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ABSTRACT

BEYOND THE STANDARD MODEL:
LHC PHENOMENOLOGY,

COSMOLOGY FROM POST-INFLATIONARY SOURCES,
AND DARK MATTER PHYSICS

by

Brian J. Vlcek

The University of Wisconsin–Milwaukee, August 2013
Under the Supervision of Professors Xavier Siemens and Luis Anchordoqui

It is the goal of this dissertation to demonstrate that beyond the standard model, certain

theories exist which solve conflicts between observation and theory – conflicts such as massive

neutrinos, dark matter, unstable Higgs vacuum, and recent Planck observations of excess rela-

tivistic degrees of freedom in the early universe. Theories explored include a D-brane inspired

construct of U(3)×Sp(1)×U(1)×U(1) extension of the standard model, in which we demon-

strate several possible observables that may be detected at the LHC, and an ability to stabilize

the Higgs mechanism. The extended model can also explain recent Planck data which, when

added to HST data gives an excess of relativistic degrees of freedom of ∆N = 0.574 ± 0.25

above the standard result. Also explored is a possible non-thermal dark matter model for expla-

nation of this result. Recent observations of Fermi bubble results indicate a signal of a 50 GeV

dark matter particle annihilating into bb̄, with a thermally averaged annihilation cross section

corresponding to 〈σbv〉 ∼ 8 × 10−27 cm3/s, spurs interest in a Higgs portal model suggested

by Steven Weinberg. Other implications of this model are also explored such as its ability to

explain dark matter direct detection results along with LHC Higgs data, and Planck data. Par-

ticle physics is complimented by possible stochastic gravitational wave searches for which a

model of second order global phase transitions is explored. These transitions generate gravita-

tional wave spectra with amplitudes of order Ωgwh
2 ∼ 10−24− 10−15. Furthermore, techniques

into such calculations are investigated in hopes to improve the stability required in such lattice

simulations.
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• This dissertation makes use of the Einstein summing convention, where repeated indices
are summed, e.g. AµAµ = A0A

0 + A1A
1 + · · ·+ AnA

n .

• Unless otherwise specified, the Minkowski metric is given in the mostly minus form of
gµν = diag[1,−1,−1, . . . ,−1] where there is d entries of−1 along the diagonal for d+1

space-time dimensions.

• This dissertation also uses natural units where c = 1 lnt
−1
n , ~ = 1 mnl

2
nt
−1
n , and kb =

1 mnl
2
nt
−2
n T−1

n where mn, ln, tn, Tn are the units of natural mass, length, time, and
temperature respectively. When using natural units, it is common practice to omit the
natural unit symbols (mn, ln, tn, Tn) and solely represent units in terms of energy for
which several common units may be represented by [1]

~c = mnl
3
nt
−2
n ≈ 197 MeV fm→ 1 fm = 5.08× 10−3 MeV−1,

c = lnt
−1
n ≈ 3× 1011 fm ps−1 → 1 ps = 1.52× 109 MeV−1,

kb = mnl
2
nt
−2
n T−1

n ≈ 8.62× 10−11 MeV K−1 → 1K = 8.62× 10−11 MeV,

Mpl =
√

~c/G ≈ 1.22× 1019 GeV c−2 → G−1/2 = Mpl = 1.22× 1019 GeV,

where the arrows show the omission of natural units, G is Newton’s gravitational con-
stant, and Mpl the Planck mass. Natural units allow representation of units in terms of
energy.

xi



PREFACE

Part I on BSM particle physics phenomenology is based on material from:

• Luis A. Anchordoqui, Ignatios Antoniadis, Haim Goldberg, Xing Huang, Dieter Lüst,
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Chapter 1

Introduction
Modern physics is built on two outstanding theories, the standard model (SM) of particle

physics and the concordance model of cosmology (ΛCDM cosmology) [1]. The SM [2] is

built on a mathematical footing known as quantum field theory (QFT) to describe the notions

of quantum uncertainty to fields rather than point like particles. This, along with principles of

symmetry, allows physicists to accurately predict the outcomes of experiments of elementary

particles down near the range of approximately 2.5 × 10−20 m. To give some perspective of

that scale, the radius of a hydrogen atom is about 0.5 × 10−10 m (the Bohr radius). If this

scale is magnified to the size of a major city (taken to be 20 km), we would have knowledge of

what’s going on at the atomic level (10−10 m) of the city model! On the other end of the length

spectrum, we have the ΛCDM model of cosmology, built upon Einstein’s theory of general

relativity (GR) [3]. The ΛCDM model predicts the large scale behavior of the cosmos out to

13.7 × 109 lyr = 1.3 × 1026 m [4]. Both theories are considered standard for physicists,

however they cannot be final theories of their respective subjects. They are effective theories,

in the same sense that Newton’s laws effectively describe projectiles and many other things at

the macroscopic-scale, but it would be incorrect to use it to predict motions of electrons, nor the

motions of highly relativistic objects [5], there is a scale at which you use the laws of quantum

physics, or general relativity.

The SM and the ΛCDM model must somehow agree in their respective predictions to give a

consistent theory of our observable universe. One would expect that the SM is somehow more

elementary as the physics of the very small should be able to describe the physics of the very

large if taken to the effective limit. The very name ΛCDM tells of our ignorance; “Λ” is the
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canonical symbol for the unknown term in the Einstein field equations of GR that creates a

repulsive like effect of gravity [6]. Currently this energy is associated with the non-zero energy

of free space and is known as dark energy and accounts for 68.6% of the energy density of the

universe. The CDM is cold dark matter, which accounts for 26.5% of the matter content of the

universe [7]. The rest of the universe is ordinary matter, for which the SM seems to correctly

describe. Where is the dark matter and dark energy in our current understanding of particle

physics? One glaring problem of our model of cosmology is that it is a classical theory and

thus cannot correctly describe the state of the universe at the time of the big bang.

As it stands today, the SM is incomplete. One of the main reasons is that it does not include

gravity as one of the interactions. As well, after the recent (at the time of writing this) Higgs

like particle discovery [8, 9], with an apparent mass of mH = 125 GeV, the SM seems to have

an unstable vacuum. This means that the current formulation of the SM cannot be correct.

There are many other reasons to suspect the SM is an effective theory. These issues motivate

the subject known as beyond the SM physics (BSM), where one attempts, through demanding

new symmetries of the Lagrangian of the SM, to predict new particles or interactions. Of

the proposed theories, two are by far the most popular, supersymmetry (SUSY) and string

theory, though they are related. In Part I of this dissertation, we look at a possible extension of

the SM through a string theoretical basis which imposes additional U(N) symmetries on the

Lagrangian of particle physics, rather than SU(N) which is what the SM uses in its current

formulation. We will explore the phenomenology of this new model, including LHC signals,

and cosmological observables.

One key concept of the ΛCDM model is the concept of inflation put forward by Guth in

1981 [10]. It is widely accepted as the correct mechanism of flattening the universe (this will

be expounded upon in Sec. 1.2.4). One exciting feature of inflation is that it takes whatever

physics is occurring at the quantum level before the universe undergoes rapid expansion and

magnifies it to the cosmic level! This is considered as one of the main reasons for large scale

anisotropies in the cosmic microwave background (CMB) as seen in Fig. 1. We might be able

to exploit this magnification and search for physics that goes beyond what the standard model

offers by observing effects in CMB anisotropies and theoretically a CMB-like background of

gravitons. We would expect to observe these gravitons in future interferometric gravitational
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Figure 1 : The highest resolution full sky anisotropy map from generated from the Planck 2013 re-
sults [11].

wave observatories such as the laser interferometer gravitational wave observatory (LIGO) (ad-

mittedly a much more advanced detector would be needed but the concept is the same). My

work in Sec. 3.1 explains the methods used to calculate what the observed background would

be, given a model for the relevant fields at the time immediately after inflation.

It is also interesting to look at CMB anisotropies as probes of BSM physics, specifically in

the form of dark radiation. Dark radiation is the term used to describe the excess relativistic

degrees of freedom (r.d.o.f.) recently reported by the Planck Collaboration [7]. This excess

results from combing data from the Planck, and the Hubble Space Telescope result of h =

0.738±0.024 [12], yielding ∆N = 0.574±0.25. Planck data suggests the excess is statistically

significant, but is as of yet unexplained by SM physics, this along with other observations

will be reviewed in Sec. 4.1 of this dissertation. One possible solution to this problem is the

inclusion of right chiral counterparts of the SM neutrinos which solves both neutrino masses(to

be examined in the next section) and the possible r.d.o.f. excess. In Sec. 4.1 we will explore

how adding right chiral neutrinos, as well as relativistic dark matter into the ΛCDM model, may

explain an excess in r.d.o.f., as well as setting limits on possible observables of an additional

gauge boson at the LHC.

CMB anisotropies observations are also complimented by observations of merging galaxy

clusters [13] and rotation curves [14] in suggesting dark matter. The current theories suggest



4
weakly interacting massive particles (WIMPs) are fermionic fields that explain all the observa-

tions associated with dark matter. In the last section we will discuss a Higgs portal mechanism

into exploring interactions of WIMPs with visible matter, specifically by exploring the impli-

cations of a Higgs portal model suggested by Weinberg [15], and possible detections in LHC

data.

1.1 Review of the SM of Particle Physics

1.1.1 States of Definite Chirality and Spinors

Before we try to expand on the SM, we review how it is currently formulated, while exposing

its weakness along the way. We start with the assumption that the reader has some knowledge

of the mathematics of quantum field theory so that we may focus on the Lagrangian formulation

of the SM, as well as knowledge with the workings of relativistic quantum mechanics. When

we construct theories, we start with a symmetry we think nature has and see what that forces

the Lagrangian to look like. One symmetry group that any theory must posses is invariance

of operators of the Poincaré group, which consists of translations, Lorentz boosts of special

relativity and rotations in space. All of which seem to be symmetries of all the known laws

of physics. Another experimental fact we must consider is that there are two different types of

elementary particles, bosons having integer spin, and fermions having half-integer spins. When

constructing representations of the Lorentz group it turns out that you essentially can have two

different spin 1/2 particles that furnish the representation, which are called chiral states. If the

particles have no mass then their helicities (spin handedness along their directions of motion)

are the same as their chirality. The two chiral states are the left handed spin 1/2 fermions fL

and the right handed spin 1/2 fermions fR. However we do not observe massless fermions in

the universe, so how do we justify Lorentz invariance, spin 1/2 particles, and massive states?

The currently accepted answer is that if a fermion has mass then it is viewed as changing from

one chiral state to the other by interacting with the vacuum of QFT as depicted in Fig. 2. With

the two different states we write a Lorentz invariant Lagrangian for “free” fermions (free in the

sense that we observe fermions in massive states and consider them free though the Lagrangian
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Figure 2 : A fermion is viewed as a chiral states exchanging helicities by interactions with the vacuum as
indicated by the dark points in the figure above.

below is not technically free)

Lf = if †Lσ̄
µ∂µfL + if †Rσ

µ∂µfR −m(f †RfL + f †LfR), (1.1.1)

where σµ = (1, ~σ) and σ̄µ = (1,−~σ) with ~σ the Pauli matrices that may be familiar from or-

dinary quantum mechanics. We have also used the Einstein summation procedure for repeated

indices.

We compact this notation from 2-component spinors fL, fR to a 4-component Dirac spinor,

f =

 fR

fL

 . (1.1.2)

This allows us to write the Dirac Lagrangian for free massive fermions

Lf = f̄(iγµ∂µ −m)f, where γµ =

 0 σ̄µ

σµ 0

 , (1.1.3)

and with f̄ = f †γ0. The important property of the gamma matrices {γµ, γν} = 2gµνI4×4,

where gµν is the Minkowski flat metric and I4×4 a four dimensional identity matrix should be

noted. To demonstrate this does in fact describe relativistic fermions we do a quick calculation

using the principle of least action which gives

∂µ

(
∂Lf
∂f̄ ,µ

)
− ∂Lf

∂f̄
= 0,

(iγµ∂µ −m) f = 0,

(−iγν∂ν −m) (iγµ∂µ −m) f = 0,(
∂µ∂µ +m2

)
f = 0. (1.1.4)

The last equation is the Klein-Gordon equation or the quantum version of the special relativistic

energy relation pµpµ = p2 = m2. From this point forward we will use the notation pµpµ = p2,

it should be apparent when contraction of indices is used versus the squaring of a c-number.
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1.1.2 Gauge Theories

Guided by Lorentz invariance and observation of the spin 1/2 nature of fermions, we were able

to construct a relativistic Lagrangian, which has a symmetry we did not intend to supply to it.

Spinors undergoing the transformation

f → e−iθf, (1.1.5)

where θ is some real number, leave the Dirac Lagrangian invariant. In fact if we have multiple

species of fermions fi we can repeat the same Dirac Lagrangian for each species which will

have a more complex but similar symmetry

Lfermion = f̄i (iδijγ
µ∂µ −mij) fj, (1.1.6)

where mij is a diagonal mass matrix and we sum over i, j with a Euclidean metric. We perform

a transformation on the collection of spinor species given by

fi → e−iθ
a(Ta)ijfj =

(
e−iΘf

)
i
, (1.1.7)

with T a, a collection of matrices, and θa a collection of real numbers. In the second equality, I

compacted the notation with Θ = θaT a (summing over internal group indices with a Euclidean

metric) and

f =


f1

f2

...

 . (1.1.8)

The fermion Lagrangian will remain invariant under this transformation1 if (T a)† = T a. Oper-

ators constructed with this requirement such as U = eiΘ will necessarily be unitary U †U = 1.

It is then said that the collection ofN relativistic massive fermions will be invariant under oper-

ation of the global symmetry of the U(N) group (why it is called global will become apparent

below).

Now we change from θa being real numbers to θa(x) now being real functions of space-

time. The transformation U(x) now depends on one’s position in space-time; which are termed

local U(N) gauge transformations. The Lagrangian is no longer invariant under local U(N)

1Note that T a and γµ commute as one operates on the spinors, and one mixes the spinor species.
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transformations, and the action of the gauge group operator leaves us with

Lf → Lf + f̄ (γµ∂µΘ) f. (1.1.9)

The problem is the derivative in the original Lagrangian. If we construct a derivative operator

Dµ that transforms like Dµ → UDµU
† then we will be able to construct a Lagrangian that is

invariant to local U(N) transformations. We accomplish this by introducing gauge fields so the

derivative term becomes

Dµ = ∂µ − igT aW a
µ (x) = ∂µ − igWµ, (1.1.10)

where under gauge transformations Wµ → eiΘWµe
−iΘ − 1

g
∂µΘ. Note that I have introduced a

compact notation Wµ = T aW a
µ . Interestingly, if the gauge group is U(1), then the gauge trans-

formation rule is that of electrodynamics. Requiring invariance of the Lagrangian to operators

of U(N) we are able to write our new Lagrangian as

Lf = f̄ (iγµDµ −m) f. (1.1.11)

However we did not write the most general local gauge invariant terms. We left out a gauge

field kinetic. We define the gauge field strength by

Fµν = ∂µWν − ∂νWµ + [Wµ,Wν ] . (1.1.12)

This transforms under local gauge transformations like Fµν → UFµνU
† so we may make a

gauge invariant kinetic term from this by use of the permutative property of the trace operation

1

2
Tr
(
F 2
)
→ 1

2
Tr
(
UFU †UFU †

)
=

1

2
Tr
(
U †UF 2

)
=

1

2
Tr
(
F 2
)
. (1.1.13)

If we restrict ourselves to using the sub group of U(N) to that of SU(N) then we have

Tr
(
T aT b

)
= 1

2
δab which allows us to explicitly write the kinetic term for the gauge fields

1

2
Tr
(
F 2
)

=
1

2
Tr
(
F a
µνF

µν
b T aT b

)
=

1

4
F a
µνF

µν
a . (1.1.14)

All together we write out the local SU(N) gauge invariant Lagrangian ofN types of relativistic

fermions as

L = f̄ (iγµDµ −m) f − 1

2
Tr
(
F 2
)
, (1.1.15)

= f̄i (iδijγ
µ∂µ −mij) fj + g

(
f̄iγ

µ (T a)ij fj

)
W a
µ −

1

4
F a
µνF

µν
a . (1.1.16)

(1.1.17)
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It is important to notice that the Lagrangian cannot have a mass term m2

aW
µ
aW

a
µ as it will break

the local SU(N) gauge invariance.

1.1.3 Electroweak Model

The final formulation of the SM didn’t occur until 1967 when three seminal papers [16, 17, 18]

formed the Glashow-Weinberg-Salam (GWS) electroweak model of interactions. This, com-

bined with Higgs paper [19] on symmetry breaking with a non-zero vacuum expectation value

of a scalar field, allowed one to reconcile data with theory. As well the work of Feynman,

Bjorken, t’Hooft, among others culminated in adding in QCD to the SM for which the Nobel

Prize of 2004 was awarded to Gross, Politzer and Wilczek for there asymptotic freedom work

allowing perturbative calculations to pave the way for QCD analysis in particle collider exper-

iments [20, 21, 22, 23] . The GWS model is built by imposing a SUL(2) × UY (1) symmetry.

The subscript L on SU(2) indicates that left handed chiral states participate differently in the

gauge group operations, than the right handed chiral states. The right handed chiral states are

said to be singlets of the SUL(2) symmetry; which means they transform under the symmetry

operation as a scalar (no transformation) and effectively do not couple to the gauge bosons

associated with that symmetry. The Y for U(1) is deemed hypercharge and is similar to the

charge in electromagnetism, however as we will see via the Weinberg mixing of SUL(2) and

UY (1) gauge bosons, we will form the electromagnetic gauge field we are familiar with.

Starting with the covariant derivative (Dµ operator), we have 4 gauge bosons associated

with the symmetry group

Dµ = ∂µ − ig2τ
aW a

µ − igY Bµ. (1.1.18)

The operator Y acting on multiplets has eigenvalues that are the hypercharge of that multiplet.

This does not affect the gauge invariance so it is allowed in our formulation. Further, we have

τa = σa/2 where σa are the Pauli matrices. This allows τa to form the generators of SU(2) in

the fundamental representation.

In the SM the left chiral the lepton sector doublet for one generation is,

EL =

 νL

eL

 , (1.1.19)
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the subscript L on the Dirac spinors composing the doublet are to inform you that this spinor

only contains left handed chiral components. Typically this doublet is obtained by projecting

out the right chiral state from the Dirac spinor used in quantum electrodynamics (QED) via the

relation

eL = PLe =
1

2

(
1− γ5

)
e. (1.1.20)

Along with the left chiral doublet we have a SUL(2) singlet (which is the right chiral state

eR), using the doublet and the singlet, we complete our leptonic sector for the SM for one

generation, which results in

LLepton = ĒLiγ
µDµEL + ēRiγ

µDµeR −
1

4
W a
µνW

µν
a −

1

4
BµνBµν , (1.1.21)

where W a
µν , Bµν are the field strengths for SUL(2), UY (1) gauge bosons respectively.

Notice we do not have masses for any of the leptons involved; the SM in this form cannot

be recognized as physically relevant. To put it in a form that is physically meaningful, we make

a change of basis for the gauge fields,
W+
µ

W−
µ

Z0
µ

Aµ


=



1√
2
− i√

2
0 0

1√
2

i√
2

0 0

0 0 cos(θw) − sin(θw)

0 0 sin(θw) cos(θw)




W 1
µ

W 2
µ

W 3
µ

Bµ


. (1.1.22)

We also define a new operator Q = τ 3 + Y which we identify as electrical charge we are

familiar with; as well we define τ± = τ 1 ∓ iτ 2. In this new basis the covariant derivative takes

the form

Dµ = ∂µ − i
g2√

2
τ−W+

µ − i
g2√

2
τ+W−

µ − i
g2

cos(θw)

(
τ 3 − sin2(θw)Q

)
Z0
µ − ieQAµ, (1.1.23)

where tan(θw) = g/g2 and e = g2 sin(θw), the elementary charge of an electron. Additionally

we choose Y EL = −1
2
EL and Y eR = −eR, which allows us to expand the Lagrangian (with

the gauge field kinetic terms not shown) as

LLepton = ν̄Liγ
µ∂µνL + ēLiγ

µ∂µeL + ēRiγ
µ∂µeR +

g2√
2

(ν̄Lγ
µeL)W+

µ

+
g2√

2
(ēLγ

µνL)W−
µ +

g2

cos(θw)

(
1

2
+ sin2(θw)

)
(ν̄Lγ

µνL)Z0
µ

− g2

cos(θw)

(
1

2
− sin2(θw)

)
(ēLγ

µeL)Z0
µ

− e (ēLγ
µeL)Aµ − e (ēRγ

µeR)Aµ + . . . (1.1.24)
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If we put this in terms of Dirac spinors of QED, we have

LLepton = ν̄ iγµ∂µPLν + ē iγµ∂µe

+
g2√

2
(ν̄γµPLe)W

+
µ +

g2√
2

(ēγµPLν)W−
µ

+
g2

cos(θw)

(
1

2
+ sin2(θw)

)
(ν̄γµPLν)Z0

µ

− g2

cos(θw)

(
1

2
− sin2(θw)

)
(ēγµPLe)Z

0
µ

− e (ēγµe)Aµ + . . . (1.1.25)

In this form we see we have charged vector-axial currents mediated by W±
µ bosons. As well

we have the typical vector current of quantum electrodynamics ēγµe mediated by the neutral

photon Aµ boson. There is also a third vector-axial current that also has neutral currents and a

neutral mediator (the Z0
µ boson). It is important to note that we have not included a right chiral

state for the neutrino as it is consistently experimentally found in a left handed chiral state.

We are able to include quarks and finish the SM gauge theory by repeating the process with

the multiplets for the first generation of quarks

QL =

 uL

d′L

 , uR, d
′
R. (1.1.26)

We use the symbol d′L and not dL because mass eigenstates of the quarks are not the same as

the flavor eigenstates with the weak force interacts with. The Cabibbo-Kobayashi-Maskawa

(CKM) matrix relates the mass eigenstates to the flavor eigenstates by a mixing matrix

(d′L)i = V ij(dL)j, (1.1.27)

where (dL)j generically denotes (dL, sL, bL) for the down, strange, and bottom quarks of defi-

nite flavor and left handed chirality. To complete the SM we also include the strong interaction

by adding in an SUc(3) gauge coupling, whose gauge fields comprise 8 gluons, gaµ. The covari-

ant derivative now takes the form

Dµ = ∂µ − igY Bµ − ig2τ
aW a

µ − ig3
λa

2
gaµ, (1.1.28)

where λa are the Gell-Mann matrices of the fundamental representation of SU(3). It should be
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understood that uL,R, dL,R are SUc(3) color triplets of the form

uL =


urL

ubL

ugL

 , (1.1.29)

with the (r, b, g) indicating the color charge of the particle. Even after adding in quarks and the

strong interaction to the model, this cannot be the final picture, as we are left with massless,

gauge bosons of SUL(2) × UY (1) which experimentally is not correct. The standard solution

to this problem is use of the Higgs mechanism.

1.1.4 The Higgs Mechanism

The Higgs mechanism allows us to generate masses for particles in the GWS model by adding a

scalar field, the so called Higgs field. The simplest model is generated by specifying the Higgs

field as a complex SUL(2) doublet

H =

 φ+

φ0

 . (1.1.30)

Using the SUL(2) × UY (1) gauge invariance, we can choose a gauge where the Higgs field

takes the convenient form

H → eiαeiθ
aτaH =

 0

φ

 , (1.1.31)

where φ is a real scalar function. The Higgs mechanism requires that we choose some potential

for the Higgs field V (φ) such that its minimum value is non-zero. The SM employes the

“Mexican hat” potential; which along with the kinetic gauge invariant terms, the scalar part of

the SM Lagrangian takes the form

Lscalar = (DµH)† (DµH)− µ2|H|2 − λ|H|4. (1.1.32)

If we were to proceed from this without further revision we would have difficulty doing any

calculations as QFT calculations make wide use of the LSZ formula (for a review of the LSZ

formula see [24]) for calculating cross sections and decay rates. The LSZ formula requires that

the fields involved in the calculation have a zero vacuum expectation value (vev), that is we need
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〈0|φ|0〉 = 0. It is possible to show through calculating the quantum action [25] for scalar fields

that 〈0|φ|0〉 = φc where ∂V (φ)
∂φ
|φc= 0 , that is φc is at the minimum of the effective potential

which at leading order is the classical potential. By calculating the Higgs field minimum below

∂V
∂H†

= (µ2 + 2λ|H|)H = 0

φc = 0, ±
√
−µ2

2λ
,

(1.1.33)

we deduce the vev of the scalar field. However, we must not choose φc = 0 as the vev as this

corresponds to a false vacuum as it is an unstable point of the potential. Instead, we purpose

that −µ2 > 0 and λ > 0, giving us a real minimum. This allows us to expand the Higgs field

around the vacuum expectation value 〈0|φ|0〉 = v√
2

=
√
−µ2

2λ
, thereby putting the Higgs field

in the form

H =

 0

1√
2

(v + h)

 , (1.1.34)

where h is a real scalar field that satisfies 〈0|h|0〉 = 0 and thus is appropriate for use in the LSZ

formula. This expansion around the vev will give us mass terms in our Lagrangian, where we

also assume that the Higgs field is electrically neutral, QH = 0

Lscalar = 1
2
∂µh∂

µh+
g2
2v

2

4
W−
µ W

µ
+ +

g2
2v

2

8 cos2(θw)
Z0
µZ

µ
0

+
g2
2v

2
hW−

µ W
µ
+ +

g2
2v

4
hZ0

µZ
µ
0

+
g2
2

4
h2W−

µ W
µ
+ +

g2
2

8 cos2(θw)
h2Z0

µZ
µ
0

−(−µ2)h2 −
√
−µ2λh3 − λ

4
h4.

(1.1.35)

This allows us to identify the masses of the particles in the theory as well as relations between

them
MW = g2v

2
,

MZ = g2v
2 cos(θw)

→MW = MZ cos(θw),

m2
H = −2µ2.

(1.1.36)

The Higgs mechanism can also be used to give masses to the leptons by including Yukawa

interactions of the form

Ye
(
ĒLH

)
eR + h.c. = Yev√

2
ēLeR + Ye√

2
hēLeR + h.c.

= meēe+ me
v
hēe,

(1.1.37)

where h.c. stands for the hermitian conjugate of the entirety of the preceding equation. However

this only generates a mass term for the lower spinor of the SUL(2) doublet. It is easy to add a
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gauge invariant term that will generate a mass for the upper spinor of the SUL(2) doublet by

adding a term like

Y
(
ĒLiσ

2H
)
νR + h.c. . (1.1.38)

This term is absent in the SM for leptons, and therefore leaves neutrinos massless.

This is where we encounter our first error in the SM. From 1968 the Homestake experiment

performed by Davis, Jr. and collaborators [26] suggested that the flux of solar neutrinos was

not what the SM would predict when coupled to the standard solar model of the time. The

generally accepted explanation for this is called neutrino oscillations. It takes the idea that the

neutrino flavor states (νe, νµ, ντ ) are not the same as the mass eigenstates, and can be expressed

as the linear combination of the mass eigenstates

|νf〉 =
∑
m

Ufm|νm〉, (1.1.39)

where νf are neutrino states of definite flavor and νm are neutrino states of definite mass. If

we appeal to quantum mechanics we can calculate the probability that a neutrino of a definite

flavor changes into a different flavor state. States of definite mass have a wave function of the

form

|νm(t)〉 = e−i(Et−pz)|νm〉 ≈ e
−i
(
m2

2E
z
)
|νm〉. (1.1.40)

Which follows from the approximation that the neutrino is highly relativistic. This allows us to

calculate the transition probability

P (f2 → f1) = |〈νf1 | νf2(t)〉|2 = |
∑
a,b

U †af1
Uf2be

−im
2
b

2E
z〈νa | νb〉|2,

= |
∑
b

U †bf1
Uf2be

−im
2
b

2E
z|2,

= δf1f2 − 4
∑
a>b

Re
(
U †af1

Uf2aUf1bU
†
bf2

)
sin2

(
∆m2

abz

4E

)
+2
∑
a>b

Im
(
U †af1

Uf2aUf1bU
†
bf2

)
sin2

(
∆m2

abz

2E

)
,

∆m2
ab = m2

a −m2
b . (1.1.41)

Based on the above, we see that if there are neutrinos with different but very small masses

compared to their energies, then the flavor states oscillate between each other as they propagate

through space. Thus, it is possible that the deficit measurement of νe from solar neutrinos are
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from fluctuations into νµ, and ντ . Testing this idea with reactors and accelerator beams is still

on going but has been confirmed multiple times such as in Kamiokande and Super-Kamiokande

Cherenkov detectors, MiniBooNE and MINOS at Fermilab and the Soudan Mine, as well as

others.

Adding the Yukawa interaction term with right chiral neutrinos requires an extra level of

fine tuning to the SM formulation. Fine tuning is considered theoretically un-natural,i.e., to

have various Yukawa couplings of strength < O(10−11) so that the neutrino masses come out

to be < 2 eV [1], while the electron has a coupling of orderO(10−6). The SM is not without its

own fine tuning as the top coupling is of order O(0.1), however it would only serve to increase

the level of fine tuning by introducing right chiral neutrinos. One mechanism to solve this

naturalness problem is to introduce massive Majorana neutrinos as well and evoke the see-saw

mechanism, which will allow for very light neutrinos and very massive additional neutrinos.

For a review of the see-saw mechanism, see [27].

1.1.5 Problems with the Higgs: Naturalness

Since the SM inception, it has been experimentally verified time and time again. Shown in

Fig. 3 is a comparison of measured values versus their SM predicted values [28]. The pull on

the figure is an indication of how many standard deviations the observed value and the predicted

value are separated by, (Pull)σmeasured = M − P where M is the measured observable and P

the predicted value. The average of the pulls gives 〈Pull〉 = −0.12 showing how good of a

theory the SM is. Of course we know the SM cannot be the final theory. Many of the problems

associated with the SM arise because of our use of the Higgs field. To highlight this issue, we

look at 1-loop corrections to the mass of the particles.

The topic of renormalization is a complicated subject; however, it comes down to one issue:

we do not know the relevant physics at high energies, and in loop calculations physics at all

scales appear. It is known that if one could calculate all the observables in a theory via the bare

parameter values then you would not have an issue with renormalization. However, since we

cannot turn off and on interactions, we cannot measure the values of the bare parameters, even

with this constraint, bare values makes a great conceptual tool. The physical parameters mea-

sured will be related to their bare values through relations that can be calculated via Feynman
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Figure 3 : SM predictions versus experimental observation, where (Pull)σmeasured = M − P where M
is the measured observable and P the predicted value From Ref. [28].

diagrams. For example, the lowest order corrections to QED fermion bare masses (m0) is given

by the diagram in Fig. 4. These diagrams result in the expression for the two point Green’s

Figure 4 : The fermion experiences self interactions with the photon of QED, this leads to a correction of
the bare mass parameter of the Lagrangian for QED.

function, in momentum space

〈0|T{ψ̄(p)ψ(0)}|0〉 =
i(p · γ +m0)

p2 −m2
0

+
i(p · γ +m0)

p2 −m2
0

iA
i(p · γ +m0)

p2 −m2
0

. (1.1.42)

This is understood as a modification of the m0 parameter to the particle’s physical mass (mp)
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given by

mp = m0 + iA,

A = −e2
0

∫
d4k

(2π)4

γµ (γνkν +m0) γµ
(k2 −m2

0) k2
,

= −im0
e2

0

2π2

∫ Λ

0

dkE
kE

(k2
E +m2

0)
,

≈ −im0
2α0

π
log

(
Λ

m0

)
+O

(
α2

0

)
. (1.1.43)

Since quantum physics allows the particles in a loop to have any energy/momentum, then as we

go up in energy scale through the integration, we should expect the relevant physics to change,

so much so that we don’t know if the current theory is correct through out the integration

region. To quantify this, we impose a cut-off of the momentum integral at Λ in calculating

the loop value, representing our confidence in the theory at scales below Λ. The physically

observed mass of the particle is mp and we can relate the physical mass to the bare mass m0 via

m0 = mp

(
1− 2α

π
log

(
Λ

mp

)
+O

(
α2
))

. (1.1.44)

We have replaced α0 by α because corrections to α0 are O (α2
0) and thus do not appear at the α

order. From this we can deduce that even if Λ = 1016 GeV then m0 −mp = −0.10 amazingly

even if we use the physical mass mp in our calculations when we should have been using the

bare mass m0, we are only making an error of 10%. It is said to be natural in QED for fermions

to have a low mass, as contributions from very high energies do not significantly change the

bare mass of the particle.

If we repeat this calculation for a scalar field we get a much different result. Corrections

of a φ4 scalar field to the mass of the particle are given by the diagram in Fig. 5 This diagram

Figure 5 : The scalar field experiences self interactions, which leads to a correction of the bare mass
parameter of the Lagrangian for scalar fields that is much different than that of QED.
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results in the modification of the bare mass of the scalar field particle given as

m2
p = m2

0 − iA ,

A =
λ0

2

∫
d4k

(2π)4

1

k2 −m2
0

≈ −i λ0

32π2

(
Λ2 − 2m2

0 log

[
Λ

m0

])
. (1.1.45)

From this we see that m2
p−m2

0 ≈ − λ0

32π2 Λ2. Given the recent discovery of a Higgs-like particle

with a mass of mH = 125 GeV, it seems that if Λ = 1016 GeV we are making a very large

mistake using the tree level mass mp when we should be using the bare mass of the scalar

field m0, as it is natural for the bare mass to be very large. This is odd as perturbation theory

requires λ0 to be small but it would seem to agree with experiment that λ0 must be very, very

small on the order of 10−32! While the bare mass term would be on order of 102 it would be

very odd (un-natural) to have a theory where the parameters vary in strength so wildly! This

is also known as a fine-tuning problem, and is a main motivator for beyond the standard model

physics, especially supersymmetry which solves this issue by removing exclusively scalar field

quantum corrections.

1.1.6 Problems with the Higgs: Stability

The Higgs mechanism depends on a non-zero, real vacuum expectation value. It must be that

the observed non-zero vacuum expectation value measured at all energy interactions is non-

zero and real. So it must be that the physical couplings λ(Q), µ2(Q) at the scale Q, must have

−µ2(Q) > 0 → m2
H(Q) > 0, and λ(Q) > 0. If we consider the self coupling the dominate

term in the Higgs interactions, then the renormalization for λ(Q) at first order gives

λ(Q) =
λ(q)

1− λ(q) 3
4π2 log

(
Q2

q2

) , (1.1.46)

while −µ(Q)2 stays essentially fixed over a large range of Q. If we rewrite the renormalization

equation in terms of the Higgs mass we get a lower bound on what the Higgs mass can be,

Q < mH exp

(
4π2v2

3m2
H

)
, (1.1.47)

where Q is the scale of new physics. There is also another limit in which this calculation will

no longer be correct, if λ(Q) > 1. The calculation is based on perturbation theory so it should

be that λ(Q)� 1, and using this as a bound gives

Q < MH exp

(
4π2

3

v2

m2
H

(
1− m2

H

2v2

))
. (1.1.48)
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If we include all of the couplings of the SM we get a bound on the Higgs mass and Λ shown

in Fig. 6. For a Higgs mass mH = 125 GeV, this indicates to us the SM vacuum is no longer

Figure 6 : Stability of the Higgs vacuum under the SM requires the mass of the Higgs to fall with the
curves at the given energy scale Λ which you expect the SM to still be correct . Taken from Ref. [28].

stable at aroundQ = 109−1010 GeV, and should be taken as an indication of some new physics

around this scale.

1.1.7 Accidental Symmetries of the SM

Besides the gauge symmetries and space-time symmetries of the SM we also have accidental

symmetries that occur. Noether’s theorem states that any symmetries of the action correspond

to conserved currents. These accidental symmetries are global U(1) symmetries that are as-

sociated with Baryon number B and Lepton number L conservation, and are enacted by the

transformations of the form

EL → eiβEL, eR → eiβeR; (1.1.49)

with a similar U(1) transformation for quarks that corresponds to Baryon number conservation.

In some grand unified theories (GUT) the decay of a proton is possible, though experiment

suggests that the half life of the proton is at least 1033 years [29]. If proton decay is possible

then the Baryon and Lepton number will be violated, however B − L will not be.
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1.1.8 Anomalies

Chiral theories coupled with gauge theories typically are not consistent. The SM has interaction

currents that have an axial term of the form

JµA = ν̄γνγ5e. (1.1.50)

This is a problem for QFT because renormalization of divergent gauge field theories such as

the SM depend on interaction currents to respect their current conservation equations [30].

However, axial currents do not remain conserved at the quantum level. Triangle diagrams of

the type depicted in Fig. 7 have the potential to break the conservation of currents. In the SM

Figure 7 : Triangle diagrams like this one can show the delicate balance required on gauge theories with
chiral matter fields to remain renormalizable.

we have both axial and vector currents and this problem persists. The anomalies must cancel if

the SM is to remain renormalizable, which is only possible by modifying the particle spectrum

of the theory.

The anomaly will no longer be present if Tr[T a{T b, T c}] = 0 where T a, T b, T c are the

generators of the gauge transformations of the SM at the interaction vertices of the triangle

diagram. If we consider a triangle diagram containing only SUL(2) gauge bosons then

Tr[σa{σb, σc}] = 2δbc Tr[σa] = 0. (1.1.51)

We have no inherent anomalies with SUL(2), so there is no need to modify the particle spec-

trum. However, considering two vertices having SUL(2) gauge bosons W 3
µ and one vertex with

a UY (1) boson (the generator of the UY (1) gauge symmetry is the hypercharge Y ), the trace
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then evaluates to

Tr[Y (τ 3)2] =
∑

L Yi(τ
3
i )2 +

∑
R Yi(τ

3
i )

= 2(−1) + 3 · 2 · 1
3
.

(1.1.52)

The use of the trace here is generalized to include a sum over all possible particles circulating

in the loop of the triangle. Let us examine this result, 2(−1) comes from the 2 left chiral parts

of EL while 3 ·2 · 1
3

comes from the left chiral part of the quark contentQL (the 3 because of the

3 different colors the quark can posses). If you repeat the process you are lead to the conclusion

that anomalies can only cancel if the SM has complete (eR, EL, QL, uR, dR) particle spectrums

for each generation. In fact this result was used to predict the top quark’s existence [31] in

1973 by Maskawa, and Kobayashi.

1.1.9 Beyond the SM

The symmetries allowed in the SM make up a great deal of how it works, but massive neutrinos

and accidental symmetries have yet to be explained. There are other problems plaguing the SM

the most obvious of which is its absence of gravity. Gravity presents a problem for the SM, as it

is very very weak compared to the rest of the gauge couplings. Consider that that electroweak

interactions occur at the scale ofMZ = 91 GeV while the relevant scale of gravitational interac-

tion isMpl ≈ 1019 GeV. How can any unified theory overcome this enormous scale difference?

One popular theory that can solve such a problem is the inclusion of extra dimensions. If you

consider Guass’s equation to be fundamental2 for any number of dimensions D with M (D)
pl the

fundamental gravitational scale for D dimensions, then Guass’s law is

∇ ·G(D) =
4π(

M
(D)
pl

)2ρ
(D). (1.1.53)

If we then consider a ring of mass distributed around a compactified dimension that takes the

shape of a cylinder of radius R then we can then write ρ(5) = m δ(3)(x) (the 5 indicates the one

extra spatial direction added from the usual 3 + 1 dimensions we are used to). If we integrate

out the compactified dimension we would find a point mass in 3 spatial dimensions with a mass

density of the form ρ(4) = Mδ(3)(x) the question is what is the relation between the two mass

2This derivation follows that of [32].
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densities? Upon integration we can find the result:

M =

∫ ∞
−∞

dx1dx2dx3

∫ 2πR

0

dx4m δ(3)(x),

M = m 2πR→ ρ(5) =
1

2πR
ρ(4). (1.1.54)

Adding this to our Guass’s equation gives

∇ ·G(4) =
4π

(2πR)
(
M

(5)
pl

)2ρ
(4) =

4π(
M

(4)
pl

)2ρ
(4). (1.1.55)

This tells us the fundamental scale of gravity M
(4)
pl =

√
2πRM

(5)
pl , if 2πR > 1 then M

(4)
pl

becomes larger than the fundamental scale of gravitational physics. This procedure generalizes

to many compactified dimensions so that the final form is

M
(4)
pl =

√
VcM

(4+d)
pl , (1.1.56)

where Vc is the volume of the d additional compactified dimensions. With extra dimensions it

becomes easier to unify gravity with the other three known forces and extra dimensions are a

general attribute of string theory, though these extra spatial dimensions have yet to have been

detected [33, 34, 35, 36, 37, 38, 39, 40, 41, 42].

Along with the absence of gravity in the SM, we must also ask why does the SM repeat

the same rules for 3 generations. This should be looked upon like a periodic table, the same

behavior of certain elements in chemical reactions ends up being explained by a simpler uni-

fying model of electrons and atomic shells. We should take the 3 generations repeating in

higher masses but same interactions as a hint of a substructure to the SM. The SM is viewed as

an effective field theory at the present moment and experiments conducted at the Large Hadron

Collider (LHC) at CERN may offer hints at what is beyond the SM. Many theories are currently

exploring possible extensions, one of which will be discussed in part I of this dissertation.

