݔሶ(ݐ)ሽ௢௣௧ and ሼ(ݐ)ݔሽ௢௣௧. ൛ݍሷ෩(ݐ)ൟܤܥ, which is an approximation to ሼݍሷ ሷݍሽ஼஻, is estimated similar to Eqn. (6.14) as: ሼ(ݐ) ሽ஼஻(ݐ) ≅ ൛ݍሷ෨(ݐ)ൟܤܥ = ൫[߶]ݑ_௢௣௧் ௢௣௧்_ݑ[߶]௢௣௧൯ିଵ_ݑ[߶] ሼݔሷ(ݐ)ሽ௢௣௧ (6.18)
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Having computed ሼݍሷ ሷݔሽ஼஻, ሼ(ݐ)  .ሽ is determined in full using Eqn. (6.17). Again, Eqns(ݐ)

(3.30) and (3.31) are used to obtain ൜ሼ(ݐ)ݔሽ௕ሼ(ݐ)ݍሽ௣ൠ and its derivatives. The applied loads can 

finally be estimated using Eqn. (5.7). It is to be noted again that the DOFs corresponding 

to the load application locations must be a subset of the boundary DOFs. 

 

6.2.8 Example: Application of the Reduced Modal Parameter Based 

Algorithm to Load Estimation 

The numerical example described in Sec. 6.2.6 was revisited and the problem was 

solved using the reduced modal matrix based algorithm proposed above. Again, all 

DOFs, except the DOF where the load was applied, were selected to be the locations 

where accelerometers can potentially be mounted, i.e., the DOF corresponding to the 

applied load did not form a part of the candidate set. When subjected to the D-optimal 

design algorithm, the optimal accelerometer locations were found to be at masses m2, m5, 

m8, m10 and m13. Using the acceleration data computed at the optimal accelerometer 

locations and following the improved load estimation technique, the input force was 

recovered through Eqn. (5.7). The actual applied load and the smoothed recovered loads 

are plotted in Fig. 6.7. Using Eqn. (3.33), the rms error was calculated to be 7.2% in 

recovered load using Craig-Bampton reduction and 1.3% in recovered load using the 

reduced modal parameter based algorithm. It can be inferred from the plot that there is 

almost perfect agreement between the applied and the recovered load. This implies that 

the reduced modal matrix based algorithm provides a better degree of load recovery than 

any of the other techniques discussed. 
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6.2.9 Example: 15-DOF Spring-Mass System with Two Applied Loads 

The previous example is extended to the case when two applied loads are present. 

Loads ଷ݂(ݐ) = 500sin(30ݐߨ) + 350cos(20ݐߨ) and ଽ݂(ݐ) = 250sin(25ݐߨ) +450cos(15ݐߨ) are applied to masses m3 and m9, respectively. The task is to determine 

the optimum accelerometer locations and reconstruct the input forces based on the 

acceleration time response at those locations. Table 6.2 summarizes the relevant assumed 

inputs. The number of accelerometers used is increased from 5 to 6 since more number of 

loads needs to be recovered here. The input loads were reconstructed following the 

approach discussed in Secs. 6.2.5 and 6.2.7. Using the two approaches, the optimal 

accelerometer locations were found to be at masses m2, m4, m7, m8, m12, m13 and masses m2, 

m5, m7, m8, m11, m13, respectively. The applied and recovered loads are plotted in Figs. 6.8 

and 6.9. Using Eqn. (3.33), the rms error was calculated to be 5.9% in recovered load 

ଷ݂(ݐ) using Craig-Bampton reduction and 1.2% in recovered load ଷ݂(ݐ) using the reduced 

modal parameter based algorithm. The rms error was calculated to be 18.9% in recovered 

load ଽ݂(ݐ) using Craig-Bampton reduction and 2.3% in recovered load ଽ݂(ݐ) using the 

reduced modal parameter based algorithm. Once again, it is inferred that the reduced 

modal matrix based algorithm is more effective than other techniques discussed. 

 

6.2.10   Example: Cantilevered Beam 

The numerical example discussed previously dealt with a discrete system. 

Presented next is a continuous system where the dynamic load estimation technique is 

illustrated with the help of numerical simulation of a cantilevered beam. A vertical load, ݂(ݐ) = 500sin(30ݐߨ) + 350cos(20ݐߨ), acting at free end of the beam is reconstructed 
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from measured accelerations along the beam. A finite element model of the beam was 

developed similar to Sec. 5.5. The assumed inputs are provided in Table 6.3. 

The [ܯ] and [ܭ] matrices were obtained using finite element method. ANSYS 

provides data on the [ܯ] and [ܭ] matrices in the Harwell-Boeing file format; a routine 

written in MATLAB was used to convert them into the matrix format suitable for current 

application. The D-optimal design criterion was utilized to determine the optimum 

accelerometer locations, following which, the acceleration data at those locations was 

obtained from the finite element transient analysis of the beam in ANSYS. The optimum 

accelerometer locations are also shown in Fig. 6.10. The input load was reconstructed 

following the approach discussed in Sec. 6.2.5 and 6.2.7. The applied and recovered 

loads are plotted in Fig. 6.11. The rms error using Eqn. (3.33) was calculated to be 1.8%. 

It can be seen that the applied load is recovered accurately for this 600 DOF system by 

approximating the complete response using 7 modes and measuring accelerations at 8 

optimum locations. 

Based on the results for both examples, it can be seen that for discrete as well as 

continuous systems, the proposed approach is able to accurately estimate the loads acting 

on a component by measuring the acceleration response at a finite number of optimum 

locations. 

 

6.3 Summary 

In this chapter, two algorithms are presented that allow for indirect identification 

of vibration inducing dynamic loads applied to a structure. The algorithms are based on 

acceleration measurements at finite number of optimal locations on the structure such that 
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best possible load estimates are obtained. In Sec. 6.1, to determine the optimum locations 

for the accelerometers, the sparse nature of mass, damping and stiffness matrices is 

utilized. With the aid of a numerical example, it is illustrated that randomly selected 

accelerometer locations yield poor load estimation. Excellent agreement between the 

applied and recovered load is observed when acceleration data from optimum locations of 

accelerometers is used. This approach, however, suffers from the limitation that the 

accelerometers need to be collocated with the forces, which is not always feasible. 

