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Assessing Survivability of the Beijing Subway System

Abstract
The Beijing subway system, the third largest in the world, serves more than ten million passengers a day. As
Beijing is the capital city of China and thus a booming urban center, its subway system has experienced rapid
evolution from a local single line system to a complicated network. Due to its constantly increasing
complexity, the system is both a critical asset for a local transit artery and a bridge between intercity
transportation modes, increasing the issue of network survivability in the face of potential outages of network
components. In this study, we provide a connectivity-based survivability measure with which to explore how
potential outages of network components might affect the overall functionality of the Beijing subway system.
System survivability is measured from two perspectives: [1] topological connectivity under various simulated
failures of transfer stations and [2] variations in passenger flow in response to disruptive factors. Plausible
scenarios are constructed using local demographic data and daily shipment reports from subway management
companies. To assess the possible range of influences, we develop a weighted rank-based simulation algorithm to
approximate exact solutions to extreme combinatorial outage instances. The range of potential effects
highlights the best and worst-case scenarios to identify critical components and help to prepare corresponding
contingency plans. This research will enable planners in urban environments, where infrastructure
functionality, particularly that of public transit systems, is critical for maintaining socioeconomic security in
times of crisis.
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1. INTRODUCTION 

 
Transportation systems facilitate the movement of people and goods between origins and 
destinations across a network. However, disruptions can severely hinder the functionality 
of paths for that movement (Matisziw et al. 2009). The devastating effect of the 2011 
floods in Southeast Queensland (Lee et al. 2013), the 2004 Madrid train bombing, and the 
2005 London underground bombing reveal the possibility of natural or human-caused 
disruptions and the vulnerability of transportation systems confronted with such 
disruptions (CNN Library 2013a, 2013b). Because transportation systems are deeply 
embedded into society, disruptions to system components can impair the functionality of 
the entire system, thereby causing large socio-economic costs, especially when the 
disruptions result from intentional terrorist attacks (Angeloudis and Fisk 2006, Kim 
2009).  

With the world population soaring in recent decades, public transportation, as a 
crucial part of the solution to the world’s economy, energy, and environment, is gradually 
attracting more attention. In 2012, 10.5 billion trips on public transportation were made in 
the United States, and people boarded public transportation 35 million times each 
weekday (Publictransportation.org 2013), which indicates that the role of public 
transportation in fulfilling transportation needs is increasing. In particular, the importance 
of the public transportation system for China is greatly stressed because the burden of 
public transportation systems is even heavier outside the United States. In 2010, the 
average number of motor vehicles owned by one thousand people in the United States 
was 797, while that in China was 58 (World Bank Group 2013). Under these 
circumstances, public transportation use in China must be expanded to meet the 
increasingly urgent demand caused by the fast-growing population, especially in some 
urban areas, including Beijing, Shanghai, and Shenzhen. Because of the growing 
importance of public transportation and its tremendous cost recovery, management 
agencies tend to fortify the system beforehand to prevent potential disasters from 
disrupting the system. For example, the service of the New York subway system is 
seasonally disrupted by flooding from rainstorms, and the cost for the system 
maintenance is large, with $357 million being used to improve 269 pump rooms since 
1992 (Donohue 2007). This begs two questions: (1) How can we prevent disruptions 
from occurring, and what are the critical components in the system? (2) How can we 
minimize the aftermath of disruptions? The preliminary approach to tackle these 
questions is to identify the critical network components and draw feasible scenarios to 
various situations on the system. Survivability is the capability of a system to fulfill its 
mission in a timely manner in the presence of threats such as attacks or large-scale 
natural disasters (Ellison et al. 1997, Mohammad et al. 2006). Assessing survivability and 
exploring the potential scope of disruptive events are critical in network planning and risk 
management because the resources to respond to an emergency are limited. Considering 
their socio-economic importance, transportation systems, such as highways and road 
networks, have been studied using hypothetical or empirical vulnerability analyses 
(Jenelius et al. 2006, Matisziw et al. 2009, O’Kelly and Kim 2007, Salmeron et al. 2004). 

In this research, we propose an accessibility-based survivability measure (ASM) as a 
measure of survivability considering topological and functional aspects of the effects of 
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disruptions and develop a weighted rank-based simulation algorithm (WRSA) to enable 
the ASM to be applied to a large network. Compared with the previous survivability 
measures, the ASM is conceptually simple in measuring survivability while providing 
better dimensionality to evaluate the multifaceted system’s survivability rather than a 
single perspective, and WRSA efficiently reduces the computational burden when 
exploring possible outcomes using ASM for various disruption scenarios. The remainder 
of the paper is organized as follows. After reviewing former survivability research and 
highlighting the remaining challenges in the second section, we detail the case study area 
and the data used for analysis. In the fourth section, we provide the research framework 
coupled with the ASM and WRSA. The fifth section presents the research results 
followed by our conclusions. 
 
 
2. BACKGROUND 

 
One of the major concerns in survivability research is exploring appropriate measures to 
evaluate system survivability. However, the concept of survivability itself does not yet 
have a commonly accepted definition. The meaning of the term depends on the context 
(Jenelius et al. 2006). The fundamental assumption of network survivability is that a 
network is able to maintain part of its characteristics when affected by disruptions to 
network components (Murray et al. 2008). The scope of the affected network components 
is either a single node/link or a group of nodes/links. 

