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Horizontal and vertical flow in atmosphere and cloud formation and dissipation is of 

fundamental importance for meteorologists, climatologists, weather forecasters, geophysicists and 

other related professions. The cloud coverage also regulates terrestrial albedo, which significantly 

regulates energy balance of the Earth. Vertical motion of air, temperature distribution and 

formation of clouds is also of essential importance to air transportation and flying in general. 

Strong updrafts, low visibility, turbulence, wind-shear and many other hazardous effects are tied 

to vertical motion of moist air and thus critical to pilots, dispatchers, operators, and ATC. 

Atmospheric lapse rate (ALR) is a central ingredient in vertical stability of air and generation of 

clouds with extensive vertical development. Cumulonimbus clouds (CB) are the principal 

generators of severe weather and most flying hazards. Low air-temperature vs. dew point (DP) 

depression (or spread) may cause condensation of water vapor to occur on the surface causing fog, 

with predictable low-visibility hazards necessitating IFR operations.       

 

In this article, we study various atmospheric (temperature) LRs (Lapse Rates), such as, 

DALR (Dry air Adiabatic Lapse Rate), MALR (Moist unsaturated air Adiabatic Lapse Rate), 

SALR (Saturated air Adiabatic Lapse Rate), ISALR (International Standard Atmosphere Lapse 

Rate), and DPLR (Dew Point Lapse Rate). ELR (Environmental or actual Lapse Rate) represents 

actual environmental vertical air temperature distribution, which may cause vertical air 

temperature distribution to be unstable initiating thermals if other triggering mechanisms are also 

present. Air and DP temperatures often control the condensation process and the formation of 

cumulus clouds, which theoretically could start at the Lifting Condensation Level (LCL) or bit 

higher depending on other factors. For example, knowledge of atmospheric LRs is essential in 

glider/soaring operations where vertical air instability is welcome occurrence (Reichmann, 1993). 

On the other hand, flying below cumulus clouds is regarded as annoyance for airplane and 

helicopter flights due to associated rough rides. Ultimately, moist thermals can grow into real 

hazard as the cumulus clouds grow into towering ferocious CBs (Forrester, 1981; Tufty, 1987) 

with significant implications to aviation safety.  

 

We can define an arbitrary vertical temperature profile for linear troposphere as: 

 

( ) ( ) 0 0

0

1 6371km 10 kmx

H
T H T z T z z H H R H

R

 
 = −   +  =  

 
              (1) 

 

Geopotential (H) and orthometric (z) heights differ little for lower terrestrial atmosphere 

(Daidzic, 2015a, 2015b; Iribrane and Godson, 1981). ALR (Γx) will depend on the nature of the 

thermodynamic process and air properties:  

 

0x

x x

dT dT

dH dz

   
 =     

   
                (2) 

 

Constant lapse-rate processes occur in atmospheric layers if the air is being lifted 

adiabatically (often meant isentropically) where large mass of upward moving air is behaving as a 

closed material system not exchanging mass or energy with the surrounding. This is an essential 

concept in atmospheric thermodynamics. We will also explore dry- and wet-adiabats, which serve 

important role in construction of many thermodynamic diagrams (such as “Skew-T vs. Log-p”) 
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used extensively in meteorology, weather predictions, and soaring operations. DP is the 

temperature at which first condensation event occurs or the temperature achieved by cooling moist 

air at constant pressure (isobaric) and constant specific humidity or mixture ratio (isohumes) at 

which water vapor becomes fully saturated (in thermodynamic equilibrium with the plane liquid 

surface). That does not automatically imply clouds will invariably form, but merely it provides 

required ingredients for formation. Similarly, the frost point (FP) is the temperature to which air 

must be cooled isobarically to achieve equilibrium with the plane surface of pure solid-water (ice).  

 

The concept of ALRs and LCLs is mentioned in more or less detail in some aviation- and 

pilot-oriented books dealing with the basics of aviation weather and weather flying, such as, 

Bradbury (2000), Cosgrove (1999), FAA (2016), Jeppesen (2015), Lester (2007), Piggot (1996), 

and Reichmann (1993). Understandably, these practical books on aviation and flying weather lack 

serious treatment of atmospheric thermodynamics and/or providing deeper insights into ALR and 

LCL although it must be pointed out that Bradbury’s analysis goes deeper into the subject matter 

than others.  

