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ABSTRACT

A NOVEL TRANSPORT BASED MODEL FOR WIRE MEDIA AND ITS
APPLICATION TO SCATTERING PROBLEMS

by

Ebrahim Forati

The University of Wisconsin–Milwaukee, 2014
Under the Supervision of Professor George W. Hanson

Artificially engineered materials, known as metamaterials, have attracted the interest of

researchers because of the potential for novel applications. Effective modeling of meta-

materials is a crucial step for analyzing and synthesizing devices. In this thesis, we focus

on wire medium (both isotropic and uniaxial) and validate a novel transport based model

for them.

Scattering problems involving wire media are computationally intensive due to the spa-

tially dispersive nature of homogenized wire media. However, it will be shown that using

the new model to solve scattering problems can simplify the calculations a great deal.

For scattering problems, an integro-differential equation based on a transport formulation

is proposed instead of the convolution-form integral equation that directly comes from

spatial dispersion. The integro-differential equation is much faster to solve than the con-

volution equation form, and its effectiveness is confirmed by solving several examples in

one-, two-, and three-dimensions. Both the integro-differential equation formulation and

the homogenized wire medium parameters are experimentaly confirmed. To do so, several

isotropic connected wire medium spheres have been fabricated using a rapid-prototyping

machine, and their measured extinction cross sections are compared with simulation re-

sults. Wire parameters (period and diameter) are varied to the point where homogeniza-

tion theory breaks down, which is observed in the measurements. The same process is

done for three-dimensional cubical objects made of a uniaxail wire medium, and their
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measured results are compared with the numerical results based on the new model. The

new method is extremely fast compared to brute-force numerical methods such as FDTD,

and provides more physical insight (within the limits of homogenization), including the

idea of a Debye length for wire media. The limits of homogenization are examined by

comparing homogenization results and measurement.

Then, a novel antenna structure is proposed utilizing an Epsilon Near Zero (ENZ) mate-

rial and the total internal reflection principle. The epsilon near zero material of the an-

tenna is realized by use of a wire medium which acts as an artificial plasma and exhibits

ENZ condition at a frequency called the plasma frequency. This will lead us the ques-

tion of whether or not the ENZ condition is realizable using spatially dispersive materials

(e.g. wire medium). To answer this question, the momentum-dependent permittivity for

a broad class of natural materials and wire-mesh metamaterials with spatial dispersion is

determined in real-space, and a new characteristic length parameter is defined, in addition

to the Debye length, which governs polarization screening. It is found that in the presence

of spatial dispersion the electric displacement does not vanish at the plasma frequency,

in general. However, conditions are investigated under which the permittivity can vanish

or be strongly diminished, even in the presence of spatial dispersion, implementing an

epsilon-near-zero material. The thesis will end with a chapter about homogenization of

graphene. Although it does not completely follow the subject of the thesis, the last chapter

shows another example of homogenization applications. In this last chapter, using peri-

odicity and homogenization, a hyperlens is realized for surface plasmons on graphene. In

general, such hyperlens cannot be realized without using periodic structures (metamate-

rials).
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Chapter 1

Introduction

1.1 Background and motivation

One of the most important steps for solving most of physical problems (if not all) is

to model the problem properly and efficiently. Having a model enables us to organize

the problem, make connections between different parts of the problem and math, use

other people’s investigation results, etc. In fact, finding precise and efficient models was

the aim of many researchers in the history of science. For example, in chemistry, great

scientists like Rutherford, Thomson and Bohr presented the well known atomic models

known by their names. Or, in electronics, a lot of effort have been done to model tran-

sistors and the hybrid model is an instance of them. Fortunately, in electromagnetics,

Maxwell’s equations along with a few other equations (usually three or four equations)

form a self sufficient model for most of the problems (if not all). It is worth noting

that these Maxwell’s equations are obtained experimentally and are considered as laws:

Faraday’s law, Ampere’s law, and Gauss’s law (in electricity and magnetism) and, usu-

ally, law’s are observed phenomena in nature and their exact reasons are not neccessarily

known to us. In fact, theorems and hypothesizes are proven starting from laws (which

are accepted to be true usually without knowing their reasons). Other examples of laws

are Coulomb’s and gravity laws (although the gravity law was generalized, or somehow

dissproved, by a general realtivity paper of Einstein). Minkowski’s form of Maxwell’s

equations are,

∇ · D = ρfree (1.1)

∇ · B = 0 (1.2)
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∇×H = J + jωD (1.3)

∇× E = −jωB (1.4)

where E and H are electric and magnetic field intensities, and D and B are electric and

magnetic displacement fields, respectively and J is the volume current density. Among

the above four equations, only two of them are linearly independent equations. Maxwell’s

equations, as mentioned before, need a few more equations to form a self sufficient model

for electromagnetic analysis. Usually, two constitutive relations are given to relate E, H,

D, and B inside a material. The simplest form of constitutive relations are for vacuum as

D = ε0E (1.5)

B = µ0H (1.6)

where ε0 and µ0 are physical constants called permittivity and permeability, respectively.

The value of µ0 is defined by the international standard organization as 4π× 10−7. Then,

ε0 is defined by the formula ε0 = 1
µ0c2

where c is the speed of light in vacuum which is

a fixed number in the international system of units (299,792,458). This number is also

used in defining meter as the unit of length. Originally, permittivity was used to relate

mechanical and electrical quantities as in Coulomb’s law. The other two equations which

are usually added to the above system is the continuity equation as

∇ · J = −jωρ (1.7)

and Ohm’s law as

J = σE (1.8)

where ρ is the volume charge density and σ is the conductivity. Ohm’s law relies on the

assumption that there is a linear relation between the electric field intensity and the current
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density and its unit can be obtained from the resistance unit (which is defined by the inter-

national system of units as ohm). Materials which show this property (i.e. satisfy (1.8))

are known as ohmic materials. The most famous ohmic materials are metals like copper

and silver and the most famous non ohmic materials are semiconductors like silicon and

germanium. Equations (1.1)-(1.8) form a self sufficient set of equations as it has six un-

known quantities and there are six independent equations. Unknown are E, H, D, B, J,

and ρ. The equations are two independent Maxwell’s equations, two constitutive equa-

tions, continuity equation and Ohm’s law. Among the above six equations, Maxwell’s

equation and the continuity equation are obtained from physical laws (note that the con-

tinuity equation is a form of conservation law) which are always true independent of the

material. Then, the challenge in modeling an electromagnetic problem is to define (or to

discover) three remaining material- or response-related equations. In the above example,

the three remaining equations are provided by defining two constitutive relations and an

Ohm’s equation. However, the constitutive relations can become complicated depend-

ing on the material. As an example, for a class of materials called BiIsoriopic (BI), the

constitutive relations are

D = ε0εrE + ξH (1.9)

Bav = ζE + µ0µrH (1.10)

where ξ and ζ are constants. Some subclasses of biisotropic materials are chiral materials

for which the constitutive relations are

D = ε0εrE +
(χ+ jκ)

c
H (1.11)

B =
(χ− jκ)

c
E + µ0µrH. (1.12)

We have several special cases:

• General BI medium: non-reciprocal (χ 6= 0), chiral (κ 6= 0);
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• Tellegen medium: non-reciprocal (χ 6= 0), non-chiral (κ = 0);

• Pasteur medium: reciprocal (χ = 0), chiral (κ 6= 0).

In general, the constitutive relations can be even more complicated than the examples

mentioned so far and they can include integro-differential terms. The parameters in the

constitutive relations can be spatially and/or temporally dispersive, which means that they

can be frequency and/or position dependent. They can also be direction dependent in

which case the parameters are usually expressed as tensors.

The process of finding the constitutive relations is a separate and well developed sub-

ject of research which usually starts from the microscopic structure of the materials con-

sisting of atoms and their electrons. The local quantities of the parameters of the electro-

magnetic model in the atomic scale are usually labeled as microscopic values and their

spatial average over a big enough area are usually called the macroscopic values. It is

much more convenient to ultimately eliminate the microscopic quantities from our anal-

ysis and work only with the macroscopic quantities which are measurable. This will lead

to the defining of some parameters properly in a constitutional relation form for each

material. This whole process is often called homogenization. After homogenization has

been done and the constitutive relations are defined for a material, we will no longer deal

with microscopic values. All we calculate as, say, electric field is a spatial average of the

microscopic electric field inside the material which is what is useful for us. However, this

process is useful only when the wavelength is much larger than the distances between

atoms in the material.

The same argument is true when there is a mixture of different materials for which

their dimensions are smaller than the wavelength. There are several theories by which the

mixture can be modeled by a continues homogenous material with a constitutive relation.

For example, in the following we briefly review Maxwell-Garrett theory which homoge-

nizes a mixture of particles with permittivity of εi in a host medium with permittivity of

εh.
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Maxwell-Garnett theory review

Homogenized effective medium parameters are defined to simplify calculations involving

a mixture of different materials. For low volume fractions of inclusions in a host medium

all such mixing formulas are equivalent. Maxwell-Garrett (MG) theory expresses the

effective permittivity of a composite medium in terms of the volume fraction of the inclu-

sions. The effective relative permittivity of a composite medium consisting of randomly-

oriented spheroidal inclusions having isotropic relative permittivity εp in a host medium

having isotropic relative permittivity εh is [9]

εeff = εh

1 +

Fv
3V εhε0

∑
j=a,b,c

αj

1− Fv
3V εhε0

∑
j=a,b,c

Njαj

 (1.13)

where ε0 is the vacuum permittivity, αj is the polarizability (Fm2), Nj is the dimension-

less depolarization factor, and Fv = ρ0V is the volume fraction of inclusions, where ρ0 is

the density of inclusions (m−3), V = 4πabc/3 is the inclusion volume, a = b are the semi

minor (prolate) and semi major (oblate) axes, and c is the semi major (prolate) and semi

minor (oblate) axis, as shown in Fig. 1.1. The polarizability and depolarization factors

are given by

αj = V εhε0
εp − εh

εh +Nj (εp − εh)
, (1.14)

Nc =
1− e2

p

2e3
p

ln

(
1 + ep
1− ep

− 2ep

)
, (1.15)

for a prolate spheroid (a = b < c), and

Nc =
1 + e2

o

e3
o

(
eo − tan−1 (eo)

)
(1.16)

for an oblate spheroid (a = b > c), where ep =
√

1− c2/a2, eo =
√
a2/c2 − 1, and

Na = Nb = (1−Nc) /2.
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Figure 1.1: Spheroid geometry.

If we consider a vertical electric field, then in the extreme needle (prolate, Nc = N‖ =

0, Na = Nb = N⊥ = 1/2) and disk (oblate, Na = Nb = N‖ = 0, Nc = N⊥ = 1) limits

the permittivity simplifies to

εeff = εh

(
1 +

Fv
3V εhε0

(
2α⊥ + α‖

)
1− Fv

3V εhε0
α⊥

)
, (1.17)

where α⊥ is the polarizability perpendicular to the long axis. Further, since α⊥is relatively

small (α⊥ � α‖), the second term in the denominator can often be ignored and

εeff = εh +
Fvα‖
3V ε0

= εh +
ρ0α‖
3ε0

, (1.18)

which is the usual Clausius-Mossotti dilute-limit form, where the factor of 1/3 is due to

the equiprobability of particle orientations. For spherical particles α⊥ = α‖ and this factor

is not present. Several comments on the validity of the Maxwell-Garnet effective permit-

tivity are in order. First, we should consider low volume fractions, e.g. Fv = 10−6−10−3,

such that mutual interactions among inclusions are negligible, assuming stable colloids.

In this range all effective medium formulations are equivalent, and the Maxwell-Garrett

formulation is appropriate. Second, it should be noted the Maxwell-Garrett effective per-

mittivity is independent of the actual size of the inclusions (for spheroids the dependence

is on the axial ratio, c/a), and, as such, is an unrestricted theory [10; 11] in the sense
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that the resulting effective permittivity can be used in the same manner as any dielectric

function. This is important since some of the homogenization theories are restricted in

the sense that they are applicable for modeling the mixture only for specific calculations

(e.g. only for reflection and transmission of wave calculationswave and not for wave ab-

sorption calculations). Extended effective medium formulations (typically formulated to

account for higher multipole effects), which depend on the actual size of the inclusions,

are restricted in their applicability, and generally cannot be used to compute absorption

[10; 11]. Third, the Maxwell-Garrett permittivity assumes that the inclusions are station-

ary. Prolate spheroids can rotate in an applied electric field via their permanent and/or

induced dipole moment [12], resulting in an anisotropic (and time-dependent) medium.

At the end, it is worth noting that Maxwell-Garnett theory is derived from the well known

Clausious-Masatti relation
ε− 1

ε+ 2
=

4π

3

∑
j

Njαj (1.19)

where αj is the polarizability of j’s particle andNj is what called the depolarization factor

and depends on the dimensions of the particle. In summary, by use of the Maxwell-Garnet

homogenization for a nonmagnetic material, a constitutive relation will be obtained as

D = ε0εeffE (1.20)

B = µ0H (1.21)

Wire medium and its homogenized permittivity

The homogenization process which we reviewed (Maxwell-Garrett) was for a random

positioned inclusions/atoms in a mixture. However, there are different homogenization

processes which are developed specifically for periodic structures. These homogenization

techniques were mainly developed to model materials with crystal structures. The general

idea of these homogenization techniques is to use the Block theorem to decompose the
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polarization response of the material into different Block waves. Then, in the limit that

the wavelength is much larger than the lattice constant, the zeroth order Block wave is the

dominant term and is used to obtain a constitutive relation as (1.20). If the wavelength is

in the order of the lattice constant, a different approach will be used which is one of the

subjects in photonics. This is depicted in Fig. 1.2.

Figure 1.2: The difference between homogenization (left) and photonic (right) techniques.

The homogenization of a periodic structure was the main idea of artificially structured

materials known as metamaterials (MTM). There are different definitions for the term

metamaterial among which we chose the following two:

1- “Metamaterials are defined as macroscopic composites having a man-made, three

dimensional, periodic cellular architecture designed to produce an optimized combina-

tion, not available in nature, of two or more responses to a specific excitation.” (by Rodger

M. Walser)

2- “A metamaterial is an engineered composite that exhibits superior properties not

observed in nature or in the constituent materials. The superior properties of a metamate-

rial are a result of their engineered constructs”. (DARPA’s US$ 40 million metamaterials

research program’s definition)

Both definitions share two conspicuous properties that MTMs should exhibit. Fist,

the properties should be different than the constituent materials properties. Second, the

properties should not be observed in nature.

The prefix “meta” comes from Greek and means “after” or “beyond”. There are
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many different applications for these materials including super lensing and subwavelength

imaging [13; 14; 15; 16; 17; 18], cloaking [19], shielding [20], and antenna applications

[21; 22].

One of the most well-known metamaterials is the isotropic connected wire medium

(ICWM) which is a square lattice of connected wires, as depicted in Fig. 1.3. ICWMs

can act as an artificial plasma with negative permittivity and a relatively low (e.g., GHz)

plasma frequency [8]. The basic concept of a wire medium as an artificial plasma has been

known since the 1960s [23; 24]. However, recent studies have demonstrated interesting

applications which were unknown before, as well as considerable complications arising

from their spatially-dispersive nature [25; 26].

Figure 1.3: Depiction of an isotropic connected wire medium having period a and wire
diameter d.

Consider an ICWM constructed from imperfectly-conducting wires characterized by

εm = 1 − ω2
m/ (ω (ω − jΓ)), where ωm and Γ are the plasma frequency and damping

frequency of the metal, respectively. When homogenization is appropriate (i.e., when

the wire period is much smaller than wavelength [9]), both conduction and polarization

effects can be contained in a single nonlocal relative permittivity [8],

ε (q, ω) = 1εh − κ

1− 1

q2 + l0

(
εhk2p
εm−εh

1
fv
− k2

h

)qq
 (1.22)
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where

κ =

(
k2

0

k2
p

− 1

εm − εh
1

fv

)−1

, (1.23)

fv = πr2/a2 is the volume fraction of the wires, r is the wire radius, a is the wire

period, kh = ω
√
µ0ε0εh = k0

√
εh is the wavenumber in the dielectric supporting the

wires, kp = ωp/c is the plasma wavenumber given by (kpa)2 ∼= 2π/ ln
(

a2

4r(a−r)

)
∼=

2π/
(
ln
(

a
2πr

)
+ 0.5275

)
; see [8],(11) for the exact expression, and l0 = 3/

(
1 + 2k2

p/β
2
1

)
,

where
1

β2
1

= 2
( a

2π

)2
∞∑
n=1

[
J0

(
2πr
a
n
)]2

n2
, (1.24)

and where J0 is the zeroth-order Bessel function. As discussed in [8], this expression is

very accurate below the effective plasma frequency, which, for εh ∼ 1 is

1

ω2
p,eff

= εh

(
1

ω2
mfv

+
1

k2
pc

2

)
. (1.25)

If εh differs considerably from unity the effective transverse permittivity is not Drude-like

and is given by a quadratic form obtained from setting the transverse permittivity to zero.

The isotropic wire medium permittivity (1.22) reduces to the simpler form [27],

ε (q, ω) = 1εh −
k2
p

k2
0

(
1− 1

q2 − l0k2
h

qq

)
(1.26)

when |εm| → ∞, i.e., as the wire conductivity becomes infinite.

A simpler form of wire medium is the uniaxial wire medium (UWM) as is shown in

Fig. 1.4.

In [28], the homogenized nonlocal relative permittivity is obtained for a uniaxial wire

medium with ε−negative rods as

ε (q) = εxxx̂x̂ + εxxx̂x̂ + εxx (q) x̂x̂, (1.27)

in which
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Figure 1.4: Depiction of a uniaxial wire medium.

εxx = εxx = 1 +
2

1
fV

(εm+εh)
(εm−εh)

− 1
, (1.28)

εzz (q) = 1 +
1

1
fV

1
(εm−εh)

− q2−q2z
β2
p

(1.29)

Note that in the above expressions permittivities are given in the spatial Fourier trans-

form domain which is defined as

F {f (r)} = F (q) =

∫
f (r) e−jq·rd3r, (1.30)

f (r) =
1

(2π)3

∫
F (q) ejq·rd3q. (1.31)

1.2 Thesis organization

This dissertation consists of seven chapters. Besides the introductory chapter which pro-

vided an overview of the electromagnetic model, homogenization in electromagnetics,
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wire medium as an artificial plasma, and its homogenized permittivity (constitutive rela-

tion) there are six more chapters as follows.