As well introduced by Murray (2013), any network-based system can fail in various 
ways, and methods to examine its survivability have been developed based upon the type 
of systems and approaches. There are two types of measures describing the changes of a 
disrupted network: binary and fuzzy measures. Binary measures, which represent 
survivability within a range of values or through certain indices to evaluate the given 
network system, follow all-or-nothing logic with system operation. In contrast, fuzzy 
measures assume that network components function within a certain level of operation 
probability. The probability of a network disruption’s occurring, the chance of network 
components’ being disrupted by the event, the degree to which the disrupted components 
are able to maintain parts of their functionality, etc. can be considered to improve the 
estimation of survivability. Accordingly, “reliability” and “vulnerability” are two 
commonly used concepts to define survivability, although their definitions vary and are 
used differently in the context of analysis. For example, Holmgren (2004) defines 
vulnerability as a collection of properties of an infrastructure system that may weaken or 
limit its ability to maintain its intended function when exposed to threats and hazards. 
Salmeron et al. (2004) compare vulnerability to the system’s “cushion” against failed, 
destroyed, or otherwise unavailable system components, while Berdica (2002) focuses on 
possible catastrophes by stating that vulnerability is the susceptibility to rare, though big 
risks. Even though the definition varies with a context of research, vulnerability in the 
transportation network is commonly seen as the complement of reliability (Berdica 2002). 
According to Husdal (2004), vulnerability studies primarily focus on the impact or 
consequence of disruptions, and vulnerability is the non-operability of the network under 
certain circumstances. On the contrary, he states that reliability is an expression of the 
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probability that a network will function. Thus, reliability may be regarded as the degree 
of stability of the quality of service that a system offers. In other words, vulnerability 
represents the extent to which the system loses its original functionality, while reliability 
measures the remaining functionality (Bagga et al. 1993, Berdica 2002). The relationship 
between vulnerability and reliability is complicated (Jenelius et al. 2006). Reliability 
researchers generally prefer fuzzy measures. In theory, applying a fuzzy measure is more 
realistic than applying a binary measure because the former considers the different 
possible malfunctions of network components. For example, Kim (2009) defines 
reliability as a network’s capability to deliver flows or the availability of paths between 
nodal pairs in a network, which depends on the probability that links or nodes will 
operate. However, the precondition of applying fuzzy measures is that empirical or 
hypothetical failure probability of a system or network component is known. Otherwise, 
the setting of the probability form could be arbitrary. 

In both the traditional field of transportation and the newly emerging field of network 
science, many approaches exist for assessing the vulnerability of network-based systems 
(Matisziw et al. 2009). Four widely used network degradation measures are network 
connectivity, operational cost, capacity, and system flow, which can be classified into 
three types (Kim 2012, Murray 2013). Network connectivity concerns an available or 
functional path exists between origin-destination (O-D) pairs belonging to the first type, 
topological measures. The purpose of a network is to establish and maintain connectivity 
between a set of interacting elements to facilitate the movement of valuable goods and 
services across a system (Grubesic et al. 2008). Therefore, the precondition of assessing 
the vulnerability of a transportation network is connectivity. Regardless of various forms 
of transportation systems and disruptions, a network can be viewed as a graph consisting 
of nodes and links. Thus, many indices from graph theory are applicable. For example, 
Derrible and Kennedy compare “assortativity,” which Newman (2002, 2003) proposed 
and indicates the similarity of adjacent nodes, with a modified cyclomatic number µ to 
select a better network “robustness” indicator (Derrible and Kennedy 2010). Another type 
of measure considers how components in a transportation system are linked. Among 
these components, operational costs, such as time, distance, and tariffs, involve inhibition 
between origins and destinations (Jenelius et al. 2006, Nicholson 2003). These 
components may be increased due to network disruptions, as alternative and more 
expensive routes may become necessary. System capacity, which refers to the maximum 
of flow that can move between O-D pairs at any given time, is often used as well (Ratliff 
et al. 1975, Wood 1993). Finally, system flow refers to the existing levels of interaction 
between O-D pairs and measures the actual function of the network; therefore, the effect 
of a potential disruption can also be gauged by the magnitude of the flow affected. 
However, to estimate the amount of traffic flow as accurately as possible, many 
assumptive conditions have been made in previous studies, indicating that a gap between 
theoretical assumptions and reality would exist. For example, the public is not aware of 
the disruptions (Murray-Tuite and Mahmassani 2004); the public is aware of the 
disruptions and makes a detour, but the total travel demand is constant (Jenelius et al. 
2006); or the public is aware of the disruptions and makes a detour, and, at the same time, 
the travel demand decreases with time (Nicholson 2003). It is obvious that the public 
awareness of disruptions is a continuous process and needs to be reflected in vulnerability 
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assessments. For example, the process of informing the public and the fluctuation of 
travel demand can be considered in the measure to reduce the gap between models and 
reality. 

