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ABSTRACT 

FABRIC AND MICROSTRUCTURAL ANALYSIS OF THE LOCH BORRALAN 

PLUTON, NORTHWEST HIGHLANDS, SCOTLAND 

by 

Justin Calhoun 

The University of Wisconsin-Milwaukee, 2014 

Under the Supervision of Professor Dr. Dyanna Czeck 

The Loch Borralan pluton was emplaced within the Assynt Region of the Moine 

Thrust zone during the Scandian event (ca. 435-425 Ma) of the Caledonian Orogeny 

(478-425 Ma). It consists of two major magma suites, the syenitic early suite (431.1 ± 1.2 

Ma), and the quartz syenitic later suite (429.2 ± 0.5 Ma). The region is characterized by a 

series of in-sequence thrust faults that strike NE-SW and dip approximately 20° to the 

SE, including (from lower to upper): the Sole Thrust, the Borralan Thrust (hypothesized, 

but not exposed), the Ben More Thrust, and the Moine Thrust. A series of imbricate 

thrusts between the Sole and Borralan Thrusts juxtapose repeated Cambrian and 

Ordovician strata. The Loch Borralan pluton intruded between the Sole and Ben More 

thrust faults, and may be bounded below by a hypothesized Borralan Thrust fault. Based 

on the overlap in pluton crystallization age and orogenic activity, the combination of 

macroscopic field lineation and foliation measurements, anisotropy of magnetic 

susceptibility (AMS) lineation and foliations measurements, mineral shape preferred 

orientation (SPO) analysis, and petrographic deformation microstructure analysis will be 

used to determine if the pluton expresses deformation features and fabrics corresponding 

to thrust fault tectonics. 

The dominant magnetic mineralogy as determined by thermomagnetic data and 

hysteresis plots was determined to be magnetite and titanomagnetite. Some paramagnetic 
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components were seen in the early suite, and can be attributed to biotite. Both minerals 

contributed to the AMS signal that was used to interpret pluton fabrics. 

The pluton contains S>L (foliation stronger than lineation) fabrics throughout, 

defined by alignment of alkali feldspar grains. The foliation strike of both the early and 

late suites are subparallel to the thrust faults, providing evidence that the fabrics are 

related to deformation. 

The early suite is only well exposed in the southeast at the top of the Borralan 

thrust sheet, and proximal to the bottom of the Ben More Thrust fault. Foliations strike 

approximately 030 and dip 20° SE. Mineral lineations were not readily seen in the early 

suite. AMS results show mean principal susceptibilities (K1>K2>K3) parallel to field 

measurements. 

Mineral foliations in the late suite have a similar strike to early suite foliations, 

but dip roughly 50-60° both to the NW and SE. AMS foliations parallel mineral 

foliations, and strike generally NE-SW. AMS foliation dips are more variable, spanning 

the range of possible dip angles. The variance in foliation dips are likely caused by a 

composite magnetic fabric resulting from thrusting combined with thrust parallel 

flattening. Lineations in the late suite are scarce, but generally plunge shallowly to the 

NE and SW indicating horizontal extrusion parallel to the strike of the thrust faults. 

Similarly, most late suite AMS lineations plunge shallowly perpendicular to thrust 

transport direction corroborating the field measurements. Some late suite AMS lineations 

plunge parallel to thrust transport direction, suggesting there are also components of 

simple shear related to thrusting, with partitioning varying throughout the late suite. 
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The foliation dip degree variation between the two suites could be the result of the 

spatial relationships and/or timing. The pluton is interpreted to have been emplaced syn-

kinematically, deformed via thrusting related simple shear in the early suite, and with a 

component of flattening and lateral extrusion added in the late suite. 

Shape preferred orientation (SPO) measurements were conducted using the 

intercept method of image analysis to relate mineral fabrics to AMS measurements. SPO 

are generally weak, and have low shape ratio values. Mineral orientation parallels 

magnetic mineral fabric within each thin section, which supports AMS measurements as 

representative of mineral fabric. 

Petrographic microstructural thin section analysis was performed to analyze 

deformation mechanisms to deformation conditions. Feldspars exhibited both crystal 

plastic (ductile) and brittle microstructures. Examples of crystal plastic microstructures 

seen in feldspars include: perthite and myrmekite, undulose extinction, grain boundary 

bulging. Feldspars also showed quartz filled fractures (brittle deformation), which 

occasionally formed conjugate sets relative to AMS principal susceptibilities. Quartz was 

primarily seen only in the northwest extent of the pluton. Quartz also had both crystal 

plastic and brittle microstructures. Crystal plastic microstructures seen in quartz include: 

dynamic recrystallization, undulose extinction (recrystallized and primary grains), and 

grain boundary bulging. Examples of brittle microstructures in quartz are intragranular 

fractures. Deformation temperature conditions range from high grade to low grade. The 

presence of structures such as perthite and myrmekite textures infer deformation 

temperatures of around 600°C, and on the low end brittle deformation in either quartz or 

feldspars suggest sub 300°C. The range of deformation temperatures suggest that the 
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pluton was emplaced synkinematically and deformation continued throughout its cooling 

history. 

The strong agreement between field and AMS measurements combined with 

evidence for high temperature deformation conditions suggests the pluton intruded syn-

tectonically. The majority of deformation is seen in the early suite, and southeastern late 

suite. These locations are closest to the Ben More thrust, suggesting that movement along 

this thrust caused the majority of deformation. Based on AMS orientations, deformation 

in the early suite is accommodated as thrust motion related simple shear. Late suite 

deformation has a combination of thrusting simple shear, general flattening, and lateral 

extrusion. Since the pluton was likely roofed by thrust faults restricting upward flow, 

space for the magma was created through lateral extrusion. 
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1. Introduction 

1.1 Purpose of Study 

The Loch Borralan pluton intruded between two thrust faults within the Moine 

Thrust Zone in the Assynt Region of Scotland. Recently developed crystallization ages of 

the pluton fall within the age of ductile movement along the Moine Thrust (Freeman et al. 

1998 and Goodneough et al. 2011). The Loch Borralan pluton’s deformational history is 

largely unknown due to the majority of the pluton contacts being unexposed, and discrete 

localized zones of deformation fabric seen in the field. Interpretations of whether or not 

the pluton is pre-, syn-, or post-kinematic have been discussed and revised over many 

years (Wooley 1970, van Breemen 1979; Searle et al. 2010, Goodenough et al. 2011). 

Recent workers believe the pluton is largely syn-kinematic (Searle et al. 2010 and 

Goodenough et al. 2011). In order to characterize deformation of the pluton a 

combination of macroscopic mineral measurements, anisotropy of magnetic susceptibility 

measurements (AMS), shape preferred orientation (SPO) analysis, and petrographic 

microstructural analysis were employed. The project aims to relate both the mineral and 

magnetic fabrics to regional thrust kinematics. Understanding the deformational history 

of this pluton will not only aid future workers in understanding the deformation history of 

the pluton and region, but it will also provide insight into how plutons behave within 

contractional tectonic regimes. 

1.2 Fabrics in Deformed Igneous Rocks 

A rock fabric is an ordered alignment of minerals in either planar or linear 

arrangements. Fabrics develop from different rotation rates of crystal shapes within 
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magma and/or by rotation or crystallization of minerals during deformation, which may 

be accompanied by metamorphism. Pluton fabrics record magmatic flow, deformation of 

crystallizing magma mush, and/or deformation of the solidified pluton during or after 

cooling. The fabric provides information on the magmatic flow geometries, regional 

tectonic strain during intrusion, and in some cases evidence for a tectonic overprint that 

formed during or post emplacement (Bouchez and Gleizes 1995, Pignotta and Benn 1999, 

and Zak et al. 2005). 

Pluton fabrics that hold no geometric relationship to deformation features in the 

country rock represent the flow kinematics of the magma. There are three end-member 

types of magmatic fabric patterns (Figure 1.2.1; Paterson et al. 1998). One of the more 

common ways magmatic fabrics develop is in an ‘onion skin’ pattern in circular to sub-

elliptical plutons. In ‘onion skin’ plutons, foliation intensity increases towards the pluton 

margins, and mineral lineations are weak throughout (Paterson et al. 1998). Another 

common pattern occurs in elongated plutons. The magmatic fabrics in these types of 

plutons form subparallel to the long dimensions of the intrusion and/or the regional 

structural trend (Paterson et al. 1998). The third end member occurs in plutons that have 

complex lobe geometries or batholith scale intrusions. These magmatic fabrics often are 

very complex and have little continuity with host rock patterns (Paterson et al. 1998). 

Complex fabrics are often a combination of the previously mentioned end members and 

are the most challenging to interpret (Paterson et al. 1998). 

In the case of tectonically deformed granites, local textures can represent 

emplacement flow. However, these fabrics cannot be used to determine flow kinematics, 

because these textures have likely been overprinted to some degree by tectonic 
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deformation. In granites that are weakly deformed, the seemingly undeformed fabrics can 

be used as a tectonic strain indicator (Benn 2009). Bulk textures in tectonically deformed 

granite can be used to determine the style of deformation, the tectonic setting such as 

incidence of collision, and the kinematic partitioning behavior between the granite and 

host rock. 

In order to differentiate between magmatic fabrics (first order processes) and 

structurally deformed fabrics (second order processes), the first step is always to measure 

and map all foliations and lineations. Then there are some field and laboratory 

observations that can aid in identifying the fabric type. In the field, finding features that 

indicate timing of fabric development of magmatic features, such as enclaves, layering, 

or contacts, to features formed during chamber construction, like stoped blocks and 

faults, and/or to features formed during regional deformation will give clues as to what to 

expect from the foliation and lineation measurements (Paterson et al. 1998). If such 

structures are visible then searching for deflections of fabrics across marker boundaries, 

or using geologic laws such as, the law of cross cutting relationships or the law of 

inclusions can be used to interpret the relative timing of emplacement. If the fabrics 

within markers are sporadic and discontinuous, then the fabrics are likely magmatic. If 

the deflections are continuous throughout markers, then the fabrics are likely a result of 

regional deformation (Paterson et al. 1998). 

Secondly, structural and microstructural observations can be used to determine 

the rheological state during fabric formation and whether fabrics formed during 

suspension or grain supported flow (Paterson et al. 1998). 
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Third, it is essential to determine fabric ellipsoid shapes (strain, magnetic 

susceptibility, SPO, etc.) at multiple locations, and if possible within multiple markers 

(enclaves, feldspars, micas, etc.). Each marker will behave slightly differently, and 

combining fabric ellipsoid shape with kinematic data provides information about 

localized magma displacement paths (Paterson et al. 1998). These displacement paths can 

then be used to interpret magmatic fabrics (e.g., convection or magma surges) or strain 

fabrics. Magmatic fabrics have large displacement gradients in marker shapes, sizes, or 

orientations due to the nature of convection type flow patterns (Paterson et al. 1998). If 

fabrics resulted from regional strain, the marker displacement gradients should occur in 

both the pluton and the host rock (Paterson et al. 1998). If there is no clear magmatic 

fabric or strain fabric seen in the pluton, the use of magnetic mineral fabric orientations 

through Anisotropy of Magnetic Susceptibility (AMS) techniques can be employed to 

develop fabric ellipsoid shapes and orientations. 

Determining the emplacement history of a pluton is difficult because the resultant 

fabrics are only a snapshot of the final stages of the pluton’s history (Bouchez 1997, 

Paterson et al. 1998). However, these studies are worthwhile because of the wealth of 

information that can come from such a small snapshot of time. Combined with absolute 

age dating geochronology, one may be able to constrain dates for specific deformation 

activity such as fault movements, something that is not easily done unless the fault 

creates a new rock that has new minerals suitable for dating techniques (e.g. micas within 

a mylonite). 
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1.3 Moine Thrust Zone 

One ideal location to study a number of intrusions that are related to deformation 

is the Moine Thrust Fault Zone, also termed the Assynt Culmination, in the Northwest 

Highlands of Scotland (Figure 1.3.1). The region is known for its beautifully exposed 

thrust faults, and syn-tectonic alkaline igneous intrusions. The igneous intrusions provide 

a wealth of information about the tectonic history of the region in the form of strain 

marker fabrics (Elliott & Johnson 1980, Halliday et al. 1986). The thrust faults within the 

Moine Thrust Zone developed mainly in-sequence from hinterland to foreland with the 

earliest thrust sheets riding passively on top of later thrust sheets in an in sequence 

“piggy-back” style (Elliott & Johnson 1980). The major thrust faults in the region, from 

structurally low (youngest) to high (oldest), are the Sole Thrust Fault, Glencoul Thrust 

Fault, Ben More Thrust Fault, and the Moine Thrust Fault (Figure 1.4.1 and 1.4.2; Elliott 

& Johnson 1980). All strike NE-SW and dip approximately 20° to the SE (Elliott & 

Johnson 1980). 

Directly along the Moine Thrust Fault itself, rocks underwent intense 

mylonitization (Freeman 1998, Law 2010). The Moine Thrust plane is often the site of 

thick mylonites (meter scale) in both the footwall and hanging wall (Peach et al. 1907). 

The mylonites are often characterized by a strong foliation sub-parallel to the thrust 

plane, which dip gently (16-30°) to the ESE, and a weak grain shape stretching lineation 

plunging down dip within the foliation plane sub-parallel to the thrust transport direction 

(Law et al. 2010). Country rock proximal to the fault plane may display a very weak 

grain shape fabric (Law et al. 1986). 
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During the Ordovician-Silurian, the Iapetus Ocean was closing, and eventually 

sutured Laurentia to Baltica (Figure 1.4.3). This suture then started a convergent margin 

subducting oceanic crust below Laurentia (van Breemen & Bluck 1981, Oliver et al. 

2008). The granitoid magmatism throughout Scotland is attributed to this new subduction 

zone on the western margin of Laurentia (van Breemen & Bluck 1981, Stephenson et al. 

1999, and Oliver et al. 2008). A major pulse of magma occurred during the late Silurian 

and early Devonian caused from slab break-off (Neilson et al. 2009). The NW Highlands 

of Scotland are littered with plutons, dikes, and sills across the Moine Thrust Zone and 

throughout the foreland and hinterland (Peach et al 1907, Parsons 1999). The most 

voluminous of these intrusions occurred within the Assynt Culmination, including the 

Loch Ailsh Pluton (Parsons 1965) and the Loch Borralan Pluton (Woolley 1970, 1973), 

the focus of this study. 

1.4 The Loch Borralan Pluton 

In the southern part of the Assynt culmination two large alkaline intrusions, the 

Loch Ailsh and Borralan intrusions, have been mapped within the Moine Thrust Fault 

Zone. The Loch Borralan intrusion consists of an early suite of pyroxenites, nepheline 

syenites and syenites, and a later suite of feldspathic syenites and quartz syenites 

(Woolley 1970, 1973; Figure 1.4.1). U-Pb zircon ages of the Loch Borralan intrusion 

yielded crystallization ages between 430.6-425 Ma (Goodenough et al. 2011), coinciding 

favorably with the Scandian phase (435-425 Ma) of the Caledonian Orogeny (478±8 - 

425 Ma; Oliver 2000, Strachan et al. 2002, Strachan & Thigpen 2007). Rb-Sr dating of 

synkinematically crystallized white micas in Moine mylonites along the Moine Thrust 

Fault plane constrained the age of ductile movement in the Moine Thrust Fault to be 
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between 437-408 Ma, with the majority of deformation ending around 430 Ma (Freeman 

et al. 1998). However, most studies found no clear observable indicators that the pluton 

experienced strain from tectonic movements during emplacement (Woolley 1970). The 

pluton is bounded on top by the Ben More Thrust Fault and by the recently proposed 

Borralan Thrust Fault below (Figure 1.4.2; Searle et al. 2010). Initially the pluton was 

thought to be post-tectonic due to lack of strong internal fabrics (Woolley 1970), but new 

U-Pb isotopic ages and structural field relationships suggest the latest suite of magma 

was emplaced syn-tectonically (Searle et al. 2010, Goodenough et al. 2011). 

1.5 Research Questions 

The primary aim of this project is to document the fabrics and microtextures 

within the recently dated Loch Borralan pluton in Northwest Scotland in order to 

constrain the relative timing of intrusion and motion along the neighboring Moine and 

Ben More thrust faults. AMS and shape preferred orientation (SPO) fabrics are used to 

determine if there is a relationship to regional thrust fault kinematics. Microstructures are 

evaluated to determine the deformation mechanisms and deformation conditions, 

specifically deformation temperature. Microstructures are analyzed to determine if 

deformation occurred when the pluton was magmatic, solid at hot temperature (crystal-

plastic microstructures), or solid and cold (brittle microstructures). In particular, the study 

will address the following questions: 

1. Do fabrics within the pluton correlate with strain patterns associated with thrust 

faulting? 