In chapter two, the drift diffusion model will be introduced for spatially dispersive

materials and specifically for wire medium. The equivalent (homogenized) parameters for

the isotropic connected wire medium and uniaxial wire medium will also be given. Then,

it will be shown how a scattering problem can be solved with much less computational

effort using the drift diffusion model rather than the conventional model. To reveal this,

the formulation for a scattering problem will be given using the conventional method (i.e.

using the permittivity of (1.29)) and will be compared with the drift diffusion formulation

for the same geometry. It will be seen that the conventional method leads to an integro-

differential equation with six-fold integrals while the drift diffusion method will lead to

an integro-differential equation with only three-fold integrals.

In chapter three, the drift diffusion model will be confirmed by measurement and the

finite difference time domain (FDTD) numerical method. To do this, the drift diffusion

model will be used to solve scattering problems involving 1-, 2-, and 3-D objects made

of an isotropic connected wire medium. Numerical results obtained based on the drift

diffusion method will be then compared with the measurement results and FDTD simula-

tion results. Then, cubical objects made of uniaxial wire medium will be considered and

their scattering cross sections will be calculated numerically based on the drift diffusion

model and will be compared with measurement results and FDTD simulation results. In

other words, both isotropic objects and anisotropic objects are studied to prove the drift

diffusion model. Fabrication process for both isotropic and anisotropic objects will be

discussed at the end of this chapter as well. After proving the drift diffusion model, the

effect of the different parameters of the wire medium (wires thickness, period, and num-

ber in the object) on the accuracy of the homogenization method are studied. This is

carried out by comparing the measurement results with the numerical results based on the

drift diffusion method (which is obtained based on a homogenization technique).
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In chapter four, an antenna is designed using the uniaxial wire medium as a material

which exhibits permittivity of near zero at the operating frequency. This epsilon near zero

condition has interesting applications which are mostly reported recently. In the beginning

of chapter four, there will be an introduction to epsilon near zero materials and their

applications. Besides using ENZ material, the proposed antenna benefits from the total

internal reflection principle enabling it to create different radiation patterns. Especially,

two of the radiation patterns called sum and difference patterns are very useful for radar

applications. The antenna is fabricated and its measured radiation pattern is compared

with the simulation results.

In chapter five, conditions will be studied under which the epsilon near zero is possible

for spatially dispersive materials. It will be shown in this chapter that the permittivity of

zero is not possible for a general excitation. Under some specific excitations the ENZ

can be exactly achieved. For a general excitation, ENZ cannot be realized using the wire

medium. This argument will be explained in detail in chapter five.

Chapter six can be considered as a separate metamaterial example which does not

relate to wire medium. This chapter is included to emphasize the beauty of applications

of periodic structures and metamaterials. A hyperlens is designed in this chapter using

graphene monolayer with a periodic conductivity. The hyperlens, designed for surface

plasmons, transfers perfect images overcoming the diffraction limit. In the end, chapter

seven summarizes the thesis conclusions in a few pages.
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Chapter 2

The drift diffusion model and its applications in

scattering problems [1]

Before describing the transport-based integro-differential equation (drift diffusion model),

in a section we describe what might be called the direct integral equation method for non-

local materials, where we use the term “direct” since it results from the basic definition

of nonlocal response.

2.1 The direct integral equation method for scattering

problems

We use the volume equivalence principle to replace a nonlocal medium (characterized by

σ (r− r′) and/or relative permittivity ε (r− r′) and having domain Ω) embedded in an

infinite local medium characterized by ε1, σ1 with a homogeneous space characterized by

ε1, σ1 but having equivalent volume conduction (Jc) and polarization (Jp) currents in the

domain Ω, as shown in Fig. 2.1. Note that although the volume equivalence principle

is usually applied to local and linear materials, it is easy to show that it applies to very

general nonlocal and even nonlinear materials [29]. Although we use the material param-

eters for a translationally invariant medium, the additional boundary condition described

below rigorously accounts for the material boundary [30].

For example, assume the case of a material having a nonlocal conduction and polar-

ization response, Jc(q) = (σ(q)− σ1)E(q) and Jp(q) = jωε0 (ε(q)− ε1)E(q), where

we assume the spatial transform pair r ↔ q. The corresponding space-domain relations

are
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Figure 2.1: Volume equivalence principle for nonlocal materials. Left side: the origi-
nal problem of a nonlocal medium having volume Ω immersed in a local background
medium. Right: the equivalent problem of a homogeneous local medium having, within
the volume Ω, nonzero polarization and conduction currents.

Jc (r) =

∫
(σ (r− r′)− σ1δ (r− r′))E (r′) dΩ′, (2.1)

Jp (r) = jωε0

∫
(ε (r− r′)− ε1δ (r− r′))E (r′) dΩ′, (2.2)

where (2.1) is a generalized ohm’s law for the effective conduction response and (2.2)

gives a similar relationship for the effective polarization response. The relationship be-

tween current and field is given in terms of a three-fold integral,

E (r) = −jωµ
∫

Gee (r, r′) •J (r′) dΩ′, (2.3)

where Gee is the dyadic Green’s function as

Gee (r, r′) =

{(
3R̂R̂− I

)( 1

k2R2
− 1

jkR

)
−
(
R̂R̂− I

)} e−jkR

4πR
− L

δ (r− r′)

k2

(2.4)

where R = r − r′. In the volume integral in (2.3), if we find the principal value of

the integral by excluding a disc with thickness 2δ around point r inside the sphere of

radius asphere, the integrals become
(∫ r−δ

0
+
∫ asphere
r+δ

) ∫ π
0

∫ 2π

0
...dϕdθdr, and the depolar-

izing dyadic will be [31] L = r̂r̂.
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Then, the convolution-type integral equations to be solved are

Jc (r) =

∫
(σ (r− r′)− σ1δ (r− r′)) (2.5)

×
[(
−jωµ

∫
Gee (r′, r′′) •Jeq (r′′) dΩ′′

)
+ Ei (r′)

]
dΩ′

and

Jp (r) = jωε0

∫
(ε (r− r′)− ε1δ (r− r′)) (2.6)

×
[(
−jωµ

∫
Gee (r′, r′′) •Jeq (r′′) dΩ′′

)
+ Ei (r′)

]
dΩ′

for all r ∈ Ω, where Jeq = Jc + Jp.

Equations (2.5) and (2.6) are what we term the direct convolution form integral equa-

tions, since they arise directly from the convolution forms (2.1)-(2.2). These involve

computationally intensive six fold integrals. Furthermore, determining the space-domain

material parameters σ (r) and ε (r) from the momentum representations σ (q) and ε (q)

represents another three-fold integration unless the inversion to the space domain can be

performed analytically. In the absence of that ability, the IEs involve nine-fold integrals,

which may be impossible to compute from a practical standpoint.

It is worth noting that in the much simpler local isotropic case we have Jc(r) =

(σ − σ1)E(r) and Jp(r) = jωε0 (ε− ε1)E(r), such that

Jc (r)

σ − σ1

= −jωµ
∫

Gee (r, r′) •Jeq (r′) dΩ′ + Ei (r) (2.7)
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and
Jp (r)

jωε0 (ε− ε1)
= −jωµ

∫
Gee (r, r′) •Jeq (r′) dΩ′ + Ei (r) (2.8)

for all r ∈ Ω. These can simply be added together to form a single, three-fold IE,

Jeq (r)

σc

= −jωµ
∫

Gee (r, r′) •Jeq (r′) dΩ′ + Ei (r) , (2.9)

where σc = (σ − σ1) + jωε0 (ε− ε1) is the combined composite complex conductivity

that describes all conduction and polarization effects. Perhaps more often, (2.9) is ex-

pressed in terms of a combined effective relative permittivity εc = ε−ε1 +(σ − σ1) /jωε0

as

E (r) =

(
ω2µε0εc

∫
Gee (r, r′) •E (r′) dΩ′ + Ei (r)

)
, (2.10)

for all r ∈ Ω, which is the usual volume integral equation for local penetrable scatterers

[32].

Returning to the nonlocal case, we consider an ICWM constructed from imperfectly-

conducting wires characterized by εm = 1 − ω2
m/ (ω (ω − jΓ)), where ωm and Γ are

the plasma frequency and damping frequency of the metal, respectively. When homog-

enization is appropriate (i.e., when the wire period is much smaller than wavelength [9]

), both conduction and polarization effects can be contained in a single nonlocal relative

permittivity [8],

ε (q, ω) = 1εh − κ

1− 1

q2 + l0

(
εhk2p
εm−εh

1
fv
− k2

h

)qq
 (2.11)

where

κ =

(
k2

0

k2
p

− 1

εm − εh
1

fv

)−1

, (2.12)

fv = πr2/a2 is the volume fraction of the wires, r is the wire radius, a is the wire

period, kh = ω
√
µ0ε0εh = k0

√
εh is the wavenumber in the dielectric supporting the

wires, kp = ωp/c is the plasma wavenumber given by (kpa)2 ∼= 2π/ ln
(

a2

4r(a−r)

)
∼=
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2π/
(
ln
(

a
2πr

)
+ 0.5275

)
; see [8]-(11) for the exact expression, and l0 = 3/

(
1 + 2k2

p/β
2
1

)
,

where
1

β2
1

= 2
( a

2π

)2
∞∑
n=1

[
J0

(
2πr
a
n
)]2

n2
, (2.13)

and where J0 is the zeroth-order Bessel function. As discussed in [8], this expression is

very accurate below the effective plasma frequency, which, for εh ∼ 1 is

1

ω2
p,eff

= εh

(
1

ω2
mfv

+
1

k2
pc

2

)
. (2.14)

If εh differs considerably from unity the effective transverse permittivity is not Drude-like

and is given by a quadratic form obtained from setting the transverse permittivity to zero.

The isotropic wire medium permittivity (2.11) reduces to the simpler form [27]

ε (q, ω) = 1εh −
k2
p

k2
0

(
1− 1

q2 − l0k2
h

qq

)
(2.15)

when |εm| → ∞, i.e., as the wire conductivity becomes infinite. The direct (conventional)

method would consist of determining ε (r) and using that in the six-fold IE (2.6); it ap-

pears that scattering from three-dimensional wire media has not been considered, likely

because of this complication.

Note that the permittivity of (2.11) is given in the Fourier transform domain and taking

its inverse Fourier transform will lead to

ε (r)

ε0
= (εh − κ) δ (r) I− κ

{
(3r̂r̂− I)

(
1

r2
− α

ir

)
− α2r̂r̂

}
e−jαr

4πr
. (2.16)

where δ (r) is the Dirac delta function.



19

2.2 Integro-differential equation - the drift-diffusion ap-

proach

In [1] a transport treatment of a nonlocal wire medium was developed, leading to a drift

diffusion equation that relates conduction current, electric field, and charge density as

Jc (r) = σE (r)−D∇ρc (r) , (2.17)

in which σ is the conductivity and D is the diffusion parameter. Although the material

parameters σ andD are wavevector-independent, (2.17) is a nonlocal expression since the

gradient samples the spatial region near the point r [33].

The drift-diffusion equation originates from the Boltzmann’s equation which is the

model that governs the evolution of perfect gases in kinetic theory,

∂fe
∂t

+ Ve · ∇rfe −
e

~
(E (r, t) + Ve ×B (r, t)) · 5kfe =

fe − fe,0
τe

(2.18)

where fe = fe (r,k,t) is the probability of finding an electron at position r(t) at time t

and having the momentum k(t).

The method to derive macroscopic (configuration space) variables from the micro-

scopic (6-dimensional phase space) distribution function is to take velocity moments.

The continuity equation comes from the zeroth moment of Boltzmann’s equation,

∂ρ (r, t)

∂t
+∇r · Jcond (r, t) = 0 (2.19)

which is an example of a conservation law

∂F

∂t
+∇r ·G = 0 (2.20)
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where F is the density of a physical quantity and G is its flux.

Transport equation comes from the first moment of Boltzmann’s equation

nαmα
∂Vα

∂t
+∇ ·Pα (r, t) + nαmαVα · ∇Vα − qαnα 〈E + Vα ×B〉 = (2.21)

mα

∫
v

(
∂fα
∂t

)
c

d3v

The second-order contributions ∇ · Pα (r, t), Vα · 5Vα arise from terms containing

the product VV or V ·V. The divergence P contains information of inhomogeneity and

viscosity of the plasma. Boltzmann’s equation is semiclassical and its quantum parts

come from momentum (~k) and Fermi-Dirac distribution

J = qe
∑∫

V (k) f (E (k))
d3k

4π3
. (2.22)

Linearization of transport equation yields to

(
∂

∂t
+

1

τ

)
Jcond (r, t) +

kBT

m
∇ρ (r, t)− q2

m
NE (r, t) = 0 (2.23)

where

Jcond (r, t) = qNV (r, t) , (2.24)

ρ = qn (r, t) . (2.25)

Therefore, the drift diffusion equation will be obtained as

J (r, ω) = σ (ω)E (r, ω)−D (ω)∇ρc (r, ω) , (2.26)
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D (ω) =
kBT

m (jω + γ)
, (2.27)

σ (ω) =
ne2

m (jω + γ)
. (2.28)

For the ICWM, the equivalent conductivity and diffusion parameters are [1]

σ = σICWM = jωε0

(
1

(εm − εh) fV
− ω2

β2
pc

2

)−1

, (2.29)

D = DICWM = jω

[
l0

(
εhβ

2
p

(εm − εh) fV
− εhω

2

c2

)]−1

. (2.30)

In this formulation, the response of the wire medium is the conduction plus polarization

response, and if the wires are in the same material as the background environment (εh =

ε1) there is no polarization response, in which case, using (2.17), Maxwell’s equations,

and continuity equation, we obtain

Jc (r, ω) = σ

[
−jωµ

∫
Gee (r, r′) •Jc (r′) dΩ′ (2.31)

+Ei (r)
]

+
D

jω
∇∇ •Jc (r)

for all r ∈ Ω. We refer to this as the drift-diffusion (DD) result. This integro-differential

formulation involves only three-fold integrals, and differentiation. For solutions involving

the expansion of the conduction current in a set of basis functions, taking the derivative of

the basis functions is very easy to implement; obviously, the chosen basis function should

be twice-differentiable.

If the wires are supported by a material having permittivity different than the back-

ground permittivity, then we need to solve the coupled DD system [1]
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Jc (r) = σ
[
Esca (r) + Ei (r)

]
+
D

jω
∇∇ •Jc (r) , (2.32)

Jp (r) = jωε0 (ε (r)− 1)
[
Esca (r) + Ei (r)

]
, (2.33)

for all r ∈ Ω, where

Esca (r) = −jωµ
∫

Gee (r, r′) • (Jc (r′) + Jp (r′)) dΩ′. (2.34)

In terms of complexity, these are three-fold equations, although they are coupled as also

occurs for the local case of both permittivity and permeability contrast [34]. Note that

these equations reduce to the usual local integral equations when D = 0.

In solving both the convolution-form IEs (2.5)-(2.6) and the transport-based DD form

(2.31) or (2.32)-(2.33) the additional boundary condition that needs to be enforced is (see,

e.g., [8; 1; 28])

Jc • n̂ = 0, (2.35)

where n̂ is the unit vector normal to the surface of the region Ω.
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Chapter 3

Examples of scattering problems using the DD approach

[2; 3]

In the following, first we solve one-dimensional and two-dimensional isotropic exam-

ples involving both polarization and conduction current. Then, in the three-dimensional

sphere examples we assume (εh = ε1) and therefore we only need to consider the con-

duction current, to avoid unnecessary complications and concentrate on the validation of

the method. For the one-dimensional example, the new approach leads to a closed form

analytical solution even though there are coupled polarization and conduction currents.

In the two dimensional example, we show that for a two-dimensional wire medium slab

the new approach gives the same results as the analytical solution in [8]. In the isotropic

three dimensional example, we apply the formulation to the three-dimensional problem

of a sphere of wire medium with different size and wire parameters, and we compare

the result with a nonlocal Mie theory and measurement. The strong advantage of this

new formulation is that for geometries other than spheres the integro-differential formu-

lation yields a tractable method only involving three-fold integrals (of course, nonlocal

Mie theory can only be used to validate the sphere geometry). In the anisotropic three

dimensional example, we consider different cubical object with air as their host medium

(therefore, only the conduction current is involved).

In the one- and two-dimensional examples, we have used the following identities

which are obtained from the Leibniz rule

∂2

∂z2

∫ L

0

e−jkz |z−z
′|

2jkz
J (z′) dz′ =

(
−k2

z

) ∫ L

0

e−jkz |z−z
′|

2jkz
J (z′) dz′ − J (z) , (3.1)
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∂

∂z

∫ L

0

e−jkz |z−z
′|

2jkz
J (z′) dz′ = −1

2

[∫ z

0

e−jkz |z−z
′|J (z′) dz′ −

∫ L

z

e−jkz |z−z
′|J (z′) dz′

]
.

(3.2)

3.1 One dimensional isotropic example

A one-dimensional example based on the new transport formulation was considered in

[1], and here we briefly summarize the result, as well as compare with a different method

of solution. Consider a slab of ICWM extending to infinity in the x- and y-directions, and

extending from -L to L in the z direction, as shown in Fig. 3.1.

Figure 3.1: Wire medium slab with host relative permittivity of εr in air.

We assume a quasi-static incident field Einc which is constant and z-directed; this can

be considered to be the field between capacitor plates far-removed from the slab. The

wires are immersed in a dielectric host medium having relative permittivity εr.

Reducing (2.32)-(2.34) to one dimension,

Jc (z) = σ
[
Esca (z) + Ei (z)

]
+
D

jω

d2

dz2
Jc (z) , (3.3)
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Jp (z) = jωε0 (εr − 1)
[
Esca (z) + Ei (z)

]
. (3.4)

Using (70) and (71) of [1], (2.34) simplifies to

Esca (z) = −Jc (z) + Jp (z)

jωε0

(3.5)

and, upon substituting (3.5) into (2.32) and (2.33) and simplifying,

d2

dz2
Jc −

σ + jωε0εr
ε0εrD

Jc +
jωσ

εrD
Einc = 0. (3.6)

The solution of (3.6) subject to the boundary condition Jc (−L) = Jc (L) = 0 is (3.7),

from which (3.8) is found by use of the continuity equation.