1.2 Review of ΛCDM Cosmology

Cosmology also can provide us with a window into BSM physics. Using cosmology to explore

new physics requires knowledge of the current standard model of cosmology known as the

ΛCDM model. We will review some of the main results of ΛCDM as it will be used for cal-

culations of gravitational wave stochastic background which will be explored in Part II of this
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dissertation. As well, ΛCDM is used for searches for extra relativistic degrees of freedom dur-

ing the early universe that the SM does not account for. As this is not a comprehensive review,

it is assumed the reader has knowledge of the theory of general relativity and has experience

with these results.

1.2.1 FRW metric

The universe on the large scale (larger than 102 Mpc) seems to be isotropic and homogenous.

If one asks what is the most generally isotropic and homogenous metric one can formulate, we

are lead to the Friedmann-Robertson-Walker (FRW) metric [43, 44, 45, 46, 47]

ds2 = dt2 − a(t)2

(
dr2

1− kr2
+ r2dΩ2

)
, (1.2.1)

where a(t) is known as the scale factor, and k indicates the curvature of the universe, with

k = 1 corresponding to closed, k = 0 to flat, and k = −1 to open. In equation (1.2.1) the Ω

is the solid angle familiar to spherical coordinates. The use of this metric alone allows us to

make an interesting observation, that the all objects a proper distance dp away (and considered

at coordinate distance R away from the origin) are moving with a velocity proportional to their

proper distance as can be seen below,

dp = a(t)

∫ R

0

dr√
1− kr2

→ vp = ȧ(t)

∫ R

0

dr√
1− kr2

=
ȧ(t)

a(t)
dp = H(t)dp. (1.2.2)

In (1.2.2) the value H(t) is the well known Hubble’s constant [48]. Strictly, H(t) actually isn’t

a constant in this equation, however if it varies slowly compared to observation time then it can

be approximated to be constant. This embodies the concept of the expanding universe, with

everything at a radial distance dp moving away with the same velocity. This immediately leads

to the idea of the Big Bang, as all the objects move closer together as you reverse time. Solving

for the age of the universe requires you to know the form of the scale factor a(t) . You can

solve for t in terms of H0, the Hubble constant measured today, thus calculating the age of the

universe. Even from this concept of a finite age of the universe many things can be deduced

about what we should observe today, most importantly the CMB which we shall touch on in

the next section.

If we apply the FRW metric to the Einstein field equations with the modification of a cos-

mological constant Λ, which does not break the general coordinate symmetry of GR, we arrive
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at the Friedmann equations (

ȧ
a

)2
+ k

a2 = 8π
3

1
M2
pl
ρ+ Λ

3
,

ä
a

= −4π
3

1
M2
pl

(ρ+ 3P ) + Λ
3
.

(1.2.3)

We have assumed the matter content is a homogenous perfect fluid with mass-energy density ρ

and pressure P . If we re-express this equation in terms of the Hubble constant, we get

1 + k
a2H2 = 8π

3
1

M2
plH

2

(
ρ+

ΛM2
pl

8π

)
→ k

a2H2 = 1− Ω,

Ω = 8π
3

1
M2
plH

2

(
ρ+

ΛM2
pl

8π

)
=

∑
i ρi
ρc

,
(1.2.4)

where ρi is the energy density content for different types of matter, e.g. baryonic matter, radi-

ation, dark energy, etc. We can see if Ω = 1 then the universe is flat, k = 0. This only occurs

if the universe has an energy density equal to the critical density ρc = 3M2
plH

2/8π. Given that

the universe is free to have any content, there are infinitely many more configurations of the

universe not having this exact critical density, so it would be a surprise to find that the matter

content is such that Ω = 1. Combining the two Friedmann equations gives

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0, (1.2.5)

which is a different statement of the 1st law of thermodynamics for a universe with 3 spatial

dimensions. To demonstrate equation (1.2.5) is the 1st law of thermodynamics, consider a

sphere of proper volume V (t) = 4π
3
a(t)3r3

0, then dQ = dU + PdV gives

dQ = d(ρV ) + PdV,

dQ = (dρ)V + (ρ+ P ) dV,

dQ = ρ̇+
V̇

V
(ρ+ P ) ,

dQ = ρ̇+ 3
ȧ

a
(ρ+ P ) = 0. (1.2.6)

As a consequence of a homogenous universe, there can be no heat flow dQ = 0. This forces

the entropy to be constant, dS = dQ/T = 0. The conservation of entropy allows us to derive a
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useful result3

0 = dQ = TdS = d(ρV ) + PdV = V dρ+ (ρ+ P )dV,

TdS = T

((
∂S

∂T

)
dT +

(
∂S

∂V

)
dV

)
→ T

(
∂S

∂T

)
= V

∂ρ

∂T
,

(
∂S

∂V

)
=
ρ+ P

T
,

∂2S

∂V ∂T
=

∂2S

∂T∂V
→ ∂2S

∂T∂V
=

1

T
ρ′ = −ρ+ P

T 2
+
ρ′ + P ′

T
,

dP =
ρ+ P

T
dT, (1.2.7)

where ρ′ = dρ/dT, and P ′ = dP/dT . This allows an expression for the entropy per unit

volume

dS =
1

T
d((ρ+ P )V )− V

T
dP =

1

T
d((ρ+ P )V )− V

T 2
(ρ+ P ) = d

(
(ρ+ P )V

T

)
,

s =
S

V
=
ρ+ P

T
+ const. (1.2.8)

We take as the definition of s to be the case where const = 0. For calculations we typically only

count relativistic species as contributing towards the entropy per unit volume. Why is this? We

can make use of statistical mechanics to derive the pressure and energy density for fermions

and bosons,

ρ =

∫
d3p

(2π)3

g E

eβE ± 1
, P =

∫
d3p

(2π)3

p

3E

g

eβE ± 1
, (1.2.9)

where E =
√
p2 +m2, β = 1/T , and g is the degeneracy for the respective particle for the

energy level E. With eβE ± 1 we use the + for fermions and − for bosons. In the highly

relativistic limit (mβ � 1) the particles behave as massless, and the results of equation (1.2.9)

give for bosons and fermions respectively,

P =
1

3
ρ =

(
1,

7

8

)
g
π2

30
T 4 → s =

(
1,

7

8

)
g

2π2

45
T 3. (1.2.10)

While in the non-relativistic limit (mβ � 1) the pressure and energy density are the same for

bosons and fermions

ρ = g m

(
mT

2π

)3/2

e−βm, P =
ρ

m
T → s =

g

T

(
mT

2π

)3/2

(1 + T/m)e−βm. (1.2.11)

The suppressive nature of the exp(−βm) makes the non-relativistic particles contribute sig-

nificantly less to the pressure, energy density, and entropy of the universe compared to the

3derivation follows that of [49].
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relativistic particles. In most cases it will be appropriate to ignore the contributions from non-

relativistic species when considering the thermodynamics of the universe.

After our discussion of thermodynamics, we now can determine for the simplest cases, the

equation of state of the perfect fluids dominating the stress energy tensor for the universe. With

this information we can determine the effect on the scale factor. In general the equation of

state can typically be related to the energy density ρ through a temperature dependent constant

P = wρ. For example, if we consider radiation (highly relativistic particles), we see in equation

(1.2.10) that P = ρ/3. While dust (non-relativistic matter) would essentially have no internal

kinetic energy (T/m ≈ 0), we may then fix the pressure for dust as P = 0. For these two cases

the scale factor evolves like
ρ̇+ 3 ȧ

a
(1 + w) ρ = 0,

dρ
ρ

= −3 (1 + w) da
a
,

ρ(a)a3(1+w) = ρ0a
3(1+w)
0 ,

(1.2.12)

which tells us that for matter dominated universes, we have ρm ∝ a(t)−3, and for radiation

dominated, ρr ∝ a(t)−4. The first Friedmann equation (1.2.4) with k = 0 (the k = 0 result will

be used later on) can give us more detail of the scale factor by inclusion of equation (1.2.12)

we have
ȧ
a

=
√

8π
3

ρ0

M2
pl
a−

3(1+w)
2 → a

3(1+w)
2
−1da =

√
8π
3

ρ0

M2
pl
dt,

a(t) ∝ t
2

3(1+w) .
(1.2.13)

We have assumed the condition a(t0 = 0) = 0 in the result. With Eq. (1.2.13) the solutions for

matter dominated universes is a(t) ∝ t
2
3 and radiation dominated universes is a(t) ∝ t

1
2 .

1.2.2 Cosmic Microwave Background

If we look at the thermal history of the universe by rewinding time, we are also bringing all the

the matter in the universe into a smaller volume, thus increasing the density. When rewinding

time the cosmic redshift of photons will reach a point at which all photons will have energies

above Q = 13.6 eV, the binding energy of hydrogen. At this point the hydrogen disassociates

into free protons and electrons. This matter will then be in a Baryon photon plasma state.

When the universe expands, there is a point where the photons ionizing the hydrogen will no

longer be within the mean free path for ionization, so the photons start to freely stream in the

universe. Since the universe is assumed to be homogenous then we should expect this to occur
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everywhere in the universe. We would expect to be able to observe these free streaming photons

today redshifted to a longer wavelength. We also expect that the spectrum of photons is that of

a blackbody as they originate from thermal equilibrium of free protons and electrons.

To calculate the temperature at the time of recombination (the point at which stable hy-

drogen forms) we examine the process that produces thermal equilibrium in this era, namely

the photo dissociation and recombination H + γ ↔ p+ + e−. It is useful to define X =

np/(np + nH), where X is the fraction of ionized matter. We should expect that the hydrogen

(and other elements that are being produced) are non-relativistic and have a Boltzmann-like

thermal distribution so that the number density for a type of particle x with degeneracy gx is

nx = gx

(
mx

2πβ

)3/2

e−βmx . (1.2.14)

We also assume that the universe as a whole is electrically neutral which then requires np = ne

(all electrically charged particles are in their most stable state). This allows us to express the

ratio of the number densities of hydrogen, protons, and electrons as,

nH
npne

=
gH
gegp

(
mH

memp

)3/2

(2πβ)3/2eβ(me+mp−mH), (1.2.15)

≈
(
me

2πβ

)−3/2

eβQ. (1.2.16)

This is known as the Saha equation [4]. In this expression gH = 4, gp = 2, ge = 2 and to a

good approximation mH = mp. In Eq. (1.2.16),Q = 13.6 eV, the binding energy of the first

orbital of the hydrogen atom. Re-arranging our fractional ionization expression gives

nH =
1−X
X

np, (1.2.17)

which can be related to the number density of photons nγ via an additional relation of η =

(np + nH)/nγ = np/(Xnγ) where nγ = (2ζ(3)/π2)T 3. This results in

np = ηXnγ = ηX 2ζ(3)
π2

1
β3 ,

1−X
X2 = η 2ζ(3)

π2 T 3
(
meT
2π

)−3/2
exp[β(13.6 eV)],

1−X
X2 = 3.84 η(meβ)−3/2eβQ.

(1.2.18)

The time of recombination is defined as the time when X = 1/2 and we can find η at the time

of recombination by measuring np + nH and nγ today and taking into account that number
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densities scale like a(t)−3 and thus η remains fixed for all time. Measurements of baryonic

matter today show Ωb,0 ≈ 0.05, which is accomplished by measuring abundance of light ele-

ments in galaxies. This allows us to find the number density of baryonic matter today. We can

assume that the baryonic matter is non-relativistic so its energy is dominated by mass energy,

which is mostly in the form of hydrogen or free protons which both have a mass of nearly

mp = 938 MeV/c2. We find

nb,0 =
ρcΩb,0

mpc2
≈ 0.5 h2 m−3, (1.2.19)

where H = 100h km/s/Mpc. To make our calculation more precise we can use the measured

CMB temperature of T = 2.7 K. An interesting note is without measuring a photon background

you could use the fact that we cannot see a uniform background at night so it must be that

Tγ,0 < 6 K so that the peak of the blackbody radiation today lies, at most, in the infrared, but

the rest of this section takes the value of T = 2.7 K. This gives nγ,0 ≈ 3.81× 108 m−3. Using

h = 0.7, η ≈ 6.43 × 10−10; this allows us to find the temperature at which recombination is

half way complete to be approximately T ≈ 3, 773 K.

We can also find the temperature at which the photon background decouples from interac-

tions with electrons. We can approximate the conditions for decoupling by using the equation

for mean free path distance, is d = 1/(nσ), where σ is the interaction cross section and n the

number density of interaction points. In an expanding universe a particle cannot exceed the par-

ticle horizon distance dp, the furthest distance a particle moving at the speed of light can travel

since the big bang. During the time of radiation dominance the horizon distance is dp = 1/H

and in the time of matter dominance is dp = 2/H; in both cases the length scale is set by 1/H

the Hubble horizon distance. If the mean free path becomes larger than the particle horizon,

then the particles can no longer interact and become free streaming. This gives the relation,

d ≥ dp → Γ = nσ ≤ H . For photons scattering off bound electrons and non-relativistic free

electrons, we approximate the interaction cross section by the dominant Thomson cross section

σe ≈ 8πα2/(3m2
e). This allows us to calculate the approximate temperature of the photons

when they began free streaming by first calculating the interaction rate,

Γ(T ) = ne(T )σe =
X(T )nb,0
a(T )3

σe. (1.2.20)

The Friedmann equations allow us to replace the scale factor with a relation to the dominant
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matter term during decoupling (the universe is a matter dominated phase at this time)

H =
H0

a3/2
Ω

1/2
m,0. (1.2.21)

We use Ωm,0 ≈ 0.3, (a result determined by analysis of CMB anisotropies and the discrepancy

between Ωm,0 > Ωb,0 leading to more evidence of dark matter). With the decoupling condition

Γ(T ) = H(T ) we can determine when the photons decouple:

X(T )

a(T )3/2
=

(
H0Ω

1/2
m,0

nb,0σe

)
,

X(T )T 3/2 = T
3/2
0

(
H0Ω

1/2
m,0

nb,0σe

)
,

T dec
γ ≈ 2945 K. (1.2.22)

In the second line we used the fact that as the photons red-shift the spectrum retains its shape

but moves to lower energies. This allows us to relate the temperature of the photons with the

scale factor as T (t) = T0/a(t), where T0 is the temperature of the photons measured today and

the convention a(today) = 1 is used. With a matter dominated universe from the point of free

streaming to today, this corresponds to a time of t ≈ 539, 066 years after the big bang.

Presumably there should also be stochastic backgrounds from all particle types that decou-

ple from interactions at certain temperatures. Consider a neutrino background which we can

estimate would become free streaming at Γ = ne〈σ〉 ∝ G2
FT

5.4 With H ∝ T 2/Mpl, which

gives us an order of magnitude estimate of (a similar argument is presented in [49] p. 74)

G2
FT

5

T 2/Mpl

≈
(

T

1 MeV

)3

. (1.2.23)

For temperatures around Tν = 1010 K, well before the photons decouple, the neutrinos de-

couple from the plasma and become free streaming. The effect of theses additional relativistic

particles will be seen when we examine CMB anisotropies, and will play a crucial role in

searching for BSM, discussed in Sec. 4.1. Furthermore, we expect a gravitational wave back-

ground at an even earlier time! However this background will be overpowered by any other

sources of stochastic gravitational waves produced at later times. We will investigate such a

process in Part II of this dissertation.
4Valid when the reactions e+νe ↔ e+νe and e+ +e− ↔ νe+ ν̄e falls out of equilibrium, which occurs when

the electrons are still relativistic but have center of mass energies far from the W± resonance so Fermi’s constant

GF is appropriate to use.
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1.2.3 Cosmic Parameter Measurement

In 1965 Penzias and Wilson of Bell Labs detected a cosmic background of 3.5 K. However

it was Dickem, Peebles and Wilkinson who would interpret the excess power at 3.5 K as the

cosmic photon background [50]. Penzias and Wilson would go on to receive the Nobel prize in

physics in 1978 for this discovery. The Cosmic Background Explorer (COBE) satellite would

show that the sky is filled with a black-body radiation at a temperature of 2.7 K [51] as depicted

in Fig. 8.

Figure 8 : Black-body curve corresponding to T = 2.7 K from the COBE, FIRAS detector [51].

We expect to find that since the universe is homogenous on large scales today, it has always

been homogenous, even during the period of photon decoupling. It should not be surprising that

each causal patch of the sky has a black-body spectrum with a temperature near 2.7 K because

of this homogeneity. Some differences from patch to patch are to be expected as the universe

cannot be perfectly homogenous or else it is unclear how galaxies could form. These small dif-

ferences in temperatures in the CMB are called CMB anisotropies. The CMB anisotropies were

measured with a resolution of 10 arc-minutes by the Planck ESA-NASA satellite and whose re-

sults were released 20 March 2013 [7]. Previously, the Wilkinson Microwave Anisotropy
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Probe (WMAP) had measured the CMB anisotropies with the highest resolution and released

its 9-year data in December 2012. Surprisingly the differences in temperature from causal patch

to causal patch are on the order of 10−5. How can it be that the early universe is so homoge-

nous even for places out of causal contact? This is known as the horizon problem and will be

addressed in the next section.

Measurement of the anisotropies provides a method of measuring several cosmological pa-

rameters, such as the curvature, total matter content, and baryonic content, among other things.

A review of the analysis and interpretation of the CMB anisotropies can be found in reference

[52]. The results of the measurement of the anisotropies forms the ΛCDM model of cosmology.

The main results of which are listed in Fig. 9. Measurements of these parameters suggests that

WMAP 9 Year and Planck Cosmological Parameters Best Fit with 1σ Variance.
Parameter WMAP 9 yr Planck 2013
Age of the Universe 13.74± 0.11× 109 yrs 13.813± 0.058× 109 yrs
Hubble Constant H0 70.0± 2.2 (km/s)/Mpc 67.3± 1.2 (km/s)/Mpc
Ωb 0.0463± 0.0024 0.0487± 0.0023

ΩCDM 0.233± 0.023 0.265± 0.015

ΩΛ 0.721± 0.025 0.686± 0.020

1− Ω −0.037+0.044
−0.042 0.000300± 0.025

Figure 9 : ESA-NASA Planck mission anisotropy multipole data, with ΛCDM best fit curve that deter-
mines cosmological parameters. The anisotropy multipole map is decomposed into Legendre polynomi-
als 〈 δTT (n̂) δTT (n̂′)〉n̂·n̂′=cos(θ) = 1

4π

∑∞
l=0(2l + 1)ClPl(cos(θ)), where Dl = l(l + 1)Cl/2π, figure from

Planck results [53] and data for WMAP taken from reference [54].
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we are living in a flat universe (k = 0) in the FRW metric, which we saw can be accomplished

if the energy content of the universe is exactly equal to the critical energy density. However,

we see that the baryonic matter can only account for 5% while the rest of the gravitationally

interacting matter must be some other type of matter refereed to as dark matter, which accounts

for 25% of the energy content of the universe. The remainder of energy we assume is in some

form of energy associated with free space known as dark energy which accounts for the re-

maining 70%. Observations also suggest that we are now in an era of accelerating expansion,

as discovered by Perlmutter, Schmidt, and Riess, who observed distant supernovae and from

this deduced that the universe is currently transitioning from a matter dominated phase to a dark

energy dominated phase [55, 56, 57]. They received the 2011 Nobel prize in physics for this

result.

It seems interesting that after 13.7 billion years of evolution that the energy content of

the universe is still such that it suggests k = 0. This is known as the flatness problem, as it

seems odd that given all values possible for Ω it should be 1. Furthering the mystery of this

result, many theories that go beyond the standard model of particle physics predict magnetic

monopoles which have never been discovered, so if these magnetic monopoles are created at

very high energies where GUTs may be the correct physics, typically in the range of E ≈
1016 GeV, then where are these magnetic monopoles today? It would be in 1980 when Guth

suggested a mechanism, known as inflation [10], that would solve all problems associated with

the CMB at once.

1.2.4 Inflation

The scale factor can also have an exponential solution if we consider the cosmological constant

Λ to be the dominate form of matter in the universe. If we look at the Einstein field equations

with the cosmological term being the dominate term, we have

Rµν −
1

2
gµνR ≈ gµνΛ, (1.2.24)

Which allows us to associate the matter as a perfect fluid with ρ = Λ and P = −ρ, so that the

equation of state has w = −1. The Friedmann equations then gives

ä

a
=

8π

3M2
pl

Λ > 0→ a(t) ∝ eHt with H =
√

8π
3M2

pl
Λ . (1.2.25)
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The result is an era of exponential expansion, known as inflation. An era of exponential expan-

sion solves the flatness, horizon, and monopole problem all at once. The Friedmann equation

during this inflationary period is

1− Ω =
k

H2a(t)2
→ 1− Ω =

k

H2
e−2Ht. (1.2.26)

As a consequence of inflation we can see that Ω → 1 as time gets larger. With inflation,

regardless of the initial value of k, the universe expands rapidly and forces 1 − Ω → 0. The

monopole problem can be solved by assuming that inflation takes place right around the time

that GUTs are valid or when kBT ≈ 1016 GeV which corresponds to a time t ≈ 10−36 s. If any

monopoles exist at the time of inflation they will be exponentially diluted as number density

goes like a(t)−3 → e−3Ht. The horizon problem can also be solved by inflation. Before the

inflation of the universe we assume the universe is in a radiation dominated era. In this case the

particle horizon is given by

dp(tb) = a(tb)

∫ tb

0

dt′

a(t′)
= t

1/2
b

∫ tb

0

dt′

t′1/2
= 2tb ≈ 6× 10−28 m, (1.2.27)

where the time before inflation is given as tb ≈ 10−36 s. Given that this is a very small distance,

all of the universe should be in thermal equilibrium at this time. At this point in the history

of the universe inflation begins and ends at a time te. We should also note that at the time of

inflation the Hubble parameter isH(tb) = 5×1035 Hz, which remains constant during inflation;

the particle horizon then becomes

dp(te) = 2tbe
N − 1

H
+
eN

H
, (1.2.28)

where N = H(te − tb). If N = 100 (which corresponds to te = 2 × 10−34 s) then dp(te) ≈
3.2 × 1016 m. The universe then proceeds along the standard thermal history where the large

scale homogeneity is frozen in by the inflation. This allows the whole visible universe to be

in causal contact at the time of recombination thus it is not surprising that the temperature

variation of the CMB is so small.

The dynamics of inflation is typically described by a quasi-classical field called the inflaton.

Obviously during such small time scales before inflation, we should be using quantum field

theory, but a classical field will capture the essence of inflation. If we consider a scalar field

with a generalized potential V (φ) with minimal coupling to the gravitational field, we can
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calculate the associated energy density and pressure that is coupled to gravity , with the the

result

S =

∫
d4x
√−g

(
1

2
∂φ2 − V (φ)

)
→ Tµν = − 2√−g

δ(
√−gL)

δgµν
,

Ignoring the spatial variations of the inflaton as we assume high levels of homogeneity, we have

the terms of a perfect fluid

ρ =
1

2
φ̇2 + V (φ),

P =
1

2
φ̇2 − V (φ). (1.2.29)

If the potential initially is in a state of φ̇ � V then we have the conditions for inflation which

are ρ ≈ V (φ) and P ≈ −V (φ), which as we saw gives exponential expansion when these

conditions are met. This initial state of the inflaton is the concept of slow roll inflation. The

least action principle for the inflaton gives

φ̈+ 3
ȧ

a
φ̇ = −dV

dφ
. (1.2.30)

Equation (1.2.30) describes approximately the motion of an oscillator with a dampening term

proportional to H . If the inflaton starts in a false vacuum then it slowly rolls towards the mini-

mum of V where dV/dφ = 0, then during this transition time we will have an inflationary era

of the universe. The inflaton is then dampened as it oscillates about the true vacuum and even-

tually will decay to the true vacuum value. We will explore what this implies for gravitational

wave observations in Part II.

1.2.5 Reheating

The inflationary scenario introduces a rapid expansion of space, and as a consequence the uni-

verse would be cold and have a low density. This presents a problem for standard big bang

cosmology where we need some sort of way to return to a state of high density and high tem-

perature so that a radiation dominated phase occurs after inflation. Work in the early 80’s to the

90’s (by Linde, Kofman, Starobinsky among others [58]), found a method of decaying infla-

ton field particles into standard model particles which would then interact and thus thermalize

reheating the universe. This thermalized state would be proceeded by a state of non-thermal
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equilibrium when the particles first come into existence, a pre-heating state. During this state

there can be large inhomogeneities in the universe before thermalization smooths the inhomo-

geneities and thus this can lead to a stochastic gravitational wave background, similar to the

CMB.

In the pre-heating phase the inflaton is oscillating about the minimum of its potential V (φ)

after inflation has already occurred. If another scalar field χ is coupled to the inflaton, then the

equations of motion are

L =
√−g

(
1

2
∂φ2 +

1

2
∂χ2 − 1

2
g2χ2φ2 − V (φ)

)
,

↓

φ̈ − 1

a2
∇2φ+ 3

ȧ

a
φ̇+ g2χ2φ = −∂V

∂φ
,

χ̈ − 1

a2
∇2χ+ 3

ȧ

a
χ̇+ g2φ2χ = 0. (1.2.31)

If the amplitude of φ� χ then we can approximately ignore the term g2χ2φ which implies the

inflaton decays via the dampening term 3ȧ/a. However for χ we can see its equation of motion

resembles that of an oscillator with drag and a time dependent frequency term. It is useful at

this point to decompose χ into spatial Fourier modes which gives

χ̈k + 3
ȧ

a
χ̇k +

(
k2

a(t)2
+ g2φ(t)2

)
χk = 0. (1.2.32)

This describes a field that has similar properties of a person on a swing. Consider a person

on a swing pumping their legs. What they are doing is changing the length of the pendulum

they are attached to by extending and retracting their legs. Done with the right frequency, they

can increase their amplitude of the swing/pendulum [59], a condition is known as parametric

resonance. Equation (1.2.32) has a time dependent frequency, so we expect for some modes, the

inflaton oscillating about its minimum will increase the amplitude of χk for particular modes k.

If we recall in flat space-time QFT, we can create a number operator for mode k, via the

expansion of a scalar field as is done below,

φ(x) =
∫

d3k
(2π)3φk(t)e

i~k·~x =
∫

d3k
(2π)3

(
ak(t) + a†k(t)

)
ei
~k·~x,

π(x) = ∂0φ(x) =
∫

d3k
(2π)3

(
ȧk(t) + ȧ†k(t)

)
ei
~k·~x,

(1.2.33)

where ak(t) are the solutions to spatially Fourier decomposed equations of motion. For ex-

ample, in Minkowski space, we could have for a scalar field with potential V = 1
2
m2φ2, the
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equations of motion give

φ̈−∇2φ+m2φ = 0→ φ̈k +
(
k2 +m2

)
φk = 0, (1.2.34)

which has solutions of the form ak(t) ∝ e±i
√
k2+m2t. We can construct a generalized num-

ber operator so long as −2i[a†k(t = 0), ȧk′(t = 0)] = (2π)3δ(3)(k − k′) (this is simply

[φ(x), π(x′)] = iδ(3)(x − x′) in terms of mode expansion operators) is satisfied. The num-

ber operator for mode k can then be expressed as

Nk(t) = a†k(t)ak(t). (1.2.35)

We can re-express this is in terms of the Fourier modes of the fields. In our flat space example

solution, this is

Nk(t) =
ωk
2

φ2
k +

(
φ̇k
ωk

)2
 . (1.2.36)

When a mode of χk increases, the generalization of this procedure can be interpreted at a quasi-

classical level as the act of particle creation. Thus, via parametric resonance with the inflaton,

field particles can be generated, at which point standard interactions occur and thermalize the

system. The full description of this system is non-linear and numerical integration methods

must be employed for detailed study. In part II we will examine how we can calculate the effect

of this particle creation on a stochastic background of gravitational waves, and how to do so in

new inventive ways.

1.3 The Dark Sector

The ΛCDM model of cosmology predicts that we know almost nothing about approximately

94% of the content of the universe, where 68% is in the form of dark energy and 26% is in

the form of dark matter [7]. To explain these dark properties, it is proposed that one needs

to modify general relativity, possibly by modifying the Einstein field equation, adding some

higher order curvature terms of the form

Gµν = Rµν −
1

2
gµνR +O(R2) =

8π

3M2
pl

Tµν , (1.3.1)

or one can use models such as in modified newtonian dynamics theories (MoND) [60]. Not

modifying the Einstein field Gµν , one can explain dark properties by adding in new particles,

so called dark matter.
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1.3.1 Dark Matter Particles

The theory of dark matter has gained evidence for existence through observations of galactic

rotation curves, showing that objects far from the galactic core exhibit a higher velocity than that

expected from Newtonian gravity, most famously demonstrated in [14] and can be seen in Fig.

10. Gravitational lensing observations lend credence to the dark matter coming from massive

particles, techniques of which are reviewed in [61]. One such dramatic example is that of the

bullet cluster collision that demonstrates through lensing effects that dark matter interacts with

visible matter weakly [13] as seen in Fig. 11. It is popularly theorized that the explanation for

Figure 10 : The rotation curve for the Andromeda galaxy M31, as observed in [14] demonstrates that
rather than the expected vr ∝ r−1/2 fall off from Newtonian gravity, the rotational velocity of objects
in M31 exhibit flattening suggesting additional non-electromagnetically interacting mass to keep the
visible matter bound to the galaxy.

dark matter comes in the form of weakly interacting massive particles (WIMPs) [62]. Weakly

interacting in that they must not interact with ordinary matter very strongly or else we would

have detected such matter. The SM does not predict any weakly interacting matter other than

neutrinos, however, neutrinos in the SM are massless and thus move at the speed of light and

cannot form the cold dark matter needed to explain the evolution of the universe. Models

that extend the symmetry of the SM such as SUSY are popular theories for WIMPs because

they predict as yet unseen particles that may explain the dark matter [63]. It is then generally

theorized that the full particle theory being incomplete consists of the visible sector, that which
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Figure 11 : Pictured is the the merging of the galaxy cluster in 1E0657-56. The intracluster medium
contains the majority of baryonic mass contained in galaxy clusters. This hot baryonic mass emits
photons in the X-ray range, depicted in pink and imaged from NASA’s Chandra space telescope. The
shock wave on the right of the image indicates that the two clusters have passed through each other due
to gravitational attraction. However gravitational lensing maps the majority of the mass not with the X-
ray emitting centers, but beyond this matter, mapped in blue/purple. This indicates a form of matter has
passed through the baryonic matter, under the influence of gravity and potentially a weakly interacting
force. This image provides further evidence for dark matter particles as WIMPs [65].

forms ordinary matter and is described by the SM, and that of the dark sector (DS), which forms

the matter content of dark matter

L = LSM + LDS . (1.3.2)

To have any hope of detecting such a sector there must be some connection between the dark

sector and the visible. One of the simplest models of connecting the dark sector to the visible

is through the least well probed particle of the SM5, the Higgs boson. Such models are deemed

Higgs portal models [64], the structure of these models can be seen in Fig. 12. In Sec. 4.1

we shall explore a Higgs portal model put forth by Weinberg [15] and its validity to explain

observed phenomena. One key observational requirement of any dark matter theory is its re-

quirement to reproduce the correct thermal relic density of cold dark matter as observed today

ΩCDM = 0.265 ± 0.015 [7]. The connection to the relic density and the underlying particle

physics model as formulated in [66], which applies the Boltzmann equation in an expanding

5Least well probed at the time of this writing.
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Figure 12 : The SM is being probed by the LHC and may reveal SUSY particles which may make up
some of the dark sector, while the Higgs particle (indicated by the H) may be the only mediator with the
dark sector having its on dynamical theory of light particles, the lightest stable particle (LSP) making up
the majority of the cold dark matter today. Image modified from [67]

universe, connects the annihilation cross section of dark matter particles calculated from a par-

ticle theory to that of the relic density. The Boltzmann equation in an expanding universe is

given as6

ṅw + 3Hnw = −〈σv〉(n2
w − n2

EQ) , (1.3.3)

where nw is the number density of WIMPS in a comoving frame, 〈σv〉 the total thermally

averaged annihilation cross section, Möller velocity product, and nEQ is the number density

when the WIMPs are in thermal equilibrium. The number density in equilibrium is expressed

by, for example taking the WIMPS to be fermions, as

nEQ =

∫
d3k

(2π)3

gf

eE/T + 1
, (1.3.4)

where gf is the degeneracies of the energy state E; typically the number of spin states the

particle possesses and we will assume as such. In the non-relativistic approximation mw � T

(mw the mass of the WIMP) equation (1.3.4) takes the form of equation (1.2.14) repeated here

for connivence

nEQ = gf

(
mwT

2π

)3/2

e−mw/T . (1.3.5)

6The following derivation follows closely that of [49]
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Equation (1.3.4) also makes use of the total annihilation cross section for the WIMP with the

Möller velocity a detailed calculation of which is model dependent. By a change of variable x =

mw/T , Y = nw/s, equation (1.3.4) takes a much simpler form by virtue of the conservation of

entropy sa3 = const,

dY

dx
= −x〈σv〉s

H(m)

(
k

1/2

)(
Y 2 − Y 2

EQ

)
, YEQ =

√
45

32π7

gf

gS(x)
x3/2e−x , (1.3.6)

where

s = gS(x)
2π2

45
m3
wx
−3 , H = H(m)x−2 = m2

w

√
gρ(x)

Mpl

√
8π3

30
x−2 , a(t) ∝ tk , (1.3.7)

which results in

−x〈σv〉s
H(m)

= −
√

π

45
mwMpl

gS(x)√
gρ(x)

x−2〈σv(x)〉 . (1.3.8)

The solutions of (1.3.6) formally must be found by numerical methods, however approximate

methods can be employed to give useful results. To find approximate solutions we express

(1.3.6) in terms of Y = YEQ + ∆, where ∆ expresses the deviation from equilibrium (we

proceed with k = 1/2 for decoupling in the radiation dominated era)

d∆

dx
= −dYEQ

dx
−
√

π

45
mwMpl

gS(x)√
gρ(x)

x−2〈σv(x)〉 ∆(∆ + 2YEQ) . (1.3.9)

The thermal history of particle density can be understood by (1.3.3); if the averaged annihila-

tion cross section term 〈σv〉 is dominating the Hubble dampening term 3Hnw, then the particle

distribution remains close to that of the equilibrium distribution any small deviation from equi-

librium is resorted to the equilibrium distribution as can be seen in expanding (1.3.3) in first

order deviations from nEQ through nw = nEQ + ∆n. Under the assumption of good thermal

contact Eq. (1.3.9) becomes,

d∆n

dt
+ 2Γ∆n ≈ 0 ,Γ = 〈σv〉nEQ , (1.3.10)

which gives solutions ∆ ∝ exp(−2Γt), killing any deviations on the scale 1/Γ. At some point

the Hubble dispensation term starts to dominate and the Boltzmann equation admits solutions

where the number density simply scales as a−3 ,

ṅw ≈ −3Hnw → nw = nw(τ)

(
a(τ)

a(t)

)3

. (1.3.11)
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At some cross over time when approximately Γ ≈ H the number density nw is frozen in and

then scales as a−3. We can exploit this fact to make approximate solutions to (1.3.9). Near the

freeze out temperature, expressed as xf , the deviation from equilibrium should be small and

thus ∆̇ ≈ 0 and we consider only first order ∆ deviations. Under this restriction Eq. (1.3.9)

takes the form
1

YEQ

dYEQ

dx
≈ −2

√
π

45
mwMpl

gS(x)√
gρ(x)

x−2〈σv(x)〉 ∆ . (1.3.12)

The left hand side can be simplified under the assumption that the freeze out temperature occurs

at a non-relativistic temperature, typically given by the condition xf � 3. So long as the freeze

out occurs at a temperature where g′S(x)/gS(x) ≈ 0 then equation (1.3.12) admits solutions of

the form

∆ ≈
√

45 gρ(xf )

π g2
S(xf )

x2
f

mwMpl〈σv(xf )〉
. (1.3.13)

The convention is to consider a particle decoupled when ∆ = cYEQ with c some number of

order 1, solving for this condition leads to√
45

8π6
c

gf√
gρ(xf )

mwMplx
−1/2
f 〈σv(xf )〉 ≈ exf , (1.3.14)

which admits approximate solutions from self substitution of the form

xf = ln

[√
45

8π6
c

gf√
gρ(xf )

mwMplx
−1/2
f 〈σv(xf )〉

]
− 1

2
ln [xf ] ,

xf ≈ ln

[√
45

8π6
c

gf√
gρ(xf )

mwMplx
−1/2
f 〈σv(xf )〉

]

−1

2
ln

[
ln

[√
45

8π6
c

gf√
gρ(xf )

mwMplx
−1/2
f 〈σv(xf )〉

]]
+ . . .

(1.3.15)

After the freeze out occurs we know the distribution should only be slightly effected by the

residual annihilations such that after freeze out Y � YEQ since YEQ has exponential decay,

after freeze out ∆ ≈ Y . From equation (1.3.9) we can find the value of Y (x0), where x0 is the

value taken today as

1

Y (x0)
≈ 1

YEQ(xf )
+

√
π

45
mwMpl

∫ x0

xf

gS(x)√
gρ(x)

x−2〈σv(x)〉 . (1.3.16)

A key observation is that so long as x−2〈σv(x)〉 dies off quickly as a function of x then the term

containing 〈σv〉 contributes very little and Y (x0) ≈ YEQ(xf ), this will come back in Sec. 4.2.8
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as we consider a case where 〈σv〉 grows for x → ∞. We will continue with the assumption

that the term 〈σv〉 doesn’t contribute to the the yield Y today.

We may now compute the thermal relic density by

ΩCDM =
ρw(today)

ρc
=

8π mws0Y (x0)

3H2
0M

2
pl

, (1.3.17)

If we take c = 1 in equation (1.3.14) and T0 = 2.7 K the result is

ΩCDMh
2 ≈ 4× 10−11

x
3/2
f√

gρ(xf )〈σv(xf )〉
GeV−2 . (1.3.18)

The Eq. (1.3.18) gives for ΩCDMh
2 = 0.112 ( computed with h ≈ 0.67 from [7] ) and an

example xf = 20, gρ(xf ) ≈ 100→ mw = 200 GeV gives the requirement

〈σv(xf = 20)〉 = 3.9× 10−26cm3s−1 . (1.3.19)

though the flatness of gρ in certain regions makes the result insensitive to the particle mass.

Besides a dark sector theory giving the correct relic density, dark matter also allows an

explanation to recent observations of excess relativistic degrees of freedom from that of the SM

in CMB analyses, the details of which are left to Sec. 4.1.

1.3.2 Dark Matter Direct Detection

On a more microscopic scale, if dark matter has interactions with the visible sector, then there

should be some measurable effect of the particle’s interactions. Currently, direct detection mea-

surements are being performed by several collaborations, which include DAMA/LIBRA [68],

CoGeNT [69, 70], CRESST [71], and CDMS [72]. The essential principle of direct detec-

tion searches is to measure the recoil and subsequent phonons (mK temperature changes) in

various materials resulting from interactions of dark matter with stable nuclei. In this exper-

imental setup, one might assume that as the Earth moves through the Galactic halo of dark

matter particles as represented in Fig. 13; with this model, at various times of the year, one

expects to observe different behavior in your measurements as the relative flux of dark matter

particles changes as the Earth moves with and against the WIMP wind. As of 2010 the

DAMA/LIBRA [68] Collaboration’s observations suggest such an annual modulation of dark

matter interaction signals, in accordance to the Earth’s relative motion to the galactic halo, the
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Figure 13 : As the Earth orbits the sun, the relative velocity of the Earth with the dark matter halo of the
milky way has a period of 1 year. This should have an effect on the number of incident collisions for
dark matter direct detection searches (image taken from [67]).

Figure 14 : Annual modulation data in dark matter direct detection searches observed from the
DAMA/LIBRA Collaboration for a little over 5 years of data [68].

results are shown in Fig. 14. These direct detection searches also help to place upper limit

constraints on dark sector physics. Interaction cross-sections limits can be seen in Fig. 15

from [73]. Interestingly, several collaborations, as of June 2013, have hinted at a possible sig-

nal in the mw ≈ 10 GeV range [74] 16. In Sec. 4.2 we will explore what the Higgs portal

models can tell us in light of these new developments.
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Figure 15 : Limits on Nucleon WIMP cross sections by various collaborations. Cross sections are of the
order O(10−39 − 10−45) cm2. Image adopted from [73]

Figure 16 : Several collaborations have started to converge on a direct detection limit that suggest a dark
matter particle with mass around 10 GeV [74] though issues with the Xenon100 data exsist [73].
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Part I:

UB(3)× SUL(2)× UL(1)× UIR(1)→ SM++
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Chapter 2

Extending the Standard Model

2.1 Strings, D-branes, and the SM

Exploring beyond the SM requires us to find new concepts that allow us to make modifications

to the SM Lagrangian; one of the most highly regarded BSM theories is string theory. The

central idea of string theory is that all fundamental particles (leptons, quarks, and gauge bosons)

are not point particles but rather one dimensional objects, strings. The use of strings as the

fundamental objects of a QFT leads to a consistent quantum theory of gravity in its spectrum.

String theory unites gravity and the other known forces into a consistent framework. The use

of quantum theory to the concepts of strings requires the theory to have more than the 3+1

dimensions of space-time, 26 in the bosonic string case and 10 in superstring theory. We do

not observe a space-time dimension higher than 4 in current experiments, and do not find a

departure from the inverse square law of gravity for distances greater than 56 µm, which sets

a limit of one extra compact spatial dimension of R ≤ 44 µm [75]. To keep string theory as a

viable theory, the idea of D-branes was introduced to connect string theory to experiment [76,

77].