 

This article serves as a review of ALRs, but it also introduces the analysis and effects of 

gravitational acceleration, deeper SALR analysis, and small perturbations analysis with respect to 

gravitational and thermodynamic parameters. We contribute a sensitivity analysis of various 

ALRs, something that has never been discussed previously to the best of our knowledge. 

 

Mathematical models of lapse rates 

 

Theoretical models of DALR, MALR, SALR, and DPLR are derived. ISALR is a standard 

and is mentioned for completeness and comparison. More information on terrestrial standard 

atmosphere and various constant and variable LRs can be found in Daidzic (2015a, 2015b). 

 

Dry Air Adiabatic Lapse Rate 

 

The First Law-of-Thermodynamics for closed material system in two different differential 

forms per unit mass using internal energy u and thermodynamic work and using enthalpy h=u+pv 

and technical work yield: 

 

v pq du pdv c dT pdv or q dh vdp c dT vdp = + = + = − = −                (3) 

 

In this form, heat and work are not exact differentials and do not present states of the 

system. Assuming reversibility, the first Law-of-Thermodynamics via entropy formulation yields: 

 

andvd pd

q dT p q dT v
ds c dv ds c dp

T T T T T T

 
= = + = = −                  (4) 

 

  If the process is isentropic (reversible), then there is also no heat exchange (adiabatic) 

and entropy does not change as the air parcel is lifted vertically: 

 

0pd

dT v
ds c dp

T T
= − =                     (5) 
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By utilizing the ideal-gas law and rearranging, we obtain: 

 

( ) ( )
1

0 ln lnd d

pd d

RdT dp
d T d p

T c p





   −
− =  =    

  

                 (6) 

 

Real-gas effects cause specific heat capacity of air at constant pressure to be a weak 

function of temperature. We now employ the aerostatic (hydrostatic) equation, which links 

atmospheric air pressure changes with the height (altitude) in still and well mixed atmosphere. 

Classical hydrostatic/aerostatic equation neglects terrestrial sphericity and change in gravitational 

acceleration with height (Daidzic, 2015a, 2015b): 

 

( ) 2 2

0 0 9.80665 m/s 32.174 ft/s
p

z g g
z




= −   =


                 (7) 

 

Combining the ideal-gas law and the hydrostatic equation, we obtain from Eqs. (6) and (7): 

 

0 0 0d

pd

R g dzdT
T

T c p


 
−  =   
 

                   (8) 

 

Simplifying and reducing Eq. (8), we obtain: 

 

0DALR d

d pd

gdT

dz c

 
=  = − = 

 
                   (9) 

 

Hence for isentropic process, the ALR of non-condensable air mixture is a pseudo-

constant. A schematic of isentropic (including adiabatic) lifting of an air parcel is shown in Fig. 1. 

Taking values of air’s constant-pressure specific heat capacity at 300 K (27oC) and the standard 

terrestrial gravitational acceleration, we obtain: 

 
o o o

0 9.80665 C or K C or K C or K
0.00975 9.75 2.97

1005.7 m km 1,000 ft
d

pd

g

c
 = =  = =              (10)  

 

Specific heat capacities at constant pressure and at constant volume of dry air are weak 

functions of temperature (real-gas effects), but in the normal range of terrestrial atmospheric 

temperatures we can often assume it to be constant. Additionally, terrestrial gravitational 

acceleration is not constant and is normally larger in polar- than in equatorial-regions (apart from 

gravitational anomalies). Additionally, the gravitational acceleration decreases slightly with height 

(Daidzic, 2015a, 2015b). Simultaneously, Earth is spherical/ellipsoidal, which introduces another 

small correction in the flat-Earth hydrostatic/aerostatic equation. For example, Ambaum (2008) 

discusses hydrostatic relationship for curved surfaces and computes geometric reduction in surface 

pressure as large as 5 mbar on Earth and 39 mbar on Titan (moon of Saturn). Berberan-Santos et 

al. (1997) derived and discussed barometric formula for non-uniform gravitational fields. The 
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international gravity formula (IGF) represents the current model of Earth’s gravitation, which 

includes the rotation of the Earth and geodetic (GD) latitude (Stacey and Davis, 2008): 

 

( ) ( ) ( )2 29.780327 1 0.0053024 sin 0.0000059 sin 2GD GD GDg    =  +  +     

 

This is the reference variation of terrestrial gravity on the surface and any aberration from 

it is referred to as gravitational anomaly (Stacey and Davis, 2008). Gravitational effects are treated 

in Iribarne and Godson (1981), Lowrie (2007), Stacey and Davis (2008), Torge (2001). 