To deal with the aforementioned shortcoming, an alternate algorithm is presented 

in Sec. 6.2 for estimating dynamic loads exciting the structure from acceleration time 

response measured experimentally at a finite number of optimally placed non-collocated 

accelerometers on the structure. D-optimal design technique is used to determine the 

optimum accelerometer locations such that best possible load estimates are obtained from 

the measured acceleration data. It is observed that the load recovered from optimally 

placed accelerometer data and unreduced model is highly underestimated due to large 

amount of truncation error resulting from few retained modes. Introduction of static 

condensation in load recovery shows some improvement in the load estimation, but it still 

underestimates the applied load. Still better load estimates are obtained by utilizing 

Craig-Bampton model reduction technique. A very good agreement in the applied and the 

recovered load is observed when the proposed reduced modal matrix based algorithm is 

utilized in conjunction with optimal accelerometer locations. The numerical examples 

illustrate the effectiveness of the proposed approach in recovering multiple time varying 

loads in discrete as well as continuous systems which induce significant level of 

vibrations in the structure.  
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Table 6.1 Input Data for Spring-Mass System Example with One Applied Load 

 
Variable Value Variable Value Variable Value 

n 15 c 14 a 5 

m 4 b 7 p 4 

 

 

 

Table 6.2 Input Data for Spring-Mass System Example with Two Applied Loads 
 

Variable Value Variable Value Variable Value 

n 15 c 13 a 6 

m 3 b 3, 9 p 4 

 

 

 

Table 6.3 Input Data for Cantilevered Beam Example 
 

Variable Value Variable Value Variable Value 

n 600 c 597 a 8 

m 7 b 213, 280, 372, 425 p 2 
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Figure 6.1 15-DOF Spring-Mass System 

 
Figure 6.2 Applied and Recovered Force with Random Accelerometer Locations at Masses 2, 7, 10 and 14 
 

 
Figure 6.3 Applied and Recovered Force with Random Accelerometer Locations 

at Masses 3, 6, 7, 9 and 14 
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Figure 6.4 Applied and Recovered Force with Optimal Accelerometer Locations at Masses 6, 7 and 8 

 

 
 

 
Figure 6.5 Applied and Recovered Loads at Mass 7 with Optimum Accelerometer Placements 
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Figure 6.6 Applied and Recovered Load at Mass 7 with Random Accelerometer Placements 

 
 
 
 
 

 

 
Figure 6.7 Applied and Recovered Loads at Mass 7 with Optimum Accelerometer Placements 
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Figure 6.8 Applied and Recovered Loads at Mass 3 with Optimum Accelerometer Placements 

 
 
 
 
 
 

 
Figure 6.9 Applied and Recovered Loads at Mass 9 with Optimum Accelerometer Placements 
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Figure 6.10 Finite Element Model of Cantilever Beam Depicting Applied Load 

and Optimum Accelerometer Locations 
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Figure 6.11 Applied and Recovered Loads with Optimum Accelerometer Placements 
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Chapter 7 - Dynamic Programming Approach to 
Load Estimation 

 

 

Apart from the strain and acceleration measurement based techniques developed 

and described previously in this thesis, there exists another inverse technique developed 

by Busby and Trujillo (1987) to identify the loads applied to a structure from its 

experimentally measured response. The technique is based on dynamic programming and 

consists of a backward (inverse) time sweeping phase followed by a forward time 

sweeping phase. In the backward sweep, certain matrices and vectors are calculated 

recursively for all the time steps. These recursive relations are a function of the system 

parameters and experimental response measurements. The forward sweep then uses these 

relations to predict the applied loads as well as the structure response. Load estimation 

problem is cast as a minimization problem of error which is defined as the difference 

between the measured structural response and the response predicted from the model. 

Dynamic programming is used to solve the minimization problem. 

It has been studied by Hollandsworth and Busby (1989) that the quality of load 

estimates depends on the locations of sensors on the structure. The technique of D-

optimal design algorithm is utilized in this chapter to arrive at optimal sensor placement 

such that precise load estimates are obtained. One of the disadvantages of the dynamic 

programming technique is that the computation time increases dramatically as the model 

order increases. To deal with this shortcoming, a technique based on Craig-Bampton 

model order reduction is further proposed in this chapter. 
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7.1 The Dynamic Programming Approach 

Consider the discrete linear time-invariant state-space equation given by Eqn. 

(3.10) that characterizes the input-output behavior of a structural system. In the forward 

problem, given the system information and the applied load history ሼ݂ሽ, the system 

responses ሼݑሽ can be solved recursively starting from the known initial conditions. In the 

inverse problem of interest here, it is desired to solve for the unknown forces ሼ݂ሽ, given 

the system information and system responses. 

Busby and Trujillo (1987) cast the load estimation problem as a minimization 

problem which can be stated as, "Given the system matrix [ܣௗ], the input matrix [ܤௗ] and 

the measurements on some of the state variables, find the unknown forces ሼ݂ሽ that cause 

the model, Eqn. (3.10), to best match the measurements". Since it is not possible to 

measure all of the state variables ሼݑሽ, it is convenient at this point to introduce the 

following expression: ሼ݀ሽ௧௜ ⇔ [ܳ]ሼݑሽ௧௜ (7.1)

where ሼ݀ሽ௧௜ is an (݊௦ × 1) vector representing the experimental response measurements, 

ns is the number of sensors and [ܳ] is an (݊௦ × 2݊) transformation matrix describing the 

locations of sensors. Since the measured response data ሼ݀ሽ always contains noise or 

errors, the least-squares sum is the most common method for error quantification. The 

optimization problem to determine the unknown forces ሼ݂ሽ is written as a minimization 

of the least-squares error function stated as: 
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,ݑ)ܧ ݂) = ෍(ሼ݀ − ሽ௧௜்[ܹ]ሼ݀ݑܳ − ሽ௧௜)ேݑܳ
௧௜ୀଵ  

ሼݑሽ௧௜ାଵ = ሽ௧௜ݑሼ[ௗܣ] + ሼ݂ሽ௧௜ (7.2)[ௗܤ]

where [ܹ] is a general weighing diagonal matrix on the data. Unfortunately, this least-

squares criterion is not sufficient in the current application because any mathematical 

solution that will minimize the error function E will end up with the model exactly 

matching the measured data, a trivial solution. This limitation is overcome by using a 

method called Tikhonov Regularization, where a regularization term is added to the 

above least-squares error function as: 