2. If so, how far do deformation fabrics from the thrust fault propagate within the 

pluton? 
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3. Can we use deformation features within the pluton along with precise 

crystallization age to constrain absolute timing of motion along neighboring 

thrust faults? 

This project was undertaken in conjunction with a detailed gravity survey 

conducted by Dr. Basil Tikoff from the University of Wisconsin-Madison. The 

microgravity survey will determine the shape of the pluton at depth, and determine where 

the pluton has intruded relative to the adjacent thrust faults. 
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Figure 1.2.1: End-member types of magmatic fabric patterns in plutons. Margin parallel 

fabrics are the “onion-skin” type patterns where foliation strike is parallel to the pluton 

margins. These are typically seen in circular and elliptical plutons. Folded to rectilinear 

fabrics are fabrics that coincide with regional strain patterns in the country rock. 

Internally complex fabrics are typically found in elongated plutons (length to width ratio 

greater than 3). Elongated plutons tend to have more complex geometries with lobes and 

flow gradients. Magmatic structures of internally complex plutons will cut across igneous 

contacts, and occasionally across host rock contacts. These fabrics can also result from a 

combination of both regional strain and complex magmatic patterns. Many plutons have 

components are a combination of multiple pattern types (Paterson et al. 1998). 
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Figure 1.3.1: Simplified geologic map of Scotland showing the study area within the 

black box. The inset map shows the 5 geologic terrains of Scotland. Modified from the 

British Geological Survey.
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Figure 1.4.1: Structural overview of the Loch Borralan Pluton and the surrounding rock units and many neighboring thrust 

faults (Modified from Woolley 1965). Approximate cross-section line A-A’ depicted on Figure 1.4.2.  
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Figure 1.4.2: Cross section by Searle et al. (2010) showing the newly proposed “Borralan Thrust” at the base of the Loch 

Borralan Pluton. Cross-section location depicted on map, Figure 1.4.1.
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Figure 1.4.3: Paleogeographic reconstruction (Blakey 2010) showing the closure of the 

Iapetus Ocean, and the formation of the Scottish Highlands and Appalachian Mountains 

resulting from the collision of Baltica and Laurentia. 
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2. Background 

2.1 Regional Geology 

 The Northwest Highlands of Scotland were shaped by the Caledonian orogenic 

belt, which extends from Svalbard, through Scandinavia, East Greenland and the British 

Isles, to the Appalachian Mountains of North America (Figure 1.4.3). The Caledonian 

orogeny occurred between 480-425 Ma in two stages, the Grampian event (480-465 Ma) 

and the Scandian event (435-425 Ma; Strachan et al. 2002; Strachan & Thigpen 2007). 

The result was a collision between paleo-continents Baltica and Laurentia, along with the 

closure of the Iapetus Ocean (Figure 1.4.3). One of the major thrust faults active during 

the Caledonian orogeny, the Moine Thrust Fault in northwest Scotland, has been of 

fundamental importance in the interpretation of thrust fault geometries, and the sequence 

and timing of thrusting since the initial mapping of Peach and Horne (1884, 1914) and 

Peach et al. (1888, 1891, 1907). 

The Moine Thrust Fault zone forms the northwestern margin of the Caledonian 

orogeny in Scotland. The foreland, west of the Moine Thrust Fault, is comprised of 

Archean to Palaeoproterozoic Lewisian Gneiss basement (tonalitic, trondhjemitic, mafic 

and ultramafic gneisses intruded by granodiorites and granites) and is unconformably 

overlain by Meso- to Neoproterozoic clastic sedimentary rocks belonging to the Stoer, 

Sleat and Torridon Groups. These three groups are sometimes combined under the term 

Torridonian. Cambrian-Ordovician shallow marine sedimentary rocks unconformably 

overlie both Lewisian and Torridonian Group rocks (Peach et al. 1907, Park et al. 2002). 
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East of the Moine Thrust Fault lie the metasedimentary rocks of the Early Neoproterozoic 

Moine Supergroup in the North Highlands (Figure 1.3.1; Strachan et al. 2002).  

2.2 Previous Work 

 The initial geologic investigations in the Scottish Highlands were started by the 

British Geological Survey, and focused on creating geologic maps of the region. Workers 

such as John Macculloch (1836), Robert Hay Cunningham (1841), and James Nicol 

(1844) mapped the simpler geology to the north of the Assynt Window where rocks are 

flat lying and in stratigraphic order, but it wasn’t until Roderick Impey Murchinson was 

appointed Director of the Geological Survey did work begin on the complex structurally 

deformed parts of the Northern Highlands. Murchinson and Nicol’s original 

interpretations of the region stated that the rocks abided by simple stratigraphic rules 

similar to the rocks found north of the Highlands. They failed to adequately explain the 

cause for field relationships such as Proterozoic gneiss lying stratigraphically above 

Ordovician sandstones and limestones. Murchinson and Nicol’s interpretations were the 

cause for much debate in the early 1880’s about the controversial field relationships seen 

in the NW Scottish Highlands.  The debate started a research effort by the Geological 

Survey of Great Britain to investigate these “tectonic contacts that repeated rock section” 

(Callaway 1883; Lapworth 1883). Lapworth later went on to describe what Murchinson 

& Geikie (1861) called bedding in the metamorphic rocks to actually be a tectonic 

foliation which he termed ‘mylonite’ (Lapworth 1885). The then Director General of the 

Geological Survey, Archibald Geikie, sent two of his most experienced geologists Ben 

Peach and John Horne to disprove Lapworth. Rather than disproving Lapworth, however, 

Peach and Horne confirmed his findings, and Geikie recanted his previous work and 
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coined the term ‘thrust’ in his Geikie (1884) paper taking credit for the re-interpretation. 

Lapworth, Callaway, Geikie, Peach, and Horne continued to map and study the NW 

Highlands using their new approach of combining petrological and paleontological data 

to the stratigraphic relationships. The work was summarized and compiled by Peach and 

Horne into the detailed 1907 memoir. The work became influential to structural 

geologists because it depicted some of the first documented accounts of thrust fault 

structure and thrust processes. 

It wasn’t until the advancement of structural geologic theories and models did 

work get rekindled in the region. A.R. Woolley was a prominent researcher of the 

structure and petrology of the Highlands and published work specifically on the alkaline 

intrusions of the region including the Loch Borralan Pluton (Woolley 1965, 1970, 1973). 

His main goal was to unravel the timing and structural relationships between the 

intrusions and the thrust faults. Woolley also defined the initial rock types comprising the 

Loch Borralan Pluton. Woolley (1970) separated the Loch Borralan pluton first in-to two 

suites of magmas. The early suite is comprised of three rock types, the Ledmore, 

Pseudoleucite, and Nepheline syenite types. The late suite is simply one type of syenite 

grading to quartz syenites. Woolley’s structural history and timing suggested deformation 

had virtually stopped before the late suite syenites were emplaced. However, Woolley 

mentions some movements had to have taken place after both suites were emplaced and 

solidified (Woolley 1973). 

More recently with the advent of precise U-Pb isotopic age dating, the ages of 

most of the rocks in the region have been absolutely dated allowing for much better 

interpretations about the tectonic history of the Scottish Highlands. Searle et al. (2010) 
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published the first combined geochronologic and structural interpretation of the Loch 

Borralan and Loch Ailsh Plutons (Figure 1.3.1). Searle et al. (2010) concluded that the 

Loch Ailsh and Borralan plutons were intruded simultaneously at about c. 430 Ma prior 

to thrusting along the Moine and Ben More Thrusts. The Loch Borralan intrusion likely is 

underlain by a thrust, the Borralan Thrust (Searle et al 2010). The Borralan thrust does 

not outcrop anywhere, but was proposed because the intrusion sits above a set of 

imbricate duplexes associated with the stratigraphically lowest thrust, the Sole Thrust. 

Interpretations about the nature of the Loch Borralan pluton’s contacts are non-existent 

due to exposure being almost entirely covered by peat bogs. Only one very poor contact 

is exposed on the eastern side of the pluton showing an intrusive contact between the 

early suite and the Cambrian-Ordovician quartz arenite country rock (Woolley 1970). 

Searle’s work on the Loch Borralan Pluton was based on U-Pb dates done by van 

Breemen et al. (1979). Goodenough et al. (2011) revised van Breeman (1979) U-Pb ages 

with more accurate techniques, but the interpretations did not change much about the 

plutonic activity from the ideas in Searle et al. (2010). Goodenough et al. (2011) new U-

Pb ages updated van Breemen et al. (1979) date of 430 ± 4 Ma for the Loch Borralan 

Pluton to 431.1 ± 1.2 Ma for the early suite, and 429.2 ± 0.5 Ma for the late suite. The 

Loch Ailsh Pluton was dated to 430.6 ± 0.2 Ma (Goodenough et al. 2011). With these 

new U-Pb dates and observable tectonic deformation fabrics seen in the Loch Borralan 

early suite, Goodenough et al. (2011) confirmed that final motion along the Moine and 

Ben More Thrusts occurred after 430 Ma, and that motion along some thrusts likely 

occurred while both Loch Ailsh and Borralan Plutons were hot or cooling (Searle et al 

2010). Flattened pseudoleucites in the early suite of the Loch Borralan Pluton display 
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foliation and stretching lineations showing that high-temperature fabrics were formed 

after crystallization, but while the pluton was still at a high temperature (c. 500-550 °C, 

Searle et al. 2010). 

2.3 Similar Studies 

 Many workers have used AMS analysis of magnetic fabrics in their research to 

study emplacement and deformation characteristics of plutonic rocks. Particularly 

relevant is the work of Bouchez et al. (1990), Launeau and Cruden (1998), Cruden et al. 

(1999), Aranguren et al. (2003), Czeck et al. (2006), Maes et al. (2007), and Archanjo et 

al. (2011). These studies all use a combination of AMS derived mineral orientations 

combined with petrographic analysis. AMS measurements generally parallel mineral 

lineations and foliations. This is very useful for plutons that have localized or weak 

fabrics, and AMS can be used to fill in gaps where field measurements were not obvious 

or present. Microstructural analysis determines which deformation mechanisms, if any, 

are present. Deformation mechanisms have specific temperature and pressure conditions 

where they occur, and can give insight into the relative timing of emplacement and 

deformation (e.g. hot and ductile vs. cool and brittle). 

 Launeau and Cruden (1998) used AMS and SPO analyses in the Lebel Stock, a 

syenite intrusion in Ontario, CA, with a similar mineralogic composition to the Loch 

Borralan pluton to determine the petrographic significance of the magnetic fabrics, and 

compare petrofabrics of silicate and magnetic minerals in both deformed and undeformed 

syenites from the same magma. The study heavily employed SPO measurements in their 

interpretations using a technique developed by Launeau and Robin (1996), called 
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intercept method of image analysis. Thin sections were prepared for each sampling 

locality and were cut along three mutually perpendicular AMS derived faces (K1>K3, 

K1>K2, and K2>K3). Images of the thin section are then collected and K-feldspar, 

clinopyroxene, and biotite + magnetite were classified in the images using threshold 

filters. Using the program INTERCEPT.EXE by Launeau & Robin (1996) mean mineral 

lengths and mineral boundary intercept directions of the 3 mineral classes were measured 

plotted as ellipses for easy comparison. Launeau & Cruden (1998) found that the long 

axes of all three mineral classes were parallel. 

 Czeck et al. (2006) investigated the Algoman suite of granites and granodiorites 

within the Rainy Lake region of the Superior Province. They used a combination of 

AMS, SPO, and petrographic analysis to determine the relationship between pluton 

fabrics and regional kinematics. Similar to initial accounts of the Loch Borralan pluton, 

the rock suite’s apparent lack of structures was originally thought to constrain the end of 

deformation in the region. However, magnetic foliations coincided well with regional 

deformation foliations within neighboring rocks, as well as the macroscopic foliations 

within the rock suites where present. Limited crystal-plastic quartz microstructures were 

also found within the plutons, further supporting the argument that these plutons were 

syn-tectonic rather than post-tectonic. 

 Maes et al. (2007) encountered an interesting problem within the Sonju Lake 

layered intrusion, northeast Minnesota, where a small population of sample localities 

displayed a 90° offset between field and AMS foliation/lineation measurements. Of the 

32 sites sampled in the area 26 had normal magnetic fabrics, while 6 displayed the offset 

fabrics. Maes et al. (2007) also used the INTERCEPT.EXE by Launeau & Robin (1996) 



20 

 

 
 

along 3 perpendicular AMS faces. Thin section images were taken, and plagioclase and 

magnetite were isolated using image threshold filters. Mean mineral lengths of 

plagioclase and magnetite were measured separately and plotted similarly to the Launeau 

and Cruden (1998). The SPO measurements showed that the plagioclase was within a 

reasonable orientation of the magnetic lineation, ranging between 6-30° offset. However, 

there was a significant offset between the opaque and plagioclase petrofabrics. The 

plagioclase SPO mean length showed a crystallographic arrangement that was ~90° 

different than the magnetite mean lengths. Thus, AMS orientations are controlled by the 

pseudo-single-domain (PSD) and multi-domain (MD) magnetite that is 

crystallographically accommodating the orientations of the silicates (ie plagioclase). 
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3. Methods 

3.1 Fieldwork 

 One hundred fourteen oriented samples of the Loch Borralan pluton have been 

collected covering the entirety of the late magma suite, but only a portion of the 

southeastern extent of the early suite (Figure 3.1.1). Due to poor exposure of the early 

magma suite, very few samples could be obtained. Sample stations were selected based 

on available exposure. A previous team consisting of Bryn Benford and Kelly Hoehn 

from the University of Wisconsin-Madison collected 12 of the 114 samples in 2008. A 

second team consisting of myself, Dr. Dyanna Czeck (UW-Milwaukee), Dr. Basil Tikoff 

(UW-Madison), Dr. Vasileios Chatzaras (University of Patras), and undergraduate Jack 

Graham, collected oriented samples, mineral fabric data, and microgravity measurements 

from May to June 2012. For this study, the mineral fabric data and oriented samples are 

utilized. The microgravity is being studied by other members of the research group. 

Mineral foliations and lineations of aligned alkali feldspar crystals were measured 

using a Brunton compass at sample locations where present, and occasionally measured 

where sampling was not possible (Figure 3.1.2A and 3.1.2B). For outcrops that contained 

multiple foliation orientations, only the most dominant fabric was measured. Other 

structural features such as shear zones and faults were noted and measured where 

observed. 

  



22 

 

 
 

3.2 Anisotropy of Magnetic Susceptibility (AMS) and Identification of Magnetic 

Mineralogy 

 AMS has proved to be a useful tool in characterizing planar and linear fabrics in 

rocks where microstructural and field observations are insufficient (e.g. Borradaile 1988; 

Bouchez et al. 1990; Borradaile and Henry 1997). AMS is a tool that when combined 

with field measurements, petrographic analyses, magnetic mineralogy analyses, and/or 

geochronologic techniques can be  used to relate pluton fabrics to regional strain 

orientations.  AMS data can be represented as a second rank tensor, or geometrically as 

an ellipsoid (Jelinek 1981), making AMS analysis ideal for strain analysis. The principal 

axes of the magnetic anisotropy ellipsoid (K1  K2  K3) often correlate to the principal 

axes of the finite strain ellipsoid (Borradaile 1988; Borradaile and Henry 1997), and have 

been often used as a proxy for strain measurements in granitoid rocks (e.g. Bouchez et al. 

1990; Launeau and Cruden 1998; Cruden et al. 1999; Aranguren et al. 2003; Czeck et al. 

2006). 

At least two samples were collected from each station when possible, and two 

cores were drilled from each rock when possible. This sampling density allows statistical 

comparison of the AMS ellipsoids within and between samples. Forty-four samples were 

drilled for standard one inch cores, totaling 69 cores analyzed. 