 

 
 

Figure 1: Isentropic lifting of an air parcel. 

 

In the analysis of the standard atmosphere (ISA) it is assumed that Earth is a perfect sphere 

of uniform mass density (Daidzic, 2015a). The gravitational equipotential surfaces are concentric 

spheres with the gravitational acceleration vectors being equivalent to the radius vectors emanating 

from the geocenter (geometric center) and barycenter (mass center). Hence, the gravitational 

acceleration changes only as a function of altitude above the Geoid, which below 500 km or 

1,640,000 ft (Daidzic, 2015a) is linearized to: 

 
2

2 20

0 0

1 2 9.80665 m/s 32.174 ft/so o o

R z
g g g g

R z R

   
=  − = =   

+   
        (11) 

 

For example, Iribarne and Godson (1981) present DALR and other atmospheric LRs in 

geopotential (GP) height units. Daidzic (2015a, 2015b) derives relationships between orthometric 
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(z) and geopotential (H) heights and recalculates ISA to about 86 km in both heights. Thus, Eq. 

(8) is better stated in terms of GP heights. However, in lower atmosphere, differences between the 

GP and orthometric heights are small and can often be neglected (Daidzic, 2015a).  

 

Dry air is calorically non-perfect gas.  To estimate the sensitivity of DALR to small changes 

in the constant-pressure specific heat capacity and/or gravitational acceleration changes, we 

perform linear small-perturbation analysis: 

 

 0

2

0 0

1

pd pd

d d d d
d pd

pd pd p pdc cg g

g
g c

g c g c c c

             
 =  +  = = −                              

            (12) 

 

Relative changes of DALR due to small relative changes in gravitational acceleration 

and/or specific heat capacity at constant-pressure are: 

 

0 0

1 1d
pd

d pd

g c
g c

  
=  −         

                 (13) 

 

Accordingly, a 1% change in gravitational acceleration, due to height, latitude and/or 

gravitational anomaly changes would result in a 1% proportional change in DALR (about 0.03oC) 

and hence negligible for most terrestrial applications. However, this may be a significant effect on 

other planets and satellites with respective atmospheres (e.g. Mars, Venus, etc.). Generally, 

meteorological temperature measurements are made with an accuracy of 0.05oC to enable rounding 

to one decimal place. A 1% increase in cpd  would result in a 1% decrease in DALR. High-latitude 

regions (S and N) experience increased local gravitational accelerations (due to flattened poles, 

being closer to the center, and decrease in centrifugal force from Earth’s own angular rotation). 

Simultaneously, colder climates result in overall slightly lower specific heat capacities of air. Both 

effects lead to increasing DALR at higher latitudes. On the other hand, tropical regions experience 

lowering gravitational accelerations. Simultaneously, air has somewhat higher specific heat 

capacities due to higher average temperatures, both effects leading to slightly reduced DALR. 

Overall, the effect on DALR perturbations is small. It is common practice to round it and just use 

DALR of 10oC (or K) per each 1,000 m (1 km), 1oC/ 100 m, or 3oC per 1,000 ft. 

 

Moist Air Adiabatic Lapse Rate 

 

As moist (or humid) unsaturated air is lifted vertically up, it cools due to isentropic 

expansion similarly as dry air, but at slightly lower rates (Dutton, 2002; Rogers, 1979; Saucier, 

1989). Only in very low temperature regions and/or arid conditions, is the amount of water vapor 

so low that air lifting adiabatically cools practically as DALR. Unsaturated moist air is generally 

cooling at MALR. Difference exists due to constant-pressure specific heat capacity of water vapor 

(1,867 J/kg K) being about 85% higher than of dry air mixture (about 1,006 J/kg K). Since the 

amount of water vapor is small (typically 5-20‰ mass fraction), the MALR is only slightly lower 

than DALR. Since there is practically no release of latent heat during adiabatic ascent of moist air, 

we utilize the same analysis used for DALR derivation previously: 
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0MALR M