Central to the assessment of network disruption and associated survivability to such 
disruptions is the identification of potentially important disruption scenarios, including 
the best and worst, which delineate the range of disruptive effect. A scenario in this 
context refers to a set of nodes and/or links affected by disruption, and the effect on the 
system functionality can be drawn using any survivability measures. To identify 
scenarios, two exploratory methods deserve attention: mathematical programming and 
simulation. Mathematical programming approaches are well known for their ability to 
provide insight into solution bounds (minima/maxima) for a wide range of spatial 
planning problems such that administrators and managers are more capable of reducing a 
network’s vulnerability to these events (Matisziw et al. 2009; Salmeron et al. 2004). 
However, constructing the full picture of all potential scenarios to all potential disruption 
events with exact solutions is limited to a tractable instance. Exploring possible scenarios 
across a range of disruption levels through simulation approaches can reveal more detail. 
Unlike mathematical programming, simulation approaches are more flexible in adapting 
other measures and considering more aspects of network characteristics simultaneously. 
Note that both binary and fuzzy measures can be used in the simulation approach. For 
example, Jenelius et al. (2006) remove individual nodes from a highway network and 
measure the change of O-D flow cost in each scenario. In a recent study, Kim (2009) 
computes the range of remaining functionality of subway systems when faced with 
disruption to hub nodes in combinatorial disruption scenarios. Of concern is that although 
the simulation of the relatively simplistic case where a single network component is 
impacted is logically simple when the enumeration of all the scenarios is tractable, 
special algorithms must generally be developed to address large amounts of computation 
for the simulation of complex scenarios involving multiple network components (Kim 
2009). In simulation approaches, therefore, the goal is to evaluate a suitable number of 
scenarios to obtain an effective characterization of the range of possible effects.  

More complex measures to model system loss can be applied to draw the effects of 
scenarios by removing the time-consuming enumeration of all potential combinatorial 
scenarios. For example, Murray-Tuite and Mahmassani (2004) apply the travel time cost 
dynamically determined by the volume through certain paths to address the effect of 
traffic congestion. When large-scale networks are considered, a mathematical method 
assumes that the travel time cost is monotonically increasing and differentiable 
everywhere; accordingly, a simple cost structure is applied in estimating the effect of 
disruptions (Erath et al. 2009, Luathep et al. 2011).  

In this research, we designe the ASM to be applied to a relatively large network 
through a simple process of computation to explore all potential disruption scenarios and 
use the WRSA to complete the scenarios efficiently. The critical stations are identified 
through the worst and best scenarios, and the impact of disruptions is defined as the 
change of the network functionality between the status quo and the condition where that 
network component stops working (Erath et al. 2009, Luathep et al. 2011). Given the case 
of the Beijing subway system, we make two assumptions. First, for our scenarios, we 
assume that common subway system disruptions, such as potential terrorist attacks and 
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point source air pollution, randomly occur. Thus, the combination of hubs, and thus the 
set of disrupted stations, is random as well. Second, in our disruptive scenarios, travel 
demand reaches a new balance rapidly because modern operation and broadcast systems 
in the Beijing subway system inform passengers of the status of the whole system’s 
functionality rapidly to allow passengers to instantly modify travel decisions and prevent 
the network from chain and cumulative impacts.  

 
 
3. DATA 

 
3.1 BEIJING SUBWAY SYSTEM 

 
The Beijing subway system is the rapid transit rail network that serves not only the urban 
but also the suburban districts of Beijing, one of the largest cities in the world, with more 
than 20 million residents as of 2012 (BMBS and NSOB 2013a). Beijing is also a major 
hub for the national highway, expressway, railway, and high-speed rail networks (BMBS 
and NSOB 2013b). Note that due to its inexpensive, timely, and reliable service and 
operation, this subway system has become the first choice among transportation modes in 
Beijing. Its annual ridership ranks third in the world, with 2.46 billion trips in 2012 
(BMCT 2013, Liu 2013). As shown in Figure 1, the current network has grown to 17 
lines, 227 stations, and 465 km of track in operation since 1969, making it the third 
longest subway system in the world (Zhu 2013). However, before Beijing won the bid to 
host the 2008 Summer Olympics, the Beijing subway system only had its first two lines 
built in the 1970s. The last decade has been a transition period for the Beijing subway 
system, as its operation mode has changed from single line operation to network 
operation and experienced the largest effective growth in the world cities (Niedzielski 
and Malecki 2012, Wang et al. 2012). However, this growth has revealed that the system 
may suffer from malfunctions and disruptions occurring in other cities’ systems, such as 
the malfunction of the subway system in Shanghai on March 27, 2013 and the accidental 
crash on September 28, 2011.  

Subway stations are often classified into two types based on their roles in the network: 
non-transfer and transfer stations. Note that unlike a non-transfer station, a transfer 
station connects different lines to collect traffic flows and to reallocate them, resulting in 
more frequent use and a heavy concentration of passenger flow. In theory, selected 
multiple disruptions of transfer stations may easily disconnect the system to an extent, 
while a single and random disruption rarely causes a critical operational situation (Kim 
2009). Shown in Figure 1 with red points are the hubs in the Beijing subway system, 
which are the stations whose degrees are greater than two. The hubs are a special subset 
of the transfer stations in the system because some of the transfer stations only connect 
the terminus of two subway lines, and their degrees are equal to two. These transfer 
terminuses do not serve to collect traffic flow and redirect it, which makes their function 
similar to the non-transfer stations. Therefore, these special cases are excluded from the 
candidate set in the analysis. Under this definition, in the Beijing subway system, 34 hubs 
are identified and are used as a candidate set for disruptions in our analysis. 
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Figure 1. Beijing subway system. 
 