The AMS measurements were conducted at the University of Wisconsin-

Milwaukee using the AGICO MFKA-1 Kappabridge. The Kappabridge creates a known 

and stable magnetic field in a contained environment. When a magnetizable sample is 

introduced to the induced field, the machine records the orientation and magnitude of the 



23 

 

 
 

field’s offset which can be orientation dependent. Specimen cores are measured in three 

orientations in a continuously rotating sample holder that very accurately calculates the 

magnitudes and orientations of the principal susceptibility axes (K1  K2  K3) as well as 

the bulk susceptibility of the specimen. The combination of these axes forms the AMS 

ellipsoid. The Kappabridge also supplies scalar AMS parameters, including Km, Pj, and T 

that are the most important to this study. Km is the bulk mean susceptibility value with 

contributions from all the minerals in the rock. Pj is the degree of anisotropy of the AMS 

ellipsoid. Tj is the anisotropy ellipsoid shape parameter (T>0 is oblate, T<0 is prolate). 

In order to interpret the AMS measurements, understanding the mineralogy that 

causes the magnetic field is required. 

To characterize the magnetic mineralogy, the vibrating sample magnetometer 

(VSM) at the Institute of Rock Magnetism (IRM) at the University of Minnesota was 

used. The VSM provided hysteresis loops for 40 representative samples throughout the 

Loch Borralan pluton (Appendix A). Hysteresis data are acquired by measuring the 

magnetization (M) of a vibrating sample within an alternating field. The rock is initially 

demagnetized at the maximum magnetic field (H) of 1 Tesla (T). The magnetic field is 

then gradually reduced to 0T, and then gradually shifted in the opposite direction to 1T. 

Magnetization is measured simultaneously with the field shift. H and M are then plotted 

to form the hysteresis loop. When the two parts of the loop are offset (typically are), the 

difference between the two is the remanence. The hysteresis data were used to measure 

the saturation magnetization (Ms), remanent saturation (Mr), and magnetic coercivity 

(Hc). These measurements allowed determination of the magnetic mineralogy in each 

sample, the contribution of magnetism types (dia-, para-, or ferromagnetic) and which 
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mineral(s) causes the magnetic fabric. By also measuring the coercivity of magnetic 

remanence (Hcr), the effective grain size of magnetite can be determined. The 

characterization of magnetic mineralogy is necessary to properly interpret the AMS 

fabrics, since the correlation between shape fabric and magnetic fabric differs by mineral 

type (Bouchez 1997). Petrographic studies were also conducted to further support the 

magnetic fabric AMS orientations. 

3.3 Qualitative Petrographic Analysis 

 Ten thin sections from 5 field stations were used in this microstructural analysis 

(Figure 3.1.1). Stations were selected to most accurately represent the geographic extent, 

different lithologies, and structures present within the Loch Borralan pluton. Each station 

chosen for analysis had 2 thin sections cut with respect to the orientations of the principal 

magnetic susceptibilities. One cut was made parallel to lineation and perpendicular to 

foliation (K1 ≥ K3), and another perpendicular to both lineation and foliation (K2 ≥ K3). In 

one case (LB12-40B), I did not have any AMS data for that exact location to use for the 

cut orientations, so I used the nearest station with AMS results (LB08-06) to approximate 

foliation and lineation orientations. At least two separate cuts are necessary to get the 

most accurate representation of all types of microstructures present. 

Microstructures were analyzed to determine if deformation occurred when the 

pluton was magmatic, solid at hot temperature (crystal-plastic microstructures), or solid 

and cold (brittle microstructures). Examples of magmatic textures include parallel or 

subparallel alignment of elongate euhedral crystals, imbrication of elongate euhedral 

crystals that are not internally deformed, elongation of enclaves without plastic 
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deformation, flow lines/foliations, and layering. Examples of deformation 

microstructures include fractures, selvage seams, twinning (mechanical), deformation 

lamellae, undulose extinction, sub-grains, and grain boundary bulges. Each of these 

microstructures is indicative of a particular microscopic deformation process: diffusive 

mass transport (DMT), dislocation creep, or cataclasis. The microstructural analysis is 

qualitative with the purpose of noting the types of microstructures present and 

interpreting the likely deformation mechanisms. 

 Brittle microstructures such as cataclastic texture, microveins, and microfractures 

commonly occur in the upper crust (Vernon 2004). Brittle microstructures are most often 

seen in the first 10-15km of continental crust, termed the frictional flow regime (Stewart 

et al. 2000). Brittle deformation is also associated with low temperatures (0-300  50ºC; 

Sibson 1982). Exact temperatures and pressures associated with brittle deformation are 

dependent on rock properties including mineralogy, grain size, and water content. 

 Crystal plastic microstructures occur in mid crustal levels beyond 10-15 km, 

called the frictional-viscous transition zone (Stewart et al. 2000), and temperatures of 

about 300  50ºC (Sibson 1982). Crystal plastic microstructures form through a process 

called dislocation creep, where deformation is attained through the movement of 

dislocations through the crystal lattice (Vernon 2004). Dislocations are linear crystal 

defects that form during crystallization or subsequently when stress is applied to a 

mineral. Examples of microstructures forming during dislocation creep are mechanical 

twinning, sub-grain formation, undulose extinction, and bulged grain boundaries (Vernon 

2004). Dislocations can ‘tangle’ and interfere with each other hindering their 

propagation. Recovery and recrystallization processes reduce the concentration and/or 
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tangling of dislocations, allowing deformation to continue. Examples of typical recovery 

process microstructures are evenly spaced sub-grain boundaries, and aggregates of newly 

recrystallized strain-free grains (Vernon 2004). 

 Diffusive mass transfer (DMT) occurs when fluids aid in dissolving and 

reprecipitating minerals (Vernon 2004). Because DMT is so greatly dependent on fluids, 

it may occur in all levels of the crust, but is most abundant in low-grade metamorphic 

rocks (Vernon 2004). Examples of microstructural evidence for DMT include remnant 

zones of insoluble material called selvage seams and shadows around rigid grains 

(Vernon 2004). Veins may also form with fluid flow through rocks, but generally require 

a combination of brittle fracturing and precipitation of minerals from fluids (Passchier 

and Trouw 2005). 

 Mineralogy, grain size, composition of the intergranular fluid, lattice-preferred 

orientation, porosity, and permeability are all internal controls on deformation type 

(Passchier and Trouw 2005). Examples of external controls are temperature, lithostatic 

pressure, differential stress, fluid pressure, and strain rate. Generally, temperature 

(metamorphic grade) is the greatest controlling factor on the types of deformation 

microstructures (Passchier and Trouw 2005), but the presence of fluids greatly influences 

deformation as well. Deformation in quartz, for example, is highly dependent on the 

presence of water in the crystal lattice (Passchier and Trouw 2005). Even at low-grade 

conditions (<400°C), quartz can display dislocation creep microstructures with high 

water pressure in pore spaces (Passchier and Trouw 2005). Crystal-plastic deformation in 

feldspars generally occurs at relatively high temperatures (Passchier and Trouw 2005). 

Quartz has the potential to begin to deform crystal plastically at temperatures below 
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400°C, but feldspars commonly will not display this type of deformation until a 

temperature of around 450-600°C is reached. Brittle deformation is favored in low 

temperatures, high stress, or high strain rates (Passchier and Trouw 2005). Crystal plastic 

deformation structures are typically found in high temperature, high pressure, and low 

strain rate sites (Passchier and Trouw 2005). 

3.4 Shape Preferred Orientation (SPO) 

 As an independent test to check the origin of the magmatic fabric, shape-preferred 

orientations (SPO) analysis will be conducted. The SPO analysis was conducted on all 10 

thin sections separately for alkali feldspar grains and opaque minerals. While there is no 

generally accepted number of grains needed for a properly representative SPO analysis, 

ideally hundreds to thousands of grains would be used, depending on fabric strength. On 

the high end of analyzed grains, Hastie et al. (2010) measured the SPO of 2,500-3,500 

plagioclase grains per thin section. Lower end studies (e.g. Izquierdo-Llavall et al. 2012) 

analyzed 478 biotite preferred orientations in one thin section. Generally, SPO analysis 

for Loch Borralan thin sections in the early suite included <30 feldspar grains, and <20 

opaque minerals. In the late suite, a typical thin section consisted of approximately 100-

500 feldspar grains, and 20-100 opaque grains. The number of grains included in the SPO 

analysis was dictated by the grain size and size of the thin sections. 

While there are many ways of conducting an SPO analysis, SPO was measured 

here using the intercept method of image analysis (Launeau and Robin 1996), which has 

been used in many studies with success (Maes et al. 2007, Hastie et al. 2011, Archanjo et 

al. 2012, and Izquierdo-Llavall et al. 2012). The intercept method counts the number of 
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intercepted segments of a set of mineral grains on the image by a set of parallel scan lines 

along 180° directions across a digital photograph of a thin section (Figure 3.4.1). Because 

we see some discrepancies between the orientations of the magnetic and macroscopic 

mineral foliations, the SPO of the feldspar minerals forming the macroscopic foliation, 

and the magnetic fabric minerals (magnetite) were measured. Digital image processing 

threshold filters were used on the thin section images to contrast the alkali feldspars from 

the magnetic minerals. The program INTERCEPT.EXE by Launeau and Robin (1996; 

available on the internet) was used to automate the counting and measuring of the mineral 

orientations. Once the mineral boundary intercepts are counted, the INTERCEPT.EXE 

program outputs intercept direction, mean length, boundary direction, and inertia tensor 

ellipse and rose diagrams. In this project, the mean length ellipse is most useful to 

determine the fabric orientations because it represents the mean orientation of the long 

axis of the mineral. The intercept and boundary direction ellipses show the direction of 

boundary intercepts which can be skewed with complex grain shapes, see (Figure 3.4.2).
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Figure 3.1.1: Location map showing Loch Borralan and the field station locations throughout the pluton. Station locations 

with box represent sites where thin sections were made and analyzed. Modified from British Geological Survey (2013).
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Figure 3.1.2: (A) Photos of well developed and (B) poorly developed fabrics in the field. 

Photo A also features a thin shear zone with clear shear sense indicating dextral shear. 
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Figure 3.4.1: Processes behind the INTERCEPT.EXE Program by Launeau & Robin 

(1996). To create the intercept ellipse (C), the grain was scanned with parallel paths at 

180° increments. Two angle scan paths are theoretically represented in (A) and (B). For 

the mean length calculations (D) the same 180° paths are used, but rather than counting 

boundary intercepts the program counts the length, in user defined units, the scan path 

takes through a grain. The length measurements of the grain are then averaged over the 

total path taken, and then finally a mean length ellipse (E) is calculated. 
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Figure 3.4.2: Calculated Fourier series rose of ellipses calculated from simple input 

shapes using the INTERCEPT.EXE program (Launeau & Robin 1996). Intercept counts 

rose of ellipse long axis point towards the direction in which the most grain boundary 

intercepts were encountered. The mean length rose of ellipse long axis parallels the 

averaged grain shape long axis orientation. Similar to the mean length rose of ellipse the 

boundary direction rose of ellipse, points towards the grain shape’s long axis, but does 

not average the measurements. Characteristic shape is calculated to represent the average 

shape and orientation of the measured grains. This characteristic shape is used in the final 

SPO analysis. 
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4. Results 

4.1 Field Data and Observations 

 Macroscopic foliations and lineations of alkali feldspars were measured 

throughout the Loch Borralan Pluton at 48 field stations (Figure 3.1.1). In total there were 

118 foliations, 24 lineations, 31 shear zone planes, 18 fault planes, and 1 fold measured 

(Figure 4.1.1-4.1.2; Table 4.1). 

Due to the poor exposure of the early suite, the majority of the measurements were taken 

from the late suite. 

Foliations and lineations were formed by an ordered alignment of alkali feldspar 

minerals. Foliations are strongly developed throughout the entirety of the pluton, whereas 

lineations are generally more scarce and poorly developed (S>L fabrics). In the 

Aultivullin quarry (station LB12-04, Figure 3.1.1) on the SE margin of the pluton, an 

exposure of early suite displays stretched pseudoleucite aggregates that were measured 

by Searle et al. (2010). 

The measured foliations dominantly strike NE-SW, which parallels the adjacent 

thrust faults (Figure 4.1.4). The early suite foliations strike approximately 030 and dip 

20° SE (Figure 4.1.2). Foliations in the late suite have a similar strike orientation to the 

early suite, but dip roughly 50-65° to the SE and NW (Figure 4.1.2). The strike of 

foliations in both late and early suites is subparallel to the regional thrust faults (Sole, 

Ben More, Glencoul, and Moine Thrusts). The foliation dip within the early suite is 

subparallel to the regional thrust faults. The foliation dip within the late suite is 
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subparallel to the imbricate thrust faults mapped in adjacent Cambrian-Ordovician quartz 

arenite. 

The late suite lineations generally plunge shallowly towards the NE in a direction 

parallel to the strike of the thrust faults (Figure 4.1.2 and 4.1.3). Only two lineations were 

confidently measured within the early suite making interpretations difficult. 

Brittle faults were observed in outcrop within the late suite, and ductile shear 

zones were observed throughout the entire extent of the pluton (Figure 4.1.2). The SE, 

NW, and west central portions of the late suite have dominantly ductile shear zones, 

while the central and NW portion of the pluton have small (1-30cm offset) brittle faults. 

Both the shear zones and fault planes are sub-parallel to the NE-SW strike of the 

macroscopic mineral foliation (Figure 4.1.2). 

Eighteen brittle faults were measured in the late suite. All brittle faults had a NE-

SW strike and steep dips to the SE (60-80°). The faults offset quartz veins with a typical 

offset of 2-3 cm for both normal and reverse sense of motion. Of the eighteen faults 

measured fifteen had a reverse sense of motion, and three had a normal sense of motion. 

Both reverse and normal faults could be seen offsetting the same quartz vein. 

Thirty ductile shear zones were measured, identified by a reduction in grain size, 

and clear fabric (alkali feldspar alignment) being “dragged” into the slip plane (Figure 

3.1.2A). In the early suite, they were approximately 3-5 cm wide. In the late suite, they 

were approximately 1 cm wide. The lateral extent of the shear zones was difficult to 

measure as outcrops were commonly patched with peat and moss, and the shear zones 

would continue underneath. In the early suite, the dip was moderate to steep (30-70°) 
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generally to the NE and SE. In the late suite, the shear zones generally dipped steeply 

(50-85°) to the SE and NW, parallel to the brittle faults. 

The apparent shear sense was able to be determined for twenty-three shear zones 

indicated by deflections of fabric. Seven of those shear zones in the early suite were 

observed on vertical planes: four with apparent normal shear sense and three with 

apparent reverse sense of motion. The shear zones with reverse sense generally dipped E 

sub-parallel to thrust faults. The normal sense shear zones dip directions varied between 

NE and SE. True three-dimensional sense of shear could not be determined due to lack of 

full three-dimensional exposure. 

In the late suite, apparent shear sense of motion for all eighteen shear zones was 

observed on subhorizontal planes. True three-dimensional sense of shear could not be 

determined due to lack of full three-dimensional exposure. Nearly all shear zones were 

located in the SE and W central portion of the late suite. Only two shear zones were seen 

in far NE corner of the pluton and one in the NW corner. Seven shear zones had apparent 

sinistral sense of motion, and nine showed apparent dextral sense of motion. Both 

sinistral and dextral shear zones can been found within the same outcrop. The late suite 

shear zones dominantly strike NE-SW, but dip direction varied for both sinistral and 

dextral. 

4.2 Magnetic Mineralogy 

 The characterization of the magnetic mineralogy using the vibrating sample 

magnetometer (VSM) at the Institute of Rock Magnetism (IRM) provided hysteresis 

loops for 40 samples throughout the Loch Borralan Pluton (Appendix A). The majority of 
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the samples were dominated by ferromagnetic mineralogy, but a few samples in the early 

suite contained some paramagnetic components (Appendix A). This can be determined 

by comparing the blue line (ferromagnetic data) to the red line (bulk data). If the blue line 

does not follow the red exactly, then there is a component of paramagnetism also present 

in the rock. The mineral causing the paramagnetic signal is biotite. Biotite’s magnetic 

susceptibility strongly mimics mineral shape (Bouchez 1997). Therefore, AMS to strain 

interpretations in samples with paramagnetic components remain straightforward. 

 The possibility for inverse fabrics caused by single domain magnetite was ruled 

out with the creation of a Day plot representing the populations of single (SD), 

pseudosingle (PSD), and multi-domain (MD) mineralogy (Figure 4.2.1; Dunlop 2002). 

Inverse fabrics occur because the magnetization within an SD grain has no domain walls 

to shift in the presence of an oblique magnetic field. The result is a slight shift in the easy 

axis of the SD grain’s magnetic field, causing AMS measurements to be offset from true 

orientation. No samples plotted within the Dunlop (2002) boundaries for SD grains, all 

samples are either PSD or MD. The early suite is entirely multi-domain, and the late suite 

has a mixture of both pseudosingle, and multi-domain grains. The Day plot (Figure 4.2.1) 

can also reveal relative grain size, as the remnant coercivity (Hrh/Hc) increases grain size 

increases. Generally MD grains are larger than PSD, and PSD are larger than SD grains. 

