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Abstract 

Objective: Every year, toxic exposures kill twelve hundred Americans. To aid in the timely 

diagnosis and treatment of such exposures, this research investigates the feasibility of a 

knowledge-based system capable of generating differential diagnoses for human exposures 

involving unknown toxins. 

Methods: Data mining techniques automatically extract prior probabilities and likelihood ratios 

from a database managed by the Florida Poison Information Center. Using observed clinical 

effects, the trained system produces a ranked list of plausible toxic exposures. The resulting 

system was evaluated using 30,152 single exposure cases. In addition, the effects of two filters 

for refining diagnosis based on a minimum number of exposure cases and a minimum number of 

clinical effects were also explored. 

Results: The system achieved accuracies (calculated as the percentage of exposures correctly 

identified in top 10% of trained diagnoses) as high as 79.8% when diagnosing by substance and 

78.9% when diagnosing by the major and minor categories of toxins.  

Conclusions: The results of this research are modest, yet promising. At this time, no similar 

systems are currently in use in the United States and it is hoped that these studies will yield an 

effective medical decision support system for clinical toxicology. 
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1.  Introduction 

Toxicology is the study of poisons and their effects on living organisms. One prominent 

societal benefit of toxicology is the development of poison control centers (PCCs). Thousands of 

people call PCCs daily for free consultation and information regarding chemicals and drugs. In 

2007, the American Association of Poison Control Centers (AAPCC) consisted of 61 PCCs 

serving all 50 of the United States and handling more than 2.4 million human poison exposure 

cases [1]. The AAPCC has compiled a database containing the details of nearly 46 million 

human poison exposure cases from the calls received and documented by its constituent PCCs 

[1]. A medical database of this magnitude represents a remarkable opportunity for data mining 

and knowledge-based system (KBS) research.  

1.1. System overview and design principles 

The goal of this research is to create a KBS for clinical toxicology that automatically learns 

relationships from PCC databases. A brief overview of the system is given in abstracts [2,3], 

which summarize the KBS and its results in minimal detail. The system mines the database of 

the Florida Poison Information Center (FPIC), extracting associations between the clinical 

effects (CEs) (i.e., signs and symptoms) observed in a patient and the final diagnosis. The system 

has a hybrid design, containing elements of data mining, case-based reasoning, rule-based 

systems, and uncertainty management. Data mining techniques clean and extract relevant 

information from the database. The case-based reasoning component uses the example cases 

obtained from data mining to generate a collection of likelihood ratios (LRs) based on composite 

observations. The system calculations performed with these LRs are effectively a set of simple 

rules running in parallel, and the LRs provide a means of handling uncertainty.  
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Throughout development, we sought to produce a system with specific characteristics, 

including simplicity, understandability, automatic system generation, and incremental updates. 

The characteristic of simplicity is of utmost importance. Holsheimer et al. [4] show that success 

in extracting information from databases does not require complex algorithms. In fact, “simpler, 

even trivial, processes are better than complicated ones if they are enough for the job of 

discovery” [5]. Generally, systems with simple representations and algorithms are more efficient, 

require less processing power, are more portable, and provide scalability, which is extremely 

important given the size and continual growth of the FPIC database. Mining large databases is 

challenging [6,7] and as the FPIC database grows to include more cases, the system’s simple 

mathematical representation will become essential for scalability. Furthermore, simplicity of 

design gives the system inherent understandability.  

The understandability of system results was another chief concern during development. If 

physicians understand the method by which the system obtains its answers, they are more likely 

to trust the system and use it within the spectrum of its intended purpose. According to 

Atzmueller et al. [8], “understandability and interpretability of…learned models is of prime 

importance” and “ideally, the learning method constructs knowledge in the same representation 

the human expert favors.” For this reason, our system makes use of pre-test probabilities (prior 

probabilities) and LRs, which are commonly used throughout the medical field, and presents its 

results to the user as a differential diagnosis. By using these familiar approaches, physicians 

should find the system to be relevant, understandable, and easy to operate. Additionally, the 

methods used in the system’s mathematics are similar to medical case studies seeking to identify 

patterns of clinical syndromes, which should help the system gain acceptance. Medical 

mathematics is not only more understandable to users in the medical field, it communicates 
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information that is more relevant for medical diagnosis than other traditional measurements 

[9,10]. 

Automatic system generation was another primary objective. Although Atzmueller et al. 

[8] state that “pure automatic learning methods are usually not good enough to reach a quality 

comparable to manually built knowledge bases,” automatic methods offer certain advantages that 

should not be overlooked. Automatically trained systems fully bypass the need to interview 

experts, which is the knowledge acquisition bottleneck of traditional KBS development [11], as 

well as relieving the knowledge engineer of the burden of acquiring extensive knowledge about 

toxicology to implement the system. Furthermore, Kononenko et al. [12] have shown that, in 

many domains, systems that automatically generate their own diagnostic rules are capable of 

performing with a higher degree of accuracy than individual physicians, when given identical 

information. The system presented in this paper was developed by an engineer with no expertise 

in the area of toxicology and no guidance from toxicologists regarding specific diagnostic 

approaches.  

