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Space Robotics for On-Orbit Servicing 
and Space Debris Removal

Dr. Markus Wilde

Florida Institute of Technology

Director, ORION Spacecraft Robotics Lab



Outline

1. Applications of Orbital Robotics

2. History of Crewed and Robotic On-Orbit Servicing

3. The Challenge: Non-cooperative Servicing Clients
1. Orbital Dynamics

2. Relative Navigation

3. Multi-Body Dynamics

4. Capture Mechanisms

5. Verification and Validation

This lecture is a summary of the course AEE 5806 – Dynamics and Controls of Spacecraft Rendezvous and Capture
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Imagine if…
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Justluxe.com

Walkingdead.wikia.com

Welcome to Space Flight!
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LEO
Low Earth Orbit 
200 – 1800 km

MEO
Medium Earth Orbit
18800 – 23300 km

GEO
Geosynchronous Orbit
32600 – 38800 km

Equator Geostationary Orbit
35786 km

2062 Active Satellites *

* As of 04/01/2019

125 Satellites
• Navigation
• Communication

554 Satellites
• Communication
• Earth 

Observation

Highly Elliptical Orbits:
45 Satellites
• Communications
• Earth Observation

1338 Satellites
• Earth Observation
• Communication
• Space Science

Union of Concerned Scientists Satellite Database: https://www.ucsusa.org/nuclear-weapons/space-weapons/satellite-database
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Mega-Constellations

• LEO communications constellations

• Hundreds or thousands of satellites 
needed for global coverage

• Constellations approved by FCC/ITU:
 SpaceX Starlink (11,943)

 Amazon Kuiper (3,236)

 OneWeb (650)

 Telesat (292)

 LeoSat (108)

Financial Times
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On-Orbit Servicing

• In-orbit maintenance of space systems

• Tasks:
 Inspection and failure determination

 Refueling

 Repair / Upgrade

 Maneuvering

 Removal of inactive satellites and debris 
objects 

• Potential:
 Increased flexibility in design and operations

 Increased capability over system lifetime 

 Increased return on investment

 Enduring usability of orbital environment

7

NASA

NASA

NASA

NASA

NASA

NASA
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In-Space Assembly

• The direct-launch size and mass is severely limited by the 
launcher capabilities.

• Larger spacecraft must be launched in modules and then be 
assembled in orbit.

• Examples:
 Space Stations

 Large space structures, e.g. Solar Power Satellites

 Human Exploration Missions

8

Example: Atlas V

NASA NASA NASA
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Asteroid Exploration and Mining

Due to their low gravity fields, touching down on many asteroids is more “docking” than “landing”

9

JAXA’s Hayabusa 2 mission

NASA’s OSIRIS-Rex mission

Crewed asteroid exploration concept
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On-Orbit Servicing: History
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The Space Shuttle

• From onset designed as servicing 
platform

 Astronauts

 Engineers

 Robotic manipulator

 Large payload bay

• Many successful servicing missions, 
including assembly of ISS, repair and 
upgrade of Hubble

Space Robotics for On-Orbit Servicing and Space Debris Removal 116/4/2019



Robotic Servicing Demonstrators

12

Past

• ETS-VII (JAXA, 1997)
 LEO
 Custom target object
 Telerobotic and 

automated capture
 Exchange of Orbital 

Replacement Unit

• Orbital Express (DARPA, 2007)
 LEO
 Custom target object
 Autonomous capture
 Exchange of computer 

and battery
 Fuel transfer

Future

• Restore-L (NASA, 2022)
 LEO
 Landsat 7
 Autonomous capture
 Telerobotic refueling and

relocation

• RSGS (DARPA, 2022+)
 GEO
 Resident space object
 Autonomous and 

telerobotic capture, 
inspection, relocation, 
repair, upgrade
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On-Orbit Servicing Challenges