Multi-domain AMS fabrics commonly coincide with deformation strain orientations 

(Bouchez 1997). 

 Curie temperature measurements were conducted to determine which 

ferromagnetic mineral is responsible for the AMS fabric. Both samples from the early 

suite and late suite showed the same Curie point temperature of ~560ºC (Figures 4.2.2 
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and 4.2.3). This Curie temperature is slightly low for pure magnetite (~580ºC), but fits 

well for a composition of titanomagnetite of approximately 80% magnetite to 20% 

titanomagnetite (Hunt et al. 1995). The rightward shift of the Day plot samples also 

coincides with a titanomagnetite signature (Figure 4.2.1; Dunlop 2002). The 

thermomagnetic data was irreversible on cooling suggesting that new material is being 

created at high temperatures (Butler 1992). The cause for the creation of new magnetic 

material is due to oxy-exsolution, sometimes referred to as “deuteric oxidation” (Butler 

1992). During oxy-exsolution, ilmenite will convert to magnetite near 700ºC (Butler 

1992). The combination of the sub ~560ºC Curie temperature, and the shifted Day plot 

suggest a dominant magnetic mineralogy of titanomagnetite with slight oxidation. 

4.3 Anisotropy of Magnetic Susceptibility (AMS) 

All AMS results are shown in Appendix B and the site averaged results are shown 

in Table 4.2. Bulk susceptibility (Km) measurements corroborate the hysteresis and 

thermomagnetic data throughout the pluton with strong site averaged Km values generally 

between 10
-2

 to 10
0
 SI, indicating titanomagnetite as the dominant mineralogy (Table 4.2; 

Borradaile and Jackson 2010). Anisotropy magnitude (Pj) values are similar throughout 

the pluton and between each suite, generally between 1.010 and 1.150 (Table 4.2). The 

anisotropy shape parameter (T) is prolate (T<0) in the eastern and south-eastern portion 

of both the early and late suite, but the majority of the pluton has oblate fabric (T>0; 

Table 4.2). The early suite has a higher average T value than the early suite. The largest 

magnetic grain sizes seen in the early suite correspond with the larger average Km values 

in the early suite (Table 4.2 and Figure 4.2.1). 
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Comparison between AMS orientations and outcrop scale measurements was 

made for 15 stations where both field and AMS data was available (Figure 4.3.1). In the 

early suite, AMS K1 directions generally parallel field lineation, and K3 directions trend 

parallel to field pole to foliation measurements. In the late suite where field lineation 

measurements are available, K1 measurements follow similar trends. Field pole to 

foliation measurements are more variable and differ from K3 measurements. 

Complete AMS data can be seen in Appendix B. Any outlying, inconsistent, or 

standard deviations from suite averages were not included in the final analysis (Figure 

4.1.1 and 4.3.1, Table 4.2). Measurements that had standard deviations (L>0.4, F>0.1, 

Pj>0.1), or (Km>20,000) in the late suite were not considered for interpretation. These 

measurements are likely either isolated anomalies or contaminated samples. Km values 

ranged widely between stations, but remained constant within each sampling station. 

Therefore, Km was not used as criteria for elimination in the early suite. 

The AMS lineations (K1) of the early suite generally plunge shallowly to the 

southeast, parallel to thrust transport direction (Figure 4.1.1 and 4.3.2). These lineation 

directions are parallel with the long axes of internal pseudoleucite aggregates measured 

by Searle et al. (2010) in the Aultivullin quarry (stations LB08-03 and LB12-04; Figure 

3.1.1) on the southeastern margin of the Loch Borralan Pluton. Foliations in the early 

suite strike approximately 030, and dip roughly 20° to the southeast (Figure 4.1.1 and 

4.3.3). Foliations are subparallel to the strike of both the major and minor regional 

thrusts. Nearly all early suite measurements show oblate fabrics (T>0; Table 4.2). 
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The late suite mean orientation of AMS lineations (K1) plunges extremely 

shallowly (~1°) to the southwest (195°; Figures 4.1.1 and 4.3.2). The majority of 

lineation measurements plunge shallowly to either the southwest or northeast sub parallel 

to the strike of the thrust faults (Figure 4.1.1). Less dominant orientations of lineations in 

the northwest parallel thrust transport direction, and steeply dipping central lineations 

parallel regional strike thrust. Foliations in the late suite range widely in dip degree, but 

all generally strike NE-SW parallel to thrust faults (Figure 4.1.1 and 4.3.3). There are 

dominantly oblate fabrics (T>0) in the late suite, but some prolate fabrics (T<0) also exist 

(Table 4.2). 

4.4 Petrographic Analysis 

The mineralogy in the early suite (Figure 4.4.1 and 4.4.2) is characterized by 

approximately 85% orthoclase feldspars, 5% natrolite, 5% melanite, 3% plagioclase, 1% 

biotite, and 1% opaque minerals including titanomagnetite and ilmenite. Late suite 

mineralogy in the southeastern portion of the pluton (Figure 4.4.3) was very rich in 

orthoclase/microcline (93%), with some minor plagioclase (3%), quartz (2%), biotite 

(1%), and opaque minerals (1%). The central and northwestern parts of the late suite 

(Figure 4.4.4) have similar mineralogies with approximately 80% orthoclase/microcline, 

15% quartz, 3% plagioclase, 1% biotite, and 1% opaque minerals. 

The early suite has a very large orthoclase feldspar grains (5-10 mm diameter), 

while natrolite, melanite, and plagioclase are typically <1-2 mm. The large orthoclase 

feldspars continue in the southeastern portion of the late suite with grains typically on the 

scale of approximately 3-7 mm, and plagioclase <2-3 mm. In the northwestern extent of 
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the late suite, orthoclase grain size is reduced to 2-5 mm, plagioclase is typically <1 mm, 

and quartz <0.5 mm. 

Feldspars 

Both the early and late suites are dominated by orthoclase feldspars. In all thin 

sections, a perthitic texture is present (Figure 4.4.1 and 4.4.5). Perthite, and its closely 

related structure myrmekite (seen occasionally, Figure 4.4.4), are an intergrowth of albite 

lamellae in K-feldspar (quartz and K-feldspar in myrmekite), formed by solid-state 

exsolution of a homogeneous alkali feldspar solid solution during slow cooling in igneous 

and metamorphic rocks (Simpson and Wintsch 1989; Vernon 2004). Plagioclase can be 

seen both faulted (Figure 4.4.2) and bent (Figure 4.4.3). Both orthoclase and plagioclase 

developed strong undulose extinction (Figure 4.4.6 and 4.4.7). Straight microfractures cut 

across both orthoclase and plagioclase grains, and in the late suite, these fractures are 

typically filled with quartz. Grain boundaries of orthoclase are highly irregular and 

‘bulged’ which occurs during the transition from magmatic to solid-state deformation 

(Figure 4.4.2; Vernon 2004). 

Quartz 

 Quartz is only seen in the late suite magma, and predominantly exists only in the 

northwestern extent of the pluton. Quartz exists in three forms: some grains are around 

0.5-1mm with irregular ‘bulged’ boundaries (Figure 4.4.8), some grains of similar size 

have clear boundaries (4.4.9), and the others are smaller recrystallized grains (<0.1mm) 

with very well defined boundaries (Figure 4.4.4 and 4.4.8). All three types of quartz 

grains exhibit undulose extinction (Figure 4.4.8). Microfractures do not typically cut 
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quartz grains, but in some cases they do (Figure 4.4.8). Rather, quartz fills in the fractures 

that cut feldspars (Figure 4.4.10). 

Fractures typically cut alkali feldspars and plagioclase grains. Some fractures cut 

across multiple grains (Figure 4.4.5). The fractures are typically straight, and do not have 

any obvious preferred orientation. Some fractures form 60-120° conjugate sets relative to 

the K1>K2>K3 directions, but this relationship is not present in all thin sections (Figure 

4.4.5). Locally, microfractures offset grain boundaries. The quartz in the southeastern 

portion of the pluton has more pervasive bulged grain boundaries (Figure 4.4.11). 

Other Minerals 

The early suite hosts melanite garnet, a member of the andradite garnet group 

(Figure 4.4.12). Melanite is a Ti-rich garnet that is a primary mineral commonly found in 

undersaturated alkaline igneous rocks (Deer et al. 1982). Natrolite is considered a low-

grade zeolite facies metamorphic mineral, common to mafic igneous intrusions. 

However, in alkaline intrusions, particularly nepheline syenites, natrolite is derived from 

fluid enhanced, late stage cooling, deuteric alteration reactions with nepheline (Deer et al. 

2004). Natrolite is seen as fibrous intergrowths between orthoclase grains (Figure 4.4.13). 

Muscovite mica is seen rarely as an accessory mineral in the early suite. Neither 

muscovite, natrolite, nor melanite exhibits any preferred alignment suggesting they are all 

primary igneous minerals, and not produced by metamorphic reactions. 

There were no noticeable differences in microstructures between thin sections cut 

parallel, or perpendicular to magnetic lineation. No obvious primary magmatic textures 

were seen in any thin sections. 
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4.5 Shape Preferred Orientation (SPO) 

SPO measurements are generally weak with the average shape ratio (R) being 

1.147 for feldspars, and 1.193 for opaque minerals (Figure 4.5.1). The shape ratios for the 

plane parallel to lineation (K1>K3) has a higher average shape ratio at 1.164 compared to 

1.130 for the lineation perpendicular face (K2>K3), but the variability of shape ratios 

within a plane are greater than the difference between planes. Shape ratios for feldspars 

are slightly higher in the early suite and the southeastern portion of the late suite, and 

lower in the northwestern part of the late suite. Sites that are closer to pluton or suite 

margins exhibit higher shape ratios (e.g. LB12-04C, LB08-04B, LB08-06B). Mean 

length vector (A) does not vary much between feldspar and opaque grains within each 

plane. 

The dominant orientations of feldspars in the K1>K3 plane for the early suite is 

approximately 24°079, and 08°005 for the late suite (Figure 4.5.2). The dominant 

orientations of feldspars in the K2>K3 plane for the early suite is approximately 

12°212, and 23°042. The mean K1 orientation for the early suite is 34°115, and 

01°195 for the late suite. The mean K2 orientation for the early suite is 03°206, and 

18°105 for the late suite. The SPO for the early suite and the late suite K1>K3 plane 

parallels the AMS data very well. There is a difference in the K2>K3 orientation of about 

60° between the SPO and AMS orientations in the late suite. 

The shape ratio can also determine whether the minerals generally have a stronger 

foliation or lineation when comparing the average ratios between the K1>K3 and the 

K2>K3 planes. The SPO measurements indicate that the rock has a stronger foliation since 
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K1 and K2 have similar magnitudes. The average shape ratio of the K2>K3 plane is 

actually slightly larger (1.18) than the K1>K3 plane (1.16). This is consistent with strong 

foliations and poor lineations as observed in the field.  
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Figure 4.1.1: Lower hemisphere equal area stereonet projections of macroscopic alkali 

feldspar field foliation and lineation measurements (left), and AMS measurements (right) 

in early suite (top) and late suite (bottom). K1 orientation corresponds to maximum strain 

axis (S1), and K3 to the minimum strain axis (S3). Stretching lineations of pseudoleucite 

aggregates measured by Searle et al. (2010) shown overlain on early suite field data 

stereonet. Kamb (2%) contouring used for field data stereonets, and confidence ellipses 

(95%) calculated using Anisoft42.exe for AMS stereonets. 
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Figure 4.1.2: Poles to planes of shear zones and faults represented on lower hemisphere 

equal area stereonets. Kamb contouring (2%).



 

 

 
 

4
6

 

 

Figure 4.1.3: Map of Loch Borralan Pluton showing lineation field measurements of preferred orientation of alkali feldspar 

long axes. Modified from British Geological Survey (2013).
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Figure 4.1.4: Map of Loch Borralan Pluton showing foliation field measurements of planar preferred orientation of alkali 

feldspars. Modified from British Geological Survey (2013).
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Figure 4.2.1: Day plot (Day et al. 1977) showing the distribution of samples from the 

Loch Borralan pluton with Dunlop et al. (2002) boundaries for single domain (SD), 

psuedosingle domain (PSD), and multidomain (MD) magnetite. Ms, saturation 

magnetization; Mr, remanent saturation; Hc, magnetic coercivity; Hrh, mass estimated 

coercivity of magnetic remanence. 
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Figure 4.2.2: Curie point measurement of early suite sample showing approximate 

~560°C temperature indicative of low temperature oxidation titanomagnetite. Red line is 

heating, blue line is cooling curve. Kt, total susceptibility. 
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Figure 4.2.3: Curie point measurement of late suite sample showing approximate 

~560°C temperature indicative of low temperature oxidation titanomagnetite. Red line is 

heating, blue line is cooling curve. Kt, total susceptibility. 
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Figure 4.3.1: Comparison between AMS and field measurement. 15 stations had 

overlapping field and AMS measurements. K1 parallels maximum strain axis (S1), K2 to 

intermediate strain axis (S2), and K3 to minimum strain axis (S3).
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Figure 4.3.2: Map of the Loch Borralan Pluton showing AMS lineations. Modified from British Geological Survey (2013). 
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Figure 4.3.3: Map of the Loch Borralan Pluton showing AMS foliations. Modified from British Geological Survey (2013).
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Figure 4.4.1: Early suite thin section (LB12-04C=; K1K3 plane, XPL) image showing 

multiple large orthoclase grains with well developed perthite texture. Bulging grain 

boundaries can also be seen around the rim of orthoclase grains. Orth, orthoclase; Nat, 

natrolite; Mel, melanite garnet; Op, opaque minerals. 
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Figure 4.4.2: Early suite thin section (LB12-04C=; K1K3 plane, XPL) image showing a 

micro reverse fault within a plagioclase grain. Fibrous natrolite (Nat) and melanite (Mel) 

minerals in the surrounding matrix. Plag, plagioclase; Nat, natrolite; Bt, Biotite. 
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Figure 4.4.3: Late suite thin section (LB08-04B=; K1K3 plane, XPL) image showing a 

bent plagioclase grain (dislocation creep). Surrounding the plagioclase grains are highly 

perthitic orthoclase grains. The green-brown minerals are fine grained biotite. Orth, 

orthoclase; Plag, plagioclase; Mel, melanite garnet; Bt, biotite; Op, opaque minerals. 
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Figure 4.4.4: Late suite thin section (LB08-06B=; K1K3 plane, XPL) image showing a 

zoned feldspar crystal with myrmekite wings surrounding it. Myrmekite was occasionally 

seen in thin sections. Orth, orthoclase; Qrtz, quartz. 
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Figure 4.4.5: Late suite thin section (LB08-04B=; K1K3 plane, XPL) image showing a 

well developed microfracture that has since been partially filled with quartz. Intense 

perthite in surrounding orthoclase grains. Orth, orthoclase; Qrtz, quartz. 
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Figure 4.4.6: Late suite thin section (LB08-04B=; K1K3 plane, XPL) image showing a 

well developed undulose extinction in orthoclase feldspar with perthite texture. Orth, 

orthoclase; Qrtz, quartz. 
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Figure 4.4.7: Late suite thin section (LB08-04B=; K1K3 plane, XPL) image showing 

undulose extinction of a plagioclase feldspar grain. Orth, orthoclase; Qrtz, quartz. 
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Figure 4.4.8: Late suite thin section (LB08-06B+; K2K3 plane, XPL) image showing 

undulose extinction of both large quartz grains (left) and smaller recrystallized quartz 

(center). The large quartz grains show intragranular fracture (left), and grain boundary 

bulging (right). The smaller quartz grains have been dyanamically recrystallized and are 

now aggregates formed from previous large quartz grains. Orth, orthoclase; Qrtz, quartz. 
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Figure 4.4.9: Late suite thin section (LB08-06B=; K1K3 plane, XPL) Clearly defined 

boundaries of quartz. Smaller recrystallized quartz seen in surrounding matrix. Orth, 

orthoclase; Qrtz, quartz. 
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Figure 4.4.10: Late suite thin section (LB08-06B+; K2K3 plane, XPL) Intergranular 

fracture in orthoclase feldspar filled with quartz. Filled fracture is a conjugate and 

offseting smaller quartz filled fracture. Orth, orthoclase; Qrtz, quartz. 
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Figure 4.4.11: Late suite thin section (LB08-04B+; K2K3 plane, XPL) Intense grain 

boundary bulging seen in both quartz and orthoclase feldspar. Orthoclase also exhibits 

well developed perthite texture. Orth, orthoclase; Qrtz, quartz. 
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Figure 4.4.12: Early suite thin section (LB12-04C=; K1K3 plane, XPL) image showing 

the best examples seen of euhedral melanite (Mel). Fibrous natrolite (Nat) and orthoclase 

(Orth) in the surrounding matrix. 
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Figure 4.4.13: Early suite thin section (LB12-04C=; K1K3 plane, XPL) image showing 

fibrous natrolite (Nat) filling growing within spaces between orthoclase (Orth) grains. 
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Figure 4.5.1: Mean length roses created using INTERCEPT.EXE (Launeau and Robin 

1996). The “R” value represents the shape ratio or degree of anisotropy of the ellipse. 