Jc(z) =
jωσε0

σ + jωε0εr

1−
cosh

(√
σ+jωε0εr
ε0εrD

z
)

cosh
(√

σ+jωε0εr
ε0εrD

L
)
Einc, (3.7)

ρ(z) =
σε0

σ + jωε

√
σ + jωε

Dε

sinh

(√
σ+jωε
Dε

z

)
cosh

(
σ+jωε
Dε

L
) Einc, (3.8)

in which σ and D are given by (2.29) and (2.30), respectively. For perfect electrical

conductor (PEC) wires, (3.7) and (3.8) simplify to

Jc(z) =
jωε0β

2
p

β2
p − εrβ2

0

1−
cosh

(√(
β2
p − β2

0εr
)
l0z
)

cosh
(√(

β2
p − β2

0εr
)
l0L
)
Einc, (3.9)

ρ(z) = β2
pε0

√
l0

β2
p − β2

0εr

sinh
(√(

β2
p − β2

0εr
)
l0z
)

cosh
(√(

β2
p − β2

0εr
)
l0L
)Einc. (3.10)

There does not seem to be a previous one-dimensional wire medium case with which

to compare this solution. However, to demonstrate the applicability of this method we can

consider a different diffusive (i.e., spatially-dispersive) material, an n-type semiconductor.
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This has been considered in [7] under the same excitation as in Fig. 3.1. There, the

solution was obtained by numerically solving coupled transport-Poisson (TP) equations.

Here we consider the same material except using the proposed drift-diffusion model. For

a semiconducting slab, (3.7) and (3.8) are valid using [33]

D =
kBT

me (jω + γ)

[
Am2

C

]
, (3.11)

σ =
Ne2

me (jω + γ)

[
S

m

]
, (3.12)

where me is the effective electron mass, N is the donor doping density, T is temperature

in Kelvin, kB is Boltzmann’s constant, and γ is the damping frequency. We consider a

slab having thickness L = 100 nm and f = 1 THz, with εr = 11.9, γ = 4.6 THz,

me = 0.26me0 (me0 is the free-space electron mass), T = 300 K, and Einc = 100 V/m,

which corresponds to the example in [7].

Figure 3.2: Real part of the charge distribution inside a nonlocal semiconductor slab
for three different dopant densities using the drift diffusion formulation and the coupled
transport-Poisson formulation [7].

Fig. 3.2 shows the real part of the charge distribution for three different dopant con-

centrations using (3.8) and its comparison with the results reported in [7] using a numeri-

cal solution of the coupled transport-Poisson equations. It is evident that the two methods
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are in complete agreement.

3.2 Two dimensional isotropic example

As a two dimensional example, consider the geometry depicted in Fig. 3.3, where a

TM-polarized wave is obliquely incident with angle of θi on a slab of wire medium with

equivalent parameters D and σ.

Figure 3.3: Wire medium slab infinite in the x and y directions.

After reducing (2.31) to two dimensions and using the collocation method we can find

the induced current inside the slab and thus the scattered (reflected and transmitted) field.

The reduced 2D equations are

σEi
y (z) =

{
1 +

Dk2
y

jω

}
Jy(z)− σky

ωε0

∂

∂z

L∫
0

g (z, z′) Jz (z′) dz′

+
jσk2

z

ωε0

L∫
0

g (z, z′) Jy (z′) dz′ − Dky
ω

∂

∂z
Jz (z) (3.13)

σEi
z (z) = −Dky

ω

∂

∂z
Jy (z)− σky

ωε0

∂

∂z

L∫
0

g (z, z′) Jy (z′) dz′+
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jσ

ωε0

(
k2 +

∂2

∂z2

) L∫
0

g (z, z′) Jz (z′) dz′ +

{
1− D

jω

∂2

∂z2

}
Jz (z) (3.14)

where

g(z, z′) = g(z − z′) =
e−jkz |z−z

′|

2jkz
, (3.15)

ky = k0sin (θi) , kz = k0cos (θi) =
√
k2

1 − k2
y. (3.16)

These were solved using the basis functions

Jy (z) =
N∑
n=1

ansin
(
n
π

L
z
)

+
N∑
n=0

bncos
(
n
π

L
z
)
, (3.17)

Jz (z) =
N∑
n=1

cnsin
(
n
π

L
z
)
. (3.18)

Figure 3.4: Comparison of the transmission coefficient of a wire medium slab using the
integro-differential drift diffusion method and the wave expansion method of [8].

Fig. 3.4 shows the transmission coefficient as a function of ky/k0 for a slab thickness

of 276 nm, f = 76.1 THz, εh = 1, wire period a = 276 nm, r = 8.25 nm, and wire per-

mittivity εm = −810− j50 using the drift diffusion formulation and the wave expansion
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method detailed in [8]; that approach [8] was to use (1.22) for permittivity and to define

induced and scattered fields inside and outside of the slab with unknown coefficients, and

match the boundary conditions. Note that the wave expansion method is only useful for

regions having simple boundaries.

As a more general example, let us assume that the host dielectric of the wire medium

has permittivity εr = 11.9. In this case we need to solve the coupled system of equations

(2.32)-(2.34).

For the case of a conduction and polarization response, the reduction of (2.32)-(2.34)

to two-dimensions is

Jeqy (z)− J cy (z)

jωε0 (ε− ε1)
= Ei

y (z) +

(
k2

1 − k2
y

)
jωε0ε1

L∫
0

g (z, z′) Jeqy (z′) dz′

+
qy

ωε0ε1

∂

∂z

L∫
0

g (z, z′) Jeqz (z′) dz′ (3.19)

Jeqz (z)− J cz (z)

jωε0 (ε− ε1)
= Ei

z (z) +
ky

ωε0ε1

∂

∂z

L∫
0

g (z, z′) Jeqy (z′) dz′

+
1

jωε0ε1

(
k2

1 +
∂2

∂z2

) L∫
0

g (z, z′) Jeqz (z′) dz′ (3.20)

where Jeq = Jc + Jp. The basis functions used are

J cy =
N∑

n=−N

aye
jn π

L(z−L2 ), (3.21)

J conz =
N∑

n=−N

aze
jn π

L(z−L2 ). (3.22)

The internal electric fields of this slab are shown in Figs. 3.5 and 3.6, which demonstrate

that the presented method is in complete agreement with the method of [8].
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Figure 3.5: Internal field Ey of a wire medium slab using the integro-differential drift
diffusion method and the wave expansion method of [8].

3.3 Three dimensional isotropic example

The two-dimensional example has been solved in the past using other methods. The most

significant aspect of the presented formulation is the ability to solve three-dimensional

wire-medium problems, which have not been previously treated. Towards this end, we

consider spherical geometries since they are perhaps the simplest three-dimensional case,

and they also admit a non-local Mie solution [35] which can be used for comparison. Of

course, the presented integro-differential formulation is applicable to three-dimensional

objects having arbitrary geometries, whereas the nonlocal Mie solution we use for com-

parison is only applicable to spheres.

3.3.1 Formulation

Any realizable electromagnetic vector quantity inside a nonlocal material can be ex-

panded in terms of

M (r,m, n) = ∇× r̂ψH (r,m, n) , (3.23)
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Figure 3.6: Internal field Ez of a wire medium slab using the integro-differential drift
diffusion method and the wave expansion method of [8].

N (r,m, n) =
1

ktr

∇×∇× r̂ψE (r,m, n) , (3.24)

L (r,m, n) = ∇ψρ (r,m, n) , (3.25)

in which

ψH,E (r,m, n) = jn (ktrr)

 cos (mϕ)

sin (mϕ)
Pm
n (cos (θ)) (3.26)

ψρ (r,m, n) = jn (αr)

 cos (mϕ)

sin (mϕ)
Pm
n (cos (θ)) (3.27)

ktr = ω

√
µε0

(
ε− j σ

ωε0

)
, (3.28)

α = j

√
σ + jωε0ε

ε0εD
, (3.29)

where Pm
n (x) is the associated Legendre polynomial and r is the radial vector in spherical
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coordinates; r = |r|.

These set of functions form a complete set in L2 (Ω) space where Ω = [0, L]3 ⊂ R3.

The L functions can be set to zero for expansions of magnetic fields, but are necessary

for electric fields and conduction current expansions for r ∈ Ω. Here we include a brief

discussion on the validity of the above expansion.

In [32] it is shown that if ψρ, ψE,H are eigenvectors of the scalar Helmholtz equation

with eigenvalues of α and ktr, respectively, the M, N, and L functions as in (3.23)-(3.25)

will form a complete set of functions in their respective space of functions satisfying the

same boundary conditions (note that the pilot vector is set to be r̂). Also, [32]

∇×∇× F− k2
trF = 0; F = M, N (3.30)

L = ∇ψρ; ∇2ψρ − α2ψρ = 0. (3.31)

Therefore, we need to show

α = −σ + jωε0ε

ε0εD
(3.32)

k2
tr = ω2µε0

(
ε− j σ

ωε0

)
. (3.33)

Starting from the drift diffusion equation (2.30) and using Maxwell’s equations, it is

straightforward to show

∇2ρ+
σ + jωε0ε

ε0εD
ρ = 0, (3.34)

∇×∇×H− ω2µε0

(
ε− j σ

ωε0

)
H = 0, (3.35)
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∇×∇× E− ω2µε0

(
ε− j σ

ωε0

)
E = jωµD∇ρ. (3.36)

By comparing (3.35) with (3.30), it is evident that ktr is (3.33) since H can be expanded

in terms of M and N functions.

If we substitute L for E in (3.36) (we can do this since the M and N functions in the

E expansion make the left hand side of (3.36) zero),

L =
D

σ + jεω
∇ρ, (3.37)

and using (3.31),

∇ψρ =
D

σ + jεω
∇ρ (3.38)

so that

ψρ ∝ ρ. (3.39)

Comparing (3.39), (3.34), and (3.31) results in (3.32).

Now, we consider an isotropic wire medium with an air host, and solve (2.31).

Assuming that the incident field is y-directed and is propagating in the z direction, we

may simplify (3.26) and (3.27) as [29]

ψH,E (r, n) = jn (ktrr) sin (ϕ)P 1
n (cos (θ)) , (3.40)

ψρ (r, n) = jn (αr) cos (ϕ)P 1
n (cos (θ)) . (3.41)

Therefore, a complete expansion for the conduction current is

Jc (r) =
∑
n

(c1nM (r, n) + c2nN (r, n) + c3nL (r, n)) . (3.42)

After inserting (3.42) into (2.31) and using the point matching technique, the unknown
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expansion coefficients cin, i = 1, 2, 3, can be found.

Since the basis functions in (3.42) are obtained so that they satisfy the wave equation

for nonlocal materials, we can solve (2.31) for one component (for example, the θ or ϕ

component) to obtain the unknown coefficients in (3.42). Here we pick the θ directed

component for two reasons:

1- none of the terms in (2.31) will be set to zero, and

2- the depolarizing dyadic contribution vanishes (as shown below), simplifying the

calculation.

The dyadic Green’s function is

Gee (r, r′) =

{(
3R̂R̂− I

)( 1

k2R2
− 1

jkR

)
−
(
R̂R̂− I

)} e−jkR

4πR
− L

δ (r− r′)

k2

(3.43)

where R = r − r′. In the volume integral in (2.31), if we find the principal value of

the integral by excluding a disc with thickness 2δ around point the r inside the sphere of

radius asphere, the integrals become
(∫ r−δ

0
+
∫ asphere
r+δ

) ∫ π
0

∫ 2π

0
...dϕdθdr, and the depolar-

izing dyadic will be [31] L = r̂r̂, and therefore L •Jθc (r) = 0.

Plugging (3.42) into (2.31) and simplifying, we have

Jc (r) • θ̂+
∑
n

(
c3n

Dα2

jω
L (r, n) • θ̂

)
+jωµσ

(∫
θ̂ •Gee (r, r′) •Jc (r′) dV ′

)
= σEθ

i (r, θ)

(3.44)

in which

M (r, n) =
cos (ϕ)

sin (θ)
P 1
n (cos (θ)) jn(ρ)θ̂ − sin (ϕ)

dP 1
n (cos (θ))

dθ
jn(ρ)ϕ̂, (3.45)

N (r, n) =
jn(ρ)

ρ
cos (ϕ)n (n+ 1)Pn (cos (θ)) r̂+ (3.46)
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cos (ϕ) dP 1
n (cos (θ))

ρdθ

d

dρ
[ρjn(ρ)] θ̂ − sin (ϕ)P 1

n (cos (θ))

ρsin (θ)

d

dρ
[ρjn(ρ)] ϕ̂,

L (r, n) =
d

dρt
[jn(ρt)] cos (ϕ)P 1

n (cos (θ)) r̂− (3.47)

jn(ρt)sin (ϕ)

ρtsin (θ)
P 1
n (cos (θ)) ϕ̂+

1

ρt
jn(ρt)cos (ϕ)

dP 1
n (cos (θ))

dθ
θ̂,

ρ = ktrr, ρt = αr. (3.48)

The obtained current is then used to calculate the scattered field using (2.34). The

extinction cross section σext of the object can be found using the optical theorem [36],

which expresses the extinction cross section of an arbitrarily shaped object in terms of the

forward scattered electric field,

σext =
4π

k2
Im

(
kr

E0ejkr
E‖s

)
, (3.49)

where E
‖
s is the far scattered field in the forward direction co-polarized with the incident

field, and k is the wavenumber in the host medium external to the scatterer. The optical

theorem is usually proved for objects consisting of local materials, but it is simple to

repeat the same derivation for nonlocal materials.

Since we are going to compare results with Mie theory results too, the obtained the

nonlocal Mie coefficients based on our parameters. The nonlocal Mie coefficients from

[35] are

an =
−jn (θh) θtrj

′
n (θtr) + jn (θtr) θhj

′
n (θh)

h
(+)
n (θh) θtrj′n (θtr)− jn (θtr) θh

[
h

(+)
n (θh)

]′ (3.50)
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bn =
−εhjn (θh)

(
[θtrjn (θtr)]

′ + gn
)

+ εtrjn (θtr) [θhjn (θh)]
′

h
(+)
n (θh) εh

(
[θtrjn (θtr)]

′ + gn
)
− jn (θtr) εtr

[
θhh

(+)
n (θh)

]′
in which

gn =
n (n+ 1) jn (θtr) jn (q0asphere)

q0aj′n (q0asphere)

(
εtr
εb
− 1

)
, (3.51)

q0 =

√
σ + jωε0εb
−Dε0εb

; εtr = εb − j
σ

ωε0

(3.52)

where θtr = k0A
√
εtr, θh = k0A

√
εh, and asphere is the radius of the sphere, εb is the

relative permittivity of the dielectric host environment of the wires, εh is the relative

permittivity of the medium surrounding the sphere, jn is the spherical Bessel function,

and h(+)
n is the spherical Hankel function of the second kind. The usual local Mie theory

is obtained by setting gn = 0.

3.3.2 Simulation and measurement results

Six different wire medium spheres are examined in this section, as shown in Figs. 3.7-3.9.

For convenience, we designate each sphere with a three part label D(#1)a(#2)d(#3) in

which #1 is the sphere diameter, #2 is the wire period, and #3 is the wire diameter, all in

millimeters. For example, D50a4d1 indicates a sphere with diameter 50 mm, wire period

4 mm, and wire diameter 1 mm.

Note for purposes to be discussed later we fabricated two different D50a12d2 spheres

as shown in Fig. 3.9. To distinguish between these we labeled one of them with an extra

“C” at its end (i.e., D50a12d2C), which indicates that it has wires crossing at the center.

Fig. 3.9 clarifies the difference between D50a12d2 and D50a12d2C.

The experimental configuration is shown in Fig. 3.10, consisting primarily of an
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Figure 3.7: Wire medium spheres fabricated using a rapid prototyping machine. All
spheres have 50 mm diameter except the far-right sphere, which has diameter 25 mm.

Figure 3.8: A close-up of the 50 mm and 25 mm wire medium spheres, both having period
4 mm.

anechoic box (C), two x-band horns (A), and an E8361A Agilent network analyzer (D).

A Styrofoam pedestal (F) is used to support the sphere, and strings (B) are used to align

the object between the horns. After measuring the forward scattered field using a 25

mm diameter brass sphere for calibration, the optical theorem (3.49) is used to find the

extinction cross section, which is the same as the scattering cross section in our case

since the spheres are considered lossless. In order to validate the measurement set-up,

we considered a variety of metal and plastic spheres of different sizes. In all cases very

good agreement with the known extinction cross section was found (one such validation

is shown in Fig. 3.11).

Figure 3.11 shows the result of the measurement for the D50a4d1 sphere, and its

comparison with the integro-differential DD method (2.31) using eight expansion terms,
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Figure 3.9: A close-up of the D40a12d2 and D40a12d2C spheres. Both have the same
diameter, period, and wire thickness, but the latter sphere (C) has wires crossing at the
center, whereas the other sphere does not.

Figure 3.10: Measurement set-up. A: x-band horn antennas, B: strings for alignment, C:
microwave absorbers, D: E8361A Network analyzer, E: height adjustment, F: WM sphere
on a Styrofoam pedestal.

a nonlocal Mie theory solution [35] (some simple algebra allows us to express the param-

eters in [35] in terms of the diffusion constant and conductivity used here. For conve-

nience, the final expressions for the nonlocal Mie coefficients are given in Appendix E),

and a finite-difference time domain commercial code (Lumerical, [37]). We also show

the result from a local Mie theory (setting D = 0), which is not expected to be accurate

but which we include just to show the influence of spatial dispersion. In Fig. 3.11 we also

include, as validation of the measurement procedure, a comparison between measurement

and Mie theory [29] for an ABSplus solid plastic sphere (which is a local material), also

fabricated by the rapid prototyping machine. Measurements are only shown for 7 − 14
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GHz, which is the approximate range of the horn antennas. Results are normalized by

twice the geometric cross-sectional area of the spheres (asphere is the radius of the sphere),

which is the high-frequency asymptotic value for PEC spheres [29].