Dp-branes are p dimensional objects to which string end points can be attached to, (strings

having Dirichlet boundary conditions, or considered fixed at their end points). By attaching

strings to D-branes, extra spatial dimensions are still a possibility as the particles of the SM can

be forced to be bound to D-branes in the form of open strings, while the mediators of gravity

(gravitions), closed strings, are free to move into the extra-dimensional space. As was shown
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earlier, the inclusion of extra spatial dimensions solves the hierarchy problem of the SM. Within

the spectrum of particles (string states) are vector gauge bosons, as well as the SM fermionic

content [32]; with all the content of the SM + gravity it is natural to try to construct something

similar to the SM. Multiple D-branes provide a possible solution to construction of string-like

SM. By having multiple D-branes, strings can attach one endpoint on one brane and its other

endpoint on an entirely separate brane. By attaching strings to multiple branes and having the

branes at the same location (without the branes at the same location the gauge bosons may

acquire mass, which we do not want) a U(N) gauge symmetry is realized on the brane.

Stacking multiple branes together allows us to form something very close to the SM; a

brane world consisting of a 3-stack of branes, intersecting a 2-stack of branes and finally a

single brane contains the SM [78]. These 3 stacks of branes will contain the gauge group

UB(3) × UL(2) × UY (1), which contains the SM gauge group as a subgroup. To make the

multiple brane approach to the SM applicable to experiment such as the LHC, the required

string scale must be set at the TeV scale and thus requires extra dimensions of the length 1

millimeter to a Fermi (10−15 m ) [79]. Regge recurrences (string excitations) most distinctly

manifest in the γ+ jet [80, 81] and dijet [82, 83, 84] spectra resulting from their decay. The

recent search for such narrow resonances in data collected during the LHC7 run now excludes

a string scale below 4 TeV [85, 86, 87]. Alternatively it is still possible that the string scale is

actually closer to the Planck scale, lp ≈ 1.6 × 10−35 m and still get signals at the LHC as we

will show below.

To increase the scale of string theory more towards the Planck scale, we include an extra

1-stack D-brane to the 3 stacks of D-branes that can represent the SM. This additional 1-stack

D-brane will supply us with an additional U(1) gauge symmetry to that of the gauge group

UB(3)×UL(2)×UY (1)→ UB(3)×UL(2)×UL(1)×UIR(1), where we have chosen to gauge

lepton number via UL(1), this then naturally explains the accidental symmetry included with

the SM of conservation of lepton number; we also include an additional charge IR. we have

a special case for the UL(2) brane, since even powers of the U(2N) group can be reduced to

members of the symplectic group Sp(N). With this in mind, we have UL(2) → SpL(1) ∼=
SUL(2), which alleviates the need for an extra, as yet unobserved gauge boson associated with

UL(2), as depicted in Fig. 17 for the 3 intersecting d-brane stacks, and Fig. 18 for the 4
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Figure 17 : The use of 3 brane stacks can be used to find the minimal representation of the SM within
string theory, while still keeping the possibility of large extra spatial dimensions as a possibility.

intersecting d-brane stacks.

To understand the new consequences of this model, it helps to identify the SM from its

construction. This can be done by recognizing that any unitary group U(N) can be decomposed

to

U(N)→ U(1)× SU(N). (2.1.1)

By performing the decomposition to U(1) and SU(N) we must consider the coupling strengths

of the decomposed U(1) part and SU(N). It should be that at the string scale the underlying

symmetry of U(N) is restored, while at scales less than the string scale a symmetry breaking

can make them appear to have different coupling strengths. We ensure the U(N) symmetry is

released at the string scale by requiring that the gauge transformations have a common normal-

ization. We write our U(N) gauge transformation as a multiplication of a U(1) transformation

expressed as exp(iX) with X proportional to a N ×N identity matrix, and a SU(N) transfor-

mation written as exp(iT aθa), where the T a are generators of the SU(N) symmetry. We can

use the trace operator normalization of the SU(N) group as a guide to the proper normalization
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Figure 18 : The addition of the UIR(1) brane can alleviate the issues of a 1 TeV string scale of the 3 brane
construction. Above the gauge group of the 4 brane construction is U(3)B×Sp(1)L×U(1)L×U(1)IR .

of the X operator via [88]

Tr
(
T aT b

)
=

1

2
δab → Tr

(
X2
)

=
1

2
,

Tr
(
X2
)

= Tr
(
c2I
)

= c2N → c =
1√
2N

. (2.1.2)

We can then identify X as the identity as long as we transfer the 1/
√

2N to the coupling asso-

ciated with X; this ensures that we will recover the U(N) symmetry at the string scale. With

the decomposition of UB(3), the gauge group of the 4 brane model becomes UB(1)×SUc(3)×
SUL(2)×UL(1)×UIR(1), where now we have gauge field associated with baryon number via

UB(1). Again one of the accidental symmetries of the SM naturally becomes gauged in this

model; this then can be used to ensure proton stability. With this gauge group as the underlying

symmetry, a covariant derivative can be constructed as

Dµ = ∂µ − ig3T
aGa

µ − ig′3QBCµ − ig2τ
aW a

µ − ig′1QIRBµ − ig′4QLXµ, (2.1.3)

where it must be enforced at the string scale that g′3(Ms) = g3(Ms)/
√

3 · 2 and we identify Cµ

as the the U(1) gauge boson associated with conservation of baryon number.
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Table 1 : Chiral fermion spectrum of the U(3)B×Sp(1)L×U(1)L×U(1)IR D-brane model with charges
QB Baryon number, QL Lepton number, QIR additional U(1) charge, QY hypercharge of the SM. The
label for the field will be used to compactify expression in other sections. The fields are labeled such
that Fi is field i , for example F1 = uR, F2 = dR, . . .

Label Fields Representation QB QL QIR QY

1 uR (3, 1) 1 0 1 2
3

2 dR (3, 1) 1 0 −1 −1
3

3 EL (1, 2) 0 1 0 −1
2

4 eR (1, 1) 0 1 −1 −1

5 QL (3, 2) 1 0 0 1
6

6 nR (1, 1) 0 1 1 0

7 H (1, 2) 0 0 1 1
2

8 H ′′ (1, 1) 0 −1 −1 0

In addition to extra gauge bosons, we also include in the model right chiral neutrino fields

nR, so that we can agree with the observation of neutrino oscillations. As long as the right

chiral neutrino fields remain neutral with respect to hypercharge, it will not break the SM. The

matter content of the 4 brane model is summarized in Table 1. The SM makes use of a Higgs

doublet field to give mass to three gauge bosons. Allowing a Higgs doublet field and a single

scalar field to the 4 brane model, we can give masses to 3 gauge bosons using the Higgs doublet

and give mass to 1 of the additional gauge bosons. This leaves 8 massless fields, which we will

take to be the gluons of the SM; 1 massless gauge boson we can eventually associate to the

photon field. This still leaves an additional U(1) gauge boson massless. We will give a mass

to this additional U(1) via a Stückelberg mechanism. More will be said on the Stückelberg

mechanism in the following sections.
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2.1.1 The Effective Lagrangian

The particle content in the theory has been specified, and at this point we construct an effective

Lagrangian within which we can identify the SM. We identify SUB(3) with SUc(3), the color

gauge group from the SM which is represented by 8 gluons with field strength

Ga
µν =

(
∂µG

a
ν −G∂νGa

µ + g3f
abcGb

µG
c
ν

)
, ifabcT a = [T b, T a], T a ∈ SU(3). (2.1.4)

Associated with the UB(1), UL(1), and UIR(1) we have the gauge fields Cµ, Xµ, and Bµ, re-

spectively. The field strengths are given by the expressions

F (1)
µν = ∂µBν − ∂νBµ,

F (3)
µν = ∂µCν − ∂νCµ,

F (4)
µν = ∂µXν − ∂νXµ. (2.1.5)

We can construct the field strength for the SUL(2) gauge field as

W a
µν =

(
∂µW

a
ν − ∂νW a

µ + g2ε
abcW b

µW
c
ν

)
, iεabcτa = [τ b, τa], τa ∈ SU(2). (2.1.6)

The kinetic expression for the gauge fields, also known as the Yang-Mills part of the La-

grangian, is the gauge invariant expression

LYM = −1

4

(
Ga
µνG

µν
a +W a

µνW
µν
a + F (1)

µν F
µν
(1) + F (3)

µν F
µν
(3) + F (4)

µν F
µν
(4)

)
. (2.1.7)

We include the fermion fields via our standard gauge invariant expression as

Lfermion = iQ̄LγµD
µQL + iūRγµD

µuR + id̄RγµD
µdR + iĒLγµD

µEL

+ iēRγµD
µeR + in̄RγµD

µnR, (2.1.8)

where it is understood that we repeat these interactions for each generation of particles. To give

the particles mass, we include the Yukawa interactions as they were in the SM, however we

include a Yukawa term for the right chiral neutrino field

LY = −Yd
(
Q̄LH

)
dR − Yu

(
Q̄Liσ

2H∗
)
uR − Ye

(
ĒLH

)
eR − YN

(
ĒLiσ

2H∗
)
nR + h.c. ,

(2.1.9)

where the Yukawa couplings Yi are matrices in flavor space (i.e. the CKM matrix is absorbed

into the definitions of Yi).
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Since this is an effective Lagrangian of the underlying string theory, it is possible to have

terms that have mass dimension greater than 4, which would be considered non-renormalizable

and thus non-fundamental, but knowing that this is an effective theory, terms with mass di-

mension greater than 4 are considered acceptable. However, we avoid this complication in

the Lagrangian by setting the string scale well outside the scope of LHC physics, where our

phenomenological analysis takes place in the following sections. By choosing the string scale

Ms ≥ 1014 GeV, we ensure that operators with mass dimension greater than 4 in the Lagrangian

are suppressed in our phenomenological analysis. We must also state that there cannot be any

terms involving H ′′ and have mass dimension 4 ensuring conservation of lepton number.

To include the Higgs fields, we form the scalar sector of the effective Lagrangian as

Lscalar = (DµH)†DµH + (DµH ′′)
†
DµH

′′ − V (H,H ′′), (2.1.10)

with the potential given as

V (H,H ′′) = µ2
1|H|2 + µ2

2|H ′′|2 + λ1|H|4 + λ2|H ′′|4 + λ3|H|2|H ′′|2. (2.1.11)

Minimization of the potential results in two separate vevs for each Higgs field; those vevs are

represented as

〈H 〉 =
1√
2

0

v

 and 〈H ′′〉 =
1√
2
v′′ . (2.1.12)

The doublet vev denoted v is taken to be that of the SM while the singlet vev denoted v′′ will

be used to give mass to one of the gauge bosons not part of the SM.

The effective theory in this form makes it difficult to identify the SM. We require a change

of basis of the 3 additional U(1) gauge bosons, such that a linear combination of Cµ, Bµ, Xµ

form the hypercharge gauge boson of the SM Yµ, along with two other U(1) gauge bosons, Y ′µ,

and Y ′′µ . We accomplish this via an SO(3) matrix, or a rotation, parameterized by three Euler

angles as is shown below (θ, ψ, φ) [89]

R =


CθCψ −CφSψ + SφSθCψ SφSψ + CφSθCψ

CθSψ CφCψ + SφSθSψ −SφCψ + CφSθSψ

−Sθ SφCθ CφCθ

 , (2.1.13)
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where we have Cθ = cos(θ) and Sψ = sin(ψ) and similar notation for the other angles. After

performing this rotation on the U(1) gauge bosons with the relation
Cµ

Xµ

Bµ

 = R


Yµ

Y ′µ

Y ′′µ

 , (2.1.14)

our covariant derivative is brought into the form

Dµ = ∂µ − iYµ (−Sθg′1QIR + CθSψg
′
4QL + CθCψg

′
3QB)

− iY ′µ [CθSφg
′
1QIR + (CφCψ + SθSφSψ) g′4QL + (CψSθSφ − CφSψ)g′3QB]

− iY ′′µ [CθCφg
′
1QIR + (−CψSφ + CφSθSψ) g′4QL + (CφCψSθ + SφSψ) g′3QB]

+ . . . (2.1.15)

where the . . . include gauge bosons of the non-abelian groups. By using an orthogonal matrix

R, we can find relations for the charges for the particles in the new basis.

To illustrate this point, consider the situation of a collection of U(1) gauge bosons Xn and

then perform a rotation on them. We can write them in a new basis Ym

Dµ = ∂µ − i
∑
n

gnQnXn + . . . ,

= ∂µ − i
∑
nm

gnQnRmnYm + . . . = ∂µ − i
∑
m

g′mQ
′
mYm, (2.1.16)

where we take Xn =
∑

mRmnYm. This allows us to write a relation among the charges and

couplings of each basis as

g′mQ
′
m =

∑
n

gnQnRnm. (2.1.17)

We are motivated to enforce that Q′1 =
∑

n cnQn (Q′1 is chosen as an example and has no

significance as opposed to Q′2 or any other charge) so that the rotated basis couples to some

specifically chosen charge and where cn are real numbers. Then, for example. the coupling to

the 1st gauge boson becomes

g′1Q
′
1 = g′1

∑
n

cnQn =
∑
n

gnQnRn1. (2.1.18)

We now promote Qn to vectors Qn whose components (Qn)p denote the charge Qn for the pth
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particle. In standard form this vector is

Qn =


Qn,1

Qn,2

...

Qn,p


, (2.1.19)

where again, for clarification, Qn,1 is the Qn charge of particle 1 and so on. If we ask that the

Qn vectors are orthogonal, then we can deduce that

g′1
∑

n cnQn ·Qm =
∑

n gnQn ·QmRn1 → g′1cm = gmRm1,

Rm1 = g′1cm/gm.
(2.1.20)

With this result, and using the orthogonality of R we arrive at our final result,∑
m

(Rm1)2 = 1→ 1

g2
1

−
∑
m

(
cm
gm

)2

= 0. (2.1.21)

This orthogonality relation of equation (2.1.21) was shown to be true to the one loop order in

ref [88]. When we apply this result to the 4 brane model we have

1

g2
Y

−
∑
m

(
cm
g′m

)2

= 0. (2.1.22)

We then make the identification of the hypercharge of the SM as

QY = c1QIR + c3QB + c4QL, (2.1.23)

where c1 = 1/2, c3 = 1/6, c4 = −1/2 and identify B = QB/3 and L = QL (baryon number

and lepton number respectively). The ci are chosen such that the charges are, baryon number,

lepton number, and a combination of hypercharge and baryon number minus lepton number.

The specific relations for the charges are give as

QB = 3B; QL = L; QIR = 2QY − (B − L) . (2.1.24)

Thus in this basis we have gauged baryon number B and lepton number L. This, however,

presents a problem as gauged baryon number and lepton number are anomalous charges in

gauge theories. Conversely the last charge, QIR , is a combination of QY and B − L which

is non-anomalous. The anomalies of B and L are solved by associating the bosons with a

Stückleberg [90] mass, which will be discussed in the next subsection.
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Before addressing the anomalies, we consider that the charge coupling to the Yµ gauge

boson is the hypercharge, which then fixes two Euler angles θ and ψ of the rotation via

c1gY = −g′1 sin(θ), c4gY = g′4 cos(θ) sin(ψ). (2.1.25)

Next we demand that Y ′′µ couples to a linear combination of anomaly-free IR and B − L, that

is we require the terms proportional to B and L must be equal so that they form a charge

proportional to B − L. This can be accomplished by fixing the Euler angle φ as

tanφ = − sin θ
3g′3 cosψ + g′4 sinψ

3g′3 sinψ − g′4 cosψ
. (2.1.26)

After fixing the angles, we have two non-anomalous gauge bosons Yµ and Y ′′µ , along with one

anomalous Y ′µ gauge boson. We must rid ourselves of this anomaly in order to consider the

theory self consistent.

2.1.2 Getting Rid of the Anomaly

We can rid ourselves of the anomaly associated with Y ′µ by canceling it using the 4D ver-

sion [91, 92, 93, 94, 95] of the Green-Schwarz mechanism [96]. By using the Green-Schwarz

mechanism, Y ′µ will acquire a mass on the order of the string scale Ms.

We use the underlying string theory to help us because in the spectrum of the closed strings

there is an anti-symmetric rank 2 tensor field, the Kalb-Ramond field Bµν , from which we can

construct a gauge invariant interaction with an anomalous U(1) gauge field that we will call Cµ

in the example below. The gauge invariant Lagrangian with the Kalb-Ramond field is

L = − 1

12
HµνρHµνρ −

1

4
FµνF

µν +
c

4
εµνρσBµνFρσ, (2.1.27)

where

Hµνρ = ∂µBνρ + ∂ρBµν + ∂νBρµ (2.1.28)

is the field strength of Bµν and c is some arbitrary constant. The anomalies associated with Cµ

can be canceled by the proper choice of c, but this ends up giving mass to the gauge boson;

this is the Green-Schwarz mechanism. We will re-write the Lagrangian so that the mass of the

gauge boson is apparent by using

c

4
εµνρσBµνFρσ =

c

2
εµνρσBµν∂ρCσ (2.1.29)
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and integration by parts (remember this is part of an action and thus integrated over) of the last

term of (2.1.27), which leads us to

c

4
εµνρσBµνFρσ = − c

2
εµνρσ (∂ρBµν)Cσ = − c

6
εµνρσHρµνCσ. (2.1.30)

We also make use of the Bianchi identity, εµνρσ∂µHνρσ = 0. Adding this term to the Lagrangian

doesn’t change anything because it must be zero; we enforce this by adding a Lagrange multi-

plier field η to the Lagrangian

L = − 1

12
HµνρHµνρ −

1

4
FµνF

µν − c

6
εµνρσHρµνCσ −

c

6
ηεµνρσ∂µHνρσ. (2.1.31)

Again integration by parts on the final term of (2.1.31) allows us to solve the equations of

motion for Hµνρ in the form

Hµνρ = −cεµνρσ (Cσ + ∂ση) . (2.1.32)

Inserting this solution back into the Lagrangian we arrive at the effective theory for the gauge

field Cµ, which is

L = −1

4
FµνF

µν − c2

2
(Cσ + ∂ση)2 . (2.1.33)

An appropriate choice of gauge for Cσ can “eat” the additional η field and thus Cµ acquires a

mass. Through this mechanism we give mass to the Y ′µ gauge boson of the 4 brane model, of

the order of Ms, and we will eliminate the anomalies associated with it. When the Higgs fields

acquire non-zero vevs will generate additional mass terms for Y ′µ, which will formally introduce

mixing with the other gauge bosons, but these will be of order (TeV/Ms)
2. We neglect such

effects and identify Y ′µ ≈ Z ′µ.

2.1.3 Identifying the SM and Extension

With the anomaly of Y ′µ removed, we return to the covariant derivative in the basis of Yµ, Y ′µ, Y
′′
µ

and identify the photon Aµ and weak force mediators W+
µ ,W

−
µ , Z

0
µ by performing a Weinberg

transformation on this basis of the form
Aµ

Z0
µ

W+
µ

W−
µ


=


CθW SθW 0 0

−SθW CθW 0 0

0 0 1/
√

2 1/
√

2

0 0 1/
√

2 −i/
√

2




Yµ

W 3
µ

W 1
µ

W 2
µ


; (2.1.34)
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this transformation then puts the covariant derivative in the form of

Dµ = ∂µ −
i√
2
g2 σ

−W+
µ −

i√
2
g2 σ

+W−
µ

− ig2 cos θW
(
σ3/2−QY tan2 θW

)
Z0
µ

− ig2 sin θW
(
σ3/2 +QY

)
Aµ − igY ′QY ′Z

′
µ − igY ′′QY ′′Y

′′
µ , (2.1.35)

with σ± = (σ1 ± iσ2) /2 , and gY /g2 = tan θW . From (2.1.15) and (2.1.35) we find

QYH = H/2 ,

gY ′QY ′H = (g′1CθSφ)H ,

gY ′′QY ′′H = (g′1CθCφ)H ,

QYH
′′ = 0 ,

gY ′QY ′H
′′ = −[g′1CθSφ + g′4(CφCψ + SθSφSψ)]H ′′ ,

gY ′′QY ′′H
′′ = −[g′1CθCφ + g′4(CφSθSψ − CψSφ)]H ′′ . (2.1.36)

We turn now to exploring the masses of the gauge bosons. Expanding the Higgs fields about

their respective vevs, the Higgs kinetic terms of equation (2.1.10) together with the Green-

Schwarz mass term, which is 1
2
M ′2Z ′µZ

′µ, gives

B =
1

2
[D†µ (0 v)]

Dµ

0

v

+
1

2
(Dµv

′′)†(Dµv′′) +
1

2
M ′2Z ′µZ

′µ . (2.1.37)

Expanding equation (2.1.37) gives

B =
(g2 v)2

4
W+
µ W

−µ +
(g2v)2

8 cos2(θW )
Z0
µZ

µ
0

− v2

2 cos(θW )
g′1g2 Cθ

(
SφZ

′
µ + CφY

′′
µ

)
Zµ

0

+
1

2
(g′1v Cθ)

2
(
SφZ

′
µ + CφY

′′
µ

)
(SφZ

′µ + CφY
′′µ) +

1

2
M ′2Z ′µZ

′µ

+
1

2
v′′

2 {
g′1Cθ(Sφ Z

′
µ + Cφ Y

′′
µ ) + g′4

[
(CφCψ + SθSφSψ)Z ′µ

+ (SψSθCφ − CψSφ) Y ′′µ
]}2

.

' (g2 v)2

4
W+
µ W

−µ +
(g2v)2

8 cos2(θW )
Z0
µZ

µ
0 −

v2

2 cos(θW )
g′1g2 CθCφY

′′
µ Z

µ
0

+
1

2
(g′1v CθCφ)2Y ′′µ Y

′′µ +
1

2
v′′

2
(g′1CθCφ + g′4 (SψSθCφ − CψSφ))

2
Y ′′µ Y

′′µ

+ . . . (2.1.38)
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where the omitted terms only contain the Z ′ couplings, which if you recall we ignore since they

will be significantly smaller than the mass term provided from the Green-Schwarz mechanism.

By inspection of (2.1.38) we can see the W± masses are given by usual tree level formula, and

the mass of the Z0 particle associated with the SM is given by MZ0 = g2v/(2 cos(θW )) before

mixing.

Now we use the relation g′1Sθ = g′4CθSψ from equation (2.1.25) to conveniently rewrite

(2.1.38) as

B ' (g2 v)2

4
W+
µ W

−µ +
(g2v)2

8 cos2(θW )
Z0
µZ

µ
0 −

v2

2 cos(θW )
g′1g2 CθCφY

′′
µ Z

µ
0

+
(g′1v

′′)2

2

((
Cφ
Cθ
− CψSφSθ

CθSψ

)2

+
( v
v′′

)2

C2
θC

2
ψ

)
Y ′′µ Y

′′µ + . . . (2.1.39)

' 1

4
(g2v)2W+

µ W
−µ +

(
Z0
µ Y ′′µ

)
·M ·

 Zµ
0

Y ′′µ

+ . . . , (2.1.40)

where M is a non-diagonal mass matrix. To identify the masses of the system we need to make

another change of basis such that M becomes diagonal. In doing so linear combinations of

Y ′′µ and Z0
µ become the massive bosons we observe in experiment. However, if we make the

assumption that v′′ � v, then the mass matrix is automatically diagonalized into the SM plus

an additional massive gauge boson of the scale v′′, the equation (2.1.40) becomes

B ' (g2 v)2

4
W+
µ W

−µ +
(g2v)2

8 cos2(θW )
Z0
µZ

µ
0

+
(g′1v

′′)2

2

(
CφC

−1
θ − CψS−1

ψ SφTθ
)2
Y ′′µ Y

′′µ + O
(( v

v′′

)2
)
. (2.1.41)

We can see we that we preserve the SM results of the ratio of MZ0 to the mass of MW . Further-

more we make the identification that Z ′′ ' Y ′′ + small corrections.

Finally, we must check our assumption of orthogonality of charges. Table 1 shows the

charges QB, QL, and QIR are mutually orthogonal in the fermion space, i.e.

∑
f

(Qi)f (Qj)f = 0 , (2.1.42)

for i 6= j. The orthogonality relation will be satisfied to one loop [88] for the fermions. How-

ever, the charges assigned toH ′′ will violate the orthogonality condition. The non-orthogonality

of H ′′ is only a minor problem, as contributions from H ′′ to the running of g′1 are at the 0.9%
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level from the string scale to the TeV scale, and at the level of 0.3% for the running of g′4. These

are of the same order as the two loop contributions from the fermion sector, so we may ignore

the nonorthogonality introduced by H ′′ in the context of one loop considerations.

In summary, we have constructed a model that extends the SM by using concepts intro-

duced from string theory; by considering the symmetries of the underlying string theory, we

constructed an effective field theory that has all the features of the SM plus two additional U(1)

gauge bosons whose masses are at the string scale and at the scale of an additional Higgs field

vev. With these additional bosons, Lepton and Baryon number become gauged conservation

laws. Because of the addition of two U(1) gauge bosons while still retaining the SM we name

this model the SM++, and in the next section we look for potential signals from the SM++

model in LHC data.

2.1.4 The LHC Era

At the time of writing the LHC is the largest circular proton-proton collider ever constructed.

With a circumference of 27 km, and with a design collision energy of 14 TeV, it will be the

highest energy collider to date once full collision energy is achieved. Science runs at the LHC,

which is located in the Geneva on the Swiss-French boarder, commenced during the years 2011

and 2012. To compare the model of the SM++, we must first understand what is observed

at the LHC experiments. One concept key to new physics discoveries is the concept of beam

luminosity. The beam luminosity indicates that the number of particles crossing a unit of area

per unit time may or (more likely) may not collide with the intersecting beam at the interaction

points (centered around the various detectors that form the LHC). The number of a certain type

of events the detectors have are capable of detecting is given by the formula

Nevents = σ

∫
LI(t

′)dt′, (2.1.43)

where σ is the cross section of the process of interest and
∫
LI(t

′)dt′ is the integrated luminosity,

which is typically given in units of inverse barns, where 1 bn = 10−28 m2 = 102 fm2. The

design instantaneous luminosity of the LHC is LI(t) = 1034 cm−2s−1 = 10−5 fb−1s−1 [97]

which would give an annual integrated luminosity of 315 fb−1 if the LHC was to run 24 hours

a day, 365 days a year however, it does not and cannot.
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Detection of new physics is (like all scientific measurement) a question of statistics; the

more events we observe of a rare process will make smaller the standard deviation of the null

hypothesis (recall from the mean value theorem the standard deviation goes like 1/
√
N , with

N as the number of observations) and thus any deviation above 5 standard deviations of the

null hypotheses is the generally accepted criteria for discovery. So a larger luminosity means

better possible detection of new physics. The data we will use to compare the SM++ was

taken during the spring of 2012 with integrated luminosities varying from 3.6 ± 0.2 fb−1 to

4.1 ± 0.2 fb−1 [98] [99]. During this time the LHC was running at collision energies of
√
s =

8 TeV, the highest collision energies ever produced in a lab. The s in the last equation is the

common Lorentz invariant term known as a Mandelstam variable. Its value is given in the

center of mass frame as

s = (k+ p)2 = m2
1 +m2

2 + 2

(√
p2 +m2

1

√
k2 +m2

2 + p2

)
= (E1 +E2)2 = E2

c.m., (2.1.44)

with k, p the incoming particle 4-momentum. Expressing collision energies is typically repre-

sented by
√
s = Ec.m. with Ec.m. as the center of mass total energy.

When searching for new particles, a common technique is looking for resonances or peaks

in the cross section as a function of invariant mass. The invariant mass method is a technique

that takes advantage of the conservation of momentum/energy that is enforced by Lorentz in-

variance. Searches can be done with multiple products in the decay of the new physics particle,

however we will focus on only dilepton and dijet processes. We can see the usefulness of this

method by imagining in the collision process a massive particle is produced; with a mass of M

this particle then decays and produces two new particles of mass m′1 and m′2. The conservation

of energy requires √
p2 +M2 =

√
p
′2
1 +m

′2
1 +

√
p
′2
2 +m

′2
2 , (2.1.45)

where p is the initial momentum of the particle of mass M . These particles then decay, and

may decay again, and so on, and the conservation of energy must then read

√
p2 +M2 =

∑
products

Ei, (2.1.46)
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where we are summing over all the final products. We also can use the conservation of momen-

tum to enforce

p =
∑

products

pi, (2.1.47)

where p is the 3-momentum of the decaying particle of mass M and pi the 3-momentum of the

decay products. Because of this equality, equation (2.1.46) can be expressed as

M2 =

( ∑
products

Ei

)2

−
( ∑

products

pi

)2

. (2.1.48)

The value of M2 is called the invariant mass or rest mass of the particle that has undergone the

decay process. In the analysis we will use to set limits on the SM++, we use dilepton (detected

e+e−, or µ+µ− final states) and dijet (two nearly back-to-back jets (in transverse momentum) of

multiple hadrons having nearly identical 3-momentums, can be resolved to two seed partons at

the interaction point (IP)) analyses preformed by the CMS and ATLAS experiments [98] [99].

Further understanding of the experimental apparatus to compare with theory is required to

understand the analysis. The two main detectors for generalized particle physics at the LHC are

the Compact Muon Solenoid (CMS) and the A Toroidal LHC Apparatus (ATLAS) detectors.

Both have a similar design, as both are barrel calorimeter detectors. As seen in Fig. 19 the CMS

consists of several layers of detector systems. The inner-most detectors are the silicon strip and

pixel detectors, which are designed to track the charged debris from collision of two partons of

the colliding protons. These detectors help deduce the particles’ identity and momentum, as the

curvature of the track is a measurement of the particles’ momentum in the magnetic field of the

detector. After the inner-most tracker, the electromagnetic calorimeter (ECAL) is layered in a

cylindrical fashion around the IP. This consists of 76,000 lead-tungstate scintillating crystals.

The ECAL is designed to use the pair productions from near approaches of photons or of e+e−

to the nucleus of the individual atoms of the crystal structure creating photonic showers, which

are then read out by photo-multiplier tubes (PMTs) [101]. Hadrons, however, being much

more massive, move through this region hardly impeded and then interact with the next layer

the brass scintillator hadronic calorimeter (HCAL). This region does essentially the same as the

ECAL but has the power to stop hardons. Sandwiched between the superconducting magnet

that produces an axial magnetic field of 3.8 T for the CMS is the muon detection system. The

muon system consists of several types of detectors, such as drift tubes and capacitive plates
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Figure 19 : The CMS detector at the LHC cut-away shows the layering of the detector systems in the
barrel calorimeter geometry. Figure taken from [100].

(these measure ionization of the internal gas like a series of Geiger counters); the muon system

is the final system as the muon is so massive compared to other elementary particles (but not

so massive that it decays before being detected) that it plows through the whole detector and is

only finally detected when interacting in the iron yoke region of the detector (the iron yoke is

the manifold the detector is built upon and used to direct the magnetic field in the CMS).

For experimental analysis a common variable, pseudo-rapidity, is used rather than the scat-

tering angle, as it makes algorithms for jet reconstructions easier. Pseudo-rapidity is given by

the equation

η = − ln

(
tan

(
θ

2

))
, (2.1.49)

with θ as the scattering angle against the beam direction (commonly taken as the z-direction).

The CMS covers a region of rapidity from 0 to 2.5 as seen in Fig. 20. To find new particles we

must, as in all experiments, battle against noise of the detector. Besides detector uncertainty,

which ranges from trigger rates (recording proper events), to offline efficiencies (radiation can

damage detectors, taking them offline), to detector acceptance (the efficiency of the detector

to actually detect a particle when it is there). We have an enormous amount of background
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Figure 20 : The CMS detector pseudo-rapidity coverage available from the detector layout. TEC (the end
caps), TOB (the outer barrel), TIB/D (the inner barrel/detector). Figure taken from [102].

events that come from well understood physics steaming from glancing interactions or other

high energy interactions that have already been understood. Many of these unwanted processes

are discarded by the detector itself through using a two-layer trigger system. Fast electronics

make determinations if certain events are worth recording, and make the data coming from the

detector more manageable to record. One way to cut down on noise events is to use selection

cuts. Selection cuts correspond to only analyzing dijet, dilepton (in our case) events that cor-

respond to having a transverse momentum (transverse to the beam direction) pT greater than a

certain value. This helps cut down on noise, as particles with high transverse momentum nec-

essarily underwent hard collision processes rather than glancing collisions. Even with selection

cuts, many processes of QCD interactions make it into the data. To understand this background

noise a Monte Carlo (MC) simulation of QCD processes and the detection system is done in the

invariant mass window of interest via the program PYTHIA for a certain value of integrated

luminosity, as was done by the CMS Collaboration in references [98] and [103]. The MC pro-

gram also determines the level of standard deviations given the integrated luminosity in order

to determine if new physics is or is not found. Comparison of the MC generated background,

experiment, and theory allows us to set limits on the SM++ model.



63
2.1.5 LHC Phenomenology of SM++

The LHC allows us the possibility to detect the extra gauge boson Z ′′ if it has a mass the scale

of several TeV. The SM++ free parameters include three new coupling strengths g′1, g
′
3, and g′4,

which are encoded into three Euler angles (θ, φ, ψ) of the U(1) gauge field rotation.

The baryon number coupling g′3 is fixed to be g3(Ms)/
√

6 where g3(Ms) is the SUc(3)

coupling from the SM at the scale of UB(3) unification which restores the underlying string

theoretical symmetry at the string scale. Therefore g′3 is determined at all energies through the

renormalization group (RG) running of the UB(1) gauge field and is not a free parameter. We

take the string scale to be Ms = 1014 GeV for running down the g′3 coupling to the TeV region

that is accessible to the LHC; we take special note that we are ignoring mass threshold effects

of stringy states, which yields g′3(Ms) = 0.231. Varying the string scale does not significantly

affect the running of the g′3 within the LHC range.

To ensure perturbativity of g′4 between the TeV scale and the string scale so that the renor-

malization group one loop equations are valid requires that g′4(Ms) ≤ 1 (in fact we would like

it to be much less than 1, but this is less restrictive). Enforcing this limit in equation (2.1.22)

requires that g′1(Ms) > 0.4845 by knowing that the electromagnetic coupling at the mass of the

Z0 scale is αEM(MZ0) = 1/127.9 [1], we can determine gY (MZ0) via

αEM =
e2

4π
=
g2

2

4π
sin2(θW ),

gY (MZ0) = g2(MZ0) tan(θW ) =

√
4π αEM(MZ0)

cos(θW )
,

gY (MZ0 = 91 GeV) ≈ 0.357,

gY (Ms) ≈ 0.429. (2.1.50)

In the last line, the one loop RG equations for UY (1) are used to determine gY (Ms), which

then allows us the limit previously mentioned. Similarly we take g′1(Ms) ≤ 1 in order to

ensure perturbativity at the string scale and all scales below (this is ensured because it is a

U(1) coupling). Because of the constraint of (2.1.22) and the requirement of the string scale

restored symmetry of UB(3), only two free parameters are allowed the string scale Ms, which

we choose to be Ms = 1014 GeV and one coupling; we take g′1 to be free and it must lie in the

range 0.4845 < g′1(Ms) < 1.0.
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2.1.6 Branching Ratios of Z ′ and Z ′′

Here we calculate the branching ratios (B) of various decays types for the U(1) gauge bosons

of the SM++. Branching ratios are defined by

B(Z → l) =
ΓZ→l∑
k ΓZ→k

, (2.1.51)

where ΓZ→l is the decay width of particle Z into type l. The first case we consider is setting

g′1(Ms) ≈ 1. This leads to ψ(Ms) = −1.245, θ(Ms) = −0.217, φ(Ms) = −0.0006, g′4(Ms) =

0.232, and g′3(Ms) = 0.231. Substituting these values into (2.1.15), we find the vector bosons

(Y, Z ′µ, Z
′′
µ) couple to currents

JY =
(
2.1× 10−1

)
QIR +

(
2.1× 10−1

)
(B − L)

JZ′ =
(
5.8× 10−4

)
QIR +

(
6.6× 10−1

)
B +

(
7.4× 10−2

)
L

JZ′′ =
(
9.8× 10−1

)
QIR −

(
4.7× 10−2

)
(B − L) , (2.1.52)

at the string scale. To find the couplings down at the TeV region we must use U(1) running

equations given by
1

αY (Q)
=

1

αY (Ms)
− bY

2π
ln(Q/Ms) , (2.1.53)

1

αi(Q)
=

1

αi(Ms)
− bi

2π
ln(Q/Ms) , (2.1.54)

where

bi =
2

3

∑
f

Q2
i,f +

1

3

∑
s

Q2
i,s, (2.1.55)

with f and s indicating contribution from fermion and scalar loops, respectively [88]. This

result can be found in many standard texts, such as Peskin and Schroeder [30]. By setting

the exchange boson energy scale appropriate for current (at the time of writing) LHC data to

Q = 4 TeV, we obtain from (2.1.54) the couplings: g′1 = 0.406, g′3 = 0.196, g′4 = 0.218,

θ = −0.466, ψ = −1.215, and φ = −0.0003. In terms of currents, this is

JY =
(
1.8× 10−1

)
QIR +

(
1.8× 10−1

)
(B − L)

JZ′ =
(
1.1× 10−4

)
QIR +

(
5.5× 10−1

)
B +

(
7.6× 10−2

)
L

JZ′′ =
(
3.6× 10−1

)
QIR −

(
9.2× 10−2

)
(B − L) , (2.1.56)
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where we have assumed that H ′′ has developed its vev v′′ at this energy. Decay rates for a

particle Z ′′ are calculated as

dΓZ′′→k′p′ =
|M|2
2MZ′′

d3k′

(2π)32Ek′

d3p′

(2π)32Ep′
(2π)4δ(4)(MZ′′ − k′ − p′),

|M|2 ' |〈k′, p′|T{JµZ′′Z ′′µ}|MZ′′〉|2 ∝ J2
Z′′ . (2.1.57)

The semi equals is due to the fact that the conservation of 4 momentum is already enforced

in the differential decay width formula. Due to the vector nature of these U(1) couplings,

each decay channel has a common kinematic term (assuming each decay product is highly

relativistic so that we can ignore their individual masses), and the end results only depend on

the coupling strengths as indicated in the currents. Summing over fermionic decay channels

done in a generalized trace operator. We have Tr [QIR B] = Tr [QIRL] = Tr [BL] = 0, which

give the Z ′ and Z ′′ total decay widths as

ΓZ′ = ΓZ′→QIR + ΓZ′→B + ΓZ′→L,

∝
(
1.1× 10−4

)2 Tr[Q2
IR

] +
(
5.5× 10−1

)2 Tr[B2] +
(
7.6× 10−2

)2 Tr[L2]

∝ 9.7× 10−8 + 4.0× 10−1 + 2.3× 10−2, (2.1.58)

ΓZ′′ = ΓZ′′→QIR + ΓZ′′→B−L,

∝ (3.6× 10−1)2 Tr[Q2
IR

] + (9.2× 10−2)2Tr
[
(B − L)2

]
∝ 1.0 + 4.5× 10−2 . (2.1.59)

We can determine generalized branching ratios with this information. We generalize the branch-

ing ratios into a sum over particles having a non-zero charge specified below, such as summing

over all decay products with non-zero baryon number B would result in a branching ratio for,

say, the Z ′ particle into these particles as Z ′ → B : 0.946. We present the results for the

remaining branching ratios as

B Z ′ → B : B Z ′ → L : B Z ′′ → Q1R : B Z ′′ → B − L
0.946 : 0.054 : 0.959 : 0.041 .

(2.1.60)

Though not relevant for LHC phenomenology due to the string scale mass, we see that Z ′ is

very nearly all in B, with B: Z ′ → B = 0.946 and B: Z ′ → L = 0.054. Of course, there can

be variation in decay channels particle by particle, as can be seen by the different individual
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Figure 21 : Branching ratios of Z ′ (left) and Z ′′ (right) as a function of g′1(Ms). The solid lines denote
the branching into B (left) and IR (right). The dashed lines denote the branching into L (left) and B-L
(right).

charges in Table 1. The physical couplings of the Z ′′ to fermionic fields given in Table 1 are

consistent with the bounds presented in [104] from a variety of experimental constraints.

Now, we duplicate the procedure for g′1(Ms) = 0.4845, for which we obtain

B Z ′ → B : B Z ′ → L : B Z ′′ → Q1R : B Z ′′ → B − L
0.066 : 0.934 : 0.039 : 0.961 .

(2.1.61)

The chiral couplings of Z ′ and Z ′′ gauge bosons decay mostly into L and B − L, respectively.

The individual charges in this case are given in Table 3. Figure 21 displays the branching ratios

for differing values of g′1(Ms) that are allowed by perturbativity constraints.

2.1.7 Dijet and Dilepton LHC Z ′′ Phenomenology

Using a data set of pp collisions at
√
s = 8 TeV, with an integrated luminosity of 4.0 fb−1,

the CMS Collaboration has searched for narrow resonances in the dijet invariant mass spec-

trum [98]. Each event in the search is required to have its two highest pT jets with (pseudo-

rapidity) |ηj| < 2.5. The acceptance of selection requirements is reported to be A ≈ 0.6.

The invariant mass spectra fit the SM expectations and thus lower mass limits can be in-

ferred from the cross section times branching ratio for Z ′′ into two jets. Similar lower mass

limits have been obtained by the ATLAS Collaboration using 5.8 fb−1 of data collected at
√
s = 8 TeV [99]. These results, which are displayed in Fig. 22, extend previous exclusion

limits from runs at
√
s = 7 TeV done in LHC7 [85, 86, 105, 106, 107].