Space Robotics for On-Orbit Servicing and Space Debris Removal 13

General Challenges

• Rendezvous

• Orbital dynamics

• Relative navigation

• Approach rotating or tumbling objects

• Capture

• Multi-body dynamics

• Capture mechanisms

• Testing: Verification and Validation

Robotics Challenges

• Capable robotic systems in space environment

• Handling delicate space hardware

• Flexibility required in dealing with failed 
spacecraft

• Unstructured work environment

• Spacecraft surfaces

• Lighting conditions

• Non-cooperative target objects

• Manipulation: Telerobotics vs. Autonomy

6/4/2019



Rendezvous
Orbital Dynamics and Relative Navigation
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Relative Motion EoM
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ሷ𝑹 = −
𝜇

𝑅3
𝑹

ሷ𝑹 + ሷ𝒓 = −
𝜇

𝑅 + 𝑟 3
𝑹 + 𝒓 +

𝑭

𝑚𝑐

𝑹 + 𝒓

𝑅 + 𝑟 3
≈
1

𝑅3
𝑹 + 𝒓 − 3

𝑹𝑇𝒓

𝑅2
𝑹

ሷ𝒓 = −
𝜇

𝑅3
𝒓 − 3

𝑹𝑇𝒓

𝑅2
𝑹 +

𝑭

𝑚𝑐

• We need to express the relative motion in the target’s local orbital frame.
• The local orbital frame is rotating within the inertial frame with the orbital rate 𝝎.
• The transformations of time derivatives of a vector 𝑨 between a rotating coordinate system and an inertial 

coordinate system are given by:

𝑑𝑨

𝑑𝑡
ቚ
𝐼
=
𝑑𝑨

𝑑𝑡
ቚ
𝑟𝑜𝑡
+𝝎× 𝑨

𝑑2𝑨

𝑑𝑡2
ቚ
𝐼
=
𝑑2𝑨

𝑑𝑡2
ቚ
𝑟𝑜𝑡
+𝝎 × 𝝎× 𝑨 + 2𝝎 ×

𝑑𝑨

𝑑𝑡
ቚ
𝑟𝑜𝑡
+
𝑑𝝎

𝑑𝑡
× 𝑨

Relative motion expressed in the target’s local orbital frame.

ሷ𝑟 = −
𝜇

𝑅3
𝒓 − 3

𝑹𝑇𝒓

𝑅2
𝑹 − 2 𝝎 × ሶ𝒓 − ሶ𝝎 × 𝒓 − 𝝎 × (𝝎 × 𝒓) +

𝑭

𝑚𝑐

Relative motion expressed in the inertial frame.
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Relative Motion EoM
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In the target LVLH coordinate system:

𝝎 =
0
−𝜔
0

𝑹 =
0
0
−𝑅

𝑭 =

𝐹𝑥
𝐹𝑦
𝐹𝑧

𝒓 =
𝑥
𝑦
𝑧

𝝎 × ሶ𝒓 =
−𝜔 ሶ𝑧
0
𝜔 ሶ𝑥

ሶ𝝎 × 𝒓 =
− ሶ𝜔𝑧
0
ሶ𝜔𝑥

𝝎 × (𝝎 × 𝒓) =
−𝜔2𝑥
0

−𝜔2𝑧

𝒓 − 3
𝑹𝑇𝒓

𝑅2
𝑹 =

𝑥
𝑦
−2𝑧

• Hill’s Equation:

ሷ𝑥
ሷ𝑦
ሷ𝑧
=

2𝜔 ሶ𝑧 + ሶ𝜔𝑧
−𝜔2𝑦

3𝜔2𝑧 − 2𝜔 ሶ𝑥 − ሶ𝜔𝑥

+
𝐹

𝑚𝑐

 The out-of-plane motion 𝑦 is independent of the in-plane 
motion 𝑥𝑧.

 In-plane and out-of-plane motion are decoupled and can be 
analyzed and controlled separately!

 As most RVD missions occur in circular orbits, we’ll focus on 
the circular case, with 𝜔 = 𝑐𝑜𝑛𝑠𝑡., so ሶ𝜔 = 0.