M pm

gdT
z H

dz c

 
=  = − =  

 
                (14) 

 

The specific heat capacity at constant pressure for moist air as a function of specific 

humidity was derived in Daidzic (2019). Accordingly, MALRs are variable, all slightly dependent 

on the specific humidity (or mixture ratios) at the reference surface: 

 

( )
( )0 0 1 0.856 q

1 0.856 q
M d d

pm pd

g g

c c
 =  =  −   

 + 
               (15) 

 

 MALR is also a pseudo-constant as the specific humidity remains constant during 

isentropic/adiabatic lifting, although RH increases. For example, for moist air with specific 

humidity of 0.02 (kg water vapor/kg dry air), MALR is: 

  

( )2.97 1 0.856 0.02 2.92 K/1000 ft 9.58 K/kmM =  −   =  

 

Hence, in this case MALR is about 1.7% lower than DALR. In very warm and humid 

climates, MALR may be 3-4% lower than DALR. Due to infinite variations in surface-air 

humidity, DALR is used as a boundary defining absolute vertical instability of air parcels. 

Measured ELR larger than DALR (in absolute values) imply vertically (statically) unstable air. On 

the other hand, isothermal and inversion layers are absolute stable with lighter air on top of the 

heavier air (Rayleigh–Taylor stability problem). Atmospheric lapse rates and stability is treated in 

many specialized references, such as, Dutton (2002), Iribarne and Cho (1980), Iribarne and Godson 

(1981), Rogers (1979), Saucier (1989), Stull (2016), Tsonis (2007), Wallace and Hobbs (2006). 

 

Saturated Air Adiabatic Lapse Rate 

 

Once moist aid is fully saturated at DP or 100% RH, the rate of cooling will slow down 

due to condensation of excess of water vapor and release of the latent-heat of evaporation-

condensation, which then reduces expansion cooling of air parcels. In reality, some super-

saturation must exist in atmosphere and the water vapor will not start condensing at exactly 100% 

RH, but few percentages above due to heterogeneous nucleation in the abundant presence of 

condensation nuclei (CN). Definition of saturation vapor pressure assumes equilibrium in 

condensation-evaporation rates over plane liquid surfaces, while the nucleation sites in atmosphere 

have curvatures and thus require higher vapor pressures due to surface energy (Laplace law). The 

smaller the droplets, the higher the super-saturation is required (Fleagle and Businger, 1980).  On 

the other extreme, homogeneous nucleation takes place in very clean air free of tiny suspended 

aerosols and/or small solid particles, but requires super-saturations of few hundred percentages, 

which is not easily found in lower atmosphere. 

 

Estimating SALR (Saturated air Adiabatic Lapse Rate) is more difficult as it involves phase 

change of condensable air component, i.e., water, in the presence of inert dry-air mixture. As 

unsaturated air ascends, it also cools down until it reaches DP. Strictly, DP is defined as a 

temperature at which water-vapor saturation (or molecular equilibrium between the vapor-liquid 

condensation-evaporation rates) is just reached under constant pressure (isobaric), while also 
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maintaining constant mixture ratio (or specific humidity) until condensation occurs. Any further 

cooling will be followed by condensation of excess water vapor. DP is not identical to wet-bulb 

(WB) temperature. Psychrometer’s WB temperature, or more relevant thermodynamic wet-bulb 

temperature, is achieved during adiabatic saturation and follows constant enthalpy lines 

(isenthalpic) and is larger than DP. Only at 100% RH are DP, WB, and dry-bulb (DB) temperatures 

identical. During condensation, some water vapor transforms into water droplets (typically 20-50 

micrometers cloud droplets). When saturated air (100% RH) is lifted, the adiabatic cooling process 

continues under variable SALR. 

 

Typically, in SALR models and computations it is assumed that condensed water (droplets) 

precipitate defining the, so-called, pseudo-adiabatic process (Dutton, 2002; Houghton, 2002; 

Iribarne and Cho, 1980; Iribarne and Godson, 1981; Rogers, 1979; Saucier, 1989; Tsonis, 2007). 