3.2 ESTIMATING PASSENGER FLOW 

 
In our analysis, to measure survivability, we estimate station passenger flow using 
population distribution. A challenge for the estimation is how to delineate the served area 
of the subway system, which is defined based on walking distance (Browning et al. 2006, 
Mohler et al. 2007). Different values have been applied in previous research. Shaw (1991) 
considers 2,000ft as a reasonable distance to estimate the maximal walking distance for 
the Miami Tri-Rail system. Kuby et al. (2004) select a round distance of one-half mile for 
walking distance. Considering the land use in Beijing, we assume that places within a 
one-hour walk (5 km) are the subway system’s served area. As illustrated in Figure 2, we 
generate a five-kilometer buffer zone. Thiessen polygons are applied to divide the served 
area into separate zones by station. Then we estimate the potential passengers of each 
station within its serving area using the Sixth National Population Census taken on 
November 2011. 
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Figure 2. Population served by the Beijing subway system. 
(Note: 5 km buffer applied and delineated based on Thiessen polygons). 
 

The estimated passenger flow should be adjusted based on the days of the week, 
considering that daily ridership and demand fluctuate. For example, the number of 
passengers using the subway system on Friday is 3 million more than that on Sunday 
(Beijing Subway 2013). To reflect this fact, we adjust the estimated flows based on the 
empirical daily ridership of each subway line for two weeks (5/20/2013-6/2/2013). The 
estimated passenger flow of a station is adjusted by multiplying the ratio between the 
actual daily ridership and the estimated passenger flow along the line at status quo. 
Because the estimated passenger flow along a line at status quo is constant, we are able to 
observe the fluctuation of the actual ridership. In this paper, we select the actual ridership 
of Friday and Sunday as typical for weekdays and weekend days, respectively. As 
illustrated in Figure 3, the estimated volume of passenger flows on lines such as Lines 10, 
14, 2 and 5 differs greatly on Sunday and Friday, while the volume on other lines remains 
similar throughout the week. Thus, we explore the survivability results for the Beijing 
subway system for weekdays and weekends.  
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Figure 3. Daily ridership of subway lines. 
 
 
4. METHODOLOGY 

 
In this paper, we define the term survivability as the ability of a network system to 
maintain its topological and functional state when a certain level of disruptions on 
stations occurs simultaneously. Note that disruptions affecting the same number of 
stations are considered as being on the same disruption level. For example, the m

th 
disruption level represents the situations that the number of disrupted stations is m out of 
the 34 hub stations so that the number of possible scenarios at that level is enumerated by

34 mC . To explore the potential effect of combinatorial disruptions at a set of stations, we 
consider disruption scenarios at all levels. The ASM examines the network survivability 
of the Beijing subway system from no disruption (status quo) to a total of 34-hub 
disruptions from two perspectives: [1] system topological loss ( loss

mT ) and [2] system flow 

loss ( loss
mF ).  

 
4.1 SYSTEM TOPOLOGICAL LOSS 

 
As introduced from graph theory, a connectivity matrix (hereafter C-Matrix) is used to 
represent the topological connectivity of a network system (G). Let us define the 1st level 
C-Matrix ( 1

C ) to represent the adjacent connection matrix of a network. If a node is 
connected to another node, then we define its connectivity as 1 (otherwise 0) in 1

C . Then, 
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the kth level C-Matrix ( k
C ) is the k-step connection matrix of a network, which results 

from 1 1  ( 2)k
C C k

− × ≥ , 1 2 1  ( 3)k k
C C C k

− −= × ≥ , and so forth. Each entry ( k
ijc ) in k

C  

represents the number of possible paths with length k between nodal pairs (nodes i and j). 
Then, the sum of the entries in all the connectivity matrices k

C  indicates the topological 
connection of a network ( [1, ]k d= , d = the diameter of the network), where all the 
possible paths with k steps ( [1, ]k d= ) are recorded. Note that as k increases, the number 
of paths that visit nodes repeatedly increase as well. To treat this problem, a constant 

0.5α =  is employed to mitigate the attenuation effect (Taaffe et al. 1996). The α is 
applied as αk, which imposes more weight on shorter k-step paths than longer steps paths, 
which can have meaningless round trips. We define this measure as a system’s total 
connectivity ( sys

T ), as expressed below:  

 
1 1 1

d n n
sys k k

ij

k i j

T cα
= = =

=∑∑∑  (1)  

where  
α : the constant to mitigate the attenuation; 
d: the diameter of the network G; 
n: the number nodes in the network G; 

k
ijc  : the entry at the ith column and the jth row in k

C  (i = 1 to n,  j = 1 to n). 

Larger values of sys
T  indicate a more complex and more highly connected network. 

