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ABSTRACT 

WIND TURBINE CONTROLS IN WIND FARM AND 
OFFSHORE OPERATION 

 
by 

 

Zhongzhou Yang 

 

The University of Wisconsin-Milwaukee, 2013  
Under Supervision of Professor Yaoyu Li and Dr. John E. Seem 

 

Development of advanced control techniques is a critical measure for reducing the 

cost of energy for wind power generation, in terms of both enhancing energy capture and 

reducing fatigue load. There are two remarkable trends for wind energy. First, more and 

more large wind farms are developed in order to reduce the unit-power cost in installation, 

operation, maintenance and transmission. Second, offshore wind energy has received 

significant attention when the scarcity of land resource has appeared to be a major 

bottleneck for next level of wind penetration, especially for Europe and Asia.  This 

dissertation study investigates on several wind turbine control issues in the context of 

wind farm and offshore operation scenarios.  

Traditional wind farm control strategies emphasize the effect of the deficit of average 

wind speed, i.e. on how to guarantee the power quality from grid integration angle by the 

control of the electrical systems or maximize the energy capture of the whole wind farm 
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by optimizing the setting points of rotor speed and blade pitch angle, based on the use of 

simple wake models, such as Jensen wake model. In this study, more complex wake 

models including detailed wind speed deficit distribution across the rotor plane and wake 

meandering are used for load reduction control of wind turbine. A periodic control 

scheme is adopted for individual pitch control including static wake interaction, while for 

the case with wake meandering considered, both a dual-mode model predictive control 

and a multiple model predictive control is applied to the corresponding individual pitch 

control problem, based on the use of the computationally efficient quadratic 

programming solver qpOASES. Simulation results validated the effectiveness of the 

proposed control schemes.  

Besides, as an innovative nearly model-free strategy, the nested-loop extremum 

seeking control (NLESC) scheme is designed to maximize energy capture of a wind farm 

under both steady and turbulent wind. The NLESC scheme is evaluated with a simple 

wind turbine array consisting of three cascaded variable-speed turbines using the 

SimWindFarm simulation platform. For each turbine, the torque gain is adjusted to 

vary/control the corresponding axial induction factor. Simulation under smooth and 

turbulent winds shows the effectiveness of the proposed scheme. Analysis shows that the 

optimal torque gain of each turbine in a cascade of turbines is invariant with wind speed 

if the wind direction does not change, which is supported by simulation results for 

smooth wind inputs. As changes of upstream turbine operation affects the downstream 

turbines with significant delays due to wind propagation, a cross-covariance based delay 

estimate is proposed as adaptive phase compensation between the dither and 

demodulation signals.  
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Another subject of investigation in this research is the evaluation of an innovative 

scheme of actuation for stabilization of offshore floating wind turbines based on actively 

controlled aerodynamic vane actuators. For offshore floating wind turbines, 

underactuation has become a major issue and stabilization of tower/platform adds 

complexity to the control problem in addition to the general power/speed regulation and 

rotor load reduction controls. However, due to the design constraints and the significant 

power involved in the wind turbine structure, a unique challenge is presented to achieve 

low-cost, high-bandwidth and low power consumption design of actuation schemes.  A 

recently proposed concept of vertical and horizontal vanes is evaluated to increase 

damping in roll motion and pitch motion, respectively. The simulation platform FAST 

has been modified including vertical and horizontal vane control.  Simulation results 

validated the effectiveness of the proposed vertical and horizontal active vane actuators.  
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Chapter 1. Introduction 

Wind energy has become and will remain a critical part of renewable power 

generation for the upcoming decades. The worldwide wind power installed has exceeded 

280 GW by the end of 2012 [1]. According to the US Department of Energy, by 2030, 20% 

of all U.S. electricity will be likely supplied by wind power including onshore (16%) and 

offshore (4%) wind power [2]. A major barrier for further development and acceptance of 

wind power is the relatively higher cost of energy (COE), as compared to that of 

conventional energy sources. In order to reduce the COE, the wind energy sector has to 

improve the wind turbine design and operation towards better efficiency and reliability, 

for which better control strategies are very important for the reduction of COE.  

For utility wind turbines, due to the turbulent characteristics of natural wind source 

and complex dynamic characteristics, feedback control is indispensable for effective 

energy capture and load reduction, regardless how good a wind turbine structural design 

could be. Controls for maximizing energy capture is usually focused below rated wind 

speed (the so-called Region-2 operation as to be described in Section 1.1). Above the 

rated wind speed (i.e. the so-called Region 3 operation), the primary control objectives 

are maintaining the power output to the rated level, and minimizing the structural load.  

Reducing both fatigue and extreme loads helps extending the operating life of wind 

turbines. 

This dissertation study focuses on the advanced wind turbine control design for both 

load reduction and maximizing energy capture. A major attempt is to investigate this 

topic with two scenarios that have drawn more attention recently: wind farm and offshore 
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operations. The remainder of this chapter is organized as follows. To facilitate the 

understanding of research motivations, typical wind turbine design and conventional 

wind turbine control strategies will be explained first. Then the wind farm control will be 

briefly reviewed.  For turbines in farm operation, the challenges in both load reduction 

and energy capture will be described. Next, the significances and challenges of floating 

offshore wind turbine will be discussed, and especially the issues with load reduction 

control and stabilization. Finally, the statements of research problems for this dissertation 

study will be presented: three problems for the farm operated turbine control, and the 

other for floating turbine. 

1.1. Wind Turbine Types 

Wind turbines extract energy from wind and convert mechanical rotation into electrical 

power [3]. Wind turbines are generally classified into the Horizontal Axis Wind Turbine 

(HAWT) and Vertical Axis Wind Turbine (VAWT). An HAWT rotates about a 

horizontal axis, as shown in Fig. 1.1; while the VAWT rotates about a vertical axis, as 

shown in Fig. 1.2. The key advantage of the VAWT is that it does not need to face into 

the incoming wind direction. VAWT could be built at the sites with frequent change in 

wind direction, e.g. urban areas.  The disadvantages of VAWT include high cost of drive 

train, low power efficiency, and high dynamic loading on the blades. 

For the utility level wind power generation, the HAWT is almost the exclusive choice 

so far [4]. This dissertation study focuses on the HAWT. Most of the utility wind turbines 

are 3-bladed upwind HAWTs and 2-bladed downwind HAWTs. In the earlier 

development of wind power, downwind turbines were popular because active yaw 

mechanism is not needed and there is no danger for blades to hit the tower. However, 
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turbulence induced by the tower leads to periodic loads on the blades and power 

fluctuation, i.e. the so-called “tower shadow” [4]. For upwind turbines, the rotor is placed 

before the tower along the wind direction, so there is no concern for the tower shadow 

effect. With the comprehensive benefit of load reduction and energy capture, 3-bladed 

upwind turbines are currently dominant for utility wind power generation.  In the earlier 

development of wind power, fixed-speed wind turbines were popular due to their 

simplicity in the control strategy needed. Due to higher energy capture efficiency below 

rated wind speed, variable-speed wind turbines are commonly used in wind industry now. 

In this dissertation study, variable-speed variable-pitch upwind turbines are the focus 

because they are the most popular wind turbine types at present. 

 

Fig. 1.1 Horizontal Axis Wind Turbine [5]   
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Fig. 1.2 A Darrieus Type Vertical Axis Wind Turbine [6]  

1.2. Wind Turbine Control Strategy 

The operation of variable-pitch variable-speed wind turbines can be divided into four 

regions [4] based on the definition of the cut-in speed Vin, the rated wind speed Vrated and 

the cut-out wind speed Vout, as shown in Fig. 1.3. For different regions, the objectives of 

wind turbine control are different.  

 



5 
 

 

Fig. 1.3 Operation Regions for Wind Turbine 

Below the cut-in wind speed Vin (Region 1), the wind turbine is not connected to the 

grid. Above the cut-in wind speed Vin and below the rated wind speed Vrated (Region 2), 

the wind turbine is operated to extract the maximum possible energy from the wind by 

varying rotor speed and/or blade pitching. Above the rated wind speed Vrated and below 

the cut-out wind speed Vout (Region 3), the wind turbine maintains at its rated power Prated 

and the generator speed is restrained to the neighborhood of the rated speed, i.e. the main 

control objective in Region 3 is to keep the rotor speed near the rated speed while 

minimizing the wind turbine loads. Above the cut-out wind speed Vout (Region 4), the 

wind turbine is shut down with aerodynamic and disc braking for the sake of safety. 

The variable-speed variable-pitch turbines typically feature three actuations: blade 

pitch, generator torque and yaw. Blade pitch angles are usually fixed at fine pitch angle in 

Region 2, and are adjusted to limit rotor speed and wind turbine loads in Region 3.  The 

generator side power converters are controlled to vary the electrical torque, which in turn 
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adjust rotor speed. The relationship between power coefficient, Tip Speed Ratio (TSR) 

and pitch angle is shown in Fig. 1.4.  

 

Fig. 1.4 Relationship between Power Coefficient, TSR and Pitch Angle [7] 

Advanced control technologies have been studied extensively for energy capture [8, 9] 

in Region 2 and load reduction [10-12] for Region 3 operations of stand-alone wind 

turbines. However, energy capture and load reduction control from wind farm level has 

not been studied as much. 

1.3. Wind Farm Control 

Appropriate wind farm operation has the benefits of better grid integration, lower 

maintenance costs, and more energy production [13]. For controls of turbines in wind 

farm operation, there are also two aspects similar to the stand-alone: energy capture and 
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load reduction. However, under wind farm operation, both aspects present different 

challenges than the stand-alone turbine operation. 

To the author’s best knowledge, the traditional control strategies for wind farm 

operation emphasize the effect of the deficit of average wind speed, i.e. on how to 

guarantee the power quality for grid integration by the control of the electrical systems 

[14, 15] or maximize the energy capture of the whole wind farm [16]. However, wind 

farm control strategies for maximizing energy capture is still far from mature due to 

complex wake phenomenon. From another standpoint, it is obvious that the asymmetric 

nature of wake interaction would bring great impact on structural load. In this study, both 

load reduction control and maximizing energy capture control are investigated.  

1.3.1. Load Reduction Control for Turbines in Farm Operation 

For stand-alone wind turbines, controls for energy capture is generally based on mean 

wind speed (e.g. hub height), while controls for load reduction is concerned more with 

the asymmetry within the rotor disc. For stand-alone turbines, the incoming wind speed is 

generally uniform except for the vertical wind shear due to the atmospheric boundary 

layer (ABL), shown in Fig. 1.5.  

 



8 
 

 

Fig. 1.5 Atmospheric Boundary Layer 

For turbines in wind farm operation, however, the downstream turbines are exposed 

to a different situation. After passing the upstream turbines, the wind speed is determined 

by the wake characteristics. Thus, the downstream turbines have non-uniform wind 

distribution within the rotor disc due to the overlap of the wake of the upstream turbines, 

as shown in Fig. 1.6. 

 

Fig. 1.6 Wake Overlap at Downstream Turbines 
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Wind turbine wake models play a critical role for wind farm control because wake 

interaction significantly influences both energy capture and loads of the downstream 

turbine. In wind farm, average wind speed at the downstream turbine can be predicted by 

use of simple wake models, such as Jensen wake model [17], which are accurate enough 

for energy capture calculation.  However, wind speed across the whole rotor plane is 

necessary for load calculation of the downstream wind turbine.  

Even worse, the actual wake behavior is not static, i.e. the wind turbine wakes 

actually move bodily in lateral direction in wind farm. This is the so-called wake 

meandering [18] phenomenon. Wake meandering produces time-varying loading on the 

downstream wind turbines. Therefore, incorporation of wake meandering model is 

beneficial for better load reduction control of downstream turbines.  

Structural load reduction in the context of wind farm operation was regarded as an 

opportunity which had not been investigated due to the complexity in predicting the wind 

speed over the rotor disc of the downstream turbine [13]. In order to achieve better load 

reduction control for farm operated wind turbines, more accurate wake models are 

needed to accurately predict wind speed across rotor plane at downstream wind turbines 

[13]. Based on the above issues, more accurate wake models including wake interaction 

and wake meandering were built and corresponding controllers were designed for load 

reduction control of wind turbine in farm operation.  

When wake meandering happens, downstream wind turbine dynamics is nonlinear 

due to varying wind conditions. It is easier to obtain multiple linearized wind turbine 

dynamic models rather than explicit nonlinear wind turbine dynamic models under wake 

meandering. At the same time, model predictive control (MPC) [19] is good at 
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systematically dealing with constraints which are important for wind turbine control, such 

as limits of blade pitch angle and rate. In this situation, one kind of nonlinear model 

predictive control, multi-model predictive control (MMPC) [20], was chosen for loads 

reduction control of wind turbines under wake meandering.  

1.3.2. Energy Capture Control in Wind Farm Level 

The energy capture control of wind farm has the key difference from that for a stand-

alone wind turbine: maximizing the energy capture of individual turbines does not lead to 

maximizing energy capture of a wind farm due to the velocity deficit and wake 

interaction. Intuitively speaking, for a wind farm, an upstream turbine should rotate 

somehow slower than its optimum speed in stand-alone operation, thus extracting less 

kinetic energy so that more energy may be extracted by the downstream turbines, which 

eventually increases the total energy capture of a wind farm [21]. There is an interesting 

observation that the fatigue loads was reduced when energy capture of a cascade of 

turbines was enhanced [21]. Although the optimal induction factors were obtained for a 

cascaded array of wind turbines [21, 22],  it is difficult to implement wind farm control 

by use of optimal induction factors.   

Model-based control strategies, such as model predictive control [23] and numerical 

optimization [24], also had been used for wind farm control for maximizing energy 

capture. The issue for model-based control of wind farm is that wake models may be 

accurate for flat terrain but inaccurate for complex terrain. Therefore, self-learning or 

self-optimizing approaches are received as more feasible solutions. Johnson and Thomas 

[16] proposed a hybrid approach for maximizing the wind farm energy capture by 

combining the Iterative Learning Control (ILC) and Iterative Feedback Tuning (IFT). 
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Marden et al. [25] proposed a model-free control strategy by use of game theory and 

cooperative control to optimize the axial induction factors to maximize power production 

of wind farm.  

More recently, one wind farm control strategy had been patented by use of self-

optimizing controller to maximize wind farm power output [22]. Its key idea is: the self-

optimizing controller for an upstream turbine should be configured to control the 

upstream turbine in an attempt to maximize the combined total power output of this 

upstream turbine and downstream turbines in the wake of this upstream turbine. A better 

choice for self-optimizing controller is ESC. In this thesis, the nest-looped extremum 

seeking control (NLESC) scheme [22] was investigated for maximizing the wind farm 

energy capture. 

1.3.3. Summary of Load Reduction and Energy Capture Control of Farm 

Operated Turbines 

This dissertation study investigates both the load reduction control and energy capture 

control in wind farm level. First, the individual pitch control (IPC) is designed for load 

reduction to handle the wind variation due to wake interaction via a periodic control 

scheme. Then, to deal with the wake meandering phenomenon, a model predictive 

control (MPC) scheme is developed for the IPC of the downstream turbine loads. Thirdly, 

a novel Nested-Loop Extremum Seeking Control (NLESC) strategy is used to maximize 

energy capture of a wind farm. 

1.4. Floating Offshore Wind Turbine Control 

Both fixed platform and floating platform can be used for offshore wind turbines.  

Usually fixed platform is used in shallow water where water depth is usually below 60 
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meters and floating platform is used in deeper water, as shown in Fig. 1.7. Although 

Heroneus introduced floating offshore wind turbine in 1972 [26], it was not until 2009 

that the first floating wind turbine based on the spar-buoy platform was installed [27].  

 

Fig. 1.7 Status of Offshore Wind Energy Technology [28] 

Although fixed offshore wind turbines are easily built based on ripe onshore wind 

turbine technology, offshore wind farms in shallow water near the coastline are usually 

objected by wildlife groups concerning the effects on avian life along the shores. 

Coastline dwellers worry that offshore wind farms block the sea view. Floating wind 

turbines are usually installed some distance from the coast such that floating wind 

turbines are neither visible nor audible. Sullivan pointed out that “field observations of 

offshore wind facilities in the United Kingdom revealed that the facilities may be a major 

Source: National 
Renewable Energy 
Laboratory
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focus of visual attention at distances of up to 10 miles” [29].  Extensive deep water areas 

exist on the West coast, in Hawaii and the Great Lakes region [30] which are ideal sites 

to install floating turbines. From the technical side, the marine and offshore oil industries 

have demonstrated ripe technology to build long-term floating structures. Status of 

offshore wind energy technology in Fig. 1.7 [28] shows wind resources for deep water 

floating turbines (1533GW) is 58% more than the sum of that  for  transitional depth and 

that for shallow water (430GW + 541GW = 971GW). 

The wind turbine dynamics has no big difference between onshore turbine and fixed 

offshore turbine. However, the dynamics of floating turbine is very different from that of 

fixed turbine due to the floating foundation, which brings lots of engineering challenges. 

The first question we should ask is how to stabilize floating wind turbine which is a very 

interesting and challenging one for control field. A greater challenge for floating wind 

turbine is increasing damping in roll motions which are side to side translation in the 

plane of rotor rotation [31]. One more problem, negative damping in tower pitch motion 

exists for floating offshore wind turbines [32]. 

Lackner and Rotea [33] proposed tuned mass-spring-damper (TMD) actuator for 

stabilization of floating offshore wind turbines. However, mass of TMD 20,00 kg is too 

high and TMD stroke (±18 m for active control) is too long, which prevent the practical 

applications of TMD. Colwell and Basu [34] proposed a tuned liquid column damper 

(TLCD) but the size of TLCD 15.2m was also very long.  

In this dissertation study, the problem of interest is to investigate on actuation 

schemes of high bandwidth and low-power consumption with light mass and small size. 
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1.5.  Problem Statements 

Based on the discussion in Sections 1.3 and 1.4, four research problems on wind turbine 

control are addressed in this dissertation study as follows. 

1) For Region 3 operation, design individual pitch controllers for wind turbine load 

reduction with the wake interaction included  

2) For Region 3 operation, design model predictive controller for individual pitch 

control of wind turbine load reduction with wake meandering considered 

3) For Region 2 operation, investigate a novel Nested-Loop Extremum Seeking 

Controller to maximize energy capture of a wind farm based on the wind farm 

control concept from Seem and Li [22] 

4) Investigate the feasibility of an active flow control scheme for stabilization and load 

reduction of floating offshore wind turbine based on the floating offshore wind 

turbine control concept from Li [35] 

1.6. Organization of Thesis 

In order to provide appropriate solutions to above four problems, the remainder of this 

thesis is organized as follows.  

Chapter 2 provides detailed literature review about IPC, wake models, wake 

meandering modeling, MPC, wind farm control and control of floating offshore wind 

turbines.  Periodic control was proposed for IPC of a wind turbine to deal with wake 

interaction.  MMPC was proposed to deal with wake meandering of wind turbine. 

NLESC was proposed to maximize energy capture of a cascade of wind turbines. Vertical 

and horizontal vanes are proposed to stabilize floating wind turbines in side-to-side and 

fore-aft directions respectively.  
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Chapter 3 presents Jensen wake model, Larsen wake model and simplified wake 

meandering model which are used to generate wind profile at downstream wind turbines. 

The detailed procedure for implementation is also described.  

Chapter 4 presents how to design a periodic controller for wind turbine loads 

reduction with the influence of wake interaction. Dynamics simulation of a 600kw 2-

bladed wind turbine was conducted for verification of the proposed DAC controller. 

Chapter 5 presents algorithms of multi-model predictive controller and detailed 

design for loads reduction of downstream wind turbine under wake meandering. 

Dynamics simulation of NREL 5MW wind turbine was conducted for MMPC 

verification. 

Chapter 6 presents a nested-loop extremum seeking control for maximizing energy 

capture of a wind farm. A cascade of 3-turbine were simulated under steady and turbulent 

wind for verification of proposed NLESC. 

Chapter 7 presents the concept of both vertical and horizontal vane. PI-based 

controllers were designed in order to increase damping and alleviate loads of floating 

offshore wind turbine in side-to-side and fore-aft directions respectively. Power 

assumption of vane actuators was also calculated.  

Contributions of this dissertation research are presented in the Chapter 8, along with 

suggested future work. 
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Chapter 2. Literature Review 

In this chapter, previous research in the subjects relevant to this dissertation research 

is reviewed. Understanding of the limitations of the previous research motivates the 

research work of this dissertation. First, the work on wind turbine individual pitch control 

is reviewed, as well as the periodic control because it is chosen in this study to deal with 

the situation of turbine control with wake interaction. As control of farm operated turbine 

is a major theme of this dissertation, the state-of-arts wake models and wake meandering 

models are reviewed. The objective is to set up the ground for choosing appropriate wake 

and wake meandering models for the simulation study of relevant control designs, which 

can provide acceptable accuracy of moderate to low computational complexity. Then, 

model predictive control (MPC) for wind energy application is reviewed. Finally 

reviewed are the floating offshore wind turbine control schemes and wind farm control 

strategies for maximizing total energy capture, respectively.  

2.1. Review of Individual Pitch Control of Wind Turbine  

For Region 3 of wind turbine operation, the expectation is to regulate the power output at 

the rated level while reducing the structural load [4].  As turbine size grows larger and 

larger, the wind turbine structure tends to be more flexible due to the adoption of lighter 

materials and increase in dimension. Load reduction is thus increasingly critical for the 

reliability and safety of turbine operation. Improvement in both blade design and control 

development can contribute to the alleviation of the fatigue loads for turbine, drive-train 

and tower structure. Advanced controller design is considered a relatively cost effective 

approach to load reduction, which can compensate for the system and environmental 

variations.   
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Load reduction control has been implemented and studied via generator torque 

control, blade pitch control and active flow control [36]. For pitch control based load 

reduction, both collective pitch control (CPC) and individual pitch control (IPC) have 

been studied. For CPC, the pitch angles of all turbine blades are adjusted simultaneously, 

and it is appropriate to control the variations slower than one rotor revolution. Due to its 

simplicity, CPC has been widely studied and implemented in wind industry [37]. A major 

drawback of CPC is the inability of dealing with asymmetric load for actual wind turbine. 

Asymmetric load distribution arises most often when the wind speed varies across the 

rotor disc due to factors such as vertical wind shear, change in wind direction, yaw error, 

and wake interaction [10]. Changes in blade characteristics such as surface icing and 

snow accumulation may also lead to asymmetric loading. Such drawback of CPC 

becomes a significant limitation nowadays as the turbine diameter becomes increasingly 

larger.  

In comparison, IPC is achieved by controlling the pitching motion of each blade by 

the virtue of separate actuating mechanism [10], with a primary objective of controlling 

variations faster than the one rotor revolution. Therefore, IPC aims to deal with 

asymmetric loading. Typically the actuators for IPC are required to have higher 

bandwidth, for which high-stiffness electric motor actuators are more advantageous. 

Various sensing schemes have been investigated, such as strain gage at blade root [10], 

local blade inflow [12, 38] and LIDAR [39]. Bossanyi [10] designed LQG-based IPC 

controller to alleviate loads at blade roots by use of linear invariant models obtained 

through d-q axis. Larsen et al [12] designed gain scheduling PI-based IPC for load 

reduction by use of the local inflow angle and relative velocity on each of the blades. 
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Olsen et al. [38] designed IPC based on inflow angle measurements. In particular, Hand 

et al. [39] designed an IPC through directly measuring the upwind incoming flow field by 

use of LIDAR system, which appears promising for improving the system performance 

for feed-forward and model-based feedback control strategies. 

Different control design methods have been applied to the IPC development. The IPC 

design is in principle a multi-input-multi-output control design problem. For industrial 

applications, Bossanyi [37] designed a multi-loop decentralized PI controller where two 

separate SISO loops are designed for rotor tilt and yaw moments, respectively. Kanev et 

al. [40] proposed an IPC algorithm for rotor balance within pitch and pitch rate 

constraints handled by an anti-windup scheme. Jelavic et al. [41] proposed a load 

estimation based IPC scheme. Van Engelen [42] proposed a high harmonics control for 

wind turbines by use of IPC to reduce loads in high frequency. Specially, a series of field 

tests had been conducted at the National Renewable Energy Laboratory (NREL) by 

Bossanyi et al. [43-45]. 

 However, the loop coupling is a significant issue, especially among the generator 

torque, the first tower fore-aft mode and the first tower side-to-side mode control loops. It 

revealed that loop interaction tends to destabilize the closed-loop system when the size of 

the wind turbine rotor increases beyond a certain extent [46]. To solve this problem, 

centralized control design based on the state-space turbine model has appeared a better 

solution. The state-space model based IPC schemes by use of inflow angle measurements 

was initially investigated by NREL from 2002 to 2004 [38] and different sensor choices, 

such as hot wire, laser Doppler velocimetry system et al, are evaluated for inflow angle 

measurements. By far, the optimal and robust control methods have been widely applied 
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to the IPC design, such as the Linear Quadratic Gaussian (LQG) [10] and Η∞ controls 

[47]. Besides, Selvam et al. [11] proposed a LQG-based IPC algorithm with feedforward 

disturbance rejection by use of the estimation of the wind speed. More recently, IPC was 

combined with flap control for load reduction [48].  

It is noteworthy that a particular stream of work on wind turbine control has been 

developed following Balas’ Disturbance Accommodating Control (DAC) scheme [49]. 

Several control schemes have been studied following this framework, e.g. Stol [50], Hand 

[51], Wright [52], Wright and Fingersh [53], Wright and Stol [46]. Stol [50] applied 

Taylor theory to obtain linearized state-space model of wind turbines and applied DAC 

for periodic control of a wind turbine. Hand [51] built wind turbine models including 

vortex and applied DAC for wind disturbance cancellation along blades. Wright [52] 

applied DAC for IPC of a two-bladed turbine. Wright and Fingersh [53] implemented and 

tested DAC for IPC of the CART wind turbine in NREL. Wright and Stol [54] applied 

DAC for loads reduction at both blades and tower base of wind turbines by use of IPC.  

Besides, active yaw control of wind turbine was also achieved through periodic state-

space IPC by Zhao et al. [55]. Recently, Hazim and Stol [56] applied LQR based periodic 

control to the IPC for floating offshore wind turbine.  

To the author’s best knowledge so far, the reported work on IPC design has included 

only the model of vertical wind shear regarding wind asymmetry. For wind farm 

operation, the inter-turbine wake interaction is also significant [16]. It is potentially 

beneficial for further reduction of dynamic load by including wind turbine wake 

interaction. 
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2.2.  Wind Turbine Wake Model 

For wind turbine operation, wake models have been used to predict wind profiles after an 

operating wind turbine [16]. In the past three decades, various wind turbine wake models 

have been studied for optimizing wind farm layout, as well as wind turbine load analysis. 

These wake models can be roughly categorized into three major classes: numerical 

models, kinematic models and field models. In the past three decades, various wind 

turbine wake models have been studied for optimizing wind farm layout, as well as wind 

turbine load analysis. These wake models can be roughly categorized into three major 

classes: numerical models, kinematic models and field models [57]. 

In numerical wake models, wind turbines are described as distributed roughness 

elements, e.g. Templin [58], Newman [59], Crafoord [60] and Moore [61]. Later, these 

models were further developed by Bossanyi et al. [62], Frandsen [63], and Emeis and 

Frandsen [64]. Although these models are seldom adopted in practice due to the 

complexity involved, they can describe the overall wind characteristic for large wind 

farms [57]. Kinematic wake models, also known as explicit wake models, are based on 

self-similar velocity deficit profiles [57].  The original work of kinematic models for 

wind turbine was developed by Lissaman [65], and later modified by Vermeulen et al. 

[66].  Jensen [17] and Katic et al. [67] built simple explicit formula to predict wind speed 

in the far wake of wind turbines by use of momentum balance, leading to the so-called 

Jensen Wake Model. However, linear wake expansion is assumed and initial wake 

expansion is neglected in the Jensen Wake Model. Frandsen [68] presented a nonlinear 

wake expansion. The kinematic model derived by Larsen et al. [69], known as Larsen 

Wake Model, was based on classic wake theory [70]. This model includes the thrust 
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coefficient, the undisturbed wind speed, the rotor diameter, the hub height of wind 

turbine and the ambient turbulence intensity. Field models provide the flow information 

everywhere in the wake through solving a simplified version of the Reynolds averaged 

Navier-Stokes flow equations. The original work on field models was developed by 

Sforza et al. [71], and much more work has followed, e.g. Taylor [72], Liu [73] and 

Ainslie [74]. A comprehensive coverage of wake models can be found in [57]. 

Recently Duckworth [75] validated and compared three different wake models by 

Ainslie [74], Katic [67] and Larsen [69], respectively. Renkema [76] also validated wake 

models by use of testing data in wind farms and wind tunnels. Renkema used second-

order Larsen wake model and pointed out the typo of Larsen wake model in European 

Wind Turbine Standards II (EWTSII) [77].  

One objective of this study is to integrate appropriate wake models into the process of 

plant derivation for controller design. The choice of wake models should be compatible 

with both the control-oriented purpose, i.e. capturing the major characteristics of wind 

turbine wakes while possessing acceptable simplicity. Numerical and field wake models 

are too complex for control design, while the complexity of kinematic wake models 

appears appropriate for control design. Therefore, the kinematic wake models are 

considered in this study. Furthermore, for wake interaction between turbines in wind farm, 

only the far-wake models are needed. Among the available kinematic far-wake models, 

the Jensen Wake Model and the Larsen Wake Model have been considered. The Jensen 

wake model and the Larsen wake model belong to static wake models. This kind of wake 

models is used to predict the average wind speed at downstream wind turbine and 

sufficient for wind power prediction and wind farm configuration optimization. 
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Turbulence intensity and ground effect are considered in the Larsen wake model. The 

wake diameter in Larsen wake model increases nonlinearly with the distance after 

upstream wind turbine. In this situation, the Larsen wake model is more accurate and 

chosen in this study. 

However, a common limitation of the Jensen and Larsen wake models is that the 

wake profile is axisymmetric, while the actual wake profile for the turbines in wind farm 

operation is typically asymmetric, e.g. due to wind shear. When controllers of 

downstream wind turbines are designed for load reduction, more accurate asymmetric 

wake models are needed. For this purpose, an asymmetric wind profile by use of 

logarithmic vertical wind shear and Gaussian type wake deficit [78] is chosen to improve 

axisymmetric wake models.  

In summary, the Larsen wake model and the asymmetric wake model by Van Leuven 

[78] are chosen to generate wind profile at downstream wind turbine and for the 

controller design in this study. 

2.3.  Wind Turbine Meandering Wake Modeling 

The mechanism of wind turbine wake meandering phenomenon has been investigated 

intensively in the past couple of decades. The existing approaches for wake meandering 

modeling mainly include Engineering Models [18, 74, 79-83], Computational Fluid 

Dynamics (CFD) [84] and Spectral Method [85, 86]. The Engineering Models and CFD 

method are time-domain approaches. 

The simplest approach to simulating wake meandering is the Engineering Models, 

which are built through analytical derivation or analysis of experimental and CFD results. 

For Engineering Models, Ainslie [74] considered that the large eddy is the cause of wake 
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meandering and he built the first wake meandering model with the assumption that the 

wake meandering effect on wake deficit is proportional to the standard deviation of 

turbulent wind directions. While Högström et al. [79] argued that Ainslie’s approach is 

incorrect because the standard deviation of wind direction is caused by eddies of all sizes. 

Larsen et al. [80] considered that the instability of blade-tip vortex may be one of the 

reasons for wake meandering. They simulated wake meandering by use of the analytical 

wake model and obtained similar simulation results with the experiment data [81]. 

Espana [87] proposed that the typical atmospheric length scales may be the reason of 

wake meandering but did not suggest any approach to simulating wake meandering. Later, 

Larsen et al. [18] (see details on page 381) developed the Pseudo-Lagrangian approach, 

which  assumes that the wake meandering is a process of releasing a series of wake from 

upstream turbines. Thomsen [82] developed the Simplified Wake Meandering Model 

(SWMM) which can predict the wake center position at the downstream wind turbine via 

the lateral speed at hub-height of the upstream wind turbine. Trujillo [83] developed the 

disk-particle model based on the Pseudo-Lagrangian approach.  