The ATLAS Collaboration has also searched for narrow resonances in the invariant mass
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spectrum of dimuon and dielectron final states at

√
s = 7 TeV with an integrated luminosity

of 4.9 fb−1 and 5.0 fb−1, respectively [108]. The spectra fit with SM expectations and thus

upper limits on the cross section times branching ratio for Z ′′ into lepton pairs can be set. More

recently, the CMS Collaboration updated the LHC7 results using 4.1 fb−1 of data collected at
√
s = 8 TeV [103]. The combined upper limits from LHC7 and LHC8 are shown in Fig. 23.

Previous dilepton searches by the LHC experiments have been reported in [109, 110].

To set upper limits on the SM++ model we need to compute the dijet and dilepton cross

sections along with the relevant branching ratios. The Lagrangian term for f̄γµfZ ′′µ coupling

can be expressed in the traditional form of electro-weak interactions as

L =
∑
f

(
(gY ′′QY ′′)f iL f̄

i
Lγ

µf iL + (gY ′′QY ′′)f iR f̄
i
Rγ

µf iR

)
Z ′′µ,

=
1

2

√
g2
Y + g2

2

∑
f

(
εf iL f̄

i
Lγ

µf iL + εf iR f̄
i
Rγ

µf iR

)
Z ′′µ,

= 21/4
√
GFMZ0

∑
f

(
εf iL f̄

i
Lγ

µf iL + εf iR f̄
i
Rγ

µf iR

)
Z ′′µ, (2.1.62)

where f iL (R) are fermion chiral fields and εf iL,f iR = vq ± aq, with vq and aq the vector and axial

couplings, respectively, and GF is the Fermi coupling constant taken at the 4 TeV scale via

GF =
1

4
√

2

g2
2

M2
Z0 cos2 θW

=
1

4
√

2

g2
Y + g2

2

M2
Z0

. (2.1.63)

In order to compare LHC experimental searches in dilepton and dijet events we need to con-

sider the production cross section in the narrow Z ′′ width approximation of the Breit-Wigner

distribution,

σ(s) ∝ Γ2

(
√
s−MZ′′)2 + Γ2/4

→ 2π Γδ(
√
s−MZ′′), (2.1.64)

in the limit that Γ�MZ′′ . The cross-section for two quarks to Z ′′ is given by

σ̂(qq̄ → Z ′′) = 2π
K

3

GF M
2
Z√

2

[
v2
q (φ, g

′
1) + a2

q(φ, g
′
1)
]
δ
(
ŝ−M2

Z′′

)
, (2.1.65)

where the K-factor represents enhancements from higher order QCD processes estimated to be

K ' 1.3 [111]. We include hats (ŝ, σ̂) to indicate that these are the values of the partons. To

understand what the detector observes we must integrate this result against the possible internal

momentum configurations of the proton known as parton distribution functions (PDF). These

cannot be solved by perturbation theory as they are described by QCD in the non-perturbative
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regime. After folding (integration over) σ̂ with the CTEQ6 parton distribution functions [112],

we can determine the resonant production cross section for σ(pp → Z ′′). In Figs. 22 and

23 we compare the predicted σ(pp → Z ′′) × B(Z ′′ → jj) and σ(pp → Z ′′) × B(Z ′′ → ``)

production rates with 95% CL upper limits as reported by the CMS and ATLAS Collaborations.

We conclude that if Z ′′ is mostly IR, then the predicted production rates for MZ′′ ≈ 4 TeV at
√
s = 8 TeV lie at the current dijet limits. On the other hand, if Z ′′ is mostly B − L then the

lower limit on the boson mass, MZ′′ ≥ 3 TeV, is determined primarily from dilepton searches.
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Figure 22 : Comparison of the (pre-selection cut) total cross section for the production of pp→ Z ′′ → jj

with the 95% CL upper limits on the production of a gauge boson decaying into two jets as reported
by the CMS and ATLAS Collaborations (corrected by acceptance). The case in which Z ′′ is mostly
diagonal in IR is shown in the left panel and the case in which it is mostly B − L in the right panel.

Figure 23 : Comparison of the (pre-selection cut) total cross section for the production of pp→ Z ′′ → ``

with the 95% CL upper limits on the production of a gauge boson decaying into two leptons, as reported
by the ATLAS and CMS Collaborations. The case in which Z ′′ is mostly diagonal in IR is shown in the
left panel and the case in which it is mostly B − L in the right panel.
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Table 2 : Chiral couplings of Y , Z ′, and Z ′′ gauge bosons. All fields in a given set have common
gY ′QY ′ , gY ′′QY ′′ couplings. We have taken Z ′ to be mostly B and and Z ′′ to be mostly IR.

Fields gYQY gY ′QY ′ gY ′′QY ′′

uR 0.2434 0.1836 0.3321

dR −0.1214 0.1838 −0.3933

EL −0.1826 0.0759 0.0918

eR −0.3650 0.0760 −0.2709

QL 0.0610 0.1837 −0.0306

nR 0.0000 0.0758 0.4545

H 0.1824 0.0000 0.3627

H ′′ 0.0000 −0.0758 −0.4545

Table 3 : Chiral couplings of Y , Z ′, and Z ′′ gauge bosons. All fields in a given set have common
gY ′QY ′ , , gY ′′QY ′′ couplings. We have taken Z ′ to be mostly L and and Z ′′ to be mostly B − L.

Fields gYQY gY ′QY ′ gY ′′QY ′′

uR 0.2435 0.1101 −0.0763

dR −0.1217 0.1101 −0.2242

EL −0.1825 0.7165 0.4509

eR −0.3651 0.7165 0.3769

QL 0.0609 0.1101 −0.1503

nR 0.0000 0.7165 0.5248

H 0.1826 −0.0000 0.0739

H ′′ −0.0000 −0.7165 −0.5248
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2.1.8 Future Detection Possibilities

For the discovery potential in the high mass region, the dijet channel is statistically a better dis-

criminator than lepton pairs. Therefore, we investigate at the parton level the LHC14 sensitivity

for a Z ′′ resonance (which we take as mostly IR) in the dijet invariant massM . After setting se-

lection cuts on the different jet rapidities, |y1|, |y2| ≤ 1 and transverse momenta p1,2
T > 50 GeV,

we calculate the differential cross section as

dσ̂ij→kl
dM2

=
|M|2ij→kl

2ŝ

d3k

(2π)32k0

d3l

(2π)32l0
(2π)4δ(4)(i+ j − k − l)δ(ŝ−M2). (2.1.66)

Following [81] we use the definitions l0 = l⊥ cosh y1, k0 = k⊥ cosh y2, and τ = ŝ/s, where

k⊥, l⊥ are the transverse momentum of the partons in the reaction, and we make a change of

variable into rapidities via the relation

d3k

2k0
=

1

2
d2k⊥dy2 = πk⊥dk⊥dy2. (2.1.67)

Furthermore we use y ≡ 1
2
(y1 − y2) and a common transverse momentum p⊥ defined via

p2 = ŝ = (k + l)2 ≈ 2k · l = 4p2
⊥ cosh 2y. This allows the expansion of the delta function

δ(ŝ−M2) into

δ(ŝ−M2) = δ(4p2
⊥ cosh2 y −M2) =

1

4 cosh2 y
δ

(
p2
⊥ −

M2

4 cosh2 y

)
. (2.1.68)

After changing the variable yet again to k⊥dk⊥l⊥dl⊥ → k⊥dk⊥p⊥dp⊥, we integrate out depen-

dence on the transverse momentum extracting from the over energy conservation delta function

the perpendicular part∫
d2k⊥d

2p⊥δ
(2)(k⊥ + p⊥)δ(p2

⊥ −M2/4 cosh2 y) = π. (2.1.69)

The parallel components of the momentum of the partons can be converted into limits on the

rapidities. We must now fold the result with the PDFs for pp collisions. In terms of these

variables, equation (2.1.66) folded with PDFs becomes

dσ(pp→ jj)

dM
=

1

2
Mτ

∫
dy1dy2

1

cosh2 y

∑
ijkl

fi(
√
τeY ,M)fj(

√
τe−Y ,M)

dσ̂ij→kl

dt̂
, (2.1.70)



72
where we used

|M|2ij→kl = 16πŝ2 dσ̂ij→lk

dt̂
. (2.1.71)

We can express the cross section per interval of M as

dσ

dM
= Mτ

∑
ijkl

[∫ 0

−Ymax

dY fi(xa, M) fj(xb, M)

∫ ymax+Y

−(ymax+Y )

dy
dσ̂ij→lk

dt̂

1

cosh2 y

+

∫ Ymax

0

dY fi(xa, M) fj(xb,M)

∫ ymax−Y

−(ymax−Y )

dy
dσ̂ij→kl

dt̂

1

cosh2 y

]
, (2.1.72)

where Y ≡ 1
2
(y1 + y2) . We use for f(x,M) the parton distribution functions of CTEQ6 [112];

we also have τ = M2/s, xa =
√
τeY , xb =

√
τe−Y . The Y integration range in Eq. (2.1.72) is

Ymax = min{ln(1/
√
τ), ymax}, which comes from requiring the fraction of the total momen-

tum of the parton to be less than one, xa, xb < 1, and the rapidity cuts ymin < |y1|, |y2| < ymax.

The kinematics of the scattering also provides the relation M = 2pT cosh y, which, when com-

bined with pT = M/2 sin θs = M/2
√

1− cos2 θs, yields cosh y = (1 − cos2 θs)
−1/2, where

θs is the center-of-mass scattering angle. Additionally, the Mandelstam invariants are given by

ŝ = M2, t̂ = −(M2/2) e−y/ cosh y, and û = −(M2/2) e+y/ cosh y.

The spin/color averaged square amplitude (for incoming quark/anti-quark pair qq̄ and out-

going quark/anti-quark pair q′q̄′) is given by

|M(qq̄
Z′′→ q′q̄′)|2 =

1

4

[
g2
Y ′′Q

2
Y ′′(qL) + g2

Y ′′Q
2
Y ′′(qR)

] [
g2
Y ′′Q

2
Y ′′(qL

′) + g2
Y ′′Q

2
Y ′′(qR

′)
]

×
[

2(u2 + t2)

(s−M2
Z′′)

2 + (ΓZ′′ MZ′′)2

]
, (2.1.73)

where gY ′′QY ′′(qL) and gY ′′QY ′′(qR) are the couplings of Z ′′ to quarks (note that we have not

summed over the flavors).

The decay width of Z ′′ → ff̄ is given by

Γ(Z ′′ → ff̄) =
GFM

2
Z

6π
√

2
NcMZ′′

√
1− 4x

[
v2
f (1 + 2x) + a2

f (1− 4x)
] (

1 +
αs
π

)
, (2.1.74)

where αs = αs(MZ′′) is the strong coupling constant at the scaleMZ′′ , x = m2
f/M

2
Z′′; vf , af are

the vector and axial couplings, and Nc = 3 or 1 if f is a quark or a lepton, respectively [113].

For our values of g′1 where Z ′′ is mostly IR, we obtain v2
u + a2

u = 0.396 and v2
d + a2

d = 0.554.

In Table 4 we calculate prospective signal-to-noise ratios for different possible MZ′′ masses

and integrated luminosity values for LHC14 data. The signal rate S is estimated in the invariant
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mass window [MZ′′ − 2Γ, MZ′′ + 2Γ] bin size, and is given as

S = σZ′′

∫
LI(t′)dt′, (2.1.75)

where S is the expected number of events to be observed in the invariant mass window based

on the SM++ cross section. To accommodate the minimal acceptance cuts on dijets from the

CMS and ATLAS proposals [114], an additional kinematic cut, |ymax| < 1.0, is included in

the calculation. The noise (N ) is the square root of the expected number of QCD background

events (Nbg) in the same dijet mass interval for the same integrated luminosity, coming from

SM processes. This gives the expected signal-to-noise ratio as

S
N =

σZ′′√
σbg

(∫
LI(t′)dt′

)1/2

, (2.1.76)

where σbg is the total background cross section into dijets in the invariant mass window being

probed from SM processes. We conclude that the LHC provides discovery potential for Z ′′

which is mostly IR for MZ′′ ≤ 5 TeV. The discovery potential of a Z ′′ that is mostly B − L is

controlled by the sensitivity of LHC14 to dilepton searches. For 300 fb−1, the projected LHC

sensitivity is again for masses MZ′′ ≤ 5 TeV [115].

Table 4 : Signal-to-Noise Ratio at LHC14 for Different Integrated Luminosities.

10 fb−1 100 fb−1 1000 fb−1

MZ′′ (TeV) S B S/N S B S/N S B S/N
4 39 579 1.62 391 5789 5.14 3910 57895 16.25
5 7 176 0.50 67 1759 1.60 670 17590 5.05
6 1 66 0.14 11 664 0.44 113 6646 1.39

2.2 Stability of Extended Higgs Mechanism

Now we turn to the stability of the SM++ model. For the symmetry-breaking Higgs mecha-

nism to work, we require that the potential of the SM++,

V ++ (H,H ′′) = µ2
1 |H|2 + µ2

2 |H ′′|2 + λ1 |H|4 + λ2 |H ′′|4 + λ3 |H|2 |H ′′|2 , (2.2.1)

has a non-zero real minimum for all values of the interaction energies. The values of the

parameters in quantum field theories change depending on the energies that the fields interact
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with. Luckily, renormalizable quantum field theories allow one to compute the values of the

parameters at any interaction energy (or at least tell you when the quantum field theory is no

longer an accurate description of the system), or else the theory couldn’t make any predictions.

We say that the parameters of the theory run with the interaction energy; the computation of

the parameters is addressed in the renormalization group equations.

2.2.1 The Renormalization Group

The renormalziation group (RG), in my opinion, can best be explained by example. Here we

will use quantum electro-dynamics (QED) as our toy model. In quantum electrodynamics we

have the U(1) gauge invariant Lagrangian

L = ψ̄ (iD · γ −m)ψ − 1

4
F 2 = ψ̄ (iγ · ∂ + eA · γ −m)ψ − 1

4
F 2 . (2.2.2)

From (2.2.2) we can compute scattering cross sections of fermions undergoing interactions

with the photon. At lowest order (known as tree level) we assume that the parameters in the

Lagrangian are those we measure at low energies, such as for the fermion being an electron,

where m = 0.511 MeV is the mass of the electron, e = 1.6× 10−19 C is the elementary charge

for the electron, ψ,A are the fields for the electron and photon, respectively. However, if we

want to compute observables to a higher order, then we require loops in our Feynman diagrams.

One such example for QED is the correction to the photon propagator shown in Fig. 24. These

Figure 24 : Higher order terms involving photons include loops of virtual pair production of fermions
particles circulating in the loop. This leads to a correction of the bare charge parameter of the Lagrangian
for QED.

loops present a problem as they are formally infinite. As stated in the introduction, we can

understand the infinities, by assuming the infinities arise because we extend the theory beyond

its region of validity to energy scales larger than when the theory is correct. We can prevent
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extending the theory beyond its reach, by introducing a cut-off scale denoted Λ. An example of

this can be done by computing the value of the diagram in Fig. 24, which gives

−e2

∫
d4l

(2π)4
Tr

[
γµ((k + l) · γ +m)γν(l · γ +m)

((k + l)2 −m2)(l2 −m2)

]
. (2.2.3)

We add the cut-off such that |l| ≤ Λ. However, the value of Λ cannot show up in experiment

and the result of the any calculation must be independent of the choice of Λ. This can only be

possible if the parameters appearing the Lagrangian are themselves functions of Λ. The Eq.

(2.2.2) can be put into the form

L = ψ̄(Λ) (iγ · ∂ + e(Λ)A(Λ) · γ −m(Λ))ψ(Λ)− 1

4
F (Λ)2 . (2.2.4)

Equation (2.2.4) is said to be the effective theory for energy scales < Λ. It is important to note

here that in practice, we will not literally take a cut-off in the computation of the integral (2.2.3)

as this creates issues for gauge invariance. We will, however, use a regularization scheme

known as dimensional regularization that re-parameterized the cut-off scale Λ into a variable ε,

which is related to the dimension in which we will calculate (2.2.3). It is still useful to discuss

the RG in terms of a cut-off as it is physically more meaningful. With the understanding of

(2.2.4) as an effective theory, we want to believe there is an overall field theory that describes

QED from an energy scale Λ =∞ and downward. To this end we assume there is a QED field

theory for Λ =∞ that takes the same form as the effective field theory and no extra terms (this

defines a renormalizable theory as the number of divergences at the effective theory level can

be absorbed into the already existing number of parameters or less; at that level, this ensures

that the number of terms of the Lagrangian at the Λ =∞ theory does not proliferate):

L = ψ̄0 (iγ · ∂ + e0A0 · γ −m0)ψ0 −
1

4
F 2

0 . (2.2.5)

The values of the fields and parameters are now written as their bare values, the values valid at

the highest energy scale that do not depend on Λ. We can find the values at the scale Λ 6= ∞
from the bare values by expressing the fields and parameters as

ψ0 = Z
1/2
ψ (Λ)ψ(Λ) ,

Aµ0 = Z
1/2
A (Λ)Aµ(Λ) ,

e0 = Ze(Λ)Z
−1/2
A (Λ)Z−1

ψ (Λ)Λεe(Λ) ,

m0 = Zm(Λ)Z−1
ψ (Λ)m(Λ) . (2.2.6)
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The Λε factor will be explained during explicit calculation of the running of the parameters.

It is related to the dimension in which we calculate the divergent integrals, such that as Λ →
∞, ε→ 0. With this we can write the true or bare Lagrangian as

L = iZψψ̄γ · ∂ψ + ZeΛ
εeA · (ψ̄γψ)− Zmmψ̄ψ −

ZA
4
F 2 , (2.2.7)

where the explicit dependence on Λ is no longer displayed on Zi, e, or m. It is easy to see,

but nontrivial to prove that for gauge symmetry to be valid at all scales, that Zψ = Ze. This is

known as the Ward Identity and the proof can be found in many quantum field theory texts; we

will simply assume gauge invariance is true for all scales. One other interesting note is that if

there was no interaction term eA · ψ̄γψ, we would have two separate and free field theories for

whichm(Λ) = m0 where the bare mass would take the physical mass of the particle. Therefore

since we are calculating using perturbation theory, we can assume that the divergences of the

integrals such as (2.2.3) can be expressed as a series of the coupling

Zi = 1 +
∞∑
n=1

ãn(e)Λn = 1 +
∞∑
n=1

an(e)

εn
. (2.2.8)

We will find it advantageous to take the logarithms of the bare values; for example, the bare

charge can be written as

log e0 = log(Z
−1/2
A Λεe) = log(Z

−1/2
A ) + ε log(Λ) + log(e)

=
∞∑
n=1

Gn(e)

εn
+ ε log(Λ) + log(e), (2.2.9)

with
∞∑
n=1

Gn(e)

εn
= log(Z

−1/2
A ). (2.2.10)

We see in Eq. (2.2.6) that the bare values do not depend on Λ, we take advantage of this fact

by taking derivatives with respect to log(Λ). It is advantageous to take the derivatives of the

logarithms of the bare values, as this separates the dependencies of the Zi, the result of which

is

0 =
d log e0

d log(Λ)
= ε+

1

e

de

d log(Λ)
+
∞∑
n=1

(
∂Gn

∂e

de

d log(Λ)

1

εn

)

0 =

(
1 + e

∞∑
n=1

∂Gn

∂e

1

εn

)
de

d log(Λ)
+ εe .

(2.2.11)
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We now assume that if the theory is renormalizable, then de/d log(Λ) must be finite in the limit

that ε→ 0 and we express this as

de

d log(Λ)
= −εe+ β(e) . (2.2.12)

Using (2.2.12) allows us to write Eq. (2.2.11) order by order in ε and enforce that the coefficient

of ε−n is zero so that Eq. (2.2.11) remains true when ε→ 0. This procedure gives the conditions

β(e) = e2∂G1

∂e

β
∂Gn

∂e
= eGn+1 . (2.2.13)

From this we can finally express

de

d log(Λ)
= β(e) = e2∂G1

∂e
. (2.2.14)

Similar expressions can be found for the other parameters of the theory as well. In the end, to

know the values of the parameters at different scales Λ, one must calculate the beta function

from the Zi functions. As a note, when it was said that Λ ∝ 1
ε
, it was in effect choosing a regu-

larization method of the divergent integrals known as dimensional regularization, which is the

basis of the MS (MS-bar) scheme [24]. Other schemes exist but all give the same experimental

values, as they must. Now we will see the RG equations in action.

2.2.2 Example Renormalization Group Use

We return to QED as our toy model, and we see from (2.2.9) that the requirement that gauge

invariance at all scales makes solving the β function for QED relativity simple to calculate. We

must calculate

log(Z
−1/2
A ) ≈ G1(e)

ε
. (2.2.15)

We accomplish this again by rewriting the Lagrangian (2.2.7), this time in terms of canonically

normalized fields as

L = i ψ̄γ · ∂ψ −mψ̄ψ − 1

4
F 2

+ iδψψ̄γ · ∂ψ − δmmψ̄ψ −
δA
4
F 2

+ ZeΛ
εeA · (ψ̄γψ) , (2.2.16)
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where δi = Zi − 1. The terms containing δi are known as counter terms, and can be viewed

as additional interactions. Let us now understand the origin of the Λε term. In 4 dimensional

QED, the elementary charge is unit-less in natural units. Generally renormalizable nontrivial

theories only contain dimensionless couplings [116]. Rather than enforcing a hard cut-off Λ,

we regularize the divergent integrals by using dimensional regularization. That is, we compute

the loop terms in a general D = 4 − 2ε dimensional space-time and in the end take the result

in the limit that ε → 0. Because we are using dimensional regularization, we like to keep the

charge coupling dimensionless, so to keep that true in all dimensions, we leave e dimensionless

and add in a massive multiplier that holds the units of e such that e → eΛε in D dimensions.

This can be accomplished via the Feynman diagram in Fig. 24 and the additional interactions

from the counter terms is given as

−(Zee)
2Λ2ε

∫
dDl

(2π)D
Tr

[
γµ((k + l) · γ +m)γν(l · γ +m)

((k + l)2 −m2)(l2 −m2)

]
+ iδA

(
k2gµν − kµkν

)
.

(2.2.17)

Evaluation of (2.2.17) can be done through Feynman squaring method and Wick transforma-

tions and generalized trace theorems [30], which are done below. Also we set Ze = 1 since

Ze = 1 +O(e2), so at lowest order for ZA we do not include corrections to Ze.

= −e2Λ2ε
∫

dDl
(2π)D

Tr
[
γµ((k+l)·γ+m)γν(l·γ+m)

((k+l)2−m2)(l2−m2)

]
+ iδA (k2gµν − kµkν)

= −De2Λ2ε
∫ 1

0
dx
∫

dDl
(2π)D

2lµlν+2x(x−1)kµkν−(l2−m2+x(x−1)k2)gµν

(l2−m2−x(x−1)k2)2

+iδA (k2gµν − kµkν)
= −De2Λ2ε

∫ 1

0
dx
∫

dDl
(2π)D

(2/D−1)l2gµν+2x(x−1)kµkν−(x(x−1)k2−m2)gµν

(l2−m2−x(x−1)k2)2

+iδA (k2gµν − kµkν)
= −iDe2Λ2ε

∫ 1

0
dx
∫

dDlE
(2π)D

2x(x−1)

(l2E+m2+x(x−1)k2)2 (k2gµν − kµkν)

+iδA (k2gµν − kµkν)
= −i

(
De2Λ2ε

∫ 1

0
dx
∫

dDlE
(2π)D

2x(x−1)

(l2E+m2+x(x−1)k2)2 − δA
)

(k2gµν − kµkν)

= −i
(
− e2

12π2ε
+
∫ 1

0
dx2x(1−x)

4π2 log
(

Λ
2

m2+x(x−1)k2

)
− δA

)
(k2gµν − kµkν)

with Λ
2

= 4πe−1/2−γΛ2. The rescaling of Λ is known as the “bar” part of the MS scheme. The

minimum we can do to make this finite is absorb the infinite part e2/12π2ε into the term δA;

this is the minimal subtraction (MS) in the MS scheme

δA = − e2

12π2ε
. (2.2.18)
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From this expression we can find the β function for QED as ZA = 1 + δA. Therefore,

log(Z
−1/2
A ) ≈ e2

24π2ε
→ G′1(e) =

e

12π2
,

de

d log Λ
=

de

d log Λ
=

e3

12π2
. (2.2.19)

The result of (2.2.19) is a result that can be generalized for multiple copies of the fermionic

sector of the QED Lagrangian, such that each particle has a charge Qfe; we can account for

each particles’ contribution by summing the charges so that (2.2.19) becomes

de

d log Λ
=

e3

12π2

∑
fermions

Q2
f . (2.2.20)

Inclusion of scalar fields that interact with the U(1) field (photon in this case), can also be done,

however an additional diagram must be included, and in scalar abelian gauge theories, there is

also a term e2φ†φAµAµ. The relevant diagrams are pictured in Fig. 25. The result can be

Figure 25 : Higher order terms involving photons in a theory with scalar fields includes two diagrams.
This leads to a correction of the bare charge parameter of the Lagrangian for QED with scalar fields.

generalized to multiple scalar fields having couplings Qse, in which Eq. (2.2.20) becomes

de

d log Λ
=

e3

12π2

( ∑
fermions

Q2
f +

1

4

∑
scalars

Q2
s

)
. (2.2.21)

2.2.3 The SM Higgs Stability

On July 4th, 2012, the CERN LHC experiment reported from Higgs searches a result that indi-

cates a Higgs boson candidate with a mass mH = 125 GeV. The ATLAS [117] and CMS [118]

Collaborations independently combined about 5 fb−1 of data collected at
√
s = 7 TeV and

more than 5 fb−1 at
√
s = 8 TeV. The excess events at 125 GeV that was evident already in
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data from the 7 TeV run [119, 120] was consistently observed by both experiments in the γγ

invariant mass spectrum with a local significance of 4.5σ and 4.1σ, respectively. In addition

to the photon data, an excess of events in 4 lepton final states (with m4` ' 125 GeV) can be

interpreted as a signal of the H → ZZ∗ → 4` decay, and is observed by both experiments

with a significance of 3.4σ and 3.2σ, respectively. The CMS experiment also presented up-

dated Higgs boson searches in W+W− (a broad excess in the invariant mass distribution of

1.5σ is observed), bb̄ (no excess is observed), and τ τ̄ (no excess is observed) channels. More

recently, the ATLAS Collaboration reported a 2.8σ deviation in the H → W+W− → 2`ν de-

cay channel [121]. When combining the data from the 7 TeV and 8 TeV runs, both experiments

separately reached the sensitivity to the new boson with a local significance of 5σ [8, 9]. Addi-

tionally, the CDF and D0 Collaborations at Fermi-lab published an update on searches for the

Higgs boson decaying into bb̄ pairs using 9.7 fb−1 of data collected at
√
s = 1.96 TeV [122].

They reported a 3.3σ deviation with respect to the background-only hypothesis in the mass

range between 120− 135 GeV.

The data seems to indicate the existence of the long sought Higgs boson. The question we

address is the stability of the Higgs mechanism. That is, does Higgs field obtain a non-zero real

vacuum expectation value for all energy scales. Next-to-leading order (NLO) constraints on SM

vacuum stability based on two-loop renormalization group (RG) equations, one-loop threshold

corrections at the electroweak scale (possibly improved with two-loop terms in the case of pure

QCD corrections), and one-loop effective potential seem to indicate mH ≈ 125 − 126 GeV

saturates the minimum value that ensures a vanishing Higgs quartic coupling around the Planck

scale (MPl) (the scale we assume that quantum gravitational effects cannot be ignored, and we

assume some change to the SM would be included), see e.g. [123, 124, 125, 126, 127, 128,

129, 130, 131, 132, 133, 134]. However, a more recent NNLO analysis [135, 136] yields a very

restrictive condition of absolute stability up to the Planck scale given as

mH >

[
129.4 + 1.4

(
mt/GeV − 173.1

0.7

)
− 0.5

(
αs(mZ)− 0.1184

0.0007

)
± 1.0th

]
GeV .

(2.2.22)

When combining in quadrature the theoretical uncertainty with experimental errors on the mass

of the top (mt) and the strong coupling constant (αs), one obtains mH > 129± 1.8 GeV. The

vacuum stability of the SM up to the Planck scale is excluded at 2σ (98% C.L. one sided) for



81
mH < 126 GeV [135, 136]. It seems achieving stability will require some new BSM physics.

2.2.4 RG Equations of SM++

In order for the Higgs mechanism to be valid for scales up to the underlying string theory of

the SM++, Ms, we impose the positivity conditions [137] on the parameters of SM++ scalar

potential

λ1 > 0, λ2 > 0, λ1λ2 >
1

4
λ2

3 . (2.2.23)

If the conditions (2.2.23) are satisfied, we can minimize V ++(H,H ′′) and find two real, non-

zero, VEVs for the two Higgs fields of the SM++. In the unitary gauge, the fields can be written

as

H ≡ 1√
2

 0

v1 + h1(x)

 and H ′′ ≡ 1√
2

(v2 + h2(x)) , (2.2.24)

with v1 and v2 the real and non-negative VEVs. The non-zero, real solutions to the minimization

of (2.2.1) are obtained for v1 and v2 and are given by

v2
1 =
−λ2µ

2
1 + 1

2
λ3µ2

2

λ1λ2 − 1
4
λ2

3

and v2
2 =
−λ1µ

2
2 + 1

2
λ3µ

2
1

λ1λ2 − 1
4
λ2

3

. (2.2.25)

To compute the scalar masses, we must expand the potential (2.2.1) around the minima (2.2.25).

We denote by h and h′′ the scalar fields of definite masses (mass matrix eigenstates), mh and

mh′′ , respectively. After a bit of algebra, the explicit expressions for the scalar mass eigenvalues

and eigenvectors are given by

m2
h = λ1v

2
1 + λ2v

2
2 −

√
(λ1v2

1 − λ2v2
2)2 + (λ3v1v2)2 , (2.2.26)

m2
h′′ = λ1v

2
1 + λ2v

2
2 +

√
(λ1v2

1 − λ2v2
2)2 + (λ3v1v2)2 , (2.2.27) h

h′′

 =

 cosα − sinα

sinα cosα

 h1

h2

 , (2.2.28)

where α ∈ [−π/2, π/2] also fullfils

sin 2α =
λ3v1v2√

(λ1v2
1 − λ2v2

2)2 + (λ3v1v2)2
, (2.2.29)

cos 2α =
λ1v

2
1 − λ2v

2
2√

(λ1v2
1 − λ2v2

2)2 + (λ3v1v2)2
. (2.2.30)
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Now, it is convenient to invert (2.2.26), (2.2.27) and (2.2.29), to extract the parameters in the

Lagrangian in terms of the physical quantities mh, mh′′ and sin 2α

λ1 =
m2
h′′

4v2
1

(1− cos 2α) +
m2
h

4v2
1

(1 + cos 2α),

λ2 =
m2
h

4v2
2

(1− cos 2α) +
m2
h′′

4v2
2

(1 + cos 2α), (2.2.31)

λ3 = sin 2α

(
m2
h′′ −m2

h

2v1v2

)
.

One-loop corrections to (2.2.1) can be implemented by making λ1, λ2, and λ3 field depen-

dent quantities. Equation (2.2.23) then needs to be imposed in the regions where this is the

case. When we talk about the stability of (2.2.1) at some energy Λ = Q (with the use of the

couplings at that scale), we are thinking that the field values are at the scale Q. For λ3 > 0,

the third condition in (2.2.23) is only invalidated for field values v1 around mh′′ , regardless of

the renormalization scale Q [138]. We can find the instability regions by expressing the scalar

potential as

V ++ = λ1(Q)

(
|H|2 − v2

1

2

)2

+ λ2(Q)

(
|H ′′| − v2

2

2

)2

+ λ3(Q)

(
|H|2 − v2

1

2

)(
|H ′′|2 − v2

2

2

)
. (2.2.32)

The instability region (V ++ < 0) is given by, |H ′′| ≈ 0 and

v2 <
mh′′√

2λ2

, Q− < v1 < Q+, Q2
± =

m2
h′′λ3

8λ1λ2

(
1±

√
1− 4λ1λ2

λ2
3

)∣∣∣∣∣
Q∗

, (2.2.33)

where Q∗ is some energy scale where the third condition of (2.2.23) is violated [138]. Thus,

Q± ∼ mh′′ when the third condition is saturated, i.e. λ1λ2 = λ2
3/4. From (2.2.33) we see that

Q± ∼ mh′′ when all the λi are roughly at the same scale. If one of the λ1,2 is close to zero,

then Q+ can be� mh′′ , but this region of the parameter space is taken care of by the condition

λ1,2 > 0. The stability for field values at mh′′ is then determined by the potential with coupling

at scale mh′′ (instead of Q). Therefore, for λ3 > 0, we impose the third condition of (2.2.23)

in the vicinity of mh′′ only. Even though the potential appears to be unstable at Q� mh′′ , it is

actually stable when all the field values are at the scale Q. Note that the potential with λi(Q)

can only be used when the physical quantities (field values v1, v2) are at the scale Q.
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On the other hand, the instability region for λ3 < 0 occurs for |H ′′| > v2/

√
2. Because of

this, we can neglect the mass parameters and approximate the potential as

V ++ ≈ λ1(Q)|H|4 + λ2(Q)|H ′′|4 + λ3(Q)|H|2|H ′′|2. (2.2.34)

The instability region is then given as

v2 >
mh′′√

2λ2

, c− <
v1

v2

< c+, c2
± = − λ3

2λ1

(
1±

√
1− 4λ1λ2

λ2
3

)∣∣∣∣∣
Q∗

. (2.2.35)

We can see in this case the ratio of v1 and v2 determines the instability region, which can be

reached even with both v1 and v2 being� mh′′ [138]. Therefore, for λ3 < 0, we impose the

third condition at all energy scales. Note that the asymmetry in conditions on λ3 will carry over

into an asymmetry in α.

Calculations similar to the ones that lead to Eq. (2.2.21) can be done for all the parameters

of the SM++ model. The RG equations for the five parameters in the scalar potential [139] are

dµ2
1

dt
=

µ2
1

16π2

(
12λ1 + 6Y 2

t + 2
µ2

2

µ2
1

λ3 −
9

2
g2

2 −
3

2
g2
Y −

3

2
g2
Y

)
,

dµ2
2

dt
=

µ2
2

16π2

(
8λ2 + 4

µ2
1

µ2
2

λ3 − 24g2
B−L

)
,

dλ1

dt
=

1

16π2

(
24λ2

1 + λ2
3 − 6Y 4

t +
9

8
g4

2 +
3

8
g4
Y +

3

4
g2

2g
2
Y +

3

4
g2

2g
2
Y +

3

4
g2
Y g

2
Y +

3

8
g4
Y

+ 12λ1Y
2
t − 9λ1g

2
2 − 3λ1g

2
Y − 3λ1g

2
Y
)
, (2.2.36)

dλ2

dt
=

1

8π2

(
10λ2

2 + λ2
3 + 48g4

B−L − 24λ2g
2
B−L

)
,

dλ3

dt
=

λ3

8π2

(
6λ1 + 4λ2 + 2λ3 + 3Y 2

t −
9

4
g2

2 −
3

4
g2
Y −

3

4
g2
Y − 12g2

B−L

)
+

3

4π2
g2
Y g

2
B−L,

where t = lnQ and Yt is the top Yukawa coupling, with

dYt
dt

=
Yt

16π2

(
9

2
Y 2
t − 8g2

3 −
9

4
g2

2 −
17

12
g2
Y −

17

12
g2
Y −

2

3
g2
B−L −

5

3
gYgB−L

)
(2.2.37)
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and Y (0)

t =
√

2mt/v. The RG running of the gauge couplings follow the standard form

dg3

dt
=

g3
3

16π2

[
−11 +

4

3
ng

]
= − 7

16

g3
3

π2
,

dg2

dt
=

g3
2

16π2

[
−22

3
+

4

3
ng +

1

6

]
= −19

96

g3
2

π2
,

dgY
dt

=
1

16π2

[
AY Y g3

Y

]
, (2.2.38)

dgB−L
dt

=
1

16π2

[
A(B−L)(B−L)g3

B−L + 2A(B−L)Y g2
B−LgY + AY Y gB−Lg

2
Y
]
,

dgY
dt

=
1

16π2

[
AY Y gY (g2

Y + 2g2
Y ) + 2A(B−L)Y gB−L(g2

Y + g2
Y )

+ A(B−L)(B−L)g2
B−LgY

]
,

where ng = 3 is the number of generations and

Aab = Aba =
2

3

∑
f

Qa,fQb,f +
1

3

∑
s

Qa,sQb,s , (a, b = Y, B − L) , (2.2.39)

with f and s indicating contribution from fermion and scalar loops, respectively.

For energies below the mass of the heavier Higgs H ′′, the effective theory is the SM. Thus

the effective scalar Lagrangian in the low energy regime must take on the form appropriate for

the SM

Ls = (DµH)†DµH − µ2 |H|2 − λ |H|4 . (2.2.40)

The RG equations in this regime must simplify to those of SM. To obtain the matching condi-

tions connecting the two theories so that they reflect a consistent theory, we can follow [138]

and integrate out the field H ′′ to obtain the effective Lagrangian of the form (2.2.40). To find

the effective Lagrangian is to perform the Feynman path integral over the H ′′ field∫
DH ′′ eiS(H,H′′) = eiSeff(H), (2.2.41)

from which you can read the potential Veff of the form (2.2.40). Rather than carrying out this

rather complicated task, we can approximate this integral by expanding the action S(H,H ′′)

around the field configuration that gives δS/δH ′′ = 0, which is the condition for the classical

equations of motion. This gives∫
DH ′′ eiS(H,H′′) ≈ eiS(H,Hcl)

∫
DH ′′ei

∫
1
2
δ2S
δH′′2

|H′′
cl

(H′′−H′′cl)
2+...

, (2.2.42)

where above H ′′cl is the classical solution where δS/δH ′′|H′′cl = 0 is satisfied. From this expres-

sion we can see that Seff can be approximated by S(H,Hcl) so long as (H ′′ − Hcl) is small
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for all cases considered. Since we are in the phase where the energies of interaction are below

the scale of exciting H ′′, we can assume the quantum corrections are small. By solving the

equations of motion for H ′′ and neglecting the derivative terms, as we are assuming that there

is little excitation of the H ′′ field, we have the result

∂

∂H ′′
V (H,H ′′) = 0→ |H ′′|2 = −µ

2
2 + λ3|H|2

2λ2

. (2.2.43)

Replacing (2.2.43) back into V (H,H ′′) allows you to identify the quadratic and quartic terms

in the potential, which yields

µ2 = µ2
1 − µ2

2

λ3

2λ2

(2.2.44)

and

λ = λ1

(
1− λ2

3

4λ1λ2

)
, (2.2.45)

respectively. The matching conditions are consistent with the continuity of v � v1; namely

v2 = − µ2

λ

∣∣∣∣
Q=mh′′

= − µ2
1 − µ2

2 λ3/(2λ2)

λ1 [1− λ2
3/(4λ1λ2)]

∣∣∣∣
Q=mh′′

, (2.2.46)

or equivalently

v2
∣∣
Q=mh′′

= v2
1

∣∣
Q=mh′′

, (2.2.47)

with v1 given by (2.2.25). The quartic interaction between the heavy scalar singlet and the Higgs

doublet provides an essential contribution for the stabilization the scalar field potential [138].

2.2.5 Running the Couplings

Now that we have the equations that determine how the values of the parameters of the scalar

potential change with scale Q, we must solve these coupled differential equations. In order to

ensure perturbativity of g′4 between the TeV scale and the string scale, we find from (2.1.22)

that g′1 > 0.232. We also take g′1(Ms) ' 1 in order to ensure perturbativity at the string scale.

Let us first study the region of the parameter space constrained by g′1(Ms) ' 1. The string-

scale values of the other abelian couplings are fixed by previous considerations (2.1.22) and

(2.1.2). The Euler angles at Ms are also fixed by (2.1.25), and (2.1.26). All the couplings

and angles are therefore determined at all energies through RG running. As an illustration,

we set Ms = 1014 GeV; this leads to g′3(Ms) = 0.231, g′4(Ms) = 0.232, ψ(Ms) = −1.245,

θ(Ms) = −0.217, and φ(Ms) = −0.0006.
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Now we takeQmin = 125 GeV and normalize t = ln(Q/125 GeV) and tmax = ln(Ms/125 GeV).

From the Ms scale we run the couplings and angles down to the TeV region giving g′1 = 0.406,

g′3 = 0.196, g′4 = 0.218, θ = −0.466, ψ = −1.215, and φ = −0.0003.

We are now in a position to randomly choose v′′ and mh′′ at the scale Q = mh′′ . We can

then use the SM relation m2
H = −2µ2, where mH ' 125 GeV, and v2 = 246 GeV, both taken

at the same energy scale Q = 125 GeV to find the initial conditions for the parameters µ and λ

at theQmin scale. It should be noted that we take the top Yukawa coupling evaluated at the scale

mt. This introduces a small but unnoticeable error. On the other hand, mt is taken to be the

physical top mass; if we used the running mass instead, as is done in [140], the running of the

quartic coupling λ would be much slower, with the instability scale pushed to almost 109 GeV.

Then we run the SM couplings λ, and µ from 125 GeV up to the mass scaleQ = mh′′ . After

having done this, we then use the matching conditions to determine v, which in turns allows

one to solve algebraically for mh at the scale Q = mh′′ . This process ensures that we match the

SM results when Q < mh′′ .