Disruptions occurring at subway stations affect the topological relationship in the 
network by removing all links to the disrupted station, resulting in a decrease in the total 
connectivity of the network, sys

T . The system topological loss to the number of m nodal 
disruptions ( loss

mT ) is calculated by the disparity between the total connectivity index in 

this scenario ( sys
mT ) and the original sys

T  at status quo ( 0
sys

T ): 

 0
loss sys sys

m mT T T= −  (2) 

A larger loss
mT  value represents a less survivable subway system. By comparing all loss

mT  
values at the mth disruption level, the critical scenarios when m stations are disrupted are 
revealed. 
 
4.2 SYSTEM FLOW LOSS 

 

The second measure is to depict system flow loss ( ,
loss

m dayF ). Since T
sys may include the 

attenuation effect, we consider the shortest distance but exclude round-trips among nodes 
to examine system flow loss in the disruption of nodes. We assume that the original 
passenger flow is redirected to alternative subway paths rapidly so that the passengers do 
not experience any significant delay due to the disruption of stations, and the system flow 
therefore reaches a new balance, although the volume of passengers decreases because of 
the increased travel distance for rerouting. This practice is well applied in the Beijing 
subway system because its broadcast system informs passengers in real time if any 
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operational problems occur. In this paper, we assume that the degree of flow loss is 
assessed based on the logic of spatial interaction, which means the total number of 
passengers between two stations will decrease with increased travel distance due to the 
disrupted stations. The shortest distances among the nodes are calculated simultaneously 
when applying the bookkeeping process of the C-Matrix series to reduce extra 
computational burden. To estimate the loss of passenger flows considering the m

th 
disruption scenario and the difference in ridership between weekdays and weekends, we 
use four steps. First, suppose that there are two stations with potential flows Pi and Pj on 
the network and that their distance from one another is (dij); then, the volume of 
passenger flows Vij is calculated using 

 
( )i j

ij

ij

P P
V

d

×
=  (3) 

Then, the total volume of the passenger flow at station i ( S
iV ) is calculated by summing 

Vij from station i to all other stations: 
 S

i ij

j S

V V
∈

=∑  (4) 

where  
S: the set of all stations in the Beijing subway system except station i itself. 
Second, the passenger flow to a subway line a ( L

aV ) is calculated by summing S
iV  of 

the stations along this line: 

 L S
a i

i A

V V
∈

=∑   (5) 

where  
S

iV : the estimated volume of passenger flow of station i; 
a: the index of the subway line in the Beijing subway system; 
A: the set of subway stations on the subway line a. 

 
Third, to reflect the different volume of ridership between weekdays (Friday) and 

weekends (Sunday), S
iV  should be adjusted by the ratio between the actual ridership 

(ra,day) and the estimated passenger flows (VL
a) at status quo for each line a. For the mth 

disruption scenarios, the adjusted passenger flows at station i (noted , ,'m day iV ) are 

calculated using 

 
,

, , ,
,0

'
L

a dayS
m day i m i L

a U a

r
V V

V∈

= × ∑   (6) 

where 
m: the index of the disruption level; 

,a dayr : actual ridership along subway line a on a certain day (Friday or Sunday); 

V
L

a: the estimated volume of the passenger flow along subway line a under the status quo; 

,
S

m iV : the estimated volume of the passenger flow of station i at the mth disruption level; 
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L
U  : the set of subway lines pass
stations. 
 
The fourth step is to sum the adjusted volume of passenger flow 
calculate the total volume of passenger flow in the whole system 
scenario ( ,m dayF ): 

 

The final step is to calculate the 

estimated passenger flows between 
scenario. 
 
4.3 METHOD OF EXPLORING N

 
When the number of disruptive stations is fixed, the extent to which a network system 
will degenerate varies with 
of passengers served. Now that both topological attributes and 
differ, we can draw a range delineated by the best and worst scenarios for any given 
number of disruptive stations. Therefore, one
stations and examine the resilience of the network system is to draw 
attempts have been made to 
envelope (Kim 2009).  
 

Figure 4. Survivability envelope
 

As illustrated in Figure 4
of network survivability, while

set of subway lines passing station i because more than one line pass

The fourth step is to sum the adjusted volume of passenger flow at all the 
total volume of passenger flow in the whole system for the mth 

, , ,'m day m day i

i S

F V
∈

=∑   

to calculate the system flow loss ( ,
loss

m dayF ) by finding the difference 

estimated passenger flows between Fday at status quo and Fm,day for the m
th 

ETHOD OF EXPLORING NETWORK RESILIENCE 

When the number of disruptive stations is fixed, the extent to which a network system 
will degenerate varies with the disruptive stations’ topological importance and the scale 
of passengers served. Now that both topological attributes and station service f

a range delineated by the best and worst scenarios for any given 
number of disruptive stations. Therefore, one efficient way to identify a group of critical 

the resilience of the network system is to draw such a range. Prior 
attempts have been made to characterize simulation results using the concept of 

envelope. 