The “A” value represents the mean length vector which corresponds to the orientation of 

the averaged long axis of the mineral. Left two columns are for the K1K3 plane with 

results from alkali feldspars (left) and opaque minerals (right). Right two columns are for 

the K2K3 plane with results from alkali feldspars (left) and opaque minerals (right). Top 

row (LB12-04) is early suite and four subsequent rows are from the late suite. Locations 

of samples are shown on Figure 3.1.1. 
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Figure 4.5.2: Equal area stereonet projections of the dominant orientations of feldspars 

(blue), and opaque minerals (black). The red border around symbols represents early suite 

measurements, and no border represents late suite measurements. Note that the planes 

were calculated separately for each outcrop based on the AMS measurements, so the 

measurements on each stereonet do not fall on a single plane. 
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FOLIATIONS 

Station Measurement Ranking Station Measurement Ranking 

LB12-01 N 29 E 86 SE 3 LB12-21 044 87 SE 3 

LB12-01 N 24 E 90 SE 3 LB12-21 046 83 SE 3 

LB12-02 N 11 E 75 NW 3 LB12-22 193 76 NW 1 

LB12-02 N 32 E 76 NW 3 LB12-22 029 80 SE 2 

LB12-03 N 36 E 84 SE 3 LB12-22 035 83 SE 2 

LB12-03 N 29 E 80 SE 3 LB12-23 012 73 SE 1 

LB12-04 N 50 E 24 SE 1 LB12-23 011 70 SE 1 

LB12-04 N 34 E 25 SE 2 LB12-26 020 88 SE 3 

LB12-04 N 8 E 34 SE 3 LB12-26 016 70 SE 3 

LB12-04 N 88 W 24 SE 2 LB12-27 036 73 SE 2 

LB12-04 N 22 E 36 SE 3 LB12-27 021 83 SE 2 

LB12-05 N 47 W 88 NE 3 LB12-28 012 74 SE 3 

LB12-05 N 12 E 85 SE 3 LB12-28 035 74 SE 3 

LB12-05 N 4 E 85 SE 3 LB12-28 032 74 SE 3 

LB12-05 N 3 E 86 SE 3 LB12-29 356 87 NE 2 

LB12-05 N 2 E 76 SE 3 LB12-29 007 82 SE 3 

LB12-06 N 57 E 75 SE 2 LB12-29 005 76 SE 2 

LB12-06 N 10 E 77 NW 2 LB12-30 018 71 SE 2 

LB12-06 N 10 E 79 NW 2 LB12-30 000 85 E 2 

LB12-07 210 78 NW 3 LB12-30 177 59 SW 2 

LB12-07 210 69 NW 3 LB12-30 167 77 SW 3 

LB12-08 029 82 SE 3 LB12-30 160 83 SW 3 

LB12-08 022 79 SE 2 LB12-31 045 84 SE 3 

LB12-08 010 75 SE 3 LB12-31 040 76 SE 3 

LB12-08M 042 74 SE 3 LB12-32 027 84 SE 3 

LB12-08M 045 84 SE 3 LB12-32 046 74 SE 3 

LB12-10 053 72 SE 3 LB12-32 040 86 SE 3 

LB12-10 029 72 SE 2 LB12-33 039 77 SE 3 

LB12-10 048 75 SE 3 LB12-33 031 77 SE 3 

LB12-11 036 87 SE 3 LB12-34 021 71 SE 3 

LB12-11 030 82 SE 3 LB12-34 024 82 SE 3 

LB12-11 034 83 SE 3 LB12-36 226 74 NW 2 

LB12-12 012 78 SE 3 LB12-37 265 76 NW 1 

LB12-12 019 78 SE 3 LB12-38 215 70 NW 3 

LB12-13 021 34 SE 3 LB12-38 212 81 NW 3 

LB12-13 020 41 SE 3 LB12-39 267 62 NW 2 

LB12-14 053 34 SE 2 LB12-40 188 74 NW 2 

LB12-14 054 34 SE 3 LB12-42 051 68 SE 2 

LB12-15 344 23 NE 2 LB12-43 070 75 SE 2 
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LB12-15 358 33 NE 3 LB12-44 224 66 NW 1 

LB12-15 355 35 NE 2 LB12-46 267 82 NW 2 

LB12-18 217 85 NW 3 LB12-47 218 84 NW 3 

LB12-18 219 85 NW 3 LB12-47 230 83 NW 3 

LB12-18 004 74 SE 3 LB12-48 181 64 NW 3 

LB12-18 231 81 NW 3 LB12-48 229 72 NW 2 

LB12-18 009 67 SE 3 LB12-48 155 83 SW 3 

LB12-19 010 67 SE 3 LB12-48 164 75 SW 3 

LB12-19 021 70 SE 3 
   Table 4.1A: Field measurements of macroscopic feldspar foliations. The ranking system 

was used to distinguish between strong and poorly developed fabrics, 1 = poor and 3 = 

strong fabric. Plane measurements are presented in strike, dip format (examples: “164 75 

SW” means strike = 164 and dip = 75 SW; “N 29 E 86 SE” means strike = N29E and dip 

= 86 SE). 
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LINEATIONS 

Station Measurement Ranking 

LB12-01 22 N 27 E 2 

LB12-01 10 S 37 W 1 

LB12-01 14 N 35 E 2 

LB12-01 43 S 7 W 2 

LB12-01 34 S 22 W 2 

LB12-02 18 N 59 E 1 

LB12-03 5 N 40 E 2 

LB12-03 4 N 34 E 3 

LB12-03 7 N 15 E 1 

LB12-04 19 N 65 E 3 

LB12-04 19 N 76 W 3 

LB12-05 39 S 19 W 3 

LB12-05 22 S 7 W 2 

LB12-06 26 N 57 E 3 

LB12-06 7 N 10 E 2 

LB12-08M 19 042 3 

LB12-10 19 044  1 

LB12-11 15 016 2 

LB12-12 12 011 3 

LB12-12 24 015 3 

LB12-19 17 029 2 

LB12-19 09 014 2 

LB12-27 24 026 2 

LB12-32 21 022 2 

Table 4.1B: Field measurements of macroscopic feldspar foliations and lineations. Line 

measurements are presented in plunge, trend format (examples: “22 N 27 E” means 

plunge = 22 and trend = N27E; “09 014” means plunge = 9 and trend = 014). 
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SHEAR ZONE PLANES 

Station Measurement Ranking 

LB12-04 N 59 W 39 NE 3 

LB12-04 N 61 W 41 NE 2 

LB12-04 N 29 W 36 NE 3 

LB12-04 N 15 W 44 NE 3 

LB12-04 N 12 W 66 NE 3 

LB12-04 N 63 E 33 SE 3 

LB12-04 N 63 E 33 SE 3 

LB12-04 N 23 W 69 SE 3 

LB12-04 N 19 W 29 NE 3 

LB12-04 N 1 E 70 SE 3 

LB12-07 089 71 SE 3 

LB12-07 281 55 NE 3 

LB12-07 180 75 NE 1 

LB12-08 014 79 SE 3 

LB12-08 N 60 E 76 SE 0 

LB12-08 N 50 E 65 NW 0 

LB12-08 N 43 E 57 NW 1 

LB12-12 043 73 SE 3 

LB12-15 004 35 SE 3 

LB12-16 316 30 NE 2 

LB12-16 290 40 NE 2 

LB12-19 000 66 E 2 

LB12-20M 325 64 NE 3 

LB12-20M 330 61 NE 3 

LB12-21 024 74 SE 3 

LB12-23 002 59 SE 3 

LB12-26 022 69 SE 3 

LB12-26 014 87 SE 3 

LB12-27 012 72 SE 3 

LB12-33 175 85 SW 3 

LB12-44 024 52 SE 3 

Table 4.1C: Field measurements of shear zone planes. The ranking system was used to 

distinguish between strong and poorly developed fabrics, 1 = poor and 3 =strong fabric. 

Plane measurements are presented in strike, dip format (examples: “164 75 SW” means 

strike = 164 and dip = 75 SW; “N 29 E 86 SE” means strike = N29E and dip = 86 SE).. 
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FAULT PLANES 

Station Measurement Ranking 

LB12-02 N 4 W 69 SW 3 

LB12-36 036 56 SE 3 

LB12-36 005 85 SE 3 

LB12-36 053 68 SE 3 

LB12-40 043 69 SE 3 

LB12-40 025 60 SE 3 

LB12-40 023 63 SE 3 

LB12-40 022 60 SE 3 

LB12-40 046 62 SE 3 

LB12-40 095 62 SW 3 

LB12-40 024 69 SE 3 

LB12-42 017 80 SE 3 

LB12-42 017 70 SE 3 

LB12-42 027 78 SE 3 

LB12-42 012 77 SE 3 

LB12-43 072 90 3 

LB12-46 085 43 SE 3 

LB12-48 064 74 SE 3 

Table 4.1D: Field measurements of fault planes. The ranking system was used to 

distinguish between strong and poorly developed fabrics, 1 = poor and 3 =strong fabric. 

Plane measurements are presented in strike, dip format (examples: “164 75 SW” means 

strike = 164 and dip = 75 SW; “N 29 E 86 SE” means strike = N29E and dip = 86 SE). 

 

FOLD AXIAL PLANE AND LINE 

Station Measurement Type 

LB12-05 N 46 W 82 NE Axial Plane 

LB12-05 72 S 86 E Axial Line 

Table 4.1E: Field measurements of fold axial planes and axial lines. Plane measurements 

are presented in strike, dip format (examples: “164 75 SW” means strike = 164 and dip = 

75 SW; “N 29 E 86 SE” means strike = N29E and dip = 86 SE). Line measurements are 

presented in plunge, trend format (examples: “22 N 27 E” means plunge = 22 and trend = 

N27E; “09 014” means plunge = 9 and trend = 014). 
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EARLY SUITE 
                      

Station # of Cores Km AVG Km STDev ± L AVG L STDev ± F AVG F STDev ± Pj AVG Pj STDev ± T AVG T STDev ± 

SE   (SI x 10-6)                   

LB08-03B 2 878.344 107.089 1.010 0.004 1.010 0.006 1.019 0.003 -0.028 0.504 

LB12-04C 2 16267.020 7493.154 1.016 0.008 1.072 0.008 1.089 0.016 0.653 0.113 

E                       

LB12-14B 3 653.926 64.399 1.004 0.001 1.003 0.002 1.007 0.003 -0.263 0.329 

LB12-15A 5 11809.052 9518.819 1.067 0.019 1.057 0.017 1.128 0.038 -0.078 0.030 

LB12-16A 4 52317.903 41089.647 1.044 0.010 1.075 0.033 1.122 0.037 0.212 0.210 

W                       

LB12-17B 2 68297.515 31663.485 1.017 0.011 1.111 0.038 1.131 0.052 0.737 0.086 

  
  

  
        Mean   25037.293   1.026   1.055   1.083   0.206   

Median   14038.036   1.016   1.065   1.105   0.092   

Min   653.926   1.004   1.003   1.007   -0.263   

Max   68297.515   1.067   1.111   1.131   0.737   

Table 4.2A: Site averaged early suite AMS results. STDev, standard deviation; AVG, Average; Km, mean bulk susceptibility; 

L = K1/K2; F = K2/K3; Pj, anisotropy magnitude; T, anisotropy shape where T<0 is prolate and T>0 is oblate. 

LATE SUITE 
                      

Station # of Cores Km AVG Km STDev ± L AVG L STDev ± F AVG F STDev ± Pj AVG Pj STDev ± T AVG T STDev ± 

SE   (SI x 10-6)                   

LB08-04B 1 13801.400 - 1.038 - 1.055 - 1.095 - 0.185 - 

LB12-05A 4 753.732 85.174 1.006 0.004 1.016 0.014 1.023 0.017 0.499 0.425 

LB12-12A 3 8047.034 3142.647 1.056 0.018 1.104 0.015 1.169 0.015 0.292 0.191 

LB12-21A 2 4804.542 1266.039 1.047 0.006 1.022 0.002 1.072 0.005 -0.354 0.099 
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LB12-22B 3 14108.583 1350.154 1.038 0.019 1.014 0.012 1.056 0.013 -0.442 0.492 

Central                       

LB08-05A 2 13631.243 2126.607 1.012 0.001 1.013 0.005 1.025 0.004 -0.010 0.220 

LB08-06B 2 253.105 46.826 1.010 0.003 1.056 0.017 1.073 0.022 0.683 0.001 

LB08-08A 2 8210.637 8621.107 1.044 0.030 1.061 0.042 1.111 0.016 0.125 0.662 

LB08-10A 6 9363.029 1594.453 1.029 0.006 1.046 0.011 1.077 0.017 0.225 0.095 

LB08-11A 3 14872.777 1686.432 1.028 0.009 1.067 0.005 1.100 0.008 0.410 0.141 

LB12-03A 3 11433.970 2436.498 1.040 0.017 1.052 0.039 1.097 0.030 0.036 0.502 

LB12-11A 1 446.528 - 1.034 - 1.009 - 1.045 - -0.583 - 

NW                       

LB08-07A 2 588.649 222.990 1.026 0.006 1.019 0.001 1.046 0.008 -0.146 0.064 

LB12-37A 1 2158.562 - 1.035 - 1.032 - 1.068 - -0.042 - 

LB12-40B 2 1413.261 273.686 1.019 0.007 1.093 0.015 1.122 0.012 0.639 0.153 

NE                       

LB12-26A 2 2766.867 781.229 1.022 0.005 1.040 0.013 1.063 0.011 0.279 0.260 

LB12-27B 2 389.780 18.149 1.013 0.003 1.026 0.009 1.040 0.008 0.302 0.265 

LB12-28B 3 5393.207 585.454 1.008 0.006 1.007 0.004 1.016 0.002 -0.026 0.600 

LB12-30A 5 15124.738 4516.088 1.043 0.013 1.055 0.040 1.104 0.039 -0.003 0.492 

  
           Mean   6713.771   1.029   1.041   1.074   0.109   

Median   5393.207   1.029   1.040   1.072   0.125   

Min   253.105   1.006   1.007   1.016   -0.583   

Max   15124.738   1.056   1.104   1.169   0.683   

Table 4.2B: Site averaged AMS results. STDev, standard deviation; AVG, Average; Km, mean bulk susceptibility; L = K1/K2; 

F = K2/K3; Pj, anisotropy magnitude; T, anisotropy shape where T<0 is prolate and T>0 is oblate.
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5. Discussion 

5.1 Anisotropy of Magnetic Susceptibility (AMS) 

 Because titanomagnetite is believed to be the dominant carrier of the magnetic 

signal (Figure 4.2.2 and 4.2.3) and only pseudosingle (PSD) and multidomain (MD) 

varieties exist in any of the samples (Figure 4.2.1), an inverse magnetic fabric caused by 

single domain (SD) magnetite can be ruled out. There are some localized paramagnetic 

readings (Appendix A), primarily in the early suite, caused by biotite. However, the 

strong magnetic field of titanomagnetite will dominate the weak field of biotite. Even if 

biotite is locally controlling the magnetic field, the AMS measurements will still reflect 

the mineral shape fabric. This simple mineralogy allows for very straightforward 

interpretations of the AMS data; I interpret the principal axes of AMS to coincide with 

the principal strain orientations. 