,ݑ)ܧ ݂) = ෍(ሼ݀ − ሽ௧௜்[ܹ]ሼ݀ݑܳ − ሽ௧௜ݑܳ + ሼ݂ሽ௧௜்[ܪ]ሼ݂ሽ௧௜)ே
௧௜ୀଵ  

ሼݑሽ௧௜ାଵ = ሽ௧௜ݑሼ[ௗܣ] + ሼ݂ሽ௧௜ (7.3)[ௗܤ]

Essentially, it is desired to find the input forces ሼ݂ሽ that cause the model [ܳ]ሼݑሽ to 

match the measured response data ሼ݀ሽ as closely as possible. In other words, the problem 

is to minimize the least-squares error function E over the sequence of forcing vectors ሼ݂ሽ௧௜. The minimization problem can be solved by using the structure of dynamic 

programming and Bellman's Principle of Optimality. A full derivation of the solution is 

not presented here; its details can be found in Trujillo and Busby (1997). The solution to 

the above minimization problem is given by the following recurrence relations: ሼ݂∗ሽ௧௜ = ௧௜ାଵ்[ܴ]்[ௗܤ]௧௜ାଵ(2[ܦ]− ሽ௧௜ݑሼ[ௗܣ] − ሽ௧௜ାଵݑ௧௜ାଵ) ሼ[ܵ]்[ௗܤ] = ሽ௧௜ݑሼ[ௗܣ] + ሼ݂ሽ௧௜ (7.4)[ௗܤ]

 where 
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௧௜[ܦ] = [ܪ]2ൣ + ൧ିଵ [ܴ]௧௜ିଵ[ௗܤ]௧௜[ܴ]்[ௗܤ]2 = [ܳ]்[ܹ][ܳ] + ௧௜[ܴ])்[ௗܣ] − 2[ܴ]௧௜[ܤௗ][ܦ]௧௜[ܤௗ]்[ܴ]௧௜)[ܣௗ] [ܵ]௧௜ିଵ = −2[ܳ]்[ܹ]ሼ݀ሽ௧௜ିଵ + [ܫ])்[ௗܣ] − 2[ܴ]௧௜[ܤௗ][ܦ]௧௜[ܤௗ]்)[ܵ]௧௜ (7.5)

The complete sequence of operations is as follows: 

• The backward sweep: Solve Eqn. (7.5) backward and store [ܦ], [ܴ] and [ܵ] 
starting with the following initial conditions: [ܴ]ே = [ܳ]்[ܹ][ܳ] [ܵ]ே = −2[ܳ]்[ܹ]ሼ݀ሽே 

(7.6)

• The forward sweep: Starting with the initial condition for ሼݑሽ, compute the 

optimal ሼ݂∗ሽ using Eqn. (7.4) and keep updating ሼݑሽ. 
As mentioned earlier, there can be a large number of locations on the structure 

where the sensors can potentially be mounted, and the quality of the load estimates 

depends on the locations of sensors on the structure. In the procedure described above, 

the sensor locations are described by the variable [ܳ] that maps the state variables to the 

sensor locations. Discussed next is the procedure to obtain optimum sensor locations, and 

hence [ܳ]௢௣௧, such that the loads are estimated precisely. 

 

7.2 Candidate Set and D-optimal Design 

It can be observed in the load identification procedure described above that there 

exists a matrix inversion step – the computation of [ܦ]௧௜ in Eqn. (7.5) – which is similar 

to the matrix inversion for the computation of ሼ݂ሽ in Eqn. (4.2). The computation of [ܦ] 
depends on three matrices – [ܪ], [ܴ] and [ܤௗ]. Out of the three matrices, [ܪ] and [ܴ] are 

generally well-conditioned. It may also be noted that [ܴ] varies with time; therefore, it is 
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rather infeasible to consider it as a candidate for optimization towards further well-

conditioning, even if so desired. The remaining matrix [ܤௗ] can be identified as the one 

that poses potential ill-conditioning in the computation of [ܦ]. Similar to Eqn. (4.3), the 

variance in [ܦ] depends on [ܤௗ]. It may further be assessed through Eqn. (7.4) that the 

estimation of load ሼ݂∗ሽ depends directly on [ܦ]. Therefore, optimal selection of sensor 

locations, and hence the optimum matrix [ܤௗ], leads to increased accuracy in the 

estimation of load ሼ݂∗ሽ.  
It must be noted that half of the rows in [ܤௗ] corresponds to state variables and 

the other half corresponds to their derivatives. To form a candidate set for optimization, 

first of all, only that half of the rows in [ܤௗ] needs to be retained that corresponds to the 

measured quantity (state variables or their derivatives). From the subset so obtained, the 

DOFs (rows) corresponding to force locations and other inaccessible locations for sensor 

placement are ignored; the subset so obtained is the candidate set [ܤௗ]௖௦. 
As more sensors are used, the additional information helps to obtain a more 

precise estimate of ሼ݂∗ሽ, but practical and financial constraints place limitations on the 

number of sensors that can be used. If the number of forces to be estimated is ݊௙, then in 

order to minimize the error in ሼ݂∗ሽ estimates, the number of sensors a must satisfy the 

criterion ܽ ≥ ݊௙. Further refinement in the number of sensors can be made based upon 

the methodology discussed in Sec. 4.1.2. 

Having obtained the candidate set [ܤௗ]௖௦, for a given number of sensors, the D-

optimal design algorithm described in Sec. 4.1.3 is followed to search [ܤௗ]௖௦ to 

determine the optimum sensor locations. Once the optimal locations for sensors is 

determined, [ܳ]௢௣௧ is obtained which consists of 1’s at the locations corresponding to 
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optimum sensor locations and the 0’s at the remaining locations. Equations (7.4) – (7.6) 

are then utilized to compute the input forces ሼ݂∗ሽ. 
 

7.3 Example: 15-DOF Spring-Mass System 

The above described procedure was applied numerically to the 15 degrees of 

freedom chain like spring-mass system described in Sec. 6.1.3 and depicted in Fig. 6.1. A 

sinusoidal forcing function ଻݂(ݐ) = 1000sin(55ݐߨ) + 600cos(35ݐߨ) is applied to mass 

m7. The task is to determine the optimum accelerometer locations and reconstruct the 

input force based on the acceleration time response at those locations. 