A recommendation proposed by the International Meteorological Organization (IMO) in 1947 and 

used by Saucier (1989) and Iribarne and Godson (1981), yields: 

 

 ( ) 0v v
p w d v p w

l r LdT d p
c c r R d l c c r

T p T m

 
+  − + = =   

 
              (16) 

 

According to Dutton (2002), Iribarne and Cho (1980), Iribarne and Godson (1981), Rogers 

(1979), Tsonis (2007), and Wallace and Hobbs (2006), the first Law-of-Thermodynamics applied 

to an open material system in which temperature-independent latent-heat of condensation is 

released while condensed liquid droplets precipitate, defining pseudo-adiabats. That process 

results in the following differential equation: 

 

lg
v

p d v

l drdT d p
c R l l

T p T


− = − =                  (17) 

 

The Clapyeron and the Clausius-Clapeyron equations are used to define equilibrium states 

during phase transitions (vaporization, fusion, sublimation). Derivation of both equations and 

some solutions for various phase transitions are given in Daidzic (2019). During ascent of saturated 

air, the mixing ratio (specific humidity) remain at their respective saturation values (r=rs and 

σ=σs). The differential amount of condensing water vapor is: 

 

0.622 s s
s

s

e de dp
dr

p e p

 
= − 

 
                  (18) 

 

By applying Clausius-Clapeyron equation on the relative differential amount of condensate: 

 

2

s s v

s s v

dr de ldp dT dp

r e p R T p
= − = −                  (19) 

 

Substituting into Eq. (17), yields: 
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2

2

v s v s
p d

v

l r l rdT dp dp dT
c R

T p T p R T T
− = −                  (20) 

 

By rearranging variables: 

 
2

2
0v s v s

p d

v

l r l rdT dp
c R

R T T T p

   
+ − + =   

  

                 (21) 

 

A differential form of Hypsometric equation (ideal-gas plus hydrostatic equation) for air yields: 

 

0 0 0m m

m m m

g dz g gdp
dz dz

p p R T R T

 


= − = − = −                 (22) 

 

By substituting Eq. (22) into Eq (20) and reducing, one obtains: 

 
2

0

2
1v s v s

p

v d

l r l r gdT
c dz

R T T R T T

   
+ = − +   

   

                 (23) 

 

We approximated the moist-air gas-constant (Daidzic, 2019) with the one for dry air since 

the difference is negligible compared to magnitude of the latent-heat. Since maximum mixture 

ratios are approximately 10-2 (kg H2O/kg dry air), we obtain:  

 
2

0

2
1 1v s v s

p v p ds

l r g l rdT

dz c R T c R T

      
−  + =  +          
      

                (24) 

 

The moist air gas constant is only very slightly higher than of dry air. Finally, we have: 

 

( )

1
2

2
1 1v s v s

s d d s

d p vs

l r l rdT
SALR r T

dz R T c R T


−

   
  = = − =   +  + =        

     

             (25) 

 

Where SALR-function is, 

 

( )

1
2

2
1 1 1v s v s

d p v

l r l rSALR
T

DALR R T c R T


−

  
= = +  +     

   

                (26) 

 

It is interesting to evaluate the first and the second derivatives of the SALR-function. We 

can directly differentiate Eq. (26) with respect to absolute temperature. However, saturation 

mixture ratio is also function of temperature as will be seen later utilizing the Clapeyron-Clausius 

(C-C) equation. Additionally, the resulting expressions for derivatives are extremely complex and 

were checked using MAPLETM symbolic computations software. Hence, the analytical analysis 

and numerical root-finding of resulting polynomial will not be shown here. Instead, we use second-
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order central-difference numerical differentiation formulas to evaluate 1st and 2nd derivatives of 

SALR-function as a function of temperature: 

 

( ) ( ) ( )

( )
( )

21 1

2

i i id T T T
O T

dT T

  + −−
  + 
  

                (27) 

and 

 

( ) ( ) ( ) ( )

( )
( )

2
21 1

22

2i i i id T T T T
O T

dT T

   + −−  +
  + 
 

               (28) 

 

As it will be seen later, SALR has inflection point around +9oC at normal SL atmospheric 

pressure. The rate of SALR change first increases (as negative value) and then after inflexion point 

starts decreasing approaching lower asymptote. This result was never mentioned before to the best 

of our knowledge. We can further simplify this equation under the assumption that latent heat of 

vaporization, specific heat capacity at constant pressure, and other thermodynamic parameters are 

constant. Following Dutton (2002), we linearize Eq. (26) around 273 K (0oC): 