 Scalar AMS parameters were plotted separately for the early and late suites for 

comparison, and to observe any relationships between: Pj and Km, Tj and Km, and Tj and 

Pj (Figure 5.1.1). In the early suite, low Km values tend to correspond with neutral Pj 

values (Pj = 1; Figure 5.1.1A). The most intense prolate fabrics are also only seen at low 

Km and low Pj values (Figure 5.1.1B, C). In the late suite, there is a large variation 

between all three parameters, with a slight tendency of samples with the highest 

anisotropy to have oblate shapes (Figure 5.1.1F). When comparing the two suites to one 

another, the early suite is dominated by oblate shapes whereas the late suite has a mix of 

both oblate and prolate shapes (Figures 5.1.1B, C, E, F). 
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 The lack of strong correlation between Km and either Pj or T indicates that there is 

no obvious relationship between mineralogy and degree or shape of anisotropy. The 

difference between oblate versus prolate fabrics between the two suites likely indicates 

that deformation varied throughout the pluton over time and/or space. 

The magnetic foliation dominates (F > L) in both the early and late suites (Table 

4.2), and coincides well with the macroscopic foliations of aligned feldspar grains 

measured in the field. The orientation of the AMS foliations and dominance of F > L 

fabrics are consistent with the tectonic strain within the region. Therefore, the AMS 

foliations in the pluton were likely caused by motion associated with the regional thrusts. 

5.2 Fabric Orientations: Relationships Between Field Measurements, AMS Analysis and 

SPO Analysis 

Generally AMS measurements parallel field measurements, and are likely formed 

from motion along neighboring thrusts. The apparent lack of fabric seen upon initial thin 

section inspection could be due to the large average grain size causing fabrics to only be 

seen in scales larger than thin section. This is likely the cause for weak relationships seen 

between AMS and field measurements to SPO mean length vectors. Additionally, 

because the fabrics are weak, they are not easily identified by visual inspection and 

would only be reliably evident by SPO analysis if thousands of grains were available for 

the analysis. 

Early Suite Foliations 

The mean AMS foliation orientation in the early suite parallels the macroscopic 

field measurements (Figure 4.1.1). Site specific plots also show an agreement between 
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field and AMS foliation planes (4.3.1), with a gently dipping NE-SW striking foliation 

common in active thrust fault regimes. SPO measurements of the K1K3 plane show 

feldspar and opaque mineral fabric in parallel (Figure 4.5.1). However, on the K2K3 

plane, feldspar and opaque fabrics are shifted ~50° from each other. 

The consistency between the AMS and field measurements, and parallelism to 

regional thrust strike is evidence that the foliations are tectonically derived. The causes 

for some inconsistencies between the SPO long axis directions could be due to the very 

large average grain size seen in the early suite. The large average grain size reduces the 

reliability of the mean length rose ellipse calculation. In the early suite SPO calculations, 

typically <30 feldspar grains, and <20 opaque minerals were analyzed. Typically SPO 

analyses use hundreds to thousands of grains (e.g. Hastie et al. 2010, Izquierdo-Llavall et 

al. 2012). 

Late Suite Foliations 

 The majority of the AMS foliations strike in a NE-SW orientation, which is 

consistent with the macroscopic field foliations (Figure 4.1.1). Late suite AMS mean 

foliation orientation dips steeply, whereas the field foliations are shallow (Figure 4.1.1). 

When comparing the field and AMS measurements within each sample site, K3 

orientations rarely overlap macroscopic field foliation pole measurements, and commonly 

have much steeper dips. Magnetic foliations in the late suite sweep in a ‘girdled’ pattern 

across the stereonet (Figure 4.1.1). The girdle pattern and variations in dip degrees are 

likely due to the presence of a composite magnetic fabric (Housen et al 1993; Figure 

5.1.2). Composite fabrics occur when magnetic minerals’ long axes are parallel, but their 
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short axes vary in multiple directions causing the K3 susceptibility axis to be the vector 

sum of the combined K3 orientations. (Housen et al. 1993). Further supporting the 

composite fabric is the prevalence of both prolate and oblate mineral grain shapes (Figure 

5.1.1; Housen et al. 1993). Late suite SPO feldspar and opaque mean length vectors are 

typically parallel within each plane (Figure 4.5.1). Similar to early suite SPO, mean 

length vectors rarely parallel the long axes of magnetic susceptibility (K1 and K2). 

Based on the majority of AMS foliations striking NE-SW parallel to field 

measurements, and the likelihood of a composite fabric, the AMS foliations of the late 

suite are presumed to be tectonically derived from tectonic motion along adjacent thrusts. 

Field measurements are likely representing finite strain, but due to the composite fabric 

seen in the AMS measurements strain is likely being partitioned, or represented as 

combinations of flattening with fault strike parallel extension and simple shear due to 

thrusting. Some of the differing SPO mean lengths in the late suite may also be attributed 

to the varying orientations of the magnetic minerals caused by the composite fabric (see 

Figure 4.3.4). 

Early Suite Lineations 

 AMS lineations in the early suite generally plunge shallowly to the southeast 

(Figure 4.1.1). The orientation of the early suite lineations corroborate with simple shear 

strain common in thrust geometries. In simple shear, the long axis of the finite strain 

ellipsoid (coincident with the lineation) is contained within the shear plane. In a thrust 

fault, the shear plane is perpendicular to the fault and contains the fault slip direction. At 

the onset of deformation, the lineation is oriented at 45° angle from the fault and rotates 
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into parallelism with the fault motion with increasing strain. In a major thrust fault like 

the Moine or its associated faults, the offset on the fault is great enough so that the 

lineation should be parallel to the transport direction (e.g. Leslie et al. 2010). 

Macroscopic lineations were scarce in the early suite, so AMS lineations are compared to 

measurements of the long axes of internal pseudoleucite aggregates made by Searle et al. 

(2010) in the Aultivullin quarry (stations LB08-03 and LB12-04), which should 

correspond with the long axis of the finite strain ellipsoid (Figure 4.1.1). Both feldspar 

and opaque mean length vector are subparallel to K1 orientation in SPO analyses (Figure 

4.5.1). 

 AMS lineations parallel the field lineation measurements made by Searle et al. 

(2010). Both measurements parallel the inferred fault transport direction, which have 

been interpreted to be products of simple shear caused by regional thrust faults because 

they are parallel to the inferred fault transport direction (Figure 4.1.1). 

Late Suite Lineations 

The majority of late suite field lineations and AMS mean K1 orientations plunge 

shallowly to either the southwest or northeast sub-parallel to thrust strike. However, some 

AMS lineations are contained within the approximate shear plane of the thrust faults, and 

within the foliation plane. Interestingly, neither feldspar nor opaque SPO mean vector 

lengths show much agreement with K1 orientations. The weak SPO fabrics are likely due 

to the large average grain size causing a small number of actual grains analyzed. 

The first set of AMS and field lineations plunge NE and SW and suggest thrust 

strike parallel extension (Figure 4.1.1; e.g. Ellis & Watkinson 1987; Weiler & Coe 1997; 
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Mookerjee and Mitra 2009). These lineations are not perfectly horizontal, and this is 

likely due to deformational overprinting from the thrust fault strain. Alternatively, it 

could be due to oblique extrusion, which has been described in other contractional 

orogens (Fernández et al. 2013). The second set of lineations detected through AMS 

contains measurements with various plunges within the shear plane. The lineations that 

parallel thrust transport direction are dominated by simple shear strain associated with 

thrusting, and the range of orientations could be related to various degrees of simple 

shear strain. Alternatively, the lineations within the shear plane could vary in orientation 

due to the hypothesized curve of the overlying Ben More thrust fault (Figure 1.4.2), 

which significantly shifts the transport direction. 

The two sets of lineations within the pluton are particularly interesting. The 

pluton could be partitioned so that some sites have primarily thrust signatures, and others 

primarily lateral extrusion signatures. Another very likely possibility is that many sites 

have a combination of both thrust and lateral extrusion signatures. 

Outcrop Scale Brittle Faults and Shear Zones 

 The presence of ductile shear zones and brittle faulting in outcrop scale suggests 

that there was a considerable amount of deformation in both the early and late suites 

(Figure 4.1.2) and that deformation took place when the pluton was at a range of 

temperatures during its cooling. However, it is difficult to relate them to kinematics 

determined from other evidence. 

The early suite shows no signs of brittle faults at outcrop scale, further supporting 

microstructural evidence of dominantly ductile deformation. Shear zones present in the 
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early suite indicate that significant ductile deformation occurred, however the 

orientations of shear planes do not correspond well with field and AMS evidence for 

thrust fault deformation. Shear zones with reverse motion only crudely match predictions 

for thrust faulting, and do not fit well within the context of flattening of the thrust sheet. 

The presence of shear zones with normal sense of motion is not expected within a thrust 

fault, and do not correspond with the hypothesized curve of the Ben More thrust. 

The late suite has both outcrop scale shear zones and brittle faults (Figure 4.1.2). 

Brittle faults are only seen in the NW extent of the pluton, and shear zones are generally 

only seen in the SE, NE, and west central margins. This spatial variation suggests that the 

late suite experienced primarily ductile/solidified deformation nearest the Ben More 

thrust plane, and brittle deformation in the further NW margin. Because the shear zones 

within the late suite were measured along horizontal (map view) two-dimensional planes, 

dip angles were difficult to measurement. They have a high variance in orientation with 

generally steep dip, and do not fit easily into a thrust fault context. It is possible that they 

may be oblique slip shear zones, but due to the limited two-dimensional view only the 

strike-slip component of motion is present. Regional evidence for thrust faults truncating 

folds within their footwalls and later extensional normal faulting overprinting earlier 

thrusting suggests some out-of-sequence and synchronous motion occurred along the 

Moine, Ben More, and Sole Thrusts (Searle et al. 2010), which could likely cause shear 

zones and faults to exhibit oblique orientations and alternating senses of motion. Further 

work is necessary to relate these to field and AMS measurements. 
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5.3 Petrographic Microstructures, Emplacement and Deformation Conditions, and 

Deformation Mechanisms 

 The thin sections show evidence for deformation occurring under varying 

temperature regimes, starting with relatively high temperatures (>600°C) and stresses 

required for dislocation creep in feldspars, and decreasing to low temperatures for 

recrystallization of quartz (200-300°C; Passchier and Trouw 2005). Feldspar and quartz 

are the only two minerals with well developed microstructures to be used as evidence, 

primarily due to the high relative abundance and large grain sizes compared to other 

minerals. 

Deformation Mechanisms in Feldspar 

Evidence for crystal plastic deformation in feldspars such as undulose extinction 

is found in all thin sections (Figure 4.4.6). Bulged and migrated feldspar grain 

boundaries, formed by recovery mechanisms for dislocation creep, are also seen 

throughout (Figure 4.4.1 and 4.4.2). In all thin sections a pervasive perthite texture in 

orthoclase, and occasional myrmekite texture in plagioclase is present. Perthite and 

myrmekite textures are symplectites that have been shown to grown simultaneously with 

crystal plastic deformation in a solid-state reaction (Simpson and Wintsch 1989; Vernon 

2004; Passchier and Trouw 2005). Feldspars can also be observed bent and kinked, a sign 

of dislocation creep (Vernon 2004; Passchier and Trouw 2005; Figure 4.4.3). 

Feldspars show signs of brittle deformation with pervasive intergranular 

microfractures, and microfaults throughout the entire extent of the pluton. Interestingly, 

thin sections with the highest abundance of microfractures also have the evidence for the 
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highest temperature regimes indicated by abundant perthite and myrmekite. 

Microfracturing is particularly prevalent in the early suite, and southwest portion of the 

late suite. Because brittle microstructures typically only occur in low temperature or 

under fast strain rate conditions, this relationship suggests that the microfracturing 

occurred once the pluton was very cool, or strain rates were very high (Vernon 2004, 

Passchier and Trouw 2005). Evidence for frictional grain-boundary processes can 

occasionally be seen in the form of intragranular microfaults (Figure 4.4.2). Like the 

microfractures, microfaulting is more abundant in the early suite and southwestern 

locations. 

Deformation Mechanisms in Quartz 

 Quartz also displayed strong evidence for crystal plastic deformation including 

recrystallization, grain boundary bulging, and undulose extinction. The recrystallized 

quartz grains, a product of recovery via grain boundary migration, are interpreted to have 

formed via dynamic as opposed to static recrystallization. Dynamic recrystallization is 

generally regarded as syndeformational and static as postdeformational. The 

recrystallized quartz aggregates exhibit undulose extinction. Therefore, the grains were 

first recrystallized and then further deformed to form the undulose extinction, which 

strongly supports dynamic recrystallization. Primary non recrystallized quartz grains 

display both undulose extinction and grain boundary bulging, another recovery product 

produced by grain boundary migration. 

 Quartz showed some evidence for brittle deformation with intragranular 

microfractures. More commonly, quartz fills fractures. The quartz filled fractures suggest 
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that the pluton also had fluids interacting with it which could lower the temperatures 

required for dislocation creep to be active. There is a greater population of microfractures 

in the SE corner of the pluton possibly suggesting that is nearer to the Ben More thrust 

fault and later brittle deformation was more localized near the fault. The greater presence 

of microfractures is associated with more widespread and intense perthite development. 

Some fracture sets display 60-120° cleavage, with σ1 parallel to K1 and normal to 

the obtuse angle and σ3 parallel with K3 and normal to the acute angle. The parallelism of 

finite strain axes as determined by AMS principal susceptibilities and late stage stress 

axes determined from these microfractures suggests that accumulated strain was largely 

coaxial. 

Smaller thin, straight quartz-free fractures can be seen in tandem with quartz 

filled fractures, suggesting that there were possibly two stages of fracturing. The quartz-

filled fractures that occurred during the bulk of the deformation shortly after cooling, and 

the quartz-free fractures formed in a second stage that may have been much later after the 

pluton was already cooled.  

Deformation Conditions of Feldspars 

Petrographic evidence allows some constraints on deformation conditions, 

particularly temperature. Microstructures suggest deformation took place from high 

temperature (>600°C) to low temperature conditions (200-300°C; Passchier and Trouw 

2005). 

Deformation during high temperature conditions was responsible for processes 

including perthite and myrmekite exsolution, and grain boundary migration resulting in 
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bulged grain boundaries. The presence of bulged grain boundaries in alkali feldspars 

forms under high grade deformation temperatures >600°C (Passchier and Rudolph 2005). 

The presence of perthite within the feldspars is evidence that deformation occurred at 

medium high temperatures 500-600°C, right around the magmatic to solid state 

transition, (Simpson and Wintsch 1989; Pryer 1993). The perthite exsolution lamellae 

occur at the mineral’s solvus temperature. For a given mineral composition, the solvus 

temperature is the point where a homogeneous mixture in solid solution begins to break 

down (unmixes, exolves) into two minerals (Vernon 2004). The approximate solvus 

temperature for intermediate feldspars is relatively high, ~600°C (Smith and MacKenzie 

1958; Tullis and Yund 1979). 

The patchy undulose extinction seen in the feldspars is common in low-medium 

grade temperatures (Pryer 1993; Passchier and Trouw 2005). The ‘bent’ or ‘kinked’ 

feldspars require low-medium to medium-grade conditions (<500°C) for dislocation 

creep to occur (Passchier and Rudolph 2005). 

Fracturing occurred within feldspars at even lower temperatures, <300°C. The 

feldspar microstructures confirm that the pluton was being deformed while it was still at a 

relatively hot temperature, and then continued to deform into the solid state at lower 

temperatures. 

Deformation Conditions of Quartz 

Quartz also shows a range in deformation condition temperatures from high 

(~600°C), to low (200-300°C). The recrystallized quartz grains exhibit grain boundary 

bulging, which is evidence for medium-high to high temperature conditions. Quartz 
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experiences grain boundary migration recrystallization under high temperature conditions 

between 500-700°C (Passchier and Trouw 2005). Undulose extinction and dynamic 

recrystallization typically occur in low to medium grade conditions between 400-500°C 

(Passchier and Trouw 2005). The intragranular fractures are evidence for very low-grade 

conditions <300°C (Passchier and Trouw 2005). 

5.4 Relationship Between Emplacement and Deformation of Loch Borralan Pluton and 

Thrusting 

 Based on the lack of preserved magmatic fabric and high temperature 

microstructures present, the pluton was likely being deformed by movements associated 

with one or multiple regional thrust faults (eg. Moine, Ben More, Borralan, Sole, etc.) 

from early emplacement to post cooling. Movements along the Moine Thrust calculated 

from Rb-Sr isotopic ages of synkinematic white micas in Moine mylonites constrain the 

age of ductile movements to be between 437-408 Ma (Freeman et al. 1998). 