 A total of 2 accelerometers were used to measure accelerations of 2 masses. The [ܯ], [ܥ] and [ܭ] matrices were obtained by writing the equations of motion for the 

system. Continuous time-invariant state-space form of the system was obtained using the 

equations described in Sec. 3.1.3. In absence of any experimental data, the acceleration 

time response at the optimum locations were obtained by solving the ordinary differential 

equations numerically. All DOFs, except the DOF where the load was applied, were 

selected to be the locations where accelerometers can potentially be mounted, i.e., the 

DOF corresponding to the applied load did not form a part of the candidate set. All 

numerical computations were performed in a MATLAB programming environment. 

When subjected to the D-optimal design algorithm as described in Sec. 7.2, the 

optimum accelerometer locations were found to be at masses m6 and m8. Using the 

acceleration data computed at the optimum accelerometer locations, the input force was 

recovered using Eqns. (7.4) – (7.6). The applied and the recovered loads are plotted in 

Fig. 7.1. It can be inferred from the plot that the applied load is recovered accurately. 
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7.4 Example: Crane Load Block 

The previous example dealt with a simple spring-mass system. Presented next is a 

more general numerical example where a vertical dynamic load acting on a crane hoist 

load block, through a load suspended on its hook, needs to be estimated. An overhead 

crane along with its trolley is shown in Fig. 7.2. A more detailed image of the trolley and 

the load block is given in Fig. 7.3. A sinusoidal input vertical forcing function ݂(ݐ) =750sin(60ݐ) + 900cos(75ݐ) is assumed to be applied to the load block. The problem is 

to determine the optimum accelerometer locations and reconstruct the input force based 

on the acceleration time response at those locations. 

  A finite element model of the load block was developed in ANSYS using 

SHELL181 elements. The finite element model of the load block along with the applied 

load and boundary conditions is shown in Fig. 7.4. The model was simplified and all 

holes were eliminated in order to enable generation of quad-mesh. The model consisted 

of 272 shell elements and 321 unconstrained nodes with 3 degrees of freedom per node 

(the rotational degrees of freedom were ignored), i.e., the total number of degrees of 

freedom of the model was 963. 

The [ܯ] and [ܭ] matrices were obtained using finite element method. ANSYS 

provides data for [ܯ] and [ܭ] matrices in the Harwell-Boeing file format. A routine was 

written in MATLAB to convert them into the matrix format suitable for current 

application. The damping [ܥ] was assumed to be 0.01% of [ܭ]. All further calculations 

were performed in MATLAB. Continuous time-invariant state-space form of the system 

is obtained using the equations described in Sec. 3.1.3. In absence of any experimental 
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data, the acceleration time response at the optimum locations were obtained by solving 

the ordinary differential equations numerically.  

Load identification solution procedure based on optimal accelerometer locations 

was applied to the given problem. All DOFs, except the DOF where the load was applied, 

were selected to be the locations where accelerometers can potentially be mounted, i.e., 

the DOF corresponding to the applied load did not form a part of the candidate set. The 

number of accelerometers was arbitrarily assumed to be 5. After determining the optimal 

accelerometer locations based on the procedure described in Sec. 7.2, the input force was 

reconstructed using Eqns. (7.4) – (7.6). The applied and reconstructed forces are plotted 

in Fig. 7.5. It can be inferred that they are in good mutual agreement. 

 

7.5 Load Estimation Technique using Model Order Reduction 

The load block example discussed in the previous section took a while to execute 

and produce results. Application of the dynamic programming technique is limited since 

the computation time increases dramatically as the order of the model increases. The 

number of DOF in the load block example is 963. For complex structures, the number of 

degrees of freedom can be quite large; therefore, the enormous amount of time taken by 

the dynamic programming technique to yield meaningful results may render the 

procedure unworthy of application. To deal with this shortcoming, a technique based on 

Craig-Bampton model order reduction is proposed to reduce the computational burden. 

The full model of the system is taken into consideration in order to determine the 

optimum sensor locations based on the technique described in Sec. 7.2. The full model 

matrices [ܯ], [ܥ] and [ܭ] are subjected to Craig-Bampton model order reduction method 



120 

 

described in Sec. 3.2.3 to yield the Craig-Bampton reduced matrices [ܯ]஼஻, [ܥ]஼஻ and [ܭ]஼஻ per Eqn. 3.32. The reduced matrices are then used to transform the model into 

discrete time-invariant state-space model per Eqn. (3.10). The applied load ሼ݂∗ሽ can then 

be reconstructed using the technique described in Sec. 7.1 and Eqns. (7.4) – (7.6). 

 

7.6 Example Revisited: Crane Load Block 

The load block example described in Sec. 7.4 was revisited and load identification 

procedure in conjunction with the Craig-Bampton model reduction explained in Sec. 7.5 

was applied. The 963 DOF system was reduced to 36 DOF system and the input load was 

reconstructed following the procedure similar to Sec. 7.4. The applied and recovered 

loads are plotted in Fig. 7.6. After the structure response from optimal accelerometer 

locations are obtained, a comparison of computation time elapsed in reconstructing the 

applied loads was made. The computation time for the full model was observed to be 

258.74 s which decreased to a mere 5.56 s for the reduced model. 

It may be noted that Figs. 7.5 and 7.6 correspond to the case when no error was 

assumed to be present in acceleration measurements. Next, to simulate a more realistic 

scenario where accelerations are measured experimentally, the acceleration response 

vector ሼ݀ሽ was corrupted with normally distributed random errors with zero mean and 

standard deviation of 10% of its value. The applied and recovered loads, with errors in 

acceleration measurements, are plotted in Figs. 7.7 and 7.8; the rms errors using Eqn. 

(3.33) were calculated to be 8.5% and 12.3% respectively. It can be concluded from the 

plots that the proposed approach is robust in recovering the applied loads precisely even 

when significant measurement errors are present in the structure response. 
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7.7 Summary 

A computational technique is studied where load estimation problem is cast as a 

minimization problem of error which is defined as the difference between the measured 

structural response and the response predicted from the model. Dynamic programming is 

used to solve the minimization problem. The quality of load estimates depends on the 

locations of sensors on the structure. To improve the precision of load estimates, the 

technique of D-optimal design in conjunction with finite element analysis is utilized to 

determine the optimum sensor locations. It is observed that the loads recovered based on 

accelerations measured from optimally placed accelerometers on the structure are in 

excellent agreement with the applied loads.  