Figure 3.11: Normalized measured and theoretical extinction cross sections of the
D50a4d1 wire medium sphere and of a plastic sphere.

From Fig. 3.11 it can be seen that the integro-differential DD formulation is in ex-

cellent agreement with the nonlocal Mie result (which can be considered to be an exact

analytical solution for the homogenized problem), and these are in good agreement with

the measurement. The local treatment of the wire medium (e.g., ignoring the wavevector

dependence of the permittivity, or, equivalently, setting the diffusion parameter D = 0) is

seen to be in poor agreement with the nonlocal theory and measurement, highlighting the

importance of spatial dispersion for this problem.

The FDTD commercial package was run on a 142 node computer cluster for the actual

wire mesh sphere. However, it did not generate very accurate results, although great effort

was made to obtain a convergent solution. Extensive numerical tests of spheres at various

frequencies and for different wire periods showed that in some cases the FDTD solution

more closely resembled the local solution, and in other cases it more closely resembled the

nonlocal solution. The FDTD solution was often between the local and nonlocal results.

We are not sure why the FDTD solution was inaccurate, although it can be noted that

the geometry is relatively complex. Lumerical technical support indicated that our FDTD
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model was correct, and should produce accurate results. Grid spacing was 0.1mm, which

is 0.0046λ at 14 GHz. We attempted to use other commercial codes for comparison as

well, but these were not installed on the cluster and we did not have enough memory to

run the simulations.

As a rough estimate of computation times, the Mie solution can be considered as

essentially instantaneous, the integro-differential equation solution requires a few minutes

for calculation, and the FDTD method typically takes 6-8 hours on the 142 node computer

cluster.

Figure 3.12 shows similar results for the D25a4d1 sphere; note that in this case the

normalized cross-section approaches its asymptotic value at approximately 5 GHz, as

compared to 2 GHz for the larger sphere. Also, since this sphere is smaller, we only

need four terms in (3.42) to solve the integro-differential DD equation. For this smaller

sphere the agreement between nonlocal theory and measurement is still fairly good, but

is somewhat poorer than for the larger 50 mm sphere. We attribute this to the fact that the

larger sphere forms a relatively smoother spherical surface compared to the 25 mm sphere,

in the sense that the ratio of wire period to cross-section circumference a/2πasphere is

larger for the smaller sphere. As a result, the small sphere has a relatively rougher surface

than the larger sphere, resulting in something of a “stair casing” effect.

3.3.3 Effect of wire period: breakdown of homogenization

The derivation of the equivalent diffusion parameter and conductivity of the ICWM in [1]

is based on the ICWM permittivity [8]. This is derived assuming that ka� π where a is

the wire lattice period and k is the wavenumber. The Bragg condition ka � π leads to

a � c/2f , which leads to the Bragg frequency fB = c/2a. We expect the homogenized

model to break down as the wire period increases enough to violate this Bragg condition.

Furthermore, it is discussed in [1] that (1.22) looses accuracy above the effective plasma

frequency (1.25) (although a more complicated nonlocal permittivity can be used instead
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Figure 3.12: Normalized measured and theoretical extinction cross sections of the
D25a4d1 sphere.

of (1.22), restoring accuracy above the plasma frequency [8], here we simply use (1.22)).

In the following, different wire periods are considered and measurement results demon-

strate that the homogenization approximation indeed starts to breakdown with increasing

period, as expected.

To consider the breakdown of the homogenized isotropic permittivity, Fig. 3.13 shows

measurement results for the D50a8d2, D50a12d2, and D50a12d2C spheres for the inci-

dent wave angle θ = ϕ = 45o (wires are parallel to x, y, and z axes). Although not

previously discussed, for the smaller period (a = 4 mm) spheres considered above the

angle of the incident wave with respect to the wire orientation did not affect the measure-

ment results, verifying that the material acts like an isotropic wire medium as expected

(this is discussed in further detail below). However, for larger periods this is not the case,

and so here we specify the orientation angle with respect to the wire axes. Comparing

with Fig. 3.11, it is evident from Fig. 3.13 that for larger wire periods the agreement

between theory and measurement becomes poorer at a much lower frequency than for the

a = 4 mm wire sphere, due to the lower plasma and Bragg frequencies. For a = 8 mm

and d = 2 mm these are fp = 16.56 GHz and fB = 18.75 GHz, and for a = 12 mm and

d = 2 mm, fp = 9.13 GHz and fB = 12.5 GHz. For comparison, in Fig. 3.11 where the
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homogenization model is valid parameters are a = 4 mm, d = 1 mm, fp = 33.12 GHz,

and fB = 37.5 GHz. Similarly, in Fig. 3.12, a = 4 mm, d = 1 mm, fp = 57.45 GHz, and

fB = 37.5.

Figure 3.13: Normalized measured and theoretical extinction cross sections of the
D50a8d2, D50a12d2, and D50a12d2C spheres. Because of the large wire periods, ho-
mogenization theory becomes inapplicable in most of the measurement range.

Finally, we consider the angle dependence of the wire medium spheres. Fig. 3.14

shows the measured extinction cross section for the D50a8d2, D50a12d2, and D50a12d2C

spheres for different angles of the incident field with respect to the wire orientation. Two

wire orientations are considered, θ = 0o and θ = ϕ = 45o (wires are aligned along

the x, y, and z axes). Clearly, for the larger period spheres there is considerable angle

dependence, whereas for the a = 4 mm period sphere there is no angle dependence except

at the highest measurement frequencies. Furthermore the D50a12d2, and D50a12d2C

spheres, which have the same wire period and diameter but differ in their wire placement,

show different responses. Again, this is indicative of a breakdown of homogenization

theory when frequencies approach the plasma and Bragg frequencies.
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Figure 3.14: Normalized measured extinction cross section of the D50a4d2, D50a8d2,
D50a12d2, and D50a12d2C spheres showing the angle dependance for the spheres having
larger periods.

3.3.4 Fabrication process

The wire medium spheres were fabricated using a rapid prototyping machine (dimension

Elite 3D Printer). The resulting “wires” are P430 ABSplus, which is a plastic material

with εr = 2.53 (measured in our lab at 2.7 GHz using a split post dielectric resonator

(SPDR) [38]). The resulting wire mesh is self-supporting, and is coated with silver paint

[39] to form conducting wires. This process results in a several micron thick conductive

layer on the insulating “wire” support, so we can consider the resulting wires as PEC at

microwave frequencies. In Figs. 3.15, 3.16, and 3.17, some pictures of the fabrication

process are shown for clarification.

3.4 Three dimensional anisotropic example

In this section we consider rectangular objects made of uniaxial wire media as shown in

Fig. 3.18. Similar to the isotropic example, we use the transport model introduced in

[1]-[2]. Based on this model, for a wire medium we can form a drift-diffusion equation

that relates conduction current, electric field, and conduction charge density as
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Figure 3.15: Sphercal objects in the middle of the rapid prototyping process.

Jc (r) = σ · E (r)−D · ∇ρc (r) (3.53)

in which σ is the (local) conductivity and D is the diffusion constant.

In [28], the homogenized nonlocal relative permittivity is obtained for a uniaxial wire

medium with ε−negative rods as

ε (q) = εxxx̂x̂ + εxxx̂x̂ + εxx (q) x̂x̂, (3.54)

in which

εxx = εxx = 1 +
2

1
fV

(εm+εh)
(εm−εh)

− 1
, (3.55)

εzz (q) = 1 +
1

1
fV

1
(εm−εh)

− q2−q2z
β2
p

(3.56)

where q is the wave vector in the spatial transform domain, wires are z directed, εm is the

permittivity of wires, c is the speed of light, εh is the permittivity of the host medium, fV

is the volume fraction of wires (fV = πd2

4p2
), and βp is the plasma wavenumber as [28]
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Figure 3.16: Sphercal objects after fabrication by rapid prototyping and before coating by
paint.

βp = ωp
√
µ0ε0εh '

1

p

√
2π

ln
(
p
πd

)
+ 0.5275

. (3.57)

As shown in [1], for the drift-diffusion model the equivalent conductivity and diffusion

parameters are

σzz = jωε0

(
1

(εm − εh) fV
− ω2

β2
pc

2

)−1

, (3.58)

Dzz = jω

[(
εhβ

2
p

(εm − εh) fV
− εhω

2

c2

)]−1

. (3.59)

For a uniaxial wire medium, conduction current can flow only in the direction parallel to

the wires. Therefore, σ andD are as (3.58) and (3.59) in the direction parallel to the wires

and they are zero in the transverse direction with respect to wires. Turning the diffusion

off by setting D = 0, (3.53) leads to the local Ohm’s law. In the following we use d and

p to denote wire thickness and period, respectively.

Assuming that the host medium of the wires is the same as the background, there is no

polarization response, in which case using (3.53), Maxwell’s equations, and the continuity

equation, and noting that conduction current can only flow only parallel to wires (taken
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Figure 3.17: The used silver paint and thinner for coating the objects.

parallel to the z axis in Cartesian coordinates), we obtain integral equation (IE)

Jz (r)− D

jω

d2

dz2
Jz (r) = σEinc

z (r)− σjωµ
∫
Gzz
ee (r, r′) Jz (r′) dΩ′. (3.60)

where

Gzz
ee (r, r′) = −ẑ.L.ẑδ (r− r′)

k2
+
e−jkR

4πR
(3.61)

×

{(
3

(z − z′)2

R2
− 1

)(
1 + jkR

k2R2

)
−

(
(z − z′)2

R2
− 1

)}

where R = r− r′ and L is the dyadic depolarization factor [31]. This integro-differential

equation can be solved numerically by expanding Jz in terms of a set of complete basis

functions for the given geometry. Since we are not allowing any surface charge build up

on the surface of the object (due to diffusion), we need to enforce the following additional

boundary condition [28],

Jc • n̂ = 0 (3.62)
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Figure 3.18: A cubical object made of a uniaxial wire medium.

where n̂ is the outward unit vector normal to the surface of the object.

In the following we assume rectangular objects with the dimensions of a, a, and b in

x, y, and z, respectively, and the incident wave is assumed to propagate in the y direction

with its electric field component either parallel or perpendicular to the wires.

In order to solve (3.53) using the collocation method, we expand Jz (x, y, z) as

Jz (x, y, z) =
M∑
m=1

N∑
n=1

K∑
k=1

CmnkPmn (x, y) sin
(
k
π

b
z
)

(3.63)

in which

Pmn (x, y) =

 1 (m−1)a
M
≤ x < ma

M
, (n−1)a

N
≤ y < na

N

0 otherwise
(3.64)

are pulse functions, M , N , and K are the number of expansion functions in the in x, y,

and z directions respectively, and Cmnk are unknown coefficients of the expansion.

This current expansion is chosen so that the boundary condition (3.62) is satisfied.

However, this expansion is complete only when a z-directed electric field is traveling in
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the y or x direction and therefore there is a symmetry in the geometry with respect to the

z = b/2 plane. Otherwise, we need to consider both the sine and cosine functions in the

expansion as

Jz (x, y, z) =
M∑
m=1

N∑
n=1

K∑
k=1

Pmn (x, y)×
[
Cmnksin

(
k
π

b
z
)

+Dmnkcos
(
k
π

b
z
)]

(3.65)

and enforce (3.62) at the z = 0 and z = b planes.

After finding the equivalent currents for the object, we can use the optical theorem to

calculate the extinction cross section using (3.49). The extinction cross section is obvi-

ously equal to the scattering cross section in our examples since objects are considered

lossless. For a comparison we use a commercial simulation package which is based on

the FDTD method [37]. The mesh size for all of the simulations is 0.1 mm, which is

0.0046λ at 14 GHz.

Fabrication process for the objects is the same as in section 3.3.4. In Fig. 3.19, a

sample of the fabricated wire medium objects is magnified. At the frequencies considered

the object in Fig. 3.19 forms a cube of homogenized wire medium consisting of a 3-wire

by 3-wire array with wire diameter d = 2 mm, wire period p = 4 mm, and wire length 12

mm. In order to make the wires self supporting, they are connected together at one end

by a 1 mm thick plastic substrate (its scattered cross section is small compared to that of

the wires).

The set up for the measurements is the same as the isotropic example (Fig. 3.19).

Figure 3.20 shows the normalized scattering cross section of the 3 by 3 wire object

with substrate, for electric field polarization parallel to the wires. The good agreement

between the full wave (CST) and measured results show the validity of the full wave

simulation, which will be used for comparison with the drift-diffusion results. Figure 3.21

shows the normalized cross section of a 5 by 5 wire cubical object without the substrate.

For the drift-diffusion IE, (3.60) and (3.65) are used with M = 3, N = 4, K = 3. The
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Figure 3.19: Measurement set-up. A: x-band horn antennas, B: microwave absorbers,
C: height adjustment, D: E8361A Network analyzer, E: a fabricated 3 by 3 wire object
on a Styrofoam pedestal. Wire diameter, period, and length are 2, 4, and 12 millimeters,
respectively.

wire period, diameter and length are 4, 1, 20 millimeters, respectively. These parameters

are chosen so that the homogenization approximations leading to the transport model are

valid in the chosen frequency interval. It is evident from Fig. 3.21 that the drift-diffusion

method is in good agreement with the full wave results. By comparing the full wave

results in Fig. 3.20 and Fig. 3.21, a frequency shift of more than 1 GHz caused by the

substrate is evident.

4 6 8 10 12 14 16

0

5

10

15

20

 

 

Frequency [GHz]

σ
sc
a
t

b2

4 mm

b
=
12

m
m

1 mm

1
m
m

measurement

Full wave

Figure 3.20: Normalized scattering cross section of a 3 by 3 wire cubical object with a 1
mm substrate. The incident electric field and wires are parallel.
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Figure 3.21: Normalized scattering cross section of a 5 by 5 wire cubical object.

3.5 Debye length and homogenization parameters

Having established the transport model, we can take the opportunity afforded by having a

three-dimensional simulation to access how the wire parameters affect the validity of the

homogenization. In deriving the homogenized results in Ref. [28], which lead to (3.58)

and (3.59) without further approximation, the following assumptions were made: 1) the

wire diameter is much smaller than the period, d � p, 2) |q| p � 2π, where q is the

electromagnetic wavevector such that p � λ in the medium, 3) the wires are infinitely

long, and 4) the medium is periodic. In this section we consider these aspects. Using the

transport model, in Ref. [1] the Debye length of an artificial plasma formed by a wire

medium is shown to be

λD = 2π

(
σ + jωε

Dε

)− 1
2

' 2π

βp

√
εr
εh

= λp

√
εr
εh

(3.66)

= p

√
2π
(

ln
( p

πd

)
+ 0.5275

)√εr
εh

where in this case the Debye length is defined along the wires. The Debye length is

weakly frequency dependent well below the plasma frequency, and is primarily dependent

on the wire parameters; it is strongly dependent on period and weakly-dependent on wire



51

diameter, as shown in (3.66). Assuming εr ' εh, then if p ≥ πd (which should be the

case per the assumption above), λD ≥ p.

The Debye length can be used to find the minimum size of a wire medium object

that can be modeled using homogenization. The criteria that the Debye length be small

compared to the physical size of the plasma (quasineutrality condition) is often taken as

a basic condition for a system to behave as a plasma. For a wire medium we have a

similar situation - if wire length b is less than the Debye length then the current induced

on the wire will differ considerably from the case of a longer wire. This will lead to a per-

unit-length polarizability that, for b < λD, differs from the infinite-wire case, violating a

basic assumption of the homogenization. Accordingly, in order that a wire medium can be

considered to be an artificial plasma, wires should be longer than the Debye length, which

is, itself, typically larger then the wire period (and becomes increasingly larger than the

period as period increases). For example, d = 1 mm and p = 4 mm, the Debye length is

approximately 9 mm in the 1-15 GHz frequency interval. Therefore, in this case the object

should be larger than 9 mm to have a meaningful artificial plasma. Moreover, the object

should accommodate enough wires within itself so that the fundamental Floquet mode

suffices for the homogenization. As an illustration of these two requirements, assumptions

3 and 4, cubical objects with sizes of 4, 8, 12, and 20 mm (which accommodate 1, 2, 3,

and 5 wires respectively) are considered in Fig. 3.22 for p = 4 mm, and d = 1 mm. As

wires are added the wire length was increased so that the objects remained cubical, hence

the resonances shift to lower frequencies. As expected, for a single wire the homogenized

model is not a good approximation since the object size is smaller than the Debye length

and also the object is not periodic. However, even for a 2 by 2 wire array, having size

8 × 8 × 8 mm, the object is larger than the Debye length and the homogenized model

applies to a fairly good approximation, still there is a large frequency shift between the

results. Obviously, as the number of wires in the object increases, the homogenized model

becomes more accurate. Further, measurements confirm that for a 5 by 5 wire object with
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period 4 mm, homogenization becomes increasingly inaccurate as wire length is reduced

below the Debye length as shown in Fig. 3.23. For b ' λD, the frequency shift (of the

peak in the curves) is about 1 GHz. For b ' 1.5λD and b ' 2λD, the shift is 300 MHz,

and less than 100 MHz, respectively.
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Figure 3.22: Normalized scattering cross section of cubical objects with different number
of wires. Wires have p = 4 mm and d = 1 mm.

The homogenization used to derive (3.59) and (3.58) is based upon the assumption

that only the fundamental Floquet mode is important and other modes are negligible.

That is, the field variation over a period should be small, or p � λ (assumption 2). This

condition will be automatically satisfied if the frequency of operation is well below the

plasma frequency (as discussed in Ref. [28]). To illustrate this, rectangular 5 by 5 wire

objects are considered with wire diameters of d = 1 mm and periods of p = 4, 8 and 12,

corresponding to plasma frequencies 33.1, 12.3, and 7.3 GHz, respectively. The length of

all the wires are chosen to be 20 mm. Figure 3.24 shows the normalized scattering cross

section, comparing full wave and homogenization theory (the p = 4 mm results were

shown in Fig. 3.21 and are not repeated here).