𝑥 𝑡 =
4 ሶ𝑥0
𝜔
− 6𝑧0 sin 𝜔𝜏 −

2 ሶ𝑧0
𝜔
cos 𝜔𝜏 + 6𝜔𝑧0 − 3 ሶ𝑥0 𝜏 + 𝑥0 +

2 ሶ𝑧0
𝜔

𝑦 𝑡 = 𝑦0 cos 𝜔𝜏 +
ሶ𝑦0
𝜔
sin(𝜔𝜏)

𝑧 𝑡 =
2 ሶ𝑥0
𝜔
− 3𝑧0 cos(𝜔𝜏) +

ሶ𝑧0
𝜔
sin 𝜔𝜏 + 4𝑧0 −

2 ሶ𝑥0
𝜔

Homogenous solution

(near) circular orbit

Clohessy-Wiltshire (CW) 
Equations
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V-bar Maneuver
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Initial conditions:

𝑥0, 𝑦0, 𝑧0
ሶ𝑥0 = Δ𝑉𝑥

ሶ𝑦0, ሶ𝑧0 = 0

𝑥 𝑡 =
1

𝜔
Δ𝑉𝑥 4 sin 𝜔𝑡 − 3𝜔𝑡

𝑦 𝑡 = 0

𝑧 𝑡 =
2

𝜔
Δ𝑉𝑥 cos 𝜔𝑡 − 1

The resulting trajectory is a prolate cycloid
• If the Δ𝑉 was along the +V-bar (forward), the chaser will 

initially move forward and upward (-R-bar), then fall behind.
• If the Δ𝑉 was along the –V-bar (backward), the chaser will 

initially move back and down (+R-bar), then pass forward.

Counter-intuitive:
• Forward maneuver causes 

backwards motion.
• Backwards maneuver causes 

forward motion.

A V-bar maneuver is a burn parallel to the orbital velocity vector.
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R-bar Maneuver
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𝑥0, 𝑦0, 𝑧0 = 0
ሶ𝑥0, ሶ𝑦0 = 0

ሶ𝑧0 = Δ𝑉𝑧

Initial conditions:

𝑥 𝑡 =
2

𝜔
Δ𝑉𝑧 1 − cos 𝜔𝑡

𝑦 𝑡 = 0

𝑧 𝑡 =
1

𝜔
Δ𝑉𝑧 sin 𝜔𝑡

The resulting trajectory is an ellipse.
• Returns to the starting point after 𝑡 = 𝑇.
• Maximum distance in 𝑥 at 𝑡 = 𝑇/2:

𝑥 Τ𝑇 2 =
4

𝜔
Δ𝑉𝑧

• Maximum distance in 𝑧 at 𝑡 = 𝑇/4:

𝑧 Τ𝑇 4 =
1

𝜔
Δ𝑉𝑧

• Upwards maneuver causes 
backward motion

• Downwards maneuver 
causes forward motion

A R-bar maneuver is a burn up or down from Earth
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Out-Of-Plane (H-bar) Maneuvers

• Out-of-plane maneuvers serve the correction of the orbital plane.

19

Initial Conditions:

𝑥0, 𝑦0, 𝑧0 = 0
ሶ𝑥0, ሶ𝑧0 = 0

ሶ𝑦0 = Δ𝑉𝑦

Equations of Motion:

𝑥 𝑡 = 0

𝑦 𝑡 =
Δ𝑉𝑦

𝜔
sin(𝜔𝑡)

𝑧 𝑡 = 0

• Pure sinusoidal motion
• Decoupled from x-z motion

An H-bar maneuver is a burn parallel to the horizon.
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ISS Approach Safety

• Space stations restrict approach and departure to 
certain sectors:
 Collision avoidance

 Observability

 Thermal loads and contamination

 Communications

• The half cone angles for approach corridors are 
typically between ±5° and ±15°.