 

( )
( )

2
626

22

2.5 102.5 10
32 180

287 273 1005 461.5 273

v v

d p v

l l

R T c R T


=  = 

  
 

 

and: 

 

( )
1 32

1
1 180

s

s

r
T

r


+ 
 

+ 
                                 (29) 

 

For example, saturated-air mixture ratio at 288 K (15oC) and SL atmospheric pressure can 

be used from the equation derived in Daidzic (2019) as: 

 

( )2 2611.657 5417
0.622 0.622 exp 19.83 1.1 10 O 10s

s

e
r

p p T

− − 
 =  −   = 

 
 

 

Using Eq. (26), gives SALR function of ( ) 0.450T  and SALR in this particular case yields: 

 

( )    1.34 K/1000 ft 4.38 K/kms d T =     

 

For arbitrary temperatures, we need to utilize SALR described with Eqs. (25) and (26). The 

SALR is typically in the range 6-7 K/km, but can reach 5 K/km in warm humid climates and as 

high as 9 K/km in cold dry areas. Hence, average SALR is roughly two-thirds of DALR, which is 

about the same as tropospheric ISA LR. The same arguments we used for DALR’s small 

dependence on gravitational acceleration and temperatures applies to SALR, but that analysis is 

not shown.  

Dew Point Lapse Rate 
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We will now derive Dew Point Lapse Rate (DPLR). DP defines temperature at which 

cooled air (diabatic isobaric process) reaches vapor-liquid equilibrium at constant pressure and 

constant specific humidity (isohumes) and is defined by a horizontal line in the p-T diagram 

(Daidzic, 2019a). As air parcel lifts, it experiences reduced atmospheric pressures and cools down 

by doing thermodynamic work of expansion. No actual condensation and removal of condensate 

takes place as in SALR. The saturation mixture ratio remains constant during adiabatic lifting:   

 

0.622 0s s s
s

s s

e de dedp dp
dr

p e p e p

 
= − =  = 

 
               (30) 

 

The partial pressure of water vapor at saturation obeys the Clausius-Clapeyron equation: 

 

( ) ( ) ( )s s DP
DP s DP s DP

DP

de de dTd
e T e T e T

dz dz dT dz
 = = =                 (31) 

 

The relationship between water vapor and air pressure is: 

 

r de r dp e dp
e p

r dz r dz p dz 

    
=  = =     

+ +     
               (32) 

 

The rate at which the saturation pressure decreases with altitude is much slower than the 

atmospheric pressure rate reduction, but the relative change of both pressures is the same:  

 

1 1
const.

de dp
r

e dz p dz
= =                  (33) 

 

As the saturation vapor pressure decreases so does DP: 

 

1 1 s DP
DP DP

s DP

de dTdp

p dz e dT dz
= −   = −                 (34) 

 

The C-C-equation for (water-vapor) saturation vapor pressure yields: 

 

( ) 2
ln s v DP

s

s v DP

de l dT
d e

e R T
= =                    (35) 

 

As the lifting process is adiabatic, the p-T relationship for moist air produces: 

 

11 1
0m m

pm m

RdT dp dT dp

T c p T dz p dz





 −
− =  =  

 
                (36) 

By using MALR definition from Eq. (15), we obtain: 
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( )
( ) 2

1 0.86 q1 1
1 0.25 q

1

d d s v
DP DP

d s DP v DP

de ldp

p dz T e dT R T





 −   
= − +  = −  = −  

−  
            (37) 

 

By neglecting 2nd-order terms in specific humidity, DPLR becomes: 

 

 

( )
2 2

DPLR 1 0.61 q
1 1

m v d vDP DP
DP M d

m v d vDP

R RT TdT

dz l T l T

 

 

       
 = = − =    −        

− −        

          (38) 

 

Introducing DP depression (spread):  

 

0DPD T T= −                     (39) 

 

DPLR becomes: 

 

( )
( )

( )

2 2

2

3

1 0.61 q
1 0.61 q 1

1 1

K
6.299 10 1 0.61 q 1

km

d dd v vDP
DP d

d v v d

R T RT D
T

l T l T

D
T

T



 

−

  −         
 =  −  =   −         

− −        

   
   −    −   

   

            (40) 

 