The final desired attribute of the system is the ability to perform incremental updates. As 

the FPIC database grows in size, additional information becomes available for aiding in 

diagnosis. Although the system could recompile all the data from 1996 to the present with every 

update, such an operation would be inefficient and could require significant processing time. By 

storing basic summary data from the previous update, LRs can be recalculated without the need 

to reprocess every case in the database. 

The current system is a proof-of-concept prototype capable of generating a differential 

diagnosis for exposures to a single toxin. The system seeks to serve as a consultant to all medical 

personnel that may encounter toxic exposure cases. It is not meant to replace humans, which 
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have intuition and highly developed senses that are difficult for computers to replicate. Rather, it 

supplements human intelligence by providing case-based diagnostic information that a human 

would be hard-pressed to obtain without the use of a computer. Ultimately, the healthcare 

professional makes the final decision regarding the treatment the patient should receive. 

1.2. Applicability of knowledge-based systems to clinical toxicology 

Medicine is a continually expanding field where diagnoses often must be made using 

incomplete data. These traits make medicine an ideal domain for KBSs because of their 

adaptability to dynamic domains and ability to cope with uncertainty. Beyond the general 

complications common to all fields of medicine, toxicology faces two specific challenges for 

which KBSs are well tailored.  

The first challenge is making pertinent information readily available at the time of a 

poisoning. Since toxicology is a narrow specialization within medicine, only a limited number of 

experts, known as toxicologists, exist. Although KBSs cannot replace toxicologists, KBSs can 

aid physicians in diagnosis by offering ubiquitous access to toxicological information when these 

rare experts are unavailable. 

The second toxicological challenge is ensuring the rapid diagnosis and treatment of 

exposures. In 2007, 1239 people died of toxic exposures [1]. When treating potentially harmful 

or lethal exposures to drugs or poisons, time is of the essence. The sooner an informed initial 

therapeutic decision can be made, the better the prognosis. KBSs provide rapid aid in the 

assessment and management of toxic exposures by offering physicians an initial differential list 

of diagnoses to consider without having to wait for expert consultations or for the analysis of 

blood or urine. 
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1.3. Knowledge-based systems in medicine 

The application of rule-based expert systems and KBSs to medicine began in the early 

1970’s with the development of MYCIN [13-14] and INTERNIST [15-18]. Numerous other 

approaches to medical diagnosis and data mining have been implemented, including case-based 

reasoning [19-25], set covering [23-26], Bayesian belief networks [27-29], fuzzy logic [30-31], 

rough sets [32-34], genetic algorithms [21,35], and artificial neural networks [22,36].  

Although many KBSs exist for predictive toxicology to determine the toxicity of chemicals 

based on structure (e.g., [37-40]), there are surprisingly few systems in the field of clinical 

toxicology, which focuses on the diagnosis and treatment of toxic exposures. In fact, according 

to Darmoni et al. [41], in 1995 “Toxline and Toxlit [showed] that less than ten computer-aided 

decision support systems [had] been developed in clinical toxicology.” Of these systems, two in 

particular stand out from the rest. The first is a French system called SETH [41,42] that was 

developed for use in Rouen University Hospital. SETH’s inference engine is a rule-based, 

forward chaining system that utilizes the Rete algorithm for pattern matching and set theory for 

diagnosing cases involving multiple drugs. The system began experimental use in 1992 and was 

used in the diagnosis of over 2000 drug intoxication cases. Due to lack of objective criterion, 

SETH only received an internal evaluation from experts at Rouen University Hospital. The 

second system, known as MEDICOTOX-CONSILIUM [43], was developed for use in Bulgarian 

hospitals as a diagnostic system for first aid clinical toxicology. MEDICOTOX-CONSILIUM 

uses frame structures, rules, and scores provided by experts for diagnosis. The system contains 

1000 rules and facts that use 47 syndrome and 134 symptom definitions to identify poisons and 

supply the user with information about the appropriate cure from any of 86 treatments and 55 

antidotes. Users of MEDICOTOX-CONSILIUM responded positively, however, only a few 
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example cases are offered as evidence of system functionality rather than any data from 

extensive testing. 

More recently, another system was created for use by the Russian Toxicology Information 

and Advisory Center in Moscow [20]. The system uses the Inreca (Induction and Reasoning 

from Cases) approach, which involves case-based reasoning using a pre-compiled decision tree 

based on a Russian database. Although preliminary tests yielded accuracies ranging from 78.5% 

to 96.0%, the system was only tested on eight types of acute poisonings.  

2.  Source data 

Since 1996, the FPIC has collected data on every call received. In 2008 alone, the FPIC 

received over 117 thousand calls and made more than 46 thousand follow-up calls related to 

human exposures [44]. For this research, the FPIC provided access to four years of cases 

recorded in the Jacksonville database, comprising more than 160 thousand toxic exposure cases.  