• ISS Example:

 ±2000 m × ±1000 m Approach Ellipsoid: ISS 
Control Center assumes command.

 200 m diameter Keep-Out Zone: Enter only through 
corridors.

20
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ISS: V-bar and R-bar Approaches

21

Approach along V-bar Approach along R-bar
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Example: DART Rendezvous

• A – B: Drift (Phasing in concentric orbits)

• B – C: Hohmann Transfer (V-bar maneuver)

• C – D: Drift (Phasing)

• D – E: Hohmann Transfer Δz = 7.5 km

• E – F: R-bar hop 3 km – 1 km

22

Demonstration of Autonomous Rendezvous Technology (NASA, 2005)

6/4/2019 Space Robotics for On-Orbit Servicing and Space Debris Removal
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Measurement Requirements at Capture

23

Typically Required Performance

Docking:
Approach Speed: 0.03 – 0.3 m/s
Lateral Alignment: 0.05 – 0.2 m
Lateral Speed: 0.01 – 0.05 m/s
Angular Misalignment: 1 – 5°
Angular Rate: 0.05 – 0.25°/s

Berthing:
Position (x, y, z): 0.1 – 0.5 m
Residual Speed: < 0.01 m/s
Lateral Speed: 0.01 – 0.05 m/s
Angular Misalignment: ≤ 10°
Angular Rate: ≤ 0.1°/s

Typical Measurement Requirements

• Final position: factor of 2 – 5 below desired 
position accuracy.

• Velocity: factor of 2 – 10 below desired velocity 
accuracy.

• Range and LOS angles: Measured at ≥1Hz
• Relative attitude: ≈ 1°
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Sensor Capabilities
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Flash Lidar
• Flash Lidar uses an array of laser diodes to capture a 

3D snapshot.

• Example: OSIRIS-Rex GoldenEye
 128 x 128 detector array

 Range ≈ 3 km

 5 – 10 Hz capture rate

 Range bias < ± 10 cm

 Range noise (3𝜎) < ± 15 cm
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TriDAR
• Proprietary technology of NEPTEC.

• Specifically designed for the requirements of spacecraft proximity operations.

• Provides high sampling rate, range resolution, and lateral resolution from very 
short to mid ranges (few meters to few hundred meters)

• Combination of lidar and laser triangulation sensor.

26

NEPTEC

NEPTEC
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Advanced Video Guidance Sensor (AVGS)

• Used on Orbital Express

• Uses two sets of laser diodes (800 nm and 850 nm)

• The target pattern only reflects at 850 nm

• The images taken at both wavelengths are subtracted to 
eliminate the background

27

FOV 16° × 16°

Range 0.75 m – 300 m
Short range target: 0.75 m – 20 m
Long range target: 10 m – 300 m

Accuracy at docking ± 13 mm
± 0.3°

Target angles LRT: ± 27°
SRT: ± 12°
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Boeing Vis-STAR

• Vision-based Software for Track, Attitude, and Ranging

• Used on Orbital Express

• At long ranges works as point source tracker.

• At close range uses a silhouette tracking method.

• Scales silhouette according to laser range finder distance data to match 
a set of reference images on file.

• For attitude calculations, the pixel image is compared pixelwise against 
the library images of the silhouette of the target at all attitudes.
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Raven

• To be used on the Restore-L mission

• Visible and IR cameras

• Flash lidar

29

NASA

NASA
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Point Cloud Based Relative Navigation

• Developed in Florida Tech Master’s 
thesis

• Uses Microsoft Kinect2 time-of-
flight sensor to generate point 
clouds of non-cooperative target 
object

• Uses Color Iterative Closest Point 
algorithm to identify transformation 
matrices between point clouds in 
successive frames

• Transformation matrices contain 
relative roll, pitch, yaw angles and 
position

• Laboratory tests show accuracy of 1-
5 mm at distance of 3 m

IR EmitterIR Camera

Color Camera

Depth Frame

Color Frame

Point Cloud

Target Object

Chaser Vehicle
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Rotating Targets