The results in Fig. 3.21 and Fig. 3.24 show that as p increases, the homogenization

becomes less accurate. For p = 8 mm the homogenization preserves the shape of the

curve but shifts the frequency of the scattering. However, for p = 12 mm, homogeniza-
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for (b) that is not the case, leading to a larger frequency shift between full wave and
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Figure 3.25: Normalized scattering cross section of 5 by 5 wire cubical objects with p = 4
mm.

tion in no longer a reasonable approximation since the plasma frequency is lower than

the operating frequency. This suggests that when the period is such that the plasma fre-

quency is higher than the frequency of interest, the homogenized model can be used as a

reasonable approximation.

Finally, to consider the effect of wire diameters, assumption 1, cubical 5 by 5 wire

objects with p = 4 mm and d =1, 2, and 3 millimeters are investigated. Figure 3.25

shows the normalized scattering cross section for the d =2 and 3 mm cases (the results

for d = 1 mm were shown in Fig. 3.21). From Fig. 3.21 and Fig. 3.25 we conclude

that by increasing d, homogenization will have a larger frequency shift in the scattering

response from the actual results. However, it still keeps the shape of the curve. This

suggests us that the homogenization is more sensitive to the period of wires than their

thickness. This makes sense because increasing d will increase the plasma frequency (if

the period is fixed) and will improve the homogenization approximation. However, the

condition d/p � 1 will be violated and the homogenization becomes worse. Because of

these two phenomena acting in apposite directions we can expect that homogenization is

less sensitive to wire thickness than to their period.
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3.6 Appendix: More details on the formulations in 3.3

We can expand every vector function in the spherical coordinate (which correlates to an

electromagnetic quantity) in term of the following complete set of basis functions:

M (r, θ, ϕ) = ∇× rψ (r, θ, ϕ) (3.67)

N (r, θ, ϕ) =
1

k
∇×∇× rψ (r, θ, ϕ) (3.68)

L (r, θ, ϕ) = ∇ψ (r, θ, ϕ) (3.69)

where

ψ (r, θ, ϕ) = jn (ρ)

 cos (mϕ)

sin (mϕ)
Pm
n (cos (θ)) (3.70)

is the solution of homogeneous scalar Helmholtz equation in spherical coordinate,

jn (x) is spherical Bessel function and Pm
n (x) is associated Legendre polynominal)

Explicit expressions for M, N, and L functions will be given later.

Using the expansion for conduction and total current (which is the sum of conduction

and polarization currents), we have

Jc =
∑
m,n

6∑
i=1

(acimnBimn) (3.71)

Jeq =
∑
m,n

6∑
i=1

(aeqimnBimn) (3.72)

where

B1mn = Memn B2mn = Momn B3mn = Nemn (3.73)
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B4mn = Nomn B5mn = Lemn B6mn = Lomn.

In the expansion, we use ρ = ktrr for M and N functions and ρ = αr for L function.

(This comes from Helmholtz equations that field and charge satisfy, details are at the end

of this subsection) where,

α = j

√
σ + jωε

εD
, (3.74)

ktr = ω

√
µ

(
ε− iσ

ω

)
, (3.75)

and k is wavenumber in the scatterer.

Then, we find unknowns aimn by solving the following set of equations simultane-

ously.

(
Jc (r, θ)− D

jω
55.Jc (r, θ)

)
= (3.76)

−jωµσ
(∫

Gee (r, r′) .Jeq (r′) dV ′ − L.Jeq (r)

k2

)
+ σEi (r, θ) ,

Jeq (r)− Jc (r) = (3.77)

jω (ε− ε0)

[
−jωµ

(∫
Gee (r, r′) .Jeq (r′) dV ′ − L.Jeq (r)

k2

)
+ Ei (r, θ)

]
.

Which leads to

(
Jc (r, θ)− D

jω
55.Jc (r, θ)

)
= σ

Jeq (r)− Jc (r)

jω (ε− ε0)
, (3.78)

Jeq (r)− Jc (r) = (3.79)

jω (ε− ε0)

[
−jωµ

(∫
Gee (r, r′) .Jeq (r′) dV ′ − L.Jeq (r)

k2

)
+ Ei (r, θ)

]
.
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Now, the first equation gives us:

(∑
m,n

6∑
i=1

(acimnBimn)− D

jω
55.

∑
m,n

6∑
i=1

(acimnBimn)

)
= (3.80)

σ
Jeq (r, θ)−

∑
m,n

∑6
i=1 (acimnBimn)

jω (ε− ε0)
,

or

jω (ε− ε0) + σ

σ

∑
m,n

6∑
i=1

(acimnBimn) = (3.81)

(ε− ε0)D

σ
55.

∑
m,n

6∑
i=1

(acimnBimn) + Jeq (r, θ) .

whihc simplifies to
jω (ε− ε0) + σ

σ

∑
m,n

6∑
i=1

(acimnBimn) = (3.82)

−(ε− ε0)Dα2
n

σ

∑
m,n

6∑
i=5

(acimnBimn) + Jeq (r, θ) .

For 1 ≤ i ≤ 4

aeqimn =
jω (ε− ε0) + σ

σ
(acimn) , (3.83)

and for 5 ≤ i ≤ 6

(
jω (ε− ε0) + σ

σ
+

(ε− ε0)Dα2
n

σ

)
acimn = aeqimn. (3.84)

In Summary,

acimn =
σ

jω (ε− ε0) + σ + (ε− ε0)Diα2
in

aeqimn (3.85)
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Di =

 D 5 ≤ i ≤ 6

0 1 ≤ i ≤ 4
(3.86)

Therefore, we have the following integral equation,

Jeq (r)− Jc (r) = (3.87)

jω (ε− ε0)

[
−jωµ

(∫
Gee (r, r′) .Jeq (r′) dV ′ − L.Jeq (r)

k2

)
+ Ei (r, θ)

]
,

leading to

∑
m,n

6∑
i=1

(
aeqimn

(
jω (ε− ε0) + (ε− ε0)Diα

2
in

jω (ε− ε0) + σ + (ε− ε0)Diα2
in

)
Bimn

)
= (3.88)

ω2µ (ε− ε0)
∑
m,n

6∑
i=1

aeqimn

[(∫
Gee (r, r′) .BimndV

′ − L.Bimn

k2

)]
+jω (ε− ε0)Ei (r, θ) .

We only need to solve this equation t for one of the components (r, θ, or ϕ) and find

aeqimn, then we have the solution for all of the components.

Keeping only the theta component,

∑
m,n

6∑
i=1

(
aeqimn

(
jω (ε− ε0) + (ε− ε0)Diα

2
in

jω (ε− ε0) + σ + (ε− ε0)Diα2
in

)
Bθ

imn

)
= (3.89)

ω2µ (ε− ε0)
∑
m,n

6∑
i=1

aeqimn

[(∫
θ̂.Gee (r, r′) .BimndV

′
)]

+ jω (ε− ε0)Eθ
i (r, θ) .

We can solve the above equation using collocation method.

Then, if we are looking for the charge density,

ρ = − 1

jω
∇.Jc = − 1

jω
∇.

(∑
m,n

6∑
i=1

(acimnBimn)

)
= (3.90)

1

jω

(∑
m,n

6∑
i=5

σ − jω (ε− ε0)

(ε− ε0)α2
nDi + σ

aeimnα
2
n (jn (ρt) cos (mϕ)Pm

n (cos (θ)))

)
,
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and if we are looking for the scattered field,

Esca = −jωµ
∑
m,n

6∑
i=1

acimn

(∫
Gee (r, r′) .Bimn (r′)dV ′

)
. (3.91)

Detailed bases functions

Memn =
−m
sin (θ)

sin (mϕ)Pm
n (cos (θ)) jn(ρ)θ̂−cos (mϕ)

dPm
n (cos (θ))

dθ
jn(ρ)ϕ̂ (3.92)

Momn =
m

sin (θ)
cos (mϕ)Pm

n (cos (θ)) jn(ρ)θ̂−sin (mϕ)
dPm

n (cos (θ))

dθ
jn(ρ)ϕ̂ (3.93)

Nemn =
jn(ρ)

ρ
cos (mϕ)n (n+ 1)Pm

n (cos (θ)) r̂+cos (mϕ)
dPm

n (cos (θ))

dθ

1

ρ

d

dρ
[ρjn(ρ)] θ̂

−msin (mϕ)
Pm
n (cos (θ))

sin (θ)

1

ρ

d

dρ
[ρjn(ρ)] ϕ̂ (3.94)

Nomn =
jn(ρ)

ρ
sin (mϕ)n (n+ 1)Pm

n (cos (θ)) r̂+sin (mϕ)
dPm

n (cos (θ))

dθ

1

ρ

d

dρ
[ρjn(ρ)] θ̂

+mcos (mϕ)
Pm
n (cos (θ))

sin (θ)

1

ρ

d

dρ
[ρjn(ρ)] ϕ̂ (3.95)

Lemn =
d

dρt
[jn(ρt)] cos (mϕ)Pm

n (cos (θ)) r̂ − m

ρtsin (θ)
jn(ρt)sin (mϕ)Pm

n (cos (θ)) ϕ̂

+
1

ρt
jn(ρt)cos (mϕ)

dPm
n (cos (θ))

dθ
θ̂ (3.96)
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Lomn =
d

dρt
[jn(ρt)] sin (mϕ)Pm

n (cos (θ)) r̂ +
m

ρtsin (θ)
jn(ρt)cos (mϕ)Pm

n (cos (θ)) ϕ̂

+
1

ρt
jn(ρt)sin (mϕ)

dPm
n (cos (θ))

dθ
θ̂ (3.97)

Where, where ρ = kr and ρt = αr.

Detailed Green’s function components

L = r̂r̂ (3.98)

Gee (r, r′) = g (r, r′)

{(
3R̂R̂− I

)( 1

k2R2
− 1

jkR

)
−
(
R̂R̂− I

)}
(3.99)

R =
√
r2 + r′2 − 2rr′ (cos (θ) cos (θ′) + sin (θ) sin (θ′) cos (ϕ− ϕ′)) (3.100)

ϕ̂′.r̂ = sin (θ) sin (ϕ− ϕ′) (3.101)

ϕ̂.r̂′ = sin (θ′) sin (ϕ′ − ϕ) (3.102)

θ̂.ϕ̂′ = cos (θ) sin (ϕ− ϕ′) (3.103)

θ̂′.ϕ̂ = cos (θ′) sin (ϕ′ − ϕ) (3.104)

ϕ̂.ϕ̂′ = cos (ϕ′ − ϕ) (3.105)

θ̂′.r̂ = sin (θ) cos (θ′) cos (ϕ− ϕ′)− cos (θ) sin (θ′) (3.106)

θ̂.r̂′ = cos (θ) sin (θ′) cos (ϕ− ϕ′)− sin (θ) cos (θ′) (3.107)

θ̂.θ̂′ = cos (θ) cos (θ′) cos (ϕ− ϕ′) + sin (θ) sin (θ′) (3.108)

r̂.r̂′ = sin (θ) sin (θ′) cos (ϕ− ϕ′) + cos (θ) cos (θ′) (3.109)

R̂.ϕ̂′ =
r− r′

R
.ϕ̂′ =

r [sin (θ) sin (ϕ− ϕ′)]
R

(3.110)
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R̂.ϕ̂ =
r− r′

R
.ϕ̂ =

r′ [sin (θ′) sin (ϕ− ϕ′)]
R

(3.111)

R̂.θ̂ =
r− r′

R
.θ̂ =

−r′ [cos (θ) sin (θ′) cos (ϕ− ϕ′)− sin (θ) cos (θ′)]

R
(3.112)

R̂.r̂′ =
r− r′

R
.r̂′ =

r [sin (θ) sin (θ′) cos (ϕ− ϕ′) + cos (θ) cos (θ′)]− r′

R
(3.113)

R̂.r̂ =
r− r′

R
.r̂ =

r − r′ [sin (θ) sin (θ′) cos (ϕ− ϕ′) + cos (θ) cos (θ′)]

R
(3.114)

R̂.θ̂′ =
r− r′

R
.θ̂′ =

r [sin (θ) cos (θ′) cos (ϕ− ϕ′)− cos (θ) sin (θ′)]

R
(3.115)

θ̂.Gee (r, r′) .r̂′ = (3.116)

g (r, r′)

{(
3
(
R̂.θ̂

)(
R̂.r̂′

)
− θ̂.r̂′

)( 1

k2R2
− 1

jkR

)
−
(

3
(
R̂.θ̂

)(
R̂.r̂′

)
− θ̂.r̂′

)}
θ̂.Gee (r, r′) .θ̂′ = (3.117)

g (r, r′)

{(
3
(
R̂.θ̂

)(
R̂.θ̂′

)
− θ̂.θ̂′

)( 1

k2R2
− 1

jkR

)
−
((

R̂.θ̂
)(

R̂.θ̂′
)
− θ̂.θ̂′

)}
θ̂.Gee (r, r′) .ϕ̂′ = (3.118)

g (r, r′)

{(
3
(
R̂.θ̂

)(
R̂.ϕ̂′

)
− θ̂.ϕ̂′

)( 1

k2R2
− 1

jkR

)
−
((

R̂.θ̂
)(

R̂.ϕ̂′
)
− θ̂.ϕ̂′

)}

Scattered field

E = −jωµ
(∫

Gee (r, r′) .Jeq (r′) dV ′ − L.Jeq (r)

k2

)
= (3.119)

−jωµ
(∫

g (r, r′)

{(
3R̂R̂− I

)( 1

k2R2
− 1

jkR

)
−
(
R̂R̂− I

)}
.Jeq (r′) dV ′ − L.Jeq (r)

k2

)

Esca
θ = −jωµ

∫ {
MJreq (r′) +NJθeq (r′) + PJϕeq (r′)

}
dV ′ (3.120)

Esca
r = −jωµ

∫ {
QJreq (r′) +RJθeq (r′) + SJϕeq (r′)

}
dV ′ (3.121)
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Chapter 4

A novel antenna structure using epsilon near zero

material and total internal reflection principle [4]

In this chapter, a novel geometry is proposed to achieve sum and difference patterns using

a monopole antenna as the feed. This geometry consists of a dielectric flare with an

embedded uniaxial wire medium acting as an epsilon near zero (ENZ) material. Beams

are formed via total internal reflection, but by placing two metallic plates on two side walls

of the flare, sum and difference patterns can be interchanged. Physics of the structure are

discussed and its radiation pattern, gain and input impedance are calculated by full wave

simulation. The antenna is chosen to operate at x band and can be easily fabricated.

4.1 Introduction

One of the important applications of metamaterials is beam forming using epsilon-near-

zero (ENZ) materials. In such materials the phase velocity of the wave tends to infinity. As

a result, if a radiator is placed inside an ENZ material, the waves emerging from different

points of the ENZ boundary are in phase. That is, the radiation from a source inside an

ENZ object conforms in a simple way to the shape of the exterior of the ENZ object.

Also, considering Snells law, the critical angle for total internal reflection from an ENZ

surface is zero, indicating that a wave can only transmit through an ENZ surface normally.

This fact is used in [40] to shape the patterns of an antenna inside an ENZ material. As

a more similar structure to our work, in [41] the pattern of a monopole antenna is shaped

by immersing it into a uniaxial wire medium acting as an artificial plasma. The plasma

frequency of the wire medium is adjusted to be at the operating frequency of the antenna,
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hence providing zero permittivity around it. In our geometry, we also use a monopole

as the radiating antenna and a uniaxial wire medium as the ENZ material because of its

simple fabrication.

The final generated pattern which is achieved by our geometry is either a difference or

a sum pattern as are used in monopulse radar systems. In a tracking system the difference

pattern of a movable antenna is used to lock the target in the null of the pattern while in

a surveillance system the location of a target is extracted from the amplitude or phase of

two overlapping patterns [42]. In other words, in a tracking system the antenna positioner

is moved until the signal in this difference channel reaches a minimum, causing the sum

channel to point accurately at the radar target. There are different well known patterns for

sum and difference patterns such as Taylor distributions and Bayliss distributions which

use phased arrays with usually complex feed networks. In this work, we do not achieve

patterns as good as aforementioned patterns. However, we are not using any feed network

and the antenna has a single input. This makes the antenna suitable for tracking systems

but unsuitable for monopulse radar systems in which the access to the two beams are

required separately.

4.2 The antenna geometry and results

Total internal reflection occurs when a wave is obliquely-incident on a dielectric interface

with an angle greater than the critical angle. From electromagnetic boundary conditions, it

is evident that for the case of a TM incident wave (as shown in Fig. 4.1), under conditions

of total internal reflection the polarity of the reflected field is as shown in Fig. 4.1(a) (the

PEC case is shown in Fig. 4.1(b)).

Figure 4.2 shows half of the proposed structure. It consists of a rectangular ENZ

volume with its upper and lower faces covered by PEC. A monopole antenna is placed

in the middle of the lower GND plane so that it can be easily fed by a coaxial cable. A

dielectric flare shaped material with a 45o angle surrounds the structure. To generate a
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Figure 4.1: TM wave incident on a (a) dielectric and ( b) PEC material at a 45o angle.

difference pattern, all of the side edges of the flare are left open; to generate a sum pattern

two adjacent side edges are covered by PEC sheets. We labeled these side edges as #1

and #2 in Fig. 4.2. Since the monopole is in the z direction, from the fact that epsilon is

almost zero, Ampere’s law simplifies to

∇×H = J (4.1)

which implies that Hz = 0 everywhere inside the ENZ region assuming a sufficiently

long wire. Knowing this and the fact that a wave can only radiate normally from the ENZ

boundary, one can conclude that the electric field is in the z direction. Therefore, the

rectangular ENZ region shapes the wavefront as four plane waves traveling in the±x and

±y directions which are incident on the flare boundary as a TM wave with 45o incidence

angle (as in Fig. 4.1). If the permittivity of the dielectric flare is greater than two, the

critical angle of the flare boundary is less than 45o. As a result, total internal reflection

occurs for the four plane waves incident on the flare boundary and they all reflect in the z

direction.

Depending on whether edges #1 and #2 are covered with PEC or not, the electric field

distribution on the radiating edge is as Fig. 4.3(a) or 4.3(b). Therefore, there are four

radiating spots on the radiating edge (top surface) as shown in Fig. 4.3. The electric

field direction and the distance between these spots specifies the radiation properties of

the antenna. The field distribution of Fig. 4.3(a) produces a four lobe pattern with a
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Figure 4.2: Half of the proposed geometry. Full geometry will be obtained by adding a
mirror image in the x-z plane.

null at θ = 0 as shown in Fig. 4.4. As we increase the size of the ENZ material, the

distance between radiating apertures increases and therefore the null becomes sharper.