The database supplied by the FPIC conforms to the standards set forth by the National 

Poison Data System (NPDS) and its predecessor, the Toxic Exposure Surveillance System 

(TESS). These national standards are defined by the AAPCC and regulate the mandatory fields 

contained within the database of each PCC, guaranteeing that every PCC records CEs and final 

diagnoses for each case. Following these standards ensures that these entries in the database have 

discrete values that are easy to process with a computer algorithm, increasing the portability of a 

system designed for the FPIC to other PCCs around the country.  

3.  System development 

In generating the system, data mining techniques are used to clean the records and extract 

the appropriate information from the FPIC database. Informational calls are removed so that only 

exposure cases remain. These exposure cases are filtered so that only cases with CEs followed to 
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a known outcome remain. Although this reduces the size of the dataset to 30,152 single exposure 

cases, the filtering process ensures that only significant representative cases with the best 

documentation are used to train the system. The database contains flags indicating whether the 

CEs observed in a patient were “related,” “unknown if related,” or “not related” to the substance 

involved in the exposure. The CEs marked as “not related” are removed from the database 

whereas those marked as “related” and “unknown if related” are used for system training. 

After cleaning, tables of prior probabilities and LRs are calculated for each toxin. A prior 

probability, P, representing the likelihood of a particular substance being involved given that a 

toxic exposure has occurred, is calculated as: 

Total

Cases
P  , (1) 

where Cases is the number of cases involving a particular substance and Total is the total number 

of exposure cases in the database [45].  

When calculating LRs, the system treats each CE as an independent diagnostic test used to 

detect the presence of a toxic substance. LRs represent the odds that an observed CE is caused by 

a particular toxin versus the odds that the CE is the result of exposure to any other toxin. The LR 

corresponding to positive test results, LR+, is calculated as: 


























TNFP

FP

FNTP

TP

LR , (2) 

where TP represents true positives, TN represents true negatives, FP represents false positives, 

and FN represents false negatives [46]. An exhaustive table of LRs relating every individual CE 

to every possible substance exposure is the primary resource utilized by the system in creating a 
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differential diagnosis. The advantage of LRs over other medical measurements (i.e., sensitivity, 

specificity, positive and negative predictive values, etc.) is that LRs can be easily combined 

through multiplication. Moreover, LRs are easily calculated, can account for disorder prevalence 

by including the prior probabilities, and characterize many cases with a single number, making 

the system scalable to large databases while ensuring a rapid response time. 

Although the LR has its advantages, it inherently contains the drawbacks of every 

mathematical ratio, the possibility of evaluating to zero or causing a divide-by-zero error. An LR 

of zero only occurs when 0TP . Since every CE is treated as an independent test for detecting 

the presence of a toxic substance, when the system combines LRs by multiplication, any 

individual LR equal to zero forces the combined LR to be zero. To the contrary, the absence of 

cases in the database associating a substance with a CE is not a definitive indication that the 

substance cannot cause that CE. Furthermore, even if the substance truly cannot cause the CE, 

patients may have unassociated CEs caused by other ailments.  

The divide-by-zero error occurs if 0 FNTP  or 0FP . (Note that although 

0TNFP  causes an error, addressing 0FP  also prevents that error from occurring.) The 

sum of true positives and false negatives ( FNTP ) is the total number of cases where a 

particular substance is involved. Due to the structure of the database and its queries, a substance 

with no recorded cases in the database is ignored and not included in the system. As a result, 

FNTP  never equals zero. The second divide-by-zero error, 0FP , occurs when a CE in the 

database is only associated with one particular substance. In reality, however, no single 

substance is the only possible cause for any CE in the system and the problem only occurs due to 

a lack of sufficient data. 
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The preliminary system used a simple-minded approach to solving the multiplication by 

zero and divide-by-zero problems. Multiplication by zero was handled by replacing all 

zero-valued LRs with a value of one. Although this prevents the system from gaining any 

knowledge about a substance from a CE not associated with the substance, it prevents that CE 

from destroying the knowledge gained from other CEs. The divide-by-zero error was solved by 

examining the data set and manually modifying the offending records so CEs lacking sufficient 

data were omitted when computing LRs. The LRs calculated using the method described in this 

paragraph are referred to as “non-adjusted” LRs from this point forward. 

The current system utilizes a generalized equation developed to replace LR+: 






























TNFP

FP

FNTP

TP

Adj
LR , (3) 

where  is a small, positive constant, often called a pseudocount [47]. TP, TN, FP, and FN are 

the four possible outcomes of a diagnostic test. By adding  to each outcome, the equation states 

that any of these outcomes is a possibility, even if no supporting cases exist in the database. The 

end result is a stable equation that closely approximates (2), avoids the difficulties of multiplying 

by zero, prevents the divide-by-zero error, and converges to the same value as (2) as the number 

of cases increases. A variety of  values were compared, including 1.0, 0.1, 0.01, and 0.001. Due 

to the sparse nature of the toxic exposure data, frequently only a single true positive exists in the 

database, resulting in TP = 1. As a result, it was discovered that using a  of 1.0, which 

essentially doubles the value of TP, adversely affected the accuracy of the calculation. 