The most accurate method is via CFD, which however may take very intensive 

computational effort to get the wind velocity field within the whole wind turbine wake. 

Recently, Jimenez et al. [84] simulated the wind turbine wake meandering by use of 

large-eddy simulation (LES), and the oscillating wind direction is used as boundary 

conditions.   

For simulating turbulent wind, the most common method may be the spectral method 

described by Veers [85]. In this method, the spectral model and coherence functions are 

used to obtain filtered random variables. Then, filtered signals in spectral domain are 
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converted into real-time turbulent wind by use of Inverse Fast Fourier Transformation 

(IFFT). However, Veers [85] did not provide an appropriate coherence function along the 

transversal direction for simulating wake meandering. As comparison, Kristensen [88] 

provided detailed analysis of lateral coherence which is the critical component of wake 

meandering model. Recently, Nielsen [86] also presented an approach to simulating 

inhomogeneous, non-stationary and non-Gaussian turbulent wind including wake 

meandering, using the coherence model by Davenport  [89]. 

This study aims to use an appropriate wake meandering model which is accurate 

enough for wake meandering simulation and yet simple enough for wind turbine 

controller design. Compared to the CFD and Spectral Method, the Engineering Models 

are simpler approaches that are more suitable for model based controller design. In 

Engineering Models, the relatively simpler SWMM [82], as a Pseudo Lagrangian 

approach, is considered both incorporating the transversal wake motion and control-

design friendly.  

However, SWMM only reflects how the wake is bodily transported along the 

transversal direction, but does not include how to generate the wind profile at the 

upstream wind turbine. When the transversal wind profile at the upstream wind turbine is 

already known, the wake movement at the downstream turbine can be predicted by 

SWMM. Often the transversal wind profile at the upstream wind turbine may not be 

known, and thus it has to be generated with CFD or the spectral method. Madsen et al. 

[90] applied CFD to generate the wind profile at the upstream wind turbine to simulate 

wake meandering, but with considerable complexity. In this study, the spectral method is 
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adopted by choosing the Kaimal spectral model [91] and Kristensen’s coherence 

functions [88] for the transversal wind at upstream wind turbine.  

2.4. Model Predictive Control for Wind Turbine 

Model Predictive Control (MPC) predicts the future response of a plant by use of an 

explicit model [19] and real-time optimize control inputs with the condition of acceptable 

constraints of both control inputs and outputs. In MPC algorithms, a control sequence is 

obtained to optimize the future behavior of a plant at every interval, and then the first 

input in the optimal control sequence is implemented. MPC has been widely used in 

process industries, food processing, automotive, and aerospace [19]. Two characteristics 

differentiate MPC from conventional optimal control. One is that the cost function in 

MPC is chosen as a finite horizon but in conventional optimal control as an infinite 

horizon. The other is that optimization is calculated at every time instant to obtain current 

control action in MPC. However, control gain is pre-computed for conventional optimal 

control design. The most important advantage of MPC is its capability to deal with hard 

constraints of control action and states.  

MPC has been a hot topic both within academic and industry during the past three 

decades. There have been several excellent textbooks [92-96] to emphasize different 

aspects of MPC. An efficient dual mode MPC algorithms and corresponding tuning 

techniques were well explained by Rossiter [92]. Generalized predictive control  and 

implementation issues of MPC were emphasized by Camacho and Bordons [93]. Η2/Η∞ 

and LMI-based MPC were well summarized by Kwon et al. [94]. Proofs of stability and 

robustness, and distributed MPC were emphasized by Rawlings and Mayne [95]. The 

MPC theories for hybrid systems are well described by Borrelli et al. [96]. 
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For different MPC algorithms, the foremost issue is stability. Stability was not 

automatically ensured in early versions of MPC, and not addressed by the proponents of 

MPC in process control [97]. However, if plants are stable, stability properties can be 

achieved by use of a larger horizon compared with the settling time of plants. Actually, 

from 1990s “concern for stability has been a major engine for generating different 

formulation of MPC” [97].  Bemporad et al. [98] summarized that stability of MPC can 

be ensured through different approaches including terminal constraint [99, 100], infinite 

output prediction horizon [101-103], invariant terminal set [104] and contraction 

constraint [105, 106], among others. Mayne et al. [97] showed that essential “ingredients” 

of different stable MPC schemes include a terminal constraint set, a terminal objective 

function, and a local controller. 

For wind turbine control applications, Henriksen [107] first applied dual mode MPC 

[92] which ensures stability without high computational complexity. Santos [108] 

developed damage mitigating control where linear wind turbine models, nonlinear 

damage model and nonlinear MPC scheme were used. Kumar and Stol [109] applied the 

dual-mode MPC with state-feedback to IPC of wind turbine, and the control input was 

obtained through interpolation of those from neighboring controllers based on estimated 

velocity at the hub height. Laks et al. [110] designed dual-mode MPC with output 

feedback for IPC of wind turbines with preview measurements from the LIDAR sensor. 

Soltani et al. [111] designed their wind turbine controller with the LMI (linear matrix 

inequality) based Fast MPC in [112] without addressing stability issues. MPC was also 

applied to load reduction control via trailing-edge flaps on turbine blades [113], although, 
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the stability issue was not addressed. With consideration of stability and computational 

burden, dual mode MPC [92]  is deemed a practical approach for wind turbine controls.  

However, MPC switching for wind turbines has not been seriously dealt with. Only 

Kumar and Stol [114] applied simple interpolation between control inputs from different 

controllers for controller switching. More advanced switched MPC algorithms rather than 

simple interpolation-based MPC schemes could be used to ensure smooth switching 

between MPC controllers. In the initial period of dealing with MPC switching, the 

interpolation approach was used for switching [115-117]. During the past decade, several 

switched MPC algorithms were built with stability ensured. For example, softly switched 

MPC was developed by Wang [118] for application to water supply and distribution 

systems. A switched MPC algorithm [119] was also built and applied for steering vehicle 

control. The above switched MPC algorithms [118, 119] were developed for piecewise 

affine plants, but wind turbine systems impacted by wake meandering do not belong to 

piecewise affine plants. Nonlinear model predictive control was also proposed for smooth 

switching in [120]. However, tractable nonlinear dynamics for the wind turbine control 

under wake meandering is not readily available, which makes the theory difficult to apply. 

An LMI based multi-model predictive control (MMPC) algorithm [121] was applied to a 

chemical reactor application. In comparison, the MMPC proposed in [122] was 

developed without special requirements on state-space models for applications to high 

temperature fuel cells [122] and drug infusion control [123].  

Besides stability, computational load is a big concern for industrial applications. One 

reason why MPC is popular in process control is that the dynamics in process control are 

usually very slow (typical time length is several days) which allows enough time to 
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obtain optimized control sequence at every sampling instant. In comparison, for plants 

with relatively faster dynamics and high dimensions, such as wind turbine control, 

computationally efficient optimization algorithms are needed to implement MPC.  In 

addition, this study deal with wind turbine control by use of linearized plant models 

rather than nonlinear plant models, thus linear MPC methods are considered. In general, 

quadratic programming (QP) problems are solved in typical linear MPC algorithms. In 

this way, computational efficiency of QP is emphasized below. 

The most common methods to solving QP problems include the active set method 

(ASM), the interior point method and the Multi Parametric Quadratic Programming 

(MPQP) [92]. The ASM is widely used because it provides a systematic way of choosing 

a potential active set and iterating through these potential sets to find the global optimum. 

Recently more efficient ASM solver was developed for Fast MPC [124]. The interior 

point method is becoming more popular than ASM within MPC because converge is 

guaranteed in this method and it is faster than ASM. However, the associated 

optimization for each iteration requires more computational effort.  The toolbox of Fast 

MPC by use of the interior point method is also available in [112]. MPQP remains an 

active research area for MPC [125, 126]. In MPQP, online optimization computation is 

transferred to offline, and all possible control laws are defined offline. In this way, online 

QP optimization is converted into set membership tests. However, the potentially large 

number of alternative active sets is still an issue [92].  

The fastest online MPC solver may be Fast MPC [112] where the interior point 

method is used for optimization. However, only open-loop MPC is considered in this tool. 

MPQP is a very efficient algorithm for MPC optimization [96]. Moreover, existing MPC 
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algorithms with MPQP are only useful for piecewise affine systems or equivalent systems 

[96]. The wind turbine dynamics subject to meandering wake does not belong to the 

piecewise affine system because there are no strict partitions for wind turbine states 

where wind turbine dynamics can be defined differently when wake meandering exists. 

For wake meandering phenomenon, the wake center position on downstream wind 

turbine determines wind turbine dynamics rather than wind turbine states. Based on the 

above considerations, an active set method [124] is chosen as a QP solver.  

In summary, the practical MPC approach, the dual-mode MPC [92], was tested to 

deal with wake meandering at first. Then, with the consideration of both characteristic of 

wind turbine plants impacted by wake meandering and lower computational burden of 

MPC without LMI, the MMPC algorithm [122] was proposed to ensure smooth 

controllers switching. An active set optimization solver [127] was chosen for quadratic 

programming. 

2.5. Dynamic Modeling and Control of Floating Offshore Wind 

Turbine 

Two main constraints for design of floating offshore wind turbine are stability and cost. 

One objective in this study is to invent a new type of floating wind turbine with stability 

and cost-effectiveness ensured from the aspect of control.  

Driven by potential offshore wind market, during the past decade different floating 

platforms have appeared for floating offshore turbines including Barge Platform, Tension 

Leg Platform (TLP) [128, 129], Ballast Stabilized Spar Buoy Platform [27, 130] , SWAY 

[131] and Dutch Tri-floater [132], as shown in Fig. 2.1 [133]. In particular, the spar-buoy 

platform had been used in the first installed floating wind turbine [27]. Butterfield et al. 
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[31] had provided a comprehensive investigation about advantages and disadvantages of 

three different floating platforms including Barge, TLP and Ballast (spar). They showed 

that TLP should be the most stable platform. Recently, Principle Power proposed a more 

practical floating platform, WindFloat [134]. The basic idea follows. The floating turbine 

with the WindFloat platform was designed to be assembled onshore and then hauled to 

offshore sites by ships in order to avoid high assembling cost on offshore sites due to 

undesirable weather and operation difficulties.  

 

Fig. 2.1. Floating Deepwater Platform Concepts: 1) Semisubmersible Dutch Tri-Floater [132] 2) Spar 

buoy with two tiers of guy wires [130] 3) Three-arm mono-hull tension-leg platform (TLP) 

[128]; 4) Concrete TLP with gravity anchor [129]; 5) SWAY [131] 

In order to investigate dynamic behavior of new floating wind turbine concepts, three 

main approaches may be used including numerical dynamic modeling, experimental 

model-scale testing and full scale prototype testing [135]. From the standing point of both 

Source: National Renewable Energy Laboratory

 



31 
 

research and cost saving, numerical modeling of floating wind turbine are very useful in 

the initial period to verify different new concepts of floating wind turbines. 

Withee [136] analyzed the coupled dynamics of a floating wind turbine supported on 

a floating platform with a tension leg spar buoy [137]. In Withee’s thesis, both nonlinear 

wave loads on floating platforms and the aerodynamic loads on wind turbine rotor were 

predicted through a coupled way in a stochastic wind and wave environment. The module 

to calculate nonlinear wave loading on the floater was integrated into ADAMS [137] and 

aerodynamic forces on the floating wind turbine was obtained by use of AeroDyn module 

[138]. Finally, both normal operations and extreme wind and wave events were tested to 

evaluate the floating platform design. Based on Withee’s work [136], Wayman [139] 

optimized parameters of the following platforms: TLP, Tri-Floater platforms, Spar 

platforms and Barge platforms. Wayman tested the effects of wind speed, water depth 

and viscous damping on these different platforms. Later, Jonkman [28] extended FAST 

[140] capability to simulate floating offshore wind turbine through adding the module of 

floating platform dynamics including TLP, Barge platforms and Spar buoy platforms.  

Recently, Matha [141] compared loads of TLP with that of other platforms for floating 

offshore wind turbines. A particular development, the software TimeFloat [142],  was 

used to analyze the motion and calculate hydrodynamic forces of a special platform 

WindFloat [143], for which WAMIT [144] was used as a preprocessor to compute wave 

interaction effects. Then, TimeFloat was interfaced with FAST so as to simulate the 

coupled dynamics of floating wind turbines and passes data of platform motion back to 

TimeFloat [142]. 
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Except for FAST [140], Nielsen et al. [145] extended HWAC2 [146] capability to 

simulate floating offshore wind turbine through a combination of SIMO/RIFLEX and 

HAWC2.  SIMO [147] is a time domain software used to simulate multibody systems 

which allow nonlinear effects to be included in the wave-frequency range.  RIFLEX [148] 

is a software of finite element method for static and dynamic analysis of slender marine 

structures. 

The dynamics of a floating turbine is very different from that of a fixed turbine due to 

the floating foundation, which brings many engineering challenges. The top priority is 

how to ensure a floating wind turbine’s stability, which is a very interesting and 

challenging one for the control field. A greater challenge for floating wind turbine is 

increasing damping in the roll motion which is  the side-to-side translation in the plane of 

rotor rotation [31].  Larsen et al. [32] also claimed that negative damping of tower pitch 

motion exists for floating offshore wind turbines and designed PI-based pitch controllers 

to ensure the desired bandwidth by use of pole placement, which leads to a stable mode 

of floating offshore wind turbines.  Although damping of tower motion was successfully 

increased, the variations in rotational speed and electrical power are increased 30%. 

Jonkman investigated the capability to control floating offshore wind turbine by use 

of the PID controller and claimed that the barge-pitch-motion problem was not entirely 

resolved through detuning the gains of blade pitch-to-feather controller [149]. Later, 

Skaare et al. [150] designed an estimator based blade pitch control to increase the fatigue 

life of floating wind turbines.  

In addition to PI controllers, modern control methods by use of state-space models 

were also investigated to increase tower damping of the floating wind turbine. For 
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example, based on Jonkman’s work [28], Namik and Stol [151] designed periodic control 

based IPC for floating offshore wind turbines. Later, Namik and Stol [152] designed 

DAC based IPC for offshore floating turbines with both barge platform and TLP. Their 

results showed improvement in the regulation of power and rotor speed, as well as 

reduction in the tower side-to-side bending moment. However, the tower fore-aft bending 

moment is 24% higher than that of the onshore counterpart. 

The aforementioned investigations have all utilize the control actuations available on 

a typical wind turbine. It is obvious that underactuation is a major issue for floating 

offshore wind turbine with the tower/platform stabilization issue present. Furthermore, 

tower/platform motion features large inertia, and thus control authority required is 

generally siginificant. Therefore, it is necessary to develop effective and feasible 

solutions of actuation schemes for stabilizing tower/platform motions. 

Lackner and Rotea [33] proposed to use the tuned mass-spring-damper (TMD) 

actuator for floating turbine stabilization. This technique has been well received for 

building structure control in earthquake engineering. In this work, the TMD actuator is 

proposed to reside in the nacelle in order to reduce the fatigue load of the tower-base 

bending moment of offshore wind turbine with floating barge-type foundation. Fig. 2.2 

shows that variation of tower fore-aft damage equivalent load (DEL) was plotted as a 

function of power consumption of active TMD control. It shows that, with about 20% 

loads reduction, the power consumption is about 200 kW, which is about 4% of total 

wind power production (5MW). Fig. 2.3 shows that the passive TMD system reduced the 

tower fore-aft fatigue load by approximately 10%, as compared to a baseline turbine, 

while the active TMD control achieved 30% reduction at the expense of about 8% turbine 
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power generated. However, the TMD mass designed is 20,000 kg in order to achieve the 

aforementioned performance. This is about 8% of the nacelle mass and 6% of the tower 

top mass [153], which requires a dramatic redesign of the nacelle, tower and buoyancy 

units. Besides the significant weight addition, another issue is TMD’s large stroke. As 

shown in Fig. 2.4, the range of stroke for passive control is approximately ±8 m, while 

for active control it is about ±18 m. Because the length of the nacelle is already about 18 

m for the wind turbine model considered [153], it is nearly impossible to install TMD in 

the nacelle in such a large stroke. 

 

Fig. 2.2  Reduction of Tower Fore-aft Damage Equivalent Load by use of TMD [33] 
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Fig. 2.3  Reduction Percent of Tower Fore-aft Damage Equivalent Load by use of TMD [33] 

 
Fig. 2.4 Comparison of the TMD Stroke for the optimal passive control case and a selected active 

control case [33] 
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Except for mass-spring-damper actuation, Colwell and Basu [34] and Luo et al. [154] 

designed tuned liquid column damper (TLCD) to stabilize floating offshore wind turbines. 

Colwell and Basu [34] claimed loads reductions of up to 55% in the peak response by use 

of TLCD under wind and wave excitation but the TLCD was put at tower top with length 

of 15.2m, which is too long and brings big troubles for nacelle design. Luo et al. [154] 

put TLCD on a turbine’s tower and designed corresponding Η2/Η∞ controllers. However, 

wind turbine models were too simple and wind and wave conditions were not clarified 

during simulation.  

In this study, a new actuator was added [35] to reduce the floating turbine tower 

motion and improve stability of a floating turbine. However, tower-top weight should not 

be increased too much because higher tower-top weight means higher cost for a floating 

offshore wind turbine from the aspects of maintenance and installation. In this situation, a 

good choice may be an aerodynamic vane which can take full advantage of aerodynamic 

forces and its relative weight is lower compared with the TLCD actuator. Based on the 

comments by Butterfield et al., “A greater challenge for floating wind turbine is 

increasing damping in roll motions” [31], a vertical vane was used to increase damping of 

tower motion in side-side direction. A horizontal vane was also used to avoid negative 

damping and increase damping of floating turbines in the fore-aft direction. 

2.6. Wind Farm Control 

Wind farm control presents control and optimization challenges in order to maximize the 

overall power yield or to satisfy the farm level power demand while limiting or 

minimizing the structural loading. Although the control strategies for stand-alone turbines 

have been widely investigated, e.g. maximizing energy capture [8, 9] and load reduction 
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[10, 155, 156], farm-level wind turbine controls have not been mature enough for 

industrial applications.  Due to wake interactions between turbines, optimization of 

energy capture or load reduction for all the turbines in a wind farm requires globally 

optimized operation of individual turbines, i.e. this cannot be achieved by merely 

optimizing the operation of individual turbines.  

In 1993, Spruce [157] had systematically conducted simulation and control of wind 

farms with considering factors including wake interaction, wake transportation delay and 

fatigue damage. Due to model reliability issues for complex topology of different wind 

farms, Spruce [157] proposed simple ESC algorithm rather than model-based control 

method. In his PhD thesis, different cost functions were defined for individual, non-

interacting and interacting turbines in a wind farm in order to maximize financial income 

and minimize the turbines’ fatigue damage. Spruce [157] also divided possible wind farm 

control algorithms into two different categories: hierarchical control and “multivariable 

control”. Hierarchical wind farm control includes plant level control and supervisory 

level control. However, all turbine inputs are commanded from a central computer in 

“multivariable control”, which should be the same to the concept of centralized control.  

Recently various control strategies have been investigated for wind farm controls. 

Spudic [23] illustrated the idea of  hierarchical wind farm control which is based on the 

mixed-integer quadratic programming (MIQP) for load and power optimization by use of 

constrained optimal control approach [158] (one type of model predictive control) and the 

wind farm simulation platform SimWindFarm [159]. In Spudic’s work, optimal power 

reference in a wind farm was obtained for wind farm control and then generator torque 
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and pitch angle of wind turbines were obtained by defaulted controllers when power 

references were given. 

Soleimanzadeh and Wisniewski [24] conducted wind farm optimization using a wind-

flow based farm model via a 2-D finite volume method. Under the rated wind speed, the 

rotor speed at every turbine is dynamically optimized to maximize the total wind energy 

capture and the sum of damping factors of wind turbine in both fore-aft and side-to-side 

directions based on the wind profiles predicted by the wind flow model. Accordingly, 

above the rated wind speed, the pitch angle and power reference at every turbine are 

dynamically optimized to meet power demand of a farm while maximizing the sum of the 

aforementioned damping factors. Soleimanzadeh and Wisniewski [160] improved 

previous work and designed a centralized controller by use of model predictive controller 

toolbox and structural loads in low frequency were specially reduced.  

Madjidian and Rantzer [161] proposed a stationary turbine interaction model to 

calculate the wind speed at downstream turbines by use of wind speed, turbulence 

intensity and thrust coefficients at upstream turbines. It showed that the thrust of 

downstream turbines can be reduced by decreasing the power production at upstream 

turbines while maintaining the power of downstream turbines at the same level.  

Brand [162] built a quasi-steady wind farm flow model [163], which relates external 

conditions including wind speed, wind direction, turbulence intensity to states including 

rotor speed, pitch angle and outputs including power production and mechanical loading 

of all turbines.  Brand [162] also proposed the inverse mode of the quasi-steady wind 

farm flow model, which means that power is input and all other parameters including 
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external conditions and mechanical loads of turbines are output. Then the inverse mode is 

used to calculate the distribution of power references over turbines in a wind farm.  

Johnson and Thomas [16] proposed a hybrid approach for maximizing the wind farm 

energy capture by combining the Iterative Learning Control (ILC) and Iterative Feedback 

Tuning (IFT). Both pitch angle and tip speed ratio (TSR) are included as control inputs, 

and the simulation model is developed based on the Park wake model [17] for an array of 

three turbines. 

In 2009, Knudsen et al [164] described the basic idea, approach and preliminary 

results for distributed control of large-scale offshore wind farms in the EU-FP7 project 

with the objective of wind turbine fatigue loads reduction.  

Kristalny and Madjidian [165] proposed a distributed feedforward control scheme for 

the possibility of cooperation between turbines and the problem was formulated as a 

decentralized model matching optimization.  

Madjidian et al. [166] proposed a dynamically distributed power coordination scheme 

for fatigue load reduction in wind farms when power demand is below the actual power 

production capacity of a wind farm. The control law only required each turbine to 

communicate with their neighboring turbines. However, wake model and wind 

propagation were not considered in this study. Madjidian et al [167] also extended their 

work for reducing structural loads on the turbine tower and the low speed shaft. Recently, 

Biegel et al. [168] applied a similar strategy but designed a distributed low-complexity 

controller for wind power plant in derated operation for reduction of fatigue loads. 

Zhao et al. [169] proposed intelligent agent control for fatigue distribution 

optimization of offshore wind farms and the power reference was distributed for 
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balancing structure fatigue loads of individual turbines. In this paper, a wind farm was 

modeled as a multi-intelligent agent network. 

Horvat et al. [170] showed that power production of a wind farm could be increased 

through optimizing rotor speed of individual wind turbines when wind speed is below 

rated wind speed. Horvat et al. [170] also showed that the loads at different turbines 

could be equalized through optimizing power production references for different turbines 

when wind speed is higher than rated wind speed. 

Marden et al. [25] suggested a model-free control strategy by use of game theory and 

cooperative control to optimize the induction factors to maximize power production of 

the wind farm. The Park wake model was used for wind farm simulation. For an array of 

three turbines, the resultant axial induction factor for the first upstream turbine was 0.232, 

instead of the analytical result of 1/7 in [21]. 

Bitar and Seiler [171] derived optimal induction factor and total power limit for an 

array of turbines by use of dynamic programming. They also pointed out that percentage 

of power improvement on greed policy is 8.33% by use of optimal induction factor. 

However, in wind field the improvement percentage could be higher than 8.33% because 

in wind field the power production maximum for an array of turbines is never reached for 

the benchmark of greed policy with inductor factor 1/3 for all turbines. 

Park et al. [172] optimized both yaw offset angle and induction factors in order to 

maximize wind farm power by use of static game theory. The steepest descent method 

was used in this study to calculate optimal yaw offset angles and the induction factors. 
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Guo et al. [173] designed a wind farm controller including an outer loop by use of 

model predictive control and an inner loop by use of adaptive control in order to 

accurately and smoothly track desired power output reference from a power grid operator.  

Most existing studies on wind farm energy capture are model based, except for [16] 

and [25]. As the existing wind turbine wake model cannot accurately describe the actual 

wake behavior, a (nearly) model-free approach is still considered more appropriate for 

wind farm energy capture optimization. Furthermore, since control actuators of wind 

turbines only include blade pitch angle and generator torque, it is difficult to implement 

control strategies in wind sites when control input blade tip speed ratio [16], rotor speed 

[24] or induction factor [25] is used such that in this study generator torque control was 

proposed to maximize energy capture of wind farm. In this thesis, a nest-looped 

extremum seeking control (NLESC) scheme was presented for maximizing energy 

capture  of the wind farm [22]. 
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Chapter 3.  Modeling of Wind Turbine Wake and Wake 

Meandering  

As mentioned in Chapter 2, wake and wake meandering modeling is critical for 

controls of farm operated wind turbines. In this dissertation study, two wake models have 

been involved, the Jensen wake model and the Larsen wake model. In this chapter, these 

two wake models are described first. Then the logarithmic vertical wind shear model and 

Gaussian wake deficit distribution are used to compose the wake profile. Finally a wake 

meandering model is presented. 

3.1.  Jensen Wake Model 

The Jensen Wake Model [17] is used to predict the mean wind speed at some distance 

behind wind turbines. An upstream and a downstream wind turbine are shown in Fig. 3.1. 

The incoming wind speed is V∞, Dr is the diameter of both the upstream and downstream 

turbines, and Lhub is the distance between the hub axes of upstream and downstream wind 

turbines. Vw is the mean wind speed of the downstream turbine rotor which is located at 

the distance xw along the incoming wind direction from the upstream one. The wake 

diameter is assumed to grow linearly from Dr at the upstream turbine to Dw at the 

downstream turbine, i.e.  

2w r wD D kx= +  
 
(3.1) 

where k is the wake entrainment constant. The mean wind speed at the two turbines are 

related via  
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where Ct is the thrust coefficient of the upstream turbine. 

 

 

Fig. 3.1: Illustration of Jensen wake model 

3.2. Larsen Wake Model 

The Larsen Model [69] considers axisymmetric wake profile with nonlinear growth of the 

wake diameter along the distance after the upstream wind turbine. The Larsen wake 

model is illustrated in Fig. 3.2, which is a scenario similar to that in Fig. 3.1. In this 

illustration, both Cartesian and axisymmetric cylindrical coordinates are used for the ease 

of description. The x coordinate is along the prevailing wind direction, with the origin 

located at distance x1 before the upstream turbine. The z coordinate is that perpendicular 

to the ground surface, with the origin located on the ground. The y coordinate is the other 

horizontal direction perpendicular to the x coordinate (i.e. the “lateral” direction), with 

the origin located at the hub axis of the upstream turbine. The origin of axisymmetric 
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cylindrical coordinate is located at (0, 0, H), where H is the hub height of wind turbines. 

Along the x direction, the upstream and downstream turbines are located at x1 and x2, 

respectively, where the difference of x2 and x1 is xw. The definitions of V∞, Lhub and Dr are 

same as those in the Jensen model. 

 

Fig. 3.2: Illustration of Larsen wake model 

The Larsen wake model is recommended by the EWTS II (European Wind Turbine 

Standards) [77], which has been developed based on the Prandtl turbulent boundary layer 

equations. Based on the assumptions include that the flow is incompressible and 

stationary, wind shear is neglected, and the velocity profile is self-similar, the first-order 

solution of Prandtl turbulent boundary layer equation can be obtained as [77] 
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where ∆V(xw, r) is the velocity deficit at distance xw from the upstream rotor plane and 

radius r from the wake centerline, Ar is the rotor-disc area, Ct is the thrust coefficient, and 

the wake radius Rw is 

( ) ( ) ( )
1

1 15 2 5 3
1 0

35 3
2w w t r wR x c C A x x
π

 = +     
    (3.4) 

The parameters c1 and x0 are given by 

                      (3.5) 

                                                                      (3.6)   

where Dr is the rotor diameter.  In Eq. (3.6), the effective rotor diameter Deff is given by 

     (3.7a) 

where Ct is again the thrust coefficient of the upstream turbine, and R9.5, the wake radius 

at a distance of 9.5 times of the rotor diameter downstream of the turbine, is given by 

   (3.7b) 

where H is the hub height of the upstream wind turbine and Rnb is given by 

   (3.7c) 

where Ia is the ambient turbulence intensity. Although the first-order Larsen wake model 

is implemented, the second-order solution could be found in [76]. Besides, at rotor center, 

the first-order solution is equivalent to the second-order solution. 
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The Larsen Model includes the radial variation of the wind field across the rotor disc, 

which is important for load reduction control. Also, the turbulence intensity and ground 

effect are included in the Larsen Model. Therefore, the Larsen Model has been chosen in 

this study over the Jensen Model for the farm-operated wind turbine control.  A common 

limitation of the Jensen and Larsen wake models is that the wake profile is axisymmetric, 

while the actual wake profile for the turbines in wind farm operation is typically 

asymmetric, mainly due to wind shear. To amend for this deficiency, in this study, the 

Larsen Wake Model in Eq. (3.3) is used only to calculate the hub-height wind speed 

obtained by setting r to zero, while the wind-shear effect and the cross profile of the wake 

are included by additional modification described in the following subsections, which can 

generate asymmetric wind profile after calculation of hub-height wind speed. 

3.3. Wind Shear 

In the atmospheric boundary layer, the wind speed increases with height due to the 

viscosity of air flow, which is known as the wind shear. Among the wind shear models 

developed, the most often considered is the logarithmic vertical wind shear model [174]  

  
    

 (3.8) 

where z is the vertical coordinate with the origin located on the ground surface, H is the 

hub height, Vhub is the hub-height wind speed, V(z) is the horizontal wind speed along the 

z direction, and z0 is the surface roughness which is chosen to be 0.3 (corresponding to 

the case of open farm land with few trees and buildings in [174]).  

0

0

ln( / )( )
ln( / )hub

z zV z V
H z
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3.4. Wind Profile of Downstream Turbine Rotor Disc with Wake 

Interaction included 

For actual wind farm operation, the downstream wind turbine may reside fully or 

partially in the wake of the associated upstream turbines. The case of partial wake is more 

complicated and bears more impact on the load reduction control of the downstream 

turbine. Fig. 3.3 illustrates such a case of wake interaction at the downstream wind 

turbine. The smaller disk refers to the rotor of the downstream turbine, while the larger 

disk refers to the wake of the upstream turbine developed at the downwind rotor plane.  

 

Fig. 3.3: Illustration of Wake Interaction at the Downstream Turbine 

In the rotor disk at the downstream turbine, the wind profile consists of the incoming 

wind region and the wake region. In Fig. 3.3, the larger disk refers to the wake region 

while the remaining region belongs to incoming wind region. The wind profile in the 

incoming wind region is determined via Eq. (3.8), while the hub-height wind speed in the 
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wake region is calculated with the Larsen wake model in Eq. (3.3). However, neither the 

Jensen nor the Larsen model includes the vertical asymmetry due to the vertical shear. 

Therefore, such models are enhanced in this study to address vertical shear in order to 

generate more realistic wind profile in the cross section of the wake.  

Existing wind-turbine wake studies [74, 175] have shown that the velocity deficit 

profile for axisymmetric wakes can be described by a Gaussian-type function in Cartesian 

type of coordinates. In particular, based on the characteristic of Gaussian velocity deficit 

distribution, van Leuven [78] proposed the so-called corrected 2-D Gaussian function for 

the wind deficit in the cross section of the wake, i.e.

 2 2
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y z

y z H
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hub
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H z
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(3.9) 

 
where ΔVhub is the hub-height velocity deficit, Ry and Rz  are the wake radii in the y and z 

directions, respectively. Equation (3.9) indicates an elliptical bell shape for the wake 

profile. In this dissertation study, the wake shape is still assumed to be circular, similar to 

the Jensen and Larsen wake model. 