4, named survivability envelope, the y-axis represents the level 
while the x-axis represents the mth disruption levels. 

passes transfer 

 stations to 
 disruption 

(7) 

the difference in the 

 disruption 

When the number of disruptive stations is fixed, the extent to which a network system 
disruptive stations’ topological importance and the scale 

service functions 
a range delineated by the best and worst scenarios for any given 

identify a group of critical 
range. Prior 

the concept of an 

 

axis represents the level 
 The range 
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of disruption impact is drawn from the status quo (0th level) to the level where all transfer 
stations are disrupted (nth level). At each level, the gap between the best and worst 
scenarios (minimum and maximum negative impacts, respectively) is the survivability 

performance. For example, if the best and worst scenarios are 50% and 1.8% at the 100th 
level, then the survivability performance is 48.2%. The range will be narrowed with the 
levels.  

A significant challenge in drawing the envelopes is the complexity of the computation 
needed to complete the simulation, which depends heavily on the network size and 
disruption levels. Although we only consider 34 hubs when generating scenarios, doing 
so is computationally burdensome for a wide range of disruption scenarios, and 
simulating scenarios between the 5th and 29th levels is not well applicable. For instance, 
the computation of the 1st level disruption for the enumerated 34 scenarios (34C1 = 34) 
takes 85 seconds using the Windows 7 32-bit OS platform with Intel® Core™ i5- 
2.60GHz. However, simulating all the scenarios at the 5th level (34C5 = 278,256) requires 
more than 8 days. The computational complexity significantly increases until it reaches 
the 17th level, where an explicit numeration would take 184 years. After that, the 
computation complexity decreases with the number of disrupted stations until the 29th 
level, at which the time needed is the same as that at the 5th level. To tackle this problem, 
the algorithm, named WRSA, is developed to traverse the potential disruption scenarios. 
The WRSA consists of two procedures. At lower complexity levels (i.e., 0 to 4 and 30 to 
34), all the possible scenarios are enumerated and the best and worst scenarios are 
identified. However, for other levels, the algorithm searches the scope of the best and 
worst scenarios by constructing a set of candidate nodes as a subset of all hubs to the 
disruption levels. The selection of candidate nodes is made using the global rank index 
(GRIm,i) of the hubs at each level. The steps to calculate GRIm,i (1≤ m ≤34) are as follows. 
Suppose that the best and worst scenarios are identified at the mth level. The algorithm 
sorts all scenarios at the level from the best (most survivable) to the worst (least 

survivable) case in terms of the criteria, loss
mT  and ,

loss
m dayF . The next step is to construct the 

most and least critical hub sets based on the best and worst scenarios from both criteria. 
WRSA evaluates the criticality of the hubs according to the degree of influence at each 
scenario. In other words, each hub has two different ranks, named rtm,i and rfm,i, 
corresponding to the criteria loss

mT  and loss
mF at the mth level, and the algorithm constructs 

local rank index (LRIm,i) which evaluates the criticality of the hubs based on rtm,i and rfm,i 
using formula (8). The LRIm,i is used to calculate the GRIm,i for each hub i at the mth level 
using formulas (8) and (9) together.  

 
 , , ,(1 )  (0 1, 1)m i m i m iLRI w rt w rf w m= × + − × ≤ ≤ ≥   (8) 

 1, 1,

, , 1,0.5  ( 2)
i i

m i m i m i

GRI LRI

GRI LRI GRI m−

=


= + × ≥
 (9) 

where  
w: the weight to calibrate the importance of the two survivability measures.  
In this research, we use w = 0.5 is applied to treat both measures being equal. 
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As shown in Figure 5, the algorithm 
the 4th levels and 30th to the 34
the other levels, WRSA 
according to GRIm,i. Specifically, WRSA 
enumeration of the potential combinatorial disruption scenarios 
level. loss

mT and ,
loss

m dayF  is calculated 

calculates the criticality for
WRSA sorts the stations 
stations. These candidate sets are used to complete the scenario.
top stations and n bottom ones 
When m equals the number of the hubs in the system, the algori
potential disruption levels explored.
 

 
Figure 5. Weighted rank-based simulation algorithm
 

the algorithm includes all hubs in the candidate set for the 1
to the 34th levels, which are applicable for explicit enumeration

the other levels, WRSA generates a disruption candidate set for the (m+1)
. Specifically, WRSA requires four steps. The first step 

the potential combinatorial disruption scenarios for candidates
is calculated for each scenario. In the second step

the criticality for the selected stations using LRIm,i and GRIm,i. In the third s
 based on GRIm,i from the most critical to the least critical 

These candidate sets are used to complete the scenario. The final step s
bottom ones in the set of candidate stations for the next level

equals the number of the hubs in the system, the algorithm terminate
potential disruption levels explored. 

 

based simulation algorithm. 

includes all hubs in the candidate set for the 1st to 
levels, which are applicable for explicit enumeration. For 

+1)th level 
 is explicit 

candidates at this 
tep, WRSA 

In the third step, 
least critical 

The final step selects n 
for the next level scenario. 

thm terminates with all 
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5. RESULTS 

 
By applying ASM, the enumeration of potential disruption scenarios becomes applicable. 
Following ASM and the logic that the potential worst or best scenarios possibly consist of 
stations in the extreme scenarios for other levels, the number of potential scenarios in 
each level is limited to 20,000 to accelerate the computation and to make the more in-
depth exploration of combinatorial disruption scenarios possible. Two items are worth 
noting based on the completed scenarios.  
 