Ultimately, a  of 0.01 was selected as it altered the value of single true positives (or any other 
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outcome) by a negligible amount of 1%, yielding a suitable substitute for (2). Equation (3) with 

01.0  is referred to as the “adjusted” LR from this point forward. 

 Several other terms and techniques exist for producing similar results to the pseudocount, 

including small-sample correction [48], smoothing [48], Laplace estimators [49], and 

M-estimators [50]. The method selected in this research closely resembles [47], which also 

utilizes a pseudocount value of 0.01. 

4.  System operation 

As discussed in the previous section, the system utilizes two tables of calculations to create 

a differential diagnosis, a table of prior probabilities for every substance and a table of LRs 

relating every individual CE to every possible substance exposure. When supplied with a set of 

CEs, the system calculates a combined LR, including the prior probability, for every potential 

single exposure diagnosis. The results are then sorted and presented as a differential diagnosis in 

the form of a ranked list. (Note: The odds-ratio form of Bayes’ theorem [46] can be used 

interchangeably with the current system calculations. The only difference is that Bayes’ theorem 

uses prior odds rather than the prior probability, so both calculations produce an identical 

ordering of diagnoses on the ranked list.) 

The system’s user interface organizes CEs into nine categories defined by TESS: 

cardiovascular, dermal, gastrointestinal, heme/hepatic, neurological, ocular, renal/GU, 

respiratory, and miscellaneous. The user is also able to select whether to diagnose the exposure 

by substance, major and minor categories, or major category. Thus far, we have discussed the 

research only in terms of diagnosing exposures to a single toxic substance; however, each 

substance (e.g. black widow spider poison) belongs to a minor category (e.g. spider bites), which 

in turn belongs to a major category (e.g. bites and envenomations). In the same manner that the 
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system is trained to diagnose individual substances, it can be trained to diagnose based on major 

and minor categories or even solely based on major category. Giving physicians a general idea of 

the drug categories to be considered can prove as valuable as attempting to directly diagnose a 

specific substance. 

If desired, users may also adjust the number of “Minimum Exposure Cases” (MC) and 

“Minimum CE Occurrences” (MCE) used by the system. MC and MCE serve as data filters that 

eliminate diagnoses and CEs with poor representative sampling sizes. The MC filter allows the 

user to specify the minimum required number of cases for a diagnosis. If a diagnosis does not 

have at least this many cases in the database, the diagnosis does not appear on the resulting 

differential diagnosis list. The MCE filter allows the user to set the minimum number of times a 

CE must appear in the database. If a CE does not appear in the database at least that many times, 

the CE is ignored when calculating the LR even if the CE is selected by the user. 

Evaluating the exposure based on the selected CEs displays a differential diagnosis list 

similar to the one shown in Fig. 1. The list contains the calculated LR on the left and the 

associated diagnosis on the right. The results in the figure indicate bacterial food poisoning, with 

an LR of 148.9, is by far the most likely cause of abdominal pain, dehydration, and diarrhea. The 

second most likely cause is mushrooms, with an LR of 3.32. It should be noted that, although 

LRs are helpful for indicating the strength of support for various diagnoses, rank within the list is 

more important. Physicians should consider the top ten substances before making their final 

diagnosis. 

5.  System testing and results 

During the various stages of testing, the system’s prior probabilities and LRs were trained 

and tested using 10-fold cross-validation. For each toxic exposure in the database, the rank of the 
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correct diagnosis on the system’s differential diagnosis list was saved to a summary table. The 

results of testing are discussed below. 

The first stage of testing compared the effectiveness of adjusted versus non-adjusted LRs. 

Both LR calculations were tested at all three diagnostic levels: diagnosing by substance, 

diagnosing by major and minor categories, and diagnosing by major category alone. 

Additionally, the settings for the MC and MCE filters were varied to produce multiple points of 

comparison. While maintaining a constant MCE value of 10, MC was tested at 10, 25, and 100. 

Likewise, while maintaining a constant MC value of 25, MCE was tested at 0, 10, and 50. 

Furthermore, four levels of medical outcomes were tested against the system: all exposures with 

a minor severity or worse, moderate severity or worse, major severity or worse, and a severity 

level where the outcome was death. These tests yielded sixty resultant sets for both adjusted and 

non-adjusted LRs. 

After generating these results, the accuracy of the sixty adjusted sets was compared to the 

accuracy of the sixty non-adjusted sets. For our purposes, we define accuracy as the percentage 

of correct diagnoses, which is calculated in three ways: the percentage of exposures appearing as 

the top diagnosis, the percentage of exposures appearing in the top ten diagnoses, and the 

percentage of exposures appearing in the top 10% of the trained diagnoses. Comparing adjusted 

accuracies with non-adjusted accuracies, it was determined that adjusted LRs appear to be a good 

approximation of non-adjusted LRs, with adjusted calculations yielding a higher accuracy 90% 

of the time. Of the 180 accuracy calculations, there were eighteen exceptions where non-adjusted 

calculations outperformed adjusted calculations. Ten of these exceptions involved the outcome 

of death. There are a few explanations for this anomaly. First, the database contains very few 