Then the wake profile at the downstream turbine is given by  

  
(3.10) 

 
where Vwcenter = V(x2, 0, H) is the wind speed at the wake center, following the notations 

in Fig. 3.2. As shown in Fig. 3.3, the wind profile in the incoming wind region is 

calculated with Eq. (3.8) and that in the wake region with Eq. (3.10). In Eq. (3.10), the 

hub-height velocity deficit ∆Vhub=Vwcenter − V∞ is calculated with the Larsen Model (3.3). 
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3.5. Wake Meandering 

To facilitate the modeling and control design for more realistic operation of farm turbines, 

the wake meandering phenomenon is modeled. Wake meandering is illustrated with the 

schematic in Fig. 3.4. The coordinates are defined the same as in Fig. 3.1. Again, the 

upstream and downstream turbines are located at x1 and x2, respectively, with spacing xw 

= x2 − x1. The incoming wind speed is V∞, and Dw is the wake diameter at the downstream 

turbine. The wind profile at the downstream wind turbine can be predicted based on the 

incoming wind speed, ambient turbulent intensity, size of wind turbine and relative 

position of wind turbines by use of Larsen wake model. The major distinction of wake 

meandering modeling is that the wake center moves in transversal direction. The wind 

profile at the downstream wind turbine is composed in the following fashion. First, the 

transversal speed of the wake at the upstream wind turbine is calculated, then the wake 

center at the downstream wind turbine is predicted, finally the wind profile is composed 

using the Jensen or Larsen wake model with the wake-center position. 

 

Fig. 3.4: Illustration for Wind Turbine Wake Meandering 
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The procedure for wake meandering simulation is proposed as follows. First, the 

spectral method is used to generate wind profile including wake meandering 

characteristic at the upstream turbine by choosing appropriate spectral model and 

coherence functions, as shown in Fig. 3.5. Second, SWMM (Simplified Wake 

Meandering Model) [82] is used to predict the wake motion at the downstream turbine 

based on the wind profile at the upstream turbine.  

 

Fig. 3.5:  Spectral Method to Generate Turbulent Wind [176] 

According to the IEC 61400-1 standard [91], the Kaimal spectrum is given as 

                       ( )
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where Lk is velocity component integral scale parameter,  f is the frequency in Hz,  k (= 1, 

2 and 3) denotes the velocity component, U  is the mean wind speed at hub height H, 

and σk is the variance determined by the turbulence intensity. 

According to the IEC spectral models, the coherence functions of the three wind 

velocity components are different. For the v1 component (i.e. the x direction in Fig. 3.4), 

the coherence function between points i and j on the grid is defined as [91]  
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( ) ( )2 2
, 1exp / 0.12 /i j cCoh a fl v l L = − +  

        (3.12a) 

where l is the distance between the two points, a is the coherence decrement, and Lc is a 

coherence scale parameter.  According to [91], a = 12 and Lc = 5.67⋅min(60, H) m.  The 

coherence function for the v2 component (i.e. the y direction in Fig. 3.4) is defined as 

( ), 2exp /i jCoh cfl v= −                        (3.12b) 

where c = 4.2 [88].  The coherence function for the v3 component (i.e. the z direction in 

Fig. 3.4) is defined as  

,

1
0i j

i j
Coh

i j
=

=  ≠
                       (3.12c) 

where w is the velocity in the vertical direction. 

Based on Thomsen’s theory [82], the low-pass filtered wind speed in the transversal 

direction at the hub height is approximated as the spatially averaged cross-component 

wind speed, which is deemed as the wake-center moving speed. Under Taylor’s 

hypothesis, the wake-center moving speed for every wake “release” does not change 

when the wake transports from upstream wind turbine to downstream wind turbine. Thus, 

the wake-center position at the downstream wind turbine is determined by 

     ( )y d filtT V t∆ = ⋅                    (3.13a) 

     ( )z d filtT W t∆ = ⋅                   (3.13b) 

where Vfilt and Wfilt are the filtered velocity along the transversal and vertical direction, 

respectively, at the hub center of the upstream wind turbine. The “Wind Profile Time 

Series” in Fig. 3.5 are used as input to the low-pass filter. Td is the downstream traveling 
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time, equal to downwind distance divided by mean wind speed at the upstream wind 

turbine. The filtering is accomplished with the following first-order low-pass filter  

      ( ) ( )1/ 1WM fF s T s= +                   (3.14) 

where time constant Tf  corresponds to a characteristic size of the rotor (in the range of 

radius to diameter) relative to the mean wind speed at the upstream wind turbine. 

 For field wind, due to the turbulent nature of wind, the hub-center wind speed 

components along transversal and vertical direction are generally not equal to the wake-

center moving speed. The characteristic wind speed for wake meandering along the 

transversal and the vertical directions via the mass-density analogy [18] may be a better 

choice than the hub-center wind speed, especially when LIDAR measurement [177] is 

available. The characteristic wind speed across the rotor plane along transversal and 

vertical direction, i.e. Vc and Wc, can be calculated by  

       1
c

A

V vdydz
A

= ∫∫                    (3.15a) 

1
c

A

W wdydz
A

= ∫∫                    (3.15b) 

where A is the rotor disc area. 

For simplicity, only the wake motion in the transversal direction is considered in this 

study. With such simplification, the procedure for calculating the trajectory of the wake 

center is summarized as follows. 

1) Equations (3.11) and (3.12) are used to generate the turbulent wind speed at every 

point across the rotor plane. 

2) Based on turbulent wind speed obtained in the first step, Eq. (3.14) is used to 

calculate the filtered transversal velocity at every point across rotor plane. 
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3) Use Eq. (3.15a) to calculate the wake-center moving speed based on the filtered 

wind speed at every point across rotor plane.  

4) Equation (3.13a) is used to predict the wake center position based on wake center 

moving speed.      

When the wake center at downstream wind turbine is known by use of simplified 

wake meandering model, the wind profile at downstream wind turbine is composed by 

use of the method in Section 4. 

3.6. Algorithms for Wake Interaction and Wake Meandering in 

TurbSim  

TurbSim [176] , a stochastic, full-field, turbulent-wind simulator developed by NREL, is 

used to generate wind profile including wake interaction and wake meandering.  

 

Fig. 3.6 Grid Points for Wind Profile in TurbSim [176] 

Based on a statistical modeling scheme, TurbSim provides numerical simulation 

modeling of 3-D wind speed time series at points in Fig. 3.6. The output of TurbSim can 

then be used as input into AeroDyn or other relevant codes like FAST (Fatigue, 
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Aerodynamics, Structures, and Turbulence) [140]. “AeroDyn uses Taylor’s frozen 

turbulence hypothesis to obtain the local wind speeds, interpolating the TurbSim-

generated fields in both time and space” [176]. 

In this dissertation study, the TurbSim is modified to generate wind speed at points in 

the 2-D vertical rectangular grids in Fig. 3.6. The wind speeds at these points include 

wake interaction and wake meandering characteristics described in the previous sections. 

The coordinates adopted in TurbSim is shown in Fig. 3.7. 

The procedure for generating wind profiles including wake interaction consist of the 

following steps. 

1) Calculate wake radius Dw by using Eq. (3.1) or (3.4); 

2) For every point (x, y) in Fig. 3.6, determine if it belongs to the wake region or the 

incoming wind region. If ( ) ( )2 22( ) / 2hub wx L y H D− + − < , it belongs to the wake 

region, otherwise to the incoming region; 

3) For every point in the rotor plane: if it belongs to the wake region, the wind speed 

at x direction is calculated by Eq. (3.10); otherwise by Eq. (3.8); 
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Fig. 3.7: Coordinates in TurbSim [176] 

The procedures for generating the wind profiles including wake interaction and wake 

meandering consist of the following steps. 

1) Set time step ∆T, the incoming wind speed V∞, the initial moving speed for the 

wake center, simulation time Tmax; 

2) Calculate wake radius Dw by use Eq. (3.1) or (3.4); 

3) The turbulent wind speed along y direction at every point with time series are 

generated by TurbSim’s original subroutines using the special coherence 

function (3.12b); 

4) Set Tf = Dr/V∞ [82], and a = ∆T/(Tf + ∆T); 
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5) At time t,  the turbulent speed along y direction at all grid points across the 

rotor plane were added together, and then the sum is divided by the total 

number of grid points so as to obtain the average of turbulent speed part  Vc (t), 

following Eq. (3.15a); 

6) For t ≥ ∆T, Vfilt (t) = (1 − a) × Vfilt (t − ∆T) + a × Vc (t) which is derived based 

on the low-pass filter Eq. (3.14) as suggested by [178] ; 

7) Calculate the wake center position at the downstream wind turbine ∆y(t) by Eq. 

(3.13a); 

8) t = t + ∆T; 

9) If t ≤ Tmax, return to step 5; otherwise, proceed to step 10.  

10) Reset t to 0; 

11) Define Lhub as the distance between wake center and hub center of downstream 

wind turbine and update Lhub based on ∆y(t) and relative position of 

downstream and upstream wind turbines;  

12) Calculate wake radius Dw by using Eq. (3.1) or (3.4); 

13) For every point (x, y) in Fig. 3.6, determine if it belongs to the wake region or 

the incoming wind region. If ( ) ( )2 22( ) / 2hub wx L y H D− + − < , it belongs to 

the wake region, otherwise to the incoming region; 

14) For every point in the rotor plane: if it belongs to the wake region, the wind 

speed at x direction is calculated by Eq. (3.10); otherwise by Eq. (3.8); 
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15) t = t + ∆T; 

16) If t < Tmax, go to step 11; 

Simulated wind profiles along with corresponding controllers could be found in 

Chapter 4 and Chapter 5. 
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Chapter 4. Individual Pitch Control of Wind Turbine 

Including Wake Interaction 

In this chapter, the individual pitch control for load reduction of a downstream wind 

turbine is designed based on static wake of upstream turbine. The asymmetric wake 

model described in Chapter 3 is adopted to predict the wind profile across the rotor of the 

downstream wind turbine without considering the time-varying phenomenon of wake 

meandering. According to the composite wind profile within the rotor disc, the LQ 

control design is performed for segments along azimuth. In order to obtain more accurate 

model for IPC design, an artificial wind pattern, named as equivalent circular wind 

profile, is generated. As benchmark, the DAC control scheme is also implemented based 

on the vertical wind shear only. 

The remainder of this chapter is organized as follows. When wake interaction is 

considered, the controller switching strategy adopted is described in the Section 4.1.  

Section 4.2 presents how to obtain more accurate linearized state-space models by use of 

equivalent circular wind profile and different pitch reference in terms of the azimuth 

angle. The DAC and periodic control design are reviewed in Sections 4.3 and 4.4, 

respectively. Simulation results are shown in Section 4.5. This part of work is concluded 

in Section 4.6. 

4.1. Controller Switching Strategy 

A relatively general situation of wake interaction is illustrated in Figure 3.3, which is 

used for idea-proof simulation study in this chapter. The upstream and downstream 
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turbines are assumed to be at the same height. The wake interaction is mixed with the 

vertical wind shear, which makes the case more complicated than what has been dealt 

with in the previous DAC design, e.g. by Wright [52, 53]. To deal with this situation, we 

have resorted to the periodic control scheme by Stol [179], where the rotor disc is divided 

into a number of circular sectors in terms of the azimuth angle, and the LQ controller is 

designed for every sector, similar to the illustration in Fig. 4.1. The overall control is 

realized by switching between these segmental controllers. Instead of the scheme of 

equal-azimuth segmentation of 24 sectors in [179], in this study, we have considered the 

change in the H∞ norm of the wind turbine models between individual sectors and then 

reduce the number of sectors for controller design. 

4.2. Determination of Local Pitch Reference along Azimuth 

For IPC, due to the asymmetry nature of the wind across the rotor disc, the reference for 

the blade pitch angle varies with the azimuth angle. In this study, as in many other similar 

studies on wind turbine controls, NREL’s FAST software [140] is used to obtain the 

piecewise linear models. If the linearized state-space models along the azimuth are 

obtained by use of “FAST linearization” module [140], the blade pitch angle is the same 

for different azimuth angles. Such approximation would result in more inaccuracy when 

wake induced asymmetry is included. In order to obtain more accurate linearized state-

space models of wind turbine along the azimuth, it is preferred to obtain the pitch 

reference for different azimuthal angles for any specific wind profile. 
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Fig. 4.1 Switching IPC Controller Strategy 

As for linearization of the wind turbine model, an operating point is usually defined 

by the combination of the blade pitch angle, the rotor speed and the wind speed. The 

detailed linearization theory and procedure that is followed are described in detailed in 

[52]. Typically, there are two approaches to obtaining linearized state-space models of 

wind turbine by use of “FAST linearization” module. One method is that a steady-state 

solution is computed to obtain the linearized state-space models, and the other is that an 

unsteady solution is computed with the initial condition. For the former method, the pitch 

angle and the rotor speed converge to the operating point when the wind profile is 

provided. In order to obtain such steady-state solution, the pitch reference is obtained for 

a specific azimuth angle with the help from a so-called equivalent circular wind profile 

 



61 
 

(ECWP). For a specific radial profile of wind speed along the blade length at certain 

azimuth angle, an ECWP is created by duplicating this profile for all different azimuth 

angles, as shown in Fig. 4.2. Such a fictitious wind profile is generated for obtaining 

steady-state solution which can help derive the local pitch reference.  

 

Fig. 4.2 Equivalent Circular Wind Profile (ECWP) 

When all pitch references are obtained along azimuth by use of ECWP, the 

corresponding linearized state-space model along azimuth are obtained by use of 

unsteady state solution and original wind profile. In this situation, the initial pitch angle 

of different blades should be set as the corresponding pitch reference at the corresponding 

azimuth angle, the initial rotor speed should be set as rated rotor speed in Region 3 and 

the running time should be less than one period in order to make sure that rotor speed 

does not change very much. 
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4.3. Disturbance Accommodating Control 

The DAC control design procedure [49] is briefly presented in this section. More details 

are available in Wright [52]. The state-space model of wind turbine dynamics can be 

described as 

 dx Ax Bu u= + +Γ       (4.1a) 

   y Cx=       (4.1b) 

where x is the state vector, u is the control input vector, y is the measurement vector, ud is 

the disturbance vector, A is state matrix, B is the input matrix, C relates the measurement 

vector with the state vector, and Г is the disturbance gain matrix. A critical step in DAC 

design is to model the periodic change of wind load due to vertical wind shear with the 

so-called “disturbance generator”, whose dynamics is described with 

          ( ) ( )d du t z tθ=                   (4.2a) 

  0( ) ( ); (0)d d d d dz t F z t z z= =              (4.2b) 

where zd is the state vector for the disturbance generator. For wind shear disturbance 

related with 2-blade wind turbine and step wind disturbance, 

                       
1 0 0
0 0 1

θ
 

=  
 

                          (4.3a) 

                      2

0 1 0
0 0

0 0 0
dF

 
 = −Ω 
  

                            (4.3b) 

where Ω is the rotor speed. 
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In order to include the disturbance dynamics into the control design, the state vector 

is augmented by including the disturbance vector. The feedback control law can be 

expressed as 

   [ ]ˆ ˆˆ ˆ T
d d du Gx G z G x z= + =         (4.4) 

where [ ]DG G G= . 

The state observer is designed as 

                      ˆ ˆ ˆ ˆ( ) dx Ax Bu K y y u= + + − +Γ             (4.5a) 

                                         ˆ ˆy Cx=           (4.5b)  

The disturbance state estimator is designed as 

        ˆˆ ˆ( ) ( ) ( )d d dz t Fz t K y y= + −                            (4.6) 

Finally augmented state space model can be expressed as 

          [ ]ˆ ˆˆ ˆ
T T

d dx z L x z Ky  = + 
                         (4.7) 

where  

   d

d

A BG KC BG
L

K C F
θ+ − G + 

=  − 
                          (4.8a) 

                     [ ]TdK K K=                      (4.8b) 

Then the transfer matrix of the feedback controller can be calculated as 

  1( ) ( )T s G sI L K−= −       (4.9) 

The DAC provides an elegant solution to analytically incorporating the vertical shear 

into an LTI system framework. However, the disturbance generator is based on a 

simplification of the vertical shear, and such simplification may limit its application to 

actual wind turbine operation. 
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4.4. Periodic Control 

Stol [179] adopted the periodic control strategy to implement DAC. At first, the state-

space models along azimuth were obtained. In this method, the wind shear was not 

modeled as the disturbance in the state-space models. Only the hub-height wind 

disturbance was chosen. The change of state-space models along azimuth showed the 

wind shear characteristics. Then the MIMO controllers were designed based on these 

models. Finally, for closed-loop realization, the controllers were switched along azimuth. 

Stol [179] divided the rotor disc into 24 segments along azimuth which means each 

segment includes 15°. Recently, the LQR and periodic control schemes were used for 

IPC of offshore wind turbines without disturbance terms in the state-space model [151]. 

In this study, the LQR and periodic control methods are used for the segmented plant 

models. 

The LQR method is simply described in the following, for which the details can be 

found in any standard optimal control text. The disturbance term is not considered in the 

state-space model. The system described by   

x Ax Bu= +                                           (4.10a) 

y Cx=                                           (4.10b) 

with the cost function defined as 

    
0

( )T TJ x Qx u Ru dt
∞

= +∫     (4.11) 

For minimizing the above cost, the state feedback control law is 

u Gx=        (4.12a) 

where G is given by  
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 1 TG R B P−= −      (4.12b) 

and P is found by solving the Algebraic Riccati Equation  

1 0T TA P PA PBR B P Q−+ − + =     (4.13) 

The weightings in Q and R matrices need to be adjusted to improve the performance of 

the controller. 

Similarly, the state observer can be designed   

     ˆ ˆ ˆ( )x Ax Bu K y y= + + −      (4.14a) 

Using the feedback control law ˆu Gx= , we have 

     ˆ ˆx Lx Ky= +            (4.14b) 

where L A BG KC= + − . Thus, the equivalent transfer function of the closed loop 

system is 

  1( ) ( )T s G sI L K−= −                     (4.15) 

4.5.  Simulation Results 

4.5.1. Simulation Platform 

To evaluate the effectiveness of the proposed IPC scheme, simulation study has been 

conducted with FAST [140], Aerodyn [138] and TurbSim [176] developed by NREL, 

along with Matlab Simulink. TurbSim is modified to generate wind profiles, as 

described in Chapter 3. Wind profile files generated by TurbSim are the input files of 

Aerodyn and FAST. Aerodyn is a preprocessor of FAST for calculating the aerodynamic 

loads on the turbine blades, which can be used in FAST. FAST can be used to model the 

dynamics for both two- and three-blade, horizontal-axis wind turbines. Control 

simulation with FAST has been facilitated by the Simulink interface. In this study, 
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TurbSim is modified to generate the wind profile including wake interaction and the 

ECWP. Both the upstream and downstream wind turbines used for this study adopt the 

model of NREL’s CART (Controls Advanced Research Turbine) facility [180], which is 

a two-blade 600 kW variable-speed-variable-pitch turbine.  

4.5.2. Wind Profile with Wind Shear and Wake Effect 

The allocation of the upstream and downstream turbines is shown in Fig. 3.2. As 

mentioned in Chapter 3, the Larsen wake model was chosen. The incoming wind speed 

V∞ is assumed to be 18m/s, the ambient turbulence intensity is 18%, the diameter of the 

upstream turbine Dr for CART [180] is 46m. For modern wind farms, xw/Dr is usually 

designed as 8 to 10. In this study, this ratio is assumed to be 8. Typical values of thrust 

coefficient Ct range from 0 to about 1. When the power coefficient reaches its maximum, 

thrust coefficient Ct is about 0.728. This study adopts 0.7 for Ct. Application of the 

Larsen wake model gives that the diameter of the wake at the downwind turbine grows to 

204.22 m, and the wind speed at the wake center becomes 16.76 m/s. 

The wind profile was then generated through TurbSim [176] by modifying the 

relevant program codes to incorporate the wake related wind velocity superposition. 

Usually the typical wind speed consists of the mean and the turbulent components. In 

TurbSim, the turbulent portion of wind is generated first following the spectral density 

function specified, and then the mean wind speed is added to form the final wind profile. 

As a simplified treatment, this study does not consider the turbulent portion of wind. It is 

worthwhile to point out that turbulent generally increases in the wake, which implies 

increased fatigue load for the downstream turbines.  
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In the TurbSim codes provided by NREL, the rotor disc is regarded as a whole to 

calculate the mean wind speed. Since this study includes the wake interaction as well, the 

mean wind speed profile across the disc has to be calculated within two areas: the area 

without wake effect and that with velocity overlap due to wake effect. The TurbSim 

codes have been modified accordingly to generate the wind profile including wake effect. 

Figure 4.3 shows the 2D wind speed distribution within the rotor disc of the downwind 

turbine due to the wind shear only, while Figure 4.4 shows the profile reflecting the wind 

velocity overlap based on the Larsen wake model and the wind shear model with Lhub 

equal to 0.9Rw. 

4.5.3. ECWP and Different Pitch Reference along Azimuth 

Recall in Section 2, the ECWP refers to the scenario that the wind speed along the 

azimuth direction is the same but is different along the radial direction (i.e. along the 

blade length). For the simulation example, the ECWP is obtained through modifying 

TurbSim with the following procedure. The wind information is first extracted at some 

azimuth and then copied to all azimuths. For example, if we want to generate an 

equivalent circular wind profile at 45° azimuth as shown in Figure 4.4, we need to copy 

the wind distribution at 45° azimuth to all azimuths, as shown in Figure 4.5. For different 

azimuth angles, the corresponding ECWP needs to be generated respectively to obtain the 

corresponding pitch reference. All the pitch references obtained along azimuth for the 

special wind profile in Figure 4.4 are plotted in Figure 4.6.  
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Fig. 4.3 Wind Speed Distributions within Rotor Disc due to Wind Shear 

 

Fig. 4.4 Wind Profile with Wind Shear and General Wake Interaction 
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Fig. 4.5 Equivalent Circular Wind Profile for The Simulation Example 

 
Fig. 4.6 Pitch Reference along Azimuth Obtained with ECWP 
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4.5.4. Model Linearization for Individual Pitch Control 

The 9-state space models for IPC Design were obtained by use of “FAST linearization” 

module, with the descriptions of the states listed in Table 4.1. Three measurement outputs 

were used for state estimation: the generator speed, the tip deflection of the first 

asymmetric flap mode, i.e. (∆x1−Δx2)/2, and the fore-aft moment on the tower base. The 

disturbance inputs include wind shear and hub-height wind disturbances and the averaged 

state-space models were used across the rotor plane when DAC approach was used. 

When the periodic control and LQR methods were used, our treatment does not include 

disturbance input, and the circular wind profile needs to be used to generate the 

corresponding state-space models. 

Table 4-1: State Description for a 9-state Wind Turbine Model (CART) 

 

 

 

 

 

 

 

 

4.5.5. Rotor Disc Segmentation 

Initially the rotor disc is divided into 24 sectors (similar to Stol [179]), each covering 15° 

azimuth angle. Accordingly, 24 state-space models are obtained along the azimuth angle. 

As the variation of wind turbine dynamics is considered non-uniform in azimuth angle, 

such simple segmentation may be too conservative for some sectors. Therefore, we use 

States Description 
∆x1 1st tower fore-aft bending moment 
∆x2 Drivetrain rotational-flexibility 
∆x3 Perturbed blade-1 1st flap deflection 
∆x4 Perturbed blade-2 1st flap deflection 
∆x5 Derivative of state 1 
∆x6 Perturbed rotor rotational speed 
∆x7 Derivative of state 2 
∆x8 Perturbed blade-1 1st flap velocity 
∆x9 Perturbed blade-2 1st flap velocity 
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the variation of the H∞ norm of the plants between neighbored sectors to justify the 

segmentation scheme. Instead of considering the infinite bandwidth, the difference of 

maximum singular value ranging from DC to 100 rad/second between state-space models 

of neighboring sectors along azimuth is plotted, showed in Figure 4.7.  

The 100 rad/second is considered the 40 dB below the DC magnitude response. 

Segmentation along azimuth is based on the following two rules. 

1) If the difference in the maximum singular value for neighboring state-space 

models is below 4 dB, it is merged into the neighboring segment. 

2) The difference in the maximum singular value between neighboring state-space 

models should not be greater than 6 dB. 

 

Fig. 4.7 Maximum Singular Value Difference within Rotor Disc 
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Notice that these two rules can be adjusted by controller designer, based on different 

robustness need. In other words, if lower robustness is required, the norm difference can 

be increased.  

Based on these rules, the number of the controllers is reduced from 24 to 16. The 

sectors centered at azimuth angle 45°, 75°, 105°, 135°, 225°, 255°, 285° and 315° were 

merged to their respective neighbor sectors, as shown in Figure 4.8. 

 

Fig. 4.8 Sixteen Segments of Rotor Disc after Segment Merge 

4.5.6. Comparison of Switching and Non-switching Controller 

The wake induced wind profile in Figure 3.2 is then used to test the switching control 

schemes. The DAC based controller was designed based on the averaged state-space 

model obtained under 16.8 m/s hub-height wind speed including wind shear. Sixteen 

switching controllers are designed to reduce the load based on state-space models with 

different pitch reference along azimuth. Figure 4.9(a) shows the temporal profile of the 
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tower-base fore-aft moment using the switching controller designed based upon the wake 

model versus the standard DAC control with only the wind shear considered. The 

corresponding spectra in Figure 4.9(b) show that the primary mode at 1 Hz is 

significantly suppressed, while some higher harmonics are slightly increased.  

 
 

a) Steady-state Temporal profile  

 
 

b) Spectra 

Fig. 4.9 Tower-base Fore-aft Bending Moment using the Proposed Method (Switch) and DAC 

(No Switch) 
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Similar load control performance is demonstrated for the tower-base side-to-side 

moment, as shown in Figure 4.10. Significant reduction is observed for 1 Hz while load 

increased for higher harmonics (close to 3 Hz and 4 Hz) modes.  

 
 

a) Steady-state Temporal Profile 

 

b) Spectra 

Fig. 4.10 Tower-base Side-to-side Bending Moment using the Proposed Method (Switch) and 

DAC (No Switch) 
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Figure 4.11 shows that the mean and variation of rotor speed were both reduced 

regarding the rated speed of 41.7 rpm, by use of the switching controllers compared with 

the traditional DAC. Therefore, the proposed strategy can indeed improve load reduction 

and speed regulation for turbines subject to wake interaction.  

 
 

a) Steady-state Temporal Profile 

 

b) Spectra 

Fig. 4.11 Rotor Speed using the Proposed Method (switch) and DAC (no switch) 
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Figure 4.12 shows blade tip displacement difference using the switching controllers 

and the standard DAC. Plot (b) shows that the 1.6 Hz and 2.6 Hz modes are slightly 

increased with the proposed method, while the 0.5 Hz mode is suppressed. The overall 

change is insignificant. 

 

a) Steady-state Temporal Profile  

 
b) Spectra 

Fig. 4.12 Blade-tip Displacement Difference using the Proposed Method (Switch) and DAC (No 

Switch)  

0 10 20 30 40 50 60
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Time  (Second)

bl
ad

e 
tip

 d
iff

er
en

ce
 (m

)

 

 
No Switch
Switch

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

0.005

0.01

0.015

0.02

0.025

0.03

Frequency (Hz)

Sp
ec

tra
 o

f B
la

de
 T

ip
 D

is
pl

ac
em

en
t D

iff
er

en
c 

(m
)

 

 
Switch
No Switch

 



77 
 

4.6.  Summary 

This chapter presents an improvement on the IPC scheme for load reduction by including 

the wake interaction. The Larsen wake model is applied for composing the rotor wind 

profile for downstream turbines under wake interaction, and a switched control strategy is 

thus developed based on the composite wind profile. The wind profile was generated by 

modifying the TurbSim codes. The idea of equivalent circular wind profile was proposed 

to obtain different pitch references along azimuth. When different pitch references along 

azimuth are used, more accurate state-space models of wind turbine can thus be generated 

via FAST linearization. Based on such models, the IPC are designed following both the 

DAC and the periodic control frameworks. Simulation results showed that the tower-base 

fore-aft bending moment, the tower-base side-to-side bending moment, the rotor speed 

fluctuation and the blade-tip displacement difference are significantly suppressed.  

  

 



78 
 

Chapter 5. Model Predictive Control of Wind Turbine 

Including Wake Meandering 

As described in Chapter 1, the meandering phenomenon of upstream turbine leads to 

time-varying nature of wind loads on the downstream turbines. This implies additional 

time-varying asymmetry of the effective turbine model. Therefore, the wind turbine load 

reduction control is further complicated. To deal with such odd, a practical solution is to 

design (model predictive) controllers based on a number of linearized wind turbine 

models under the predicted patterns of superposed wind profile. Then, a relevant issue 

arises: – how to handle the “intermediate region” between any two selected patterns.  

Instead of using the controller interpolation idea, this dissertation study adopts a 

Multiple-Model Predictive Control framework, which is built upon a consecutive process 

of plant updating via the recursive Bayesian estimation. In other words, the plant for each 

step of controller (MPC) design is obtained from weighting a number of pre-defined plant 

models.  

Section 5.1 describes multi-blade coordinate (MBC) transformation which is used to 

convert the azimuth-periodic wind turbine models/variables into a time-invariant 

counterpart under static wind profile. A practical approach with enhanced stability 

robustness and relatively low computational burden, the Dual Mode MPC, is described in 

Section 5.2. The multiple-model predictive control algorithm is presented in Section 5.3. 

Finally, simulation study is given in Section 5.4, which validates the effectiveness of the 

proposed control strategies. 
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5.1. Multi-Blade Coordinate Transformation 

Typical multi-body analysis of wind turbine dynamics is built upon several sets of 

coordinates: the earth coordinates, the blade coordinates (Fig. 5.1), the coordinates on the 

nacelle (Fig. 5.2)  and the coordinates on the tower base (Fig. 5.3) [140].  

 

Fig. 5.1 Blade Coordinate System [140] 

 

Fig. 5.2 Nacelle Coordinate System [140] 
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Fig. 5.3 Tower-base Coordinate System [140] 

The Blade Coordinates in Fig. 5.1 rotate with wind turbine blades. Under this set of 

coordinates, the wind turbine dynamics is periodic in azimuth under steady wind, as well 

as the corresponding state-space models. As consequence, the dynamic loads of wind 

turbine (e.g. blades and tower) are periodic. Such temporal/spatial change of plant model 

presents significant difficulty for controller design. Considering the maturity and 

convenience of controller design in linear time-invariant (LTI) models, the Multi-blade 

Coordinate (MBC) transformation has been developed to convert the time/azimuth 

periodic plant models/variables into their time-invariant counterparts [181, 182]. The 

MBC transformation is a widely used technique in the helicopter field [183].  In the 

remainder of this section, the MBC transformation is reviewed by following the 

description by Bir [2].  
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According to MBC, for a 3-blade turbine, three nonrotating degrees of freedom 

(DOF), j
oq , j

cq  and j
sq , can be converted into three rotating DOF’s, 1

jq , 2
jq and 3

jq , by 

the following transformation: 

  
1

2

3

j j
o

j j
c

j j
s

q q
q T q
q q

   
   =   
      

      (5.1) 

where j
bq  is the jth  rotating DOF for the bth blade with b = 1, 2, 3. In the non-rotating 

frame, j
oq , j

cq  , j
sq  are the average mode, the cosine-cyclic mode and the sine-cyclic 

mode, respectively. The transformation matrix T and its inverse are defined as 

1 1

2 2

3 3

1 cos sin
1 cos sin
1 cos sin

ψ ψ
ψ ψ
ψ ψ

 
 =  
  

T      (5.2) 

1
1 2 3

1 2 3

1 1 1
1 2cos 2cos 2cos
3

2sin 2sin 2sin
ψ ψ ψ
ψ ψ ψ

−

 
 =  
  

T    (5.3) 

where ψ1 , ψ2 and ψ3 are azimuthal angles of blades 1, 2 and 3, respectively. It is trivial to 

justify that ψ1 + ψ2 + ψ3 = 2π at any time. Notice that the inverse of matrix T is needed in 

order to convert a rotating DOF to its nonrotating counterpart, while the nonsingularity of 

T is guaranteed by the geometrical relationship amongψ1, ψ2 and ψ3.  