One of the disadvantages of the dynamic programming technique is that the 

amount of computation increases dramatically as the order of the model increases. To 

overcome this limitation, a technique based on Craig-Bampton model order reduction is 

further proposed. It is observed that the load recovered using the reduced model shows a 

deviation initially, but later follows the applied load closely. For the example considered 

herein, it is seen that with the introduction of model order reduction, the computation 

time can be reduced by as much as 98% without compromising on the quality of load 

estimates. This result deems the dynamic programming technique of load identification, 

in conjunction with model order reduction, worthy to be applied to higher order problems 

of increased complexity. The robustness of the approach is demonstrated such that the 

loads are reconstructed precisely even when errors are present in the measured structure 

response. 
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Figure 7.1 Applied and Recovered Load with Optimal Accelerometer Locations at Masses 6 and 8 

 

 

 
Figure 7.2 Overhead Crane 

 

Trolley 
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Figure 7.3 Trolley with Load Block 

 

 
Figure 7.4 Finite Element Model of Load Block with Applied Load 

Load Block 
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Figure 7.5 Applied and Recovered Load from Full Model 

 

 

 
Figure 7.6 Applied and Recovered Load from Reduced Model 
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Figure 7.7 Applied and Recovered Load from Full Model with Acceleration Errors 

 

 

 
Figure 7.8 Applied and Recovered Load from Reduced Model with Acceleration Errors 
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Chapter 8 - Force Identification using Markov 
Parameters 

 

 

This chapter examines a technique proposed by Kammer (1998) for identifying 

dynamic loads acting on a structure based upon the impulse response of the structure, 

also referred to as the system Markov parameters. Inverse Markov parameters are 

computed from the forward Markov parameters using a linear prediction algorithm, and 

have the roles of input and output reversed. The applied loads are then reconstructed by 

convolving the inverse Markov parameters with the system response to the loads.  

It has been noted that the computation of inverse Markov parameters, like all the 

other inverse problems encountered in this dissertation, is ill-conditioned which causes 

their convolution with the measured response to become quite sensitive to errors in the 

measurements. The computation of inverse Markov parameters, and thereby the quality 

of load estimates, depends on the locations of sensors on the structure. To ensure that the 

computation of inverse Markov parameters is well-conditioned, the technique of D-

optimal design algorithm is utilized in this chapter to determine the optimal sensor 

locations such that precise load estimates are obtained. 

 

8.1 The Markov Parameter Approach 

Consider again the discrete linear time-invariant state-space equation given by 

Eqn. (3.10) that characterizes the input-output behavior of a structural system. The 

corresponding system output is given by Eqn. (3.12). For zero initial conditions, it has 

been shown in Sec. 3.1.4 that Eqns. (3.10) and (3.12) can be combined to produce the 
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output at any time step (see Eqn. (3.14)). In the forward problem, given the system 

Markov parameters [ܪ]௜ and the applied load history ሼ݂ሽ, the system responses ሼݑሽ can 

be solved recursively starting from the known initial conditions. In the inverse problem of 

interest here, the objective is to estimate the input forces ሼ݂ሽ, given the forward Markov 

parameters and system responses. 

From Eqn. (3.14), the system response at ݅ݐ = 0 is given by: ሼݕሽ଴ = ଴ሼ݂ሽ଴ (8.1)[ܪ]

Assuming the case where the number of sensors used is at least equal to the number of 

loads, the least-squares estimates of the loads at ݅ݐ = 0 is given as: ሼ݂ሽ଴ = ሽ଴ (8.2)ݕ଴்ሼ[ܪ]ଵି(଴[ܪ]଴்[ܪ])

Similarly, at ݅ݐ = 1, the system response is given by: ሼݕሽଵ = ଴ሼ݂ሽଵ[ܪ] + ଵሼ݂ሽ଴ (8.3)[ܪ]

which can again be solved for the loads as: ሼ݂ሽଵ = ሽଵݕ଴்(ሼ[ܪ]ଵି(଴[ܪ]଴்[ܪ]) − ଵሼ݂ሽ଴) (8.4)[ܪ]

By induction, the loads at time ti can be verified to be: 

ሼ݂ሽ௧௜ = ଴்[ܪ]ଵି(଴[ܪ]଴்[ܪ]) ቌሼݕሽ௧௜ −෍[ܪ]௧௜௧௜
௜ୀଵ [݂]௧௜ି௜ቍ (8.5)

Next, define a discrete inverse system similar to Eqns. (3.10) and (3.12), where 

the roles of input forces ሼ݂ሽ and system response ሼݕሽ are reversed, as: ሼݑሽ௧௜ାଵ = ሽ௧௜ݑூሼ[ௗܣ] + ሽ௧௜ ሼ݂ሽ௧௜ݕூሼ[ௗܤ] = ሽ௧௜ݑூሼ[ௗܥ] + ሽ௧௜ (8.6)ݕூሼ[ௗܦ]

where the inverse matrices [ܣௗ]ூ, [ܤௗ]ூ, [ܥௗ]ூ and [ܦௗ]ூ are related to the corresponding 

forward matrices by: 
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ூ[ௗܣ] = [ௗܣ] − ூ[ௗܤ] [ௗܥ]்[ௗܦ]ଵି([ௗܦ]்[ௗܦ])[ௗܤ] = ூ[ௗܥ] ்[ௗܦ]ଵି([ௗܦ]்[ௗܦ])[ௗܤ] = ூ[ௗܦ] [ௗܥ]்[ௗܦ]ଵି([ௗܦ]்[ௗܦ])− =  ்[ௗܦ]ଵି([ௗܦ]்[ௗܦ])

(8.7)

Similar to Eqns. (3.13) and (3.14), given the system response, the input forces at any time 

are given by the convolution relation as: 

ሼ݂ሽ௧௜ =෍[ℎ]௜௧௜
௜ୀ଴ ሼݕሽ௧௜ି௜ (8.8)

where the matrices [ℎ]௜ are known as the inverse Markov parameters. The inverse 

Markov parameters, similar to the forward Markov parameters, contain the dynamic 

properties of the inverse system. On comparison of expansions of Eqns. (8.5) and (8.8), it 

may be ascertained that the inverse Markov parameters [ℎ]௜ are related to the forward 

Markov parameters [ܪ]௜ by a linear predictive equation given by: [ℎ]଴ = ଴்[ܪ]ଵି(଴[ܪ]଴்[ܪ])  

[ℎ]௞ = −[ℎ]଴෍[ܪ]௜௞
௜ୀଵ [ℎ]௞ି௜ (8.9)