recorded death cases, making it more likely that a random variation might favor one system 
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approach over another. Second, death cases may often display CEs that are not normally 

associated with a particular toxic exposure. The reason is that as the body systems begin to shut 

down, extreme failures begin to cause cascading effects. In such cases, it becomes impossible to 

reliably compare two diagnostic systems. The accuracies of the remaining eight exceptions were 

within 0.5% of the corresponding adjusted performances. This nominal gain is more than 

compensated for by the 127 instances where adjusted calculations outperformed non-adjusted 

calculations on test cases not limited to the outcome of death. Additionally, a system based on 

adjusted calculations is much easier to generate automatically than one based on non-adjusted 

calculations because it does not require any manual intervention by the system designer. Having 

established that the adjusted LR is a valid substitute for the traditional LR, the remainder of the 

research results is discussed in terms of adjusted calculations. 

The next step in system development was to determine the best values for the MCE and 

MC filters. Beginning with a constant MC value of 25, MCE was tested at values of 0, 2, 5, 10, 

and 50. For each of these values, the adjusted system was also tested at the three diagnosis levels 

of substance, major and minor categories, and major category alone. Each of the three diagnosis 

levels yielded a system with a significantly different number of trained diagnoses. To enable 

comparisons between the three diagnosis levels, the percentage of exposures appearing in the top 

10% of the trained diagnoses was used as the accuracy measurement. Table 1 shows the accuracy 

of the system when diagnosing by substance, by major and minor categories, and by major 

category alone for various MCE values. Looking at the diagnosis of minor severity cases by 

substance, it can be seen that varying MCE has no effect on the accuracy of the system. Under 

moderate and major severity, the accuracy decreases from 74.4% to 74.2% and 77.8% to 77.6%, 

both negligible changes. Likewise, looking at the other data in Table 1 it becomes obvious that 
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varying MCE causes little to no change for minor, moderate, and major severities. Once again, 

the exception is the severity where the outcome is death, which is most likely due to a small 

sampling size. For example, when diagnosing by major and minor categories the 5.1% increase 

in accuracy observed in exposures with an outcome of death is a difference of only four 

additional cases being diagnosed in the top 10%. Prior to these tests, it was believed that using 

too low of an MCE cutoff might create falsely high or low LRs in some substances, decreasing 

diagnosis accuracy. However, based on these results, it is reasonable to conclude that filtering by 

MCE yields negligible changes in system accuracy. Using an adjusted LR with  = 0.01 already 

mitigates the potential problem, thus, the filter can be removed from the system. 

The second filter to be examined was the MC filter. Using adjusted calculations with a 

constant MCE value of 10, MC was tested at values of 0, 2, 5, 10, 25, 50, and 100. Again, to 

enable comparisons between the three diagnosis levels of substance, major and minor categories, 

and major category alone, the percentage of exposures appearing in the top 10% of the trained 

diagnoses was used as the accuracy measurement. Additionally, since varying MC directly 

affects the number of trained diagnoses in the system, it was hoped that the 10% accuracy 

measurement would enable comparisons between systems generated by different MC filter 

values. Table 2 shows the accuracy of the system when diagnosing by substance, by major and 

minor categories, and by major category alone for various MC values. Looking at the accuracies 

for minor, moderate, and major severities when diagnosing by substance or by major and minor 

categories, it is readily apparent that accuracy generally decreases as MC increases. Diagnosing 

by major category alone has the same tendency as MC steps from 10 to 25 and 50 to 100, but 

seems to plateau for MC values from 0 to 10 and 25 to 50. At first it might appear that using a 

lower MC yields a more accurate system, and, therefore, the MC filter should be removed. 
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However, such a conclusion fails to account for the purpose of the MC filter. As MC decreases, 

more possible diagnoses with less supporting cases are added to the system. As more diagnoses 

are added to the system, the accuracy calculation based on the top 10% includes substances that 

are ranked lower on the differential diagnosis. It turns out that the number of diagnoses that are 

added to the top 10% outweighs the number of new exposure cases being tested against the 

system. As a result, the lower the MC value, the more accurate the system appears. The plateaus 

observed when diagnosing by major category alone are also accounted for by this explanation 

because the top 10% of cases evaluate to the same number for MCs of 0, 2, 5, and 10 as well as 

for MCs of 25 and 50. 

Since comparing MC values using an accuracy based on the top 10% of trained diagnoses 

failed to demonstrate proper system training, a second accuracy measurement was calculated 

using the correct diagnoses appearing in the top ten slots of the differential diagnosis. From a 

user standpoint, this accuracy measurement is more appropriate because the list size that a user 

can process without being overwhelmed is not dependent on the number of trained substances. 

Looking at the minor, moderate, and major severity rows in Table 3, it can be seen that as MC 

increases, accuracy also increases. The data tell little about selecting a value for MC because 

they indicate what is expected of any system: as more cases are used to define each substance, 

system accuracy should increase. Another contributor to the increase in accuracy is that fewer 

substances are trained as MC increases. With fewer substances, the top ten substances become a 

larger portion of the available diagnoses. Even random guessing would experience an increase in 

accuracy under these circumstances. 