Based on Eqs. (5.1), (5.2) and (5.3), the wind turbine dynamics of the 3-blade 

horizontal-axis wind turbine can be converted from the rotating frame to the non-rotating 

frame as follows, based on the procedure developed by Bir [181]. In general, the 

aeroelastic analysis of wind turbine dynamics deals with lumped-element equations of 

motion (EOM) and its output equations in the following form: 
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+ + = + 
dMX CX KX Fu F w     (5.4) 

= + + +
v d dY C X C X Du D w     (5.5) 

where X is the coordinate vector, u is the control input vector, and w is the disturbance 

vector. M denotes the mass matrix that contains direct blade inertias and blade-tower 

coupling inertias, C contains both structural damping and gyroscopic terms, and K 

contains structural and aerodynamic stiffness terms as well as the centrifugal effect.  F 

and Fd denote the control input, and disturbance input matrices, respectively. Y is the 

output vector. Cv and Cd are output matrices for velocity and displacement, respectively. 

D and Dd are the feedthrough matrices for the control input and the disturbance input, 

respectively. 

For wind turbine control problem, the motion vector is defined as 

1 1 1
1 2 3 1 2 3 1 2 3 =   

TT j j j m m m
FX X q q q q q q q q q    (5.6) 

where XF is an nF×1 column vector representing the nF fixed-frame-referenced DOF, j
bq  

is the jth  rotating DOF for the bth blade, and m is the total number of rotating DOFs for 

each blade. The length of vector X is nF + 3m. 

As the aeroelastic codes (for example, FAST) generate equations of motion in a 

numerical form, the substitutional method is typically used to convert the EOM (5.3) into 

the non-rotating form [181]. Based on Eq. (5.1), vector X in the rotating-frame is related 

to its counterpart in the nonrotating-frame vector, XNR, via the foregoing MBC 

transformation, 

1 NRX T X=       (5.7) 

where 
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 1

( 3 ) ( 3 )

×

+ × +

 
 
 
 =
 
 
  



nF nF

nF m nF m

I
T

T T

T

   (5.8) 

and 

1 1 1 =   
TT j j j m m m

NR F o c s o c s o c sX X q q q q q q q q q   (5.9) 

By combining the coordinate variables and their velocities into vector z, i.e.  

 
=  
 

X
z

X
     (5.10) 

EOM (5.4) and (5.5) can be rewritten in the state-space form, i.e. 

dz Az Bu B w= + +      (5.11) 

dY Cz Du D w= + +      (5.12) 

where A, B and Bd are the state matrix, input matrix, and disturbance matrix, respectively.  

Then, Eq. (5.11) and (5.12) can be transformed to the nonrotating frame as 

= + +NR NR NR NR NR dNRz A z B u B w    (5.13) 

= + +NR NR NR NR NR dNRY C z D u D w    (5.14) 

where  

1
211

21
3 2 22 11

000
20NR

TTT
A A

T T TT TT

−

−

 Ω      = −      Ω +Ω ΩΩ          (5.15) 

1
1

11
1

0
0NR c

T
B BT

T

−

−

 
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 

    (5.16) 

1c NRu T u=      (5.17) 
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1
1

1
1

0
0dNR d

T
B B

T

−

−

 
=  
 

     (5.18) 

[ ]1
10 1 1 2 2 2 1NRC T C T C T C T−= +Ω    (5.19) 

[ ]1 2C C C=       (5.20) 

1
10 1NR CD T DT−=      (5.21) 
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10dNR dD T D−=       (5.22) 
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

   (5.28) 

In the above equations, nuF and nuR are the number of control inputs in the fixed and 

rotating frames, respectively; Fo and mo are the number of outputs in the fixed and 

rotating frames, respectively. More details on MBC transformation for 3-blade wind 

turbine are available in [181]. 

When time-invariant models Eqs. (5.13) and (5.14) are used for controller design, 

measurements at rotating frame, such as the blade-root flapwise moment, need to be 

converted into the non-rotating frame by use of the inverse of matrix T, and then 

corresponding variables at fixed frame are used for controller design with MBC. 

Similarly, the control inputs (pitch angles) in the fixed frame need to be converted back 

to the rotating frame again by use of matrix T. See the controller configure when MBC is 

used in Fig. 5.4. 

 

Fig. 5.4 Multi-Blade Coordinates for Controller Design 

5.2. Dual-Mode Model Predictive Control 

The terminology dual mode control is originally from nonlinear control [5]. This control 

strategy covers two modes: one mode is used when the system is far from the operating 
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point; the other mode is used when the system is close to the operating point. Then, the 

control strategy automatically switches into different modes when the system is operating 

at different desired states. 

In MPC, the “dual mode” notation is different from that in nonlinear control. The 

Dual Mode in MPC indicates how the predictions are set up. The main motivation of dual 

mode prediction is to handle the predictions over an infinite horizon which implies 

nominal stability [92]. Usually, the first mode refers to the period within the prediction 

horizon, i.e. the estimation of k i kx +  where i =0, 1, 2, …, Hp−1; while the second mode is 

the state prediction beyond the prediction horizon, i.e the estimation of k i kx +  for i = Hp, 

Hp+1,… .  The controller for the first mode is designed by use of classical MPC 

algorithms. The controller for the second mode is designed by use of special algorithms, 

such as LQR, for ensuring stability. The Closed-loop Paradigm (CLP) is considered as a 

good framework for dual-mode MPC [92]. In this study, the CLP MPC by Rossiter [92] 

is adopted, which is simply described in the following. 

The discrete-time state-space model of the given plant is  

  1

1

k k k

k k

x Ax Bu
y Cx

+

+

= +
=

     (5.29) 

       The control input has the following dual-mode form 
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    (5.30) 

and matrix Φ is the closed-loop state matrix with the use of state feedback gain K 

Φ = −A BK      (5.31) 

The cost function for CLP is defined as 

2T T
c cxJ c S c c S x= +       (5.32) 

where 

1 1c

T T T
k k k nc c c c+ + − =       (5.33) 

2 2( ) ( )T T T
c c c cu cu c cS H diag Q H H diag R H H PH= + +   (5.34) 

2 2( ) ( )T T T
cx c cl cu clu c clS H diag Q P H diag R P H PP= + +    (5.35) 

2

K
K

P K

− 
 − Φ 
 = − Φ
 
 
  
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

     (5.36) 
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



   

    (5.37) 

The detailed derivation could be found in the Chapter 7 in the book [92]. 
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By use of CLP, the dual-mode MPC algorithms [92] include Dead Beat Terminal 

Conditions (SGPC), No Terminal Control (NTC), Terminal Mode by Elimination of 

Unstable Modes (EUM), and Linear Quadratic Optimal MPC (LQMPC). Rossiter [92] 

considers that the LQMPC is the best algorithm in general and provides a well-structured 

objective function with unconstrained optimum on the origin. Therefore, in this study, the 

LQMPC described by Rossiter [92] is adopted, and presented briefly as follows. 

The structure of the dual-mode MPC is shown in Fig. 5.5. An LQ regulator is 

designed for the inner loop with state estimation based on the Luenberger observer. K is 

the state feedback control gain based on the LQR design, with Q and R being the 

weighting matrices. The inner-loop LQ regulator can stabilize an open-loop unstable 

plant, and also enhance the robustness of the overall system operation.  Then, Scx = 0 for 

(5.32), and the cost function becomes 

( )
1

| |
0

pH
T

k i k k i k
i

J c Qc
−

+ +
=

= ∑        (5.38) 

where Hp is the prediction horizon, ck+i|k is the control perturbation and Q  is a weighting 

matrix defined as 

= Σ + TQ B B R      (5.39) 

with matrix Σ obtained by 

Σ −Φ ΣΦ = +T TQ K RK     (5.40) 

At step k, the estimation of state xk ( ˆkx ), is obtained via a Luenburger observer, based on 

which the feedback control law is the superposition of the state feedback and control 

perturbation, i.e. 

ˆk k ku Kx c= − +       (5.41) 
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where ck is the control perturbation based on the MPC to be designed. 

  

Fig. 5.5.   Block Diagram of Dual-mode MPC based IPC control 

The constraints for the control input are formulated as 

 0kMu N− ≤       (5.42) 

where   

 2

0 0
0

k k k

K I
K KB I

u x c
K K B KB I

−   
   − Φ −   = +
   − Φ − Φ −
   
   




 



    

   (5.43) 

 k clu k cu ku P x H c= +        (5.44) 

 1 1p

T

k k k k Hu u u u+ + −
 =       (5.45) 

1 1p

T

k k k k Hc c c c+ + −
 =                       (5.46) 

Eq. (5.44) is a compact form of Eq. (5.43) which is derived from Eqs. (5.29) and (5.41). 

Substituting Eq. (5.44) into (5.42), the constraints for the control perturbation becomes 

cu k clu kMH c N MP x≤ −      (5.47) 

When the observer is used, constraints condition is 

ˆcu k clu kMH c N MP x≤ −      (5.48) 
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The control perturbation ck is calculated by solving the quadratic programming problem 

associated with cost function (5.38) under inequality (5.48). In the beginning, the author 

attempted to use the Matlab function quadprog in order to solve the quadratic 

programming optimization problem, but quadprog could not handle the number of 

constraints involved in this problem. Finally the qpOASES solver [127] was used as it 

performed better for the large-dimension optimization problem involved.  

The foregoing scenario is for the dual-mode MPC design based on a single state-

space model of wind turbine. However, when the wake center moves, the aerodynamic 

loads on the downstream wind turbine will change, which in turn changes the wind 

turbine dynamics significantly. A practical solution to such situation is to obtain 

linearized state-space model for different wake-center positions, based on which the MPC 

controller can be designed. This can be illustrated in Fig. 5.6, the solid horizontal line 

stands for wake center range which is equally divided by n points for controller switching. 

For the n points, based on the corresponding wake-center positions, different steady wind 

profiles without wake meandering but including wake interaction are generated in order 

to obtain the linearized state-space models. As shown in Fig. 5.7, the IPC controllers are 

switched based on wake center position, and each controller is designed with the 

aforementioned dual-mode MPC controller design procedure. 

 



91 
 

 

Fig. 5.6. Illustration for Wake Center Positions for Controller Switching 

 

Fig. 5.7   Controller Switching for Dual-mode MPC based IPC Control under Wake Meandering 

5.3. Multiple-Model Predictive Control 

In previous section, the dual-model MPC controllers were simply switched to deal with 

wake meandering. In order to deal with time-varying operating conditions due to wake 

meandering and ensure smooth controller transition, a multiple-model predictive control 

(MMPC) algorithm [20, 122, 184] is used in this section.  

The concept of MMPC design is shown in Fig. 5.8. Assume the system behavior can 

be approximated as some weighted average of the N linear discrete-time state-space 
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models  

| 1 1 1− − −= + i i i i
k k k kx A x Bu     (5.49) 

| |=i i i
k k k ky C x      (5.50) 

where i = 1, …, N is the model index and 1ku −  is the control input perturbation. 

 

Fig. 5.8  Algorithm for Multiple-Model Predictive Control 

This study follows the framework in [8], but in a simplified fashion, with the random 

noise and plant perturbation ignored. With such simplification, state estimation is based 

on the Luenberger observer, i.e.  

| | 1 | 1ˆ ˆ ˆ( )i i i i i
k k k k k k kx x L y C x− −= + −    (5.51) 

The weighting for different models are calculated by use of Bayesian probability 
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where μ is an artificial limit on the probability, and is effectively the threshold for 

determining the set of “active” models. Recursively, the probability of the system 

behavior belonging to the i-th model is  

( )
( )

1

1
1

exp 0.5

exp 0.5

i T i i
k k ki

k n
s T s s

k k k
s

p
p

p

ε ε

ε ε

−

−
=

− Λ
=

− Λ∑
   (5.53) 

where  

| |ˆ ˆi i i i
k k k k k k ky y y C xε = − = −     (5.54) 

Λ is a diagonal scaling matrix for the residuals and determined based on the covariance of 

each model. Λ needs to be tuned for plant performance adjustment.  

The cost function in terms of the incremental control is defined as  

( ) 1
2

T Tf U U H U g U∆ = ∆ ∆ + ∆      (5.55) 
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  (5.61) 

nu is the number of control inputs, ny is the number of measurements, p is the prediction 

horizon for the states, m is the control horizon. 

For wind turbine IPC, the control inputs need to first observe to the following range 

constraints: 

( ) ( ) ( )

( ) ( ) ( )

min max

min

max

0 /180 0 /180 0 /180

90 /180 90 /180 90 /180

k j

T
r r r

T
r r r

u u u

u u u u

u u u u

π π π

π π π

+< <

= − − −  

= − − −  

  (5.62) 

where ur is the pitch reference in degree while the unit of uk+j is radian. In this study, pitch 

references were obtained through the FAST linearization module [140] when rated rotor 

speed and wind profiles were known. Also, the constraints for pitch rate (radian/sec) are 

1
min max

+ + −−
< <k j k j

s

u u
u u

T
     (5.63) 

where Ts is the sampling period, and 

[ ]min 10 /180 10 /180 10 /180π π π= − − − Tu    (5.64) 

[ ]max 10 /180 10 /180 10 /180π π π= Tu    (5.65) 

As the MMPC design is applied to the time-invariant models in the non-rotating 

frame, the constraints (5.62) in the rotating frame need to be converted into the non-

rotating frame via the MBC transformation Eq. (5.3). Besides, the cost function is valued 

with the incremental control input rather than control input.  The MMPC for wind turbine 

control incorporating MBC transformation is shown in Fig. 5.9.  
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Fig. 5.9 Illustration of MMPC based Wind Turbine Control Incorporating MBC Transformation 

The (blade pitch) control input sequence in the rotating frame is denoted as 

   (5.66) 

and its counterpart in the non-rotating frame is denoted as  

   (5.67) 

By use of MBC transformation, we have 

  (5.68) 

The relationship between blade pitch control input and its increment is  

   (5.69) 

where 
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Assuming that matrix P is the pseudo inverse of the matrix M in Eq. (5.70), we have: 
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


     (5.71) 

Based on Eqs. (5.62), (5.68) and (5.71), the range constraints of blade-pitch increment 

in the rotating frame can be expressed as 
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Similarly, rate constraints on blade pitch in the fixed frame can be expressed as 
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Finally, the quadratic programming problem is to minimize cost function Eq. (5.55)

with constraints Eqs. (5.72) and (5.73), and it is solved again by qpOASES [127]. 

5.4. Simulation Study 

5.4.1. Simulation Platform 

To evaluate the effectiveness of the foregoing two MPC schemes, similar to Chapter 4, 

simulation study has been conducted with the NREL 5MW Wind Turbine Model [185] 

using the FAST [186], Aerodyn [138] and TurbSim [176] software packages and 

Matlab Simulink.  

A particular effort in this study is that the author modified the TurbSim codes from 

NREL in order to generate the wind profile including wake interaction and wake 

meandering. The NREL 5MW [185] onshore turbine model is used, which is a three-

blade variable-speed variable-pitch turbine, with rotor diameter of 126 m, blade length of 

61.5 m and hub height of 87.6 m.  

5.4.2. Simulated Wake Meandering Model 

Allocation of upstream and downstream turbines follows Fig. 5.10. Both turbines are 

assumed to be the NREL 5MW turbine, as described in Appendix B. The distance 

between upstream and downstream wind turbines are 8Dr. The incoming wind speed V∞ 

is assumed to be 18 m/s, and the ambient turbulence intensity is 18%. Based on the 

spectral method and simplified wake meandering implemented in TurbSim, the wake-

center trajectory along the transversal direction at the downstream wind turbine is 

obtained as shown in Fig. 5.11, which shows that the wake-center position falls within 

the range of [−144, 173] m in the transversal direction and the coordinate of the averaged 
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wake center position is −14.5 m. The wake-center moving speed in the transversal 

direction falls within the range of [−2.5, 3.0] m/s. Based on the Larsen wake model, the 

wake diameter at the downwind turbine grows to 281 m, the mean wind speed across the 

wake plane becomes 16.7 m/s and the time constant Tf  is 7 for wake meandering in this 

simulation case. 

 
Fig. 5.10 Illustration of wake meandering for two turbines in a wind farm 
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Fig. 5.11.   Wake Center Trajectory at the Downstream Wind Turbine 

The range is divided by 11 nodal points in equal distance.  Based on the wake-center 

positions corresponding to the 11 nodal points, steady wind profile is generated without 

considering wake meandering but including wake interaction and used to obtain 

linearized state-space models. When the wake center position is known, Eq. (3.10) is 

used to compose the wind profile including wake interaction. Fig. 5.12 shows wind 

profiles for two positions of the wake center: one is located at the left most position and 

the other is when the rotor center is near the wake boundary. The difference in the wind 

profile is clearly observed. 
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(a) Wake center at WC-1 

 
(b) Wake center at WC-11 

Fig. 5.12 Wind Profiles at the Downstream Wind Turbine for Different Wake-Center Positions 
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5.4.3. Model Linearization and MBC Transformation 

For each section in Fig. 5.6, the wind profile is assumed steady, and the corresponding 

linearized state-space turbine model was obtained from FAST. As shown in Table 5.1, a 

9-state dynamic model is considered for the dual-mode MPC, in which the state vector 

includes the rotor speed, the shaft rotational strain and the flapwise bending moment for 

each blade. For MMPC, a 7-state model is considered by neglecting the drivetrain 

rotational-flexibility and its derivative in Table 5.1. The measurements for dual mode 

MPC include the generator speed and the flapwise bending moment at the root of each 

blade (Table 5.2). 

For the illustrative example, and for each wind profile considered, the rotor disc is 

divided into 36 sectors, each covering 10° azimuth angle. Accordingly, 36 state-space 

models are obtained along the azimuth angle for each wind profile. The MBC [181] is 

used to convert the state-space models in the rotating frame to those in the fixed frame. 

Then the average system of the 36 linearized state space models in the fixed frame is 

obtained by averaging the according A, B, C, D matrices [181]. 

Table 5-1:  STATE DESCRIPTION FOR A 9-STATE WIND TURBINE MODEL (NREL 5MW TURBINE) 

Symbol States 
Δx1 Perturbed Drivetrain Rotational-flexibility 
Δx2 Perturbed 1st Flapwise Bending Mode of Blade 1 
Δx3 Perturbed 1st Flapwise Bending Mode of Blade 2 
Δx4 Perturbed 1st Flapwise Bending Mode of Blade 3 
Δx5 Perturbed Rotor Rotational Speed 
Δx6 Derivative of State Δx1 
Δx7 Derivative of State Δx2 
Δx8 Derivative of State Δx3 
Δx9 Derivative of State Δx4 
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Table 5-2: MEASUREMENTS FOR NREL 5MW 

Symbol Measurements 
y1 Generator Speed or Rotor Speed 
y2 Flapwise Bending Moment at the Root of Blade 1 
y3 Flapwise Bending Moment at the Root of Blade 2 
y4 Flapwise Bending Moment at the Root of Blade 3 

  

 

 

5.4.4. Simulation Results for Dual-Mode MPC Based IPC  

The wind profile including wake meandering is then used to test the switching control 

schemes. Based on averaged state-space model generated by use of steady wind profile 

with averaged wake center position, the baseline MPC controller is designed first. Then, 

eleven switching controllers are designed to reduce the load based on state-space models 

generated by use of different steady wind profile with different wake center position at 

downstream wind turbine. The sampling period is 0.1 seconds and the prediction horizon 

is 20.  Fig. 5.13(a) shows the temporal profile of the rotor speed using the switching 

controller designed based upon wake meandering model and single MPC controller. The 

rated rotor speed for NREL 5MW is 12.1 rpm. The corresponding spectra in Fig. 5.13(b) 

show that the rotor-speed fluctuation below 0.025 Hz is significantly suppressed.  

Fig. 5.14 (a) shows the temporal profiles of the flapwise bending moment at the root 

of Blade #1 before and after the wake meandering is considered during controller design. 

The corresponding spectra in Fig. 5.14 (b) show that the mode at frequency about 0.13 

Hz is suppressed significantly. The flapwise bending moments at other blade roots are 

similarly suppressed by 39% at the 1P frequency. 
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a) Steady-state Temporal Profile 

 
b) Spectra 

Fig. 5.13.  MPC Controlled Rotor Speed with and without Considering Wake 

Meandering 
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a) Steady-state Temporal Profile 

  
b) Spectra 

Fig. 5.14: MPC Controlled Flapwise Moment at the Root of Blade-1 with and 

without Considering Wake Meandering 
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1P Amplitude 
 Controller without wake meandering: 

705 kN⋅m
 Controller including wake meandering: 

430 kN⋅m
⇒ Reduction by 39%
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5.4.5. Simulation Results for MMPC Based IPC 

The MMPC scheme is simulated with the scenario of the previous subsection. When 

model number N = 1, and the corresponding weighting is 1 in Eqs. (5.59) and (5.61), 

MMPC is simplified to single MPC as the baseline controller. Then, MMPC controllers 

are designed to reduce the load based on state-space models generated by use of different 

steady wind profile with different wake center position at the downstream wind turbine. 

The sampling period for MPC design is 0.1 second and the prediction horizon is 20. 

The following weighting matrix Λ is chosen for Eq. (5.53): 
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6

0 0 0
0 0 0
0 0 0

10
10

10
100 0 0

−

−

−

−

 
 
 Λ =
 
 
 

    (5.75) 

The weighting matrices with prediction horizon of 20 steps are 
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Fig. 5.15(a) shows the temporal profile of the rotor speed using the MMPC designed 
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based upon wake meandering model and single MPC controller. The corresponding 

spectra in plot (b) show that the amplitude below 0.03 Hz is significantly suppressed.  

 
a) Steady-state temporal profile 

 

b) Spectra 

Fig. 5.15. Rotor Speed with and without Considering Wake Meandering. 
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Blade #1 before and after the wake meandering is considered during controller design. 

The corresponding spectra in plot (b) show that the mode at frequency near 0.2 Hz is 

significantly suppressed. The flapwise bending moments at other blade roots are 

suppressed similarly. 

 
a) Steady-state temporal profile 

 

b) Spectra 

Fig. 5.16. Flapwise Bending Moment at the Root of Blade-1. 
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Fig. 5.17 shows that the rate constraints of blade pitching are basically satisfied.  Fig. 

5.18 shows that pitch angle remains within 0° to 90°. Fig. 5.19 shows the weighting 

profile between two models at a given instant, where model mode number i means that 

models i and i+1 are being used. 

 
Fig. 5.17: Temporal Profile for the Pitch Angle Rate for the MMPC IPC 
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Fig. 5.18: Temporal Profile of Pitch Angle for the MMPC IPC 

 
Fig. 5.19: Weighting and Model Mode in MMPC 
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5.5. Summary 

This chapter presents two MPC based IPC schemes for load reduction of wind turbine 

under a wake meandering scenario, i.e. the dual-mode MPC and the MMPC. After 

obtaining the linearized state-space models via MBC, switched dual mode MPC are used 

to deal with wake meandering and MMPC are designed in order to ensure smooth 

controller transition. Compared to the baseline dual-mode MPC with single state-space 

model, the variations in the rotor speed and the blade-root flapwise moment are 

significantly suppressed by use of switched dual-mode MPC. While compared to the 

baseline MPC controller, the variations in the rotor speed and the blade-root flapwise 

moment are significantly suppressed by use of MMPC that incorporates wake 

meandering in its design.  
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Chapter 6. Maximizing Wind Energy Capture via Nested-loop 

Extremum Seeking Control 

This Chapter proposes a novel control approach for optimizing wind farm energy 

capture with the scheme of nested-loop extremum seeking control (NLESC). Similar to 

Bellman’s Principle of Optimality, it has been shown in earlier work that, for cascaded 

wind turbines, the axial induction factors of individual wind turbines can be optimized 

from downstream to upstream units in a sequential manner, i.e. the turbine operation can 

be optimized based on the power of the immediate turbine and its downstream units. In 

this study, this scheme is illustrated for wind turbine array with variable-speed turbines 

for which torque gain is controlled to vary axial induction factors.  

The proposed NLESC scheme is demonstrated with a 3-turbine wind turbine array 

using the SimWindFarm simulation platform. Simulation results under smooth and 

turbulent winds show the effectiveness of the proposed scheme. Analysis shows that the 

optimal torque gain of each turbine in a cascade of turbines is invariant with wind speed 

if the wind direction does not change, which is supported by simulation results for 

smooth wind inputs. As changes of upstream turbine operation affects the downstream 

turbines with significant delays due to wind propagation, a cross-covariance based delay 

estimate is proposed as adaptive phase compensation between the dither and 

demodulation signals. 

The remainder of this chapter is organized as follows. Section 6.1 presents the idea of 

nested optimization of cascade wind turbine array based on which the NLESC wind farm 

control strategy [22] is proposed. The NLESC framework for wind farm control is 

described in Section 6.2. For the extremum seeking control involved, an adaptive phased 
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compensation scheme is also presented to handle the significant delay between upstream 

turbine control and downstream power measurement. The simulation study is presented 

in Section 6.3, with conclusion in Section 6.4. 

6.1. Nested Optimization of Cascaded Wind Turbine Array 

For cascaded wind turbine array, the relationships on optimal axial induction factors have 

been recently studied by Corten and Schaak [21] based on the 1-D simplified wind 

turbine model. Based on this result, the NLESC has recently been proposed in a patent by 

Seem and Li [22]. Justification of nested-loop optimization for maximizing energy 

capture of a cascade of wind turbines is provided by Dr. Yaoyu Li in Appendix A. Based 

on the work [22] and Appendix A, the NLESC for maximizing energy capture of a 

cascade of wind turbines is proposed in this section. In this study, the dither extremum 

seeking control is adopted as the core of the NLESC although other ESC schemes may 

work as well. The key idea of NLESC is: the ESC (or any other appropriate self-

optimizing controller) for an upstream turbine should be designed to maximize the 

combined total power output of this upstream turbine and downstream turbines in the 

wake of this upstream turbine. A better choice for self-optimizing controller is ESC. 

A special case of a wind farm is that there are a cascade of turbines and wind speed 

blows from turbine 1 to turbine n. Turbine i+1 to n are in the wake of turbine i, which is 

shown in Fig. 6.1. This figure also shows supervisory control loop of turbines. The 

control objective is to maximize the total power of turbine i to n through control of 

turbine i. The measurement for turbine i is the sum of power of turbines i through n. The 

control input is generator torque. In Fig. 6.1, Pi is power of turbine i, ki is generator 

torque gain for turbine i, ωi is generator speed of turbine i. 
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Fig. 6.1  NLESC Control for A Cascaded Array of Wind Turbines 

6.2. NLESC Based Wind Farm Control Design 

Extremum seeking control is used to online search an optimal input uopt(t) which leads to 

the maximum or minimum of a generally unknown time-varying cost function l(t, u), 

where u(t) ∈Rm is the input vector 

( ) arg min ( , )
mopt

u
u t l t u

∈ℜ
=      (6.1) 

A typical ESC structure to minimum seeking [187] is shown in Fig. 6.2. y(t) is the 

measurement of the cost function l(t, u), n(t) is the noise, FI(s) is the input dynamics, FO(s) 

is the output dynamics, d1 is the demodulating signal, and d2 is the dither signal; 

[ ]1 1( ) sin( )...sin( )T
md t t tω ω=      (6.2) 

[ ]2 1 1 1( ) sin( )... sin( )T
m m md t a t a tω α ω α= + +    (6.3) 

where ωi are the dithering frequencies for each input channel and αi are phase difference 

between the dithering and demodulating signals. The dither signal d2 is used to generate 

control input perturbation which leads to cost function variance. Then High Pass Filter 
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FHP(s) is used to remove the DC value of cost function. The demodulation signals d1 

works with Low Pass Filter FLP(s) together to extract the signal proportional to the 

gradient ∂l/∂u. The integral is used to ensure the stability of controller. The compensator 

K(s) is used to accelerate the convergence. 

 

Fig. 6.2 Block Diagram of Dither ESC Algorithms 

In the field of wind turbine control, ESC has been studied for maximizing energy 

capture of individual wind turbines [8, 188-190]. Creaby et al. [8] proposed multivariable 

ESC based on the measurement of the rotor power. Munteanu et al. [188] proposed wind 

turbulence as search disturbance instead of sinusoidal search signals for ESC design to 

reach maximum wind power. Pan et al. [189] proposed sliding mode ESC for energy 

capture improvement of wind turbines. Hawkins et al. [190] used Lyaponov-based ESC 

to increase energy capture of wind turbines. The ESC design in this study follows the 

guidelines in [187].  

In the following, it will be shown how to properly choose output measurement of 

ESC to maximize energy capture of wind farm in steady wind and turbulent wind. A 

wind farm with three turbines is used as an illustrative example. Turbines 2 and 3 are in 

the wake of turbine 1, while turbine 3 is in the wake of turbine 2. 
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6.2.1. Steady Wind 

The generator torque gains are used as designed control input of ESC for both steady and 

turbulent wind. The sum of mechanical power of all turbines in the wake of a turbine is 

selected as the output measurement of ESC for this turbine.  

The control algorithm of three turbines under steady wind is shown in Fig. 6.3, where 

ki is the generator torque gain of turbine i and ωi is the generator speed of turbine i. The 

output measurement for ESC of turbine 1 is the sum of all three turbines’ aerodynamic 

power; that for ESC of turbine 2 is the combined aerodynamic power of turbines 2 and 3.  

 

Fig. 6.3 ESC of Three Turbines under Steady Wind 
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30.5
PCp
AVρ ∞

=      (6.4) 

For turbines in wind farm, we need to extend the concept of power coefficient. The 

general power coefficient of turbine i is defined as: 

1
3 / 2

m

i j
j

i
i

P P
K

V Aρ
=

+
=

∑
     (6.5) 

where Pi is the power of turbine i, Pj is the power of those turbines in the wake of turbine 

i, m is turbine number in the wake of turbine i,  Vi is the wind speed at wind turbine i, A is 

the rotor area of turbine i. Similar concept is defined in [21] for a cascaded array of 

turbines. The generalized power coefficient concept is useful for any kind of wind farms.  

Under turbulent wind, it takes time to travel to downstream turbines for air flow when 

wind speed at upstream turbines change. For example, for a wind farm consisting of 

turbines with rotor diameter D = 126 m (i.e. the NREl’s 5 MW turbine adopted in this 

study), a row spacing of 5D leads to about 1 minute delay for wake transportation from 

the upstream to its downstream unit under wind speed of 8 m/s. The larger a wind turbine 

array is, the longer delay time of wake transportation for the whole wind farm is. In this 

situation, we have to redefine optimization objective general power coefficient including 

wake transportation delay time. 

( )
( ) ( ) ( )

( )( )3
/ 2

i i j j k
i

i i

P t T P t T P t
K t

V t T Aρ

− + − +
=

−

∑     (6.6) 

where all turbine j and k are in the wake of turbine i. We assume that it takes the longest 

time to arrive turbine k for air flow from turbine i, which is compared with the 

transportation time from turbine i to other turbines j.  Ti  is the transportation time of air 
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flow from turbine i to turbine k. Tj is the difference between transportation time of air 

flow from turbine i to k and that from turbine j to k. 

The discrete-time general power coefficient is 

( )
( ) ( ) ( )

( )( )3
/ 2

i i j j k
i

i i

P t l P m l P m
K m

V m l Aρ

− + − +
=

−

∑    (6.7) 

where m is the current time, li and lj are the indices of Ti and Tj, respectively. 

6.2.3. Cross-Covariance Based Adaptive Delay Compensation 

When wind speed at upstream changes, wake transportation delay time between upstream 

and downstream turbines also changes. The time delay in Eq. (6.7) can be estimated 

based on the cross covariance between two wind speed signals, i.e.  

( ) ( )1 1 2 2
1

1ˆ
N

DC
k

R V kT V V kT V
N

τ
=

   = − + −   ∑    (6.8) 

where T is the sampling interval, 1V and 2V  are the average value, and N is the number of 

samples used for estimation. The delay can be determined by 

( )( )ˆ ˆarg maxDC DCD R
τ

τ =       (6.9) 

6.3. Simulation Study 

To evaluate the effectiveness of the proposed NLESC scheme, simulation study has been 

conducted with SimWindFarm [191]. The SimWindFarm platform an open source 

toolbox based on Matlab/Simulink, which is suitable for wind farm control design. It 

includes the capability of layout planning for a given wind farm, and simulation can be 

performed under different wind conditions. In particular, wake effects are simulated by 
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including the dynamic wake meandering as described in [18]. Simplified NREL 5MW 

model [191] is used in SimWindFarm through modification of NREL 5MW model [192] 

for the wind turbine array. In this study, in order to implement NLESC, the default 

controller for NREL 5MW in SimWindFarm was modified so that the torque gain, 

instead of the power reference, is used as the control input for each turbine.  