5.1 STATION CRITICALITY 

 
Our first analysis focuses on evaluating network survivability at an individual hub in 
terms of ASM. Based on the computation, the criticality of the hubs is ranked according 

to their 1
lossT , 1,  loss

Friday
F and 1,

loss

SundayF . A higher rank indicates the hub is more critical. 

Table 1 summarizes the ranks of the top ten critical hubs and the values of their 
survivability measures. In terms of 1

lossT , Xizhimen, Dongzhimen, and Chegongzhuang 

are worthy of note. Both of Xizhimen and Dongzhimen are the hubs connecting Line 2 
and Line 13. Line 2 is the only loop line serving the city center, which is the traditional 
“inner city” while Line 13 is a special line serving only the northern part of the city and 
intersecting with four branch lines in the north. In particular, the degree of node of 
Xizhimen is five, which is the largest in the system, followed by Dongzhimen, whose 
degree is four. Chegongzhuang is the hub next to Xizhimen on Line 2.  
 
Table 1. The survivability results of the first level disruptions 

Rank 
1
loss

T   1,
loss
FridayF  1,

loss
SundayF  

   Hubs Value     Hubs 
Value 
(x1000) 

   Hubs 
Value 
(x1000) 

1 Xizhimen 143.76 Gongzhufen 1052.14 Gongzhufen 737.21 

2 Dongzhimen 117.57 Guomao 922.18 Guomao 644.54 

3 Chegongzhuang 100.98 Wangjingxi 815.70 Wangjingxi 569.54 

4 Gongzhufen 93.31 Xierqi 772.61 Xierqi 533.20 

5 Chaoyangmen 89.13 Jiaomenxi 709.50 Liuliqiao 526.58 

6 Songjiazhuang 87.49 Liuliqiao 708.38 Jiaomenxi  516.10 

7 Jianguomen 86.81 
Haidian-
huangzhuang 

667.74 Hujialou 498.14 

8 Yonghegong 85.30 Hujialou 655.62 
Haidian-
huangzhuang  

445.91 

9 Dongdan 83.20 Songjiazhuang 602.77 Songjiazhuang 425.20 

10 Shaoyaoju 81.32 Xizhimen 580.40 Xizhimen 406.48 

 

14

International Journal of Geospatial and Environmental Research, Vol. 1, No. 1 [2014], Art. 3

https://dc.uwm.edu/ijger/vol1/iss1/3



However, the results based on 1, 1, and loss loss
Friday SundayF F  produced a different ranking of hub 

criticality. For example, Gongzhufen, Guomao, Wangjingxi, and Xierqi are not highly 
ranked in 1

lossT , but they are in 1, 1, and loss loss
Friday SundayF F . For seven hubs, disruptions will 

cause more than 6% system flow loss, while the worst connectivity loss is less than 6%. 
Compared with 1

loss
T , which weighs all the stations the same, 1, 1, and loss loss

Friday SundayF F  reveal 

more serious potential influences of one-hub disruption. 
 

 
Figure 6. The locations of the top 10 critical hubs based on topological loss and flow loss. 
 
Second, notice that all the critical hubs based on 1, 1, and loss loss

Friday SundayF F , except Xizhimen, 

are bridges. The bridge here is defined as a station with the degree of node larger than 
two and acting as the only connection for a subway line to the rest of the system. This 
fact is very significant in terms of network survivability because excluding one of the 
bridges can result in losing the entire passenger flow from or to an entire branch line. For 
example, the disruption of Gongzhufen disconnects Line 1 from Line 10, causing the 
west part of Line 1 to be completely excluded from the system and decreasing the 
estimated passenger flow by nearly 11% on both Friday and Sunday. 

Third, in our analysis, 11 out of 34 (33%) hubs would cause a system flow loss of 
more than 5% and an average system flow loss of 4.2% on both days for one-hub 
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disruption level. In other words, given the system’s daily ridership, the expected number 
of affected passengers confronted with a one-hub disruption is nearly 427,000 on Friday 
and 300,000 on Sunday, demonstrating that even a minor disruption in a large subway 
system such as Beijing’s can inconvenience a large number of customers. Finally, the 
members of the top 10 critical hubs indicated by 1, 1, and loss loss

Friday SundayF F are identical, 

although there are some changes in the lower rankings among them. The fluctuation of 
the passenger flow across a week does not affect the criticality for the top five hubs. 
However, the changes in the rank of the remainder of the stations also imply that some 
stations play more important roles on weekends or vice versa.  
 
5.2 NETWORK RESILIENCE 

 
In addition to the station criticality displayed when facing single station disruptions, 
network resilience for multiple station disruptions is also important. According to our 
scenarios, multiple station disruptions would decrease the system’s functionality 
dramatically depending on what particular set of hubs stations are disrupted. Figure 7 
shows the survivability envelope for system connectivity and disruption levels. The bar 
represents the survivability performance of system connectivity. From the 8th to the 26th 
level, the survivability performance is almost constant and less than 20%. The decreasing 
rates of system connectivity in the best and the worst scenarios are similar as well. When 
all 34 hubs are disrupted, 30% system connectivity remains.  