There exist cases where [ܪ]଴ is zero matrix. In certain other non-minimum phase 

structural systems, [ܪ]଴ is rank deficient and the least-squares inverse in Eqn. (8.9) does 

not exist. This renders the causal summation in Eqn. (8.8) undefined. To deal with this 

limitation, the system output (Eqn. (3.12)) is stepped forward in time as: ሼݕሽ௧௜ = ሽ௧௜ݑሼ[ௗܥ] + ሼ݂ሽ௧௜ (8.10)[ௗܤ][ௗܥ]

The inverse system associated with Eqn. (8.10) is non-causal, i.e., the input force 

estimates at current time become a function of the structural response at future times. In 
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general, if the first z Markov parameters in Eqn. (3.13) are zero, i.e., [ܦௗ] = [ௗܤ][ௗܥ] [ௗܤ][ௗܣ][ௗܥ]= = ⋯ = [ௗܤ]௭ିଶ[ௗܣ][ௗܥ] = [0], the non-causal z-lead inverse system can 

be constructed as: [ℎ]௭ = ௭்[ܪ]) ௭்[ܪ]௭)ିଵ[ܪ]  

[ℎ]௞ା௭ = −[ℎ]௭෍[ܪ]௜ା௭௞
௜ୀଵ [ℎ]௞ି௜ା௭ 

(8.11)

and the corresponding force estimates are given by: 

ሼ݂ሽ௧௜ =෍[ℎ]௜ା௭௧௜
௜ୀ଴ ሼݕሽ௧௜ି௜ା௭ (8.12)

It must be noted in Eqn. (8.12) that the input force estimates ሼ݂ሽ at current time ti are 

dependent on the structural response ሼݕሽ at future times ݅ݐ − ݅ +  .ݖ

The determination of the inverse Markov parameters from the forward Markov 

parameters using Eqn. (8.11) is computationally expensive; however, it must be noted 

that the computation of the inverse Markov parameters needs to be performed only once 

for any particular system. Once the inverse Markov parameters are computed, the input 

forces can be predicted from the responses using Eqn. (8.12). 

 

8.2 Candidate Set and D-optimal Design 

The load identification technique based on Markov parameters, though different 

from previously discussed techniques in this thesis, suffers from a similar limitation as all 

the other techniques – ill-conditioning. The inaccuracies in system modeling translate to 

errors in forward Markov parameters. The computation of inverse Markov parameters 

from erroneous forward Markov parameters is ill-conditioned, and the computed inverse 
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Markov parameters become unbounded. Thus, the convolution of the inverse Markov 

parameters [ℎ] with the noisy structural response ሼݕሽ given by Eqn. (8.12) is not always a 

converging sum. The sum becomes numerically unstable due to the intrinsic ill-

conditioning of the inverse problem identified by Eqn. (8.11). The precision with which 

the input loads ሼ݂ሽ are estimated from measured structural response ሼݕሽ, using Eqn. 

(8.12), depends on the locations of sensors on the structure. There can be a large number 

of locations on the surface of a structure on which sensors can be mounted. As more 

sensors are used, the additional information helps to obtain a more precise estimate of ሼ݂ሽ, but practical and financial constraints place limitations on the number of sensors that 

can be used. If the number of forces to be estimated is ݊௙, then in order to minimize the 

error in ሼ݂ሽ estimates, the number of sensors a must satisfy the criterion ܽ ≥ ݊௙. Further 

refinement in the number of sensors can be made based upon the methodology discussed 

in Sec. 4.1.2. 

It can be inferred from the load identification step in Eqn. (8.12) that the quality 

of load estimates depends directly on how accurately the inverse Markov parameters are 

computed. It can further be assessed from Eqn. (8.11) that the zth inverse Markov 

parameter [ℎ]௭ is computed by the least-squares inversion of the zth Markov parameter [ܪ]௭. All the other higher order inverse Markov parameters depend on [ℎ]௭. Therefore, 

the accuracy of [ℎ]௭ directly dictates the accuracy of all the other higher order inverse 

Markov parameters. The least-squares estimate of [ℎ]௭ in Eqn. (8.11) can be compared to 

Eqn. (4.2). It must be noted here that [ܪ]௭ plays the same role in dynamic load recovery 

based on Markov parameters as [ܣ] in static load recovery. Therefore, optimal selection 



131 

 

of sensor locations, and hence the optimum matrix [ܪ]௭_௢௣௧, leads to increased accuracy 

in the estimation of ሼ݂ሽ.  
Each row in [ܪ]௭ corresponds to a unique DOF of the system output. To form a 

candidate set for optimization, the DOFs (rows) corresponding to the force locations and 

other inaccessible locations for sensor placement are ignored; the subset so obtained is 

the candidate set [ܪ]௭_௖௦. Having obtained the candidate set [ܪ]௭_௖௦, for a given number 

of sensors, the D-optimal design algorithm described in Sec. 4.1.3 is followed to search [ܪ]௭_௖௦ to determine the optimum matrix [ܪ]௭_௢௣௧. Once the optimal locations for sensors 

are determined, sensors are mounted at the optimum locations and structural response is 

measured. Equations (8.11) and (8.12) are then utilized to compute the input forces ሼ݂ሽ. 
 

8.3 Example: 15-DOF Spring-Mass System 

The above described procedure was applied numerically to the 15 degrees of 

freedom chain like spring-mass system described in Sec. 6.1.3 and depicted in Fig. 6.1. A 

sinusoidal forcing function ଻݂(ݐ) = 900sin(50ݐߨ) + 650cos(25ݐߨ) is applied to mass 

m7. The task is to determine the optimum accelerometer locations and reconstruct the 

input force based on the acceleration time response at those locations. 

 A total of 2 accelerometers were used to measure accelerations of 2 masses. The [ܯ], [ܥ] and [ܭ] matrices were obtained by writing the equations of motion for the 

system. Continuous time-invariant state-space form of the system was obtained using 

Eqns. (3.9) – (3.12). Forward Markov parameters were computed from the state-space 

model using Eqn. (3.15). All numerical computations were performed in a MATLAB 

programming environment. 
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All DOFs, except the DOF where the load was applied, were selected to be the 

locations where accelerometers can potentially be mounted, i.e., the DOF corresponding 

to the applied load did not form a part of the candidate set [ܪ]௭_௖௦. [ܪ]௭_௖௦ was subjected 

to the D-optimal design algorithm described in Sec. 7.2 to obtain [ܪ]௭_௢௣௧ whereby the 

optimum accelerometer locations were found to be at masses m6 and m8. Having obtained 

the optimum accelerometer locations, the inverse Markov parameters were computed 

using Eqn. (8.11). In absence of any experimental data, the acceleration time response at 

the optimum locations were obtained by solving the ordinary differential equations 

numerically. Using the acceleration data ሼݕሽ computed at the optimum accelerometer 

locations, the input force ሼ݂ሽ was recovered using Eqn. (8.12). The applied and the 

recovered loads are plotted in Fig. 8.1. It can be inferred from the plot that the applied 

load is recovered accurately. 