Throughout this study, the wind turbine array simulated consists of a cascade of three 

turbines with 5D (i.e. 630 m) spacing. Simulations are performed for both steady and 

turbulent winds. 

6.3.1. Simulation for Steady Wind 

For steady wind, two free-stream (i.e. at the first turbine) wind speeds are simulated, 6m/s 

and 10 m/s, respectively.  

First, the static map between the total power output and the torque gains is obtained. 

For 6 m/s, the maximum total power is 1.7246 MW with the corresponding optimal 

torque gains for turbines 1, 2, and 3 being 2.9, 2.85 and 2.3, respectively. The optimal 

torque gain for the third turbine is the same with that in individual turbine control level 

because there is no other turbine in its wake. Fig. 6.4 shows the power coefficient map in 

terms of the tip speed ratio (TSR) for the stand-alone NREL 5MW turbine, in which the 

optimal TSR is achieved at torque gain of 2.3. A power map in terms of the torque gains 

of Turbine #1 and Turbine #2 is shown in Fig. 6.5, with torque gain of Turbine #3 at its 

optimum of 2.3. 
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Fig. 6.4 Power Coefficient of NREL 5MW with Pitch Angle 0 ° 

 

Fig. 6.5 Static Map of Power Capture for Two Cascaded Turbines at 6m/s 
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For the dither ESC algorithm shown in Fig. 6.2, the dither period is usually chosen 8 

to 10 times of the period corresponding to the cut-off frequency of the input dynamics. 

The input dynamics for the third turbine (i.e. the stand-alone operated turbine) is 

determined by step response test in SimWindFarm simulation, with the torque gain as 

input and the power as output. As to be seen later, the input dynamics of power regulation 

is a first-order system, without delay for the immediate turbine, while with delay for 

downstream turbines. The time constant for the input dynamics without delay is 

estimated by linear regression after log transformation of the step response data [8, 193], 

which is briefly described below.  

For an individual turbine or last one in an array of turbines, a first-order dynamics is 

used to approximate its input dynamics between torque gain and power. Its transfer 

function could be described as 

1( )
1IPF s

sτ
=

+
     (6.10) 

Its step response could be described as 

/( ) (1 )t
out inX t KA e τ−= −     (6.11) 

If a logarithmic transformation is applied to the system output, we obtained a linear 

relation between the transformed output and the time 

ln 1 out

in

X tZ
KA τ

 
= − = − 

 
    (6.12) 

where the slope is  

1dZ
dt τ

= −      (6.13) 

With the recorded data points, the time constant τ can be estimated by linear  regression:  
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t
Z

τ ∆
= −

∆
     (6.14) 

For the NREL 5MW turbine, the step response of power output under torque-gain 

input is shown could be found in Fig. 6.6. Then Z could be calculated by Eq. (6.12), as 

shown in Fig. 6.7. By Eq.(6.14), the time constant of input dynamics is 8 second. 

Then dither period in ESC for the third turbines is chosen as 80s, which are about 10 

times of their respectively period of input dynamics. 

 

Fig. 6.6 Step Response of NREL 5MW Power 
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Fig. 6.7 Estimation of Time Constant of for Torque Based Power Regulation 

For the third turbine, the high-pass filter in ESC is  

2

2 0.1111 0.0062
s

s s+ +
    (6.15) 

while the low-pass filter in ESC is 

2

0.0062
0.1111 0.0062s s+ +

    (6.16) 

The Bode diagrams of input dynamics, low-pass filter and high-pass filter for the 3rd 

turbine is shown in Fig. 6.8. The dither frequency for the 3rd turbine is 0.0785 rad/s. The 

phase angle in dither signal for 3rd turbine is chosen as -57.8581Pα =  , which results in 

( ) ( ) 0P P IP P HP PF j F jθ α ω ω= +∠ +∠ ≈   at this dither frequency. 
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Fig. 6.8 Illustration of ESC Dither Frequency and Phase Compensation for Turbine #3 

The input dynamics between torque gain of the second turbine and the power 

summation of the 2nd and 3rd turbine could be estimated by first-order dynamics (6.10) 

with time delay due to wake transportation, i.e.  

2
2( ) ( )

1

sT
sT

IPd IPd
eF s e F s
sτ

−
−= =

+
    (6.17) 

where T2 is the delay time due to wake transportation. 

Similarly, the input dynamics between torque gain of the 1st turbine and the power 

summation of the 1st, 2nd and 3rd turbine could also be estimated by Eq. (6.17). The only 

difference is that T2 is replaced with T1 the wake transportation time from the 1st turbine 

to 3rd turbine. 
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For the case with wind speed 6m/s at the 1st turbine, wake transportation time from 

the second turbine to the third turbine is about 105 second (= 5×126m÷6m/s), which is 

lower than actual wake transportation time due to wind deficit after turbines. Similarly, 

wake transportation time from 1st turbine to 3rd turbine is 226 (= 113×2) seconds.  

Then, the dither periods in ESC for the first and second turbines are chosen as 2800s 

and 1400s, which are about 10 times of their respectively period of input dynamics.  

For the first turbine, the high-pass filter in ESC is designed as 

    (6.18) 

while the low-pass filter is designed as  

    (6.19) 

The Bode diagram of input dynamics, low-pass filter and high-pass filter for 1st 

turbine is shown in Fig. 6.9. Dither frequency for 1st turbine is 0.0022 rad/s. For better 

extraction of gradient information, the phase angle is chosen as -59.9144Pα =  , which 

results in ( ) ( ) 0P P IP P HP PF j F jθ α ω ω= +∠ +∠ ≈   at this dither frequency. 
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Fig. 6.9 Illustration of ESC Dither Frequency and Phase Compensation for Turbine #1 

For the second turbine, the high-pass filter in ESC is designed as 

2

2 50.0063 2.0142 10
s

s s −+ + ×
    (6.20) 

while the low-pass filter in ESC is 

5

2 5

2.0142 10
0.0063 2.0142 10s s

−

−

×
+ + ×

    (6.21) 

Similarly, the Bode diagrams of input dynamics, low-pass filter and high-pass filter 

for the 2nd turbine is shown in Fig. 6.10. The dither frequency for the 2nd turbine is 0.0045 

rad/s. For better tracking, the phase angle is chosen as -60.9437Pα =  , which results in 

( ) ( ) 0P P IP P HP PF j F jθ α ω ω= +∠ +∠ ≈   at this dither frequency. 
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Fig. 6.10 Illustration of ESC Dither Frequency and Phase Compensation for Turbine #2 

For the smooth 6 m/s wind, the forward loop gains for the 1st, 2nd and 3rd turbine are 

set at 8×10-8, 1.5×10-7 and 1.2×10-5, respectively. For the 10 m/s case, the forward loop 

gains for the 1st, 2nd and 3rd turbines are set as 1×10-8, 2.5×10-8 and 1.2×10-6, respectively. 

For steady wind cases, the dither amplitudes are 0.01, 0.01 and 0.05 for 1st, 2nd and 3rd 

turbine, respectively. 

The torque gains for three turbines are plotted in Fig. 6.11, which shows torque-based 

ESC for three turbines are turned on at 400s, 1500s and 3500s, respectively. In current 

simulation, the ESC controllers of three turbines are turned on in sequence in order to 

better distinguish the associated searching transients. The wind speed profiles at the three 

turbines are shown in Fig. 6.12, which reveals that the wind speeds at the second and 

-120

-100

-80

-60

-40

-20

0

M
ag

nit
ud

e 
(d

B)

10
-4

10
-3

10
-2

10
-1

10
0

10
1

-720

-360

0

360

720

Ph
as

e 
(d

eg
)

 

 

Bode Diagram

Frequency  (rad/sec)

Input Dynamics for 2nd Turbine
Low -pass Filter
High-pass Filter

𝜔2𝑑

 



127 
 

third turbines both increase when the ESC’s for the first and second turbines were turned 

on. 

 

Fig. 6.11 Torque Gain Profiles for NLESC Search under 6m/s Smooth Wind 

The generator speeds for the three turbines are plotted in Fig. 6.13, which shows that 

the generator speed profiles of Turbines 1 and 2 are reduced when their ESC are turned 

on. Fig. 6.12 and Fig. 6.13 show that the rotor speeds of upstream turbines are reduced so 

that the wind speeds at the downstream turbines increase, and in consequence, the total 

power output of the wind farm increases. Fig. 6.14 compares the total power output of the 

ESC control with that by use of SimWindFarm’s default controller, which is described in 

Appendix G.  During the period [10000s, 16000s], the total energy captured increases by 

8.7%. During the same period, the average torque gains for the 1st, 2nd and 3rd turbines are 

3.02, 2.86 and 2.36, respectively, as compared to the corresponding optimum values of 

2.9, 2.85 and 2.3, respectively from the static map. 
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Fig. 6.12 Wind Speed at Each Turbine for NLESC Search under 6m/s Smooth Wind 

 

Fig. 6.13. Generator Speed Profiles for NLESC Search under 6m/s Smooth Wind 
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 Fig. 6.14. Total Power Profiles for NLESC Search under 6m/s Smooth Wind 

Next, the wind speed at the first turbine is increased to 10m/s. Through a 750-second 

sweeping simulation, the optimal torque gains of the static power map obtained turn out 

to be the same as those for the 6 m/s case, which verifies that the optimal torque gains are 

invariant with wind speed. For the NLESC simulation under smooth 10 m/s wind, the 

profiles of torque gains, effective wind speed and generator speed are shown in Fig. 6.15, 

Fig. 6.16 and Fig. 6.17, respectively.  
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Fig. 6.15. Torque Gain Profiles for NLESC Search under 10 m/s Smooth Wind 

 

Fig. 6.16. Effective Wind Speed at Each Turbine for NLESC Search under 10 m/s Smooth Wind 
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Fig. 6.17 Generator Speed Profiles for NLESC Search under 10 m/s Smooth Wind 

Compared to the benchmark controller, the total power captured was increased by 

0.34% during the period [10000s, 16000s], as shown in Fig. 6.18. It seems that the 

NLESC yields more benefit in power capture under lower wind speed than high wind 

speed (i.e. near the rated wind speed), which is consistent with simulation results in [194]. 
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Fig. 6.18 Total Power Profiles for ESC Search for Smooth 10 m/s Wind 

6.3.2. Turbulent Wind 

Simulation was then performed for a turbulent wind case, with the mean wind speed of 

8m/s and the turbulent intensity to be 5%. The effective wind speed at the 1st turbine is 

the same for both the NLESC and benchmark controllers, as shown in Fig. 6.19. For the 

2nd and 3rd turbines, Fig. 6.20 and Fig. 6.21 show that the effective wind speeds with the 

NLESC controllers are higher than that with the benchmark controller.  The dither 

frequencies remain the same as those used in steady wind. The dither amplitudes are 0.05, 

0.03 and 0.1 for 1st, 2nd and 3rd turbine, respectively, which are larger than those for the 

smooth wind case. The forward-loop gains for the 1st, 2nd and 3rd turbines are 0.1, 0.23 

and 1, respectively. The forward-loop gains in turbulent wind cases are much bigger than 

those for steady wind cases because power coefficients rather than power are used as 
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output for the turbulent wind case. The torque gains are plotted in Fig. 6.22. Generator 

speeds for 1st, 2nd and 3rd turbine are plotted in Fig. 6.23, Fig. 6.24 and Fig. 6.25, 

respectively. Compared to the default controller in SimWindFarm, the energy capture is 

increased by 1.3% during the period [10000s, 30000s], as shown in Fig. 6.26. 

 

Fig. 6.19. Effective Wind Speed Profile at Turbine #1 under 8 m/s 5% Turbulent Wind 
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Fig. 6.20 Effective Wind Speed Profile at Turbine #2 under 8 m/s 5% Turbulent Wind 

 

Fig. 6.21. Effective Wind Speed Profile at Turbine #3 under 8 m/s 5% Turbulent Wind 
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Fig. 6.22. Torque Gains under 8 m/s 5% Turbulent Wind 

 

Fig. 6.23 Generator Speed at Turbine 1 under 8 m/s 5% Turbulent Wind 
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Fig. 6.24 Generator Speed at Turbine 2 under 8 m/s 5% Turbulent Wind 

 

Fig. 6.25 Generator Speed at Turbine 3 under 8 m/s 5% Turbulent Wind 
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Fig. 6.26. Total Power under 8 m/s 5% Turbulent Wind 

6.4.  Conclusion 

This part of dissertation study evaluates an NLESC wind farm controller which aims to 

maximize the farm-level energy capture. Static mapping under different wind speed 

validates the analytical result that the optimal torque gains are invariant with the wind 

speed in terms of maximizing the whole-farm power capture. Compared with the default 

controller available in SimWindFarm, the effectiveness of the NLESC was verified by 

simulation results under both steady and turbulent winds. 
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Chapter 7. Active Vane Control for Stabilization of Floating 

Offshore Wind Turbine 

Control of offshore floating wind turbines has emerged as a much more complicated 

problem compared to the land based units. Stabilization and load reduction control are 

both important for floating turbines, while such tasks are challenged by underactuation 

situation.  This chapter evaluates a novel idea [35] for controlling the roll and pitch 

motion of floating wind turbines respectively by actively controlled vertical and 

horizontal vanes. The structural dynamics of the floating wind turbine with the vane 

actuator is simulated through modifying Tail-Furling module in software FAST [140].  

Proportional-integral (PI) controllers are applied to control the vane actuators based on 

tower pitch or roll motions. While an individual blade pitch controller is designed for 

other aspects of wind turbine control. The Hywind platform [195] is adopted for the 

simulation model of floating offshore turbine. For the active vane control, different 

measurement feedback schemes (including velocity and acceleration on tower top) and 

different vane areas are evaluated. Simulation results show that of the roll motion of the 

floating turbine can be effectively reduced, and the damage equivalent loads (DEL) 

relevant to the side-to-side bending moment at tower base is reduced from 19% to 42% 

under turbulent wind with mean speed 18 m/s.  

The remainder of this chapter is organized as following. The vertical vane design and 

simulation platform is described in Section 7.1, and the horizontal vane design is 

described in Section 7.2.  Simulation results are presented in Section 7.3.  
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7.1. Vertical Vane Design 

7.1.1. Design Approach 

Vertical vane actuators are placed at tower top in order to effectively increase damping of 

floating turbine tower along side-to-side direction. For wind turbines, significantly high 

weight at tower top due to the use of inertial forces leads to difficulty of installation and 

maintenance, as well as the high power requirement. The active vertical vane control is 

based on the use of the aerodynamic forces which would have higher force-to-weight 

ratio and leads to lower cost, compared to heavier TMD (Tuned Mass-Spring Damper) 

[33].  

Besides, the active vertical vane design requires the use of downwind turbine design; 

otherwise the active vertical vane would reside in the near wake of the wind turbine rotor 

and its aerodynamic behavior would be intractable.  For land based wind turbines, 

upwind design is typically preferred over downwind design as downwind design leads to 

the shadow effect that leads to significant periodic fatigue load and power fluctuation. 

However, for offshore wind turbines, reducing blade weight is of higher benefit, and thus 

downwind design has received better acceptance because lighter blades can be used when 

blade-tower collision is not a concern. Side view and top view of downwind wind 

turbines including vertical vanes are shown in Fig. 7.1.  

7.1.2. Simulation Platform for Vertical Vane  

Jonkman [196] developed an aeroelastic model of a small furling wind turbine by use of 

the Kane’s method [197] and implemented it in FAST [140]. In this study, the tail-furling 

module in FAST is modified to simulate the vane actuator. In the furling input files, tail-
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furling degree is set to False. The distance from the tail fin center of pressure to tower 

axis is set to half of the nacelle length such that the yaw moment generated by the vertical 

vane is small and the yawing action of the vertical vane is disabled. To simulate vertical 

vane, the degree status of tail-furling need to be set according to Table 7-1 and the 

configuration of tail-furling is shown in Fig. 7.2.  

Table 7-1: List of Status for Tail-Fin Degrees of Freedom for Vertical Vane 

Variables Description Status Values 

TFinSkew The skew angle of the tail fin chordline in the nominally 
horizontal plane On The same with vane 

pitch angle 

TFinTilt The tilt angle of the tail fin chordline from the nominally 
horizontal plane Off 0 

TFinBank The bank angle of the tail fin plane about the tail fin 
chordline Off 0 

TFrlDOF Tail-furl degree Off False 

 

 

Fig. 7.1. Vertical Vane Design a) Side View; b) Top View 1; c) Top View 2. 
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Fig. 7.2. Configuration of Tail-Furling 

Originally tail-furling is passively controlled in FAST. The working principle of 

passive-controlled tail-furling is: 

a) When wind speed is above rated wind speed, the rotor is yawed and/or tilted out of 

wind direction due to higher thrust loading on the rotor; 

b) When wind speed is below rated wind speed, the rotor is returned to wind direction 

due to lower thrust loading on the rotor; 

In this study, the active control input of vertical vane is the vane pitch angle, which is 

defined as the angle between nominal downwind direction and the plane composed of 

vertical vane’s airfoil chord lines. In FAST, the angle TFinSkew stands for vertical vane 

pitch angle. To facilitate the controller design, we modified FAST subroutines related 

with variable TFinSkew and rebuilt the Simulink interface of FAST including vane pitch 

control, shown in Fig. 7.3. 

Figure by Jason 
Jonkman/ NREL
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Fig. 7.3.  Simulink Interface of FAST including Vertical Vane Pitch Control. 

7.1.3. Airfoils for Vertical Vane  

When wind turbine is located at the equilibrium point along the side-to-side direction, it 

is desirable not to have aerodynamic forces generated by the vertical vane. Therefore, 

symmetrical airfoils or symmetrical pair of airfoils should be used. In this study, 

symmetrical airfoil NACA0012 is used, and its aerodynamic characteristics can be found 

in a report by Sandia National Laboratory [198]. The lift and drag coefficients of 

NACA0012 are plotted in Fig. 7.4. To achieve tractable control action, stall operation is 

avoided. The range of angle of attack for nearly linear lift characteristics (no stall) is from 

−20° to 20°. In order to fully test the capability of vertical vane to stabilize floating 

turbine in side-to-side direction, a high-lift airfoil [199] is also used and its aerodynamic 

coefficients were modified to simulate a pair of high-lift airfoils for symmetry 

achievement. 

7.1.4. Controller Design of Floating Offshore Turbine with Vertical Vane 

Control 

In this study, blade pitch control, generator torque control and vertical vane pitch control 

are considered. The objective is to compare the wind turbine performance with and 
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without the vertical vane control so that the effectiveness of the active vane control can 

be evaluated. 

 

Fig. 7.4. Lift and Drag Coefficients of NACA0012 

Jonkman [195] redesigned PI-based blade pitch controller for floating turbine with 

Hywind platform based on his previous work [192] and suggestion from Larsen and 

Hansen [32] about negative damping for the tower pitch motion. Such PI pitch controller 

[195] and PI-based Individual pitch controllers [10]  are implemented together as the 

benchmark of collective pitch control in this chapter. 

For the generator torque control, different wind turbine operation regions correspond 

to different control modes. Below the rated wind speed, the generator torque is designed 

to be proportional to the square of generator speed. Above the rated wind speed, the 

generator torque is equal to rated power output over the product of generator speed and 

generator efficiency. 
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The PI-based vertical vane controllers are designed based on different measurements 

including the side-to-side velocity and side-to-side acceleration at the tower top. The 

controller loop including vertical vane control is shown in Fig. 7.5. 

 

Fig. 7.5. Vertical Vane Control Loop 

7.2. Horizontal Vane Design 

In order to stabilize the pitch motion of floating turbine, a horizontal vane is proposed in 

[35] to increase tower damping of pitch motion. A simple treatment is to put the 

horizontal vane under the nacelle bedplate as the way of installing the vertical vane, but 

the moment arm length thus resulted would be insufficient. Based on this situation, a 

horizontal vane is placed at tower base, which is shown in Fig. 7.6.   
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Fig. 7.6. Configuration of Horizontal Vane 

Horizontal vane is also simulated through modifying Tail-Furling module of FAST 

software. Settings of FAST input for tail fin are listed in Table 7-2. For horizontal vane 

control, a new FAST Simulink interface is also built for controller design. 

Table 7-2: FAST Setting for Horizontal Vane 
 

Variables Description On/Off Values 

TFinSkew The skew angle of the tail fin chordline in the 
nominally horizontal plane On 0 

TFinTilt The tilt angle of the tail fin chordline from the 
nominally horizontal plane Off The same with horizontal 

vane pitch angle 

TFinBank The bank angle of the tail fin plane about the tail 
fin chordline Off 90 degree 

TFrlDOF Tail-furl degree Off False 
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vane control is nearly the same to that in Fig. 7.5 except that the measurement for vane 

controller is fore-aft velocity or acceleration on tower top. 

7.3. Simulation Results 

7.3.1. Simulation Results for Vertical Vane 

NREL FAST [140] is used to simulate floating turbine including vertical vane. To 

facilitate controller design in Simulink, FAST Simulink interface including vane control 

is rebuilt. The floating turbine model with Hywind platform defined by Jonkman [195] is 

used. In the following, both vertical vane with NACA0012 airfoil and that with high lift 

airfoil are tested under turbulent wind based on different measurements and different 

vane areas. The mean wind speed of turbulent wind is set as 18m/s and turbulence 

intensity is set as Class A according to IEC standard. Turbulent wind files are generated 

by use of TurbSim [176]. Stochastic wave is generated from the JONSWAP spectrum 

with a significant wave height 3.7 m and a peak spectral period 14 seconds suggested by 

Jonkman [149]. 

7.3.1.1.Vertical Vane and NACA 0012 with Different Measurements and Upwind 

Design as Benchmark 

In this subsection, upwind floating turbine with Hywind platform is used as benchmark 

when PI-based individual blade pitch control and variable torque control are used. Vane 

pitch controllers with airfoil NACA0012 are tested on downwind floating turbine with 

the Hywind platform when both the side-to-side acceleration and the side-to-side velocity 

at the tower top are used as feedback measurements and the same blade pitch controller 

and torque controller with benchmark are used. Fig. 7.7, Fig. 7.8, Fig. 7.8 and Fig. 7.10 

show that the generator power and the rotor speed do not change much when the vertical 
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vane control is used. Fig. 7.11 and Fig. 7.12 show that the side-to-side velocity at the 

tower top is significantly alleviated when the vertical vane control is used. Compared 

with the case when the side-to-side acceleration at the tower top is used as feedback, the 

side-to-side velocity at the tower top is further reduced when the side-to-side velocity at 

the tower top is used as feedback.  

Fig. 7.13 and Fig. 7.14 show that the vane pitch angle has more activity at high 

frequency when the side-to-side acceleration is used as measurement. Fig. 7.15, Fig. 7.16, 

Fig. 7.17, Fig. 7.18, Fig. 7.19 and Fig. 7.20 show that the platform translational sway 

displacement, the roll displacement and the side-to-side moment are reduced when both 

side-to-side velocity and acceleration at tower top are used as measurement. Compared 

with the case when acceleration feedback is used, displacement and loads are further 

reduced when velocity is used as measurement.  
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Fig. 7.7. Generator Power (Vertical Vane, NACA0012, Upwind as Benchmark) 

 

Fig. 7.8 Spectra of Generator Power (Vertical Vane, NACA0012, Upwind as Benchmark) 
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Fig. 7.9.  Rotor Speed (Vertical Vane, NACA0012, Upwind as Benchmark) 

 

Fig. 7.10. Spectra of Rotor Speed (Vertical Vane, NACA0012, Upwind as Benchmark) 
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Fig. 7.11. Side-to-Side Velocity (Vertical Vane, NACA0012, Upwind as Benchmark) 

 

Fig. 7.12. Spectra of Side-to-Side Velocity (Vertical Vane, NACA0012, Upwind as Benchmark) 
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Fig. 7.13. Vane Pitch Angle (Vertical Vane, NACA0012, Upwind as Benchmark) 

 

Fig. 7.14. Spectra of Vane Pitch Angle (Vertical Vane, NACA0012, Upwind as Benchmark) 
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Fig. 7.15. Platform Sway Displacement (Vertical Vane, NACA0012, Upwind as Benchmark) 

 

Fig. 7.16. Platform Sway Displacement Spectra (Vertical, NACA0012, Upwind as Benchmark) 
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Fig. 7.17.  Platform Roll Displacement (Vertical Vane, NACA0012, Upwind as Benchmark) 

 

Fig. 7.18. Platform Roll Displacement Spectra (Vertical, NACA0012, Upwind as Benchmark) 
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Fig. 7.19. Side-to-Side Bending Moment (Vertical Vane, NACA0012, Upwind as Benchmark) 

 

Fig. 7.20. Side-to-Side Bending Moment Spectra (Vertical, NACA0012, Upwind as Benchmark) 
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7.3.1.2. Vertical Vane and NACA 0012 with Different Measurements and 

Downwind Design as Benchmark 

Similar to the previous section, downwind floating turbine with Hywind platform is used 

as benchmark when PI-based individual blade pitch control and variable torque control 

are used. Vane pitch controllers with airfoil NACA0012 are tested on downwind floating 

turbine with Hywind platform when both the side-to-side acceleration and the side-to-

side velocity at tower top are used as measurements and the same blade pitch controller 

and torque controller with benchmark are used. Fig. 7.21 through Fig. 7.24 show that 

generator power and rotor speed do not change a lot when vertical vane control is used.  

Fig. 7.25 and Fig. 7.26 show that the vane pitch angle has more activity at high 

frequency when side-to-side acceleration is used as measurement.  Fig. 7.27 and Fig. 7.28 

show that side-to-side velocity at tower top is significantly alleviated when vertical vane 

control is used. Compared with that when side-to-side acceleration at tower top is used as 

measurement, side-to-side velocity at tower top is further reduced when side-to-side 

velocity at tower top is used as measurement. Similarly, Fig. 7.29 through Fig. 7.34 show 

that the platform sway displacement, the roll displacement and the side-to-side moment 

are reduced when both velocity and acceleration are used as measurement. Compared 

with that when acceleration is used as measurement, displacement and loads are further 

reduced when velocity is used as measurement. 
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Fig. 7.21. Generator Power (Vertical Vane, NACA0012, Downwind as Benchmark) 

 

Fig. 7.22. Generator Power Spectra (Vertical Vane, NACA0012, Downwind as Benchmark) 
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Fig. 7.23. Rotor Speed (Vertical Vane, NACA0012, Downwind as Benchmark) 

 

Fig. 7.24. Rotor Speed Spectra (Vertical Vane, NACA0012, Downwind as Benchmark) 
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Fig. 7.25. Vane Pitch Angle (Vertical Vane, NACA0012, Downwind as Benchmark) 

 

Fig. 7.26. Vane Pitch Angle Spectra (Vertical Vane, NACA0012, Downwind as Benchmark) 
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Fig. 7.27.  Side-to-Side Velocity (Vertical Vane, NACA0012, Downwind as Benchmark) 

 

Fig. 7.28. Side-to-Side Velocity Spectra (Vertical Vane, NACA0012, Downwind as Benchmark) 
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Fig. 7.29.  Roll Displacement (Vertical Vane, NACA0012, Downwind as Benchmark) 

 

Fig. 7.30. Roll Displacement Spectra (Vertical Vane, NACA0012, Downwind as Benchmark) 
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Fig. 7.31. Sway Displacement (Vertical Vane, NACA0012, Downwind as Benchmark) 

 

Fig. 7.32. Sway Displacement Spectra (Vertical Vane, NACA0012, Downwind as Benchmark) 

100 200 300 400 500 600 700
-4

-3

-2

-1

0

1

2

Time  (Second)

Pl
at

fo
rm

 T
ra

ns
la

tio
na

l S
wa

y 
Di

sp
la

ce
m

en
ts

(m
)

 

 

Without Vertical Vane Control
Acceleration Measurement at Tower Top
Velocity Measurement at Tower Top

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Frequency (Hz)

Pl
at

fo
rm

 T
ra

ns
la

tio
na

l S
w

ay
 D

is
pl

ac
em

en
ts

(m
)

 

 
Without Vertical Vane Control
Acceleration Measurement at Tower Top
Velocity Measurement at Tower Top

 



162 
 

 

Fig. 7.33. Side-to-Side Bending Moment (Vertical, NACA0012, Downwind as Benchmark) 

 

Fig. 7.34. Side-to-Side Bending Moment Spectra (Vertical, NACA0012, Downwind as Benchmark) 
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7.3.1.3. Vertical Vane and NACA 0012 with Different Vane Area and Downwind 

Design as Benchmark 

In this subsection, the vane pitch controllers with different vane areas are tested on 

downwind floating turbine when side-to-side velocity at tower top is used as the 

measurement and airfoil NACA0012 is used. A downwind floating turbine with PI-based 

IPC and variable torque controller is used as benchmark.  Figures 7.33 through 7.36 show 

that the generator power and the rotor speed do not change a lot when vertical vane 

control is used.  

Fig. 7.39 and Fig. 7.40 show that the vane pitch angle has more variation when vane 

area is smaller, i.e. more control actions.  Fig. 7.41 and Fig. 7.42 show that the side-to-

side velocity at the tower top is significantly alleviated when the vertical vane control is 

used. The bigger the vane area is, the more reduction of the side-to-side velocity at the 

tower top is. Fig. 7.43 through Fig. 7.48 show that the roll displacement, the platform 

sway displacement, and side-to-side moment are significantly reduced. In summary, the 

bigger the vane area is, the more reduction of displacement or loads in side-to-side 

direction is. 
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Fig. 7.35.  Generator Power (Vertical Vane, NACA0012, Downwind as Benchmark) 

 

Fig. 7.36. Generator Power (Vertical Vane, NACA0012, Downwind as Benchmark) 
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Fig. 7.37. Rotor Speed (Vertical Vane, NACA0012, Downwind as Benchmark) 

 

Fig. 7.38. Rotor Speed Spectra (Vertical Vane, NACA0012, Downwind as Benchmark) 
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Fig. 7.39. Vane Pitch Angle (Vertical Vane, NACA0012, Downwind as Benchmark) 

 

Fig. 7.40. Vane Pitch Angle Spectra (Vertical Vane, NACA0012, Downwind as Benchmark) 
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Fig. 7.41. Side-to-Side Velocity (Vertical Vane, NACA0012, Downwind as Benchmark) 

 

Fig. 7.42. Side-to-Side Velocity Spectra (Vertical Vane, NACA0012, Downwind as Benchmark) 
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Fig. 7.43 Roll Displacement (Vertical Vane, NACA0012, Downwind as Benchmark) 

 

Fig. 7.44. Roll Displacement Spectra (Vertical Vane, NACA0012, Downwind as Benchmark) 

100 200 300 400 500 600 700
-1.5

-1

-0.5

0

0.5

1

1.5

2

Time  (Second)

Pl
at

fo
rm

 ro
ta

tio
na

l r
ol

l d
is

pl
ac

em
en

ts
(d

eg
re

e)

 

 Without Vertical Vane Control

Vane Control 25 m2

Vane Control 50 m2

Vane Control 100 m2

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Frequency (Hz)

Pl
at

fo
rm

 ro
ta

tio
na

l r
ol

l d
is

pl
ac

em
en

ts
(d

eg
re

e)

 

 
Without Vertical Vane Control

Vane Control 25 m2

Vane Control 50 m2

Vane Control 100 m2

 



169 
 

 

Fig. 7.45. Sway Displacement (Vertical Vane, NACA0012, Downwind as Benchmark) 

 

Fig. 7.46 Sway Displacement Spectra (Vertical Vane, NACA0012, Downwind as Benchmark) 
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Fig. 7.47. Side-to-Side Bending Moment (Vertical Vane, NACA0012, Downwind as Benchmark) 

 

Fig. 7.48.  Side-to-Side Bending Moment (Vertical Vane, NACA0012, Downwind as Benchmark) 
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7.3.1.4. High Lift Airfoil and Vertical Vane with Different Measurements and 

Downwind Design as Benchmark 

In this subsection, the vane pitch controllers with a highlift airfoil are tested on 

downwind floating turbine with Hywind platform when both side-to-side acceleration and 

side-to-side velocity at tower top are used as measurements. Downwind floating turbine 

with Hywind platform is used as benchmark when PI-based IPC and variable torque 

control are used. Fig. 7.49 through Fig. 7.52 show that the generator power and rotor 

speed do not change a lot when vertical vane control is used. Fig. 7.53 and Fig. 7.54 show 

that, compared with the vane control with traditional NACA0012 airfoil, variation of 

side-to-side velocity at tower top is further reduced when a highlift airfoil is used. Vane 

pitch angle and its spectral is shown in Fig. 7.55 and Fig. 7.56. 