• In on-orbit servicing or debris removal scenarios, 
the majority of RVD targets is non-cooperative

 No sensor fiducials

 No capture interface

 Rotation or tumbling motion

 Exact geometry may not be known

• Typical rotation/tumbling rates
 Inertial rotation: < 0.1°/s

 Failed three-axis stabilization: 4 – 5°/s

 Upper stage in flat spin: up to 40°/s

31

Cooperative Target

Non-Cooperative Target
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Slow Rotation Rates: Fly-Around

• To align with the capture axis, the chaser must match 
rotation rate and lateral velocity.

 Radial fly-around

 Multi-pulse fly-around

 Forced motion circular flyaround

32

Initial burn:
Δ𝑉𝑧𝑖 = 𝑅𝑓𝑎 ሶ𝛼

Forced motion in-plane flyaround at distance 𝑹𝒇𝒂
and angular rate ሶ𝜶:

Equations of motion:
𝑥 𝑡 = −𝑅𝑓𝑎 cos ሶ𝛼𝑡

𝑦 𝑡 = 0
𝑧 𝑡 = 𝑅𝑓𝑎sin( ሶ𝛼𝑡)

Thrust profile:
𝛾𝑥 𝑡 = −𝑅𝑓𝑎 ሶ𝛼 2𝜔 − ሶ𝛼 cos( ሶ𝛼𝑡)

𝛾𝑧 𝑡 = −𝑅𝑓𝑎 ሶ𝛼2 − 2𝜔 ሶ𝛼 + 3𝜔2 sin ሶ𝛼𝑡

6/4/2019 Space Robotics for On-Orbit Servicing and Space Debris Removal
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Medium Rotation Rates: Flyby Approach

• Chaser is set on a free-drift flyby trajectory, bringing it to within capture range of the target with zero relative 
velocity.

• Minimizes plume impingement at close range.

• If capture fails, chaser naturally escapes.

33

Matsumoto, S., Jacobsen, S., Dubowsky, S, and Ohkami, Y., “Approach Planning and Guidance for Uncontrolled Rotating Satellite 
Capture Considering Collision Avoidance,” Proceedings of the 7th International Symposium on Artificial Intelligence, Robotics and 
Automation in Space: i-SAIRAS 2003, Nara, Japan, 2003.

6/4/2019 Space Robotics for On-Orbit Servicing and Space Debris Removal



High Rotation Rates: Axis Approach

• For high rotation rates, trying to match the 
velocity of the capture point with a fly-
around or a flyby maneuver would result in 
excessive propellant consumption and very 
large forces during capture.

• The alternative is to position the chaser 
spacecraft on the rotation axis of the target 
and then grasp the target with a robot 
manipulator.

• This results in low impact forces and more 
predictable contact dynamics.

• The challenge is: will there be a good 
capture feature on or near the rotation 
axis?

34

Rotation Axis

6/4/2019 Space Robotics for On-Orbit Servicing and Space Debris Removal



FIT Research: Sliding Mode Control

• Development and simulation of a sliding 
mode control to guide chaser through a 
maneuvering sphere into final approach 
cone