 

8.4 Example: Overhead Crane Girder 

A more general numerical example is presented here where a vertical dynamic 

load acting on an overhead crane girder, through the trolley wheels (Fig. 7.2), needs to be 

estimated. For the sake of illustration and simplicity, the number of loads is assumed to 

be one. A sinusoidal input vertical forcing function ݂(ݐ) = 6000sin(60ݐ) +10000cos(25ݐ) is assumed to be applied to the girder mid-span. The problem is to 

determine the optimum accelerometer locations and reconstruct the input force based on 

the acceleration time response at those locations. 

  A finite element model of the girder was developed in ANSYS using BEAM188 

elements. The finite element model of the girder along with the applied load and 
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boundary conditions is shown in Fig. 8.2. The model consisted of 50 beam elements and 

49 unconstrained nodes with 6 degrees of freedom per node, i.e., the total number of 

degrees of freedom of the model was 294. 

The [ܯ] and [ܭ] matrices were obtained using finite element method. ANSYS 

provides data for [ܯ] and [ܭ] matrices in the Harwell-Boeing file format. A routine was 

written in MATLAB to convert them into the matrix format suitable for current 

application. All further calculations were performed in MATLAB. Continuous time-

invariant state-space form of the system was obtained using Eqns. (3.9) – (3.12). Forward 

Markov parameters were computed from the state-space model using Eqn. (3.15). The 

number of accelerometers to be used was arbitrarily assumed to be equal to 3. All DOFs, 

except the DOF where the load was applied, were selected to be the locations where 

accelerometers can potentially be mounted, i.e., the DOF corresponding to the applied 

load did not form a part of the candidate set [ܪ]௭_௖௦. [ܪ]௭_௖௦ was subjected to the D-

optimal design algorithm described in Sec. 7.2 to obtain [ܪ]௭_௢௣௧. The optimum 

accelerometer locations are also depicted in Fig. 8.2. It is observed that the algorithm 

predicts the optimum sensor locations to be as close to the loads as possible. This should 

not be considered as a limitation to the application of the proposed technique since if 

certain locations around the force application points are not available for sensor 

placement, they can initially be excluded from the candidate set [ܪ]௭_௖௦. Furthermore, if 

the sensor positions seem to be too congested mutually, additional criteria may be 

instructed such as if a particular spot is chosen as a potential sensor location, then certain 

area around that location may be excluded from the candidate set. 
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Having obtained the optimum accelerometer locations, the inverse Markov 

parameters were computed using Eqn. (8.11). In absence of any experimental data, the 

acceleration time response at the optimum locations were obtained by solving the 

ordinary differential equations numerically. Using the acceleration data ሼݕሽ computed at 

the optimum accelerometer locations, the input force ሼ݂ሽ was recovered using Eqn. 

(8.12). The applied and the recovered loads are plotted in Fig. 8.3. The rms error using 

Eqn. (3.33) was calculated to be 0.1%. 

Next, to simulate a more realistic scenario where accelerations are measured 

experimentally, the acceleration data ሼݕሽ was corrupted with normally distributed random 

errors with zero mean and standard deviation of 10% of its value. The applied and 

recovered loads, with errors in acceleration measurements, are plotted in Fig. 8.4. The 

rms error using Eqn. (3.33) was calculated to be 2.3%. It can be inferred from the plots 

that the proposed approach is able to successfully recover the applied load precisely even 

when realistic measurement errors are present in the structural response. 

 

8.5 Summary 

A computational technique has been studied where the loads exciting a structure 

are estimated by convolving the structural response with the inverse Markov parameters. 

The inverse Markov parameters, in turn, are computed from the forward Markov 

parameters using a linear prediction algorithm. The forward Markov parameters represent 

the response of the system to applied unit impulse and thus contain the dynamic 

properties of the system. They can be obtained analytically as well as experimentally. 
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The computation of the inverse Markov parameters from forward Markov 

parameters, like all inverse problems, suffers from ill-conditioning. The computed 

inverse Markov parameters are not always bounded, thus rendering their convolution 

with the structural response to diverge. The accuracy of the inverse Markov parameters, 

and thereby the quality of input load estimates, depends on the locations of sensors on the 

structure. To improve the precision of load estimates, the technique of D-optimal design, 

in conjunction with finite element method, is utilized to determine the optimum sensor 

locations. It is observed that the algorithm predicts the optimum sensor locations to be as 

close to the loads as possible. This should not be considered as a limitation to the 

application of the proposed technique since if certain locations around the force 

application points are not available for sensor placement, they can initially be excluded 

from the candidate set. Furthermore, if the sensor positions seem to be too congested 

mutually, additional criteria may be instructed such as if a particular spot is chosen as a 

potential sensor location, then certain area around that location may be excluded from the 

candidate set. The loads recovered based on accelerations measured from optimally 

placed accelerometers on the structure are observed to be are in excellent agreement with 

the applied loads. 
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Figure 8.1 Applied and Recovered Load with Optimal Accelerometer Locations at Masses 6 and 8 

 

 

 
Figure 8.2 Finite Element Model of Girder with Applied Load and Optimum Accelerometer Locations 
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Figure 8.3 Applied and Recovered Load with No Acceleration Errors 

 

 
Figure 8.4 Applied and Recovered Load with Acceleration Errors 
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Chapter 9 - Conclusions and Future Research 
 

 

It has been the primary endeavor of this dissertation to develop as well as bring 

together efficient algorithms and novel techniques to solve a distinct class of ill-

conditioned inverse problems − identifying complex loads acting on a structure from 

experimentally measured structural response (strain, acceleration, etc.). To realize this 

technical goal, the techniques of D-optimal design for optimal sensor placements on the 

structure and model order reduction have extensively been used. The techniques are 

chiefly motivated from the observation that the quality of load estimates is sensitive to 

the locations where the sensors are mounted on the structure. Having developed the 

algorithms and techniques, they have been tested experimentally on simple structures and 

numerically through relatively complex simulations. 