After completing this task, there is one free parameter left to be fixed at the TeV-scale: α.

The initial values of gY , gY and gB−L are then fixed by previous considerations as in Sec. 2.1.6.

Rather than using the parameters v′′, α, and m′h′′ as the free ones, we can use the relation

MZ′′ = g′1Cφ v2/Cθ [141], so that we can take (MZ′′ , α, mh′′) as the free parameters of the

model.1

For Ms = 1014 GeV, we perform a scan of 104 random values of (MZ′′ , α, mh′′) points,

and using (2.2.31) we obtain the initial conditions (λ(0)
1 , λ(0)

2 , λ(0)
3 ) at the Q = mh′′ value, after

which we integrate the RG equations (2.2.36). For each set of random points, we verify that the

positivity condition (2.2.23) is fulfilled all the way to theMs scale. The 104 trials are duplicated

for Ms = 1016 and Ms = 1019 GeV. The results are encapsulated in Figs. 26 to 32. Figure 26

shows the entire scan for Ms = 1014 GeV and MZ′′ = 4.5 TeV. The points yielding a stable

vacuum solution up to Ms are blue-printed, those leading to unstable vacuum solutions are red-

printed, and points giving runaway solutions are purple-printed. A stable vacuum solution is

one in which the positivity condition (2.2.23) is fulfilled all the way to Λ = Ms. An unstable

1For Ms = 1014 GeV, the v2 � MZ′′ relation implies that if 7 TeV < v2 < 13 TeV, then
3.2 TeV < MZ′′ < 6.0 TeV. For a different Ms the range of MZ′′ is altered because of changes in g′1,
θ, and φ; e.g. for Ms = 1019 GeV, the range becomes 2.8 TeV < MZ′′ < 5.8 TeV.
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Figure 26 : The SM++ vacuum stability patterns in the mh′′ vs α plane, for MZ′′ = 4.5 TeV. The
analysis is based on a scan of 104 random points with Ms = 1014 GeV. The points yielding a stable
vacuum solution up to Ms are blue-printed, those leading to unstable vacuum solutions are red-printed,
and points giving runaway solutions (i.e., those in which the Higgs doublet self-coupling blows up) are
purple-printed. Fits to the boundaries defining the region with stable vacuum solutions (dashed lines)
and to the average value of the scatter points contained in that region (solid lines) are also shown [142].
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solution is one in which the stability conditions of the vacuum (λ1 > 0, λ2 > 0, λ1λ2 > λ2

3/4)

are violated (recall that for the case λ3 > 0 there is no need to impose the third condition in

(2.2.23) at all scales, but only in the vicinity ofmh′′). A runaway solution is one in which the RG

equations drive the Higgs doublet self-coupling to non-perturbative values, thus invalidating the

p-theory results. The perturbative upper bound (sometimes referred to as ‘triviality’ bound) is

given by λ1 < 2π, so that at any point in the RG evolution of the λ1(t) parameter, the triviality

bound is violated we take λ1 as runaway at that point [132]. The vacuum stability condition

is driven by the behavior of λ1, and actually is largely dominated by the initial condition λ(0)
1 .

Indeed, if the extra gauge boson Z ′′ gets its mass through a non-Higgs mechanism and the

scalar potential (2.2.1) is that of SM (i.e. when v2 = λ2 = λ3 = 0), the RG evolution becomes

that of SM and there are no stable solutions.2

To determine the range of initial conditions on λ(0)
1 yielding stable vacuum solutions, we fit

the boundaries of the blue band in the scatter plot. The resulting curves, which are shown as

dashed lines in Fig. 26, correspond to 0.16 < λ
(0)
1 < 0.96 when α < 0, and 0.15 < λ

(0)
1 <

0.96 when α > 0. The lower limit of λ(0)
1 , which defines the boundary between stable and

unstable solutions, is close to the value required for vacuum stability of the SM potential, as

shown in (2.2.22). Specifically, by substituting mh = 130 GeV and α = 0 in (2.2.31) we

obtain λ(0)
1 = 0.14. The similarities between the minimum value of mH that allows absolute

stability up to the Planck scale within SM and the minimum value of mh in the decoupling

limit of (2.2.31) reinforces the previous statement concerning the strong dependence of the RG

evolution with the initial condition λ(0)
1 . The average value of the initial condition λ(0)

1 can be

performed through a fit to the blue points in the scattered plot. The result, which is shown as

solid lines in Fig. 26, corresponds to 〈λ(0)
1 〉 = 0.28.

The behavior of λ, together with the typical behavior of λ1 and λ2 for the average value of

the initial condition 〈λ(0)
1 〉, are shown in Fig. 27. Note that λ1 heads towards the instability and

reaches a minimum greater than zero; thereafter it rises towards the Landau point (divergence).

This behavior is characteristic of models with scalar singlets [143]. Also shown in Fig. 27 is

the typical behavior of λ1λ2 − λ2
3/4 for α < 0 and 〈λ(0)

1 〉 = 0.28. The asymmetry between

2Of course, even if v2 = λ2 = λ3 = 0, with an extra gauge boson the RG evolution of λ1 is not
exactly that of SM, see (2.2.36).
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Figure 27 : From left to right downwards: the first panel shows the running of λ from its value at 125 GeV

(red solid line mt = 172.9 GeV and blue dot-dashed line mt = 164 GeV); the second and third panels
show the typical behavior of the running couplings λ1(t) and λ2(t) for the average value of the initial
condition, 〈λ(0)

1 〉 = 0.28 in the integration of (2.2.36); the fourth panel shows the behavior of the extra
positivity condition for α < 0. In the running of λi we have taken Ms = 1014 GeV.
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Figure 28 : The lower boundary of the allowed parameter space in the mh′′ − α plane under the vacuum
stability constraint of Eq. (2.2.23), for the positive alpha (blue) and negative alpha (red). We have taken
MZ′′ = 4.5 TeV and Ms = 1014 GeV.

±α appears to be small on Fig. 26, but it is actually not insignificant. For a given α, the

lower boundary sometimes changes by a factor of two. For example, at α = 0.24, the lower

boundary changes from 6, 140 GeV to 3, 160 GeV as seen in Fig. 28. However, the effect

on the area is less noticeable. The reason is that we can only change the lower boundaries

of the accepted parameter space. The upper boundary is determined by the constraint that

λi (usually λ2) remains perturbative. This constraint is symmetric with respect to α. So the

area cannot be enlarged indefinitely. Even if somehow we can send the lower boundary to

zero, the area would only increase by another 20% to 30%. To determine the sensitivity of

the RG evolution with respect to the choice of the string scale, the analysis is duplicated for

Ms = 1016 GeV and Ms = 1019 GeV. The contours displayed in Fig. 29 (for MZ′′ = 4.5 TeV)

show that the region of stable vacuum solutions shrinks as Ms increases. The allowed range

of initial conditions with stable vacuum solutions therefore depends on the value of the string

scale; e.g. for Ms = 1016 GeV, the stability region is 0.17 < λ
(0)
1 < 0.83 when α < 0, and

0.16 < λ
(0)
1 < 0.83 when α > 0. ForMs = 1019 GeV, the stability region is 0.18 < λ

(0)
1 < 0.69

when α < 0, and 0.17 < λ
(0)
1 < 0.69 when α > 0. The corresponding average value for

Ms = 1016 GeV is 〈λ(0)
1 〉 = 0.31, and for Ms = 1019 GeV is 〈λ(0)

1 〉 = 0.32. In Fig. 30
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Figure 29 : The allowed SM++ parameter space in the mh′′ vs α plane under the vacuum stability
constraint of Eq. (2.2.23), for the case MZ′′ = 4.5 TeV, with Ms = 1014 GeV (blue), Ms = 1016 GeV

(green), and Ms = 1019 GeV (red). The perturbative upper bound is defined by λi < 2π.
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Figure 30 : Variation of SM++ vacuum stability regions with MZ′′ . We have taken Ms = 1016 GeV,
MZ′′ = 3.5 TeV (red), MZ′′ = 4.5 TeV (green), and MZ′′ = 6.0 TeV (blue). The perturbative upper
bound is defined by λi < 2π.
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Figure 31 : Variation of SM++ vacuum stability regions with mH . We have taken α = 0.06, MZ′′ =

4.5 TeV, Ms = 1014 GeV (blue), Ms = 1016 GeV (green), Ms = 1019 GeV (red). The perturbative
upper bound is defined by λi < 2π.

the sensitivity of the RG evolution with respect to MZ′′ is displayed. For large values of |α|
there is no variation in the contour regions. For α > −0.05 and α < 0.06 there are some

small variances. These small differences show the effect of the initial conditions of λ(0)
2 and

λ
(0)
3 on the evolution of the system. Figure 31 verifies that there is no significant variation of

the SM++ vacuum stability regions within the mH uncertainty. An example for α = 0.06 and

MZ′′ = 4.5 TeV is displayed in Fig. 31. Figure 32 displays the variation of the results of the

analysis with respect to varying g′1(Ms). It is clearly seen that for 0.232 < g′1(Ms) < 1.000

the dependence on g′1 seems to be fairly weak. The stability of SM++ vacuum is then nearly

independent of the Z ′′ branching fractions [141].

While it is true that the low energy effective theory discussed in this dissertation requires

a high level of fine tuning, this can be explained by applying the anthropic landscape of string

theory [144, 145, 146]. Alternatively, the fine tuning can be circumvented with a more complete

broken SUSY framework. Since in pure SUSY the vacuum is automatically stable, the stability

analysis perforce involves the soft SUSY-breaking sector. Hence rather than simply searching

for the Higgs self-coupling going negative in the ultraviolet, the stability analysis would involve

finding the local and global minima of the effective potential in the multi-dimensional space of
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Figure 32 : Variation of SM++ vacuum stability regions with g′1(Ms). The stable regions correspond to
g′1(Ms) = 1.000 (blue), g′1(Ms) = 0.232 (red). We have taken Ms = 1014 GeV, MZ′′ = 4.5 TeV,
mH = 125 GeV. The perturbative upper bound is defined by λi < 2π.

the soft-breaking sector [147]. However, the Higgs mass range favored by recent LHC data

may be indicative of high-scale SUSY breaking [131]; perhaps near the high energy cut-off of

the field theory, beyond which a string description becomes a necessity [148].

2.3 Summary of the Results and Conclusions

We have discussed the phenomenology of a Standard-like Model inspired by string theory, in

which the gauge fields are localized on D-branes, whose intersection can give rise to chiral

fermions. The energy scale associated with string physics is assumed to be near the Planck

mass. To develop our program in the simplest way, we worked within the construct of a minimal

model with gauge-extended sector U(3)B × Sp(1)L × U(1)IR × U(1)L. The resulting U(1)

content gauges the baryon number B, the lepton number L, and a third additional abelian

charge IR. All mixing angles and gauge couplings are fixed by rotation of the U(1) gauge

fields to a basis diagonal in hypercharge Y and in an anomaly free linear combination of IR

and B − L. The anomalous Z ′ gauge boson obtains a string scale Stückelberg mass via a 4D

version of the Green-Schwarz mechanism. To keep the realization of the Higgs mechanism

minimal, we added an extra SU(2) singlet complex scalar, which acquires a VEV and gives a
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TeV-scale mass to the non-anomalous gauge boson Z”. The model is fully predictive and can

be confronted with dijet and dilepton data from LHC8 and, eventually, LHC14. We have shown

that MZ” ≈ 3− 4 TeV saturates current limits from the CMS and ATLAS Collaborations. We

have also shown that for MZ” ≤ 5 TeV, LHC14 will reach discovery sensitivity ≈ 5σ. After

that, we derived the complete set of renormalization group equations at one loop order and

we pursue a numerical study of the system to determine the triviality and vacuum stability

bounds, using a scan of 104 random set of points to fix the initial conditions. We have shown

that, if there is no mixing in the scalar sector, the top Yukawa coupling drives the quartic Higgs

coupling to negative values in the ultraviolet and, as for the SM, the effective potential develops

an instability below the Planck scale. However, for a mixing angle −0.35 ≤ α ≤ −0.02 or

0.01 ≤ α ≤ 0.35, with the new scalar mass in the range 500 GeV ≤ mh” ≤ 8 TeV, the SM++

ground state can be absolutely stable up to the string scale. Our results are largely independent

of TeV-scale free parameters in the model: the mass of the non-anomalous U(1) gauge boson

and its branching fractions.
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Part II:

Gravitational Waves From
Post-Inflationary Sources

ḧTT
ij + 3ȧaḣ

TT
ij − 1

a2∇2hTT
ij = 16π

M2
pl

TTT
ij
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Chapter 3

Gravitational Waves from the Early

Universe

3.1 Gravitational Waves Generated in the Early Universe

In section 1.2.1 we discussed how the universe on scales larger than 102 Mpc best described by

the flat, isotropic and homogenous, represented by the metric

ds2 = −dt2 + a(t)2dx2. (3.1.1)

In this section of the dissertation, we investigate what potential new discoveries can be made

by observing perturbations of the FRW metric, and their sources.

Specifically we want to investigate radiative (tensor) perturbations to the FRW metric known

as gravitational waves. Gravitational waves are generically predicted by GR. An excellent lab-

oratory of GR is in the extreme locations in the universe where there are high concentrations of

matter, and relativistic speeds, one such example being pulsar binaries. The 1993 Nobel Prize

awarded to Hulse and Taylor was for the study of a binary pulsar system, PSR B1913+16 and

it’s unique properties. This particular binary system’s orbital radius was found to be decaying

at a rate in agreement with predictions of the decay via energy carried away by gravitational

radiation with a discrepancy between observation and theory of 0.13± 0.21% [149]. The con-

cept of gravitational waves is a unique resource for astronomers and cosmologists as all known

data from the cosmos comes in the form of electromagnetic radiation propagating through the
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universe. The disadvantage of the use of electromagnetic radiation is that it is strongly in-

teracting compared to gravity so the information we receive has undergone secondary scatter-

ings, effectively blurring or adding noise to what would be the most energetic and interesting

sources. Gravity being a comparatively weak with interactions suppressed to by the scale M−2
pl ,

gravitons1 undergo significantly less secondary scattering events. This leaves the radiated infor-

mation from energetic sources to essentially propagate un-affected, allowing a probe of some

of the most interesting astrophysical sources with unprecedented clarity. Unfortunately this

advantage is also its downfall as such a weak coupling to matter means it will be extremely

difficult to detect. The task of direct detection is at the forefront of current physics research

projects such as Advanced LIGO, VIRGO, GEO 600, and TAMA 300. These detectors are

based on the concept of time of travel of light in a laser interferometer apparatus; LIGO for

example, uses arm lengths of 4 km. The large length is necessary as the effect of a passing

gravitational waves is proportional to the arm length of the interferometer [150]. Many excel-

lent texts have been written regarding gravitational waves and interferometer detection systems

such as [151], [150]. We will be concerned with the form of theoretical signals from stochastic

sources generated in the early universe, and not on the detectors themselves.

As was stated earlier, the weak coupling of gravity allows one to detect radiation from deep

within areas from which electromagnetic radiation cannot escape. One such case of interest is

the opaque photon matter plasma of the early universe. Before the time of photon decoupling

and the creation of the CMB (t ≈ O(106) years [49]), the photons are confined by the multiple

scatterings of the various constituents of the plasma. Because of this we cannot see earlier then

the time of the CMB electromagnetically, similarly to why you cannot see far through a thick

fog, photons originating from a further distance undergoes multiple scattering events thus not

making it to your eyes. Effectively this blinds us from any direct observations of the physics

before the CMB era via photons. To directly probe the physics before the CMB era we can

turn to gravitational waves. We are motivated to search for clues for BSM physics at higher

energies than we can produce in a lab. Specifically we saw that inflation occurs at times when

the relevant energies are at the GUT scale 1016 GeV, therefore the time immediately following

inflation presents a unique unexplored region of high energy physics that can in principle be

1The analogous particle form of gravitational waves as photons are to the particles of electromagnetic waves.
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probed by gravitational waves.

The act of inflation itself is theorized to produce a stochastic background of gravitational

waves [152, 153], unfortunately it is too weak to be directly detected with existing instruments.

However, the possibility remains that these primordial gravitational waves can be observed via

B-modes in the cosmic microwave background (CMB) [154, 155] but doing so requires precise

measurement of the polarization of the CMB.

The period directly following inflation does present several mechanisms for the creation of a

stochastic gravitational wave background such as the reheating and preheating phase discussed

in [156, 157, 158, 159, 58, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169], and cosmological

phase transitions [170, 171, 172, 173, 174, 175, 176].

3.1.1 Perturbing the FRW Metric

In order to make predictions of the form and scale of the stochastic background spectrum com-

ing from these sources, we require the Einstein field equations in the linear perturbation to the

FRW metric approximation, specifically for tensor modes. The general analysis can be found

in ref [4]. The qualitative answer can be described in the following manner. We make a small

perturbation to the FRW metric of the form

gµν = ḡµν + hµν , Min{ḡµν} � hµν , (3.1.2)

where ḡµν is the flat FRW background metric for which the over bar indicates quantities with

respect to this background metric. In the above Min{ḡµν} is the minimum value of the non-

zero components of ḡµν . The last condition ensures that hµν is a small perturbation to the FRW

background. The Einstein field equations,

Rµν −
1

2
gµνR =

8π

M2
pl

Tµν , (3.1.3)

can be expanded to linear order in hµν

R̄µν +R(1)
µν −

1

2
ḡµνR̄−

1

2

(
hµνR̄ + ḡµνR

(1)
)
≈ 8π

M2
pl

(
T̄µν + T (1)

µν

)
,

R(1)
µν −

1

2

(
hµνR̄ + ḡµνR

(1)
)
≈ 8π

M2
pl

T (1)
µν , (3.1.4)
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with

R(1)
µν =

1

2

(
D̄αD̄µhνα + D̄αD̄νhµα − D̄2hµν − D̄νD̄µh

)
,

R(1) = ḡµνR(1)
µν − hµνR̄µν ,

(3.1.5)

where D̄α is the covariant derivative operator with respect to the background ḡµν . All terms

with (1) superscript indicate the linear order perturbation of the quantity. Note that common

notation for T (1)
µν is πµν , and corresponds to the anisotropic energy-stress tensor perturbation

to the homogenous and isotropic background matter content that governs the Friedmann equa-

tions. Following [4] the perturbations to the FRW metric are decomposed into

h00 = −E,

hi0 = a (∂iF +Gi) ,

hij = a2
(
Aδij + ∂2

ijB + ∂jCi + ∂iCj +Dij

)
, (i, j = 1, 2, 3) , (3.1.6)

along with the conditions

∂iCi = ∂iGi = 0, ∂iDij = 0, Dii = 0 (3.1.7)

This decomposition allows three separable cases of the perturbed Einstein field equations, the

most important to us is the tensor perturbations hij , taking the form

D̈ij + 3
ȧ

a
Ḋij −

1

a2
∇2Dij =

16π

M2
pl

πTij, (3.1.8)

where πTij is the traceless part of the anisotropic stress. We see this is the wave equation in

the FRW background of a spatially transverse (∂iDij = 0) and spatially traceless (Dii = 0)

perturbation. The question remains what are the values of the vectorial components, hi0, and

scalar component, h00 of the metric perturbation.

To answer this question we note that the Einstein field equations posses coordinate invari-

ance, one may say gravity possesses general gauge invariance to changes in the metric. Inter-

esting comparisons between the gauge symmetries of the SM and GR are found in [25]. We

can use this gauge invariance to our advantage to find a gauge in which the scalar and vector

components of the metric perturbation are zero, the so called transverse-traceless gauge. The
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details of gauge transformation of the field equations can be found in ref [4]. The results are

that by choosing an appropriate coordinate system xµ → xµ + εµ the metric perturbation is

modified (gauge transformed) to

hµν → hµν + ∆hµν , (3.1.9)

where

∆hij = −∂jεi − ∂iεj + 2aȧδijε0,

∆hi0 = −∂0εi − ∂iε0 + 2
ȧ

a
εi,

∆h00 = −2∂0ε0. (3.1.10)

Above the system of equations (3.1.10) is written in the coordinates for which the background

is expressed as

ḡµν = diag{−1, a(t)2, a(t)2, a(t)2}. (3.1.11)

It should be noted that a change of gauge also changes the form of πTij as it must now be

expressed in the same coordinates/gauge. Given the gauge freedom of the field equations, we

choose the transverse-traceless (TT) gauge such that

hµ0 = 0,

∂iDij = 0,

Dii = 0. (3.1.12)

From this another change of coordinates is used that does not effect the transverse-traceless

relations to change from cosmological/comoving time to that of conformal time via

dη =
dt

a
, (3.1.13)

allowing us to write the fully perturbed metric in the transverse-traceless gauge by use of (3.1.6)

as

ds2 = a(η)2
(
−dη2 + (δij + hTT

ij )dxidxj
)
, (3.1.14)

where the perturbation is governed by Eq. (3.1.8) expressed in conformal time

ḧTT
ij + 2

ȧ(η)

a(η)
ḣTT
ij −∇2hTT

ij =
16π

M2
pl

πTT
ij , (3.1.15)
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where over dots indicate derivatives with respect to conformal time η.

The process of finding the transverse-traceless part of any tensor is accomplished by the

use of a projection operator that gives the TT part of a tensor. The TT projection operator is

constructed first by forming the spatially transverse projection operator given as

Pij(k) = δij −
kikj
k2

, kiPij(k) = 0. (3.1.16)

The transverse operator ensures that the projected tensor is transverse to the vector ki. Applying

the projection operator to a rank 2 tensor creates a transverse to the vector ki version

Pim(k)Ppj(k)Ajm = ATip, kiA
T
ip = kpA

T
ip = 0. (3.1.17)

Subtracting out the trace of the transverse tensor allows the formation of the TT projector of

the form

ATTij =

(
Pim(k)Pjn(k)− 1

2
Pij(k)Pmn(k)

)
Amn,

ATTij = Pim,jn(k)Amn. (3.1.18)

Applied to the perturbed stress-energy tensor gives

T TTmn = Pim,jn(k)Tmn = Pim,jn(k)(−a(t)2δmnP + πmn),

= −a(t)2Pin,jn(k) P + πTTmn,

= πTTmn. (3.1.19)

Thus we may replace πTT
ij in (3.1.15) by TTT

ij as the only surviving term after the TT gauge

transformation is πTT
ij .

3.1.2 Energy From Gravitational Waves

When calculating stochastic backgrounds, it is useful to compute the energy density from the

gravitational radiation in a given frequency range k, k+ dk. In order to extract this information

the covariant expression for the energy tensor in gravitational waves as given in [177] is used

T gwµν =
M2

pl

32π
〈D̄µH

TT
αβ D̄νH

αβ,TT〉 , (3.1.20)

where HTT
µν is related to the full metric via gµν = ḡµν + HTT

µν . For the case at hand HTT
ij =

a(η)2hTT
ij . In Eq. (3.1.20) the brackets indicate a spatial average over several wavelengths of
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the gravitational waves. The energy density seen by a comoving observer is given by via

ρgw = uµuνT gwµν , (3.1.21)

with uµ the four-velocity of a comoving observer2. A comoving observer of the background

FRW space-time is an observer with fixed spatial coordinates and 4-velocity given by uµ =

(1,0) in the comoving frame, and uµ = (a−1,0) in the conformally flat frame. From this we

find the energy density to be

ρgw =
M2

pl

32πa(η)2

∑
ij

〈D̄0

(
a2hTT

ij

)
D̄0

(
a−2hTT

ij

)
〉,

=
M2

pl

32πa(η)2

∑
ij

〈ḣTT
ij ḣ

TT
ij 〉. (3.1.22)

To find the energy density per frequency interval, we make a spatial Fourier transformation

hTT
ij (η,x) =

∫
d3k

(2π)3
hTT
ij (η,k)eik·x . (3.1.23)

Using Parseval’s theorem [178] we can express (3.1.22) as an integral over the wavevector k as

follows

〈ḣTT
ij ḣ

TT
ij 〉 =

1

V

∫
V

ḣTT
ij ḣ

TT
ij d

3x

=
1

V

∫
V

∫
d3k

(2π)3

d3k′

(2π)3
ei(k

′+k)·xḣTT
ij (η,k′)ḣTT

ij (η,k)d3x

=
1

LxLyLz

∫
d3k

(2π)3

d3k′

(2π)3

3∏
i=1

2 sin((k′ + k)iLi)

(k′ + k)i
ḣTT
ij (η,k′)ḣTT

ij (η,k)d3x

≈ 1

V

∫
d3k

(2π)3
ḣTT
ij (η,k)ḣTT

ij (η,−k),

≈ 1

V

∫
d3k

(2π)3
|ḣTT
ij (η,k)|2 , (3.1.24)

In the last line we used the fact that hTT
ij (η,x) is real. The approximation in the fourth line, is

valid when (k′ + k)i << Li, where Li is the length of the ith side of the volume in question

(assuming a rectangular prism region). Technically this is not always true, as the range of k, k′

extends from −∞ to ∞, however the use of a Fourier transform in a finite volume V should

be replaced by a discrete Fourier transformation for which the last result is is an exact equality,

2An observer embedded in the FRW background metric, and without motion relative to the background
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and is the result of Parseval’s theorem. This allows the expressions

ρgw =
M2

pl

32πa(η)2

1

V

∑
ij

∫
d3k

(2π)3
|ḣTT
ij (η,k)|2 ,

k
dρgw
dk

=
dρgw
d log k

=
M2

pl

32πa(η)2

1

V

∑
ij

k3

(2π)3

∫
|ḣTT
ij (η,k)|2dΩk. (3.1.25)

The use of exp(ik · x) and natural units, tells us that k = ω the angular frequency for the

gravitational waves in the region k, k + dk. Above we should view d log k = dk/k as unit-less

though technically log k does not make any physical sense. This equation will be very useful

in computation of the energy spectrum. However before making use of Eq. (3.1.25) we need a

method to solve Eq. (3.1.15) for ḣTT
ij .

3.1.3 Solutions to the Field Equations

In order to solve Eq. (3.1.15) we cast it into a simplified form, by use of Fourier transformation,

Eq. (3.1.23)

ḧTT
ij (η,k) + 2

ȧ(η)

a(η)
ḣTT
ij (η,k) + k2hTT

ij (η,k) =
16π

M2
pl

TTT
ij (η,k), k2 = k · k, (3.1.26)

Solving Eq. (3.1.26) can be done numerically [179], using methods such as Runge-Kutta,

Leap-Frog, and Implicit Euler, or other numerical differential equation solvers. The advantage

of using one of these methods, is that in a self consistent calculation the scale factor a(η)

is unknown prior to simulation. The fields that make up the matter content typically have

complicated solutions that must be solved numerically. This causes the form of a(η) to be

unknown as it depends on the matter evolution. Therefore numerical methods where a(η) is not

a known quantity is useful. The use of numerical methods pervades the subject of stochastic

gravitational backgrounds and is worth the time of understanding the complications within it as

in Sec. 3.3 we will explore a solution to a stability issue that arrises in some numerical methods.

When using a numerical method to solve a set of differential equations, there is always a

balance between accuracy and speed of a simulation. To clarify, the speed of an algorithm

is not considered in actual seconds or minutes of a clock but rather how many operations are

performed, when fewer operations are performed the algorithm is considered faster. Usually

algorithms that are fast suffer from inaccuracies, however increasing the accuracy usually re-

quires the use of more memory and thus increasing the number of operations. To illustrate this
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trade off we will briefly review common, simple, methods of solving differential equations via

numerical simulation.

In all numerical methods the full solution to some differential equation dy/dt = f ′(t, y(t))

can be approximated by a method where you iteratively make small steps towards the final

evaluation parameter, for example the final time of an evolution of a system of equations. In the

simplest method, the Euler method, you advance your solution by assuming your step size is

small enough that the final result error is small. You iteratively find the value of your function

y by use a Taylor expansion

y(t+ δt) ≈ y(t) + f ′(t, y(t))δt+O
(

1

2
f ′′(t, y(t))δt2

)
, (3.1.27)

Above we’re now using big O notation that indicates the order of the dominant error comes

from. Typically the terms 1
2
f ′′(t, y(t)) are dropped, and it is understood that some over all

constant is involved when writing the order of the solution.

The method in (3.1.27) is the explicit Euler first order method. This means that each pro-

gressive step depends on the step before it e.g. you explicitly use the previous iteration in the

next. It is first order even though each step has error O(δt2), the accumulated error is of order

O(δt). This results from dividing the interval of interest, which we will call t : (a, b), into N

discrete steps of size δt the accumulated error is then estimated as

E = Max{1

2
f ′′(t, y(t))}Nδt2 =

(b− a)

2
Max{f ′′(t, y(t))}δt ' O (δt) , (3.1.28)

where Max{f ′′(t, y(t))} is the maximal value of f ′′(t, y(t)) in the interval of (a, b). The er-

ror estimate in first order methods scales with the step size δt. Obviously to make the error

smaller we should decrease the step size δt, however this requires us to increase N , requir-

ing more computational time. To increase the accuracy with the same number of steps N , or

less, methods like RK second order algorithms are used. However, by increasing the accuracy

we require more storage of additional variables. Note that in terms of physical time (seconds,

hours, etc.), if a computer can store additional variables more rapidly than it can run through

serial operations (iterations), then there is little disadvantage to these types of methods. To

quantitatively understand how second order algorithms work, we will use the example of an

RK method. Runge-Kutta methods employ the concept that evaluating the term f ′(t, y(t)) at

some intermediate point(s) between t and t + δt we decrease the error of each step. We can
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generically express this idea for a RK sth order term by

y(t+ δt) = y(t) +
s∑

m=1

bmkm +O
(
δts+1

)
k1 = δtf ′(t, y(t))

k2 = δtf ′(t+ c2δt, y(t) + a21k1)

...

ks = δtf ′

(
t+ csδt, y(t) +

s∑
m=1

asmkm

)
(3.1.29)

For the 2nd order RK algorithm we have

yn+1 = yn + δt (b1f
′(t, y(t)) + b2f

′(t+ c2δt, y(t) + a21k1)) +O
(
δt3
)
, (3.1.30)

where the short hand yn = y(t) and yn+1 = y(t+ δt) is used. We solve for bi, c2, a21 via Taylor

expansion to the same order and comparing the results. First expand (3.1.30) to give

yn+1 = yn + (b1f
′
n + b2f

′
n) δt

+

(
a21b2

∂f ′

∂y
f ′n + c2b2

∂f ′

∂t

)
δt2 +O

(
δt3
)
. (3.1.31)

Now we expand the general solution of the Taylor series

yn+1 ≈ yn + f ′nδt+
1

2

df ′

dt
δt2 +O(δt3),

≈ yn + f ′nδt+
1

2

(
∂f ′

∂t
+
∂f ′

∂y
f ′n

)
δt2 +O(δt3). (3.1.32)

Comparing (3.1.32) and (3.1.31) allows one to solve bi, c2, a21 via

b1 + b2 = 1,

a21b2 =
1

2
,

c2b2 =
1

2
. (3.1.33)

One common solution is b1 = 0, b2 = 1, a21 = c2 = 1/2. This results in

yn+1 ≈ yn + δtf ′
(
t+

δt

2
, yn +

δt

2
f ′n

)
+O(δt3). (3.1.34)

Equation (3.1.34) is one solution to the RK 2nd order solutions, this particular solution is known

as the mid-point method. Which has the explanation that the step term is evaluated at the mid-

point between t and t+ δt. From this exercise it is important to note that in (3.1.34) we require
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two evaluations of f(t, y(t)) and thus increases the number of operations. We will continue to

explore further complications with numerical methods in the next sections.

An attractive alternative to using numerical differential equation solving algorithms is the

use of Green’s functions solutions to (3.1.26). For known scale factors of the form

a(η) = αηn, (3.1.35)

with α and n constant, it was realized in [59] that (3.1.26) has the solutions

hTT
ij (η,k) =

16π

M2
pl

k

ηn−1

∫ ηf

ηi

dη′ (η′)n+1 (jn−1(kη′)yn−1(kη)− jn−1(kη)yn−1(kη′)) TTT
ij (η′,k).

(3.1.36)

where jn(x) and yn(x) are spherical Bessel functions of the first and second kind, respectively.

Here ηi is the starting time of the source, and ηf is the final time at which hTT
ij is evaluated,

ordinarily the time after which the emission of gravitational waves is negligible. The advantage

of (3.1.36) is that it is exact. In practice we must evaluate the integral in (3.1.36) numeri-

cally, however integrals evaluated numerically do not inherently suffer from instability issues

as numerical differential equation methods do. A disadvantage of using the Green’s function

approach is that we require the form of a(η) before evaluation of (3.1.36). In section 3.3 it will

be shown that this may present an issue when attempting to simulate physics of pre-heating.

3.1.4 Sources of Anisotropic Stress

With the equations to solve for the energy density per unit frequency, and a method for solving

for ḣTT
ij , we still need to calculate the source term TTT

ij (η,k) and the scale factor a(t). The

scale factor is governed by the Friedmann equations for a flat background(
ȧ(t)

a(t)

)2

=
8π

3M2
pl

ρ,
ä(t)

a(t)
= − 4π

3M2
pl

(ρ+ 3P ) , (3.1.37)

where ρ, P are the isotropic energy density, and isotropic internal pressure of the comoving

perfect fluid respectively. However we do not know what the particle content of ρ and P is. In

order to understand these terms in the era immediately after inflation we need to express the

isotropic energy density and pressure in terms of the relevant fields. Immediately after inflation
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ends, we assume we can use classical analysis of the fields in a quasi-classical setting. To find

expressions for ρ and P we will use a Lagrangian for N real scalar fields assumed to be the

dominant fields at the time in question. The inflaton is identified as Φ0 = φ(x, t) and fields

Φi = χi(x, t) represents fields which may cause pre-heating, as was outlined in Sec. 1.2.5,

or be involved in phase transitions. The Lagrangian appropriate to describe gravity and these

fields is given by the Hilbert action [180], note that for fields with non-integer spin it it may be

more appropriate to use the Cartan-Einstein formulation of GR [181]

S =

∫
d4x
√−ḡ

(
M2

pl

16π
R̄ + L(Φi)

)
, L(Φi) =

1

2

N∑
i=1

ḡµνD̄µΦiD̄νΦi − V (Φi). (3.1.38)

Variation of (3.1.38) with respect to ḡµν and Φi gives

R̄µν −
1

2
ḡµνR̄ =

8π

M2
pl

(
− 2√−ḡ

δ

δḡµν
√−ḡL(Φi)

)
,

∂µ∂
µΦi + 3

ȧ(t)

a(t)
Φ̇i = − ∂V

∂Φi

(3.1.39)

which then allows the identification

Tµν = − 2√−ḡ
δ

δḡµν
√−ḡL(Φi) = −2

δL
δḡµν

+ ḡµνL. (3.1.40)

With the given form of (3.1.38)

Tµν = −
N∑
i=1

∂µΦi∂νΦi +
1

2
ḡµν

N∑
i=1

∂κΦi∂
κΦi − ḡµνV. (3.1.41)

Now we can find the expressions for energy density ρ and internal pressure P by comparison

with the stress-energy tensor of a perfect fluid

Tµν = (ρ+ P )uµuν + ḡµνP → T00 = ρ+ 2P, Tii = −a(t)2P (no sum on i) (3.1.42)

and our expression for stress-energy in terms of fields, Eq. (3.1.41), giving

ρ =
N∑
i=1

(
1

2
Φ̇2
i +

1

2a2
(∇xΦi)

2 + V

)
, P =

N∑
i=1

(
1

2
Φ̇2
i +

1

2a2
(∇xΦi)

2 − V
)
, (3.1.43)

where above ∇xΦ
2
i is the spatial derivatives of the field squared, to clarify in cartesian coordi-

nates it takes the form ∇xΦ
2
i = ∂xΦ

2
i + ∂yΦ

2
i + ∂zΦ

2
i . The expression for ρ and P is not in

general isotropic. To separate the isotropic parts of ρ, and P and the perturbations to the perfect
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fluid, we define the isotropic part as ρiso = 〈ρ〉, and Piso = 〈P 〉 where here 〈. . . 〉 indicate a spa-

tial average over a large enough volume such that perturbations resulting from the terms ∇xΦi

average to zero, that is we take a course grained version of the energy density and pressure to

determine the isotropic contributions. We can find the anisotropic stress, the source of gravi-

tational waves, by applying the TT operator (3.1.18) to the field stress energy tensor (3.1.41).

After the TT operator is applied terms proportional to the background metric ḡµν will be com-

pletely zero thus the only anisotropic parts of the fields is from the term −∑N
i=1 ∂µφi∂νφi that

is fields with spatial gradients will source gravitational waves. These spatial variances in-fact

grow in the pre-heating process which results in a stochastic background of gravitational waves.

It should be noted that different types of the matter fields can be included in L(Φi) here,

however, we will keep strictly to scalar fields. The evolution of the stress-energy tensor T µν

under (3.1.39) is complicated, as is the solution to the scale factor a(t). In order to make

progress on these generally intractable problems we again resort to numerical methods, now

for solving the field Eq. (3.1.39) and scale factor a(t) evolutions.

3.1.5 Lattice Simulations

Since the matter field equations are a system of N partial differential equations one convenient

method of solving these numerically is through finite differencing methods [182]. Finite dif-

ferencing methods solve partial differential equations by discretizing the field on a lattice, for

which in 3 + 1 dimensions takes the form

Φ(t,x)→ Φ(t,x0 + n̂∆x), n̂ = n ê1 +m ê2 + p ê3, (3.1.44)

with (n,m, p) Integers denoting the 3 dimensional location on the lattice along the directions

êi, which are unit vectors in the separate directions comprising the lattice, finally ∆x is the

discrete lattice point spacing. We can solve for the field configurations at the lattice points for

successive iterations of some fixed variable, typically time, in physical applications. The matter

field equations we have in (3.1.39) fully expanded yield

∂2Φi

∂t2
− 1

a(t)2
∇2

xΦi + 3
ȧ(t)

a(t)
Φ̇i = − ∂V

∂Φi

. (3.1.45)
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We can approximate the spatial derivatives in the above as finite differences, which can be

expressed in terms of a Taylor series expansion of the form

Φi(t, x1 + ∆x, x2, x3) ≈ Φi(t,x) + ∂1Φi(t,x)∆x+
1

2
∂2

1Φi(t,x)∆x2,

Φi(t, x1 −∆x, x2, x3) ≈ Φi(t,x)− ∂1Φi(t,x)∆x+
1

2
∂2

1Φi(t,x)∆x2,

∂1Φi(t,x) ≈ Φi(t, x1 + ∆, x2, x3)− Φi(t, x1 −∆, x2, x3)

2∆x
−O(∆x2),

(3.1.46)

and

∂2
1Φi(t,x) = ∆2

1Φi ≈
Φi(t, x1 + ∆, x2, x3)− 2Φi(t, x) + Φi(t, x1 −∆, x2, x3)

∆x2

− O(∆x2). (3.1.47)

We then use a numerical method to iteratively step forward in the fixed variable Φi(t + δt,x)

at each lattice point x. This must be done for each lattice point which in a 3 + 1 dimensional

field theory we have N3 terms to evaluate ∂2Φi/∂t
2 for a lattice consisting of N points per

orthogonal direction. We must update each point, and we need the first order derivatives to

compute the anisotropic stress. For this reason we require storing both first and second order

derivatives at each point thus doubling the number of stored points 2N3. In the next section we

address the issues associated with lattice simulations.

3.1.6 Computational Stability and Discrete Fourier Transforms

When doing lattice simulations, there are several effects that we must account for. The first of

these is we handle the finite nature of the lattice when simulating an infinite space, specifically,

what do we do at the lattice boundaries? The boundaries of the lattice can be fixed, periodic,

or free. For the simulation considered periodic is a natural choice, because the lattice can

be viewed as a representative volume of the total universe. The isometric and homogenous

assumption of the universe, allows the interpretation that effects occurring on the boundaries

re-entering the lattice on the opposite side can be understood as a field configuration entering

the lattice from the next identical volume element in the universe. The periodic condition can

be expressed as

Φi(t,x + N̂j∆x) = Φi(t,x), N̂j = N êj. (3.1.48)
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Using a discrete lattice also requires careful consideration of Fourier transformations, for

which we require to calculate (3.1.25). The Sampling Theorem does not allow one to find a

Fourier amplitude of frequencies higher than the Nyquist critical frequency [182] given as

fc =
1

2∆x
=
N

2

1

L
, (3.1.49)

with L the size of one lattice side L = N∆x. Discretizing the Fourier transform of the fields

that form the stress-energy tensor perturbation gives

Φi(t,k) =

∫
d3xΦi(t,x)e−ik·x → Φi(t, n̂k∆k) ≈ ∆x3

N∑
n,m,p=1

Φi(t, n̂∆x)e−in̂k·n̂∆k∆x,

(3.1.50)

where ∆k = 1/L and n̂k = nk ê1k +mk ê2k + pk ê3k, with êik is a unit vector in the k-space

lattice where nk,mk, pk each range over −N/2 to N/2.

It is useful to see how computationally demanding Fourier transforms are. For each k-space

lattice point, of which there are N3, we must calculate (3.1.50) which itself is an order N3

operation. To obtain the entire discrete Fourier transformed (DFT) field it requires N3 × N3

operations. Taking Fourier transforms and simultaneously solving the differential equations as

stated previously, each step in the system is an order 2N3 × N3 × N3 operation, even further

complicated by the fact that each Fourier mode is complex which requires us to store 2 variables

for each Fourier mode, compounding the entire process by 2 leaving an overall operation of or-

der 4N9. We can see even for small lattice sizes of N = 32 at each step we have approximately

1.4 × 1014 operations to perform! Because of this reason it is rare that someone would use a

DFT. An advanced algorithm known as Fast Fourier Transforms (FFT) for which a review of

the most basic form can be found in [182], allows faster execution of Fourier transformations.