Specific humidity q depends on measured air temperature and DP-depression and is not an 

independent variable. Using definition of RH from Daidzic (2019), we derive an expression for 

the surface specific humidity, which is weak function of atmospheric pressure (Daidzic, 2019): 

 

( ) ( )
( )

380.14 6829.36 5417.12
q , , q , exp 54.015 5.1723 lns

D
T D p p T T

p T T T D


 
=    − −  − 

−  
           (41) 

 

For example, DPLR of moist air at temperature of 20oC (293 K) and dew point of 12oC 

(285 K) has RH of approximately 60%. DP-depression D is 8oC (8 K). Using Eq. (38), while 

neglecting specific humidity contribution, DPLR yields about 0.546 K/1,000 ft (1.8 K/km). This 

is valid result as measured DPLRs are normally in the range 1.6-2.0 K/km or 0.50 to 0.6 K/1,000 

ft. Once air temperature and DP are specified, water saturation vapor pressure, RH and specific 

humidity are all functions of it. Hence, DPLR is a function of both air temperature and DP and it 

is not a simple pseudo-constant as DALR. To estimate changes in DPLR as a function of small 

changes in DP and air temperature, we again employ small perturbations analysis by writing: 

 
2

2
1 1

DP

m v m vDP DP DP DP
M M

T m v DP m vT

R RT T

T l T T l T

 

 

        
= − =        

 −  −        
             (42) 

 

Accordingly, the relative change about the reference point “0” is: 
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0 0

1 2DP
DP

DP DP

T T
T T

   
= −  +   

    
                 (43) 

 

Therefore, a 5% decrease in air temperature (or DP-depression) causes proportional 5% 

increase in DPLR at constant DP, while 5% increase of DP causes 10% increase of DPLR at 

constant temperature or DP depression. In general, DALR > MALR > SALR > DPLR. 

 

ISA Troposphere Lapse Rate 

 

The concept of ISA (International Standard Atmosphere) troposphere uses constant lapse 

rate (LR) of about negative 2oC per 1000 ft (6.5 K/km to be more accurate). Hence, virtual ISA is 

conditionally stable (between DALR/MALR and SALR). More details on ISA and various thermal 

layers with associated lapse rates are to be found in Daidzic (2015a, 2015b), ISO (1975), ICAO 

(1993), and NOAA (1976). A graphic summary of various lapse rates is depicted in Fig. 2.  

 

 
 

Figure 2: Graphic representation of various atmospheric LRs. ISA LR refers to ISA troposphere 

only. (Not to scale). 

 

ISA tropospheric pressure is a function of temperature (Daidzic, 2015a, 2015b) where 

height is in geopotential linear dimension: 
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   
0 0

3

1

0
0 ISA

ISAISA

kg/m Pa K

1.225 101,325 273.15

5.255823 6.5 K/gpkm 1.98 K/1,000 ft

p T

g dT

R dH

 


      



− − −
  = = = = =

 
= − = −  = − =  

  

            (44) 

 

Results and Discussion 

 

The result for SALR computations as a function of temperatures in the range of -60 o to 

+50o C are shown in Fig. 3. SALR implies wet-adiabatic lifting of saturated moist air (100% RH). 

Naturally, SALR decreases at higher air temperatures as saturated warmer air has higher moisture 

content (higher vapor pressures), which then results in reduced expansion cooling as the air parcel 

is lifted up. Computed first and second derivatives of SALR function are shown in Fig. 4. The 

inflexion point (steepest decrease in SALR) is around 9oC as was mentioned before. The SALR 

function monotonically decreases between upper (DALR) and lower asymptote. 

 

 
 

Figure 3: SALR as a function of air temperature (RH=100%). 

 

The results of DPLR computations for various DP-depressions as parametric curves is 

shown in Fig. 5. As air temperature increases so does DPLR. On the other hand, as DP-depressions 

increase for constant air temperatures (DPs decrease), DPLRs decrease as well. There is less 

moisture in moist air with increased DP-depressions and lower DPs. Increasing DPLRs with air 
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temperature for constant DP-depressions means that DPs are also increasing implying more 

moisture and lower cooling rates as water vapor has higher heat capacity than dry air. From Eqs. 

(38) and (40), we see that DPLR depends quadratically on DPs and inversely to air temperatures. 