To prove that the system is training properly requires the accuracies based on correct 

diagnoses in the top ten to be normalized. In the first attempt to normalize accuracies, a ratio of 
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the data in Table 3 versus the accuracy of diagnosing by random guessing was calculated. 

However, it was found that the ratio suffered from problems similar to the accuracies calculated 

in Table 2. Lowering MC increases the number of trained diagnoses in the system, adversely 

affecting random guessing. As a result, the ratio falsely indicated that a lower MC cutoff would 

yield better results. A second attempt at normalizing the accuracies calculated the ratio of the 

data in Table 3 against a system that selected its top ten choices based on prior probabilities 

alone. 

Fig. 2 shows a graph of the ratio for minor, moderate, and major severities when 

diagnosing by substance. Likewise, Fig. 3 displays the ratio for diagnosing by major and minor 

categories and Fig. 4 the ratio for diagnosing by major category alone. The graphs indicate that 

as MC increases, ensuring better representative likelihood calculations, the system tends to 

perform better. The increase appears to be almost linear. There is no evidence of any breakpoints 

that would yield a superior MC cutoff. These results indicate that the adjusted LR is training 

correctly and that the exact value used for MC is unimportant. However, a reasonable MC value 

of at least ten should be chosen to ensure that outliers do not excessively influence the diagnosis. 

Comparing Fig. 2, Fig. 3, and Fig. 4, it can be seen that the slopes and the ratios are higher 

for diagnosis by substance than diagnosis by major and minor categories, which in turn are 

higher than diagnosis by major categories. The reason is that the number of diagnoses trained for 

diagnosing by substance (around 200 to 600) is significantly more than diagnosing by major and 

minor categories (around 100 to 200), which is more than diagnosing by major category alone 

(around 50 to 60). With more possible diagnoses, the problem becomes more difficult to place a 

diagnosis in the top ten without intelligence. Thus, the system’s performance ratio improves as 

more substances are added. Additionally, the curves indicate that the system scales well to a 
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large number of diagnoses since the ratios steadily increase as the available diagnoses increase. 

Another notable characteristic of the curves is that they indicate better performance in cases that 

are more severe. The primary reason is that more severe cases generally have more associated 

CEs. With more CEs, the system has more information to properly differentiate between various 

diagnoses, yielding a higher accuracy. The good news is that the most important cases are the 

most severe ones, and this is precisely where the system performs best. 

6.  Discussion 

6.1. Typical System Performance 

The first three columns of Table 4 exhibit typical system performance data. These 

representative accuracies use MC = 10 to ensure that outliers do not excessively influence the 

results and discard the MCE filter since it has little to no effect on system performance. To 

enable comparison between the various forms of diagnosis, the percentage of exposures 

appearing in the top 10% of trained diagnoses is used as the accuracy calculation. The results 

reiterate the fact that the system performs better on more severe cases. Once again, death is the 

exception due to limitations in the data and system failures in the body leading to cascading CEs. 

Moreover, the difficulties associated with the cases involving death make it fruitless to discuss 

trends for that severity. For major and moderate severities, diagnosing by substance performs 

best, followed by major and minor categories and finally by major category alone. The converse 

is true for minor severity cases, where diagnosing by major category alone performs best. 

Though not universally observed in the test runs, this accuracy inversion is not uncommon and is 

most likely due to the lack of CEs in minor severity cases. With minimal CEs it is easier to 

classify the general major category of a toxin than to identify the specific toxin involved. 
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The accuracy calculations in the first three columns of Table 4 show a high value of 

79.8%, which occurs when diagnosing major severity cases by substance. These accuracy 

calculations include a large number of cases involving only a single CE, which would be difficult 

for even the most experienced expert to diagnose without additional information. To better 

demonstrate system functionality, the accuracies from the first three columns of Table 4 are 

recalculated in the last three columns to include only cases with at least three recorded CEs. A 

large improvement in system accuracy is observed, particularly in minor severity cases where 

accuracies are boosted from the range of 67.4% to 68.6% into the 74.0% to 75.1% range. 

Additionally, the accuracy of diagnosing major severity cases by substance and by major and 

minor categories is raised above 80%. Further system improvements could be achieved by 

removing categories that do not add value, such as the “unknown drug” diagnosis, and 

consolidating nearly redundant substances, such as “aspirin: pediatric formulation,” “aspirin: 

unknown if adult or pediatric formulation,” and “aspirin: adult formulation.” However, one 

purpose of the research presented here is to bypass the need for expert input when generating a 

system and making such improvements would assume knowledge of the domain.  

6.2. System Training and Response Time 

An important aspect of system usability is the amount of processing time required to train 

the system and the response time of the user interface to diagnostic queries. System calculations 

were intentionally kept simple to enable scalability, rapid system generation, and a low response 

time. For research purposes, the system was developed using Microsoft Access 2002 on a 

Compaq Presario 2100 laptop with a 2.4GHz processor and 320MB of RAM. Training the 

system on four years of data required less than three minutes. Running a diagnosis under worst 

case conditions takes approximately three seconds when the program is first queried. Once 
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loaded into RAM, however, the diagnosis runtime is cut in half. Obviously, porting the program 

to the dedicated SQL server used by the FPIC would offer further speed improvements. 