These algorithms change DFT from being a (N ×N)3 operation to a (N log2N)3 operation

saving us many operations. We also cut down on the number of operations with the use of

symmetry relations, such as with the stress-energy tensor TTT
ij = TTT

ji .

The final issue we will address associated with use of simulation is stability. If a method to

solve differential equations is insensitive to changes in the discrete stepping size ∆x, it is said

to be stable. To illustrate, consider the differential equation

dy

dx
= −αy, (3.1.51)
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where α is a positive real constant. The solution to (3.1.51) is y(x) = Ae−αx with A some

arbitrary constant to be fit with initial conditions. Any good numerical method should return a

result near the exact solution, however this type of equation suffers from instability, for example

if we use the explicit 1st order Euler method, one iteration gives

y(x+ δx) = y(x)(1− αδx), (3.1.52)

This result will result in a perfectly acceptable numerical solution so long as 1/α < δx. This

condition implies that each progressive step satisfies y(x + δx) < y(x) as the full solution

agrees with. However if 1/α > δx then y(x+ δx) > y(x) and each step increases the value of

y(x). This results in an unbounded solution that will go to infinity if the final x parameter value

is sufficiently large. These are known as run away solutions. Obviously this behavior is not the

intended result, we now have the surprising result that a choice of step-size can drastically alter

the numerical results.

In order to combat step size sensitivity implicit methods may be used. To demonstrate, the

implicit 1st Euler method, applied to (3.1.51) results in the ability to use any step size to get the

correct numerical behavior, as seen below

yn+1 = yn + f ′(x+ δx, yn+1)δt,

yn+1 = yn − αyn+1δt,

yn+1 =
yn

1 + αδt
. (3.1.53)

Each step gives yn+1 < yn as expected, regardless of step size. In implicit methods we must

solve an algebraic equation for yn+1 which may not in general be solvable by analytical meth-

ods, nor result in a stable method.

Finite differencing methods can also be unstable, the analysis of which goes under the

name von Neumann stability analysis [182]. We deduce requirements on the lattice spacing by

analyzing the discrete Fourier modes of the numerical solutions. Expressing (3.1.45) with finite

differencing as well as choosing the finite difference described in (3.1.47) for both the time and

spatial derivatives results in

∆2
tΦn =

1

a2
n

3∑
j=1

∆2
jΦn − 3

ȧn
an

Φn −
∂V

∂Φn

, (3.1.54)
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where above it is implicitly implied that Φ is Φi and we now call Φ any of the fields governed

by the differential Eq. (3.1.45). Again we use the short hand Φn = Φi(t,x) and Φn+1 =

Φi(t+ δt,x) as well we use the notation

F = 3
ȧn
an

Φn +
∂V

∂Φn

. (3.1.55)

Expanding and rearranging (3.1.54) gives

Φn+1 = 2Φn − Φn−1 +
δt2

a2
n

3∑
j=1

∆2
jΦn − δt2Fn. (3.1.56)

We can analyze the stability of this method by using the spatial Fourier transformation of the

numerical solutions Φn and expressing the numerical solution as the exact solution plus some

error, which in a finite volume L3 takes the form

Φ(t,x) = Φexact(t,x) +
1

V

∞∑
m=−∞

ξm(t)eiπm·x/L
3

, m = (n,m, p). (3.1.57)

Applying this form of the fields on (3.1.56) gives

ξm,n+1 = 2ξm,n− ξm,n−1−
4δt2

a2
nδx

2

3∑
j=1

ξx,n sin2

(
π∆xj
2V

)
− δt2

∞∑
m=−∞

e−iπm·x/L
3

Fn. (3.1.58)

The exact part of the solution has dropped from the equations since it satisfies the differential

equation to all orders. For the sake of discussion we drop the possibly non-linear terms con-

tained in Fn as this complicates the analysis. For stability we require that |ξm,n+1/ξm,n| ≤ 1

the error does not grow unbounded step by step for any mode. For the worst case scenario the

error propagates from the previous step at the same level so ξx,n−1 = ξx,n we then resolve∣∣∣∣1− 3
4δt2

a2
n∆x2

sin2

(
π∆x

2V

)∣∣∣∣ ≤ 1. (3.1.59)

To ensure absolute stability in this method requires

√
3

δt

an∆x
≤ 1

2
. (3.1.60)

This is the famous Courant condition for wave equations [182]. We can see however in (3.1.60)

that this condition cannot be satisfied at all times since an ≤ 1 because of the normalization

a(today) = 1 so this form is completely unstable! We can avoid this issue by changing coor-

dinates and scaling the fields, so that 1/an drops for this condition.
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Felder and Tkachev, created a program LATTICEEASY [183], with all statements above

were addressed. The program LATTICEEASY performs self consistent calculations of the Fried-

mann equations and field evolutions while enforcing the Courant condition, and checking sta-

bility of the fields throughout the simulation. The fields and coordinates are scaled via

xpr = Bx, Φpr = AarΦ, dtpr = Basdt, (3.1.61)

where B, A, r, and s are constants. These transformations change the field equations (3.1.45)

into

Φ′′pr +(s− 2r + 3)
a′

a
Φ′pr − a−2s−2∇2

prΦpr −
(
r(s− r + 2)

(
a′

a

)2

+ r
a′′

a

)
Φpr

+
∂

∂Φpr

(
A2

B2
a−2s+2rV

)
= 0, (3.1.62)

where Φ′, a′ denote derivation with respect to program time tpr. In attempts to ensure stability

of the field equations the constants A, B, s, and r take specific values that depend on the

dominant part of the potential which we assume takes the form

V =
α

β
Φβ. (3.1.63)

First LATTICEEASY scales the fields to their initial values to prevent unnecessarily large or

small field values possibly causing over or underflows

A =
1

Φ0

, (3.1.64)

Next LATTICEEASY removes the dampening term a′Φ′pr/a by enforcing s−2r+3 = 0→ s =

2r− 3. This allows us to check the Courant condition for stability as the matter field equations

now take on the form of wave equations with a source. To avoid large sources that may drive

large fluctuations in the field configuration, the dominant potential term is scaled to a similar

order as the rescaled fields, such that B and r satisfy

B =
√
αΦ
−1+β/2
0 ,

A2

B2
a−2s+2rV =

a6−2r−βr

β
Φβ
pr,

6− 2r − βr = 0→ r =
6

2 + β
. (3.1.65)

With these scalings LATTICEEASY uses a staggered-leapfrog method of progressing the evolu-

tion of the fields. Using LATTICEEASY we can calculate the anisotropic stress-energy tensor,



114
use a FFT, and project the TT part for sourcing the solution of the metic perturbation, for which

one can use some numerical differential equation solving method, or approximate the scale

factor evolution by a fixed power law and use a numerical integration of an appropriate Green’s

function to solve for the metric perturbation, and therefore calculate the power spectrum.

3.1.7 Numerical Solid Angle Integration on a Lattice

When we compute the power spectrum we require an integration over the solid angle in k-space

of the form ∫ ∣∣∣ḣTT
ij (η,k)

∣∣∣2 dΩk . (3.1.66)

To compute this on a three dimensional rectangular lattice we must choose some k- value of

which only can be evaluated on the discrete rectangular k-space values. For example if we

choose some k -value along one axis as the radius to evaluate the solid angle integral. Sweeping

through the solid angle sphere at that radius we will not have the value of
∣∣∣ḣTT
ij (η,k)

∣∣∣2 at each

point as seen in Fig. 33. To remedy this we will use a 3-dimensional interpolation method

Figure 33 : Sweeping out a solid angle, as seen in blue, in a rectangular lattice requires us to use some in-
terpolation method to find the intermediate values of the integrand function as the values of the integrand
are only known at the lattice points depicted in black dots.

to obtain an approximate value of
∣∣∣ḣTT
ij (η,k)

∣∣∣2 so long as the k value lies within the k-lattice

values. Interpolation of the scalar function
∣∣∣ḣTT
ij (η,k)

∣∣∣2 is done by expanding the function in a
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1

2

3

Figure 34 : First one determines the interpolated values of the function on each opposite side of the
square, as seen by the arrows towards points 1 and 2. From which the the interpolated value along the y
direction is found as seen by following the arrows towards point 3. This process is then repeated in the
z direction to fully interpolate the value of the function in a 3 dimensional lattice.

Taylor series around each of the eight nearest lattice points that create a cube around the desired

k-value. We will demonstrate this method with a scalar function f(x) where we interpolate the

function at some point x. First we express the point x in component form for a rectangular

coordinate system (x, y, z). To find the desired point we interpolate the value of the function

on the opposite faces of the cube along the z-direction. This is done by finding the interpolated

values of the function on each face by first interpolating the value of the function along the

x-direction on the opposite sides of the square making in the x-y plane as depicted in Fig. 34

by the blue points 1 and 2, then finding the interpolated value in the y-direction for each face.

Quantitatively the value of the function at point 1 : (x, y1, z1) of Fig. 34 is found by expanding

the function at the lattice points for which we do have the value (at the lattice points which the

arrows pointing towards 1 originate from)

f(x1) = f1 ≈ f(x, y1, z1) + ∂xf(x, y1, z1)(x1 − x) ,

f(x2) = f2 ≈ f(x, y1, z1) + ∂xf(x, y1, z1)(x2 − x). (3.1.67)

We approximate ∂xf(x) by

∂xf(x, y1, z1) ≈ f2 − f1

∆x
=
f2 − f1

x2 − x1

. (3.1.68)
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Which then gives

f1

(
x2 − x
x2 − x1

)
+ f2

(
x− x1

x2 − x1

)
≈ f(x, y1, z1). (3.1.69)

This process is then repeated for the y-value, which can be visualized from following the arrows

from points 1 and 2 in Fig. 34. This is done for both opposite faces of the cube and then finally

interpolated along the z-axis to give the fully interpolated value at the desired point x.

3.1.8 Transfer functions

Running the program we setup the initial conditions of the field such that we are immediately

following inflation at some physical comoving time t0, corresponding to a program time tpr,0,

such that the inflaton is oscillating with small amplitude about the minimum of its self inter-

action potential. This drives the amplification of various modes of the coupled scalar fields.

Eventually the expansion of the universe causes oscillations of the inflaton and coupled fields

to dampen, so that fluctuations are no longer large enough to source energy into gravitational

waves generated by this mechanism. At this time the program stops corresponding to a final

program time tpr,f , this corresponds to some physical time in our early universe which can be

solved for via

tf = t0 +

∫ tpr,f

tpr,0

a−s(tpr)dtpr. (3.1.70)

Once we know the result of the power spectrum at this time tf we need to transfer these results

to values we would observe today. We take advantage of the fact that gravitational waves

propagate at the speed of light and red-shifts in the same way that electromagnetic radiation

does. The redshift of objects moving at the speed of light can be understood because for speed

of light travel ds2 = 0. This along with assuming the radiation moves along a straight path

(radially) from the emitted time te to the point of detection td along a coordinate distance R

gives the relation

ds2 = 0 = dt2 − a(t)2dr2 → R =

∫ td

te

dt′

a(t′)
. (3.1.71)

Assuming the first wave front is emitted at a comoving time te and detected at a time td and

the following wave front is emitted at a time te + λe, where λe is the emitted wavelength in

natural units, when the second wave front is detected, one would associate the time between

the first wavefront and second wavefront as the wave length in natural units. The arrival of the
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second wave front occurs at td +λd, where λd is the observed wavelength at the detection point

in natural units. Since both wave fronts travel along the same coordinate distance R we find∫ td

te

dt′

a(t′)
=

∫ td+λd

te+λe

dt′

a(t′)
→

∫ te+λe

te

dt′

a(t′)
−
∫ td+λd

td

dt′

a(t′)
= 0,

λe
a(te)

=
λd
a(td)

, (3.1.72)

where the second equality assumes that the variation of a(t) time scale is much smaller than the

times λd, λe allowing us to assume a(t) remains constant in the integration regions. Using this

relation on the frequencies for which we calculate the power spectrum, transfers the discrete

frequencies calculated at the end of the simulation to the values detected today via

k(today) = k(tf )
a(tf )

a(today)
. (3.1.73)

This is simply red shifting the power in each frequency to the corresponding red-shifted fre-

quency today. The effect of the expansion of the energy density in the gravitational waves has

the same diluting effect as electromagnetic radiation such that

ρgw(today) = ρgw(tf )

(
a(tf )

a(today)

)4

. (3.1.74)

We can see that the energy contained in the bin k, k + dk gets redshifted and diluted.

To display these results it is common practice to display the results not in energy density per

frequency but rather as h2dΩgw/d log k where Ωgw = ρgw/ρc, with ρc the critical energy density

to close the universe. Representing the data this way ensures the exact value of the Hubble

constant H = h 100 km/s/Mpc does not effect the final result. Take note that it is common

practice to express h2dΩgw/d log k as simply h2 Ωgw(k) with the d/d log k understood, the

context should make it clear.

In order to complete the transfer functions we need a method to determine the ratio a(tf )/a(today).

We appeal to the conservation of entropy in the universe in order to calculate this ratio. The

total entropy in SM matter can be expressed normalized to the photon entropy in the form

S ∝ a(t)3gS(t)Tγ(t)
3 = const,

gS(t) =
∑
boson

gi

(
TF.O.
i

Tγ(t)

)3

+
7

8

∑
fermion

gi

(
TF.O.
i

Tγ(t)

)3

, (3.1.75)
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where gi, TF.O.

i are the internal spin degeneracies of particle type i and the freeze out tempera-

ture for species i respectively. Conservation of entropy gives

a(tf )

a(today)
=

(
gS(today)

gS(tf )

)1/3
Tγ(today)

Tγ(tf )
, (3.1.76)

where gS(today) = 2 + 7
8
· 3 · 2 ·

(
4
11

)
= 3.91 consisting of photons and three neutrino species.

We can write Tγ in terms of the total energy density from SM matter. The total energy density

from SM matter is dominated by particles that are relativistic at a temperature Tγ . Because of

this the total energy density in SM matter is normalized to photons, and referred to as energy

density in radiation (as relativistic particles behave as such) expressed as

ρrad =
π2

30
gρ(Tγ)T

4
γ →

(
30

π2

ρrad

gρ

)1/4

= Tγ. (3.1.77)

where the degrees of energy freedom is given as

gρ(t) =
∑
boson

gi

(
TF.O.
i

Tγ(t)

)4

+
7

8

∑
fermion

gi

(
TF.O.
i

Tγ(t)

)4

. (3.1.78)

From this it follows that

a(tf )

a(today)
=

(
gS(today)

gS(tf )

)1/3(
gρ(tf )ρrad(today)

gρ(today)ρrad(tf )

)1/4

. (3.1.79)

For times in the early universe gS ≈ gρ, we will extend this approximation to today, so that the

final expression takes the form

a(tf )

a(today)
=

(
ρrad(today)

ρrad(tf )

)1/4(
gS(today)

gS(tf )

)1/12

, (3.1.80)

where ρrad(tf ) is calculated in terms of the fields at final simulation time.

3.2 Gravitational Waves from Second Order Global Phase Transitions

We now apply the methods developed in the previous section to simulate the gravitational

wave spectrum to be produced today from a second order global phase transition sourced from

different local, non-zero, vacuum expectation values of a broken SO(N) field symmetry of a

scalar field φi. We are motivated to study this model because particle physicists are motivated

to increase the symmetry group of the SM and thus unite the strong and electroweak forces

into a GUT. The larger symmetry must become broken as the universe cools in the case the
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transition is first-order, bubbles of the broken phase nucleate and coalesce. In this model the

phase transition happens very rapidly—the entirety of the universe can end up in a unique state

in less than a Hubble time. This process is likely to produce gravitational radiation [184, 170,

174, 185] as bubbles collide and coalesce. Another case could be the phase transition could be

second-order where the fields smoothly transition to the broken phase as the temperature of the

universe drops. If the broken phase has degeneracies, the effects of the existence of this phase

transition can lead to observational effects. At various initially causally disconnected regions of

the universe, the SO(N−1) degeneracy of the minimization of the potential associated with the

SO(N) symmetry allows domains of space-time where the field values have different vacuum

expectation values. As these domain walls collide, the differences in field value settle out, and

self order, sourcing a stochastic gravitational wave background. It is worth noting that a scale-

invariant spectrum of gravitational radiation is a key prediction of inflation [152, 186]. It has

been noted by some authors that phase transitions of the type described above can however,

mimic the scale-invariant inflationary signal [173, 169, 187]. In previous studies, authors have

relied on large-N approximations to calculate the gravitational wave signal, but here we make

no approximations other than those associated with numerics.

We begin with the assumptions that the universe is radiation dominated at the time when

the phase transition occurs, and that the energy associated with the fields undergoing the phase

transition is a small fraction, α, of the total energy density ρT at the time of the transition. The

total energy density, at any time, is given by

ρ = ρrad + ρφ, ρφ =
∑
i

1

2

(
φ̇2 +

1

a2
∇xφ

2
i

)
+ V (φi, T ) (3.2.1)

where ρφ is the energy density associated with the scalar fields φi and

ρrad = (1− α)ρ . (3.2.2)

Since the universe is dominated by the radiation energy-density in the relevant eras, we will

only consider cases where α� 1, so that the universe is well described by assuming H2 ∝ a−4

because the potential in (3.2.1) is temperature dependent, we may simulate the phase transition

by tracking the temperature throughout the simulation.
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3.2.1 Statistical Mechanics of Quantum Fields

In order to arrive at the temperature dependent potential one must resort to the study of sta-

tistical mechanics of quantum fields. We can compute the potential by first expressing the

fundamental quantity in quantum statistical mechanics, the partition function [188], as

Zp = Tr e−H/T , (3.2.3)

with H the Hamiltonian of the system and T the temperature. The trace can be represented in

field configuration space via

Zp =

∫
Dφ 〈φ|e−H/T |φ〉 =

∫
Dφ 〈φ|eiH(iβ)|φ〉 . (3.2.4)

Equation (3.2.4) is specifically written in a form that displays the quantum propagator with the

substitution t→ iβ = i/T . With this in mind we can use the Feynman path integral formulation

of the propagator to arrive at

Zp =

∫
Dφ

∫ φ(iβ,x)

φ(0,x)

Dχ ei
∫ iβ
0 L(χ)d4x . (3.2.5)

We now make a change of variable, known as a Wick rotation, from t→ iτ such that the action

for scalar fields takes the form

iS = −SE = −
∫ ∫ β

0

(
1

2
∂τφ(x̄)2 +

1

2
∇xφ(x̄)2 + V (φ(x̄))

)
dτd3x , (3.2.6)

where now the fields are functions of x̄ = (τ,x), and we compact the notation by using the

4-dimensional Euclidean metric ∂̄2 = ∂2
τ +∇2

x and writing φ(x̄) = φ̄. At this point it is worth

noting that Eq. (3.2.6) takes on the form of the classical Hamiltonian with the replacement

t→ τ . With this notation we may now write the partition function as

Zp =

∫
Dφ̄
∫ φ̄(β,x)

φ̄(0,x)

Dχ̄ e−SE [χ̄] =

∫
Dφ̄
∫ φ̄

PBC

Dχ e−SE [χ̄]. (3.2.7)

In the second equality the integration limits can be taken over all field configurations with the

condition that the fields χ̄ have periodic boundary conditions (PBC) where the period is β i.e.

φ̄(τ,x) = χ̄(τ,x) = χ̄(τ + β,x) = φ̄(τ + β,x) . (3.2.8)

Equation (3.2.7) also allows identification of the probability distribution of field configurations

which will be useful later on, specifically

Zp =

∫
Dφ̄ PR[φ̄] → PR[φ̄] ∝ eβHeff [φ̄] =

∫ φ̄

PBC

Dχ e−SE [χ̄], (3.2.9)
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where PR[φ̄] is the relative probability of the field configuration φ̄. From Eq. (3.2.9) we can

extract the thermal potential by finding the quantum, thermal effective Euclidean action S(eff)
E

from the path integral in (3.2.9).

The effective action can be formulated by following [188] and identifying the effective

Hamiltonian via

PR[φ̄] =

∫ φ̄

PBC

Dχ e−SE [χ̄] = N (β)eβHeff [φ̄] , (3.2.10)

whereN (β) is some temperature dependent function. We can make an approximate evaluation

of (3.2.10) by expanding SE[χ̄] about the field configuration φ̄0 that satisfies

δSE
δχ̄

∣∣∣∣
χ̄=φ̄0

= 0. (3.2.11)

Now we make a change of variable and expand the action around the fixed field configuration

φ̄0

χ̄ = φ̄0 + φ̄, Dχ̄ = Dφ̄ . (3.2.12)

Under this change of variable, we retain the first term in the expansion of SE to give

PR ≈ e−SE [φ̄0]

∫
PBC

Dφ̄ e−
1
2!
φ̄· δ

2SE
δφ̄2

0
·φ̄
, (3.2.13)

where above we use the shorthand

φ̄ · δ
2SE
δφ̄2

0

· φ̄ =

∫
d4x̄d4x̄′ φ̄(x̄′)

δ2SE
δφ̄(x)δφ̄(x′)

∣∣∣∣
φ̄=φ̄0

φ̄(x̄) . (3.2.14)

To continue with the analysis we must now choose a potential for the N scalar fields to break.

We use a potential that supports a non-zero vev of the form

V (φ) =
λ

8

(
φ2 − v2

2

)2

= −1

2
m2

0φ
2 +

λ

8
φ4 +

v4λ

32
, (3.2.15)

where φ2 =
∑

i φ
2
i and m2

0 = λv2/4. Finding the functional derivatives in (3.2.14) gives

φ̄ · δ
2SE
δφ̄2

0

· φ̄ = φ̄ ·
(
−∂̄2 +m2

0 +
3λ

2
φ̄2

0

)
· φ̄ . (3.2.16)

The integration in (3.2.13) can be shown to be proportional to

PR ∝ e−SE [φ̄0] exp

[
−1

2
Tr ln

(
−∂̄2

x̄ +m2
0 +

3λ

2
φ̄2

0

)]
. (3.2.17)
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We evaluate the trace in Fourier space, keeping in mind the periodic behavior of φ̄. The period-

icity is enforced by the Fourier series

φ̄(x̄) =
1

β

∞∑
n=−∞

φn(x)eiknτ , kn =
2πn

β
. (3.2.18)

Under this Fourier series the trace becomes

1

2
Tr ln

(
−∂̄2 +m2

0 +
3λ

2
φ̄2

0

)
=

1

2

∫
d3x

∞∑
n=−∞

∫
d3k

(2π)3
ln
(
k̄2 + m̄2

)
, (3.2.19)

where k̄2 = k2
n + k2 and m̄2 = m2

0 + 3λφ̄2
0/2. The sum over frequencies is know as Matsub-

ara frequency sums. A sum of this kind is equivalent, up to an overall constant to a contour

integral [188], giving a sum over residues of the form

1

2

∫
d3k

(2π)3
(β
√
k2 + m̄2 + 2 ln(1− e−β

√
k2+m̄2

) + k independent constant), (3.2.20)

The k independent constant and integration of
√
k2 + m̄2 can be absorbed into the overall

temperature dependent proportionality constant, so that we only retain the ln term. Evaluation

of this last term results in

1

2π2

∫ ∞
0

k2 ln(1− e−
√
β2k2+β2m̄2

) ≈ − π2

90β3
+
m̄2

24β
, m̄β � 1 . (3.2.21)

We can now express the effective Hamiltonian as

βHeff ≈ SE +

∫
d3x

m̄2

24β
= β

∫
d3x

(
1

2
∂xφ̄

2
0 + V (φ̄0) +

m̄2

24β

)
. (3.2.22)

In the second equality, we assumed that φ̄0 has no τ dependence. We can now find to leading

order in temperature, the effective potential

V (φi, T ) ≈ λv2

8

(
T

2v2
− 1

)
φ2 +

λ

8

(
φ4 +

v4

4

)
= m2

eff(T )φ2 +
λ

8

(
φ4 +

v4

4

)
, (3.2.23)

where the temperature dependent effective mass is parameterized by

m2
eff =

λv2

8

(
T

Tc
− 1

)
. (3.2.24)

At temperatures higher than the critical temperature, Tc, the effective mass is positive, the

potential has a unique minimum at φi = 0, and this minimum has full SO(N) symmetry. When

the temperature drops to Tc where the effective mass of the field vanishes, a phase transition
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occurs as the potential now allows a new stable vacuum state with an SO(N − 1) symmetry, a

state for which the fields take non-zero vevs. The simulation can keep track of the temperature

with the relations between energy and the Hubble value at the start of the simulation

T (t) =
T0

a(t)
, ρ0 =

π2

30
gρ(T0)T 4

0 =
3M2

pl

8π
H2

0 , (3.2.25)

where T0 the initial temperature to be solved for as a function of the initial Hubble value H0.

We will take the number of relativistic degrees of freedom to initially be gρ(T0) = 1000.

3.2.2 Initial Field Conditions on the Lattice

Initially the simulation will start at T0 = Tc where the field has a mean value, φ = 0; however,

there is a variance associated with this temperature,

σ2 =
〈
φ2
〉
− 〈φ〉2 =

〈
φ2
〉
, (3.2.26)

that sets the distribution of field values at the time of the transition. The physics of interest

demand that each lattice site be assigned the average value of the field contained in one Hubble

volume. We denote by 〈φ〉 = φv, this average is done over one Hubble volume. Since each

lattice site is causally disconnected, we select the field value at each lattice site randomly from

a probability distribution of possible field values. Determining the distribution is done by using

P (φv = φ′) =

∫
DφP [φ]δ(φv − φ′) = 〈δ(φv − φ′)〉. (3.2.27)

Equation (3.2.27) finds the probability that φv has the value φ′ by summing the probabilities

of all the possible field configurations that for which φv = φ′, where P [φ] is the probability

functional of the field configuration φ. The volume-averaged field is given as

φv =
1

V

∫
V

d3xφ(x) =
1

V

∫ ∞
−∞

d3x I(x)φ(x), (3.2.28)

where, for computational convenience, we have introduced a window function I(x), which is a

function which is 1 for x within the volume of interest and 0 outside of it. We can approximate

(3.2.27) using the cumulant expansion technique, which gives a Gaussian approximation

P (φv = φ′) ≈
√

1

2πσ2
exp

(
−(φ′ − µ)2

2σ2

)
,
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with µ = 〈φv〉 and σ2 = 〈φ2

v〉 − 〈φv〉2. The problem is now to compute the moments of the

field given by

〈φv〉 =

∫
DφP [φ]

(
1

V

∫
V

d3xφ(x)

)
,

〈φ2
v〉 =

∫
DφP [φ]

(
1

V 2

∫
V

d3xd3y φ(x)φ(y)

)
. (3.2.29)

The full probability functional P , can be found in, [189], but we consider only the leading order

temperature dependence. We saw in (3.2.23) that leading order temperature dependence modi-

fies the potential by replacing m with a temperature dependent term, meff(β). For temperatures

at and above Tc we are in a symmetric phase of the effective potential. We then have

P [φ] =
e−βHeff [φ]

Z
=

1

Z
exp

[
−β
∫
d3x

(
1

2
∂xφ

2 + Veff

)]
(3.2.30)

Note that the normalization Z is given as

Z =

∫
Dφ e−βHeff [φ] . (3.2.31)

We can make use of a more general expression, known as a generating functional, that is related

to the moments of the field by the expression

W [J ] =
1

Z

∫
Dφ exp

[
−β
∫
d3x

(
1

2
∂xφ

2 + Veff + Jφ

)]
,

≈ exp

[
− 1

2β
J ·∆ · J

]
, (3.2.32)

where in the last line we are taking using only the zeroth-order terms involving meff ; that is, we

are neglecting the term λφ4 as it will produce higher-order corrections. As well, in (3.2.32) ∆

is given as

(−∂2
x + 2m2

eff)∆(x,x′) = δ(3)(x− x′) ,

∆(x,x′) =

∫
d3k

(2π)3

e−ik·(x−x
′)

k2 + 2m2
eff

. (3.2.33)

With the use of (3.2.32) the moments of the field can now be expressed as

〈φv〉 =
1

V

∫ ∞
−∞

d3x I(x)
δ

δJ(x)
W [J ]

∣∣∣
J=0

,

〈φ2
v〉 =

1

V

∫ ∞
−∞

d3xd3y I(x)I(y)

× δ

δJ(x)

δ

δJ(y)
W [J ]

∣∣∣
J=0

.
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We choose a Gaussian window function for which the integral

∫
d3x I(x) = 4πR3/3 =

4π/3H3
c is one Hubble volume at the time T = Tc. Evaluating the integrals of (3.2.34) at

the point T = Tc leads to

〈φv〉 = 0 , 〈φ2
v〉 =

HcTc
4π3/2

. (3.2.34)

Putting this all together, we have

P (φv = φ′) =

√
HcTc
8π5/2

exp

(
− φ′2

4π3/2
HcTc

)
, (3.2.35)

from which we draw the initial values of the initial field values.

3.2.3 Results of the Simulation

The simulation takes advantage of a 4th order RK algorithm to calculate the metric perturbation,

and assumes gS(today)/gS(tf ) = 1/100 for use in the transfer functions. The first major differ-

ence between the form of the gravitational-wave spectrum from self-ordering of the fields from

domain interactions and that predicted by inflation is the lack of power at high-frequencies.

This cut-off feature exists because second order phase transition fluctuations occur on larger

than Hubble length scales.

In [161] the cut-off frequency is shown to be related to the Hubble length at the time when

the gravitational wave is generated H , the result of which is

fpeak = 6× 10−10 k√
MplH

Hz. (3.2.36)

where k = H the largest possible frequency for this model. The first Friedmann equation,

H2
c =

8π

3

ρT
M2

pl

, (3.2.37)

then implies that the cut-off should appear at

fpeak ' 1011ρ
1/4
T

Mpl

Hz. (3.2.38)

For example, with ρ1/4
T = 10−4Mpl we expect the cutoff to be at f ' 107 Hz, which agrees with

the results of the simulation shown in Fig. 35.

This model provides a probe of the energy scale of some symmetry breaking on BSM

physics, as the sharp Hubble-length wall cut off can probe the era at which the symmetry
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Figure 35 : The figure displays the present-day gravitational wave spectrum as calculated from the lattice
simulation, from self-ordering fields on larger than Hubble volume scales. The figure displays, from
top to bottom, the spectrum for N scalar fields which undergo breaking the SO(N) symmetry with,
N = 2, 3, 4, 5, 8, 16
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Figure 36 : The present-day gravitational wave spectrum from self-ordering. From top (rightmost) to
bottom (leftmost), ρ1/4

T = 10−3Mpl, ρ
1/4
T = 10−4Mpl, ρ

1/4
T = 10−5Mpl.
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breaking occurs. A flat signal as shown in Fig. 35 could be misinterpreted as the gravitational

radiation from primordial quantum fluctuations. It might, however, be possible to distinguish

the two models at very high frequencies due to the Hubble length wall. The behavior of the

gravitational waves can be understood as follows. Initially at the Hubble-length the gradients

due to differing field values sources gravitational waves at this scale. The waves generated

continue to redshift to lower frequencies. After the fields have settled from self ordering, the

overall configuration of the field is the same as the initial configuration, where differing regions

of the the field have different domains of vacuum values, now at a larger Hubble-length scale.

The process repeats and sources gravitational waves at the scale of the new domains, and so on

until the simulation ends.

The amplitude and the essentially flat nature of the spectrum were expected from the ana-

lytical approach of [169, 190] and [187]. It is interesting to note that the spectrum is flat for all

the cases shown in Fig. 35, including those for N = 2, 3, as the analytical methods employed

by [187] assumed that N is large.

In Fig. 36 we observe two important scaling effects. First, we recover the fact that the high-

frequency cutoff given by equation (3.2.38) scales with ρ1/4
T . We can also see that the amplitude

of the spectrum is proportional to the energy density of the universe at the time of the transition,

Ωgw(k)h2 ∝ ρT . This scaling was shown in [169, 190] and [187].

We can compare the numerical results we obtained from simulation with the analytic argu-

ments of [169, 190] and [187], where in both cases the authors use the model presented here to

estimate the gravitational wave signal from the domain interactions. The two sets of authors use

slightly different parameterizations of the model; however, all authors arrive at the conclusion

that there should be a flat gravitational wave spectrum from this transition.

In [169] and [190] (JKM), the authors estimated the power in gravitational waves from field

reordering to be (given by equation (10) in [190] with some modification outlined in [179]) as

ΩJKM
gw h2 =

99

N
Ωradh

2

(
v4

4NM4
pl

)
. (3.2.39)

This can be reduced further by using Ωradh
2 ≈ 2×10−5 and estimating the total energy density

at the phase transition by

〈ρφ〉 '
λv4

32
= αρ = α

3M2
pl

8π
H2
c →

v2

2
=

√
3α

λπ
MplHc. (3.2.40)
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Table 5 : Spectral amplitudes as a function of number of fields for simulations with(
ρ
1/4
T = 10−4Mpl, α = λ = 0.1

)
. The numerical values, ΩSIM

gw h2, are an average value along the spec-
trum taken from the simulations, while the values in the second two columns are obtained from (3.2.39) or
(3.2.43).

N ΩSIM
gw h2 α2ΩJKM

gw h2 α2ΩFFDG
gw h2

2 1.0× 10−18 9.0× 10−21 4.1× 10−20

4 3.8× 10−20 4.0× 10−21 2.1× 10−20

8 8.3× 10−21 2.0× 10−21 1.0× 10−20

16 3.1× 10−21 1.0× 10−21 5.1× 10−21

From Eq. 3.2.40 and the relation H2
c = 8πρT/3M

2
pl, Eq. (3.2.39) becomes

ΩJKM
gw h2 =

0.016

N

α

λ

ρT
M4

pl

. (3.2.41)

Furthermore, in [187] (FFDG), the authors predict a scale-invariant power spectrum (Eq. (5.2)

of [187])

ΩFFDG
gw h2 ' 511

N
Ωradh

2

(
v√

2Mpl

)4

, (3.2.42)

Using Eq. (3.2.40) along with Ωradh
2 ≈ 2× 10−5, the expression in (3.2.42) reduces to

ΩFFDG
gw h2 ' 0.082

N

α

λ

ρT
M4

pl

. (3.2.43)

Both of these estimates assume the universe is comprised only of the scalar fields. However,

we diluted the source by a factor of α, to preserve a radiation-dominated phase during and after

the phase transition; this dilutes the analytic estimates (3.2.39,3.2.43) by a factor of α2.

It is worth pointing out that some of the phase transitions we have simulated result in the

production of global topological defects: global strings for N = 2, global monopoles N = 3,

and global textures for N > 3. Surprisingly, we find that the gravitational radiation produced is

consistent with the large N approximation even for low values of N , where the approximation

is not valid (see the analytic estimates above). The results of the estimates and simulation

data are summarized in Tables 5 and 6. The numerical results suggest a large value of N is not

needed to make a scale invariant spectrum. Since the results of [169, 190, 187] are derived using

a large N approximation for the amplitude, one does not expect these estimates to accurately

approximate the amplitude of the gravitational waves in the low-N limit. It can be seen the

simulations differ from analytic estimates by an order of magnitude and are more accurate at

large N , consistent with the fact that analytic methods are derived from a large N expansion.
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Table 6 : Spectral amplitudes as a function of ρT for simulations with N = 4, α = λ = 0.1. The numerical
values ΩSIM

gw h2 are an average of the spectral values taken from the simulations, while the values in the second
two columns are obtained from (3.2.39) or (3.2.43).

ρ
1/4
T (Mpl) ΩSIM

gw h2 α2ΩJKM
gw h2 α2ΩFFDG

gw h2

10−3 4.7× 10−16 4.0× 10−17 2.1× 10−16

10−4 3.8× 10−20 4.0× 10−21 2.1× 10−20

10−5 4.0× 10−24 4.0× 10−25 2.1× 10−24

3.3 Adaptive Green’s Function Method

In Sec. 3.2, the simulation of the metric perturbation was done via a 4th order RK algorithm

(RK4). In Sec. 3.1.6 however, we saw that in general explicit numerical differential equation

solving methods suffer from stability issues, including the RK4 method. As the system is

iterated, the instability of the solution can typically be suppressed at the step where it occurs

by increasing the accuracy of the method; in particular, changing from a 2nd-order method

to a 4th-order method can move the instability by a power of 2 in the number of iterations.

However, we saw that using implicit methods can remove stability issues, so by choosing a

different algorithm the instability in numerical calculations can disappear entirely.

An easy fix to an instability associated with the method of solving the metric perturbation

is to use a method that numerically integrates an exact expression that only depends on the

stability of the source. For example we saw in Eq. (3.1.36) that the metric perturbation has an

exact solution in terms of Green’s functions (repeated here for connivence)

hTT
ij =

16π

M2
pl

k

ηn−1

∫ η̄

ηi

dη′ (η′)n+1 (jn−1(kη′)yn−1(kη)− jn−1(kη)yn−1(kη′)) TTT
ij (η′,k),

(3.3.1)

where the scale factor is assumed to have the form a(η) = α ηn and again η is the conformal

time coordinate. To understand the computational advantage of this expression, let us consider

the solution with n = 1 appropriate for radiation dominated expansion. Under this assumption

Eq. (3.1.36) takes the form

hTT
ij (η,k) =

16π

M2
pl

∫ η̄

ηi

dη′
η′ sin [k(η − η′)]

kη
TTT
ij (η′,k), (3.3.2)

This expression can be approximately evaluated by any number of numerical integration meth-

ods, the simplest being the rectangular sum method (Riemann sum), which simply cuts the
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Figure 37 : The integral
∫ 6

0 f(x)dx can be approximated in the rectangular sum method by summing the
areas of the rectangular regions under the curve as seen in the figure above.

integration region into N segments of length ∆η and approximates the area under the curve as

a sum of the values of integrand evaluated at n∆η multiplied by the width ∆η, where n ranges

from 0 to N , thus approximating the integration as a sum of the areas of rectangles making the

area under the curve as seen in Fig. 37 In such a simple approximation the error associated with

this method can be extracted by examining the integration over one of the rectangular regions∫ a+∆η

a

f(η)dη ≈
∫ a+∆η

a

(f(a) + f ′(a)(η − a) + . . .) dη

= f(a)∆η + f ′(a)
∆η2

2
+ . . . (3.3.3)

adding up all the rectangular regions takes the form∫ b

a

f(η)dη ≈
N−1∑
n=0

f(a+ n∆η)∆η +O (∆η) , (3.3.4)

thus the rectangular method is a 1st order approximation. The equation (3.3.2) under this

method takes the form

hTT
ij (η,k) ≈ 16π∆η

M2
pl

N−1∑
n=0

ηn sin [k(η − ηn)]

kη
TTT
ij (ηn,k) , ηn = ηi + n∆η. (3.3.5)

We can see the advantage of this form as the only source of instability comes from TTT
ij (ηn,k),

so long as TTT
ij (ηn,k) is within machine sized numbers the method is absolutely stable, and
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Figure 38 : (Left) The scale factor (red) initially starts in a state of close to that of a matter dominated
form a ∝ t2/3 (black) but as the system evolves, the scale factor tends toward the scale factor for a
radiation dominated universe a ∝ t1/2 (blue). (Right) The expression d log a/d log t gives the power
of the scale factor for a form a = αtn → log a = logα + n log t. In red is the value for the scale
factor d log a/d log t under self consistant evolution. We can see the scale factor tends toward the form
for matter domination n = 2/3 after which the scale factor falls towards a radiation dominated universe
n = 1/2.

furthermore much more computationally rapid. This method was employed by [59] to calculate

the spectrum associated with pre-heating mechanisms.

Unfortunately we’ve given up the flexibility of using the exact form of a(η) for an approx-

imate a(η) = αηn form. This can present issues with this formulation, such as the case when

the potential for pre-heating cases is taken as

V (φ, χ) =
1

2
m2φ2 +

g2

2
χ2φ2 , (3.3.6)

where φ is the inflaton and χ is the field that will undergo pre-heating. In this quadratic form

of the potential LATTICEEASY can self consistently evolve the fields and scale factor. Interest-

ingly from this model the scale factor undergoes a transition, from an initially matter dominated

scale factor (in comoving coordinates a ∝ t2/3) to a radiation dominated system (in comoving

coordinates a ∝ t1/2), as is seen in Fig. 38. In such a case it is not clear when to choose one

scale factor form and exclude the other. Unfortunately we have to make some approximation

which naively the differential equation solving methods do not. We do not want to sacrifice the

numerical stability associated with the analytic method, but want to make as few approxima-

tions as possible.
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Figure 39 : The scale factor a(t) as seen in blue, can be approximated as a piece-wise function of linear
segments, as seen in red. The approximation becomes better and better as the line segments become
shorter and shorter.

3.3.1 Stability With No Scale Factor Assumption

We retain both the stability of the numerical integration methods and have the flexibility of

an arbitrary scale factor, by examining the form of the scale factor on the scale η, η + ∆η.

On this scale every scale factor can be approximated as linear segment. In fact, because all

numerical methods must calculate the scale factor at discrete times in self consistent simulation;

in numerical methods the scale factor is exactly a series of linear segments. To develop the

method we take any scale factor and approximate its form as a piece wise function of linear

segments as seen in Fig. 39. With the explicit form

a(η) =



α1η + β1 ηi ≤ η < ηi + ∆η

α2η + β2 ηi + ∆η ≤ η < ηi + 2∆η

...