Figures 7.55 through 7.60 show that platform translational roll displacement, sway 

displacement and side-to-side moment are further reduced when a high-lift airfoil is used 

and both the velocity and the acceleration along side-to-side direction at tower top are 

used as measurement. Compared with that when the acceleration is used as measurement, 

the sway displacement and loads are further reduced when the velocity is used as the 

measurement. 
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Fig. 7.49.  Generator Power Comparison (Vertical Vane, Highlift Airfoil, Downwind as 

Benchmark) 

 

Fig. 7.50  Generator Power Spectral (Vertical Vane, Highlift Airfoil, Downwind as Benchmark) 
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Fig. 7.51  Rotor Speed (Vertical Vane, Highlift Airfoil, Downwind as Benchmark) 

 

Fig. 7.52  Rotor Speed Spectra (Vertical Vane, Highlift Airfoil, Downwind as Benchmark) 
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Fig. 7.53  Side-to-side Velocity on Tower Top (Vertical Vane, Highlift Airfoil, Downwind as 

Benchmark) 

 

Fig. 7.54  Spectra of Side-to-side Velocity on Tower Top (Vertical Vane, Highlift Airfoil, Downwind 

as Benchmark) 
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Fig. 7.55  Vane Pitch Angle (Vertical Vane, Highlift Airfoil, Downwind as Benchmark) 

 

Fig. 7.56  Vane Pitch Angle Spectra (Vertical Vane, Highlift Airfoil, Downwind as Benchmark) 
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Fig. 7.57  Platform Roll Displacement (Vertical Vane, Highlift Airfoil, Downwind as Benchmark) 

 

Fig. 7.58  Platform Roll Displacement Spectra (Vertical Vane, Highlift Airfoil, Downwind as 

Benchmark) 
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Fig. 7.59  Platform Sway Displacement (Vertical Vane, Highlift Airfoil, Downwind as Benchmark) 

 

Fig. 7.60  Platform Sway Displacement Spectra (Vertical Vane, Highlift Airfoil, Downwind as 

Benchmark) 
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Fig. 7.61  Side-to-side Bending Moment (Vertical Vane, Highlift Airfoil, Downwind as Benchmark) 

 

Fig. 7.62  Side-to-side Bending Moment Spectra (Vertical Vane, Highlift Airfoil, Downwind as 

Benchmark) 
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7.3.1.5. High Lift Airfoil and Vertical Vane with Different  Vane Area and 

Downwind Design as Benchmark 

In this section, vertical vane pitch controllers with different vane areas are tested on 

downwind floating turbine when side-to-side velocity at tower top is used as the 

measurement and highlift airfoil is used. Downwind floating turbine with PI-based 

individual pitch controller and variable torque controller is used as benchmark. Fig. 7.63, 

Fig. 7.64, Fig. 7.65 and Fig. 7.66 show that the generator power and the rotor speed do 

not change very much when vertical vane control is used. Fig. 7.67 and Fig. 7.68 show 

that the vane pitch angle has more activity when vane area is smaller. Fig. 7.69 and Fig. 

7.70 show that the side-to-side velocity at the tower top is significantly alleviated when 

the vertical vane control is used. The bigger vane area is, the more reduction in the side-

to-side velocity at the tower top is. Fig. 7.71, Fig. 7.72, Fig. 7.73, Fig. 7.74, Fig. 7.75 and 

Fig. 7.76 show that the platform sway displacement, the roll displacement and the side-

to-side moment are significantly reduced. In summary, the bigger vane area is, the more 

reduction of displacement or loads in the side-to-side direction is. 
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Fig. 7.63  Generator Power (Vertical Vane, Highlift Airfoil, Downwind as Benchmark) 

 

Fig. 7.64  Generator Power Spectra (Vertical Vane, Highlift Airfoil, Downwind as Benchmark) 

100 200 300 400 500 600 700
3400

3600

3800

4000

4200

4400

4600

4800

5000

5200

Time  (Second)

G
en

er
at

or
 P

ow
er

 (k
W

)

 

 

Without Vertical Vane Control

Vane Control 25 m2

Vane Control 50 m2

Vane Control 100 m2

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Frequency (Hz)

G
en

er
at

or
 P

ow
er

(k
W

)

 

 
Without Vertical Vane Control

Vane Control 25 m2

Vane Control 50 m2

Vane Control 100 m2

 



181 
 

 

Fig. 7.65  Rotor Speed (Vertical Vane, Highlift Airfoil, Downwind as Benchmark) 

 

Fig. 7.66  Rotor Speed Spectra (Vertical Vane, Highlift Airfoil, Downwind as Benchmark) 
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Fig. 7.67  Vane Pitch Angle (Vertical Vane, Highlift Airfoil, Downwind as Benchmark) 

 

Fig. 7.68  Vane Pitch Angle Spectra (Vertical Vane, Highlift Airfoil, Downwind as Benchmark) 
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Fig. 7.69  Side-to-Side Velocity (Vertical Vane, Highlift Airfoil, Downwind as Benchmark) 

 

Fig. 7.70  Side-to-Side Velocity Spectra (Vertical Vane, Highlift Airfoil, Downwind as 

Benchmark) 
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Fig. 7.71  Platform Roll Displacement (Vertical Vane, Highlift Airfoil, Downwind as Benchmark) 

 

Fig. 7.72  Platform Roll Displacement Spectra (Vertical Vane, Highlift Airfoil, Downwind as 

Benchmark) 
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Fig. 7.73  Platform Sway Displacement (Vertical Vane, Highlift Airfoil, Downwind as 

Benchmark) 

 

Fig. 7.74  Platform Sway Displacement Spectra (Vertical Vane, Highlift Airfoil, Downwind as 

Benchmark) 
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Fig. 7.75  Side-to-Side Bending Moment (Vertical Vane, Highlift Airfoil, Downwind as 

Benchmark) 

 

Fig. 7.76  Side-to-Side Bending Moment Spectra (Vertical Vane, Highlift Airfoil, Downwind as 

Benchmark) 
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7.3.1.6. Damage Equivalent Loads 

When damping in roll direction of floating turbines is increased, loads at tower base in 

side-to-side direction should be also reduced. In this section, the damage-equivalent loads 

(DEL) of the moments at tower base in both side-to-side and fore-aft direction are 

calculated by use of MCrunch [200] and results are listed in Table 7-3.  

Table 7-3: Damage Equivalent Loads (DEL) for Vertical Vane 

Cases Airfoil 
Vane 
Area 

m
2
 

Feedback 
Variable 

Side-to-Side 
Moment at 
Tower Base 

(kN*m) 

Side-to-
Side 

Moment 
Reduction 

Fore-Aft 
Moment at 
Tower Base 

(kN*m) 

Fore-Aft 
Moment 

Reduction 

1  

(no 
vane) 

---------- ---------- ---------- 23630.00 0.00% 68200 0.00% 

2 NACA0012 25 Velocity 18560 21.46% 67330.00 1.28% 

3 NACA0012 50 Velocity 16920 28.40% 67130.00 1.57% 

4 NACA0012 100 Velocity 14920 36.86% 67440.00 1.11% 

5 NACA0012 100 Acceleration 18730 20.74% 67440.00 1.11% 

6 Highlift 25 Velocity 15910 32.67% 67370.00 1.23% 

7 Highlift 50 Velocity 14470 38.76% 67540.00 0.97% 

8 Highlift 100 Velocity 13410 43.25% 67970.00 0.34% 

9 Highlift 100 Acceleration  14900 36.94% 67210.00 1.45% 

 

7.3.1.7. Power Assumption by Vertical Vane Actuator 

In this study, it is assumed that vane pitch angle is controlled by electrical motor. Vane 

dynamics can be used to estimate torque and power which is needed for vane control. 

Vane dynamics is shown in the below 

m aeroJ T Tθ = −       (7.1) 
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where θ is the pitch angle of vertical vane, J is the inertial moment of vertical vane and 

Tm is electrical torque used for vane pitch control. Taero is the aerodynamic torque of 

vertical vane according to the pitch axis located at 25% of the chord from the leading 

edge of the airfoils in the cross-plane. Taero can be calculated by 

( ) 21
2aero mT C v Aα ρ= ⋅ ⋅     (7.2) 

where Cm is pitching moment coefficients of airfoils, α is angle of attack for vertical vane, 

A is the vane area, ρ is air density and v is the mean wind speed for vane.  

Torque from vane motor can be calculated by use of Eqs. (7.2) and (7.3). Then power 

is used by vane motor can be estimated by use of the following formula 

m mP T θ= ⋅       (7.3) 

The power assumption of vane actuator and power production of wind turbine for 

different cases are listed in Table 7-4. 

Table 7-4: Power Assumption of Vane Pitch 

Cases Airfoil 
Vane 

Area m
2
 

Feedback 

Wind Turbine 
Power 

Production 
(kWh) 

Vane Actuator 
Power 

Assumption 
(kWh) 

Percent of 
Power 

Assumption 

1  Without 
Vane --------- ----------------- 1007 0 0.0000% 

2 NACA0012 25 Velocity 1007.5 0.0551 0.0055% 

3 NACA0012 50 Velocity 1007.3 0.1042 0.0103% 

4 NACA0012 100  Velocity 1007 0.1678 0.0167% 

5 NACA0012 100  Acceleration 1007.2 39.2684 3.8988% 

 

Table 7-4 shows that: 
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a)   When side-to-side velocity is used as measurement, the percentage of power 

assumption ranges from 0.0055% to 0.0167% for vertical vane;  

b) The bigger the vane area is, the higher the power assumption of vertical vane is; 

c) Compared with that with velocity measurement, the power assumption of vertical 

vane is higher (3.89%) when side-to-side acceleration at tower top is used as 

measurement. 

7.3.2. Simulation Results for Horizontal Vane 

In this part, highlift airfoil and fore-aft velocity were proposed for horizontal vane control 

based on experience of vertical vane control. Conditions of wind speed and wave are the 

same to that for vertical vane control. 

The vane pitch angle and its spectra are shown in Fig. 7.77 and Fig. 7.78. The fore-aft 

velocity at tower top and its spectra are shown in Fig. 7.79 and Fig. 7.80. The rotational 

pitch displacement and its spectra are shown in Fig. 7.81 and Fig. 7.82, which shows that 

the variation of the platform pitch displacement was reduced about 40% near 0.02 Hz. 

The fore-aft bending moment at the tower base and its spectra are plotted in Fig. 7.83 and 

Fig. 7.84, which shows that variation of the fore-aft bending moment is reduced by about 

50% near 0.02 Hz. 
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Fig. 7.77 Vane Pitch Angle for Horizontal Vane Control 

 

Fig. 7.78 Vane Pitch Angle Spectra for Horizontal Vane Control 
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Fig. 7.79 Fore-aft Velocity at Tower Top for Horizontal Vane Control 

 

Fig. 7.80. Spectra of Fore-aft Velocity at Tower Top for Horizontal Vane Control 
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Fig. 7.81. Platform Rotational Pitch Displacement for Horizontal Vane Control 

 

Fig. 7.82. Spectra of Platform Rotational Displacements for Horizontal Vane Control 
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Fig. 7.83. Fore-Aft Bending Moments at Tower Base for Horizontal Vane Control 

 

Fig. 7.84. Spectra of Fore-Aft Bending Moments at Tower Base for Horizontal Vane Control 
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7.4. Summary 

In this chapter, a new actuator aerodynamics vane was proposed to increase damping of 

floating wind turbine in the roll and pitch motion. The basic idea is to move wind turbine 

back to balance line by use of aerodynamic forces of vertical vane when wind turbines 

are not located in the balance line along the side-to-side direction. Tail-furling module of 

FAST software is modified to simulate floating turbine including vanes. The benchmark 

controller is built by use of PI-based individual pitch controller and variable torque 

control. The PI-based vertical- and horizontal-vane controllers were designed by use of 

both velocity and acceleration measurements at tower top. In order to evaluate the 

capability of vertical vane, both airfoil NACA0012 and a highlift airfoil proposed in [35] 

are used for vane design. Simulation results show that damping in the roll direction was 

increased and side-to-side bending moments at tower was reduced from 19% to 42% by 

use of vertical vane control and the power assumption for vertical vane control is not high. 

For horizontal vane control, variation of platform pitch displacement was reduced about 

40% and variation of fore-aft bending moment reduced about 50% at near 0.02 Hz. 
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Chapter 8. Contribution and Future Work 

This dissertation research addresses several control problems for farm operated and 

offshore floating turbines, covering both energy capture enhancement and load reduction. 

As wind farm and offshore operations present the major engineering challenge and 

opportunity for wind energy, this dissertation research has made more attempts on such 

regard. This chapter concludes this dissertation by summarizing the major contributions 

as well as suggesting some aspects of future work. 

8.1.  Summary of Research Contribution 

8.1.1. Individual Pitch Control of Wind Turbine Load Reduction by 

Including Wake Interaction 

The Larsen wake model is chosen to compose the wind profile at the downstream wind 

turbines under wake interaction, and a switched control strategy is thus developed based 

on the composite wind profile. The idea of equivalent circular wind profile was proposed 

to obtain different pitch references along azimuth. When different pitch references along 

azimuth are used, more accurate state-space models of wind turbine can thus be generated 

via FAST linearization. Based on such models, the IPC are designed following both the 

DAC and the periodic control frameworks. Simulation results showed that the tower-base 

fore-aft bending moment, the tower-base side-to-side bending moment, the rotor speed 

fluctuation and the blade-tip displacement difference are significantly suppressed. 
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8.1.2. Model Predictive Control of Wind Turbines including Wake 

Meandering 

An MMPC based IPC design was presented for load reduction of wind turbine under a 

wake meandering scenario. The spectral method with a special lateral coherence function 

is used to generate the initial wind profile at the upstream wind turbine. Then a simplified 

wake meandering model is used to predict the wake-center position at the downstream 

wind turbine. Based on the wake center position thus calculated, the wind profile with 

wake meandering was generated. After obtaining the linearized state-space models via 

MBC, MMPC are designed in order to ensure smooth controller transition. Simulation 

results showed that, compared that by use of traditional MPC, the variations in the rotor 

speed and the blade-root flapwise moment are significantly suppressed by use of MMPC. 

8.1.3. Maximizing Wind Farm Energy Capture via Nested-loop 

Extremum Seeking Control 

A nest-looped ESC controller is evaluated to maximize energy capture in wind farm level. 

Based on analytical analysis and simulation, it is verified that optimal torque gains exists 

and do not change with wind speed for maximizing energy capture in wind farm level. 

For steady wind speed, power summation of all turbines in the wake of a turbine is used 

as output measurement of this turbine’s ESC. For turbulent wind, power coefficients are 

redefined in wind farm level and they are used for output measurement of ESC. Cross-

covariance is used to calculate the delay time of wake transportation. Simulation results 

show that energy capture can be increased 5% under steady wind and 1.3% under 

turbulent wind. 
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8.1.4. Active Vane Control  for Stabilization of Floating Offshore Wind 

Turbine 

The active vane concept is evaluated for stabilization of floating wind turbine in both roll 

and pitch motion. FAST software was modified to simulate floating turbine including 

vane according to Kane’s method. The benchmark controller was built by use of PI-based 

individual pitch controller and variable torque control. The PI-based vertical and 

horizontal vane controllers were designed by use of both velocity and acceleration 

measurements at tower top as feedback. In order to fully test the capability of vertical 

vane, both airfoil NACA0012 and a highlift airfoil from Stanford were used for vane 

design. Simulation results showed that side-to-side bending moments at tower was 

reduced from 19% to 42% by use of the vertical vane control; the power assumption for 

the vertical vane control is not high; damping of pitch motion for floating turbines was 

increased by use of horizontal vane control. 

8.2. Future Work 

For MMPC control of wind turbine including wake meandering, MPC schemes of higher 

robustness may be combined with MMPC framework in order to enhance stability 

robustness. If the wake meandering situation can be formulated as a piece-wise affine 

system, the hybrid MPC scheme can be applied.  

The active vane design of higher lift can be investigated and the CFD study can be 

performed. Coupling of vertical vane and horizontal vane will be a more interesting 

research topic. 

Experimental studies are necessary to further evaluate these above control strategies.   
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Appendix A. Justification of Nested-loop Optimization for 

Maximizing Energy Capture of A Cascade of Wind Turbines 

In this appendix, the optimal inductor factor relationship from [21, 22] is described 

and the prove in this section was provided by Prof. Yaoyu Li.  All the derivations are 

based on the 1D Momentum Theory and the Actuator Disc Model of wind turbine. The 

wind turbine array of interest is the cascaded topology as shown in Fig.A.1, where all the 

wind turbine disks are lined up against the direction of the prevailing wind. For the ease 

of the derivation later, the turbines are numbered along the upwind direction, i.e. turbine 

1 is at the most the downwind position. For turbine i, Ui indicates its upcoming free-

stream wind speed. The row distance of the wind turbine array is designed such that the 

free-stream average speed of the incoming wind for a downstream turbine can be 

approximated as the far-wake average speed of an upstream turbine, i.e. 

( )1 11 2i i iU a U+ += −       (A.1) 

where ai is the axial induction factor for the ith wind turbine. 

Definition 1: Array Power Coefficient. For cascaded wind turbines 1, 2, …, n, … (as 

illustrated in Fig.A.1 ), the Array Power Coefficient Kn for wind turbine n is defined as  

( )
1

31 2

n

j
j

n
n

P
K

AUρ
==
∑

     (A.2) 
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Fig. A.1  A Cascade of Wind Turbines 

Lemma 1: For the cascaded wind turbine array as shown in Fig.A.1, when the total 

power captured by the array is maximized, the optimal values of axial induction factors 

of adjacent wind turbines, e.g. turbine n and turbine (n+1), are related by 

*
*

1 *2 1
n

n
n

aa
a+ =
+

     (A.3) 

where the optimal induction factor of turbine n is 

* 1
3 2( 1)na

n
=

+ −
     (A.4) 

Also, the array power coefficient of turbine n is  

( )* *22 1
3n nK a= −      (A.5) 

Proof: To maximize the total power output of the wind turbine array in Fig.A.1, it is 

equivalent to maximizing the array power coefficient for an arbitrary sub-array which 

consists of turbines 1 to n, i.e.  

Wind Direction

n n-1 n-2 2 1
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( ) ( )
3

31 1
1 13 1 2

1 2

n
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j n

n pn n pn n n
n n

P
UK C K C K a

AU Uρ
= −

− −

 
= = + = + − 

 

∑
 (A.6) 

where A is the rotor area and ρ is the air density, Un is the wind speed right in front of the 

rotor of turbine n, and Cpn is the power coefficient of turbine n, i.e.  

( )2

3
4 11

2

n
pn n n

n

PC a a
AUρ

= = −    (A.7) 

Substitute Eq. (A.7) into (A.6) yields 

( ) ( )2 3
14 1 1 2n n n n nK a a K a−= − + −    (A.8) 

To maximize Kn with respect to an, the first-order sufficient condition is  

0n

n

dK
da

=       (A.9) 

which leads to 

( )( )
( )1 2

2 1 1 3
1 2

n n
n

n

a a
K

a−

− −
=

−
    (A.10) 

Substituting Eq. (A.10) into Eq. (A.8) yields 

( )* *22 1
3n nK a= −      (A.11) 

By extending Eq. (A.11) to Kn+1, the effective power efficient is 
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( )* * 2
1 1

2 1
3n nK a− −= −     (A.12) 

Then, substituting Eqs. (A.11) and (A.12) into Eq. (A.8) yields 

*
* 1

*
12 1

n
n

n

aa
a

−

−

=
+

     (A.13) 

Based on Eq. (A.10), we can derive 

* 1
3 2( 1)na

n
=

+ −
    (A.14) 

Proposition 1: For a cascaded wind turbine array in Fig.A.1 , the optimal axial induction 

factors of turbine n ≥ 2 follows  

* 10, 3na  ∈ 
     (A.15) 

Proof: from Eq. (A.4) in Lemma 1, the optimal axial induction factor for turbines 1, 2, 

3,… , respectively, form a positive and decreasing series {1/3, 1/5, 1/7, …}, which results 

in Eq. (A.6). 

Proposition 2: For a cascaded wind turbine array in Fig.A.1, the optimal array power 

coefficient of turbine n ≥ 1 is  

* 16 2,27 3nK  ∈  
     (A.16) 

Proof: Substituting Eq. (A.6) into Eq. (A.5) yields Eq. (A.16). 
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Theorem 1: For cascaded wind turbine array as shown in Fig.A.1, the maximum total 

power of n+1 turbines (n ≥ 1) can be uniquely optimized by optimizing the axial 

induction factor of the most upwind turbine (i.e. an+1) and optimizing the array power 

coefficient of the immediate downwind turbine Kn (i.e. the total power of all downwind 

turbines).  

Proof:  For turbine n and (n+1), we have 

( )1 11 2n n nU a U+ += −  

1. The array power coefficient for turbine (n+1) is 

( ) ( ) ( )

1

3

1 1 1
1 , 13 3 3

1 1 1 11 2 1 2 1 2

n n

i i
i n i n

n P n n
n n n n

P P
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AU AU AU Uρ ρ ρ

+

= + =
+ +

+ + + +

 
= = + = +  

 

∑ ∑
 

Therefore, we have 

( ) ( )2 3
1 1 1 14 1 1 2n n n n nK a a K a+ + + += − + −   (A.17) 

Maximizing Kn+1 relies on both an+1 and Kn. As Kn is function of dimensionless numbers 

a1, …, an, Kn(a1, …, an) is invariant with Un+1,and in consequence independent on an+1. 

Since an+1∈(0, ½),  4an+1(1− an+1)2>0, and (1−2an+1)3 >0. Also, Kn > 0, we have Kn+1 > 0 

from Eq. (15). From Eq. (A.16), the limit of Kn is 2/3, so Kn+1(an+1, Kn) is positive-value 

function defined on a Cartesian domain (0, ½)×[16/27,2/3]. An important implication for 

wind turbine array optimization is that, once the operational parameters of a sub-array of 

wind turbines is optimized (by adjusting the axial induction factors of the involved 

turbines), adjustment of upwind turbines would not affect such optimality.  
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2. For any fixed an+1, attaining the maximum for Kn+1 (i.e. *
1nK + ) will require Kn 

achieves its maximum, i.e. Kn,max.  An easy proof by contradiction can be set as follows. 

If the pair ( )* *
1,n na K+  maximized Kn+1, where *

,maxn nK K< , we would have 

( ) ( ) ( ) ( )2 3 2 3* * * * * * *
1 1 1 1 1 ,max 14 1 1 2 4 1 1 2+ + + + + +− + − < − + −n n n n n n n na a K a a a K a  

which results in *
,maxn nK K= . 

An important implication of this statement is that the optimal choice of Kn regarding to 

optimizing Kn+1 is fixed to Kn,max, which is result of maximizing the total power of all 

downwind turbines. In other words, it shows a “common-sense” consequence – the total 

power of (n+1) turbines would be maximized after the total power of the n downwind 

turbines is optimized. 

3. Then the task of maximizing Kn+1 in Eq. (15) can be simplified as 

( ) ( )
1

2 3*
1 1 1 1arg max 4 1 1 2

n
n n n n na

K a a K a
+

+ + + +
 = − + −    (A.18) 

where  Kn can be considered as a constant for this optimization problem, which can reach 

its maximum Kn,max  by adjusting (a1, …, an) in a separate problem. For all the following 

derivation, the axial inductor factor has permissible range of 

( )1 0,1 2na + ∈  

Consider the first-order sufficient condition for optimality, 

1

1

0n

n

dK
da

+

+

=      (A.19) 
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Since 

( ) ( ) ( )21
1 1

1

12 24 24 16 4 6n
n n n n n

n

dK K a K a K
da

+
+ +

+

= − + − + −  (A.20) 

Eq. (A.19) becomes  

( ) ( ) ( )
( )

( )

2
1 1

1

6 12 12 8 2 3 0

8 12 16 24
2 6 12

n n n n n

n n
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− + − + − =

− ± −
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−

 

This results in  

( )
( )1

4 6 4 6
6 12

n n
n

n

K K
a

K+

− ± −
=

−
     (A.21) 

Due to the possible singularity in the denominator in Eq.(A.21) and also different 

possible solutions, we need to separate three cases: 

i) ( ) ( ) ( ) ( )1 2, : 6 12 0, 4 6 0,1 4 6 4 6
2 3n n n n nK K and K K K ∈ − < − ∈ ⇒ − > − 

 
 

( )
( )1

4 6 4 6
6 12

n n
n

n

K K
a

K+

− − −
⇒ =

−
 is the only positive solution. 

This is the situation when the total power of all the downwind turbines have been 

optimized, the axial inductor factor of the current turbine can be optimized to a 

unique solution. 

ii) For Kn=1/2: 
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( ) ( ) ( )2
1 1 1

112 24 24 16 4 6 0
4n n n n n nK a K a K a+ + +− + − + − = ⇒ =  

iii) 10, :
2nK  ∈ 

 
 

( ) ( ) ( ) ( )6 12 0, 4 6 1, 4 4 6 4 6n n n nK and K K K− > − ∈ ⇒ − < −  

( )
( )1

4 6 4 6
6 12+

− ± −
⇒ =

−
n n

n
n

K K
a

K
 are two positive real roots. 

Now we will test if both roots lie in the permissible range of (0, ½) for axial 

induction factor. 

( )
( ) ( ) ( )1

4 6 4 6 4 61 1 1
6 12 6 1 2 2 6 1 2 2

n n n
n

n n n

K K K
a

K K K+

− + − −
= = + + >

− − −
 

This is an impossible solution. 

Therefore, only 
( )

( )1

4 6 4 6
6 12

n n
n

n

K K
a

K+

− − −
=

−
 is the possible solution, which is the 

same as the case i). 

4. To show the existence of unique an+1, we need to verify the following second-

order derivative condition to validate an obtained stationary point as maximum: 

2
1

2
1

0n

n

d K
da

+

+

<       (A.22) 

( ) ( )
2

1
12

1

2 6 12 12 8n
n n n

n

d K K a K
da

+
+

+

= − + −    (A.23) 
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i) For Kn=1/2, 
2

1
2

1

2n

n

d K
da

+

+

= − , i.e. 
2

1
2

1

0+

+

<n

n

d K
da

 for all an+1. 

ii) Otherwise Kn+1 ≠ ½, substituting the aforementioned root (for cases i and iii in the 

part 3) into Eq.  (A.23) yields 

( )
( )1

4 6 4 6
6 12

n n
n

n

K K
a

K+

− − −
=

−
 , 

2
1

2
1

4 6 0n
n

n

d K K
da

+

+

= − − <   and  
2

1
2

1

0n

n

d K
da

+

+

< since Kn < 2/3. 

Combining both case yields that therefore there exist interior point of an+1 that is 

unique optimal solution.  
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Appendix B. Specifications of NREL 5MW Turbine Model 

In this appendix, main characteristics of NREL 5MW [192] is provided in Table B-1. 