 Cone: safe approach for chaser

 Zone 2: Keep-out sphere, chaser must not 
enter

 Zone 1: Maneuvering zone to match target 
orientation and rotation rates

• Builds on CW equations to describe 
Spacecraft motion

𝝉𝒊 = ෡𝑯 ሷ𝒒𝒓 + ෡𝑪 ሶ𝒒𝒓 + ෝ𝒈 𝒊
− 𝒌 𝑖 ∙ 𝑠𝑎𝑡

𝑠𝑖
𝛿𝑏𝑜𝑢𝑛𝑑 𝑖

𝒌𝒊 = ෩𝑯 ሷ𝒒𝒓 + ෩𝑪 ሶ𝒒𝒓 + ෥𝒈 𝒊
+ 𝜼𝒊

𝑖 = 𝑥, 𝑦, 𝑧 𝑡

෡𝑯 =
1 0 0
0 1 0
0 0 1

෡𝑪=

0 −2𝜓 0
2𝜓 0 0

0 0 0

ෝ𝒈 =
−3𝜓2𝑥
0
𝜓2𝑧

S. Kwok-Choon, M. Wilde, and T. Go: “Modified sliding control for 
tumbling satellite capture with robotic arm,” 2016 IEEE Aerospace 
Conference, doi: 10.1109/AERO.2016.7500530
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Capture
Multi-body Dynamics and Capture Mechanisms
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Spacecraft-Manipulator Dynamics

• The mass of the manipulator pulls the center of mass 
of the system from the COM of the spacecraft.

• As the linear and angular momenta about the 
system’s COM is conserved, any motion of the arm 
will cause translation and rotation in the base 
spacecraft.

• Contact between the end-effector and a grasping 
target will cause the whole system to rotate and 
translate, depending on the inertia distribution in 
the system and the rigidity of the robot joints.
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Airbus
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6 DOF Equations of Motion

• The EOM of a spacecraft manipulator system are given by:

H𝟎 H𝟎𝒎
H𝟎𝒎
𝑻 H𝒎

ሷ𝒙𝟎
ሷ𝒒
+

ሶH𝟎 ሶH𝟎𝒎
ሶH𝟎𝒎
𝑻 ሶH𝒎

ሶ𝒙𝟎
ሶ𝒒
+
𝒄𝟎
𝒄𝒎

=
0
𝝉

H0: base spacecraft inertia matrix (6 x 6)

H0m: spacecraft manipulator coupling matrix (6 x N)

Hm: manipulator inertia matrix (N x N)

𝒄𝟎, 𝒄𝒎: non-linear coupling terms
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• Linear and angular momenta are conserved, as long as there 
are no external forces and torques acting:

𝑷
𝑳
= H𝟎 ሶ𝒙𝟎 + H𝟎𝒎 ሶ𝒒 = 𝑴𝟎

𝑑

𝑑𝑡
𝑷
𝑳
= H𝟎 ሷ𝒙𝟎 + H𝟎𝒎 ሷ𝒒 + ሶH𝟎 ሶ𝒙𝟎 + ሶH𝟎𝒎 ሶ𝒒 = 0

M. Wilde, S. Kwok Choon, A. Grompone, and M. Romano: “Equations of Motion of Free-Floating Spacecraft-Manipulator

Systems: An Engineer’s Tutorial,” Frontiers in Robotics and AI, 18 April 2018, doi: 10.3389/frobt.2018.00041.

Generalized EOM:

H⋆ ሷ𝒒 + ሶH⋆ ሶ𝒒 + 𝒄⋆ = 𝝉

H⋆ = H𝒎 − H𝟎𝒎
𝑻 H𝟎

− H𝟎𝒎: Generalized Inertia Tensor
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Crewed Spacecraft
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NASA Docking System

• Supports crewed spacecraft docking

 ISS visitation

 Exploration beyond LEO

 Crew rescue

 International cooperative missions

• Chaser vehicle sizes:

 Light: 5,000 – 8,000 kg

 Medium: 8,000 – 25,000 kg

• Target vehicle sizes

 Large space complex: 100,000 – 375,000 kg

 Earth departure stage: 33,000 kg – 170,000 kg
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Robotic Spacecraft: Cooperative

Orbital Express Capture System NASA Magnetic Capture Docking System

SPHERES Docking Port
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Non-Cooperative Capture

Rocket Nozzle Capture Tool

• Designed to dock with the current generation of GEO 
communication satellites

• Nozzle of apogee kick motor is reasonable docking 
interface for life extension missions

• Problem: Will be brittle after burn
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Debris Capture 
Methods