αNη + βN ηi + (N − 1)∆η ≤ η < ηf .

(3.3.7)

Continuity of the scale factor is enforced by the conditions

αnηn−1 + βn = αn−1ηn−1 + βn−1 , ηm = ηi +m∆η . (3.3.8)

We can build up a solution of the metric perturbation hTT
ij . To accomplish this, first assume that

there is no source of gravitational waves before the time ηi, that hTT
ij (ηi,k) = 0. From the time

ηi to ηi + ∆η the scale factor is α1η + β1. The solution to the field equations (3.1.15) with this
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form of a scale factor is given by

hTT
ij =

1

α1η + β1

(A1(k) cos(kη) +B1(k) sin(kη))

+
16π

M2
pl k(α1η + β1)

∫ η̄

ηi

dη′(α1η
′ + β1) sin[k(η − η′)]TTT

ij (η′,k) ,

(3.3.9)

where

η̄ = Min {η1, η} , ηi ≤ η ≤ η1. (3.3.10)

Examining (3.3.9) we see we have a purely radiative part, which corresponds to the free prop-

agation solution TTT
ij = 0, where A1, B1 are in general complex values that depend on k. We

also we have a source term that generates the gravitational waves in this era. To solve for the

values A1 and B1 we use the initial conditions of the previous era. For this particular era of

ηi ≤ η < ηi + ∆η, the conditions are hTT
ij (ηi,k) = 0 and ∂ηhTT

ij (ηi,k) = 0. Computationally

we are only interested in evaluating hTT
ij at the endpoints of each era, e.g. ηi + ∆η, ηi + 2∆η

and so on. We need only to express (3.3.9) at these points where the scale factor for era n

(conformal time given by ηn−1 ≤ η < ηn) is an = αnη + βn. With this notation the general

solution for era n of the metric perturbation becomes

hTT
ij (ηn,k) =

1

an
(An(k) cos(kηn) +Bn(k) sin(kηn))

+
16π

M2
pl kan

∫ ηn

ηn−1

dη′(αnη
′ + βn) sin[k(ηn − η′)]TTT

ij (η′,k) ,

(3.3.11)

where continuity of the metric perturbation is used to solve for An and Bn as described for the

first era. To make this clear, we adopt a more compact notation denoting hn(η) as the metric

perturbation evaluated at the time η during the era n. By demanding the continuity of the metric

perturbation via

hn−1(ηn−1) = hn(ηn−1) ,

∂ηhn−1(ηn−1) = ∂ηhn(ηn−1) , (3.3.12)

we can solve for An+1 and Bn+1 in terms of the values of the generated gravitational waves

generated from the previous era. This can be understood as the generation of gravitational
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waves which then freely propagate from the source under the expansion of the universe, while

the source generates new gravitational waves as well.

By evaluating (3.3.11) and its derivative with respect to η with the rectangular method, we

have

hn(ηn) ≈ 1

an
(An(k) cos[kηn] +Bn(k) sin[kηn]) ,

h′n(ηn) ≈ −αn
a2
n

(An(k) cos[kηn] +Bn(k) sin[kηn])

+
k

an
(Bn(k) cos[kηn]− An(k) sin[kηn])

+
16π

M2
pl

TTT
ij (ηn,k) . (3.3.13)

The solution of the continuity conditions in this approximation give

Bn =
an−1

k sec(kηn−1)

[
h′n−1(ηn−1) +

(
αn
an−1

+ k tan(kηn−1)

)
hn−1(ηn−1)

]
,

An =
an−1

cos(kηn−1)
hn−1(ηn−1)−Bn tan(kηn−1) . (3.3.14)

With this method we can build up the solution of h′n for each step throughout the program, for

any scale factor evolution, while retaining the stability inherent in the numerical integration

method. Since this method uses a Green’s function approach to solving the field equations,

while adapting the solution for differing regions of time it is dubbed the adaptive Green’s

function approach (AGF).

3.3.2 Example Use of Adaptive Green’s Functions

To show the effectiveness of the AGF approach we will simulate the motivating problem for a

pre-heating simulation with the quadratic inflaton potential (3.3.6), and will compare the results

of the AGF method with that of the Green’s function methods assuming scale factors of definite

matter and radiation form. We will then compare the AGF method with a trapezoidal implicit

numerical differential equation solver as a secondary check of the validity of the method.

The inherent scaling of the variables in LATTICEEASY for this particular potential enforces

the condition tpr ∝ t. Since the source term is a function of the tpr the AGF method must be

re-derived in terms of the solution to the field equation in comoving time, which results in a

similar set of equations.
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We use a 3-dimensional lattice of size N = 256 points along each edge, along with a value

Lpr = 2.75 which simulates a physical size of Lph = 2.8 × 106 lpl. The final program time is

taken to be tf = 800 and is the time in which the spectrum no longer receives large additions

to its spectrum. As was seen in Sec. 3.1.6 the use of FFT causes the simulations to have many

operations to perform. In an attempt to decrease the computation time, we use parallel process-

ing. specifically we used Open MP [191] to split the lattice in multiple segments to perform

any operation on the lattice points in parallel so long as the operation did not depend on values

being updated simultaneously in other lattice segments. Even with this added improvement

and attempts at optimization of calculations to avoid unnecessary repetitive calculations, the

AGF calculation took 7.96 days on a computer with specifications: Intel Xeon X5680 12 core

CPU at 3.33Ghz and 96 GB of 1333MHz RAM. The simulations were computed with a metric

perturbation step size of ∆t = 0.025 and field step size of dt = 0.005 to satisfy Courant condi-

tions. The length of the calculation can be attributed to the fact that in comoving time the AGF

method becomes twice as complicated, as the complex nature of the constants An, Bn must be

carefully handled. The method of Green’s functions with the same parameters for matter and

radiation dominated scale factor forms took 4.81 days and 2.67 days respectively. To make

a comparison of the AGF with a numerical differential equation solving method we used an

implicit trapezoidal method to solve the scaled equation

HTT
ij (t,k) = arhTT

ij (t,k), s = 2r − 3 , r = 3/2 ,

ḦTT
ij (t,k) +

[
k2

a2(s+1)
− r ä

a
+ r(1− r)

(
ȧ

a

)2
]
HTT
ij (t,k) =

16π

M2
pla

2(s+1)−rT
TT
ij (t,k) .

(3.3.15)

The scaling is necessary as many numerical methods are unstable without the scaling procedure.

In fact, 3 other possible methods were attempted without scaling (Implicit Euler, 2nd order RK

, and Leap-frog Method) all of which developed instabilities under the evolution of the system.

After the simulation ends, we return to the metric perturbation via the relation

ḣTT
ij (t,k) = a−rḢTT

ij (t,k)− ra−(r+1)ȧHTT
ij (t,k) . (3.3.16)

The trapezoidal method with the same parameters took 3.04 days to complete. In Fig. 40

the comparison of the four different methods is shown to demonstrates that the AGF gives
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Figure 40 : The gravitational wave spectrum from pre-heating calculated from four different methods.
The orange curve is calculated from numerical integration for the Green’s function method assuming a
radiation dominated scale factor. The Blue curve is calculated from numerical integration for the Green’s
function method assuming a matter dominated scale factor. The red curve is the spectrum calculated from
the AGF method, and finally the purple curve is calculated from the trapezoidal method. It is easy to see
that the AGF method and that of the trapezoidal method agree very well, while the matter and radiation
methods tend to over estimate the spectrum.

the same value as the implicit trapezoidal method, while the radiation and matter scale factor

Green’s function methods over estimate the result.

The requirement for re-deriving the AGF equations for each unique potential because of the

scaling of the time coordinate in LATTICEEASY is unfortunate as a general algorithm would

be preferable. The problem lies in the fact that TTT
ij is calculated internally as function of tpr.

In the metric perturbation equation hTT
ij ∝

∫
dη′ . . . TTT

ij (tpr) we need to numerically integrate

a function which we do not have the form of in the appropriate coordinate system. In order to

circumvent this we can attempt to either transform TTT
ij (tpr)→ TTT

ij (η′) at each step, which at

this time has been left unexplored, or attempt to derive the AGF for hTT
ij (tpr) that is a function

of program time tpr. In program time, the field equations (3.1.15) take the form

ḧTT
ij (tpr,k) + (3 + s)

ȧ(tpr)

a(tpr)
ḣTT
ij (tpr,k) +

k2

a(tpr)2(s+1)B2
hTT
ij (tpr,k) =

16π

M2
pl

TTT
ij (tpr,k)

B2a(tpr)2s
,

(3.3.17)

where the over dot indicates a derivative with respect to tpr. Taking the AGF approximation of



137
linear segments gives

ḧTT
ij (tpr,k) +

(3 + s)αn
(αntpr + βn)

ḣTT
ij (tpr,k) +

k2

(αntpr + βn)2(s+1)B2
hTT
ij (tpr,k)

=
16π

M2
pl

TTT
ij (tpr,k)

B2a(tpr)2s
. (3.3.18)

Unfortunately there seems to be no known general solution to this equation due to the a2(s+1)

factor . Even a change of variable of the form h → Aarh does not help finding a general

solution. Therefore a general AGF method at this point is not possible to derive by using

LATTICEEASY, though the method of transforming the stress-energy tensor may result in some

usefulness. The AGF method may still be viable if one uses a different method to solve the field

equations rather than the method implemented in LATTICEEASY which forces s = 2r − 3, If

another method is used to solve the field equations where we can set s = −1 permanently, then

the AGF method should be able to be used with out problem. The AGF method can certainly

be many times slower than an alternative method, it does offer a stable method of calculating

stochastic gravitational wave backgrounds that other numerical methods cannot.

3.4 Summary of the Results and Conclusions

The study of stochastic backgrounds reveals that it is possible to extract information on the

scales and types of processes we associate with originating from the post inflationary era. The

sources studied here: pre-heating and global second order phase transitions generate energy

in gravitational waves on the scales h2Ωgw ' 10−11, 10−19, respectively. For pre-heating

and second order phase transitions, the frequency of gravitational waves ranges of order f '
109, 106 Hz, respectively. In studying global second order phase transitions flat spectra are

produced with a Hubble wall like feature. This Hubble-wall feature can be used to determine

the scales at which the self ordering of the fields takes place, thus giving us knowledge of

where we should expect new physics. It was also investigated how the use of Green’s functions

methods can hope to improve the task of computing such stochastic backgrounds. The use of

numerical integration results in a more stable method of calculating the backgrounds, but it

requires prior knowledge of the scale factor evolution. Even in a more accurate self consistent

solution, where the scale factor evolution is numerically solved for, the scale factor will be
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a series of linear segments due to the finite nature of numerical methods. Motivated by the

finite nature of the numerical process, one may assume that the scale factor truly is a linear

piece-wise function. This allows one to generate an algorithm for calculation of a stochastic

background that makes use of the Green’s functions and does not require prior knowledge of the

form of the scale factor. We name this algorithm the adaptive Green’s function method. This

method generates a stochastic background for the troublesome process of a pre-heating with

one additional scalar field and a quadratic inflaton potential, that agrees well with the result of

the numerical differential equation solving methods. The use of LATTICEEASY is not straight

forward when combined with the AGF method for general potentials. For this reason we are

forced to abandon the use of LATTICEEASY’s field evolution methods and require further study

into methods more compatible with the AGF method.
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Part III:

Dark Sector Physics

Neff = 3.62± 0.25 , f̄f → H∗/h∗→ w̄w
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Chapter 4

Dark Sector Physics

Beyond standard model (SM) physics models to be probed at the Large Hadron Collider (LHC)

often include the concept of a hidden sector, consisting of SU(3)×SU(2)×U(1) singlet fields.

Independent of any model, the standard sector and the hidden sector are coupled by interactions

of gauge-invariant operators which illuminate the path for exploring structures in the hidden

sector by observing phenomena in the visible standard sector. A tantalizing realization of this

idea is provided by the Higgs portal, which connects the Higgs fields in the two sectors by an

elementary quartic interaction [192, 193, 194, 137, 195, 196, 197, 64]. Such a construct moves

a precision study of the Higgs sector into a central position of new physics searches at the LHC.

Likewise, astrophysical observations open the gates for complementary information to further

test the Higgs portal hypothesis and to improve our understanding of the physics in the hidden

sector.

4.1 Extra Relativistic Degrees of Freedom

Precision cosmology has been primarily driven by measurements of the CMB temperature

anisotropies [198]. The anisotropies can be decomposed into spherical harmonics via

δT (n̂) = T (n̂)− TCMB =
∑
l,m

almY
m
l (n̂) , (4.1.1)

where TCMB is the average temperature across the sky observed today as TCMB ' 2.7255(6) K [1],

and n̂ a unit vector towards some point in the sky parameterized by polar and azimuthal angle.
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From this decomposition, the angular power spectrum may be constructed in terms of the vari-

ance, Cl, of the CMB fluctuations as a function of multipole number l given by

〈δT
T

(n̂)
δT

T
(n̂′)〉n̂·n̂′=cos θ =

1

4π

∞∑
l=0

(2l + 1)ClPl(cos θ), (4.1.2)

where Pl(x) are the Legendre polynomials, θ is the angle between two different directions in

the sky n̂, n̂′, and 〈. . .〉 denote an average across the entire sky. The most recent observational

result for Cl is given in Fig. 9. The cause of the peaks and troughs of the CMB power spectrum

is the compression due to gravitational potentials and resistance to this compression due to

pressure gradients in the early universe. The angular scales, θs, of the acoustic peaks are highly

sensitive to the angular size of the sound horizon (the distance pressure waves of speed cs can

travel in the early universe plasma since the big bang), and are given by θs = rs/D, where the

distance to the last scattering surface of the CMB is D =
∫ today

last scattering
dt/a(t). The angular

size θs is very precisely determined by the data, however, D cannot be precisely determined

because the density of the dark energy as a function of the scale factor is unknown. Therefore,

another angular scale, which can be measured, must be used to eliminate D.

The diffusion angular scale can be used for this purpose. Peaks of temperature anisotropy

on scales smaller than the photon diffusion length become Silk dampened, which is associated

with random walks of photons on the small scale in the plasma. This blurs out (weakens)

correlations amongst small scale anisotropies. Diffusion causes a drop in power toward high

l and makes the CMB power spectrum sensitive to the angular scale of the diffusion length rd

given by θd = rd/D. For a random walk process, the diffusion distance increases as the square

root of time, thus

t1/2 ∝ a→ t ∝ 1

H
→ rd ∝ H−1/2. (4.1.3)

Since the sound horizon rs = cs t = cs/2H , we can form the relation

θd

θs

=
rd
rs
∝ H1/2 , (4.1.4)

where H is the Hubble parameter at the time the angular scales θd and θs froze into the CMB.

At this time t ' tEQ, from which we can assume the energy density is dominated equally by
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ρrad and ρmat. The Friedmann equation then allows

H1/2 =

(
8π

3M2
pl

(ρrad + ρmat)

)1/4

=

(
8π

3M2
pl

2π2

30
gρ(TEQ)T 4

EQ

)1/4

,

gρ(TEQ) = 2 +
7

8
· 2 ·Neff

(
4

11

)4/3

(4.1.5)

where gρ is the effective degrees of relativistic species at the time of the formation of the an-

gular scales. The effective degrees from the concordance model of cosmology would suggest

that gρ consists of a photon with 2 spin degeneracies, and Neff = 3 left-handed neutrinos with

2 spin degeneracies each. The factor 7/8 reflects the fermi statistical nature of the neutrinos

and (4/11)4/3 reflects the difference in temperatures of the neutrinos to the photon plasma and

can be derived from conservation of entropy. The precise measurements of (4.1.4) along with

(4.1.5) should give a consistency check of Neff ≈ 3 for the effective number of relativistic

species normalized to that of a left-handed neutrino at the time tEQ. Currently, high-resolution

observations of the CMB temperature anisotropy are providing a precise measurement of the

damping tail of CMB power spectrum, shedding light on Neff , and over the past few years evi-

dence has been accumulating for a possible excess on the number of “equivalent” light neutrino

species above SM expectation, Neff ≈ 3 + ∆N > 3. A selection of the most recent cosmolog-

ical Neff measurements and the 1σ confidence intervals from various combinations of models

and data sets are shown in Fig. 41.

At the time of this writing, the Planck spacecraft has measured the CMB to an unprece-

dented precision [7]. One of the most striking results of the mission is that the best-fit Hubble

constant has the value h = 0.674± 0.012, with a dark energy density parameter ΩΛ = 0.686±
0.020, and matter density parameter ΩM = 0.307± 0.019. This result is at more than 2.3σ de-

viations of the value obtained with the Hubble Space Telescope, h = 0.738 ± 0.024 [12]. The

impact of the new h determination is particularly complex in the investigation of the effective

number of relativistic degrees of freedom (as the times which the angular scales θs, θr change

with h). From the CMB data alone, the Planck Collaboration reported Neff = 3.36 ± 0.34.

Adding baryon acoustic oscillation (BAO) data yields Neff = 3.30± 0.27. Both of these values

are consistent with the SM value of 3.046 (slightly larger than 3 as the neutrino decoupling

from photons is not an abrupt process [199]). Adding the H0 measurement to the CMB data
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Figure 41 : A selection of the most recent cosmological Neff measurements and the 1σ confidence in-
tervals from various combinations of models and data sets. The first five measurements correspond to
BBN observations [203, 204, 205, 206, 207, 208]. The other intervals result from a combination of the
latest distance measurements from the baryon acoustic oscillations (BAO) in the distribution of galax-
ies [209], precise measurements of H0 by the Hubble Space Telescope [12], and CMB data collected
by the Wilkinson Microwave Anisotropy Probe (WMAP), the South Pole Telescope (SPT), the Atacama
Cosmology Telescope (ACT), the Cosmic Background Imager (CBI), the Very Small Array (VSA),
BOOMERANG, the Arcminute Cosmology Bolometer Array Receiver (ACBAR), and the Planck mis-
sion [210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 7]. Image from [221] .
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gives Neff = 3.62 ± 0.25 and relieves the tension between the CMB data and H0 at the ex-

pense of new neutrino-like physics (at around the 2.3σ level). In other words, it is possible to

alleviate the tensions between the CMB, BAO, and H0 data by invoking an increase in Neff . It

should be noted, however, that any preference for new physics comes almost entirely from the

astrophysical data sets.

The CMB data can also be complemented by big bang nucleosynthesis (BBN) data, which

offers the deepest reliable probe of the early universe, being based on well-understood SM

physics [200, 201, 202]. The expansion rate of the universe at early times increases with the

number of relativistic particle species in thermal equilibrium, and this in turn sets timescales

for BBN. One can then use predictions of the abundances of light nuclei (D, 3He, 4He, 7Li)

synthesized at the end of the “first three minutes” to constrain the number of light species.

For instance, in SM cosmology the neutron-proton interconversion rate n � p drops out of

equilibrium at T ∼ 1 MeV. Nearly all the surviving neutrons when nucleosynthesis begins

end up bound in the most stable light element 4He. Therefore, the primordial mass fraction

of 4He, conventionally referred to as Yp, can be estimated by the simple counting argument:

Yp = 2n/p(1+n/p)−1. IfNeff > 3, the expansion rate at fixed temperature is increased and the

neutron-proton ratio freezes out at a higher temperature, leaving more free neutrons, and thus

a larger primordial abundance of 4He. By measuring Neff we may be able to detect some new

physics BSM.

4.1.1 Adding New Species

To account for Neff > 3, we must add some particles to the concordance model of cosmology

that predicts the evolution of a spatially-flat expanding universe filled with dark energy (Λ),

dark matter (DM), baryons (b), photons (γ), and and three flavors of left-handed (i.e. one chiral

state νL) neutrinos (along with their right-handed, antineutrinos ν̄R). The Hubble parameter H

is determined by the total energy density

H2(t) =

(
ȧ(t)

a(t)

)2

=
8π

3M2
pl

[ρΛ(t) + ρDM(t) + ρb(t) + ργ(t) + 3ρνL(t)] . (4.1.6)

The quantities of importance can be expressed in units of h to avoid uncertainties in H , e.g.

ΩM = ΩDM + Ωb ' [0.111(6) + 0.0226(6)]h−2 [1].
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In the early universe, the energy density is dominated by radiation from extremely rela-

tivistic particles. When the temperature drops below the electron mass, the standard model of

particle physics constrains the relativistic particle content to photons and neutrinos. As a result,

the radiation energy density then is ρR = ργ + 3 ρνL . To accommodate new physics in the form

of extra relativistic degrees of freedom, it is convenient to account for the extra contribution

to the SM energy density by normalizing it to that of an “equivalent” neutrino species. The

number of “equivalent” light neutrino species can then be expressed as

Neff ≡
ρR − ργ
ρνL

, (4.1.7)

which quantifies the total “dark” relativistic energy density (including the three left-handed SM

neutrinos) in units of the energy density of a single Weyl neutrino [222]. Any relativistic degree

of freedom originating from BSM physics is then included in Neff .

If neutrinos are fully decoupled prior to e± annihilation, they do not share in the energy

transferred from annihilating e± pairs to photons. In this very good approximation, the photons

are hotter than the neutrinos in the post-e± annihilation universe by a factor Tγ/TνL = (11/4)1/3

and so

ρνL =
7

8

(
4

11

)4/3

ργ , (4.1.8)

yielding

Neff =
8

7

(
11

4

)4/3
ρR − ργ
ργ

. (4.1.9)

Since the temperature of the CMB is TCMB ' 2.7255(6) K [1], we can determine the energy

density in photons as measured today to be

Ωγ =
π2(kBTCMB)4

15}2c

8πG

3× 104 (km s−1 Mpc−1)2

1

h2
' 2.471× 10−5 h−2 . (4.1.10)

On the other hand, the energy density of the cosmic neutrino background (CνB) is found to be

ΩνL =
3ρνL
ρc

=

∑
imνi

93.14h2 eV
, (4.1.11)

where now we have included the fact that neutrinos are massive and 3ρνL ≈
∑

imµi , indicating

the neutrino species are non-relativistic today. We know from neutrino oscillation experiments

that at least two of the neutrino states are non-relativistic today because both (∆m2
31)1/2 '

0.05 eV and (∆m2
21)1/2 ' 0.009 eV [223] are larger than the temperature TCνB ' 1.96 K '
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1.7×10−4 eV. If the third neutrino state is very light and still relativistic, its relative contribution

to ΩνL is negligible and (4.1.11) remains an excellent approximation of the total neutrino energy

density.

One finds that ΩνL is restricted to the approximate range 0.000637(0.001078) < ΩνLh
2 <

0.0637, and therefore, the radiation energy density today, Ωrad ≈ Ωγ , is completely negligible.

It follows from (4.1.6) that new physics contributions to ρrad alter cosmology through the ef-

fect on the scale factor and since ρrad is negligible today, the early universe becomes the sole

laboratory in which one can measure Neff .

Several explanations have been proposed to explain a possible ∆N excess. These include:

(i) models based on milli-weak interactions of right-handed partners of three Dirac neutrinos

such as the SM++ model among others [224, 225, 226].

(ii) models based on active-sterile mixing of neutrinos in a heat bath [227, 228].

(iii) models in which the extra relativistic degrees of freedom are related to possible dark matter

candidates produced via decay of heavy relics [229, 230, 231, 232, 233, 234, 235, 236].

An interesting consequence of such a non-thermal DM scenario is that if the lifetime of the

decaying particle X is longer than about 103 seconds, the expansion history of the universe

during the era of BBN will not have ∆NX contributions to number of “equivalent” light neu-

trino species. Moreover, if there is a light DM particle that annihilates to photons after the νL

have decoupled, the photons are heated beyond their usual heating from e± annihilation, reduc-

ing the late time ratio of neutrino and photon temperatures (and number densities), leading to

Neff < 3 [237, 238, 239]. This opens the window for the addition of one or more νR neutrino

flavors while remaining consistent with Neff = 3. A thorough study of the various possibilities

listed above has been pursued in ref [240].

We will use the possibility that both right-handed Dirac neutrinos and non-thermal dark

matter particles can contribute to the number of “equivalent” light neutrino species, i.e. ∆N =

∆Nν + ∆NX .

4.1.2 Non-Thermal Dark Matter

A series of independent observations involving galaxies and clusters of galaxies as well as the

CMB seem to indicate that the most successful structure-formation models have been those
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in which most of the mass in the universe comes in the form of cold dark matter (CDM), i.e.

particles that were moving non-relativisticly in the early universe [241, 242, 243]. A mixture

of about 80% CDM and 20% hot dark matter would only reproduce the data on nearby galaxies

and clusters if the average density of matter in the universe were at or close to the critical

density, ΩM = 1. However, like all such critical-density models, cold plus hot dark matter

models require that galaxies and clusters must have formed fairly recently, which disagrees with

observations. The evidence increasingly favors ΛCDM models, in which CDM and baryons

make up about a third of the critical density, with a cosmological constant or some other form

of dark energy contributing the remainder. We now address adding non-thermal matter to the

standard history of the universe.

Relativistic Constraint on X

First we will address adding in non-thermal dark matter to the concordance model of cosmology

by assuming that the total DM in existence today is conceived of a small fraction of particles of

type X , which have cooled due to expansion of the universe and are non-relativistic today, but

were relativistic at the CMB epoch, and a larger fraction of type χ that constitute the primordial

CDM, which is cold today and has always been cold. We assume the particles of type X are

produced via decay of a heavy relic particle of type X ′, which allows the particle X to be

relativistic at the CMB epoch so that these particles can add to Neff . However, to do this we

must ensure that during the CMB epoch the X particles are relativistic. We can set a limit

on this by assuming the progenitor particle X ′ is initially non-relativistic and unstable with a

lifetime τ . WhenX ′ decay toX ′ → X+γ (at present, we do not consider the more complicated

scenario in which high energy neutrinos are among the decay products [244]) in the center-of-

mass frame of X ′ (this should also be a good approximation of any frame, as we assume that

X ′ is non-relativistic so its mass energy dominates) we have from the conservation of energy

MX′ = Eτ + pτ =
√
p2
τ +M2

X + pτ ⇒ pτ =
MX′

2 −M2
X

2MX′
, (4.1.12)

where Eτ = MXγτ , pτ is the energy and momentum, respectively, of the particle X at the time

τ when X ′, with mass MX′ decays. The Lorentz boost factor γτ at time τ can be expressed as

γτ =
Eτ
MX

=
MX′

2MX

+
MX

2MX′
. (4.1.13)
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As the universe expands and cools, theX momentum and thus energy will red shift, giving [49]

E2(t) = p2
τ

(
a(τ)

a(t)

)2

+M2
X = M2

Xγ(t)2 . (4.1.14)

Using the redshift, we can express the Lorentz boost factor γ as a function of time as

γ2(t) = 1+

(
pτ a(τ)

MX a(t)

)2

= 1+

(
a(τ)

a(t)

)2(
E2
τ −M2

X

M2
X

)
= 1+

(
a(τ)

a(t)

)2 (
γ2
τ − 1

)
. (4.1.15)

For [a(t)/a(τ)]2 (γ2
τ − 1)� 1, the Lorentz boost factor takes the approximate form

γ(t) ≈ 1 +
1

2

(
a(τ)

a(t)

)2 (
γ2
τ − 1

)
− 1

8

(
a(τ)

a(t)

)4 (
γ2
τ − 1

)2
+ · · · . (4.1.16)

From this we can determine the non-relativistic limit by demanding the magnitude of the second

term in the expansion to be greater than the third term to consider theX particle non-relativistic,

which results in (
a(τ)

a(t)

)2 (
γ2
τ − 1

)
< 4 . (4.1.17)

Therefore, by this criteria the particle X is relativistic if γ(t) >
√

5, and so if this condition is

met during the CMB epoch, then the X particles can contribute to Neff .

Adding the Relativistic DM to ρrad

Continuing, we must add the proper dark matter evolution into the Friedmann equations, so we

now examine the time dependence of the DM energy density (the components being the type χ

and the type X). At any time after the decay of X ′ the total energy density in DM is

ρDM(t) = ρX(t) + ρχ(t) = γ(t)MXnX(t) + ρχ(t) , (4.1.18)

where ρX(t) is the energy density in the DM particles of type X (and may or may not be cold)

and ρχ(t) is the energy density in the primordial CDM. The second equality comes from the

fact that we take nX(t) to be the number density of particles of type X and each particle has

energy MXγ(t).

Now, since ρχ is made entirely of dust-like (cold) particles, it becomes diluted as

ρχ(t) =
ρχ(today)

a3(t)
, (4.1.19)



149
where we have used the convention a(today) = 1. Likewise, any number density of particles

in an expanding universe will scale as a−3(t) and so we can write

ρX(t) =
MXnX(today)

a3(t)
γ(t). (4.1.20)

At this point we make an assumption that the total dark matter today is entirely in the form of

cold dark matter (CDM),

ρDM(today) = ρCDM(today) , (4.1.21)

and so the energy density for particles of type X make up some fraction f of the total CDM

today

ρX(today) = fρCDM(today) . (4.1.22)

By evaluating (4.1.20) at t = today along with (4.1.22), and (4.1.20) we obtain

MX nX(today) γ(today) = f ρCDM(today)→ ρX(t) = f
ρCDM(today)

a3(t)
γ(t) . (4.1.23)

Giving the full expression for the dark matter as a function of time as

ρDM(t) = f
ρCDM(today)

a3(t)
γ(t) + ρχ(t). (4.1.24)

This can be reduced even further by evaluating (4.1.24) at t = today to obtain

ρCDM(today) = f ρCDM(today)+ρχ(today)→ ρχ(today) = (1−f)ρCDM(today) . (4.1.25)

Finally, the dark matter content as a function of time is given as

ρDM(t) = f
ρCDM(today)

a3(t)
γ(t) + (1− f)

ρCDM(today)

a3(t)
. (4.1.26)

Calculating Neff from ρrad

Now that we can identify a potentially relativistic part of the DM energy density, we can add

its contribution to ρrad at this point we can also add in the right chiral neutrino states and their

assumed relativistic contribution to the energy density of the universe. Taking the dominate

energy density component at tEQ gives

ρR(tEQ) = ργ(tEQ) + 3 ρνL(tEQ) + 3 ρνR(tEQ) + ρX(tEQ) + ρs(tEQ) , (4.1.27)
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where ρνR(tEQ) is the energy density contained in one flavor of right chiral neutrinos and ρs is

the energy density in sterile neutrinos. From Eq. (4.1.27) we can calculate the effective number

of neutrinos at the time of radiation-matter equality from (4.1.7) as

Neff = 3 + 3
ρνR
ρνL

+
ρX
ρνL

+
ρs

ρνL
= 3 + ∆N = 3 + ∆Nν + ∆NX , (4.1.28)

where we take all the energy densities evaluated at tEQ and, unless otherwise specified for this

point, all the quantities are evaluated at tEQ.

To separate the effect of the additional particles we use ∆Nν = (3 ρνR + ρs)/ρνL and

∆NX = ρX/ρνL for the additional effect from right chiral neutrinos and X particles, respec-

tively.

To remove ρνL from ∆N , we make use of (4.1.8) to obtain

∆NX =
8

7

(
11

4

)4/3
ρX
ργ

, (4.1.29)

where we have assumed that particles of type X decouple from the plasma prior to νL decou-

pling, conserving the ratio Tγ/TνL from SM cosmology. Substituting (4.1.23) into (4.1.29) we

finally obtain

∆NX =
8

7

(
11

4

)4/3
ΩCDM

Ωγ

a(tEQ) γ(tEQ) f , (4.1.30)

where we used the standard relation ργ(tEQ) = ρc Ωγ/a
4(tEQ). The contribution from the right

chiral neutrinos will be left to the next subsection.

Scale Factor Consistant Reaction

Because we add new particles to the thermal history of the universe, the history of a(t) and

thus γ(t) also changes. To make corrections to the scale factor, we will neglect the accelerating

phase of the scale factor and assume that we are still in a matter dominated universe. The matter

phase was preceded by the phase of radiation domination, and for our calculations we will make

the approximation of instantaneous phase change. That is, we assume at the time of radiation-

matter equality tEQ the scale factor instantaneously changes from a radiation dominated phase

to a matter dominated phase, with continuity ensured. With these considerations, the scale

factor can be expressed in a piece-wise form as

a(t) =


(

3
2
H0 t

)2/3

if t > tEQ(
3
2
H0 t

1/4
EQ

)2/3

t1/2 if tEQ > t
, (4.1.31)
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where H0 is the Hubble parameter today. Substituting (4.1.31) in (4.1.30), we obtain

∆NX =
8

7

(
11

4

)4/3
ΩCDM

Ωγ

γ(tEQ)

(
300 km s−1 Mpc−1

2

)2/3

(htEQ)2/3 f. (4.1.32)

Next, we calculate the radiation-matter equality time tEQ, i.e., the time in which

ρM(tEQ) = ρR(tEQ)⇒ ρR

ρM

=
ργ(tEQ)

{
1 + 7

8

(
4
11

)4/3
[3 + ∆Nν + ∆NX(tEQ)]

}
ρM(tEQ)

= 1 ,

(4.1.33)

and by scaling the quantities with their respective powers of the scale factor, we arrive at

1

a(tEQ)

Ωγ

ΩM

[
1 +

7

8

(
4

11

)4/3

(3 + ∆Nν + ∆NX)

]
= 1 . (4.1.34)

Using the piece-wise form of the scale factor from (4.1.31), we can determine the radiation-

matter equality time as

htEQ =
1

150

(
Ωγ

ΩM

)3/2
[

1 +
7

8

(
4

11

)4/3

(3 + ∆Nν + ∆NX)

]3/2

km−1 s Mpc . (4.1.35)

Note that the combination htEQ is independent of h.

As a constancy check, we can set ∆Nν = ∆NX = 0, make use of (4.1.10), and take the

central values recently reported by the Planck Collaboration: ΩM ' 0.315 and h ' 0.673 [7],

which gives tEQ = 1.19× 1012 s, which is in very good agreement with the concordance model

of cosmology.

Proceeding to insert (4.1.35) into (4.1.32) then gives

∆NX =
8

7

(
11

4

)4/3
ΩCDM

ΩM

γ(tEQ)

[
1 +

7

8

(
4

11

)4/3

(3 + ∆Nν + ∆NX)

]
f , (4.1.36)

for which we must solve for ∆NX , however at this point it is worth exploring the quantity

γ(tEQ) and its dependence on h. By taking R = MX′/MX and τ occurring in the radiation

dominated era, γ(t) becomes

γ(tEQ) =

√
1 +

(
τ

tEQ

)
(R2 − 1)2

4R2
, (4.1.37)

which does have some h dependence, tEQ ∝ h−1. To make our analysis completely independent

of h (which we have seen has large systematic uncertainties), we can rewrite the decay time as

a fraction of the time of the radiation matter equality, T = τ/tEQ, e.g., for T = 0.1, the X
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particle is produced at a time which is 1% of tEQ. This new variable allows expressing (4.1.36)

independently of h:

∆NX =
ΩCDM

ΩM

√
1 + T (R2 − 1)2

4R2

[
8

7

(
11

4

)4/3

+ 3 + ∆Nν + ∆NX

]
f. (4.1.38)

Note that (4.1.38) scales with the ratio ΩCDM/ΩM ' 1.19, which does not depend on the

Hubble parameter. Solving for ∆NX gives

∆NX =

[
8

7

(
11

4

)4/3

+ 3 + ∆Nν

]
Y

(
ΩM

ΩCDM f
− Y

)−1

, (4.1.39)

where

Y =

√
1 + T (R2 − 1)2

4R2
. (4.1.40)

Note that (4.1.39) develops a pole if

ρM(tEQ) =
ρM(today)

a3(tEQ)
=
ρCDM(today)

a3(tEQ)
γ(tEQ)f = ρX(tEQ) , (4.1.41)

which implies ρR(tEQ) = ρX(tEQ). This saturates the regime for validity of (4.1.36).

Results

In Fig. 4.1.2 we can see contours of constant ∆NX in the R vs. T plane, for the case in which

∆Nν = 0. As expected, to produce a given ∆NX contribution, the required ratio of masses

diminishes with increasing lifetime. We can see that, for h = 0.647, a fraction of X particles

larger than 3.8% yields a contribution to Neff that is outside the 1σ region allowed by Planck

data. The preceding discussion can be easily generalized to more complex models endowed

with a dynamical dark sector. In a fashion similar to [245], we assume there are n different

decay possibilities/channels for DM particles of the type X ′j → Xi + γ. We further assume

that each decay process occurs instantaneously at a time τi and that of the total fraction of dark

matter particles coming from each decay process is fi. For N particle species, this gives the

relation

fρCDM(today) =
N∑
i=1

ρXi(today)⇒ ρXi(today)

ρCDM(today)
= fi , (4.1.42)

with
∑N

i=1 fi = f . Provided each particle in the ensemble Xi meets the criteria for being

relativistic, it will contribute

∆NXi =
ρXi
ρνL

=
8

7

(
11

4

)4/3
ΩCDM

Ωγ

a(tEQ) γi fi , (4.1.43)
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Figure 42 : Contours of constant ∆N in the R vs. T plane, with f = 1% (top) and f = 3.8% (bottom),
for the case in which ∆Nν = 0. The (green) solid line indicates the upper limit on ∆N (with h ' 0.674)
as reported by the Planck Collaboration. The band between the dashed (yellow) lines corresponds to the
allowed ∆N region reported by Planck Collaboration using h ' 0.738. The crosshatched area pertains
to the region of the parameter space for which the X particles are not relativistic at the CMB epoch, and
should therefore not be taken under consideration.



154
where ρXi and ρνL are again taken at the time of matter-radiation equality, and γi(t) is the

Lorentz factor of each particleXi. As stated earlier, each particle may decay from some particle

X ′j at a time τi such that each γi is given by

γi =

√
1 + Ti

(R2
i − 1)

4R2
i

, (4.1.44)

where Ti = τi/tEQ andRi = M ′
j/MXi . Once more we assume that the decays occur prior to the

time of matter-radiation equality. We denote the total Xi contribution to the effective number

of neutrinos by ∆NΣX =
∑N

i=1 ∆NXi , so that ∆N = ∆Nν + ∆NΣX , with

∆NXi =
8

7

(
11

4

)4/3
ΩCDM

Ωγ

γi(tEQ)

(
300 km s−1 Mpc−1

2

)2/3

(htEQ)2/3 fi . (4.1.45)

Duplicating the procedure for a single X particle, with the change of ∆NX → ∆NΣX we

obtain

htEQ =
1

150

(
Ωγ

ΩM

)3/2
[

1 +
7

8

(
4

11

)4/3

(3 + ∆Nν + ∆NΣX)

]
. (4.1.46)

All in all the total contribution to the number of “equivalent” light neutrino species is

∆NΣX =

[
8

7

(
11

4

)4/3

+ 3 + ∆Nν

](
N∑
i=1

fiγi

)(
ΩM

ΩCDM

−
N∑
i=1

fiγi

)−1

. (4.1.47)

It should be noted that the parent particle X ′j can be the same for multiple particles Xi, as is the

case for multiple decay channels.

4.1.3 Right-Handed Neutrinos with Milli-Weak Interactions

In addition to the (2.984 ± 0.009)νL species measured from the width for invisible decays of

the Z0 boson [246], there could also exist νR states that are sterile, i.e. singlets of the SM gauge

group, and therefore insensitive to weak interactions. Such sterile states are predicted in models

involving additional TeV-scale Z ′ gauge bosons, which allow for milli-weak interactions of the

νR. If the νR carry a non-zero U(1)′ charge, then the U(1)′ symmetry forbids them from

obtaining a Majorana mass much larger than the U(1)′-breaking scale. Therefore, in most of

these models there are no Majorana mass terms and the νR states, which are almost massless,

become the Dirac partners of the SM νL species.

Here we will add in the right-handed neutrino species to study the expected increase in Neff

due to the presence of such light Dirac neutrinos with ongoing searches of Z ′ gauge bosons at
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the LHC. A critical input for such an analysis is the relation between the relativistic degrees of

freedom (r.d.o.f.) and the temperature of the primordial plasma. This relation is complicated

because the temperature which is of interest for right-handed neutrino decoupling from the heat

bath may lay in the vicinity of the quark-hadron cross-over transition, which offers problems as

the exact form of gS(T ) is in a non-perturbative regime of QCD and thus requires high statistics

lattice simulations of a QCD (LQCD) plasma in this phase.

We begin by first establishing ∆Nν as a function of the νR decoupling temperature. By

taking into account the conservation of entropy of the rest of the plasma between the temper-

ature from νR decoupling, T dec
νR

, and the νL decoupling temperature, T dec
νL

, we can arrive at an

equation for ∆Nν . First we express the total entropy of the universe at the νR decoupling as

S(T dec
νR

) ∝ a(tνR)3gS(T dec
νR

)
(
T dec
νR

)3
= const , (4.1.48)

where tνR is the νR decoupling time after which particles may annihilate and thus add energy

to the photon matter plasma, which corresponds to an increase in temperature and change in

gS(T ). The particles that decoupled have their thermal distribution temperature simply scale

with a−1; because of this, after νR decoupling the effective entropy density is

a(tνR)3gS(T dec
νR

)
(
T dec
νR

)3
= a(t)3gS(T )T 3 + a(t)3gS,νR

(
T dec
νR
a(tνR)

a(t)

)3

, (4.1.49)

where gS,νR is the entropy degrees of freedom from νR, which is now freely streaming. Simpli-

fying this expression results in(
a(tνR)T dec

νR

a(t)

)3 (
gS(T dec

νR
)− gS,νR

)
= gS(T )T 3 , (4.1.50)

but since TνR(t) = a(tνR)T dec
νR
/a(t) for t > tνR , this expression simplifies to

(
gS(T dec

νR
)− gS,νR

)
TνR(t)3 = gS(T )T 3. (4.1.51)

By redefining gS(T dec) at decoupling temperatures to not include the particles which are decou-

pling, we can drop the−gS,νR from above. With Eq. (4.1.51), we can construct the contribution

to Neff by Eq. (4.1.28) where we have the relation

∆Nν = 3
ρνR
ρνL

= 3

(
TνR(tEQ)

TνL(tEQ)

)4

= 3

(
gS(T dec

νL
)

gS(T dec
νR

)

)4/3

, (4.1.52)
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where standard cosmology gives gs(T dec

νL
) = 43/4 [49]. For the particle content of the SM, there

is a maximum of gs(T dec
νR

) = 427/4 (with T dec
νR

> mtop), which corresponds to a minimum value

of ∆Nν = 0.14.