Equivalently, gain increases and the four lobes become closer to each other. The field

distribution of Fig. 4.3(b) produces a pencil beam at an angle very close to θ = 0 as

shown in Fig. 4.5 which can be considered as a sum pattern. The more we increase the

aperture distances, the more the beam angle becomes closer to θ = 0.

Figure 4.3: Full wave simulated electric field distribution on the radiating edge.

Figures 4.3, 4.4 and 4.5 are obtained using full wave simulation [43] for a structure

with the following flare size: the bottom rectangle is 8 by 8 cm, the upper rectangle is

16 by 16 cm and the angle is 45 degrees. Plaster is used as the dielectric material of the

flare around the ENZ material with permittivity of 3.84. The monopole antenna length
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Figure 4.4: Full wave simulated directivity and field distribution of the difference pattern.
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Figure 4.5: Full wave simulated directivity and field distribution of the sum pattern.

is 7.5 mm and the frequency is 10 GHz. The ENZ region in Figs. 4.3, 4.4 and 4.5 is an

idealized dielectric with permittivity of zero. The input impedance of the sum pattern is

11.6-43.5j ohms and the input impedance for the difference pattern is 52-33j ohms. All

the simulations are done using a wire monopole with no thickness. We may change the

imaginary part of the impedance by adjusting the thickness of the monopole. The ENZ

region can be realized by a uniaxial wire medium with air as its host medium. The wire’s

diameter, length, and period are 1, 40, and 10 mm respectively which gives the plasma

frequency as 9.2 GHz [26]. Figure 4.6 shows the antenna with the uniaxial wire medium



67

as its ENZ material. Full wave simulation results of Fig. 4.6 are shown in Figs. 4.7 and

4.8.

Figure 4.6: The antenna geometry using uniaxial wire medium as its ENZ material.

Figure 4.7: The difference pattern (directivity) of the antenna with uniaxial wire medium.

4.3 Summary

Sum and difference patterns were generated using a simple and novel structure and its

radiation pattern, input impedance and directivity were investigated using full-wave sim-

ulations. The structure is useful for radar applications and tracking systems.
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Figure 4.8: The sum pattern (directivity) of the antenna with uniaxial wire medium.
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Chapter 5

On the possibility of ENZ realization using spatially

dispersive material [5]

In this section, the momentum-dependent permittivity for a broad class of natural materi-

als and wire-mesh metamaterials with spatial dispersion is determined in real-space, and

a new characteristic length parameter is defined, in addition to the Debye length, which

governs polarization screening. It is found that in the presence of spatial dispersion the

electric displacement does not vanish at the plasma frequency, in general. However, con-

ditions are investigated under which the permittivity can vanish or be strongly diminished,

even in the presence of spatial dispersion, implementing an epsilon-near-zero material.

5.1 introduction

Materials with effective permittivity of approximately zero, also known as epsilon-near-

zero (ENZ) materials [44], have become an important topic of research with a variety of

applications. For example, enhancing the radiation directivity of antennas [45], super-

coupling [46; 17], transforming curved wavefronts into planar ones [47], implementing

optical nano circuit concepts [48], cloaking [49; 50], designing lenses with enhanced fo-

cusing [51; 52], and tailoring the radiation pattern of antennas [53] are recent applications

of ENZ materials. However, to our knowledge, in previous work on ENZ applications

spatial dispersion of the material was ignored in establishing the ENZ condition, which,

for local materials, occurs exactly at the plasma frequency. This is often a reasonable

approximation for natural materials where spatial dispersion is fairly weak (e.g. typi-

cal semiconductors, metals, or high-density plasmas). However, this may not be a good
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approximation for artificial materials with strong spatial dispersion, such as wire media

[27; 26].

The present work has three aims: 1) to provide the “space-domain” form of the permit-

tivity ε (r− r′) appropriate for forming the space-domain relation between displacement

and electric field, D (r) =
∫
ε (r− r′) •E (r′) d3r′, 2) to introduce a new screening pa-

rameter kα that relates polarization to the total electric field, in a similar way that kD, the

Debye wavenumber, relates polarization to the incident electric field, and 3), to address

under what conditions we can achieve an ENZ medium for which D ' 0 in the presence

of spatial dispersion.

We consider the momentum-dependent permittivity tensor in the spatial-temporal

Fourier transform domain as

ε (q)

ε0

= εhI− κ
(
I− 1

q2 − α2
qq

)
, (5.1)

which describes a wide range of natural materials (NM) including many semiconductors,

plasmas, and metals, as well as the isotropic connected wire medium (ICWM) as is shown

in Fig. 5.1 which acts as an artificial plasma [26; 8; 1].

Figure 5.1: Isotropic connected wire medium with wire period (a) and radius (rw).
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In (5.1), I is the identity tensor, εh is the relative permittivity (for a wire medium this

is the permittivity of the host medium), ε0 is the permittivity of vacuum, q is the spatial

Fourier transform wavenumber (time dependence is ejωt)

F {f (r)} = F (q) =

∫
f (r) e−jq·rd3r, (5.2)

f (r) =
1

(2π)3

∫
F (q) ejq·rd3q, (5.3)

with r being the position vector, and

κ =
jσ

ωε0

, (5.4)

α2 = −jω
D

(5.5)

where σ is the conductivity [S/m], D is the diffusion coefficient [m2/s], and ω is the radial

frequency [1]. We assume all material losses are incorporated in the conductivity. For

natural materials we assume conductivity in the usual Drude form,

σNM =
ω2
pε0

(jω + τ−1)
, (5.6)

where ω2
p = neq

2
e/ε0me (ωp is the plasma frequency) and τ is the relaxation time - typical

values for semiconductors and metals are τ ∼ 10 − 100 fs. In the low-loss case ω �

τ−1, σNM is essentially imaginary-valued. For the isotropic wire medium the effective

conductivity can be expressed in the same Drude form [1]

σICWM =
−jωε0(

ω2

ω2
p
− 1

εm−εh
1
fv

) ' ω2
pε0(

jω + (τWM)−1) , (5.7)

upon defining τWM ≡ fvσm/ω
2
pε0, where σm is the assumed real-valued conductivity of
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the wires (the permittivity of the wires is εm = 1− jσm/ωε0), ωp is the plasma frequency

(ωpa)2 ∼= 2πc2/ ln (a2/4rw/ (a− rw)) ∼= 2πc2/ (ln (a/ (2πrw)) + 0.5275) where a and

rw are wire period and radius, respectively, and fv is the volume fraction of wires, fv =

πr2
w/a

2. Typical values of τWM are on the order of µs, although
(
τWM

)−1 → 0 for perfect

electrical conducting (PEC) wires in a lossless host medium.

The diffusion coefficient in (5.5) is

D =
β

jω
(
1− j (ωτ)−1) . (5.8)

For natural materials βNM = 〈v2〉 /3, with 〈v2〉 being the electron mean-square velocity[54].

For plasmas and semiconductors 〈v2
thermal〉 = 3kBT/m, but for good metals 〈v2〉 =

3v2
F/5, where vF is the electron Fermi velocity. For isotropic wire media DICWM =

c2σICWM/l0ε0εhω
2
p [1], such that

βWM =
c2

l0εh
=
v2
h

l0
(5.9)

where vh = 1/
√
µ0ε0εh is the electromagnetic phase velocity in the nondispersive host

and l0 is a weak function of wire period with typical values of l0 ∼ 2 − 3 [8]; note the

similarity between βWM = v2
h/l0 ' v2

h/3 and with βNM = 〈v2〉 /3. For lossless natural

materials or PEC wire materials with a non absorbing host,

κ =
ω2
p

ω2
, α2 =

ω2

β
. (5.10)

It is useful for the purpose of this paper to decompose (5.1) into longitudinal and

transverse components with respect to q,

ε (q)

ε0

= (εh − κ) (I− q̂q̂) +

(
εh − κ+

κq2

q2 − α2

)
q̂q̂
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= εT (I− q̂q̂) + εL (q) q̂q̂. (5.11)

Notice that for natural materials εh−κ = εh−jσ/ωε0 is merely the complex permittivity,

and in the lossless case εh − κ is real-valued. For lossless wire media σ is imaginary and

nonzero, so that εh − κ is also real-valued.

It is evident from (5.1) that in the local limit (q → 0) and assuming lossless natural

materials or wire media with perfectly conducting wires (εm → −∞), the space-domain

permittivity will be

ε

ε0

= εh

(
1−

ω2
p

εhω2

)
I (5.12)

which is the equation commonly used in the design of ENZ materials. The permittivity

(5.12) becomes exactly zero at the frequency ω = ωp/
√
εh.

In the following, we find the inverse Fourier transform of (5.1), and the polarization

(and therefore the electric displacement field) in terms of the scattered, incident, and total

fields inside the material. From the polarization in the space domain we will see that

the Debye length is not the best parameter for considering the ENZ condition. A new

wavenumber leading to a different characteristic screening length will be introduced to

study the electric displacement inside a spatially dispersive material, and conditions will

be investigated under which the electric displacement can vanish.

5.2 Permittivity tensor and polarization vector in space

domain

5.2.1 Permittivity tensor

The inverse Fourier transform of (5.1) is easily seen to be
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ε (r)

ε0
= (εh − κ) δ (r) I−κ∇∇e

−jαr

4πr
(5.13)

where δ (r) is the Dirac delta function and we have used the Fourier transform identities

F
{
e−jαr

4πr

}
=

1

q2 − α2
, (5.14)

F {∇∇g (r)} = −qqF {g (r)} . (5.15)

The derivatives are easily carried out to yield

ε (r)

ε0
= (εh − κ) δ (r) I− κ

{
(3r̂r̂− I)

(
1

r2
− α

ir

)
− α2r̂r̂

}
e−jαr

4πr
. (5.16)

Equation (5.16) is the permittivity tensor in the “space domain” (it is not actually in

real space because of the delta function - it is a quantity to be integrated) which relates the

electric displacement vector D (r) and the electric field vector E (r) as D (r) = ε (r) ∗

E (r), where * denotes convolution,

D (r) =

∫
ε (r− r′) •E (r′) d3r′. (5.17)

We have assumed that the relation between D (q) and E (q) in the spatial transform do-

main is D (q) = ε (q) •E (q) .

5.2.2 Polarization as a function of the total field

In the following it is useful to introduce the screening wavenumber kα ≡ jα = −
√
jω/D.

Using (5.1) in the definition of the polarization,

P (q) = D (q)− ε0E (q) = (ε (q)− ε0I) •E (q) (5.18)
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= ε0

(
(εh − 1− κ) I + κ

qq

(q2 + k2
α)

)
•E (q)

where E is the total electric field inside the material. Decomposing (5.18) into parallel

and perpendicular components with respect to q,

P‖ (q)

ε0

= (εh − 1− κ)E‖ (q) + κ
q2E‖ (q)

(q2 + k2
α)
, (5.19)

P⊥ (q)

ε0

= (εh − 1− κ)E⊥ (q) (5.20)

in the transform domain, and

P‖ (r)

ε0

= (εh − 1− κ)E‖ (r)− κ
(
∇2E‖ (r) ∗ e

−kαr

4πr

)
, (5.21)

P⊥ (r)

ε0

= (εh − 1− κ)E⊥ (r) (5.22)

in the space domain. These show that the longitudinal polarization has a term that is local

with the total longitudinal field, as well as a nonlocal contribution that decays according to

the screening length Lα = 2π/kα (or, for large screening length the nonlocal contribution

decays algebraically). In the absence of spatial dispersion (D = 0), Lα → 0 and the

relation between longitudinal polarization and total longitudinal field is local, as is the

relation between perpendicular polarization and total perpendicular field.

5.2.3 Polarization as a function of the scattered field

We assume a translationally-invariant material, although a finite-volume material scatterer

can be accommodated in the same manner using the volume equivalence principle. An

incident field Ei (r) polarizes the medium, creating polarization current, jωP (r), such
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that the scattered field Esca (r) produced by the induced polarization is

Esca (r) = −jωµ0 (G (r) ∗ jωP (r)) (5.23)

where G (r) is the electric dyadic Green’s function [32]. Taking the Fourier transform of

(5.23) and using the transform-domain Green’s function ,

Esca (r) =
k2

ε0

Ik2 − qq

k2 (q2 − k2)
•P (q) =

k2P (q)

ε0 (q2 − k2)
−

q2P‖ (q)q̂

ε0 (q2 − k2)
. (5.24)

Therefore,

P‖ (q) = −ε0E
sca
‖ (q) , (5.25)

P⊥ (q) =
ε0

k2

(
q2 − k2

)
Esca
⊥ (q) . (5.26)

In the space domain, (5.25) and (5.26) become

P‖ (r) = −ε0E
sca
‖ (r) (5.27)

P⊥ (r) = −ε0

(
1 +
∇2

k2

)
Esca
⊥ (r) . (5.28)

Therefor, the longitudinal polarization is local to the longitudinal scattered field, although

the transverse polarization is nonlocal to the transverse scattered field.

5.2.4 Polarization as a function of the incident field

By decomposing the total electric field into the scattered and incident fields as E (r) =

Ei (r) + Esca (r) and using (5.19)-(5.20) and (5.25)-(5.26),
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P‖ (q) =
ε0

εh

(
εh − 1 +

κ

κ− εh
k2
D

q2 + k2
D

)
Ei
‖ (q) , (5.29)

P⊥ (q) = ε0 (εh − 1− κ)

(
1 +

(εh − κ− 1) k2

q2 − (εh − κ) k2

)
Ei
⊥ (q) (5.30)

in the transform domain, where

kD = α

√
κ

εh
− 1 =

√
jωε0εh + σ

Dε0εh
(5.31)

is the Debye wavenumber (usually defined for ω = 0). In the space domain,

P‖ (r) =
ε0

εh

(
(εh − 1)Ei

‖ (r) +
k2
Dκ

κ− εh
Ei
‖ (r) ∗ e

−kDr

4πr

)
, (5.32)

P⊥ (r) = ε0 (εh − 1− κ)Ei
⊥ (r) (5.33)

+ε0 (εh − κ− 1)2 k2

(
Ei
⊥ (r) ∗ e

−jk
√
εh−κr

4πr

)
.

These show that the longitudinal polarization has a term that is local with the incident

field, as well as a nonlocal contribution that decays according to the Debye length LD =

2π/kD. In the absence of spatial dispersion (D = 0), LD → 0 and the relation between

longitudinal polarization and the longitudinal incident field is local.

The Debye wavenumber and the new screening wavenumber are related as

kD = kα

√
1− κ

εh
.

Assuming for simplicity that εh = 1 and that the materials are lossless, from κ = ω2
p/ω

2

we have that for ω > ωp, κ < 1 and so kD < kα, with kD → kα as ω → ∞. However,

in this case both wavenumbers are imaginary-valued and no screening takes place. The
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material response is generally nonlocal, with a relatively large effective radius (nonlocal

effects diminish algebraically with distance r− r′). For ω < ωp, κ > 1 and although kα

is imaginary kD is real-valued, resulting in screening of the incident field. Thus, in the

lossless case we have the usual condition that below the plasma frequency the effect of the

incident field is (exponentially) screened by the Debye length, whereas above the plasma

frequency no such screening takes place. Regardless of frequency the polarization is not

screened in terms of the total field (which is important in considering the displacement

field), but the response is generally nonlocal, with the relationship between polarization

and total field decaying algebraically with distance r− r′. In the case of lossy media,

kD and kα are both complex-valued, and screening of polarization in terms of both the

incident field (via kD) and in terms of the total field (via kα) take place.

5.3 Discussion of the results and the establishment of the

ENZ condition

In the presence of spatial dispersion the ENZ condition is D (r) ' 0. From (3.10) and

(3.11),

D‖ (r) = ε0 (εh − κ)E‖ (r)− ε0κ∇2E‖ (r) ∗ e
−kαr

4πr
, (5.34)

D⊥ (r) = ε0 (εh − κ)E⊥ (r) . (5.35)

Now, we can consider three different scenarios:

1. the electric field is transverse (i.e., perpendicular to q): in this case we only need

consider (5.35), and the ENZ condition can be satisfied simply by setting εh = κ,

which is equivalent to εT = 0, which is the usual ENZ condition for a local material.

As an example, if the electric field is associated with a TE traveling wave, the
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permittivity becomes exactly zero (or equivalently, D = 0) at the plasma frequency.

2. the electric field is longitudinal (i.e., parallel to q): in this case we only need con-

sider (5.34), and the ENZ condition is still possible by setting (5.34) to be zero,

leading to

εL (r) ∗ E (r) = 0 (5.36)

where

εL (r) = (εh − κ) δ (r)− κ∇2

(
e−kαr

4πr

)
. (5.37)

Unlike εT , the longitudinal permittivity εL must be convolved with the electric field,

and (5.36) does not simply lead to εL = 0; the condition depends on E (r) in

general. As an example, for a purely longitudinal field having the form E (r) =

e−jk.rk̂, then

D (r) = ε0E (r)

(
εh +

κα2

k2 − α2

)
, (5.38)

for which the ENZ condition is εh = κ (1− k2/α2)
−1
. In the absence of spatial

dispersion (D = 0), α2 →∞ and, as expected, the ENZ condition for longitudinal

fields becomes the same as for transverse fields,

εh = κ. (5.39)

For lossless wire media (5.39) becomes

ω =
ωp√

εh

(
1− 1

l0

) (5.40)

so that the effective plasma frequency is larger in the event of spatial dispersion

then if spatial dispersion were absent (spatial dispersion can be set to zero by setting

l0 = 0 which leads to D = 0 and ω = ωp/
√
εh). It should be noted that a purely

longitudinal field generally does not exist (an exception is a local material exactly
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at the plasma frequency), but here we consider this case since the next scenario is a

combination of the first two cases.