Unfortunately, evidence to precisely constrain deformation on the other faults is lacking, 

but the order of thrusting gives relative ages of deformation of the Ben More and Sole 

thrusts to postdate movements along the Moine Thrust. Even if the majority of 

deformation on the Moine Thrust ended around 430 Ma, as Freeman et al. (1998) 

suggests, the pluton’s crystallization age calculated from U-Pb isotope dating is 

approximately 430 Ma (early suite 431 Ma, late suite 429.2 Ma; Goodenough et al. 2011) 

so the pluton was being deformed during the entire ascent and likely after cooling. This 

overlap in ages is further evidence suggesting that the pluton began its ascent during the 

majority of thrusting, deforming from initial ascent into crystallization. 
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The early suite crystallized before the estimated major cease in deformation 

around 430 Ma, and based on the high temperature microstructures is interpreted as syn-

kinematic. The syn-tectonic emplacement timing is likely the cause for the strong thrust 

deformation signature seen in the AMS results. The late suite has fabrics that formed 

primarily during low strain, when strike parallel extrusion caused by the Moine Thrust 

capping or “roofing” forced the magma to follow the path of least resistance, laterally 

along the thrust planes. The variation in lineation and foliation AMS patterns seen in the 

late suite, and the composite fabric could be due to the magma being forced along these 

thrust planes (strike parallel extrusion) while simultaneously being slowly deformed by 

the final slight movements of the Moine Thrust Fault or other related thrust faults. 

The neighboring Loch Ailsh pluton northeast of the Loch Borralan pluton has a 

similar crystallization age of 430.6 ± 0.3 Ma (Goodenough et al. 2011). The Loch Ailsh 

pluton lies directly below the Moine Thrust, and intrudes the Ben More Thrust sheet. 

Similar to the Loch Borralan pluton, Loch Ailsh has localized shear zones related to 

thrusting, with recrystallization of large perthitic feldspars to fine-grained albite-rich 

aggregates (Parsons 1965). With the similar crystallization age, and presence of high 

temperature microstructures, I would expect the Ailsh pluton to exhibit similar foliation 

and lineations of the Loch Borralan late suite. Further research is needed to test this 

hypothesis. 

Plutons have been well documented to commonly intrude during the last stages of 

deformation in contractional orogens (Pitcher 1993 and Brown 1994). These syn-

orogenic plutons are coined “stitching” plutons. The “space problem” of plutons is an 

ongoing debate regarding how plutons make room for themselves within shortening 
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terranes (e.g. Hutton et al. 1990, Cruden 1998, Fernández & Castro 1999). One possible 

solution to this “space problem” is thrust parallel extension. 

 Other studies of thrust faults found evidence for strike parallel lateral extrusion 

(e.g. Brun et al. 1985; Weiler and Coe 1997; Yang and Liu 2009) based, in part on sub-

horizontal stretching lineations parallel to fault strike. Brun et al. (1985) studied 

stretching lineations within the Main Central Sheet, a thrust and fold belt in the 

Himalayas of China. They found that stretching lineations parallel thrust transport 

direction in the lower parts of the sheet, but vary between transport parallel and strike 

parallel orientations in the upper sheet. These lineations indicate multiple shear 

components, one subparallel to and one at a high angle to the Himalayan belt. The 

relationship seen in Brun et al. (1985) between depth, proximity to thrust, and lineation 

orientation is similar to what is seen in the Loch Borralan Pluton. Wieler and Coe (1997) 

used paleomagnetic AMS orientations within syn collisional quaternary fluvial sediments 

formed within a fold and thrust belt in the Erap Valley, northern Papau New Guinea. 

They concluded that the sediments within this particular unit expressed low angle Kmax 

values (lineation) perpendicular to thrust transport direction, parallel to strike, which 

likely is a result of strike-parallel extension. Yang and Liu (2009) also studied crustal 

thickening in the Himalayas using a 3D model approximating the Asian continent as a 

power-law viscous plate indented by a stiff Indian plate. They found that early stages of 

collision were dominated by crustal thickening (lineations parallel thrust transport 

direction), but as deformation progressed, lateral extrusion began to dominate. Yang and 

Liu (2009) even calculated that during present day movements, a small percentage of the 

land mass once accumulated via crustal thickening is now being lost to lateral extrusion. 



90 

 

 
 

The findings of Yang and Liu (2009) substantiate findings within the Loch Borralan 

pluton where the early suite shows a strong thrusting simple shear fabric (crustal 

thickening), and the late suite is dominated by fault strike parallel extrusion. Fault 

parallel extension in contractional orogens may not be uncommon. Much like the models 

developed for the Assynt region by Peach and Horne (1914), thrust belt models used 

today are largely two-dimensional in nature (e.g. the classic paper by Boyer and Elliot 

1982, which is still largely used today), but further research investigating the presence of 

deformation along strike could help expand these models to three-dimensions. 

 Searle et al. (2010) hypothesizes that the Loch Borralan pluton is underlain by a 

newly proposed thrust, the Borralan Thrust. This interpretation places the Loch Borralan 

pluton within its own thrust sheet. This is a likely interpretation because of the presence 

of contact metamorphosed Cambro-Ordovician country rock sitting structurally above 

lower Sole thrust imbricates in the northwest. Therefore, the Loch Borralan pluton is 

likely bounded by the Borralan and Ben More thrusts. This project shows little evidence 

for either the existence or non-existance of the Borralan Thrust. Fabric signatures of the 

proposed Borralan thrust fault should be largely coincident with the other well-

established thrust faults, so attributing particular deformation fabrics to one fault versus 

another is challenging. Because the lower contact of the Borralan Pluton is not exposed, 

Borralan Thrust related strain may not be present in the exposed upper portions of the 

pluton which are nearer to the Ben More thrust plane. The locations nearest the Ben More 

thrust plane, specifically in the southeastern extent of the pluton show the highest degree 

of deformation indicated by pervasive fracturing, and perthite growth. These intense 

deformation features gradually decrease SE to NW following thrust motion, but are never 
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totally absent. The moderately steep dipping foliations in the early suite and shallowly 

plunging thrust transport parallel lineations are consistent with a simple shear thrust 

model, likely caused by Ben More and/or Moine thrusts. The complex fabrics seen in the 

late suite of localized zones of both simple shear fabric components, and the dominant 

fabric, strike parallel extrusion fabric components (Figure 5.4.1) could be result of some 

‘out-of-sequence’ thrusting. It is possible that there were multiple stages of movements 

along each thrust, and that each thrust sheet moved independently and synchronously 

causing strain partitioning, overprinting, and composite fabrics. 

The Ben More thrust curves above the Loch Borralan pluton, and then dips down 

NW of the pluton to form the Cam Loch Klippe where Archean gneiss overlies Cambro-

Ordovician sedimentary country rock (Figure 1.4.2). As the Ben More thrust flattens over 

the top of the pluton, foliations should become shallower and thrust-related lineations 

should rotate towards horizontal. As the thrust dips back down, foliations may dip 

shallowly to the NW and thrust related lineations should begin to plunge NW. This curve 

in the thrust could also explain some of the fabric orientation variation, especially for 

AMS lineations within the thrust shear plane. However, field evidence does not display 

these lineation orientations, which suggests that the AMS fabrics seen in the pluton are 

likely recording a combination of kinematic signatures. 
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Figure 5.1.1: Plots of AMS data for early (left) and late (right) suite specimens. (A-D) Pj 

vs. Km. (B-E) Tj vs. Km. (C-F) Tj vs. Pj. 
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Figure 5.1.2: Schematic illustration of susceptibility axes of discs (magnetic minerals) 

and the resulting composite fabric. (A) The AMS axes of a single mineral with Kmax 

parallel with the long axis of the mineral, and  Kmin normal to the discs flat surface. (B) 

When two or more orientations of magnetic minerals exist the resulting composite AMS 

fabric arises from the multiple mineral orientations with Kmin representing a mean vector 

of the combination of varying Kmin. Shown here are two perfectly orthogonal discs, but 

any mineral angles are possible. Modified from Housen et al. (1993). 
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Figure 5.4.1: Schematic of deformation kinematics as interpreted by field and AMS 

orientations. (A) Represents AMS and field measurements seen in the early suite 

representing typical simple shear along a thrust plane. (B) Fabrics are drawn for the case 

in the late suite where strike parallel extension dominates indicated by the rotation of 

lineations from parallel to thrust transport to shallowly plunging parallel of fault strike. 

Long lines in the deforming block represent foliations, and short lines represent 

lineations. 
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6. Conclusions 

The Loch Borralan Pluton was emplaced and cooled synkinematically with 

motion along regional thrust faults. The mineral shape fabrics seen at the outcrop and thin 

section scale and the AMS fabrics are all consistent with deformation related to the thrust 

faults. The fabrics in the early suite (431 ± 1.2 Ma) include shallowly dipping lineations 

parallel to thrust transport direction and foliations that strike parallel to the strike of 

regional thrusts, which are consistent with deformation by thrusting accommodated by 

simple shear. The late suite (429.2 ± 0.5 Ma) has transport parallel lineations in the field, 

but also a mix of AMS lineations representing both classic thrust motion and fault strike 

parallel extension. This mixture of AMS lineation orientations may be due to a change in 

kinematics during emplacement and/or partitioning between localized zones of thrust and 

lateral extrusion dominated fabrics. The “girdled” AMS foliations in the late suite are 

likely due to a composite fabric formed by thrust related simple shearing and flattening. 

  The Loch Borralan Pluton began its ascent around the time of initial movements 

of the Moine Thrust, indicated by the relative similar crystallization age (~431-429 Ma) 

to the calculated age of ductile movements (~437-408 Ma; Freeman et al. 1998; 

Goodenough et al. 2011). The pluton was deformed under a range of temperature 

conditions from high grade deformation mechanisms seen in feldspars (grain boundary 

bulging, perthite, myrmekite) and quartz (grain boundary bulging), to medium grade 

conditions in feldspars (undulose extinction, bending/kinking) and quartz (undulose 

extinction, dynamic recrystallization), down to low grade brittle deformation in both 

quartz and feldspars (fractures). The complete lack of pristine magmatically derived 

microstructures and prevalence of deformation microstructures throughout demonstrates 
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that the pluton was deforming during emplacement at high temperatures, and continued 

deforming well into its solidification at cooler temperatures. Assuming the timing of the 

Sole, Borralan, Ben More, and Moine Thrusts are in-sequence, the Sole Thrust would be 

the last to propagate meaning the pluton could have been strained by all neighboring 

faults prior to crystallization. The higher abundance and intensity of microstructures seen 

in the early suite and southeast late suite, proximal to the Ben More Thrust, suggest that 

much of the strain in the pluton was due to movements along this fault. 

 The deformation nature of the Loch Borralan Pluton has significant regional 

implications. Studies of the neighboring Loch Ailsh Pluton with a crystallization age of 

(~430 Ma) should be expected to have similar fabrics as the Loch Borralan late suite 

(~431 Ma). While this study lacks evidence to absolutely date the movements of any 

particular regional fault, the presence of low temperature brittle deformation 

microstructures demonstrate that the pluton intruded early enough during deformation to 

become relatively cool while deformation progressed. So deformation continued after the 

crystallization age of the Loch Borrlan pluton. The absolute ages of when deformation 

began, and end remain unknown. 

The pluton is an excellent example of the usefulness of fabrics in syn-orogenic 

magmatism within contractional tectonic regimes for paleo-strain analyses. The early 

suite is representative of classic lineation/foliation strain studies of simple shear in thrust 

faults, whereas the late suite provides insight into the variable fabric orientations that may 

occur in granites with combinations of flattening, shear, and strike parallel extension. 

Fault strike lateral extension is an interesting solution for the plutonic “space problem,” 

something that is not thus far documented within all contractual orogens. The use of 
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commonplace field and laboratory techniques demonstrates that even complex paleo-

strain problems can be solved with the combination of detailed field observations and 

analytical techniques. 
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Appendix A: Hysteresis Loops 

Appendix A: Hysteresis data of 40 representative samples within an alternating field (H) 

of 1 Tesla (T). Red line represents raw data, blue is just the ferromagnetic component. 

Magnetization (M). 
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Appendix B: Bulk AMS Data 

Note: Values omitted from analysis denoted with (*). Criteria for sample omissions are 

described in Chapter 4: Results. Samples that were chipped or repaired (glued) denoted 

with (X) at the end of the sample name. Km, mean bulk susceptibility (SI x10
-6

); L, 

K1/K2; F, K2/K3; Pj, anisotropy magnitude; T, anisotropy shape.
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Early Suite Parameters 

Name Km STDev L STDev F STDev P STDev Pj STDev T STDev U STDev 

LB08-03B1.1 954.068 14481.478 1.007 0.021 1.014 0.055 1.021 0.078 1.021 0.085 0.329 0.233 0.325 0.119 

LB08-03B2.1 802.621 14588.567 1.012 0.017 1.005 0.062 1.017 0.081 1.017 0.088 -0.384 0.272 -0.387 0.385 

LB08-03B2.2* 854.555 14551.844 1.009 0.019 1.801 0.501 1.818 0.485 1.984 0.596 0.969 0.685 0.959 0.567 

LB12-04C1.1 10968.560 7400.162 1.021 0.011 1.078 0.010 1.100 0.022 1.106 0.025 0.573 0.405 0.557 0.283 

LB12-04C2.1 21565.480 92.992 1.010 0.019 1.066 0.019 1.077 0.039 1.083 0.041 0.733 0.518 0.725 0.402 

LB12-12A1.1 11654.300 6915.271 1.038 0.001 1.107 0.010 1.150 0.013 1.155 0.010 0.459 0.325 0.431 0.194 

LB12-12B1.1 5901.418 10983.173 1.057 0.015 1.117 0.017 1.181 0.035 1.184 0.030 0.332 0.235 0.295 0.098 

LB12-12B2.1 6585.384 10499.536 1.073 0.026 1.087 0.004 1.167 0.025 1.167 0.018 0.084 0.059 0.045 0.079 

LB12-14B1.1 721.664 14645.812 1.005 0.022 1.003 0.063 1.008 0.087 1.008 0.094 -0.224 0.158 -0.226 0.271 

LB12-14B2.1 646.627 14698.871 1.003 0.024 1.001 0.065 1.004 0.090 1.004 0.097 -0.609 0.431 -0.610 0.542 

LB12-14B2.2X 593.487 14736.447 1.004 0.023 1.005 0.062 1.009 0.087 1.009 0.094 0.045 0.032 0.042 0.081 

LB12-15A1.1 21508.910 52.991 1.052 0.011 1.042 0.036 1.095 0.026 1.096 0.032 -0.103 0.073 -0.126 0.200 

LB12-15A2.1 22924.740 1054.133 1.044 0.005 1.036 0.040 1.082 0.035 1.082 0.042 -0.094 0.066 -0.113 0.191 

LB12-15A2.2 26821.250 3809.382 1.050 0.010 1.035 0.041 1.088 0.031 1.088 0.038 -0.171 0.121 -0.191 0.246 

LB12-15B1.1 5350.216 11372.932 1.071 0.025 1.067 0.018 1.142 0.007 1.142 0.001 -0.028 0.020 -0.061 0.154 

LB12-15B2.1 4707.268 11827.564 1.089 0.037 1.076 0.012 1.171 0.028 1.171 0.021 -0.073 0.052 -0.113 0.191 

LB12-15B2.2X 4554.125 11935.853 1.080 0.031 1.066 0.019 1.151 0.014 1.151 0.007 -0.092 0.065 -0.127 0.201 

LB12-16A1.1 11443.510 7064.322 1.041 0.003 1.040 0.037 1.082 0.035 1.082 0.042 -0.013 0.009 -0.033 0.134 

LB12-16A1.2 23447.640 1423.880 1.038 0.001 1.060 0.023 1.100 0.022 1.101 0.028 0.212 0.150 0.189 0.023 

LB12-16B1.1 79168.050 40824.159 1.059 0.016 1.082 0.007 1.146 0.010 1.146 0.003 0.157 0.111 0.124 0.023 

LB12-16B2.1 95212.410 52169.235 1.038 0.001 1.117 0.017 1.160 0.020 1.167 0.018 0.493 0.349 0.464 0.217 

LB12-17B1.1 45908.050 17305.788 1.025 0.008 1.138 0.032 1.167 0.025 1.181 0.028 0.676 0.478 0.655 0.352 

LB12-17B2.1 90686.980 48969.273 1.009 0.019 1.084 0.006 1.094 0.027 1.104 0.026 0.797 0.564 0.789 0.447 

Mean 21433.970   1.036   1.092   1.132   1.141   0.177   0.157 
 Median 10968.560   1.038   1.066   1.100   1.104   0.084   0.045 
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Max 95212.410   1.089   1.801   1.818   1.984   0.969   0.959 
 Min 593.487   1.003   1.001   1.004   1.004   -0.609   -0.610 
  