As the number of cases in the system increases, system training time could increase 

significantly, though there should be a minimal impact on diagnosis time due to the architecture 

of the system. Rather than beginning anew each update, the system can maintain key information 

about current values and incorporate the information from the latest cases into its calculations. 

Although incremental updates have not been implemented because the system is not directly 

linked to the central database, the use of LRs makes their implementation straightforward. To 

calculate LRs, a count of true positives, true negatives, false positives, and false negatives must 

be determined for each CE. By saving a table of these four values with their corresponding 

substance, updating the system simply involves querying the new data for a count of each of the 

four values, adding the results to the old table, and recalculating the LRs. See [51] for a 

comparison of three common incremental update algorithms and [7] for a discussion sufficient 

statistics that increase update efficiency.  

6.3. Limitations 

Although the FPIC database is a valuable resource, the data it contains include biases. 

Obviously, since the database only includes information on toxic exposures, a system trained on 

such data is only capable of suggesting diagnoses assuming a toxic exposure has occurred. The 

system is completely incapable of recognizing or speculating about non-toxicological disorders 

that may cause identical CEs. Additionally, substance abuse and illicit drug use often go 

unreported, while abusers who are hospitalized may lie in an attempt to conceal their activities. 

Furthermore, physicians and nurses may not fully recount all the important details of a case when 

reporting to the PCC or even intentionally omit CEs they deem unimportant. In spite of 
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anomalies inherent to the FPIC database, the accuracies achieved by the system give credence to 

the practical usefulness of the data and the addition of data to the case base may help dilute some 

biases in the data. 

7.  Conclusion 

This paper presents research performed to create a prototype KBS for diagnosing toxic 

exposures, which will be expanded to include multiple exposures as the research progresses. A 

major goal was to bypass the knowledge acquisition bottleneck of traditional KBSs by using data 

mining to automatically generate the system. Because system generation assumes no knowledge 

about the field of toxicology, lower accuracy percentages are to be expected; however, future 

research can build on this foundation and intelligently modify substance groupings to improve 

performance. Additionally, expanding the system’s case base to include data from the other 

PCC’s in Florida or the AAPCC national database should lead to improved accuracies. Another 

important aspect of the system is the use of adjusted LRs. LRs are mathematical calculations that 

are commonly known and used throughout the medical field. In this research, traditional LRs are 

adjusted by adding a fractional possibility to every potential outcome. The result is a robust 

equation that mitigates multiply-by-zero and divide-by-zero errors while rapidly converging to 

the same value as traditional LRs. Ultimately, the system is intended to serve as a diagnostic 

consultant by providing differential diagnoses for toxic exposure cases based on observed CEs. 

The system enables physicians to tap into the knowledge stored in PCC databases, giving 

decision support information in a simple, understandable format. 

This paper focuses on the development of a system for diagnosing single exposure cases. 

The research explored the effects of two different filters for refining diagnosis based on a 

minimum number of exposure cases and a minimum number of CEs. System accuracy reached 
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as high as 79.8% and increased above 80% when test cases were required to involve more than 

one CE. Furthermore, system testing performed by toxicologists within the FPIC yielded a 

positive response. 

The research performed on this system offers a number of contributions to both the field of 

KBSs and medicine. First, being automatically generated, the system bypasses the knowledge 

acquisition bottleneck of traditional KBSs. A second contribution is the application of intelligent 

systems to the field of toxicology. At the present time, no American diagnostic systems exist for 

the field of clinical toxicology. Although systems have been implemented for France, Bulgaria, 

and Russia, they use different methods and are not readily available to assist American 

physicians. Finally, the use of LRs serves to bridge the gap between intelligent systems and the 

medical field. Too often, intelligent systems fail because they use methods that are unknown and 

distrusted by the medical community. The adjusted LR utilizes mathematics commonly accepted 

in medicine with a slight modification that creates a robust calculation without losing the essence 

of the original equation.  
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Figure 1  The derived differential diagnosis for a toxic exposure inducing the gastrointestinal 

CEs of abdominal pain, dehydration, and diarrhea. 

 

 

 
Figure 2  Accuracy ratios by substance. 
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Figure 3  Accuracy ratios by major and minor categories. 

 

 

 
Figure 4  Accuracy ratios by major category. 
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Table 1 
                   Accuracy of the system diagnosing exposures in the top 10% for various MCE when diagnosing by substance, major and minor categories, and major category 

alone with MC = 25. 