Table B-1: Properties of the NREL-5MW Baseline 

Rated Power 5 MW 

Rotor Orientation Upwind 

Blade number  3 Blades 

Rotor, Hub Diameter 126m, 3m 

Rotor Mass 110,000 kg 

Nacelle Mass 240,000kg 

Tower Mass 347,460kg 

Rated Tip Speed 80 m/s 

Cut-In, Rated Rotor Speed 6.9rpm, 12.1rpm 

Cut-In, Rated, Cut-out Wind Speeds 3m/s, 11.4m/s, 25m/s 

Gearbox Ratio 97 

Generator Efficiency  94.4% 

 

For more detailed description for the characteristics of the NREL 5MW turbine model, 

the FAST [140] input file  is copied as follows: 

-------------------------------------------------------------------------------- 
------- FAST INPUT FILE -------------------------------------------------------- 
NREL 5.0 MW Baseline Wind Turbine for Use in Offshore Analysis. 
Properties from Dutch Offshore Wind Energy Converter (DOWEC) 6MW Pre-Design (10046_009.pdf) 
and REpower 5M 5MW (5m_uk.pdf); Compatible with FAST v6.0. 
---------------------- SIMULATION CONTROL -------------------------------------- 
False       Echo        - Echo input data to "echo.out" (flag) 
   1        ADAMSPrep   - ADAMS preprocessor mode {1: Run FAST, 2: use FAST as a preprocessor to 
create an ADAMS model, 3: do both} (switch) 
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   1        AnalMode    - Analysis mode {1: Run a time-marching simulation, 2: create a periodic linearized 
model} (switch) 
   3        NumBl       - Number of blades (-) 
 630.0      TMax        - Total run time (s) 
   0.0125   DT          - Integration time step (s) 
---------------------- TURBINE CONTROL ----------------------------------------- 
   0        YCMode      - Yaw control mode {0: none, 1: user-defined from routine UserYawCont, 2: user-
defined from Simulink} (switch) 
9999.9      TYCOn       - Time to enable active yaw control (s) [unused when YCMode=0] 
   2        PCMode      - Pitch control mode {0: none, 1: user-defined from routine PitchCntrl, 2: user-defined 
from Simulink} (switch) 
   0.0      TPCOn       - Time to enable active pitch control (s) [unused when PCMode=0] 
   3        VSContrl    - Variable-speed control mode {0: none, 1: simple VS, 2: user-defined from routine 
UserVSCont, 3: user-defined from Simulink} (switch) 
1173.7      VS_RtGnSp   - Rated generator speed for simple variable-speed generator control (HSS side) 
(rpm) [used only when VSContrl=1] 
43093.55    VS_RtTq     - Rated generator torque/constant generator torque in Region 3 for simple variable-
speed generator control (HSS side) (N-m) [used only when VSContrl=1] 
0.0255764   VS_Rgn2K    - Generator torque constant in Region 2 for simple variable-speed generator 
control (HSS side) (N-m/rpm^2) [used only when VSContrl=1] 
10.0        VS_SlPc     - Rated generator slip percentage in Region 2 1/2 for simple variable-speed generator 
control (%) [used only when VSContrl=1] 
   1        GenModel    - Generator model {1: simple, 2: Thevenin, 3: user-defined from routine UserGen} 
(switch) [used only when VSContrl=0] 
True        GenTiStr    - Method to start the generator {T: timed using TimGenOn, F: generator speed using 
SpdGenOn} (flag) 
True        GenTiStp    - Method to stop the generator {T: timed using TimGenOf, F: when generator power 
= 0} (flag) 
9999.9      SpdGenOn    - Generator speed to turn on the generator for a startup (HSS speed) (rpm) [used 
only when GenTiStr=False] 
   0.0      TimGenOn    - Time to turn on the generator for a startup (s) [used only when GenTiStr=True] 
9999.9      TimGenOf    - Time to turn off the generator (s) [used only when GenTiStp=True] 
   1        HSSBrMode   - HSS brake model {1: simple, 2: user-defined from routine UserHSSBr} (switch) 
9999.9      THSSBrDp    - Time to initiate deployment of the HSS brake (s) 
9999.9      TiDynBrk    - Time to initiate deployment of the dynamic generator brake [CURRENTLY 
IGNORED] (s) 
9999.9      TTpBrDp(1)  - Time to initiate deployment of tip brake 1 (s) 
9999.9      TTpBrDp(2)  - Time to initiate deployment of tip brake 2 (s) 
9999.9      TTpBrDp(3)  - Time to initiate deployment of tip brake 3 (s) [unused for 2 blades] 
9999.9      TBDepISp(1) - Deployment-initiation speed for the tip brake on blade 1 (rpm) 
9999.9      TBDepISp(2) - Deployment-initiation speed for the tip brake on blade 2 (rpm) 
9999.9      TBDepISp(3) - Deployment-initiation speed for the tip brake on blade 3 (rpm) [unused for 2 
blades] 
9999.9      TYawManS    - Time to start override yaw maneuver and end standard yaw control (s) 
9999.9      TYawManE    - Time at which override yaw maneuver reaches final yaw angle (s) 
   0.0      NacYawF     - Final yaw angle for yaw maneuvers (degrees) 
9999.9      TPitManS(1) - Time to start override pitch maneuver for blade 1 and end standard pitch control 
(s) 
9999.9      TPitManS(2) - Time to start override pitch maneuver for blade 2 and end standard pitch control 
(s) 
9999.9      TPitManS(3) - Time to start override pitch maneuver for blade 3 and end standard pitch control 
(s) [unused for 2 blades] 
9999.9      TPitManE(1) - Time at which override pitch maneuver for blade 1 reaches final pitch (s) 
9999.9      TPitManE(2) - Time at which override pitch maneuver for blade 2 reaches final pitch (s) 
9999.9      TPitManE(3) - Time at which override pitch maneuver for blade 3 reaches final pitch (s) [unused 
for 2 blades] 
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14.749      BlPitch(1)  - Blade 1 initial pitch (degrees) 
14.749      BlPitch(2)  - Blade 2 initial pitch (degrees) 
14.749      BlPitch(3)  - Blade 3 initial pitch (degrees) [unused for 2 blades] 
   0.0      B1PitchF(1) - Blade 1 final pitch for pitch maneuvers (degrees) 
   0.0      B1PitchF(2) - Blade 2 final pitch for pitch maneuvers (degrees) 
   0.0      B1PitchF(3) - Blade 3 final pitch for pitch maneuvers (degrees) [unused for 2 blades] 
---------------------- ENVIRONMENTAL CONDITIONS -------------------------------- 
   9.80665  Gravity     - Gravitational acceleration (m/s^2) 
---------------------- FEATURE FLAGS ------------------------------------------- 
True        FlapDOF1    - First flapwise blade mode DOF (flag) 
False        FlapDOF2    - Second flapwise blade mode DOF (flag) 
False        EdgeDOF     - First edgewise blade mode DOF (flag) 
False       TeetDOF     - Rotor-teeter DOF (flag) [unused for 3 blades] 
True        DrTrDOF     - Drivetrain rotational-flexibility DOF (flag) 
True        GenDOF      - Generator DOF (flag) 
False        YawDOF      - Yaw DOF (flag) 
True         TwFADOF1    - First fore-aft tower bending-mode DOF (flag) 
False        TwFADOF2    - Second fore-aft tower bending-mode DOF (flag) 
True         TwSSDOF1    - First side-to-side tower bending-mode DOF (flag) 
False        TwSSDOF2    - Second side-to-side tower bending-mode DOF (flag) 
True        CompAero    - Compute aerodynamic forces (flag) 
False       CompNoise   - Compute aerodynamic noise (flag) 
---------------------- INITIAL CONDITIONS -------------------------------------- 
   0.0      OoPDefl     - Initial out-of-plane blade-tip displacement (meters) 
   0.0      IPDefl      - Initial in-plane blade-tip deflection (meters) 
   0.0      TeetDefl    - Initial or fixed teeter angle (degrees) [unused for 3 blades] 
   0.0      Azimuth     - Initial azimuth angle for blade 1 (degrees) 
  12.1      RotSpeed    - Initial or fixed rotor speed (rpm) 
   0.0      NacYaw      - Initial or fixed nacelle-yaw angle (degrees) 
   0.0      TTDspFA     - Initial fore-aft tower-top displacement (meters) 
   0.0      TTDspSS     - Initial side-to-side tower-top displacement (meters) 
---------------------- TURBINE CONFIGURATION ----------------------------------- 
  63.0      TipRad      - The distance from the rotor apex to the blade tip (meters) 
   1.5      HubRad      - The distance from the rotor apex to the blade root (meters) 
   1        PSpnElN     - Number of the innermost blade element which is still part of the pitchable portion of 
the blade for partial-span pitch control [1 to BldNodes] [CURRENTLY IGNORED] (-) 
   0.0      UndSling    - Undersling length [distance from teeter pin to the rotor apex] (meters) [unused for 3 
blades] 
   0.0      HubCM       - Distance from rotor apex to hub mass [positive downwind] (meters) 
  -5.01910  OverHang    - Distance from yaw axis to rotor apex [3 blades] or teeter pin [2 blades] (meters) 
   1.9      NacCMxn     - Downwind distance from the tower-top to the nacelle CM (meters) 
   0.0      NacCMyn     - Lateral  distance from the tower-top to the nacelle CM (meters) 
   1.75     NacCMzn     - Vertical distance from the tower-top to the nacelle CM (meters) 
  87.6      TowerHt     - Height of tower above ground level [onshore] or MSL [offshore] (meters) 
   1.96256  Twr2Shft    - Vertical distance from the tower-top to the rotor shaft (meters) 
   0.0      TwrRBHt     - Tower rigid base height (meters) 
  -5.0      ShftTilt    - Rotor shaft tilt angle (degrees) 
   0.0      Delta3      - Delta-3 angle for teetering rotors (degrees) [unused for 3 blades] 
  -2.5      PreCone(1)  - Blade 1 cone angle (degrees) 
  -2.5      PreCone(2)  - Blade 2 cone angle (degrees) 
  -2.5      PreCone(3)  - Blade 3 cone angle (degrees) [unused for 2 blades] 
   0.0      AzimB1Up    - Azimuth value to use for I/O when blade 1 points up (degrees) 
---------------------- MASS AND INERTIA ---------------------------------------- 
   0.0      YawBrMass   - Yaw bearing mass (kg) 
 240.00E3   NacMass     - Nacelle mass (kg) 
  56.78E3   HubMass     - Hub mass (kg) 
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   0.0      TipMass(1)  - Tip-brake mass, blade 1 (kg) 
   0.0      TipMass(2)  - Tip-brake mass, blade 2 (kg) 
   0.0      TipMass(3)  - Tip-brake mass, blade 3 (kg) [unused for 2 blades] 
2607.89E3   NacYIner    - Nacelle inertia about yaw axis (kg m^2) 
 534.116    GenIner     - Generator inertia about HSS (kg m^2) 
 115.926E3  HubIner     - Hub inertia about rotor axis [3 blades] or teeter axis [2 blades] (kg m^2) 
---------------------- DRIVETRAIN ---------------------------------------------- 
 100.0      GBoxEff     - Gearbox efficiency (%) 
  94.4      GenEff      - Generator efficiency [ignored by the Thevenin and user-defined generator models] 
(%) 
  97.0      GBRatio     - Gearbox ratio (-) 
False       GBRevers    - Gearbox reversal {T: if rotor and generator rotate in opposite directions} (flag) 
  28.1162E3 HSSBrTqF    - Fully deployed HSS-brake torque (N-m) 
   0.6      HSSBrDT     - Time for HSS-brake to reach full deployment once initiated (sec) [used only when 
HSSBrMode=1] 
            DynBrkFi    - File containing a mech-gen-torque vs HSS-speed curve for a dynamic brake 
[CURRENTLY IGNORED] (quoted string) 
 867.637E6  DTTorSpr    - Drivetrain torsional spring (N-m/rad) 
   6.215E6  DTTorDmp    - Drivetrain torsional damper (N-m/(rad/s)) 
---------------------- SIMPLE INDUCTION GENERATOR ------------------------------ 
9999.9      SIG_SlPc    - Rated generator slip percentage (%) [used only when VSContrl=0 and 
GenModel=1] 
9999.9      SIG_SySp    - Synchronous (zero-torque) generator speed (rpm) [used only when VSContrl=0 
and GenModel=1] 
9999.9      SIG_RtTq    - Rated torque (N-m) [used only when VSContrl=0 and GenModel=1] 
9999.9      SIG_PORt    - Pull-out ratio (Tpullout/Trated) (-) [used only when VSContrl=0 and 
GenModel=1] 
---------------------- THEVENIN-EQUIVALENT INDUCTION GENERATOR ----------------- 
9999.9      TEC_Freq    - Line frequency [50 or 60] (Hz) [used only when VSContrl=0 and GenModel=2] 
9998        TEC_NPol    - Number of poles [even integer > 0] (-) [used only when VSContrl=0 and 
GenModel=2] 
9999.9      TEC_SRes    - Stator resistance (ohms) [used only when VSContrl=0 and GenModel=2] 
9999.9      TEC_RRes    - Rotor resistance (ohms) [used only when VSContrl=0 and GenModel=2] 
9999.9      TEC_VLL     - Line-to-line RMS voltage (volts) [used only when VSContrl=0 and GenModel=2] 
9999.9      TEC_SLR     - Stator leakage reactance (ohms) [used only when VSContrl=0 and GenModel=2] 
9999.9      TEC_RLR     - Rotor leakage reactance (ohms) [used only when VSContrl=0 and GenModel=2] 
9999.9      TEC_MR      - Magnetizing reactance (ohms) [used only when VSContrl=0 and GenModel=2] 
---------------------- PLATFORM ------------------------------------------------ 
   0        PtfmModel   - Platform model {0: none, 1: onshore, 2: fixed bottom offshore, 3: floating offshore} 
(switch) 
            PtfmFile    - Name of file containing platform properties (quoted string) [unused when 
PtfmModel=0] 
---------------------- TOWER --------------------------------------------------- 
  20        TwrNodes    - Number of tower nodes used for analysis (-) 
"NRELOffshrBsline5MW_Tower_Onshore.dat"          TwrFile     - Name of file containing tower 
properties (quoted string) 
---------------------- NACELLE-YAW --------------------------------------------- 
9028.32E6   YawSpr      - Nacelle-yaw spring constant (N-m/rad) 
  19.16E6   YawDamp     - Nacelle-yaw damping constant (N-m/(rad/s)) 
   0.0      YawNeut     - Neutral yaw position--yaw spring force is zero at this yaw (degrees) 
---------------------- FURLING ------------------------------------------------- 
False       Furling     - Read in additional model properties for furling turbine (flag) 
            FurlFile    - Name of file containing furling properties (quoted string) [unused when Furling=False] 
---------------------- ROTOR-TEETER -------------------------------------------- 
   0        TeetMod     - Rotor-teeter spring/damper model {0: none, 1: standard, 2: user-defined from routine 
UserTeet} (switch) [unused for 3 blades] 
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   0.0      TeetDmpP    - Rotor-teeter damper position (degrees) [used only for 2 blades and when 
TeetMod=1] 
   0.0      TeetDmp     - Rotor-teeter damping constant (N-m/(rad/s)) [used only for 2 blades and when 
TeetMod=1] 
   0.0      TeetCDmp    - Rotor-teeter rate-independent Coulomb-damping moment (N-m) [used only for 2 
blades and when TeetMod=1] 
   0.0      TeetSStP    - Rotor-teeter soft-stop position (degrees) [used only for 2 blades and when 
TeetMod=1] 
   0.0      TeetHStP    - Rotor-teeter hard-stop position (degrees) [used only for 2 blades and when 
TeetMod=1] 
   0.0      TeetSSSp    - Rotor-teeter soft-stop linear-spring constant (N-m/rad) [used only for 2 blades and 
when TeetMod=1] 
   0.0      TeetHSSp    - Rotor-teeter hard-stop linear-spring constant (N-m/rad) [used only for 2 blades and 
when TeetMod=1] 
---------------------- TIP-BRAKE ----------------------------------------------- 
   0.0      TBDrConN    - Tip-brake drag constant during normal operation, Cd*Area (m^2) 
   0.0      TBDrConD    - Tip-brake drag constant during fully-deployed operation, Cd*Area (m^2) 
   0.0      TpBrDT      - Time for tip-brake to reach full deployment once released (sec) 
---------------------- BLADE --------------------------------------------------- 
"NRELOffshrBsline5MW_Blade.dat"                  BldFile(1)  - Name of file containing properties for blade 
1 (quoted string) 
"NRELOffshrBsline5MW_Blade.dat"                  BldFile(2)  - Name of file containing properties for blade 
2 (quoted string) 
"NRELOffshrBsline5MW_Blade.dat"                  BldFile(3)  - Name of file containing properties for blade 
3 (quoted string) [unused for 2 blades] 
---------------------- AERODYN ------------------------------------------------- 
"NRELOffshrBsline5MW_AeroDyn_WM.ipt"                ADFile      - Name of file containing AeroDyn 
input parameters (quoted string) 
---------------------- NOISE --------------------------------------------------- 
            NoiseFile   - Name of file containing aerodynamic noise input parameters (quoted string) [used only 
when CompNoise=True] 
---------------------- ADAMS --------------------------------------------------- 
"NRELOffshrBsline5MW_ADAMSSpecific.dat"          ADAMSFile   - Name of file containing ADAMS-
specific input parameters (quoted string) [unused when ADAMSPrep=1] 
---------------------- LINEARIZATION CONTROL ----------------------------------- 
"NRELOffshrBsline5MW_Linear.dat"                 LinFile     - Name of file containing FAST linearization 
parameters (quoted string) [unused when AnalMode=1] 
---------------------- OUTPUT -------------------------------------------------- 
True        SumPrint    - Print summary data to "<RootName>.fsm" (flag) 
True        TabDelim    - Generate a tab-delimited tabular output file. (flag) 
"ES10.3E2"  OutFmt      - Format used for tabular output except time.  Resulting field should be 10 
characters. (quoted string)  [not checked for validity!] 
   0.0      TStart      - Time to begin tabular output (s) 
   1        DecFact     - Decimation factor for tabular output {1: output every time step} (-) 
   1.0      SttsTime    - Amount of time between screen status messages (sec) 
  -3.09528  NcIMUxn     - Downwind distance from the tower-top to the nacelle IMU (meters) 
   0.0      NcIMUyn     - Lateral  distance from the tower-top to the nacelle IMU (meters) 
   2.23336  NcIMUzn     - Vertical distance from the tower-top to the nacelle IMU (meters) 
   1.912    ShftGagL    - Distance from rotor apex [3 blades] or teeter pin [2 blades] to shaft strain gages 
[positive for upwind rotors] (meters) 
   0        NTwGages    - Number of tower nodes that have strain gages for output [0 to 9] (-) 
            TwrGagNd    - List of tower nodes that have strain gages [1 to TwrNodes] (-) [unused if 
NTwGages=0] 
   3        NBlGages    - Number of blade nodes that have strain gages for output [0 to 9] (-) 
 5,9,13     BldGagNd    - List of blade nodes that have strain gages [1 to BldNodes] (-) [unused if 
NBlGages=0] 
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            OutList     - The next line(s) contains a list of output parameters.  See OutList.txt for a listing of 
available output channels, (-) 
"WindVxi  , WindVyi  , WindVzi"                              - Longitudinal, lateral, and vertical wind speeds 
"GenPwr   , GenTq"                                           - Electrical generator power and torque 
"OoPDefl1 , IPDefl1  , TwstDefl1"                            - Blade 1 out-of-plane and in-plane deflections and tip 
twist 
"BldPitch1"                                                  - Blade 1 pitch angle 
"BldPitch2"                                                  - Blade 2 pitch angle 
"BldPitch3"                                                  - Blade 3 pitch angle 
"Azimuth"                                                    - Blade 1 azimuth angle 
"RotSpeed , GenSpeed"                                        - Low-speed shaft and high-speed shaft speeds 
"TTDspFA  , TTDspSS  , TTDspTwst"                            - Tower fore-aft and side-to-side displacments and 
top twist 
"Spn2MLxb1, Spn2MLyb1"                                       - Blade 1 local edgewise and flapwise bending 
moments at span station 2 (approx. 50% span) 
"RootFxc1 , RootFyc1 , RootFzc1"                             - Out-of-plane shear, in-plane shear, and axial forces 
at the root of blade 1 
"RootMxc1 , RootMyc1 , RootMzc1"                             - In-plane bending, out-of-plane bending, and 
pitching moments at the root of blade 1 
"RootMxc2 , RootMyc2 , RootMzc2" 
"RootMxc3 , RootMyc3 , RootMzc3" 
"RootMyb1"                                                   - flapwise moment at the root of blade 1 
"RootMyb2"                                                   - flapwise moment at the root of blade 2 
"RootMyb3"                                                   - flapwise moment at the root of blade 3 
"RotTorq  , LSSGagMya, LSSGagMza"                            - Rotor torque and low-speed shaft 0- and 90-
bending moments at the main bearing 
"YawBrFxp , YawBrFyp , YawBrFzp"                             - Fore-aft shear, side-to-side shear, and vertical 
forces at the top of the tower (not rotating with nacelle yaw) 
"YawBrMxp , YawBrMyp , YawBrMzp"                             - Side-to-side bending, fore-aft bending, and 
yaw moments at the top of the tower (not rotating with nacelle yaw) 
"TwrBsFxt , TwrBsFyt , TwrBsFzt"                             - Fore-aft shear, side-to-side shear, and vertical 
forces at the base of the tower (mudline) 
"TwrBsMxt , TwrBsMyt , TwrBsMzt"                             - Side-to-side bending, fore-aft bending, and yaw 
moments at the base of the tower (mudline) 
"rotcq"  
"rotpwr"  
"YawBrTDxt"           - Tower-top/yaw bearing fore-aft 
(translational) deflection 
"YawBrTDyt"           - Tower-top/yaw bearing fore-aft 
(translational) deflection 
"TipDxc1,TipDxc2,TipDxc3"         - Blade 1, 2, 3 out-of-plane tip deflection 
(relative to the pitch axis) 
END of FAST input file (the word "END" must appear in the first 3 columns of this last line). 
-------------------------------------------------------------------------------- 
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Appendix C. Codes of MMPC and dual-mode MPC 

C.1 Multiple Model Predictive Control 

C.1.1 Source Codes 

function 
[c1,c2,c3]=mmmpc(Weighting,SwS,Est11,Est12,Est13,Est14,Est15,Est16,Est17,Est21,Est22,Est23,Est24,Est25,Est2
6,Est27,phi,omega,Wy,Wu,A,B,C,PitchRef,pinvM) 
%#eml 
  
 
eml.extrinsic('qpOASES'); 
% eml.extrinsic('pinv'); 
Ts=0.1; 
  
% Decide model number 
       if SwS-round(SwS)>=0.0 
           k=round(SwS)+1; 
       else 
           k=round(SwS)+1-1; 
       end 
        
% Calculate pitch reference 
  
       if k>=11 
       ur=PitchRef(11)*180/pi; 
       else 
       ur=Weighting*PitchRef(k)*180/pi+(1-Weighting)*PitchRef(k+1)*180/pi; 
%        PitchRefW=pi*PitchRefW/180; 
       end 
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       if k<=0 
           k=1; 
       end 
       if k>11 
           k=11; 
       end 
  
% Set parameters for MPC design 
nc=20; 
p=nc; 
m=p; 
nu=3; 
ny=4; 
% uc=[p1;p2;p3]; 
U0=zeros(nu*m,1); 
 
% Extract two models from the model bank 
[Cn,Cm,Cll]=size(C); 
CC1=zeros(Cn,Cm); 
CC2=zeros(Cn,Cm); 
  
[Bn,Bm,Bll]=size(B); 
BB1=zeros(Bn,Bm); 
BB2=zeros(Bn,Bm); 
  
[An,Am,All]=size(A); 
AA1=zeros(An,Am); 
AA2=zeros(An,Am); 
% for nn=1:Cn 
%     for mm=1:Cm 
%         C1(nn,mm)=C(nn,mm,1); 
%     end 
% end 
  
if k<11 
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        for nn=1:Cn 
            for mm=1:Cm 
                CC1(nn,mm)=C(nn,mm,k); 
                CC2(nn,mm)=C(nn,mm,k+1); 
            end 
        end 
        for nn=1:Bn 
            for mm=1:Bm 
                BB1(nn,mm)=B(nn,mm,k); 
                BB2(nn,mm)=B(nn,mm,k+1); 
            end 
        end 
        for nn=1:An 
          for mm=1:Am 
                AA1(nn,mm)=A(nn,mm,k); 
                AA2(nn,mm)=A(nn,mm,k+1); 
          end 
        end 
else 
        LL=10;    
        for nn=1:Cn 
            for mm=1:Cm 
                CC1(nn,mm)=C(nn,mm,LL); 
                CC2(nn,mm)=C(nn,mm,LL+1); 
            end 
        end 
        for nn=1:Bn 
            for mm=1:Bm 
                BB1(nn,mm)=B(nn,mm,LL); 
                BB2(nn,mm)=B(nn,mm,LL+1); 
            end 
        end 
        for nn=1:An 
          for mm=1:Am 
                AA1(nn,mm)=A(nn,mm,LL); 
                AA2(nn,mm)=A(nn,mm,LL+1); 
          end 
        end 
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end 
 
[An,Am]=size(AA1); 
[Bn,Bm]=size(BB1); 
  
ModL=2; 
xhat1=[Est11;Est12;Est13;Est14;Est15;Est16;Est17;]; 
xhat2=[Est21;Est22;Est23;Est24;Est25;Est26;Est27;]; 
 
%% Formulate the matrix in quadratic programming  
% generate Sx 
Sx=zeros(ny*p,1); 
for nn=1:ModL 
    if nn==1 
       Cnn=CC1; 
       Ann=AA1; 
       xhat=xhat1; 
       Weightnn=Weighting; 
    else 
        Cnn=CC2; 
        Ann=AA2; 
        xhat=xhat2; 
        Weightnn=1-Weighting; 
    end 
    Sx_temp=zeros(ny*p,Am); 
    for ii=1:p 
        Sx_temp_part=Cnn*Ann^(ii); 
        for jj=1:ny 
            for kk=1:Am 
                Sx_temp(ny*(ii-1)+jj,kk)=Sx_temp_part(jj,kk); 
            end 
        end 
    end 
    Sx=Sx+Weightnn*Sx_temp*xhat; 
end 
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% Generat Sc 
Sc=zeros(p*ny,p*nu); 
for nn=1:ModL 
     
    if nn==1 
        Cnn=CC1; 
        Ann=AA1; 
        Bnn=BB1; 
        Weightnn=Weighting; 
    else 
        Cnn=CC2; 
        Ann=AA2; 
        Bnn=BB2; 
        Weightnn=1-Weighting; 
    end 
     
    Sc_temp=zeros(p*ny,p*nu); 
    for ii=1:p 
        for jj=1:p 
                    if ii==jj 
                        Sc_temp_part=Cnn*Bnn; 
                    elseif ii>jj 
                        Sc_temp_part=Cnn*Ann^(ii-jj)*Bnn; 
                    else 
                        Sc_temp_part=zeros(ny,nu); 
                    end 
                     
                    for kk=1:ny 
                        for mm=1:nu 
                         Sc_temp(ny*(ii-1)+kk,nu*(jj-1)+mm)=Sc_temp_part(kk,mm); 
                        end 
                    end 
        end 
    end 
    Sc=Sc+Weightnn*Sc_temp; 
end 
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% Generate Se 
Se=zeros(p*nu,m*nu); 
for ii=1:p 
    for jj=1:m 
        if ii==jj 
            for kk=1:nu 
                for mm=1:nu 
                    if kk==mm 
                         Se(nu*(ii-1)+kk,nu*(jj-1)+mm)=1.0; 
                    else 
                         Se(nu*(ii-1)+kk,nu*(jj-1)+mm)=0.0; 
                    end 
                end 
            end 
        elseif ii>jj 
            for kk=1:nu 
                for mm=1:nu 
                    if kk==mm 
                         Se(nu*(ii-1)+kk,nu*(jj-1)+mm)=1.0; 
                    else 
                         Se(nu*(ii-1)+kk,nu*(jj-1)+mm)=0.0; 
                    end 
                end 
            end 
        elseif ii<jj 
            for kk=1:nu 
                 for mm=1:nu 
                        Se(nu*(ii-1)+kk,nu*(jj-1)+mm)=0.0; 
                 end 
            end 
        end 
    end 
end 
  
% U0=zeros(nu*m,1); 
  
H=2*Wu+2*(Sc*Se)'*Wy*Sc*Se; 
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g=2*(Sc*Se)'*Wy*(Sx+Sc*U0); 
  
  
%%%%%%%%%%%%%%% CONSTRAINT HANDLING PART  
umin=(-ur-0)*pi/180; 
umax=(-ur+90)*pi/180; 
ubarmin=-10*pi/180; 
ubarmax=10*pi/180; 
lbA=zeros((m+1)*nu+m*nu,1); 
ubA=zeros((m+1)*nu+m*nu,1); 
  
for i=1:(m+1)*nu 
    lbA(i)=umin; 
    ubA(i)=umax; 
    if i<=m*nu 
        lbA((m+1)*nu+i)=Ts*ubarmin; 
        ubA((m+1)*nu+i)=Ts*ubarmax; 
    end 
end 
  
TN=zeros((m+1)*nu,(m+1)*nu); 
M=zeros(m*nu,(m+1)*nu); 
omegar=12.1*pi/30; 
  
T=zeros(3,3); 
for i=1:m+1 
    phiv=phi+(omega+i*(omegar-omega)/(m*1.0))*Ts*(i-1); 
    T(1,1)=1;      T(1,2)=cos(phiv);     T(1,3)=sin(phiv); 
    T(2,1)=1;      T(2,2)=cos(phiv+pi/3.0);     T(2,3)=sin(phiv+pi/3.0); 
    T(3,1)=1;      T(3,2)=cos(phiv+2.0*pi/3.0);     T(3,3)=sin(phiv+2.0*pi/3.0); 
    TINV=inv(T); 
    TN((i-1)*nu+1,(i-1)*nu+1)=TINV(1,1);      TN((i-1)*nu+1,(i-1)*nu+2)=TINV(1,2);     TN((i-1)*nu+1,(i-
1)*nu+3)=TINV(1,3); 
    TN((i-1)*nu+2,(i-1)*nu+1)=TINV(2,1);      TN((i-1)*nu+2,(i-1)*nu+2)=TINV(2,2);     TN((i-1)*nu+2,(i-
1)*nu+3)=TINV(2,3); 
    TN((i-1)*nu+3,(i-1)*nu+1)=TINV(3,1);      TN((i-1)*nu+3,(i-1)*nu+2)=TINV(3,2);     TN((i-1)*nu+3,(i-
1)*nu+3)=TINV(3,3); 
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    if i<m+1 
        for j=1:nu 
        M((i-1)*nu+j,(i-1)*nu+j)=-1; 
        M((i-1)*nu+j,i*nu+j)=1; 
        end 
    end 
end 
  
% TINVMTMMT=TN*inv(M'*M)*M'; 
% TRFTINVMTMMT=M*TN*inv(M'*M)*M'; 
TINVMTMMT=TN*pinvM; 
TRFTINVMTMMT=M*TN*pinvM; 
  
ATotal=zeros((m+1)*nu+m*nu,m*nu); 
  
for i=1:(m+1)*nu 
    for j=1:m*nu 
        ATotal(i,j)=TINVMTMMT(i,j); 
        if i<=m*nu 
        ATotal((m+1)*nu+i,j)=TRFTINVMTMMT(i,j);      
        end 
    end 
end 
     
  
X = zeros(nc*nu,1); 
c = zeros(nc*nu,1); 
[obj,c,y,status,nWSRout] =  qpOASES(H,g,ATotal,[],[],lbA,ubA); 
c1=c(1); 
c2=c(2); 
c3=c(3); 
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C1.2 Simulink Layout 

In the left and up corner of Fig. C.1, “subsystem” is used to extract measurements from “FAST” simulation. In the middle, “Observer” 

is used for state estimation. In the right and down corner, “MPC” is embedded Matlab code for MMPC. 