Early Suite Susceptibility Axes Orientations 

Name K1dec K1inc K2dec K2inc K3dec K3inc 

LB08-03B1.1 71.400 59.900 226.900 27.800 322.600 10.600 

LB08-03B2.1 116.100 2.400 216.400 76.800 25.600 12.900 

LB08-03B2.2* 256.500 67.900 7.500 8.300 100.600 20.400 

LB12-04C1.1 73.400 26.400 175.500 23.000 300.800 53.700 

LB12-04C2.1 56.400 21.800 160.100 30.600 296.800 50.900 

LB12-12A1.1 16.200 25.300 258.200 44.900 125.100 34.500 

LB12-12B1.1 2.900 32.300 198.100 56.800 97.400 7.000 

LB12-12B2.1 19.000 13.100 148.100 69.700 285.400 15.200 

LB12-14B1.1 142.900 20.300 258.500 49.500 38.900 33.300 

LB12-14B2.1 157.000 29.800 279.100 42.900 45.500 32.600 

LB12-14B2.2X 128.300 37.400 300.800 52.300 35.600 3.600 

LB12-15A1.1 223.400 27.800 132.500 1.700 39.200 62.100 

LB12-15A2.1 220.000 26.300 310.400 0.700 41.800 63.700 

LB12-15A2.2 303.000 51.900 197.200 12.000 98.400 35.500 

LB12-15B1.1 124.600 19.000 215.900 3.900 317.100 70.500 

LB12-15B2.1 119.300 18.500 211.300 6.000 318.500 70.400 

LB12-15B2.2X 114.500 17.300 22.600 6.000 274.100 71.600 

LB12-16A1.1 84.000 87.500 257.700 2.400 347.700 0.300 

LB12-16A1.2 176.800 79.200 73.300 2.600 342.800 10.500 

LB12-16B1.1 114.500 33.700 3.300 28.500 242.900 43.000 

LB12-16B2.1 121.100 27.100 19.800 20.900 257.200 54.600 

LB12-17B1.1 36.600 21.900 174.600 61.600 299.400 17.200 
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LB12-17B2.1 175.200 19.200 49.400 59.200 273.700 23.100 

 

Late Suite Parameters 

Name Km STDev L STDev F STDev P STDev Pj STDev T STDev U STDev 

LB08-04B1.1* 8056.166 342.156 1.089 0.043 1.162 0.071 1.266 0.123 1.269 0.121 0.275 0.078 0.220 0.049 

LB08-04B2.1 13801.400 3720.338 1.038 0.007 1.055 0.005 1.095 0.002 1.095 0.003 0.185 0.014 0.163 0.009 

LB08-05A1.1 15365.790 4826.529 1.012 0.012 1.007 0.039 1.019 0.052 1.020 0.056 -0.287 0.320 -0.292 0.313 

LB08-05A2.1 12824.270 3029.403 1.011 0.012 1.018 0.031 1.030 0.044 1.030 0.048 0.239 0.052 0.232 0.058 

LB08-05A2.2X 10990.610 1732.810 1.013 0.011 1.014 0.034 1.027 0.046 1.027 0.051 0.061 0.074 0.054 0.068 

LB08-05B1.1 15344.300 4811.333 1.012 0.012 1.011 0.036 1.023 0.049 1.023 0.053 -0.052 0.154 -0.058 0.147 

LB08-05B2.1* 14765.870 4402.322 1.011 0.012 1.831 0.544 1.852 0.537 2.025 0.655 0.964 0.565 0.951 0.566 

LB08-06B1.1 286.215 5836.340 1.008 0.015 1.044 0.013 1.053 0.028 1.057 0.029 0.682 0.365 0.675 0.371 

LB08-06B2.1 219.994 5883.166 1.012 0.012 1.068 0.004 1.081 0.008 1.088 0.007 0.683 0.366 0.672 0.369 

LB08-07A1.1 746.327 5510.992 1.022 0.005 1.018 0.031 1.040 0.037 1.040 0.041 -0.101 0.188 -0.111 0.185 

LB08-07A2.1X 430.971 5733.983 1.030 0.001 1.020 0.030 1.051 0.029 1.051 0.034 -0.191 0.252 -0.203 0.250 

LB08-08A1.1X 14306.680 4077.625 1.023 0.004 1.091 0.021 1.116 0.016 1.122 0.017 0.593 0.302 0.575 0.300 

LB08-08B1.1 2114.594 4543.481 1.065 0.026 1.031 0.022 1.098 0.004 1.100 0.001 -0.343 0.359 -0.363 0.363 

LB08-10A1.1 9678.040 804.683 1.031 0.002 1.055 0.005 1.088 0.003 1.089 0.007 0.273 0.076 0.254 0.073 

LB08-10A1.2X 7756.329 554.172 1.033 0.003 1.047 0.011 1.082 0.008 1.082 0.012 0.174 0.006 0.155 0.003 

LB08-10A2.1 10825.080 1615.762 1.032 0.002 1.041 0.015 1.075 0.013 1.075 0.017 0.120 0.032 0.102 0.034 

LB08-10A2.2 10668.890 1505.319 1.033 0.003 1.047 0.011 1.081 0.008 1.082 0.012 0.177 0.008 0.158 0.005 

LB08-10B1.1 10221.510 1188.974 1.017 0.008 1.026 0.025 1.044 0.034 1.044 0.039 0.220 0.039 0.210 0.042 

LB08-10B1.2 7028.327 1068.947 1.025 0.003 1.058 0.003 1.085 0.005 1.087 0.008 0.388 0.157 0.371 0.156 

LB08-11A1.1 13042.040 3183.390 1.037 0.006 1.063 0.001 1.102 0.007 1.104 0.004 0.258 0.066 0.236 0.060 

LB08-11B1.1 15213.380 4718.759 1.027 0.001 1.072 0.007 1.101 0.006 1.105 0.005 0.438 0.193 0.418 0.189 

LB08-11B2.1 16362.910 5531.600 1.019 0.007 1.066 0.003 1.086 0.005 1.091 0.005 0.535 0.261 0.520 0.261 

LB08-12B1.1X* 40874.780 22864.109 1.008 0.015 1.055 0.005 1.064 0.020 1.069 0.021 0.728 0.398 0.720 0.403 
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LB12-03A1.1X 14153.510 3969.318 1.055 0.019 1.035 0.019 1.092 0.000 1.093 0.004 -0.210 0.265 -0.231 0.270 

LB12-03A2.1 10698.380 1526.172 1.044 0.011 1.024 0.027 1.069 0.017 1.070 0.020 -0.295 0.326 -0.310 0.326 

LB12-03B1.1X 9450.021 643.449 1.022 0.005 1.096 0.024 1.121 0.020 1.129 0.022 0.614 0.317 0.596 0.315 

LB12-05A1.1 752.280 5506.783 1.005 0.017 1.012 0.035 1.018 0.053 1.018 0.057 0.373 0.147 0.369 0.154 

LB12-05A1.2 820.589 5458.481 1.010 0.013 1.009 0.037 1.019 0.052 1.019 0.056 -0.026 0.135 -0.030 0.128 

LB12-05A2.1 808.072 5467.332 1.007 0.015 1.037 0.018 1.044 0.034 1.047 0.036 0.683 0.366 0.677 0.372 

LB12-05A3.1 633.986 5590.429 1.000 0.020 1.005 0.040 1.005 0.062 1.006 0.065 0.965 0.565 0.965 0.576 

LB12-11A1.1 446.528 5722.982 1.034 0.004 1.009 0.037 1.043 0.035 1.045 0.038 -0.583 0.529 -0.589 0.523 

LB12-11A1.2X* 286.901 5835.856 1.096 0.048 1.206 0.102 1.322 0.162 1.329 0.163 0.343 0.126 0.281 0.092 

LB12-21A1.1 3909.317 3274.421 1.051 0.016 1.020 0.030 1.073 0.014 1.075 0.017 -0.424 0.417 -0.438 0.416 

LB12-21A2.1 5699.766 2008.382 1.042 0.009 1.023 0.028 1.067 0.018 1.068 0.022 -0.284 0.318 -0.299 0.318 

LB12-22B1.1 15659.060 5033.902 1.021 0.005 1.027 0.025 1.049 0.031 1.049 0.035 0.119 0.033 0.108 0.030 

LB12-22B2.1 13192.160 3289.541 1.058 0.021 1.006 0.040 1.064 0.020 1.071 0.019 -0.800 0.683 -0.805 0.676 

LB12-22B2.2X 13474.530 3489.206 1.036 0.005 1.008 0.038 1.044 0.034 1.047 0.036 -0.644 0.572 -0.650 0.566 

LB12-26A1.1 2214.455 4472.869 1.018 0.008 1.049 0.009 1.068 0.017 1.071 0.019 0.463 0.210 0.450 0.212 

LB12-26A2.1 3319.279 3691.640 1.025 0.003 1.030 0.023 1.055 0.027 1.055 0.031 0.095 0.050 0.082 0.048 

LB12-27B1.1 402.613 5754.035 1.015 0.010 1.019 0.030 1.034 0.042 1.034 0.046 0.114 0.036 0.105 0.032 

LB12-27B2.1 376.946 5772.184 1.011 0.012 1.032 0.021 1.043 0.035 1.045 0.038 0.489 0.229 0.481 0.234 

LB12-28B1.1 4759.023 2673.588 1.002 0.019 1.011 0.036 1.013 0.056 1.014 0.060 0.630 0.329 0.628 0.338 

LB12-28B1.2 5507.531 2144.313 1.013 0.011 1.004 0.041 1.017 0.054 1.018 0.057 -0.547 0.504 -0.550 0.495 

LB12-28B2.1 5913.066 1857.556 1.009 0.014 1.006 0.040 1.015 0.055 1.015 0.059 -0.161 0.231 -0.165 0.223 

LB12-30A1.1 13577.470 3561.996 1.052 0.017 1.098 0.026 1.154 0.043 1.157 0.041 0.299 0.094 0.267 0.082 

LB12-30A1.2 12375.120 2711.806 1.049 0.014 1.049 0.009 1.100 0.005 1.100 0.001 0.009 0.111 -0.015 0.117 

LB12-30B1.1 17937.870 6645.264 1.044 0.011 1.012 0.035 1.057 0.025 1.060 0.027 -0.564 0.516 -0.574 0.512 

LB12-30B1.2 21461.760 9137.031 1.050 0.015 1.021 0.029 1.073 0.014 1.075 0.017 -0.396 0.397 -0.411 0.397 

LB12-30B1.2X 10271.470 1224.301 1.020 0.006 1.095 0.023 1.118 0.018 1.126 0.019 0.635 0.332 0.619 0.331 

LB12-37A1.1 2158.562 4512.391 1.035 0.004 1.032 0.021 1.068 0.017 1.068 0.022 -0.042 0.147 -0.058 0.147 
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LB12-40B1.1 1219.735 5176.242 1.024 0.003 1.082 0.014 1.108 0.011 1.113 0.010 0.530 0.258 0.512 0.256 

LB12-40B2.1 1606.786 4902.556 1.014 0.010 1.103 0.029 1.119 0.019 1.130 0.022 0.747 0.411 0.734 0.413 

LB12-47B1.1* 8611.230 50.334 1.049 0.014 1.221 0.112 1.282 0.134 1.301 0.143 0.613 0.317 0.573 0.299 

Mean 8540.047   1.029   1.062   1.093   1.099   0.165   0.151 
 Median 8611.230   1.024   1.032   1.068   1.071   0.185   0.163 
 Max 40874.780   1.096   1.831   1.852   2.025   0.965   0.965 
 Min 219.994   1.000   1.004   1.005   1.006   -0.800   -0.805 
  

Late Suite Susceptibility Axes Orientations 

Name K1dec K1inc K2dec K2inc K3dec K3inc 

LB08-04B1.1* 281.200 15.000 18.900 26.400 164.600 59.000 

LB08-04B2.1 292.000 34.300 185.000 23.200 68.200 46.600 

LB08-05A1.1 301.300 22.700 189.400 41.700 51.600 39.700 

LB08-05A2.1 297.300 56.900 136.400 31.600 41.000 8.800 

LB08-05A2.2X 309.600 48.700 162.300 36.500 59.500 16.600 

LB08-05B1.1 174.300 48.000 297.100 26.000 43.700 30.400 

LB08-05B2.1* 200.600 24.400 306.200 30.800 79.300 48.900 

LB08-06B1.1 309.800 5.500 40.000 1.700 147.600 84.300 

LB08-06B2.1 335.000 28.700 72.400 13.200 184.300 57.900 

LB08-07A1.1 179.500 8.100 87.900 11.200 304.700 76.100 

LB08-07A2.1X 142.900 6.000 52.600 3.500 292.900 83.100 

LB08-08A1.1X 200.200 32.000 70.200 45.800 308.700 27.000 

LB08-08B1.1 206.900 2.600 65.300 86.700 297.000 2.000 

LB08-10A1.1 31.700 0.300 121.900 31.700 301.300 58.300 

LB08-10A1.2X 52.800 9.800 149.400 33.800 308.800 54.400 

LB08-10A2.1 192.400 13.900 93.200 32.800 302.100 53.600 

LB08-10A2.2 21.300 2.300 113.300 40.700 288.700 49.200 
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LB08-10B1.1 222.400 2.300 131.100 29.300 316.500 60.600 

LB08-10B1.2 38.500 12.600 134.700 25.900 284.900 60.800 

LB08-11A1.1 176.600 34.100 85.500 1.700 353.000 55.800 

LB08-11B1.1 0.700 8.500 269.100 10.100 130.000 76.800 

LB08-11B2.1 2.500 9.400 270.000 14.600 124.200 72.500 

LB08-12B1.1X* 241.800 17.200 138.100 37.500 351.400 47.400 

LB12-03A1.1X 128.000 16.600 29.300 26.700 246.300 57.800 

LB12-03A2.1 123.400 6.000 27.300 45.500 219.200 43.900 

LB12-03B1.1X 81.100 18.300 336.000 38.300 191.100 46.000 

LB12-05A1.1 199.500 30.700 310.200 30.900 75.000 43.700 

LB12-05A1.2 192.500 27.500 296.000 24.100 60.800 51.900 

LB12-05A2.1 188.500 53.700 355.100 35.500 89.700 6.400 

LB12-05A3.1 317.600 29.300 207.600 31.300 81.000 44.500 

LB12-11A1.1 332.200 0.400 242.100 13.100 63.800 76.900 

LB12-11A1.2X* 1.800 1.000 94.400 69.400 271.400 20.600 

LB12-21A1.1 26.500 80.200 197.700 9.700 288.000 1.500 

LB12-21A2.1 106.400 84.300 350.900 2.400 260.700 5.100 

LB12-22B1.1 5.100 19.500 269.900 14.200 146.100 65.500 

LB12-22B2.1 19.700 33.800 283.000 9.900 178.900 54.400 

LB12-22B2.2X 29.000 30.300 293.700 8.900 189.100 58.200 

LB12-26A1.1 75.700 59.700 314.300 17.000 216.300 24.300 

LB12-26A2.1 90.300 53.800 284.400 35.400 189.600 6.700 

LB12-27B1.1 3.200 7.600 115.900 70.900 270.800 17.400 

LB12-27B2.1 0.900 3.600 99.400 66.700 269.300 23.000 

LB12-28B1.1 353.100 3.700 261.500 23.600 91.500 66.000 

LB12-28B1.2 209.800 5.000 301.400 17.900 104.600 71.400 

LB12-28B2.1 205.100 16.200 105.000 31.100 318.700 54.100 
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LB12-30A1.1 232.100 25.500 139.200 6.100 36.700 63.700 

LB12-30A1.2 238.900 23.200 141.700 16.200 19.900 61.200 

LB12-30B1.1 223.200 15.300 318.000 16.800 93.200 66.900 

LB12-30B1.2 199.900 0.700 290.000 7.400 104.400 82.600 

LB12-30B1.2X 268.700 20.100 165.900 31.200 26.200 51.500 

LB12-37A1.1 112.000 13.900 213.900 39.900 6.800 46.800 

LB12-40B1.1 177.600 60.100 23.900 27.300 288.000 11.300 

LB12-40B2.1 162.400 71.200 19.200 15.200 286.200 10.700 

LB12-47B1.1* 24.100 1.900 292.100 47.000 115.900 43.000 
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