Stiff 
Connection

Tentacles Robotic Arm

Single Arm

Multiple Arms

Flexible 
Connection

Net

Tether-Gripper

Harpoon

Ropes

Bolos

Space Debris Capture
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Surrey Space Center RemoveDEBRIS Net Capture 

Surrey Space Center RemoveDEBRIS Harpoon Capture 
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Tentacle Robot

FIT Capture Concepts & Prototypes

Motion Platform
OptiTrack Markers

M. Wilde, I. Walker, S. Kwok Choon, and J. Near: “Using Tentacle 
Robots for Capturing Non-Cooperative Space Debris – A Proof of 
Concept”, AIAA SPACE and Astronautics Forum and Exposition, 2017, 
doi: 10.2514/6.2017-5246

Capture Gripper

S Kwok Choon, K Buchala, B Blackwell, S Lopresti, M Wilde, and T Go: 
“Design , Fabrication , and Preliminary Testing of Air- Bearing Test 
Vehicles for the Study of Autonomous Satellite Maneuvers,” Florida 
Conference on Recent Advances in Robotics, 2018

Robotic Refueling System

Robotic transfer boom

Capture electromagnets (3)

Transfer nozzle

Guiding cone

Alignment pins (3)

Servos (5)
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Testing
Verification & Validation
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V&V Methods

45

• Goal: Reduction of mission risk to “acceptable” level.
• Hardware-in-the-loop testing with simulation of relevant environment parameters
• Does the test catch all the effects in the real world that could cause a risk during the operational phase?

Spacecraft Dynamics Simulator

Relative Kinematics Simulator 
with Lighting Simulation

Analysis / 
Simulation

Experiment / 
Test

Remaining 
Uncertainty

Orbital perturbation models X Low

Plume interaction models X Low

Thrusters X X Low

Mass, CoM position, inertia X Low

Flexible appendages X Low

Fuel sloshing X Moderate

Sensors X Low

Sensor disturbance environment X Low

Chaser / Target dynamics X Low

S/C relative kinematics X Low

Contact dynamics X Low

Capture latch kinematics X Low
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Spacecraft Motion Simulator Types

• Robotic rendezvous, capture and servicing 
systems require hardware-in-the-loop 
testing in motion simulators

 Sensor performance

 GNC systems

 Mechanisms

 Telerobotics and autonomy

• Simulators must recreate:
 Maneuver kinematics

 Multi-body dynamics, incl. contact dynamics

 Lighting

DOFSimulator TechnologySimulator Type

S/C Kinematics 
Simulator 

[K]

Robotic Manipulator [m]
[1-3t,0-3r] 

Actuated Cardan Joint
(Only Rotational Motion) [0t,3r]

S/C Dynamics 
Simulator 

[D]

Cartesian System [c]

Stewart Platform [s] [3t,3r] 

Neutral Buoyancy [n] [3t,3r] 

Planar Air-Bearing [a]

Spherical Air-Bearing
(Only Rotational Motion) [0t,3r]

[1-2t,1r] 

Other Suspension [o] [1-3t,0-3r] 

Environment

Laboratory

Suborbital
Microgravity 

Systems
[S]

Free-fall Tower [f] [0-3t,0-3r] 

Parabolic Flight [p] [0-3t,0-3r] 

Sounding Rocket [r] [0-3t,0-3r] 

Orbiting
Spacecraft [3t,3r] 

In-field
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Example: Florida Tech ORION Lab
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Orbital Robotics Interaction, On-orbit servicing, 
and Navigation lab

• Maneuver kinematics simulator (4 + 2 DOF)

• Maneuver dynamics simulator (3 DOF)*

• Lighting simulation

• Object tracking system

• Control stations for telerobotics and 
supervised autonomy

• Use of air-bearing vehicles and quadcopters 
for spacecraft robotics experimentation and 
testing