 
Fig. C.1  Simulink Layout for MMPC 
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C1.3 Usage 

1. Adjust weighting matrix in “StandardMPC.m”; 

2. Run Matlab file “MMMPC.m”  to extract state-space models from FAST output files for MMPC; 

3. Run Matlab file “LoadDataforSimulation.m” to load data for MMPC; 

4. In Matlab, input “Simsetup” and the FAST input file name “NRELOffshrBsline5MW_Onshore_WM_BWeighting.fst”; 

5. Run Simulink file “MMMPC_AveragedLoadsRef”; 

C.2 Dual Mode MPC 

C.2.1 Source Codes 

function [c1,c2,c3]=dmmpc(x1,x2,x3,x4,x5,x6,x7,x8,x9,umin1,umin2,umin3,umax1,umax2,umax3,SS,Pclu,Hcu) 
%#eml 
  
% nu  Control input number 
% nc  prediction horizon number 
  
eml.extrinsic('qpOASES'); 
x=[x1;x2;x3;x4;x5;x6;x7;x8;x9]; 
nc=20; 
nu=3; 
S=zeros(nc*nu,nc*nu); 
  
for k=1:nc; 
    for i=1:nu; 
        for j=1:nu; 
%      S((k-1)*nu+1:k*nu,(k-1)*nu+1:k*nu)=SS; 
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       S((k-1)*nu+i,(k-1)*nu+j)=SS(i,j); 
        end 
    end 
end 
  
% lbs=K*x+umin; 
% ubs=K*x+umax; 
lbs=zeros(nu,1); 
ubs=zeros(nu,1); 
lbs(1)=umin1; 
lbs(2)=umin2; 
lbs(3)=umin3; 
ubs(1)=umax1; 
ubs(2)=umax2; 
ubs(3)=umax3; 
  
lb=zeros(nc*nu,1); 
ub=zeros(nc*nu,1); 
  
for k=1:nc; 
    for i=1:nu; 
%     lb((k-1)*nu+1:k*nu)=lbs; 
%     ub((k-1)*nu+1:k*nu)=ubs; 
    lb((k-1)*nu+i)=lbs(i); 
    ub((k-1)*nu+i)=ubs(i); 
    end    
end 
  
lbA=lb+Pclu*x; 
ubA=ub+Pclu*x; 
  
%%%%%%%%%%%%%%% CONSTRAINT HANDLING PART  
X = zeros(nc*nu,1); 
c = zeros(nc*nu,1); 
% [obj,c,y,status,nWSRout] =  qpOASES(S,X,clb,cub); 
[obj,c,y,status,nWSRout] =  qpOASES(S,X,Hcu,[],[],lbA,ubA); 
ce=zeros(nu,nc*nu); 
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for j=1:nu; 
    ce(j,j)=1; 
end 
ci=ce*c; 
c1=[1 0 0]*ci; 
c2=[0 1 0]*ci; 
c3=[0 0 1]*ci; 
 

C.2.2 Simulink Layout 

The Simulink layout for dual mode MPC is shown in Fig. C.2. In the left and up corner, “subsystem” is used to extract measurements 

from “FAST” simulation. In the right and middle, “Switched MPC” is switched dual mode MPC for different models. 
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Fig. C.2  Simulink Layout for Dual Mode MPC 
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C.2.3 Usage 

1. Adjust weighting matrix in “QRValue.m” and “MPC_WakeMeandering5.m”; 

2. Run Matlab file “StateSpaceModelandPredictionModelforMPC.m”  to extract state-space models from FAST output files for dual 

mode MPC; 

3. Run Matlab file “LoadDataforSimulation.m” to load data for dual mode MPC; 

4. In Matlab, input “Simsetup” and the FAST input file name “NRELOffshrBsline5MW_Onshore_WM_Torq.fst”; 

5. Run Simulink file “MPC_MBC_WakeMeandering_Torque_Nonalign61by61.mdl”; 
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Appendix D. Codes for Jensen Wake Model, Larsen Wake Model and Wake Meandering 

D.1 Jensen Wake Model 

Subroutine 

singlewake(NumGrid_Y,NumGrid_Z,GridHeight,HubHt,GridWidth,Zbottom,RotorDiameter,Uhub,Uhubwake,ijshadow,m,ijincoming

,n,wakesign)   

! Uhubwake---- the wind speed at the hub in the wake 

! ijshadow-----position of points in overlapping 

! ijincoming---position of the points not in the wake 

implicit none 

integer Downwindspace,m,n,istep,NumGrid_Y,NumGrid_Z,i,j,II 

integer ijshadow(NumGrid_Y*NumGrid_Z,2),ijincoming(NumGrid_Y*NumGrid_Z,2),wakesign(NumGrid_Y*NumGrid_Z) 

real k, RW,y,z,RotorDiameter,Uhub,Uhubwake,HubHt,GridWidth,GridHeight,Zbottom,Ct 
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real DisAxis !Distance between the axis of downwind and upwind turbine 

! Identify the points belong to wake region 

!k=0.075  !original 0.1, suggest: 0.075 onshore wind turbine and 0.05 offshore wind turbine 

k=0.1 

Downwindspace=8 ! mean Downwindspace*Diameter, the distance between wind turbines along downwind 

RW=(RotorDiameter+k*Downwindspace*RotorDiameter*2)/2 

DisAxis=0.7*RW  !Added for general wake interaction 

m=0 

n=0 

do j=1,NumGrid_Z 

   Do i=1,NumGrid_Y 

        y=-GridWidth/2.0+(i-1)*GridWidth/(NumGrid_Y-1) 
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        z=Zbottom+(j-1)*GridHeight/(NumGrid_Z-1) 

        II=(j-1)*NumGrid_Y+i 

        if(((y-DisAxis)**2+(z-HubHt)**2).lt.RW**2) then    !y-RW has been changed into y-DisAxis July 2nd 2010 

            m=m+1 

            ijshadow(m,1)=i 

            ijshadow(m,2)=j 

            wakesign(II)=1 

  else 

      n=n+1 

   ijincoming(n,1)=i 

            ijincoming(n,2)=j 

            wakesign(II)=0 
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        end if 

    enddo 

enddo 

! Compute the mean wind speed within wake region 

!U(IZ) Vinf=15 !above rated wind speed in this case 

!Vwake=Vinf*(1-(1-sqrt(1.0-Ct))/(1+2*k*Downwindspace)^2) 

Ct=0.7 !Range from 0.0 to about 1.0, when power coeffecient reaches its maximum, Ct is about 0.7 

Uhubwake=Uhub*(1-(1-sqrt(1.0-Ct))/(1+2*k*Downwindspace)**2) 

End 
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D.2 Larsen Wake Model 

subroutine 

Larsenwake(z0,NumGrid_Y,NumGrid_Z,GridHeight,HubHt,GridWidth,Zbottom,RotorDiameter,Uhub,Uhubwake,ijshadow,ijincomin

g,wakesign,wakev,DisAxis,Ia,DownwindSpace,RW)   

! Uhubwake---- the wind speed at the hub in the wake 

! ijshadow-----position of points in overlapping 

! ijincoming---position of the points not in the wake 

implicit none 

integer m,n,istep,NumGrid_Y,NumGrid_Z,i,j,II 

integer ijshadow(NumGrid_Y*NumGrid_Z,2),ijincoming(NumGrid_Y*NumGrid_Z,2),wakesign(NumGrid_Y*NumGrid_Z) 

real k, RW,y,z,RotorDiameter,Uhub,Uhubwake,HubHt,GridWidth,GridHeight,Zbottom,Ct,wakev(NumGrid_Y*NumGrid_Z) 

real DisAxis !Distance between the axis of downwind and upwind turbine 
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real Ia  !the ambient turbulence intensity 

real Rnb,R9p5,Deff,c1,x0,A,PI,x,DU1 

real z0,zeta0,d0,DU2,Downwindspace 

write(*,*) 'z0=',z0 

!Ia=0.18 

Rnb=max(1.08*RotorDiameter,1.08*RotorDiameter+21.7*RotorDiameter*(Ia-0.05)) 

R9p5=0.5*(Rnb+min(HubHt,Rnb)) 

Ct=0.7 !Range from 0.0 to about 1.0, when power coeffecient reaches its maximum, Ct is about 0.7 

Deff=RotorDiameter*sqrt((1+sqrt(1-Ct))/2.0/sqrt(1-Ct)) 

PI=3.1415926 

A=PI*RotorDiameter**2/4.0 
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x0=9.5*RotorDiameter/((2*R9p5/Deff)**3.0-1.0) 

c1=(Deff/2.0)**2.5*(105.0/2.0/PI)**(-0.5)*(Ct*A*x0)**(-5.0/6.0) 

!Downwindspace=8 ! mean Downwindspace*Diameter, the distance between wind turbines along downwind 

x=Downwindspace*RotorDiameter 

RW=(35.0/2.0/PI)**0.2*(3.0*c1**2)**0.2*(Ct*A*(x+x0))**(1.0/3.0) 

DU1=-Uhub/9.0*(Ct*A*(x+x0)**(-2.0))**(1.0/3.0)*(-(35.0/2.0/PI)**0.3*(3.0*c1**2)**(-0.2))**2.0 

zeta0=(35.0/2.0/PI)**0.2*(3.0*c1**2.0)**(-2.0/15.0) 

d0=4.0/81.0*zeta0**6*(-1.0-3.0*(4.0-12.0*(6.0+27.0*(-4.0+48.0/40.0)/19.0)/4.0)/5.0)/8.0 

DU2=Uhub*(Ct*A*(x+x0)**(-2.0))**(2.0/3.0)*d0 

UhubWake=Uhub+DU1+DU2 

write(*,*) 'Uhub=',Uhub 

write(*,*) 'RotorDiameter=',RotorDiameter 
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write(*,*) 'DU1=',DU1 

write(*,*) 'DU2=',DU2 

write(*,*) 'UhubWake=',UhubWake 

write(*,*) 'RW=',RW 

!Uhubwake=Uhub+DU1 

!DisAxis=0.9*RW  !Added for general wake interaction 

DO i=1,NumGrid_Y*NumGrid_Z 

wakev(i)=0.0 

END DO 

m=0 

n=0 

do j=1,NumGrid_Z 
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   Do i=1,NumGrid_Y 

        y=-GridWidth/2.0+(i-1)*GridWidth/(NumGrid_Y-1) 

        z=Zbottom+(j-1)*GridHeight/(NumGrid_Z-1) 

        II=(j-1)*NumGrid_Y+i 

        if(((y-DisAxis)**2+(z-HubHt)**2).lt.RW**2) then    !y-RW has been changed into y-DisAxis July 2nd 2010 

            m=m+1 

            ijshadow(m,1)=i 

            ijshadow(m,2)=j 

            wakesign(II)=1 

            wakev(II)=(Uhub+(DU1+DU2)*exp(-((y-DisAxis)/RW)**2.0)*exp(-((z-HubHt)/RW)**2))*log(z/z0)/log(HubHt/z0) ! In 

Crespo's paper, z0 means ground level but in fact we can regard z0 as roughness length. 

  else 
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      n=n+1 

   ijincoming(n,1)=i 

            ijincoming(n,2)=j 

            wakesign(II)=0 

        end if 

    enddo 

enddo 

end 

D.3 Wake Meandering Modeling 

WakeCenter(0)=0.0 

MaxWakeCenter=WakeCenter(0) 

MinWakeCenter=WakeCenter(0)    
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Alp=TimeStep/(RotorDiameter/Uhub+TimeStep) !Parameters for low-pass filter 

WM=0 !Including Wake Meandering or not 

Larsen=1 ! Larsen Wake Model or not 

NOTURB=1 ! Without Turbulence 

WakeCenterSection=10.0 ! Section Number for Wake Range 

WakeCenterP=5.0  ! Wake Center Position in Wake Range 

DownwindSpace=8.0 ! Distance between Upstream and Downstream Wind Turbine 

SWM=1  ! Simplified Wake Meandering Model or not 

WRITE(*,*) 'WakeCenterP=',WakeCenterP 

IF(WM)THEN 

open (unit=15, file='WakeCenter.txt', status='unknown') 

END IF 
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9010  format(f10.3,f10.3,f10.3,f10.3) 

DO IT=1,NumSteps 

   II = 0 

   MLV(IT)=0 

   DO IZ=1,ZLim    

        DO IY=1,IYmax(IZ)   

            II = II + 1 

            MLV(IT)=MLV(IT)+V(IT,II,2) 

        ENDDO ! IY 

    ENDDO ! IZ 

    MLV(IT)=MLV(IT)/II     

    !! low-pass filter  
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    IF(IT.EQ.1)THEN 

    MLV(IT)=(1-Alp)*MLV(IT)+Alp*MLV(IT) ! MLV(1) does not change 

 !   WakeCenter(0)=WakeCenter(0)+MLV(1)*DownwindSpace*RotorDiameter/Uhub 

    ELSE 

    MLV(IT)=(1-Alp)*MLV(IT-1)+Alp*MLV(IT)  

    END IF     

    IF(SWM.EQ.1)THEN 

    WakeCenter(IT)=MLV(IT)*DownwindSpace*RotorDiameter/Uhub 

    ELSE 

    WakeCenter(IT)=WakeCenter(IT-1)+MLV(IT)*TimeStep 

!    WakeCenter(IT+1)=WakeCenter(IT)+V(IT,HubIndx,2)*TimeStep 

    END IF     
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    IF(WakeCenter(IT).GT.MaxWakeCenter)THEN 

    MaxWakeCenter=WakeCenter(IT) 

    END IF 

    IF(WakeCenter(IT).LT.MinWakeCenter)THEN 

    MinWakeCenter=WakeCenter(IT) 

    END IF 

    CurrentTime=IT*TimeStep 

    IF(WM)THEN 

    write(15,9010) CurrentTime,V(IT,HubIndx,2),MLV(IT),WakeCenter(IT)  

    END IF 

ENDDO ! IT 

IF(WM)THEN 
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CLOSE(15) 

END IF 

WRITE(*,*) 'MaxWakeCenter=',MaxWakeCenter 

WRITE(*,*) 'MinWakeCenter=',MinWakeCenter 

 

! For get wake radius 

DisAxis=0.0 

call 

Larsenwake(z0,NumGrid_Y,NumGrid_Z,GridHeight,HubHt,GridWidth,Zbottom,RotorDiameter,Uhub,Uhubwake,ijshadow,ijincomin

g,wakesign,wakev,DisAxis,TurbInt,DownwindSpace,RW) 

DO IT=1,NumSteps 

           ! Steady wake interaction without wakemeandering model  
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            IF(WM.EQ.0)THEN 

! For the rotor axis of both upstream and downstream is the same. 

!                DisAxis=MinWakeCenter+WakeCenterP*(MaxWakeCenter-MinWakeCenter)/WakeCenterSection   

! For the rotor axis of both upstream and downstream is not the same. 

               DisAxis=RW-RotorDiameter/2.0+WakeCenterP*RotorDiameter/WakeCenterSection 

            ELSE 

! For the rotor axis of both upstream and downstream is the same. 

               ! DisAxis=WakeCenter(IT) 

! For the rotor axis of both upstream and downstream is not the same. 

               DisAxis=WakeCenter(IT)+abs(MinWakeCenter)+RW-RotorDiameter/2.0 

            END IF     

             

 



 
243 

            !! Larsen Wake Model or not 

            IF(IT.EQ.1.OR.WM.EQ.1)THEN 

                IF(Larsen)THEN 

                    call 

Larsenwake(z0,NumGrid_Y,NumGrid_Z,GridHeight,HubHt,GridWidth,Zbottom,RotorDiameter,Uhub,Uhubwake,ijshadow,ijincomin

g,wakesign,wakev,DisAxis,TurbInt,DownwindSpace,RW) 

                ELSE 

                    call 

singlewake(NumGrid_Y,NumGrid_Z,GridHeight,HubHt,GridWidth,Zbottom,RotorDiameter,UHub,UHubwake,ijshadow,mshadow,iji

ncoming,nincoming,wakesign) 

                    IF ( INDEX( 'JU', WindProfileType(1:1) ) > 0 ) THEN 

                       Uwake(1:ZLim) = getWindSpeed( UHubwake, HubHt, Z(1:ZLim), RotorDiameter, PROFILE=WindProfileType, 

UHANGLE=WindDir_profile)  
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                    ELSE  

                       Uwake(1:ZLim) = getWindSpeed( UHubwake, HubHt, Z(1:ZLim), RotorDiameter, PROFILE=WindProfileType) 

                    ENDIF 

                END IF 

            END IF 

            !!! Circular Equivalent Wind Profile or not 

            CIRCULAR=0 

            IF(CIRCULAR.EQ.1)THEN 

            UNITLEN=0.2  !!Section Length (meter) for interpolation 

            NPoint=(INT(SQRT(1.0*(((NumGrid_Y+1)/2)**2+((NumGrid_Z+1)/2)**2)))+1)/UNITLEN 

            WRITE(*,*) 'NPoint=',NPoint 

            AZIMUTH=120  !! Azimuth angle for Circular Equivalent Wind Profile 
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            DO JJ=1,NPoint 

                Y_D=(NumGrid_Y+1)/2-(JJ-1)*UNITLEN*COS(AZIMUTH*PI/180) 

                Z_D=(NumGrid_Z+1)/2-(JJ-1)*UNITLEN*SIN(AZIMUTH*PI/180)             

                DISRADIUS(JJ)=ABS(JJ-1)*UNITLEN 

                DO LL=1,NumGrid_Z 

                    IF(Z_D.GE.LL.AND.Z_D.LT.(LL+1))THEN 

                    KKZ=LL 

                    END IF 

                END DO                 

                IF(Z_D.GE.NumGrid_Z+1)THEN 

                    KKZ=NumGrid_Z 

                END IF                 
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                IF(Z_D.LE.1)THEN 

                   KKZ=1 

                END IF 

                 

                DO LL=1,NumGrid_Y 

                    IF(Y_D.GE.LL.AND.Y_D.LT.(LL+1))THEN 

                    KKY=LL 

                    END IF 

                END DO                 

                IF(Y_D.GE.NumGrid_Y+1)THEN 

                    KKY=NumGrid_Y 

                END IF                 
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                IF(Y_D.LE.1)THEN 

                   KKY=1 

                END IF                 

                II=(KKZ-1)*NumGrid_Y+KKY+1 

                IF(KKY.EQ.NumGrid_Y)THEN 

                II=(KKZ-1)*NumGrid_Y+KKY 

                END IF 

                IF(WAKESIGN(II))THEN 

                 IF(LARSEN)THEN 

                 URADIUSM(1)=wakev(II) 

                 ELSE 

                 URADIUSM(1)=Uwake(KKZ) 
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                 END IF 

                ELSE 

                 URADIUSM(1)=U(KKZ) 

                END IF                 

                II=(KKZ-1)*NumGrid_Y+KKY 

                IF(WAKESIGN(II))THEN 

                 IF(LARSEN)THEN 

                 URADIUSM(2)=wakev(II) 

                 ELSE 

                 URADIUSM(2)=Uwake(KKZ) 

                 END IF 

                ELSE 
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                 URADIUSM(2)=U(KKZ) 

                END IF                 

                II=(KKZ+1-1)*NumGrid_Y+KKY 

                IF(KKZ.EQ.NumGrid_Z)THEN 

                II=(KKZ-1)*NumGrid_Y+KKY 

                END IF 

                IF(Z_D.LT.0)THEN 

                II=(1-1)*NumGrid_Y+KKY 

                END IF                 

                IF(WAKESIGN(II))THEN 

                    IF(LARSEN)THEN 

                         URADIUSM(3)=wakev(II) 
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                    ELSE 

                         IF(KKZ.GE.NumGrid_Z)THEN 

                         URADIUSM(3)=Uwake(NumGrid_Z)        

                         ELSE 

                         URADIUSM(3)=Uwake(KKZ+1) 

                         END IF 

                         IF(Z_D.LT.1)THEN 

                         URADIUSM(3)=Uwake(1)   

                         END IF 

                    END IF 

                ELSE 

                     IF(KKZ.GE.NumGrid_Z)THEN 
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                     URADIUSM(3)=U(NumGrid_Z) 

                     ELSE 

                     URADIUSM(3)=U(KKZ+1) 

                     END IF 

                     IF(Z_D.LT.1)THEN 

                     URADIUSM(3)=U(1)   

                     END IF 

                END IF                 

                II=(KKZ+1-1)*NumGrid_Y+KKY+1 

                 

                IF(KKZ.EQ.NumGrid_Z)THEN 

                II=(KKZ-1)*NumGrid_Y+KKY+1 
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                END IF                 

                IF(KKY.EQ.NumGrid_Y)THEN 

                II=(KKZ+1-1)*NumGrid_Y+KKY 

                END IF                 

                IF(KKZ.EQ.NumGrid_Z.AND.KKY.EQ.NumGrid_Y)THEN 

                II=(KKZ-1)*NumGrid_Y+KKY 

                END IF 

                 IF(WAKESIGN(II))THEN 

                    IF(LARSEN)THEN 

                         URADIUSM(4)=wakev(II) 

                    ELSE 

                         IF(KKZ.GE.NumGrid_Z)THEN 
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                         URADIUSM(4)=Uwake(NumGrid_Z)        

                         ELSE 

                         URADIUSM(4)=Uwake(KKZ+1) 

                         END IF 

                         IF(Z_D.LT.1)THEN 

                         URADIUSM(4)=Uwake(1)   

                         END IF 

                    END IF 

                ELSE 

                     IF(KKZ.GE.NumGrid_Z)THEN 

                     URADIUSM(4)=U(NumGrid_Z) 

                     ELSE 
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                     URADIUSM(4)=U(KKZ+1) 

                     END IF 

                     IF(Z_D.LT.1)THEN 

                     URADIUSM(4)=U(1)   

                     END IF 

                END IF                 

                IF(KKY.GE.NumGrid_Y)THEN 

                   KKY=INT(Y_D) 

                END IF                 

                IF(KKY.EQ.1.AND.Y_D.LT.0)THEN 

                   KKY=INT(Y_D)-1 

                END IF                 
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                IF(KKZ.GE.NumGrid_Z)THEN 

                   KKZ=INT(Z_D) 

                END IF                 

                IF(KKZ.EQ.1.AND.Z_D.LT.0)THEN 

                   KKZ=INT(Z_D)-1 

                END IF                 

                LAMDA1=(Y_D-KKY-1)/(KKY-KKY-1) 

                LAMDA2=(Z_D-KKZ)/(KKZ+1-KKZ)                 

                URADIUS(JJ)=URADIUSM(1)*(1-LAMDA1)*(1-LAMDA2)+URADIUSM(2)*LAMDA1*(1-

LAMDA2)+URADIUSM(3)*LAMDA1*LAMDA2+URADIUSM(4)*(1-LAMDA1)*LAMDA2            

                WRITE(*,*) 'JJ=',JJ,'Y_D=',Y_D,'Z_D=',Z_D 

                WRITE(*,*)  'KKY=',KKY,'KKZ=',KKZ 
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                WRITE(*,*) (URADIUSM(LL),LL=1,4) 

                WRITE(*,*) 'URADIUS(JJ)=',URADIUS(JJ) 

            END DO !NPOINT 

         END IF    

         II = 0 

        DO IZ=1,ZLim    

           IF ( ALLOCATED( WindDir_profile ) ) THEN  ! The horizontal flow angle changes with height 

              CHFA = COS( WindDir_profile(IZ)*D2R ) 

              SHFA = SIN( WindDir_profile(IZ)*D2R ) 

           ENDIF       

          DO IY=1,IYmax(IZ)   

              II = II + 1 
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            ! Add mean wind speed to the streamwise component 

             IF(CIRCULAR)THEN 

                 TmpDIS=SQRT(1.0*((IY-(NumGrid_Y+1)/2)**2+(IZ-(NumGrid_Z+1)/2)**2)) 

                  

    !             WRITE(*,*) 'IY=',IY 

    !             WRITE(*,*) 'IZ=',IZ 

    !             WRITE(*,*) 'TmpDIS=',TmpDIS 

                 DO IR=1,NPoint-1 

                     IF(TmpDIS.LT.DISRADIUS(IR+1).AND.TmpDIS.GE.DISRADIUS(IR)) THEN !In some azimuth angle, the distance 

may be bigger than DISRADIUS(1) 

                     LAMDA=(TmpDIS-DISRADIUS(IR+1))/(DISRADIUS(IR)-DISRADIUS(IR+1)) 

                     URADIUSINTERP=URADIUS(IR)*LAMDA+URADIUS(IR+1)*(1-LAMDA) 
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                     END IF 

                 END DO 

                IF(TmpDIS.GT.DISRADIUS(NPoint))THEN 

                     URADIUSINTERP=URADIUS(NPoint) 

                END IF   

                   

                 TmpU = V(IT,II,1) + URADIUSINTERP 

             ELSE 

                IF(WAKESIGN(II))THEN 

                    IF(LARSEN)THEN 

                       IF(NOTURB)THEN 

                       TmpU = wakev(II) 
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                       ELSE 

                       TmpU = V(IT,II,1) + wakev(II) 

                       END IF 

                    ELSE 

                       IF(NOTURB)THEN 

                       TmpU = Uwake(II) 

                       ELSE 

                       TmpU = V(IT,II,1) + Uwake(IZ) 

                       END IF 

                    END IF 

                ELSE 

                    IF(NOTURB)THEN 

 



 
260 

                       TmpU = U(IZ) 

                    ELSE 

                       TmpU = V(IT,II,1) + U(IZ) 

                    END IF 

                END IF 

             END IF 

              

             IF(NOTURB)THEN 

             TmpV=0.0 

             ELSE 

             TmpV = V(IT,II,2) 

             END IF 
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             IF(NOTURB)THEN 

             TmpW=0.0 

             ELSE 

             TmpW = V(IT,II,3) 

             END IF 

              

                ! Rotate the wind to the X-Y-Z (inertial) reference frame coordinates 

                          

             V(IT,II,1) = TmpU*CHFA*CVFA - TmpV*SHFA - TmpW*CHFA*SVFA 

             V(IT,II,2) = TmpU*SHFA*CVFA + TmpV*CHFA - TmpW*SHFA*SVFA   

             V(IT,II,3) = TmpU*SVFA                  + TmpW*CVFA                   

 



 
262 

       ENDDO ! IY 

    ENDDO ! IZ 

ENDDO ! IT 
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Appendix E. Codes and Simulink Diagram for Active Vane 

E.1 Modified Codes for Building Simulink Interface of FAST 

SUBROUTINE mexFunction(nlhs, plhs, nrhs, prhs) 

!   Purpose:  Glue routine for making FORTRAN MEX-file systems and blocks 

!   Algorithm: FAST_SFunc is a MEX-file 

   USE                           FAST_Simulink_Mod                 

   USE                           Output, ONLY: MaxOutPts          ! FAST module 

   IMPLICIT                      NONE 

      !---------------------------------------------------------------------------------------------- 

      ! define parameters 

      !---------------------------------------------------------------------------------------------- 
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   INTEGER(4), PARAMETER        :: mxREAL      = 0         ! MATLAB uses 0 for REAL numbers; 1 for COMPLEX 

   INTEGER,    PARAMETER        :: mwPointer   = 4         ! Size of pointer variables; replace 4 with 8 on DE! Alpha and the SGI  

   INTEGER,    PARAMETER        :: mwSize      = 4         ! Size of size variables; replace 4 with 8 on DE! Alpha and the SGI 64- 

   REAL(mxDB), PARAMETER        :: HUGE        = 1.0E+33 

   INTEGER(4), PARAMETER        :: NSIZES      = 6         ! Number of elements in the size array 

   INTEGER,    PARAMETER        :: MaxDOFs     = 24        ! Maximum number of DOFs:    required b/c of MATLAB R2009b  

   INTEGER,    PARAMETER        :: MaxNumBl    = 3         ! Maximum number of blades:  required b/c of MATLAB R2009b bug      

   INTEGER,    PARAMETER        :: MaxInputs   = 5+MaxNumBl+2*MaxDOFs   !! 4 modified to 5 by zzy 

   INTEGER,    PARAMETER        :: MaxOutputs  = MaxOutPts + MaxDOFs 

   INTEGER,    PARAMETER        :: MaxWinds    = MIN( MaxInputs, MaxOutputs ) 

    

   INTEGER                      :: nlhs                    ! MATLAB's count of the number of left-hand (output) arguments 
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   INTEGER                      :: nrhs                    ! MATLAB's count of the number of right-hand (input) arguments 

   INTEGER(mwPointer)           :: plhs(*)                 ! MATLAB's pointer(s) to left-hand (output) arguments 

   INTEGER(mwPointer)           :: prhs(*)                 ! MATLAB's pointer(s) to right-hand (input) arguments 

   INTEGER(mwPointer)           :: ptr_T                   ! pointer to input  (RHS) argument #1 (t) 

   INTEGER(mwPointer)           :: ptr_X                   ! pointer to input  (RHS) argument #2 (x) 

   INTEGER(mwPointer)           :: ptr_U                   ! pointer to input  (RHS) argument #3 (u) 

   INTEGER(mwPointer)           :: ptr_Y                   ! pointer to output (LHS) argument #1 (outputs) 

   REAL(mxDB)                   :: T                       ! input  argument #1, TIME 

!  REAL(mxDB), ALLOCATABLE      :: U       (:)             ! input  argument #2, INPUT ARRAY 

   REAL(mxDB)                   :: U (MaxInputs)           ! input  argument #2, INPUT ARRAY 

   INTEGER                      :: FLAG                    ! input  argument #4, FLAG 

!  REAL(mxDB), ALLOCATABLE      :: Y       (:)             ! output argument #1 
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   REAL(mxDB)                   :: Y (MaxOutputs)          ! output argument #1, OUTPUT ARRAY 

  !---------------------------------------------------------------------------------------------- 

  ! define variables from the MATLAB workspace 

 !---------------------------------------------------------------------------------------------- 

   INTEGER(mwPointer)           :: ptr_retrn               ! pointer to Matlab workspace variable 

   REAL(mxDB)                   :: retrn_dp                ! real array created from pointer ptr_retrn 

   INTEGER                      :: NumBl                   !! Added by M. Hand 

   INTEGER                      :: NDOF                    !! Added by M. Hand 

   INTEGER                      :: NumOuts                 !! Added by M. Hand 

   REAL(mxDB)                   :: Initialized             ! Prevents running Simulink model with old FAST input file 

   CHARACTER(1024)              :: InpFile                 ! Name of the FAST input file, from the MATLAB workspace  

      !---------------------------------------------------------------------------------------------- 
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      ! define internal variables 

      !---------------------------------------------------------------------------------------------- 

   INTEGER(mwSize)              :: M                       ! Number of rows in array 

   INTEGER(mwSize)              :: N                       ! Number of columns in array 

   INTEGER                      :: Stat                    ! Return status 

   INTEGER(mwSize)              :: MDLsizes(NSIZES)        ! Local array, containing the SimuLink SIZE array that is required  

   REAL(mxDB)                   :: DSIZE   (NSIZES)        ! Local array = DOUBLE(MDLsizes), used to output the MDLsizes array 

   REAL(mxDB)                   :: NXTHIT                  ! return value for next time (not used) 

   LOGICAL                      :: InitStep                ! Flag determines if this is an initialization step 

   LOGICAL, SAVE                :: FirstStep = .TRUE.      ! Flag to determine if FAST has been initialized 

 

      !---------------------------------------------------------------------------------------------- 
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      ! define the EXTERNAL MATLAB procedures 

      !---------------------------------------------------------------------------------------------- 

 

   INTEGER(mwPointer), EXTERNAL :: mexGetVariablePtr       ! MATLAB routine 

   EXTERNAL                     :: mxCopyPtrToReal8        ! MATLAB mex function to create REAL(8) array from pointer to an array 

   EXTERNAL                     :: mxCopyReal8ToPtr        ! MATLAB mex function to create pointer to copy of a REAL(8) array 

   INTEGER(mwPointer), EXTERNAL :: mxCreateDoubleMatrix    ! pointer [Replace integer by integer*8 on the DE 

   INTEGER(mwSize),    EXTERNAL :: mxGetM                  ! MATALB mex function get number of rows in array 

   INTEGER(mwSize),    EXTERNAL :: mxGetN                  ! MATALB mex function to get number of columns in array 

   INTEGER(mwPointer), EXTERNAL :: mxGetPr                 ! MATLAB mex function to get the address of the first real number  

   REAL(mxDB),         EXTERNAL :: mxGetScalar             ! MATLAB mex function to return a scalar  

   INTEGER(mwPointer), EXTERNAL :: mxGetString             ! MATLAB mex function to get string from its pointer 
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   ! Get variables from the Matlab workspace (added by M. Hand) 

   !     these checks would not only be done on initialization instead of each call to FAST_SFunc. 

   !     We could also pass this function the name of the FAST input file and perhaps return the 

   !     values obtained from the input file instead of using Read_FAST_Input.m. 

      ! Get NumBl from workspace 

   ptr_retrn = mexGetVariablePtr('base', 'NumBl') 

   IF ( ptr_retrn == 0 ) THEN 

      CALL ProgAbort('ERROR: Variable "NumBl" does not exist in the MATLAB workspace.') 

   ELSE 

      CALL mxCopyPtrToReal8(mxGetPr(ptr_retrn), retrn_dp, 1) 

      NumBl = INT(retrn_dp) 

   ENDIF 
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      ! Get NDOF from workspace 

   ptr_retrn = mexGetVariablePtr('base', 'NDOF') 

   IF ( ptr_retrn == 0 ) THEN 

      CALL ProgAbort('ERROR: Variable "NDOF" does not exist in the MATLAB workspace.') 

   ELSE 

      CALL mxCopyPtrToReal8(mxGetPr(ptr_retrn), retrn_dp, 1) 

      NDOF = INT(retrn_dp) 

   ENDIF 

      ! Get NumOuts from workspace 

   ptr_retrn = mexGetVariablePtr('base', 'NumOuts') 

   IF ( ptr_retrn == 0 ) THEN 

      CALL ProgAbort('ERROR: Variable "NumOuts" does not exist in the MATLAB workspace.') 

 



 
271 

   ELSE 

      CALL mxCopyPtrToReal8(mxGetPr(ptr_retrn), retrn_dp, 1) 

      NumOuts = INT(retrn_dp) 

   ENDIF 

   ! Set the MDLsizes vector, which determines Simulink model characteristics 

      MDLsizes(1) = 0                        ! number of continuous states 

      MDLsizes(2) = 0                        ! number of discrete states 

      MDLsizes(3) = NDOF + NumOuts           ! number of outputs: qdotdot + NumOuts 

      MDLsizes(4) = 2 + 2 +1 + NumBl + NDOF*2   ! Modified by zzy 

      MDLsizes(5) = 0                        ! number of discontinuous roots in the system 

      MDLsizes(6) = 1                        ! Direct feedthrough of U 
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E.2 Simulink Diagram 

 

 

Fig. E.1 Simulink Diagram for Vane Control 
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Appendix F. Simulation Programs for NLESC Wind Farm Control 

The procedure for running the NLESC simulation is illustrated with a case of 8 m/s 5% turbulent wind. 

(1) Run the file “FIlterfortorque.m” to generate the parameters for filter parameters; 

(2) Run Simulink file “wind8Turb3TI0p05_ESC_Torque_Taylor_50000s_CrossCorrelation.mdl”. 
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F.1. Simulink Layout of ESC Implementation 

 

 

Fig.F.1 Simulink Layout of Individual ESC Implementation 
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F.2 Simulink Layout for NLESC 

 

 

Fig. F.2 Simulink Layout for NLESC 
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F.3 Simulink Layout Template Generated by SimWindFarm 

 

Fig. F.3 Simulink Layout Template Generated by SimWindFarm 
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Appendix G. Default Wind Farm Controller in SimWindFarm  

In default wind farm control of SimWindFarm, the power demands for turbines are 

proportionally to the available power of every turbine [191] 

3
, ,max

1
2a i i pP AV Cρ=       (G.1) 

,a a iP P=∑       (G.2) 

where Pa,i is the available power for turbine i, vi is the wind speed at the nacelle of turbine 

i, Cp,max is the maximum power coefficient of the turbine. Note that in reference [191], 

Cp,max  is denoted as maximum thrust coefficient, which the author considers as a typo. 

Then, the power demand to the i-th turbine is determined as 

,
,

a i
d i d

a

P
P P

P
=      (G.3) 

where Pd is the farm-level power demand. 
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