We now consider DPLR as a function of DP-depressions and with constant air temperature 

parametric curves as presented in Fig. 6. As DP-depressions increase at constant air temperature, 

means that DP temperatures also decrease implying less moisture content in air. DPLRs will hence 

decrease with increasing DP-depressions for constant air temperature parametric curves. For 

constant DP-depressions, increasing air temperatures result in increasing DPLRs.  

 

 
 

Figure 4: First (blue) and second (red) derivatives of SALR with respect to air temperature. 

 

Other LRs, such as DALR, which is actually a pseudo-constant on Earth, are sketched in 

Fig. 2. MALR is differing only by small amount from DALR. Hence, it is not particularly 

interesting for DALR and MALR to deserve a separate plot. On the other hand, ISA LRs are agreed 

constant standard values based on the altitude zones in terrestrial atmosphere. Once MALR and 

DPLR are known, the LCL LR is MALR-DPLR difference, i.e., the rate at which the humid air 

parcels approach saturation defining LCL. This is elementary yet essential process in cloud physics 

of terrestrial atmosphere. More on LCL models and computations will be presented in upcoming 

publication. 
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Figure 5: DPLR as a function of air temperature for constant DP depressions. 

 

 
 

Figure 6: DPLR as a function of DP depression for constant air temperature curves. 
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Conclusions 

 

We have derived and summarized important terrestrial atmosphere temperature lapse rates. 

The analysis presented here can be applied to other planetary and satellite atmospheres. ALRs, 

largely, govern vertical atmospheric air stability and creation of some cloud types. To the best of 

our knowledge, the sensitivity analysis of various atmospheric lapse rates and their dependence on 

actual ideal-gas air properties and terrestrial gravitational attraction was conducted. SALR, which 

has DALR as the upper asymptote, showed steepest change at around 9oC then flattening out and 

apparently approaching lower asymptotic solution which has not been investigated as it falls 

outside of the terrestrial air temperature range. We have analyzed the dependence of DPLR on air 

temperatures and moisture content. Understanding thermodynamics and dynamics of atmospheric 

moist air and phase transitions is of fundamental importance to safety and economy of flight 

operations and aircraft performance. 
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Nomenclature 

 
Greek 

 

  −   Isentropic coefficient. 

  −   Relative humidity. 

3kg/m  
   Density (mass). 

 

 K/m   Lapse rate. 

 
Alphabetic 

 

 kJ/kg Kc  Specific heat capacity. 

 Pae   Water vapor pressure. 

2m/sg  
   Terrestrial gravitational acceleration. 

 kJ/kgh  Enthalpy. 

 J/kgl   Mass specific latent heat (vaporization, fusion, etc.). 

 Pap   Pressure (thermodynamic). 

 q −   Specific humidity. 

 r −   Mixture ratio. 

 mz   Height (Orthometric). 

 

 KD   Dew point depression (spread). 

 mH   Height (Geopotential). 

 JL   Latent heat (vaporization, fusion, etc.). 

 kg/kg-molM  Molar Mass. 

 0 mR   Radius (average) of spherical Earth approximation. 

 J/kg KR  Gas constant (gas specific). 

 KT   Temperature. 

3mV      Volume. 

 JW   Work (thermodynamic or technical). 

 
Subscripts 

 

d  Dry. 

m  Mixture. 

p  Constant pressure process. 
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s  Saturated. 

v  Vapor, wet. 

v  Constant volume process. 

 

DP  Dew point. 

M  Moist (humid). 

TP  Triple point. 

 
Abbreviations 

 

ALR  Atmospheric Lapse Rate. 

CB  Cumulonimbus cloud (T-Storm). 

CN  Condensation Nuclei. 

D  DP-depression (or spread). 

DB  Dry Bulb 

DALR  Dry  (air) Adiabatic Lapse Rate. 

DP  Dew Point. 

DPLR  Dew Point Lapse Rate. 

ELR  Environmental Lapse Rate. 

FP  Frost Point. 

GP   Geopotential 

ISALR  International Standard Atmosphere Lapse Rate. 

LCL  Lifting Condensation Level. 

LR  Lapse Rate. 

MALR  Moist (unsaturated air) Adiabatic Lapse Rate. 

RH  Relative humidity. 

SALR  Saturated (air) Adiabatic Lapse Rate. 

WB  Wet Bulb. 
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