3. the electric field is neither purely transverse nor purely longitudinal (i.e., neither

parallel nor perpendicular to q): in this case, the ENZ condition can be obtained

only if

εT = 0, (5.41)

and (5.36) simultaneously, which leads to, from (5.34)-(5.35),

∇2E‖ (r) ∗ e
−kαr

4πr
= 0. (5.42)

Equation (5.42) cannot be satisfied in general, and it depends on the electric field.

However, if kα has a large real part, (5.42) can be approximately satisfied independent of

the electric field due to strong screening.

In summary, if we have a purely transverse field (such as a TE wave), the ENZ con-

dition is satisfied as occurs for local materials. For purely longitudinal fields the ENZ

condition can also be obtained, (5.39), although at a different frequency from the local

case. And, for the general case the ENZ condition cannot be exactly obtained, although if

sufficient field screening occurs via kα the ENZ condition can be approximately satisfied.

Given the last statement, it is useful to consider the screening parameter kα, or, more

precisely, the screening length Lα = 2π/Re (kα). This screening length is different from

the Debye length in the sense that it refers to screening of the total field rather than the

incident field (see the appendix). Since the relation between displacement field and elec-

tric field involves the total fields, this screening length is relevant for the displacement

field and consideration of the ENZ condition. Table 5.1 shows the two screening lengths

for some natural and artificial materials: gold at two frequencies, a semiconductor at two

frequencies and for two doping levels, and an isotropic wire medium, where the Debye

screening length is defined in the appendix. For the wire medium examples, Lα is quite
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Table 5.1: Normalized characteristic screening and Debye length of some sample materi-
als

Material ω/ωp LD/λ0 Lα/λ0

gold 0.8 2.78× 10−3 1.79
gold 1.2 2.69 1.48
SC (N = 1020m−3) 0.8 8.35× 10−5 8.36× 10−5

SC (N = 1020m−3) 1.2 1.02× 10−4 1.02× 10−4

SC (N = 1024m−3) 0.8 1.52× 10−3 1.61× 10−3

SC (N = 1024m−3) 1.2 2.31× 10−3 2.38× 10−3

ICWM 0.8 0.981 2.65× 106

ICWM 1.2 2.20× 106 3.98× 106

PEC ICWM any ∞ ∞

large and spatial dispersion effects are important (i.e., the relation between displacement

field and electric field is strongly nonlocal, and the nonlocal contribution decays alge-

braically rather than exponentially). However, for metals and semiconductors the screen-

ing length Lα is quite small and spatial dispersion effects are relatively unimportant (the

ENZ condition can be approximately satisfied regardless of field polarization)

For the semiconductor (SC) we assumed T = 300 K, m = 0.26me, εh = 12. For

gold, N = 5.9 × 1028 [m−3] , and vF = 1.4 × 106 [m/s] . For the ICWM we used

εh = 1, a = λ0/10, and rw = a/100. For the imperfectly conducting wires, εm =

1− ω2
m/ (ω (ω − jΓ)) where ωm = 1.37× 1016 [s−1] and Γ = 5× 1013 [s−1] .

It can be seen that the wire medium (having a large screening lengthLα) cannot realize

the ENZ condition excepting either the first or second scenarios described above (e.g.

TEM or TE waves). In fact, by looking carefully at previous successful attempts for

realizing the ENZ condition using a wire medium, one can see that the third scenario was

not implicated. For example, in [41] only a perpendicular electric field exists (which is the

first scenario). However, if one tries to realize an ENZ section inside a waveguide carrying

a TM wave (third scenario), the wire medium will not be able to completely provide the

ENZ condition. To validate this, we consider an x-band rectangular waveguide as shown

in Fig. 5.2, with height b=1.016 cm and width a=2.286 cm. The waveguide has total

length 15 cm, with a 5 cm section at each end filled with a simple dielectric having
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Figure 5.2: Waveguide with a section of ENZ material: a. depicts an idealized ENZ
material in the center region of the waveguide, otherwise filled with a simple constant-
permittivity medium, and b. shows the section filled with an isotropic wire medium. c.
TE20 mode in the idealized ENZ, d. TE20 mode in the actual wire medium, e. TM11 mode
in the idealized ENZ, and f. TM11 mode in the actual wire medium.

ε = 1.5, and a 5 cm long center region containing an ENZ medium. The frequency of

operation is 16.5 GHz, well above cutoff to allow both TE and TM modes to propagate.

All simulations were performed using CST Microwave Studio [55].

Fig. 5.2(a) depicts the waveguide with a section of idealized ENZ material (with the

permittivity set to εh = 0.1), and Fig. 5.2(b) shows the section filled with an isotropic

wire medium. The host material of the wire medium has εh = 8, and the wire period

and radius are 3.2 mm and 0.5 mm, respectively. At the operating frequency, for a local

wire-medium plasma model this would result in a ENZ condition (the plasma frequency

is 16.7 GHz).

Fig. 5.2(c) shows the result for the TE20 mode for the idealized ENZ material. It

can be seen that the material is acting like an ENZ material, since the wavelength in the

center section is much longer that in the two ends (where εh = 1.5). Fig. 5.2(d) shows

the corresponding result when the wire medium fills the center region. As expected for
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a purely-transverse TE mode (scenario 1 above), the wire medium also acts as an ENZ

material for the TE mode. Fig. 5.2(e) shows the result for the idealized ENZ material

for the TM11 mode, where, as expected, wavelength in the center section is much longer

that in the two ends, similar to the TE case. Finally, Fig. 5.2(f) shows the corresponding

result for the TM mode for the actual isotropic wire medium. It is evident that the ma-

terial does not function as an ENZ medium for the TM mode. Given that the TM mode

has both transverse and longitudinal components, it corresponds to scenario 3 above (a

combination of scenarios 1 and 2). Because the wire medium does not produce a small

screening length Lα (see Table 5.1), and because the longitudinal field is not negligible

compared to the transverse field, for the TM mode the wire medium does not produce the

ENZ condition. However, for a waveguide filled with a semiconductor we would expect

to see the ENZ condition for both TE and TM modes (however, the simulation is not

possible in CST).

Based on Table 5.1, ICWM cannot be used to realize the ENZ condition for an arbi-

trary excitation. Of course, the screening length of the ICWM in Table 5.1 is obtained for

specific wire parameters (such as wire period and radius). It can be shown that even with

changing the parameters of the ICWM, the screening length is extremely large. To clarify

this, Fig. 5.3 shows the normalized screening length of an ICWM as a function of the wire

period (a) and radius (rw). The wire material is the same as the imperfectly-conducting

ICWM in Table 5.1, and the frequency is ω = 1.2ωp. As Fig. 5.3 shows, the normalized

screening length is very large, which differentiates the ICWM from the natural materials

described in the table.

In summary, in this chapter the “space-domain” nonlocal permittivity ε (r− r′) has

been obtained and a new characteristic screening length introduced for spatially dispersive

materials, including artificial wire media. Unlike the Debye length, the new characteris-

tic length relates polarization to the total electric field inside the material, and so it can

be used to study the electric displacement distribution in relation to the ENZ condition.
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Figure 5.3: Normalized screening length of the ICWM (Lα/λ0) as a function of the wire
period (a) and radius (rw) at ω = 1.2ωp.

Using some typical values semiconductor and wire medium metamaterials, it was shown

that the new characteristic length is very small for semiconductors and therefore an ENZ

condition can be easily obtained. However, for wire media the ENZ condition cannot

be identically obtained except in some special cases, and often only the perpendicular

displacement field can vanish.
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Chapter 6

Homogenization example: hyperlensing by a graphene

monolayer [6]

In this chapter, the canalization of terahertz surface plasmon polaritons using a modulated

graphene monolayer is investigated for subwavelength imaging. An anisotropic surface

conductivity formed by a set of parallel nanoribbons with alternating positive and negative

imaginary conductivities is used to realize the canalization regime required for hyperlens-

ing. The ribbons are narrow compared to the wavelength, and are created electronically

by gating a graphene layer over a corrugated ground plane. Good quality canalization of

surface plasmon polaritons is shown in the terahertz even in the presence of realistic loss

in graphene, with relevant implications for subwavelength imaging applications.

6.1 introduction

Graphene, the first 2D material to be practically realized [56], has attracted great interest

in the last decade. The fact that electrons in graphene behave as massless Dirac-Fermions

leads to a variety of anomalous properties [57; 58], such as charge carriers with ultra

high-mobility and long mean-free paths, gate-tunable carrier densities, and anomalous

quantum Hall effects [59]. Graphene’s electrical properties have been studied in many

previous works [60; 61; 62; 63; 64; 65; 66; 67; 68; 69] and are often represented by a

local complex surface conductivity given by the Kubo formula [70; 71]. Since its surface

conductivity leads to attractive surface plasmon properties, graphene has become a good

candidate for plasmonic applications, especially in the terahertz (THz) regime [72; 73;

74; 75; 76; 77; 78; 53].
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Surface plasmons (SPs) are the collective charge oscillations at the surface of plas-

monic materials. SPs coupled with photons form the composite quasi-particles known as

surface plasmon polaritons (SPPs). Theoretically, the dispersion relationship for SPPs on

a surface can be obtained as a solution of Maxwell’s equations [79]. In this approach it is

easy to show that, in order to support the SPP, 3D materials with negative bulk permittiv-

ities (e.g., noble metals) or 2D materials with non-zero imaginary surface conductivities

(e.g., graphene) are essential. Although SPPs on metals and on graphene have consid-

erable qualitative similarities, graphene SPPs generally exhibit stronger confinement to

the surface, efficient wave localization up to mid-infrared frequencies [80; 74], and they

are highly tunable (which is one of their most unique and important properties)[58]. Ap-

plications of graphene SPPs include electronics [81; 82; 83], optics [84; 85; 86], THz

technology [87; 88; 89; 90], light harvesting [91], metamaterials [92], and medical sci-

ences [93; 94].

In this chapter we study the canalization of SPPs on graphene, which can have direct

applications for sub-wavelength imaging using THz sources.

Sub-wavelength imaging using metamaterials was first reported by Pendry in 2000

[95]. His technique [96] was based on backward waves, negative refraction and amplifi-

cation of evanescent waves. More recently, another more robust venue for subwavelength

imaging was proposed, based on metamaterials operating in the so called “canalization

regime” [97; 98; 99]. In this case, the structure (acting as a transmission medium) trans-

fers sub-wavelength images from a source plane to an image plane over distances of

several wavelengths, without diffraction [100]. This form of super-resolving imaging, or

hyperlensing, can also be realized by a uniaxial wire medium [101]. In these schemes, all

spatial harmonics (evanescent and propagating) propagate with the same phase velocity

from the near- to the far-field. In this paper we discuss the canalization of SPPs on a mod-

ulated graphene monolayer. In Ref. [102], it was shown that the near field of a vertical

point source placed in close proximity to a graphene monolayer couples primarily to the
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Figure 6.1: An infinite graphene layer in the yz−plane. The conductivity of graphene
is isotropic (σ0) everywhere except in the red region, where it is anisotropic (σ). The
anisotropic region will be created by a suitable gate bias.

field of an SPP strongly confined to the monolayer. By creating an anisotropic graphene

surface as alternating graphene nanoribbons with positive and negative imaginary sur-

face conductivities, we achieve SPP canalization and hyperlensing of the near-field of an

arbitrary source.

To achieve canalization, it is necessary to realize a flat isofrequency contour[103].

Here, taking the same definition for canalization as for a 3D material, we first study the

conditions for canalization of SPPs on a 2D material such as graphene. Then, a practical

geometry is proposed and verified for the hyperlens implementation.

6.2 Theory and formulation

Figure 6.1 shows an infinite graphene layer in the yz−plane suspended in vacuum. Its

surface conductivity is assumed isotropic (σ0) everywhere except in the region between

the source and image lines (red colored region), which is anisotropic and is given as

σ = σyŷŷ + σzẑẑ = −j
(
σiyŷŷ + σizẑẑ

)
, (6.1)
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where for now σy,z are assumed to be imaginary-valued, (to be generalized later) σy,z =

0− jσiy,z. For an SPP traveling over such an anisotropic graphene layer, it is possible [see

the appendix] to show that the governing dispersion relation is

k2
z

(
σiz

σiz + σiy

)
+ k2

y

(
σiy

σiz + σiy

)
− k2

0 = (6.2)

k0kx
σiz + σiy

(
2

η0

−
η0σ

i
yσ

i
z

2

)
,

where k0 is the wavenumber in free space, η0 =
√
µ0/ε0 is the intrinsic impedance

of vacuum, kx =
√
k2
y + k2

z − k2
0 , and the 2D spatial Fourier transform variables are

(y, z) = (ky, kz).

From (6.2), an ideal canalization regime can be realized when

σiy → 0; σiz →∞, (6.3)

simultaneously, such that (6.2) becomes

kz = k0, (6.4)

independent of ky. Equation (6.4) implies that all of the transverse spatial harmonics (ky

of the SPPs) will propagate with the same wavenumber (phase velocity) in the z-direction.

In this situation, which is analogous to the canalization regime in 3D metamaterials, any

SPP distribution at the source line in Fig. 6.1 will be transferred to the image line without

diffraction or any phase distortion. Condition (6.3) is somewhat analogous to the condi-

tion required for canalization of 3D waves in Ref. [104], but with the difference that here

the extreme parameters (6.3) yield a finite wave number, equal to the background medium

surrounding the modulated graphene layer, and not zero as for the 3D case. This is to be

expected, since the canalized SPPs still need to be above the light cone to avoid radia-

tion and leakage in the background medium. Quite peculiarly, it follows from (6.4) that
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the confinement in the transverse (x) direction of each SPP is proportional to its spatial

frequency along y, i.e., kx = ky.

It might seem difficult to find a natural 2D material providing (6.3) for canalization.

However, it can be shown [see the appendix] that a modulated isotropic conductivity σ (z)

can act as an effective anisotropic conductivity,

σeff
y =

1

T

∫
〈T 〉

σ (z) dz, (6.5)

1

σeff
z

=
1

T

∫
〈T 〉

1

σ (z)
dz, (6.6)

where σ (z) is assumed to be periodic with period T , and the integrations are over one

period. Note that T should be small compared to the wavelength in order to provide

valid effective parameters. Therefore, if the isotropic conductivity of graphene is prop-

erly modulated (e.g., by electrical gating or chemical doping), its effective anisotropic

conductivity can indeed satisfy (6.3).

In the following, two conductivity modulations will be analyzed whose effective anisotropic

conductivities satisfy (6.3) and are thus in principle capable of canalizing SPPs. Since we

will use full-wave simulations to confirm the canalization geometries, a section in the

appendix is dedicated to modeling of graphene in commercial simulation codes using

finite-thickness dielectrics.

6.3 Realization of the hyperlens

In previous canalization metamaterials, or hyperlenses, using alternating positive and neg-

ative dielectrics, an idealized, abrupt transition has been assumed between layers. For

graphene, this would be analogous to strips having abrupt transitions between positive

and negative imaginary-part conductivities. We refer to this as the hard-boundary case,
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Figure 6.2: Triangular ridged ground plane for achieving conductivity modulation (lead-
ing to a soft-boundary profile).

and analyze it in detail in the appendix. However, given the finite quantum capacitance of

graphene, such an abrupt transition is impossible to achieve. A more realistic modulation

scenario for a conductivity profile satisfying (6.3) can be obtained in the geometry of Fig.

6.2. It consists of an infinite sheet of graphene gated by a ridged ground plane, as shown

in the insert of Fig. 6.2. Performing a static analysis, it is possible to obtain the charge

density on the graphene layer, which may in turn provide the chemical potential and the

conductivity of graphene following a method analogous to Ref. [53]. Figure 6.3 shows

the calculated conductivity of the graphene layer as a function of z (using the complex

conductivity predicted by the Kubo formula; see Ref. [67] for the explicit expression for

f = 10 THz, T = 3 K, Γ = 0.215 meV).

Two important conclusions can be drawn from Fig. 6.3: i) the imaginary part of con-

ductivity dominates the real part, as desired, and ii) its distribution is almost perfectly

sinusoidal, which, after insertion into (6.5) and (6.6), satisfies (6.3). Therefore, the ge-

ometry of Fig. 6.2 may be expected to support canalization. The resulting graphene

nanoribbons have a realistic smooth variation in conductivity; we refer to this geometry

as the soft-boundary scenario, considered in the following.

As an example, two point sources are placed in front of the source line in Fig. 6.1, ex-

citing SPPs on the graphene layer. The point sources are separated by 20 nm= 0.15λSPP,
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Figure 6.3: The conductivity distributions resulting from the bias modulation scheme
depicted in Fig. 6.2. Also shown is the idealized hard-boundary case discussed in the
appendix.

Figure 6.4: The normalized x-component of the electric field at the source (left) and
image (right) planes of the modulated graphene surface. Source and image lines are at
separated by 2λSPP (the region −1 < x < 1 is the dielectric slab model of graphene).

where λSPP = 133 nm using (S.2) in appendix section, and the canalization area (the re-

gion between the source and the image lines) has length 2λSPP = 250 nm and width of

100 nm (which is large compared to the separation between sources).

Figure 6.4 shows the x-component of the electric field at the source line and image line

(at the end of the modulated region). The plot of the normalized x-component of the field

at x = 1 nm is shown in Fig. 6.5, while Figure 6.6 shows the x-component of the electric

field above the modulated graphene surface, and a homogenous graphene surface with



92

−50 −30 −10 10 30 50
0

0.2

0.4

0.6

0.8

1

y [nm]

|E
x
|

 

 

image

source

Figure 6.5: The normalized x-components of the electric field at the source and image
lines on the surface of the modulated graphene (x = 1 nm).

Figure 6.6: Normalized x-component of the electric field above the modulated graphene
surface (left) and a homogenous graphene surface (right).

conductivity σ = −j23.5µS. This shows quite strikingly how the canalization occuring

on the modulated graphene can avoid the usual diffraction expected on a homogeneous

layer. Figs. S.3-S.5 in the appendix section show consistent results for the hard-boundary

case.