Diagnosis 
by     Substance         Major & Minor Categories     Major Category     

   

Minimum CE Occurrences (MCE) 
 

Minimum CE Occurrences (MCE) 
 

Minimum CE Occurrences (MCE) 

      0 2 5 10 50   0 2 5 10 50   0 2 5 10 50 

Severity Minor 
 

64.7% 64.7% 64.7% 64.7% 64.7% 
 

64.1% 64.1% 64.1% 64.1% 63.9% 
 

63.9% 63.9% 63.8% 63.8% 63.8% 

 
Moderate 

 
74.4% 74.4% 74.4% 74.4% 74.2% 

 
72.7% 72.7% 72.7% 72.6% 72.4% 

 
70.0% 70.0% 69.9% 69.9% 69.8% 

 
Major 

 
77.8% 77.8% 77.7% 77.7% 77.6% 

 
75.4% 75.4% 75.4% 75.1% 75.4% 

 
70.5% 70.5% 70.4% 70.0% 70.5% 

 
Death 

 
62.2% 62.2% 62.2% 62.2% 58.1% 

 
58.2% 58.2% 58.2% 58.2% 63.3% 

 
55.7% 55.7% 54.4% 54.4% 54.4% 

 

 
Table 2 

                         Accuracy of the system diagnosing exposures in the top 10% for various MC when diagnosing by substance, major and minor categories, and major category alone with MCE = 10. 
       

Diagnosis by     Substance             
Major & Minor 
Categories           Major Category           

   
Minimum Exposure Cases (MC)       

 
Minimum Exposure Cases (MC)       

 
Minimum Exposure Cases (MC)       

      0 2 5 10 25 50 100   0 2 5 10 25 50 100   0 2 5 10 25 50 100 

Severity Minor 
 

74.4% 72.9% 69.6% 67.4% 64.7% 62.9% 58.9% 
 

71.7% 70.1% 68.9% 67.5% 64.1% 63.0% 58.4% 
 

68.5% 68.5% 68.5% 68.6% 63.8% 64.1% 60.3% 

 
Moderate 

 
80.3% 79.7% 78.0% 76.6% 74.4% 71.6% 64.8% 

 
79.1% 78.0% 76.9% 75.6% 72.6% 71.8% 66.7% 

 
73.4% 73.4% 73.4% 73.5% 69.9% 70.2% 66.4% 

 
Major 

 
80.6% 81.7% 81.3% 79.8% 77.7% 75.1% 68.6% 

 
81.1% 80.3% 79.7% 78.5% 75.1% 74.2% 69.2% 

 
73.9% 73.9% 74.0% 74.0% 70.0% 70.3% 65.2% 

 
Death 

 
62.0% 65.8% 63.3% 62.8% 62.2% 61.2% 46.8% 

 
67.1% 68.4% 68.4% 67.1% 58.2% 59.2% 49.3% 

 
58.2% 58.2% 58.2% 58.2% 54.4% 56.4% 51.3% 

 

 
Table 3 

                         Accuracy of the system diagnosing exposures in the top ten diagnoses for various MC when diagnosing by substance, major and minor categories, and major category alone with MCE = 10.             

Diagnosis by 
  

Substance 
      

Major & Minor 
Categories 

     
Major Category 

     
   

Minimum Exposure Cases (MC)       
 

Minimum Exposure Cases (MC)       
 

Minimum Exposure Cases (MC)       

      0 2 5 10 25 50 100   0 2 5 10 25 50 100   0 2 5 10 25 50 100 

Severity Minor 
 

41.2% 41.4% 42.1% 43.2% 47.2% 54.4% 71.0% 
 

63.0% 63.1% 63.2% 63.4% 64.1% 65.3% 71.0% 
 

79.5% 79.5% 79.5% 79.6% 79.8% 80.1% 82.4% 

 
Moderate 

 
50.0% 50.5% 51.4% 52.9% 57.1% 63.2% 76.4% 

 
71.4% 71.6% 71.7% 72.0% 72.6% 74.1% 78.1% 

 
83.8% 83.8% 83.9% 83.9% 84.0% 84.5% 86.3% 

 
Major 

 
53.4% 54.6% 56.0% 58.2% 62.4% 68.1% 77.7% 

 
73.6% 74.2% 74.3% 74.7% 75.1% 76.4% 79.0% 

 
83.9% 84.1% 84.3% 84.3% 84.5% 84.7% 85.4% 

 
Death 

 
35.4% 39.2% 41.8% 44.9% 45.9% 50.7% 57.4% 

 
58.2% 58.2% 58.2% 58.2% 58.2% 60.5% 61.3% 

 
69.6% 70.9% 72.2% 72.2% 72.2% 71.8% 71.8% 
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Table 4 
         Accuracy of the system diagnosing exposures in the top 10% when diagnosing by substance, major and minor categories, and major category alone with MC =10 and MCE = 0. 

Trained on 
  

All Exposure Cases     
 

Cases with 3 or more Clinical Effects   

Diagnosis by     Substance Major & Minor Categories Major Category   Substance Major & Minor Categories Major Category 

Severity Minor 
 

67.4% 67.5% 68.6% 
 

75.1% 74.6% 74.0% 

 
Moderate 

 
76.6% 75.7% 73.5% 

 
78.4% 77.2% 75.0% 

 
Major 

 
79.8% 78.9% 74.8% 

 
81.0% 80.5% 75.9% 

 
Death 

 
62.8% 67.1% 59.5% 

 
69.4% 71.4% 66.7% 
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