*6 DOF in development

Stationary 
Pan-Tilt Head

Pan-Tilt Mechanism

2 DOF Motion Table

Integrated 
Acrylic Flat 

Floor

High-Precision Air-
Bearing TableLighting Simulator

OptiTrack System

M. Wilde, B. Kaplinger, T. Go, H. Gutierrez, and D. Kirk: "ORION: A Simulation Environment for 
Spacecraft Formation Flight, Capture, and Orbital Robotics”, Proceedings of the 2016 IEEE Aerospace 
Conference, Big Sky, MT, 2016, doi: 10.1109/AERO.2016.7500575
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Maneuver Kinematics Simulator

• Planar, gantry-based simulator for relative motion 
between two spacecraft

• Workspace: 5.5 m x 3.5 m

• Pan-tilt mechanisms for test articles of up to 20 kg, 
supplied with 120 V AC and Ethernet

• Pan-tilt heads can be removed to support other 
mechanisms, such as robotic manipulators

• Enables sensor testing, GNC law verification, teleoperation 
experiments, etc.

• Total 6 degrees of freedom

48

Degree of Freedom Motion Range Max. Vel. Max. Accel.

Chaser x translation 5.5 m 0.25 m/s 1 m/s2

Chaser y translation 3.5 m 0.25 m/s 1 m/s2

Chaser pitch ±90° 60°/s 60°/s2

Chaser yaw inf. 60°/s 60°/s2

Target pitch ±90° 60°/s 60°/s2

Target yaw inf. 60°/s 60°/s2
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Maneuver Dynamics Simulators

49

Two air-bearing motion dynamics testbeds enable friction-free experiments of maneuver dynamics and contact dynamics of 
air-bearing vehicles.

Integrated Flat Floor
• 5.94 m x 3.60 m acrylic flat floor within the frames of 

the Maneuver Kinematics Simulator
• Enables coordinated use of gantry mechanism with 

air-bearing vehicles for kinematics/dynamics 
experiments such as robotic capture of debris objects

High-Precision Air-Bearing Table
• 3.6 m x 1.8 m tempered glass plate on optical bench 

with pneumatic vibration isolators
• Enables experiments in contact dynamics, spacecraft 

controls, formation flight, docking/capture, etc
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Planar Air-Bearing Vehicles

• Planar air-bearing vehicles (ABV) are used 
for formation flight and docking/capture 
experiments

• Propulsion: custom thrusters using 
compressed N2

• Attitude control: Thrusters or custom 
reaction wheels

• On-board computer: Intel i5

• Endurance: ~20 minutes

• Aluminum frame allows easy attachment 
of capture tools, docking interfaces, 
sensors, robot manipulators, etc.
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ChaserTarget

Chaser and target air-bearing vehicles (ABV)

Custom N2 thrusters Custom reaction wheel
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OptiTrack System

• 12-camera OptiTrack Prime 17W system tracks objects within the ORION Lab with sub-millimeter and sub-degree accuracy

• Objects are defined by four infrared reflectors

• Used in closed-loop control of the Maneuver Kinematics Simulator

• For formation flight and docking experiments, OptiTrack can be used as stand-in for relative navigation sensors

• For sensor testing, the OptiTrack data serves as ground truth
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Summary

• Space robotics will play an increasingly critical role in space science, 
commerce and exploration

 On-orbit servicing

 Debris removal

 In-space assembly

• The critical technical challenges:
 Relative navigation

 GNC to capture non-cooperative objects

 Capture dynamics

 Capture mechanisms for non-cooperative objects

• Space robotics system require extensive, multi-disciplinary verification and 
validation, with substantial system-level, hardware-in-the-loop testing
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All attendees must sign the ASCE Florida Section sign-in sheet to receive 

credit for today’s seminars. 

Please provide a signature if you wish to receive a PDH certificate.

Interested in getting involved with the American Society 

of Civil Engineers Cape Canaveral Branch? 
Visit our website at http://branches.asce.org/cape-canaveral/home

Or reach out to us at asce.ccb@gmail.com

http://branches.asce.org/cape-canaveral/home
mailto:asce.ccb@gmail.com
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