 
Figure 7. Survivability envelopes of system connectivity. 
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Recall that system connectivity reflects only a network’s topological characteristics, 

so this measure is less able to reveal potential survivability issues hidden by other 
geographic factors. Figure 8 shows the survivability envelope of the normalized 
estimated system flow (%) and the disruption levels for Friday and Sunday. Compared 
with the survivability envelope of system connectivity in Figure 7, the envelopes in 
Figure 8 clearly show that the system flow is more sensitive to disruptions than is system 
connectivity. In terms of the worst scenarios drawn in solid lines, one additional 
disrupted station would cost a 7-10% system flow loss on average, and the system only 
maintains half of its original flows until six stations are disrupted. However, in terms of 
best scenarios, the system can maintain half of its passenger flows until 17 station 
disruptions occur. Notice that the survivability performance, the gap between the best and 
worst scenarios, ranges from a few percent to as high as 46% at the 8th disruption level. 
As the disruption level increases, the gap first increases until it reaches its peak at the 8th 
level and then decreases slowly. In other words, the largest gap, indicating degree of 
consequences, between a targeted attack and that of a random disruption is expected at 
the 8th level. This wide gap also clearly indicates that the subway system is more 
vulnerable to targeted disruptions than random accidents. Comparing the survivability 
envelopes of Friday and Sunday, the difference in survivability is minimal by the 15th 
disruption level, which is consistent with our finding in the stations’ criticality that the 
fluctuation of system flow is not strong enough to affect the criticality of some stations. 
As disruptions affect more stations, the remaining system flow on Friday is less than that 
on Sunday in both the best and worst scenarios. Finally, when all the hubs are disrupted, 
the remainder of the system flow is nearly 10% of the original, which means the 34 hubs 
determine the main functionality of the system with 227 stations. 
 

 
Figure 8. Survivability envelopes of system flow for Weekdays (Friday) and Weekends (Sunday). 
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Now that the effect of 
more than 15 stations, we take the worst scenarios 
explore how they affect the system 
worst scenarios and marks the locations of the stations on Friday 
(squares). There are five stations 
stations are labeled with frames. 
different stations on Friday 
two stations on Sunday,  Cishousi
system with no match on Friday. Consistent with the finding 
out of the ten different stat
Cishousi, and Xierqi, and these stations
To highlight the system flow
represents the ratio between the flow on Friday and that on Sunday. 
5, Line 6, Line 1, BaTong, 
other lines. Thus, on Friday
east part of the system is larger than that on Sunday. In other words, the difference 
between the ridership of the branch lines in 
is more apparent on Friday than on Sunday.
location of the disrupted bridges

 

Figure 9. The worst scenario where 20 stations are disrupted.
 

of system flow fluctuation is clear after a disruption 
more than 15 stations, we take the worst scenarios at the 20th level as an example to 

how they affect the system from a geographic perspective. Figure 9 
worst scenarios and marks the locations of the stations on Friday (triangles) and S

stations that are different between the two days, 
labeled with frames. If a city axis is drawn from north to south, the six 

stations on Friday are all located in the east part of the system, while there are 
Cishousi and Jiaomenxi, located on the southwest corner of the 

no match on Friday. Consistent with the finding in the previous section, 
different stations are bridges, namely Lishuiqiao, Hujialou, Jiao

these stations have a large effect on the system’s survivability. 
highlight the system flow fluctuation, the width of the branch lines in Figure 

represents the ratio between the flow on Friday and that on Sunday. The ratios of 
 and Changping Lines are obviously much larger than 

on Friday, the percentage of passengers using the branch lines in
east part of the system is larger than that on Sunday. In other words, the difference 

the branch lines in the east part and that of the southwest corner 
on Friday than on Sunday. The change in relative weight affects the 

bridges and thus the hubs in the center region. 

Figure 9. The worst scenario where 20 stations are disrupted. 
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6. CONCLUSIONS  

 
The Beijing subway system serves as a crucial means of public transportation for a mass 
of people. Its growing importance, as well as its geographic and functional features, 
requires specifically designed research on its survivability to allow for better network 
protection.  

Differently to previous network survivability research, we develop and test an 
accessibility-based measure. This measure considers both topological and functional 
aspects of the consequence of disruptions, which capture the differences in consequence 
from two perspectives. This study also highlights several important findings. First, when 
facing disruptions at a single station, the Beijing subway system shows strong 
survivability. Only 33% of one-hub disruptions will cost more than an estimated 5% 
passenger loss for the entire system. Second, system performance in the face of multiple 
disrupted stations varies with the disruption level and is highly dependent on the 
combination of hub stations. This finding is consistent with the results of previous 
research. The protection of hubs acting as gateways for branch lines to the rest of the 
network is extremely important, indicating that providing more belt lines or alternative 
lines would improve the system’s ability to maintain survivability. Third, even though the 
fluctuation of ridership throughout the week to some extent affects network survivability, 
a well-prepared emergency plan for the entire week is currently acceptable. The effect of 
the ridership change remains limited to certain disruption levels, at least in the Beijing 
subway system.  
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