The first development involves a time domain technique for estimating dynamic 

loads acting on a structure from strain time response measured at a finite number of 

optimally placed strain gages on the structure. The approach is based on the fact that the 

strain response of an elastic vibrating system can be expressed as a linear superposition of 

its strain modes. Since the strain modes as well as the normal displacement modes are 

intrinsic dynamic characteristics of a system, the dynamic loads exciting a structure are 

estimated by measuring induced strain fields. The accuracy of estimated loads depends 

on the number and placement of gages on the instrumented structure. A solution 

procedure based on the construction of a D-optimal design augmented by finite element 

method is implemented to determine the optimum locations and orientations of strain 

gages that will provide the most precise load estimates. It is observed that the loads 
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recovered from the unreduced model are highly underestimated due to large amount of 

truncation errors resulting from few retained modes. The number of strain gages that can 

be used places a limit on the number of modes that can be retained in the analysis. To 

overcome this limitation, a novel approach based on model order reduction is proposed 

that results in significant improvement in dynamic load estimation. 

Two original load identification algorithms are proposed based on acceleration 

measurements at optimally located accelerometers on a structure. The first algorithm 

utilizes the sparse nature of the mass, damping and stiffness matrices to help select the 

optimum locations of the accelerometers on the structure such that precise load estimates 

are obtained. Excellent agreement between the applied and recovered loads is observed 

when acceleration data from optimum locations of accelerometers is used. This approach, 

however, suffers from the limitation that the accelerometers need to be collocated with 

the forces, which is not always feasible. To deal with the aforementioned shortcoming, an 

alternate algorithm is presented for estimating dynamic loads acting on the structure from 

acceleration time response measured experimentally at a finite number of optimally 

placed non-collocated accelerometers on the structure. D-optimal design technique is 

used to determine the optimum accelerometer locations such that best possible load 

estimates are obtained from the measured acceleration data. It is observed that the loads 

recovered from optimally placed accelerometer data and unreduced model are highly 

underestimated due to large amount of truncation error resulting from few retained 

modes. Acceptable load estimates are obtained by utilizing Craig-Bampton model order 

reduction technique in load recovery. Excellent agreement in the applied and the 
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recovered loads is observed with the introduction of reduced modal matrix based 

algorithm that works in conjunction with optimum accelerometer locations. 

The goals of this thesis have been not only to propose novel algorithms for 

solving the inverse problem of load identification but also to improve upon existing 

methodologies for force estimation. One of the techniques studied casts the load 

estimation problem as a minimization problem of error which is defined as the difference 

between the measured structural response and the response predicted from the model. 

Dynamic programming is used to solve the minimization problem. It is known that the 

quality of load estimates depends on the locations of sensors on the structure. To improve 

the precision of load estimates, the technique of D-optimal design in conjunction with 

finite element method is utilized to determine the optimum sensor locations. It is 

observed that the loads recovered based on accelerations measured from optimally placed 

accelerometers on the structure are in excellent agreement with the applied loads. One of 

the disadvantages of the dynamic programming technique is that the amount of 

computation increases dramatically as the order of the model increases. To overcome this 

limitation, a technique based on Craig-Bampton model order reduction is proposed. It is 

observed that the load recovered using the reduced model shows an initial discrepancy, 

but later follows the applied load closely. It is inferred that with the introduction of model 

order reduction and without compromising on the quality of load estimates, the 

computation time can be reduced by as much as 98%. This result indicates that the 

dynamic programming technique of load identification, in conjunction with model order 

reduction, is worthy of application to higher order problems of increased complexity. 
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A computational technique has also been studied where the loads exciting a 

structure are estimated by convolving the structural response with the inverse Markov 

parameters. The inverse Markov parameters, in turn, are computed from the forward 

Markov parameters using a linear prediction algorithm. The forward Markov parameters 

represent the response of the system to applied unit impulse and thus contain the dynamic 

properties of the system. They can be obtained analytically as well as experimentally. 

The computation of the inverse Markov parameters from forward Markov parameters, 

like all inverse problems, suffers from ill-conditioning. The computed inverse Markov 

parameters are not always bounded, thus rendering their convolution with the structural 

response to diverge. The accuracy of the inverse Markov parameters, and thereby the 

quality of input load estimates, depends on the locations of sensors on the structure. To 

improve the precision of load estimates, the technique of D-optimal design, in 

conjunction with finite element method, is utilized to determine the optimum sensor 

locations. It is observed that the algorithm predicts the optimum sensor locations to be as 

close to the loads as possible. This should not be considered as a limitation to the 

application of the proposed technique since if certain locations around the force 

application points are not available for sensor placement, they can initially be excluded 

from the candidate set. Furthermore, if the sensor positions seem to be too congested 

mutually, additional criteria may be instructed such as if a particular spot is chosen as a 

potential sensor location, then certain area around that location may be excluded from the 

candidate set. The loads recovered based on accelerations measured from optimally 

placed accelerometers on the structure are observed to be in excellent agreement with the 

applied loads. 
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The load identification techniques developed and proposed in this dissertation rely 

on the D-optimal design algorithm for the determination of optimal sensor locations such 

that accurate load estimates are obtained. Further improvement in the quality of the load 

estimates is realized through the Craig-Bampton model order reduction. Though the D-

optimal design algorithm is efficient and quite popular among the design optimization 

community, it suffers from the limitation of getting stuck in local optima often times, 

which may not yield the best possible locations for sensor placements. Future research in 

this area will focus on experimenting with more efficient and robust optimization 

techniques that can be utilized to determine optimal sensor locations on the structure. 

While the Craig-Bampton model order reduction technique worked well when applied in 

the context of load identification schemes, experimenting with several other well-

established model order reduction techniques and studying their effect on the load 

estimates is further suggested. 

Application of the load identification techniques developed in this thesis has been 

studied experimentally using a cantilevered beam and numerically using spring-mass 

system, cantilevered beam and other simple geometries where one or two sinusoidal 

loads are exciting the structure. Spring-mass systems are relatively simple to deal with 

than beams; complicated structures seem more amenable to load identification testing and 

implementation than simpler ones. The real interest of the proposed techniques lies in the 

case of complicated structures where complex loads are acting. Implementation and 

testing of the proposed approaches on complicated structures towards identification of 

multiple complex loads forms another potential area of research. 
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