It is easy to show that (6.5) and (6.6) cannot be exactly satisfied if the conductivity

includes loss (i.e., the real part of σ). Therefore as loss increases, the phase velocities

will differ among various spatial components and, as a result, one would expect to see a

blurred image, and eventually no image, as loss further increases. To investigate this dete-

rioration effect, we decrease the canalization length to 200 nm= 1.5λSPP and increase the
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Figure 6.7: The effect of loss on the image canalization for hard- and soft-boundary bias
modulations.

separation between sources to 50 nm= 0.4λSPP (which we found necessary to maintain

accuracy in the simulation). The geometry is then simulated for soft- and hard-boundary

cases (with and without loss for each case) and the x- components of the electric field at

x = 10 nm are shown in Fig. 6.7. The curves are calculated in the image line at a distance

1 nm above the graphene surface.

Comparison between the four curves in Fig. 6.7 shows that the lossless hard- and

soft-boundary examples yield similar results, as expected since their effective surface

conductivity satisfies (6.3) exactly. In fact, as long as the period is small compared to the

wavelength, any modulation which has half-wave symmetry will satisfy (6.3), leading to

perfect canalization.

However, adding loss causes the effective surface conductivities to have non-vanishing

real parts, and therefore (6.3) cannot be exactly satisfied. In the lossy case, the modulation

scheme is important, since it affects how closely (6.3) can be satisfied. For example,

Fig. 6.7 shows that the idealistic hard-boundary model exhibits better resolution than the

realistic soft-boundary model.

Image degradation due to loss can be lessened by working at higher frequencies. In

fact, the maximum of the ratio Im(σ)/Re(σ) may be increased by adjusting the chemical

potential at higher frequencies. In the appendix section the ratio Im(σ)/Re(σ) is plotted
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as a function of chemical potential and frequency, and its optimal value for three different

frequencies is used to simulate to the same geometry. The simulation results confirm the

improvement of canalization as frequency increases.

Our results show that a triangular ridged ground plane to bias the graphene monolayer

indeed allows canalization and hyperlensing, since its effective conductivities given by

(6.5) and (6.6) satisfy (6.3). However, there are many possible σ (z) functions that, after

inserting them into (6.5) and (6.6), will satisfy (6.3). As an example, the sinusoidal con-

ductivity of Fig. 6.3 can also be implemented using a rectangular ridged ground plane

(details are shown in the appendix section).

6.4 Summary

We have analyzed the possibility to produce in-plane canalization of SPPs on a 2D sur-

face, with particular emphasis on its realization in a realistically modulated graphene

monolayer, resulting in a planarized 2D hyperlens on graphene. We envision the use

of this effect on a ridged ground plane for sub-wavelength imaging of THz sources and

to arbitrarily tailor the front wave of an SPP by suitably designing the boundary of the

canalization region.

6.5 Appendix

6.5.1 On the modeling of graphene layer by a thin dielectric

Modeling graphene as a 2D surface having an appropriate value of surface conductivity σ

is an accurate approach for a semiclassical analysis (e.g., the Drude model for intraband

contributions has been verified experimentally [105; 106; 107], and the interband model

and the visible-spectrum response have also been verified [107]). However, often it is

convenient to model graphene as a thin dielectric layer, which is easily implemented in
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typical electromagnetic simulation codes. It is common to consider an equivalent dielec-

tric slab with the thickness of d and a 3D conductivity of σ3D = σ/d. The corresponding

bulk (3D) relative permittivity is [72]

ε3D = 1 +
σ

jωε0d
, (6.7)

where ω is the angular frequency. However, for calculations in which the geometry is

discretized (e.g., in the finite-element method), fine features in the geometry such as

an electrically-thin slab demand finer discretization, which in turn requires more com-

putational costs. Thus, whereas sub 1 nm thickness values may seem more physically-

appropriate, numerical considerations often lead to the use of a thicker material. As an

example, in Ref. [72] the thickness of the dielectric slab is assumed to be 1 nm.

However, the accuracy of the dielectric model degrades as the thickness of the slab

increases. Since this model is widely adopted, yet a detailed consideration of this effect

has not been previously presented, we briefly consider this topic below.

Consider a transverse magnetic SPP on an infinite graphene layer. The SPP wave-

length using the 2D conductivity is [67]

λSPP = λ0

(
1−

(
2

η0σ

)2
)−0.5

, (6.8)

where λ0 is the wavelength in free space. On the other hand, in Ref. [108] it is shown

that a dielectric slab with negative permittivity ambient in a medium with positive permit-

tivity can support two sets of dielectric modes (even and odd). The odd modes have the

wavelength (assuming vacuum as the ambient medium)

λodd = 2π

(
−2

d
coth−1ε3D

)−1

, (6.9)

where ε3D and d are the dielectric slab permittivity and thickness, respectively. It is shown

in Ref. [108] that the odd modes can exist only if
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ε3D < −1. (6.10)

It can also be noticed that the modal field distribution outside of the slab is similar to that

of a SPP on graphene. It is easy to show that in the limit of d → 0 and using (6.7), the

dielectric-slab odd mode becomes the graphene SPP mode λodd → λSPP. It can be shown

that (6.9) is a good approximation for λSPP only if three conditions are satisfied as [see

the next sub-section]

d

λSPP

� 1, (6.11)

|σ| � 2

η0

, (6.12)

∣∣∣σ
d

∣∣∣ > 2ωε0. (6.13)

Equation (6.13) is in fact the direct insertion of (6.7) into (6.10). Based on (6.13),

as the σ/d ratio increases, the dielectric slab becomes a better approximation (as long as

(6.12) is not violated). To consider this, Fig. 6.8 shows the frequency independent error

(%) of using the dielectric slab model for graphene as a function of the normalized d and

σ (assuming σ is imaginary-valued),

error(%) =
λodd − λSPP

λSPP

× 100. (6.14)

As a numerical example (using equations (3) and (4) in Ref. [67]), for d = 2 nm,

the scattering rate Γ = 0.215 meV, and chemical potential µc = 0.03 eV at f = 10 THz

and very low temperature (T = 3 K), the normalized thickness and conductivity will be

d/λ0 = 66.7× 10−6 and σ = 1.1− j23µS which leads to an error of 4.9%. This is set as

the maximum error that is allowed in the rest of this work.
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Figure 6.8: The error (6.14) as a function of the normalized dielectric thickness and con-
ductivity of graphene. The graph is frequency independent.

6.5.2 Proof of (6.13)

From (6.9),

coth

(
d |βodd|

2

)
=

σi

ωε0d
− 1 (6.15)

where βodd = 2π/λodd and σ = −jσi.

Assuming d/λodd � 1, (6.15) leads to

2

d |βodd|
+
d |βodd|

6
− ... =

σi

ωε0d
− 1. (6.16)

After keeping only the first term of the series in (6.16) and using the assumption d/λodd �

1 ,

|λodd|
λ0

=
σiη0

2
. (6.17)

Comparing (6.17) and (6.8), λodd is a good approximation of λSPP only if

∣∣σi∣∣� 2

η0

. (6.18)
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6.5.3 Proof of (6.2)

For the anisotropic region of Fig. 6.1, consider a general magnetic field in the Fourier

transform domain as

H = e−jkyy−jkzz× (6.19)
(
H+
x x̂ +H+

y ŷ +H+
z ẑ
)
e−
√
k2y+k2z−k20x x > 0(

H−x x̂ +H−y ŷ +H−z ẑ
)
e
√
k2y+k2z−k20x x < 0

where H+,−
x,y,z are constants. Equation (6.19) is chosen so that it satisfies the Helmholtz

equation and has the form of a plasmonic wave.

Using Ampere’s law to find the electric field in each region and satisfying the bound-

ary conditions

H+
y −H−y = σzEz, (6.20)

H+
z −H−z = −σyEy, (6.21)

H+
x = H−x , (6.22)

it is straightforward to show that

H−y = −H+
y , (6.23)

H−z = −H+
z , (6.24)
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
σzjky Y 0

jkzσy 0 Z

jkx jωε0ky jωε0kz



H+
x

H+
y

H+
z

 = 0, (6.25)

where Y = −2jωε0 − σzkx, and Z = −2jωε0 − kxσy. Setting the determinant of the

above matrix to zero leads to (6.2).

It is easy to show that in the isotropic limit (σy = σz = σ0), (6.2) simplifies to the

well-known dispersion equations [62; 67] kx = − 2jk0
η0σ0

, and kx = − jk0η0σ0
2

, for transverse

magnetic (TM) and transverse electric (TE) surface waves, respectively. The solution of

(6.2) will lead to a solution for the SPP with the magnetic field

H = e−kxx−jkyy−jkzz× (6.26)(
x̂ +

jσzky
2jωε0 + kxσz

ŷ +
jσykz

2jωε0 + kxσy
ẑ

)
.

In the canalization regime, the SPP given by (6.26) is a TM mode with respect to the

canalization direction (z-direction in our notation) and its magnetic field has a peculiar

circular polarization,

H = (x̂ + jŷ) e−ky(x+jy)−jk0z. (6.27)

It is also interesting that the confinement in the x-direction of each SPP harmonic is

proportional to ky.

6.5.4 Proof of (6.5) and (6.6)

Assume a sheet of graphene with a periodic isotropic conductivity in the z-direction

(σ (z) = σ (z + T )) as shown in Fig. 6.9. Enforcing a constant, uniform, and z-directed

surface current (Jz) on the graphene induces an electric field on the graphene as



100

Figure 6.9: An infinite graphene layer with isotropic periodic conductivity of σ(z).

E (z) =
Jz
σ (z)

. (6.28)

Defining average parameters leads to

Eav =
Jz
σav,z

=
1

L

∫
〈L〉

Jz
σ (z)

dz, (6.29)

1

σav,z

=
1

L

∫
〈L〉

1

σ (z)
dz. (6.30)

Enforcing a constant, uniform and y-directed electric field (Ey) induces a surface

current on the graphene as

Jy (z) = σ (z)Ey (6.31)

which is (6.5).

Defining average parameters leads to

Jy,av (z) = σav,yEy =
1

L

∫
〈L〉

σ (z)Eydz, (6.32)

σav,y =
1

L

∫
〈L〉

σ (z) dz, (6.33)
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which is (6.6).

6.5.5 Idealized graphene nanoribbons with hard-boundaries

An idealization of the modulation scheme discussed in the text would consist of alternat-

ing positive and negative imaginary conductivities, with each strip terminating in a sharp

transition between positive and negative values (see Fig. 6.13). We assume that all of the

strips have the same width W = 4 nm and conductivity modulus |σ| = 23.5µS, which

is the conductivity of a graphene layer for f = 10 THz, T = 3 K, Γ = 0.215 meV and

µc = 0.022 eV or µc = 0.03 eV (for positive and negative Im (σ), respectively). The

chemical potential is chosen to minimize the loss at the given frequency. In fact, the ratio

Im (σ) /Re (σ) is maximized at this frequency (the ratio is 7 for µc = 0.022eV). Since the

effect of loss was discussed in the text, here we assume an imaginary-valued conductivity

σ = ±j23.5µS.

We refer to this idealized conductivity profile as the hard-boundary case, because of

the step discontinuity (sharp transition) of the conductivity between neighboring strips.

This resembles the geometry in Ref. [104] for canalization of 3D waves in which there

are also hard-boundaries between dielectric slabs with positive and negative permittivites.

As a simulation example of the hard-boundary case, two point sources are placed in

front of the source line in Fig. 6.1 exciting two SPPs on the graphene layer. The point

sources are separated by 20 nm= 0.15λSPP where λSPP = 133 nm using (6.8), and the

canalization area (the region between the source and the image lines) has length 2λSPP =

250 nm and width of 100 nm (which is large compared to the separation between sources).

Figure 6.10 shows the normalized x-component of the electric field |Ex| at the source line

and image line (at the end of the modulated region). Fig. 6.11 shows the normalized

x-component of the electric field above the surface of the graphene (x = 5 nm). Note that

the region −1 < x < 1 nm represents the graphene (since we have used a dielectric slab

model for graphene with the thickness of 2 nm).
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Figure 6.10: The normalized x-component of the electric field at the source (left) and
image (right) planes of the hard-boundary example. Source and image lines are separated
by 2λSPP (the region −1 < x < 1 is the dielectric slab model of graphene).

Figure 6.11: Normalized x-component of the electric field above the graphene surface.

Canalization is evident from Figs. 6.10 and 6.11. Figure 6.12 shows the normalized

field intensities at the source and image lines just above the graphene surface (x = 1 nm).

6.5.6 Simulation setup for the hard- and the soft-boundary examples

Full-wave simulations have been done using CST Microwave Studio

CST. In this section we consider the dielectric model of graphene. Figure 6.13 shows

the simulation setup of the hard-boundary example. The simulation results are given

in Figs. 6.10-6.12. The graphene strips can be modeled with dielectric slabs having
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Figure 6.12: The normalized x-components of the electric field at the source and image
lines on the surface of the graphene (taken at the height x = 1 nm) for the hard-boundary
example.

Figure 6.13: The dielectric model of the hard-boundary graphene strip example.

thickness d = 2 nm and, using (6.7), permittivities of ε− = −20 and ε+ = 22. However,

as shown in the insert of Fig. 6.13, the permittivity ε+ = 17 is used rather than ε+ = 22

because numerical experiments show that that value leads to better canalization. The

difference with our analytically-predicted value for best canalization is seemingly because

in our analytical model we have disregarded radiation, reflections from discontinuities,

and similar effects.
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Figure 6.14: The dielectric model for the soft-boundary example - constant permitivies
and smoothly-varying thickness model graphene’s sinusoidal chemical potential.

For the soft-boundary example, the conductivity of the strips varies smoothly with

position. So, applying the dielectric slab model, we could use a dielectric slab with a

fixed thickness (e.g., d = 2 nm) and a position dependent permittivity given by (6.7) as

ε3D (z) = 1 +
σ (z)

jωε0d
. (6.34)

However, an alternative method which is easier to implement for simulation is to con-

sider a dielectric slab with fixed permittivity (or permittivities) and a position dependent

thickness as

d (z) =
σ (z)

(ε3D − 1) jωε0

. (6.35)

Obviously, two different ε3D values should be chosen for different signs of σ (z) so

that d (z) remains positive. This has been done for the conductivity of Fig. 3, and the

resulting dielectric slab model is shown in Fig. 6.14. Comparison between Fig. 6.13 and

Fig. 6.14 clearly shows the difference between the hard- and the soft-boundary examples.

6.5.7 The improvement of canalization by increasing the frequency

Figure 6.15 shows the ratio Im(σ)/Re(σ) versus chemical potential at three different fre-

quencies, showing that, as frequency increases, loss becomes less important. Note also

that the value of chemical potential that maximizes the conductivity ratio is considerably
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Figure 6.15: The ratio Im (σ) /Re (σ) as a function of chemical potential for three differ-
ent frequencies.

frequency dependent. In Fig. 6.16 the effect of decreasing loss as a result of the frequency

increase is invesigated. To do so, the peak ratio Im(σ)/Re(σ) of the three curves in Fig.

6.15 are chosen associated with frequencies 10, 20, and 30 THz. These ratios are assigned

to a same geometry (and holding frequency constant) and the x-component of the electric

fields are shown in Fig. 6.16 (the scalings are the same). In this way, all of the electrical

lengths (such as the electrical length of the nanoribbons, canalization region, etc.) remain

the same and only the effect of loss is incorporated. From Fig. 6.16, it is obvious that the

increase of frequency improves the canalization. However, since the dimensions become

smaller, fabrication becomes more difficult.

6.5.8 Modulated graphene conductivity using a rectangular ridged

ground plane

The sinusoidal conductivity of Fig. 3 can be implemented using a rectangular ridged

ground plane, as shown in Fig. 6.17. The conductivity distribution of the geometry

in Fig. 6.17 is shown in Fig. 6.18 and is almost identical to Fig. 3, although their

ground plane geometries are different. Obviously, the ideal canalization behavior of the

two geometries is very similar. Interestingly, the rectangular ridged ground plane has to
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Figure 6.16: The normalized x-component of the electric field above the graphene surface
(x = 2 nm) for the peak value of Im(σ)/Re(σ) at 10 THz (top-left), 20 THz (top-right),
and 30 THz (bottom).

be non-symmetric (the ratio of groove to ridge is 3) to produce the same conductivity

function as the symmetrical triangular ridged ground plane.

Figure 6.17: An alternative geometry with rectangular ridged ground plane to realize the
soft-boundary example.
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Figure 6.18: The conductivity distribution in the geometry of Fig. 6.17.
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Chapter 7

Summary, future work and outlook

A new integro-differential equation was proposed for solving scattering problems involv-

ing wire media, allowing for the first treatment of three-dimensional wire medium objects.

The integro-differential equation was shown to be efficient and accurate via comparisons

with other results, known analytical results, and measurement for 1d, 2d, and 3d cases

(both isotropic and anisotropic for 3d). In the 1d isotropic case the integro-differential

equation led to an analytical solution. For 3d objects, the effect of wire period and di-

ameter was investigated experimentally in a range of parameters that demonstrated the

expected breakdown of homogenization for large wire period. In order to have a valid

homogenized model for the uniaxial wire medium geometries studied, wire size should

be larger than the Debye length, the wire diameter to period ratio should be less than

0.25, and the period should be such the plasma frequency is higher than the operating

frequency.

Then, using wire medium as an ENZ material, sum and difference patterns were gen-

erated using a simple and novel structure and its radiation pattern, input impedance and

directivity were investigated using full-wave simulations. The structure is useful for radar

applications and tracking systems.

Focusing on ENZ materials, the “space-domain” nonlocal permittivity ε (r− r′) has

been obtained and a new characteristic screening length introduced for spatially dispersive

materials, including artificial wire media. Unlike the Debye length, the new characteris-

tic length relates polarization to the total electric field inside the material, and so it can

be used to study the electric displacement distribution in relation to the ENZ condition.

Using some typical values semiconductor and wire medium metamaterials, it was shown
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that the new characteristic length is very small for semiconductors and therefore an ENZ

condition can be easily obtained. However, for wire media the ENZ condition cannot

be identically obtained except in some special cases, and often only the perpendicular

displacement field can vanish.

In the last section, as a different example of homogenization, we have analyzed the

possibility to produce in-plane canalization of SPPs on a 2D surface, with particular em-

phasis on its realization in a realistically modulated graphene monolayer, resulting in a

planarized 2D hyperlens on graphene. We envision the use of this effect on a ridged

ground plane for sub-wavelength imaging of THz sources and to arbitrarily tailor the

front wave of an SPP by suitably designing the boundary of the canalization region.
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