If T dec
νR

occurs during the QCD phase transition, then the value of gS(T dec
νL

) is very com-

plicated as the degrees of freedom are undergoing rapid changes. At energies above the de-

confinement transition towards the quark gluon plasma, quarks and gluons are the relevant

degrees of freedom for the QCD sector, such that the total number of SM r.d.o.f. consisting of(
γ, 8G, 3νL, eL,R, µL,R, u

r,g,b
L,R , d

r,g,b
L,R , s

r,g,b
L,R

)
gS = 2(1 + 8) +

7

8
[3 · 2 + 2 · 2 + 2 · 2 + 3(2 · 2 + 2 · 2 + 2 · 2)] = 61.75 . (4.1.53)

As the universe cools down, the SM plasma transitions to a regime where mesons and baryons

are the pertinent degrees of freedom confining the quarks and gluons within. Precisely, the

relevant hadrons present in this energy regime are pions and charged kaons, such that gS =

19.25 [240]. This significant reduction in the degrees of freedom results from the rapid anni-

hilation or decay of any more massive hadrons which may have formed during the transition.

The quark-hadron crossover transition therefore corresponds to a large redistribution of entropy

into the remaining degrees of freedom. We express the effective number of interacting r.d.o.f.

in the plasma at temperature T by

gS(T ) ' r(T )

(∑
bosons

gb +
7

8

∑
fermions

gf

)
, (4.1.54)

with gb = 2 for each real vector field and gf = 2 for each spin-1
2

Weyl field. The coefficient r(T )

is unity for the lepton and photon contributions and is the ratio s(T )/sSB for the quark-gluon

plasma, where s(T ) is the actual entropy and sSB is the ideal Stefan-Bolzmann entropy. We

must now examine LQCD simulations and radiative correction analyses to obtain the function

r(T ).

QCD Confinement Phase Transition Fitting

Two complementary approaches that describe high temperature QCD phenomena result in sim-

ilar expressions for r(T ). We will compare their predictions during the de-confinement transi-

tion.
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The first approach relies on next-to-leading order (NLO) radiative corrections to the non-

interacting Stefan-Boltzmann law within the MS scheme [247]. The second approach is based

on high statistics lattice simulations of the QCD plasma during the changeover phase [248].

In either case, all thermodynamic quantities can be obtained from the QCD partition function

Zp(T, V ). The need for LQCD comes from the fact that perturbative calculations are no longer

valid as the strong coupling becomes large at these temperatures. In LQCD the basic outline is

to calculate Zp via the path integration method we saw in Sec. 3.2.1 on a lattice. The idea is

that from the form

Zp ∝
∫
Dφ e−SE [φ] , (4.1.55)

a field configuration φ can be discretized on a lattice (just like in Sec. 3.1.6), and expectation

values 〈φ(x1) . . . φ(xn)〉 can be calculated by treating exp(−SE[φ]) as the relative probability

of a field configuration with many degrees of freedom. The many degrees of freedom offers

a computational challenge that is typically solved by a Markov-Chain Monte Carlo (MCMC)

method [249]. Lattice field theories are further complicated by the use of Weyl fields and gauge

symmetry on a lattice, which is the subject of Wilson loops [24] and a discrete lattice spacing

RG analysis. However the partition function is calculated it can be used for various quantities.

For instance, its logarithm defines the free energy density,

F = −T
V

ln Zp . (4.1.56)

The energy density and pressure are derivatives of ln Zp with respect to T and V , respectively,

ρ =
T 2

V

∂ ln Zp
∂T

and p = T
∂ ln Zp
∂V

. (4.1.57)

However, for sufficiently large volumes, T is the only intensive parameter controlling the ther-

modynamics and the pressure can be directly derived from the free energy density,

p = −F . (4.1.58)

To obtain the entropy density, recall that from (1.2.7) we can express the entropy density in an

isotropic, homogenous universe as

s = ρ+ p = T
∂p

∂T
. (4.1.59)
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In practice, the quantity most convenient to calculate on the lattice is the trace anomaly in units

of the fourth power of the temperature Θµµ/T 4, where the QCD trace anomaly is given by

Θµµ ≡ ρ− 3p = T 5 ∂(p/T 4)

∂T
. (4.1.60)

Using (4.1.60), the pressure is obtained by integrating Θµµ/T 5 over the temperature

p(T )

T 4
− p(T0)

T 4
0

=

∫ T

T0

dT ′
Θµµ(T ′)

T ′5
, (4.1.61)

where T0 is an arbitrary temperature that is generally chosen in the low temperature regime

where the pressure and other thermodynamical quantities are suppressed exponentially by

Boltzmann factors associated with the lightest hadronic states; the convenient extrapolation

T0 → 0 yields p/T 4
0 → 0. After p/T 4 is obtained, we can calculate the entropy density. The

increasing entropy curve from LQCD can be fit by

s

T 3
' 18.62

(
175.41

TMeV − 148.46

)2
e175.41/(TMeV−148.46)

[e175.41/(TMeV−148.46) − 1]
2 +

42.82√
392 π

e−
(TMeV−169.88)2

392 ,

(4.1.62)

where TMeV is the temperature in units of MeV and TMeV satisfies 150 MeV < TMeV < 1 GeV.

We compare the rise of gS(T ) as given in (4.1.63) with the LQCD result shown in Fig. 43,

as well as a comparison of gS(T ) as obtained using LQCD and the NLO approach is shown.

Finally, we obtain the relevant degrees of entropy as

gS(T ) ' 47.5 r(T ) + 19.25 , (4.1.63)

which reflects the particle content in (4.1.53) as well as 3 species of right-handed neutrinos

along with r(T ) determined from (4.1.62).

If relativistic particles are present that have decoupled from the photons, it is necessary to

distinguish between two kinds of r.d.o.f.: those associated with the total energy density gρ, and

those associated with the total entropy density gS . Since the quark-gluon energy density in

the plasma has a similar T dependence to that of the entropy (see Fig. 7 in [248]), we take

gρ(T ) ≈ gS(T ).

Calculating the νR Decoupling Temperature

We can solve for the right-handed neutrino decoupling temperature by reason that the right-

handed neutrino decouples from the plasma when its mean free path becomes greater than the
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Figure 43 : Left: The (black) solid line is the entropy density as obtained from high statistics lattice
simulations [248] (we used the results obtained using the p4-action [250]). The (red) dashed line is the
fit given in Eq. (4.1.62). Right: The effective number of interacting relativistic degrees of freedom, gS ,
as a function of the temperature for 150 MeV ≤ T ≤ 500 MeV. The solid line is obtained from the
NLO correction result given in [251] (adapted from [247]). The red dashed curve is the result from the
fit of LQCD calculations.

Hubble radius at that time. To do this, we first calculate the νR interaction rate given by

Γ(T ) = K 1

8

(
g

MZ′

)4

T 5

6∑
i=1

Ni , (4.1.64)

where Ni is the number of chiral states that are available to scatter with νR, with groupings as

given in Table 1, such that N1 is the number of chiral states in uR (
∑6

i=1 = 28). The effective

coupling ḡ is

g ≡
(∑6

i=1Nig2
i g

2
6∑6

i=iNi

)1/4

, (4.1.65)

with gi the chiral couplings of the Z ′ gauge boson for species i, and the constant K = 0.5 (2.5)

for annihilation (annihilation + scattering) [224].

To illustrate, we calculate g for two candidate models. The first is a set of variations on

D-brane constructions which do not have coupling constant unification. The second are two

U(1) models, U(1)ψ and U(1)χ, which are embedded in a grand unified exceptional E6 group,

with breaking pattern

E6 → SO(10)× U(1)ψ → SU(5)× U(1)ψ × U(1)χ . (4.1.66)

The latter two are interesting because they have long been suspected to contribute to Neff [254,

255, 256, 257] and provide a test basis for Z ′ searches at ATLAS [258] and CMS [110, 259].

For each of the E6 models we may write gi in (4.1.65) as gi = g0Qi, where in conformity with
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Table 7 : The charges of the U(1)χ and the U(1)ψ .

bin Fields Qχ Qψ

1 Ur 1/(2
√

10) −1/(2
√

6)

2 DR −3/(2
√

10) −1/(2
√

6)

3 LL 3/(2
√

10) 1/(2
√

6)

4 ER 1/(2
√

10) −1/(2
√

6)

5 QL −1/(2
√

10) 1/(2
√

6)

6 NR 5/(2
√

10) −1/(2
√

6)

grand unification we follow [257] and choose

g0 =

√
5

3
g2 tan θW ∼ 0.46 , (4.1.67)

with g2 the SU(2)L coupling. The charges Qi for the different fermions in this model are given

in Table 7 [257]. In the D-brane construction of the SM++ outlined in Sec. 2.1 or any D-

brane construct the Weyl fermions live at the brane intersections of a particular 4-stack quiver

configuration: U(3)C × SU(2)L × U(1)IR × U(1)L [260]. We consider here two possibilities

in which the Z ′′ gauge boson of the SM++ is taken at TeV scales and has branching ratio that

is mostly into IR or mostly B − L (the specific definition is found in the section 4.2.2). The

chiral couplings (gi) of these gauge bosons are given in Tables 2 and 3 [141, 88].

With (4.1.64) we can determine T dec
νR

via

Γ(T dec
νR

) = H(T dec
νR

) , (4.1.68)

where H can be retrieved from the Friedmann equations in the era of radiation dominance

H(T dec
νR

) = 1.66
√
gρ(T dec

νL
)

(T dec
νR

)2

MPl

(
3

∆Nν

)3/8

, (4.1.69)

where above we have used (4.1.52) to replace gρ(T dec
νR

) for gρ(T dec
νL

). Solving (4.1.68) results in

∆Nν = 3

 13.28
√
g(T dec

νL
) M4

Z′′

MPl K (T dec
νR

)3 g4
∑6

i=1Ni

8/3

=

[
5.39× 10−6

K∑6
i=1Ni

(
MZ′′/TeV

ḡ

)4
1

(TνR/GeV)3

]8/3

. (4.1.70)

In Fig. 44 we show the region of the parameter space allowed from the decoupling Eq. (4.1.70)

to accommodate contributions of ∆Nν within the 1σ region of Planck data.
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Figure 44 : The green area shows the region allowed from decoupling requirements to accommodate
3.03 < Neff < 3.57, and the yellow cross-hatched area shows the region allowed from decoupling
requirements to accommodate 3.37 < ∆Neff < 3.87, respectively. We have taken K = 0.5 (left) and
K = 2.5 (right).

Substituting (4.1.70) into (4.1.39), we obtain an expression for ∆N for cases with a single

non-thermal DM particle and right-handed neutrinos adding to the contribution of Neff . In

Fig. 45 we show contours of constant ∆N in the MZ′′/(Kg) vs. T (R2−1)2/(2R)2 plane, with

f = 1%. For all cases in Fig. 45, T dec
νR
� mcharm, so our use of (4.1.63) is validated.

For g ' 0.3, there is a region of the parameter space inside the 1σ interval of Planck data

(with h ' 0.674) that can accommodate contributions to ∆N from both DM and νR with a

Z ′′ gauge boson1 within the LHC discovery reach. It is important to stress that for the E6

Z ′ψ model, the LHC experimental limits on MZ′ for null signals for enhancements in dilepton

searches entail MZ′ > 2.3 TeV at the 95 %CL [258, 110, 259]. In some of the models with

g ≈ 0.3, the Z ′ may have large couplings to quarks (e.g., IR and B − L models) and the

LHC experimental limits are dominated by dijet final states which imply MZ′ < 4 TeV at 95%

CL [261, 262, 263]. For all the cases there is a region of the parameter space inside the 1σ

interval of Planck data (with h ' 0.674) that can accommodate contributions to ∆N from both

DM and νR, and be in agreement with LHC limits.

1In the general cases where we are not referring to the SM++ model, one can interchange Z ′ and Z ′′ as the

TeV scale gauge boson.
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Figure 45 : Contours of constant ∆N in the MZ′/(Kg) vs. T (R2 − 1)2/(2R)2 plane, with f = 1%.
The (green) solid line indicates the upper limit on ∆N (with h ' 0.674) as reported by the Planck
Collaboration. The band between the dashed (yellow) lines corresponds to the allowed ∆N region
reported by Planck Collaboration using h ' 0.738.
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4.1.4 Big Bang Nucleosynthesis Limits

As a final constraint we now verify that X ′ → X + γ does not drastically alter any of the

light elemental abundances synthesized during BBN. By following [264], we can assume that

the photons injected into the plasma rapidly redistribute their energy through scattering with

background photons and through inverse Compton scattering. As a consequence, the con-

straints from BBN are (almost) independent of the initial energy distribution of the injected

photons and are only sensitive to the total energy released in the decay process. In the spirit

of [265], we conveniently write the electromagnetic energy release as εγ ≡ EγYX′ , where

Eγ = (MX′
2 −M2

X)/(2MX′) is the initial electromagnetic energy release in each X ′ decay

and YX′ ≡ nX′/n
BG
γ is the number density of X ′ before the decay, normalized to the number

density of background photons nBG
γ = 2 ζ(2) T 3

γ /π
2. For YX′ , each X ′ decay produces one X ,

and so the X ′ abundance may be expressed in terms of the present X abundance through

YX′(τ) = YX,τ = YX,today =
ΩXρc

MX nBG
γ (today)

' 2.26× 10−14

(
TeV

MX

)
ΩCDMh

2

0.1199

f

0.01
, (4.1.71)

yielding

εγ = 1.13× 10−11 ΩCDMh
2

0.1199

f

0.01

(
MX′

MX

− MX

MX′

)
GeV .

The thorough analysis of electromagnetic cascades reported in [264] reveals that the shaded

regions of Fig. 46 are ruled out by considerations of light elemental abundances produced

during BBN. The various regions are disfavored by the following conservative criteria: (i) D/H

< 10−4.9 (low); (ii) D/H > 10−4.3 (high); (iii) 7Li/H < 10−10.05; (iv) primordial 4He abundance

< 0.227. The straight lines represent several combinations ofR and τ/tEQ producing the ∆NX

indicated in the labels. All straight lines intersect the BBN bounds at about log10(τ/tEQ) =

−8.2. The constraints from BBN are weak for early decays because at early times the universe

is hot and thus theX ′ secondary photon spectrum is rapidly thermalized, leaving just a few extra

high-energy photons that cannot alter the light elemental abundances. However, for τ/tEQ >

10−8.2, BBN excludes most of the relevant parameter space.
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Figure 46 : The released electromagnetic energy are represented via the lines labeled by ∆NX varying
from 0.14− 1.0 as a function of log10(τ/tEQ). In order to avoid destroying the BBN results, these lines
must not intersect any regions where any elemental abundance has been established. Generically, the
only parameter space available is for log10(τ/tEQ) < −9. The (green) solid line indicates the upper
limit on ∆N (with h ' 0.674) as reported by the Planck Collaboration. The band between the dashed
(yellow) lines corresponds to the allowed ∆N region reported by Planck Collaboration using h ' 0.738.
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4.2 Higgs Portal to the Dark Sector and WIMPS

Recent dark matter direct detection research has found that hints of a WIMP of mass 10 GeV

has been seen by various collaborations reported by the DAMA/LIBRA [68], CoGeNT [69, 70],

CRESST [71], and CDMS [72] Collaborations, each of which report signals consistent with a

dark matter particle of similar mass. These four experiments make use of different technologies,

target materials, and detection strategies, but each reports results that are not compatible with

known backgrounds, but which can be accommodated by a dark matter particle with a mass of

about 10 GeV and an elastic scattering cross section with nucleons of 1− 2× 10−41 cm2 [266,

267, 268, 269].

Furthermore it is observed that around the Galactic Center (GC), there exists a bright and

spatially extended source of γ-ray emission peaking at energies of a few GeV. The spectrum

and morphology of this signal is consistent with one originating from dark matter annihila-

tions [270, 271, 272, 273]. Very recently, evidence of this signal has been found from regions

outside of the GC [274] in the directions of the sky coincident with the Fermi Bubbles: two

Figure 47 : After subtracting the away the Fermi diffuse galactic model from 1.6 years of LAT data two
nearly symmetric bubble structures appear extending out from the galactic center know as Fermi bubbles
(image adopted from [275]).

bilateral γ-ray lobes centered at the core of the Galaxy and extending to around 50◦ above and

below the Galactic plane (i.e., r = ±10 kpc, where r is the distance from the GC) [276, 275] as
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seen in Fig. 47. At lower Galactic latitudes these structures are coincident with a non-thermal

microwave ‘haze’ found in WMAP 23-33 GHz data [277] (confirmed recently by the Planck

space mission [278]) and the thermal X-ray emission seen by ROSAT [279].

Far from the Galactic plane (|b| ≥ 30◦), the observed energy-weighted γ-ray spectrum is

nearly invariant with latitude and fairly flat (dΦγ/dEγ ∝ E−2
γ ) over the energy range observed

by Fermi. The correlation found in the multi-wavelength observations seems to indicate that

the Bubbles (measured in the range of Eγ ∼ 1 − 100 GeV) are produced by a population of

GeV−TeV electrons (with an approximately power-law spectrum dΦe/dEe ∝ E−3
e ) via inverse

Compton scattering of ambient low-energy photons, as the same electrons can also simultane-

ously produce radio synchrotron radiations in the presence of magnetic fields [276, 280]. The

transparency of this elementary and self-consistent framework provides strong support for a

leptonic origin of the high-latitude emission from the Fermi Bubbles.

Conversely, at latitudes closer to the disk (|b| ≥ 20◦), the spectrum of the emission cor-

related with the Bubbles possesses a pronounced spectral feature in E2
γdΦγ/dEγ peaking at

Eγ ∼ 1− 4 GeV, which cannot be produced by any realistic spectrum of electrons [274]. This

implies that a second (non-inverse-Compton) emission mechanism must be responsible for the

bulk of the low-energy, low-latitude emission. The spectral shape of this second component is

similar to the one reported from the GC. The intrinsic non-inverse-Compton emission appears

spatially consistent with a luminosity per volume falling approximately as r−2.4 − r−2.8. As a

consequence, the spectral feature visible in the low-latitude Bubbles is most likely the extended

counterpart of the GC excess, now detected out to at least r ∼ 2−3 kpc. Even though millisec-

ond pulsars possess a spectral cutoff at approximately the required energy, these sources exhibit

a spectral shape that is much too soft at sub-GeV energies to accommodate this signal [281].

The spectrum and angular distribution of the signal is broadly consistent with one predicted

from ∼ 10 GeV dark matter particles annihilating to leptons, or from ∼ 50 GeV dark matter

particles annihilating to quarks, following a distribution similar to, but slightly steeper than,

the canonical Navarro-Frenk-White profile. In either case, the morphology of the γ-ray signal

requires a dark matter distribution that scales approximately as ρDM ∝ r−1.2 − r−1.4, that is the

annihilation rate per volume is proportional to the square of the dark matter density. Such a

dark matter distribution is in good agreement with current observational constraints [282].
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For the 10 GeV dark matter candidate, the normalization of the observed signal requires a

velocity average annihilation cross section on the order of

〈στv〉 ∼ 2× 10−27 cm3/s = 1.7× 10−10 GeV−2 , (4.2.1)

up to overall uncertainties in the normalization of the halo profile [283].

Moreover dark matter particles can also elastically scatter with nuclei in the Sun, leading

to their gravitational capture and subsequent annihilation. Electrons and muons produced in

such annihilations quickly lose their energy to the Solar medium and produce no observable

effects. Annihilations to taus, on the other hand, produce neutrinos which, for a 10 GeV, can

be observed by Super-Kamiokande. For the required branching into τ+τ− of about 10% – as

given by (4.2.1) – existing data constrain the dark matter spin-independent elastic scattering

cross section with protons to be less than 4× 10−41 cm2 [284, 285].

For the 50 GeV dark matter particle, the normalization of the observed signal requires a

velocity average annihilation cross section on the order of

〈σbv〉 ∼ 8× 10−27 cm3/s = 6.7× 10−10 GeV−2 . (4.2.2)

The XENON-100 Collaboration reported a 90% CL bound on the elastic scattering cross section

with nuclei of O(10−44 cm2) [286]. A later analysis has arrived at alternative conclusions

allowing for a signal of two events with a favored mass of 12 GeV and large error contour

extending to about 50 GeV [74].

It is worthwhile to point out that the bounds from the combined analysis of 10 dwarf

spheroidals [287, 288], galaxy clusters [289], or diffuse γ-ray emission [290, 291] are not

sensitive enough to probe the velocity average annihilation cross sections (4.2.1) and (4.2.2).

With this recent (at the time of this writing) observations a minimal hidden sector Higgs

portal model has been suggested by Weinberg [15].

It has attractive qualities to explain these observations, and we will examine to what extent

its free parameters can be adjusted to fit, experimental searches for new physics at the LHC,

constraints from cosmological observations, constraints from direct detection searches, and a

possible explanation of the low-latitude γ-ray emission from the Fermi Bubbles.



168
4.2.1 Constructing Weinberg’s WIMPs

Let us start by examining the Weinberg Higgs portal model. It is based on a broken global

U(1) symmetry associated with the dark matter charge W : the number of weakly-interacting

massive particles (WIMPs) minus the number of their antiparticles. The hidden sector contains

a Dirac field ψ (carrying WIMP quantum number W = +1) and a complex scalar field (with

W = 2, so that its expectation value leaves an unbroken reflection symmetry ψ → −ψ). All

SM fields are assumed to have W = 0.

The scalar potential consists of the SM component [s], the isomorphic component in the

hidden sector [h], and the quartic interaction coupling between the two sectors with strength

ηχ. The Lagrangian density for the scalar sector reads

L = |∂Φh|2 + |∂Φs|2 + µ2
h|Φh|2 − λh|Φh|4 + µ2

s|Φs|2 − λs|Φs|4 − ηχ|Φh|2|Φs|2 ,

(4.2.3)

where Φs is the SM scalar doublet and Φh is a complex scalar field. We separate a massless

Goldstone boson field α(x) and a massive radial field r(x) by defining

Φh(x) =
1√
2
r(x) ei 2α(x) , (4.2.4)

where r(x) and α(x) are real, with the phase of Φh(x) adjusted to make the vacuum expectation

value (VEV) of α(x) zero. The SU(2)× U(1) symmetry of the SM is (of course) broken by a

non-vanishing VEV of the neutral component φ of the scalar doublet,

Φs =
1√
2

 G±

vφ + φ′ + iG0

 , (4.2.5)

where vφ ' 246 GeV. The G fields are the familiar Goldstone bosons, which are eaten by the

vector bosons (i.e. the G± become the longitudinal components of the charged W -boson and

G0 becomes the longitudinal component of the Z-boson). In terms of real fields the Lagrangian

density (4.2.3) takes the form

L =
1

2
∂r2 +

1

2
∂φ2 + 2r2∂α2 +

µ2
h

2
r2 − λh

4
r4 + µ2

s|φ|2 − λs|φ|4 −
ηχ
2
r2|φ|2 . (4.2.6)

The U(1) symmetry of W conservation is also broken and r gets a VEV

r(x) = vr + r′(x) , (4.2.7)
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with vr real and non-negative. We demand the scalar potential obtains its minimum value at

V = −µ
2
h

2
v2
r +

λh
4
v4
r −

µ2
s

2
v2
φ +

λs
4
v4
φ +

ηχ
4
v2
rv

2
φ . (4.2.8)

Physically, the most interesting solutions to the minimization of (4.2.8),

∂vrV = −µ2
hvr + λhv

3
r +

ηχ
2
vrv

2
φ = 0 (4.2.9)

and

∂vφV = −µ2
svφ + λsv

3
φ +

ηχ
2
v2
rvφ = 0 , (4.2.10)

are obtained for vr and vφ both non-vanishing

v2
φ =

1

λs

(
µ2
s −

ηχv
2
r

2

)
(4.2.11)

and

v2
r =

1

λh

(
µ2
h −

ηχv
2
φ

2

)
, (4.2.12)

respectively. To compute the scalar masses, we must expand the potential around the minima

L =
1

2
(∂r′)2

+ 2v2
r∂α

2 + 4vrr
′∂α2 + 2r′2∂α2

− λhv
2
rr
′2 − λsv2

φφ
′2 − ηχvrvφr′φ′ + · · · , (4.2.13)

where the dots indicate 3-point and 4-point interactions, as well as the SM interactions. There

is a mixing term present for r′ and φ′. We find the fields of definite mass by diagonalizing

the mass matrix for r′ and φ′. We denote by H and h the scalar fields of definite masses,

mH = 125 GeV and mh, respectively. After a bit of algebra, the explicit expressions for the

scalar mass eigenvalues and eigenvectors are given by

m2
h = λhv

2
r + λsv

2
φ −

√
(λsv2

φ − λhv2
r)

2 + (ηχvrvφ)2 (4.2.14)

and

m2
H = λhv

2
r + λsv

2
φ +

√
(λsv2

φ − λhv2
r)

2 + (ηχvrvφ)2 , (4.2.15)

with  h

H

 =

 cosχ − sinχ

sinχ cosχ

 r′

φ′

 , (4.2.16)
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where χ ∈ [−π/2, π/2] also fulfills

sin 2χ =
ηχvφvr√

(λsv2
φ − λhv2

r)
2 + (ηχvrvφ)2

=
2ηχvφvr
m2
H −m2

h

, (4.2.17)

and

cos 2χ =
λsv

2
φ − λhv2

r√
(λsv2

φ − λhv2
r)

2 + (ηχvrvφ)2
, (4.2.18)

yielding

tan 2χ =
ηχvrvφ

λsv2
φ − λhv2

r

. (4.2.19)

The Goldstone boson in (4.2.13) has to be be re-normalized so that it resumes the standard

canonical form. This is achieved through scaling α→ α′ = 2vrα, giving

2v2
r∂α

2 + 4vrr
′∂α2 + 2r′2∂α2 → 1

2
∂α′2 +

1

vr
r′∂α′2 +

1

2v2
r

r′2∂α′2. (4.2.20)

Adding in the dark matter sector requires at least one Dirac field

Lψ = iψ̄γ · ∂ψ −mψψ̄ψ −
f√
2
ψ̄cψΦ†h −

f ∗√
2
ψ̄ψcΦh. (4.2.21)

We assign ψ a chargeW = 1, so that the Lagrangian is invariant under the global transformation

eiWα. Applying a phase change allows us to express ψ as

ψ(x) = ψ′(x)eiα(x). (4.2.22)

We can now rewrite (4.2.21) in terms of ψ′, α, and r

Lψ = iψ̄′γ · ∂ψ′ − (ψ̄′γψ′) · ∂α−mψψ̄
′ψ′ − f

2
ψ̄′
c
ψ′r − f

2
ψ̄′ψ′

c
r , (4.2.23)

where we have taken f to be real. Once r achieves a VEV we can expand the dark matter sector

to get

Lψ =
i

2

(
ψ̄′γ · ∂ψ′ + ψ̄′

c
γ · ∂ψc′

)
,

− mψ

2

(
ψ̄′ψ′ + ψ̄′

c
ψ′
c)− fvr

2
ψ̄′
c
ψ′ − fvr

2
ψ̄′ψ′

c
,

− 1

2
(ψ̄′γψ′ − ψ̄′cγψ′c) · ∂α,

− f

2
r′
(
ψ̄′
c
ψ′ + ψ̄′ψ′

c)
. (4.2.24)
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Note that we have made the Lagrangian explicitly symmetric via relations like

ψc = Cψ̄T (4.2.25)

ψ̄cψc = (−ψTC−1Cψ̄T ) = ψ̄ψ (4.2.26)

ψ̄cγ · ∂ψc = −ψTC−1γC · ∂ψ̄T

= ψTγT · ∂ψ̄T = −(∂ψ̄ · γψ)→ ψ̄γ · ∂ψ . (4.2.27)

In (4.2.26) we used the Grassman nature of the spinor fields; in the second line of (4.2.27) we

used integration by parts to transfer the derivative onto the ψ field. Similar results can be found

for the other expressions.

Diagonalization of the ψ′ mass matrix generates the mass eigenvalues,

m± = mψ ± fvr, (4.2.28)

for the two mass eigenstates

ψ− =
i√
2

(ψ′c − ψ′) and ψ+ =
1√
2

(ψ′c + ψ′) . (4.2.29)

In this basis, the act of charge conjugation on ψ± results in

ψc± = ψ±. (4.2.30)

This tells us that the fields ψ± are Majorana fermions. The Lagrangian is found to be

Lψ =
i

2
ψ̄+γ · ∂ψ+ +

i

2
ψ̄−γ · ∂ψ− −

1

2
m+ψ̄+ψ+ −

1

2
m−ψ̄−ψ−,

− i

4vr
(ψ̄+γψ− − ψ̄−γψ+) · ∂α′,

− f

2
r′(ψ̄+ψ+ − ψ̄−ψ−). (4.2.31)

We must now put r′ into its massive field representation, for which the interactions of interest

are

−f sinχ

2
H(ψ̄+ψ+ − ψ̄−ψ−)− f cosχ

2
h(ψ̄+ψ+ − ψ̄−ψ−). (4.2.32)

This leads to 3-point interactions between the W -WIMPs and the Higgs boson of the SM.

In summary, instead of one DiracW -WIMP, there are two MajoranaW -WIMPs of different

masses. However, the heavierW -WIMP will decay into the lighter one by emitting a Goldstone
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boson, while the lighter one is kept stable by an unbroken reflection symmetry. Therefore in this

model we can expect that the universe today will contain only one type of Majorana W -WIMP,

the lighter one w, with mass mw equal to the smaller of m±. Throughout, ∆m = |m+−m−| =
2|fvr| denotes the mass splitting of the W -WIMP states. (The most common variables used in

this discussion are summarized in Table 8.)

A cautionary note is worth taking on board at this juncture. It has long been known that

the spontaneous breaking of a global U(1) symmetry have several disconnected and degen-

erate vacua (the phase of the vacuum expectation value 〈0|Φh|0〉 can be different in different

regions of space, and actually we expect it to be different in casually disconnected regions),

leading to catastrophic domain-wall structure in the early universe [292, 293]. In the spirit

of [292], it may be possible to introduce a small explicit breaking of the symmetry, such that

the domain walls disappear before dominating the matter density of the universe, while leaving

(pseudo-)Goldstone bosons and the same dark matter phenomenology.2

The absence of new physics signals at the LHC place constraints on the model. We discuss

this next.

2Other approaches, if exceedingly fine-tuned, may offer alternative solutions [294, 295, 296, 297,
298].
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Table 8 : Definition of Most Common Variables of W-WIMP Model.

Φs SM Scalar Doublet

Φh Complex Scalar Field

φ Neutral Component of the Scalar Doublet

r Massive Radial Field

α Goldstone Boson

vφ Vacuum Expectation Value of φ

vr Vacuum Expectation Value of r

H SM Higgs Boson

h Hidden Scalar

ηχ Quartic Interaction Coupling Between SM and Hidden Sectors

χ H-h Mixing Angle

w lightest W -WIMP

∆m W -WIMP Mass Splitting

f Coupling Between Hidden Majorana Fermions and Complex Scalar Field
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4.2.2 Constraints from Collider Experiments

As was stated previously the recent discovery [8, 299] SM Higgs boson like particle suggests

that with measurements of branching ratios in various channels, a study of the properties of

the Higgs-like state has the potential for revealing whether or not the Higgs sector is as simple

as envisioned in the SM. Since invisible decays reduce the branching fraction to the (visible)

SM final states, it is to be expected that B(H → invisible) is strongly constrained. Indeed

B(H → invisible) is known to be less than about 19% at 95%CL [300, 301, 302]. Thus, the

mixing of the SM with the hidden sector must be weak. Note that for ηχ � 1 the relations

between masses and angles then becomes

m2
h ≈ 2λhv

2
r , m2

H ≈ 2λsv
2
φ, tan 2χ ≈ 2ηχvrvφ

m2
H −m2

h

, (4.2.33)

where we have assumed λsv2
φ > λhv

2
r . For a Higgs width of about 4 MeV, the partial width for

decay into unobserved particles is found to be

ΓH→ invisible < 0.8 MeV . (4.2.34)

The phenomenology of a Higgs portal to the hidden sector depends on whether the SM

Higgs particle is lighter or heavier than the new companion. In this study we take mH > mh.

The decay rate into invisible stuff, ΓH→ invisible, has two distinct contributions: ΓSM
H→ invisible and

ΓH→ hidden. The former is dominated by H → 2Z → 4ν, with an invisible Z branching ratio

of 4%. The 4ν rate can be predicted from observed decays H → 2Z → 4l. For the sake

of simplicity, hereafter we will omit the contribution of ΓSM
H→ invisible. Unless expressly stated

otherwise herein, we assume mw + ∆m > mH/2 and thus H decays (invisibly) into the hidden

sector via three channels: H → 2α′, H → 2h, and H → 2w. From the event rates for visible

Higgs production and decay channels we could derive upper bounds on non-SM admixtures in

the wave-function of the Higgs boson and on the new three invisible decay channels. To this

end we now compute the decay rates for these three processes.
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ΓH→2α′

Substituting in (4.2.20) r′ by the field of definite mass, r′ = h cosχ+H sinχ, we can write the

Higgs–Goldstone boson interaction term as

1

vr
r′∂α′2 → sinχ

vr
H(∂α′)2 +

cosχ

vr
h(∂α′)2 . (4.2.35)

Using (4.2.35) we write the Feynman rule for interactions of the type H, α′, α′ as

−i2 sinχ

vr
k · k′, (4.2.36)

where k (k′) is the 4-momentum of the incoming (outgoing) α′ particle, and the factor of 2

is a symmetry factor, as one can exchange incoming-outgoing α′ twice. From this 3-point

interaction we can calculate the decay width of the SM Higgs H into 2 Goldstone bosons α′.

In the rest frame of the Higgs, the differential decay probability per unit time is given by

dΓH→2α′ =
1

2mH

(
2 sinχ

vr
k1 · k2

)2

dQ , (4.2.37)

where

dQ =
1

2!

d3k1

(2π)32k1

d3k2

(2π)32k2

(2π)4δ(mH − k1 − k2)δ(3)(k1 + k2)

=
1

16

dΩk1

(2π)2

∣∣∣∣
k1=mH/2

(4.2.38)

is the phase space for a two-body final state (the factor of 1/2! is included because of identical

particles in the final state). After some algebra (4.2.37) can be re-written as

dΓH→2α′ =
dΩk1

128 π2mH

[
2 sinχ

vr
2
(mH

2

)2
]2

. (4.2.39)

The partial decay width can now be expressed as

ΓH→2α′ =
1

32π

(
sinχ

vr

)2

m3
H . (4.2.40)

For mH � mh and m2
H � 2 ηχ vrvφ, we can use the small angle approximation

sinχ ≈ χ = ηχ vrvφ/(m
2
H −m2

h) . (4.2.41)

In this very good approximation the decay width becomes

ΓH→2α′ =
1

32π

(
ηχ vφ

m2
H −m2

h

)2

m3
H . (4.2.42)
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ΓH→2h

We begin by expanding the scalar potential V around the VEVs of r and φ after which we

diagonalize the mass matrix. Together this requires that we expand around the fields

r(x) = vr + h cosχ+H sinχ ,

φ(x) = vφ +H cosχ− h sinχ , (4.2.43)

which puts V in the form

V =
1

2
m2
HH

2 +
1

2
m2
hh

2

− 1

16
(ηχ + 3(λh + λs) + 3(ηχ − λh − λs) cos 4χ)H2h2

− 1

4
vφ cosχ[6λs − ηχ + 3(ηχ − 2λs) cos 2χ]Hh2

+
1

4
vr sinχ[ηχ − 6λh + 3(ηχ − 2λh) cos 2χ]Hh2

− 1

4

(
λs cos4 χ+ ηχ cos2 χ sin2 χ+ λh sin4 χ

)
H4

− 1

4

(
λh cos4 χ+ ηχ cos2 χ sin2 χ+ λs sin4 χ

)
h4

+
1

2

(
vφ sinχ(ηχ cos2 χ+ 2λs sin2 χ)− vr(2λh cos3 χ+ ηχ cosχ sin2 χ)

)
h3

− 1

2

(
vr sinχ(ηχ cos2 χ+ 2λh sin2 χ) + vφ(2λs cos3 χ+ ηχ cosχ sin2 χ)

)
H3

+
1

4
(λh − λs + (λs + λh − ηχ) cos 2χ) sin 2χ Hh3

+
1

4
(λs − λh + (λs + λh − ηχ) cos 2χ) sin 2χ H3h

+
1

2
vφ sinχ[2(3λs − ηχ) cos2 χ+ ηχ sin2 χ]H2h

+
1

2
vr(ηχ sinχ sin 2χ− 6λh cosχ sin2 χ− ηχ cos3 χ)H2h . (4.2.44)

Since χ < 1, we first expand the potential around χ = 0, and then using (4.2.17) we further

expand around ηχ = 0 retaining only the terms of first order in ηχ; this results in

V ≈ 1

2
m2
HH

2 +
1

2
m2
hh

2

− ηχ
4
H2h2 − λh

4
h4 − λs

4
H4 − ηχλhvrvφ

m2
H −m2

h

Hh3 +
ηχλsvrvφ
m2
H −m2

h

H3h

− λhvrh
3 − λsvφH3 − ηχvφ

2

(
6λhv

2
r

m2
H −m2

h

+ 1

)
Hh2

+
ηχvr

2

(
6λsv

2
φ

m2
H −m2

h

− 1

)
H2h .
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Using (4.2.33) we can manipulate this expression to write the scalar potential as

V ≈ 1

2
m2
HH

2 +
1

2
m2
hh

2

− ηχ
4
H2h2 − λh

4
h4 − λs

4
H4 − ηχλhvrvφ

m2
H −m2

h

Hh3 +
ηχλsvrvφ
m2
H −m2

h

H3h

− m2
h

2vr
h3 − m2

h

2vφ
H3 − ηχvφ

2

(
m2
H + 2m2

h

m2
H −m2

h

)
Hh2

+
ηχvr

2

(
2m2

H +m2
h

m2
H −m2

h

)
H2h . (4.2.45)

Under the approximations taken previously, mH � mh and m2
H � 2ηχvrvφ, the relevant Hhh

interaction term results in

−ηχvφ
2

(
m2
H + 2m2

h

m2
H −m2

h

)
Hh2. (4.2.46)

The differential decay probability per unit time is given by

dΓH→2h =

1
2mH

(
ηχvφ

m2
H −m2

h

)2 (
m2
H + 2m2

h

)2 1

2!

k2 dk dΩ

(2π)24Ek

1

2k
δ

(
mh − 2

√
k2 +m2

H

)
.

(4.2.47)

The partial H → 2h decay width can now be expressed as

ΓH→2h =
1

32 πm2
H

(
ηχvφ

m2
H −m2

h

)2 (
m2
H + 2m2

h

)2
√
m2
H − 4m2

h . (4.2.48)

In the limit mH � mh we obtain

ΓH→2h =
1

32π

(
ηχvφ

m2
H −m2

h

)2

m3
H . (4.2.49)

ΓH→2w

For mw < mH/2, the r − φ mixing allows the Higgs boson to decay into pairs of the lightest

W -WIMP. We obtain the invariant amplitude for this process (a description of Feynman rules

for Majorana fermions can be found in Ref. [24]),

iM = if sinχū(p)v(p′) , (4.2.50)

where u(p) and v(p) are Dirac spinors. The spin average rate is given by∑
s

|M|2 = 4f 2 sin2 χ(p · p′ −m2
w). (4.2.51)
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The partial H-decay rate into 2w is

dΓH→2w =
|M|2
2mH

d3p′

(2π)32Ep′

d3p

(2π)32Ep
(2π)4δ(3)(p′ + p)δ(mH − p′ − p),

=
1

2!

dΩ

64π2m2
H

√
m2
H − 4m2

w|M|2p′=−p, p=
√

(mH/2)2−m2
w

, (4.2.52)

and so the partial width for this decay is given by

ΓH→2w =
2(m2

H − 4m2
w)

32πm2
H

(
fηχvrvφ
m2
H −m2

h

)2√
m2
H − 4m2

w . (4.2.53)

For mH � 2mw, (4.2.53) becomes

ΓH→2w =
1

16π

(
fηχvrvφ
m2
H −m2

h

)2√
m2
H − 4m2

w. (4.2.54)

ΓH→ hidden

All in all, the decay width of the Higgs into the hidden sector is given by

ΓH→hidden =
1

16π

(
ηχ vφ

m2
H −m2

h

)2

m3
H +

1

16π

(
f ηχ vr vφ
m2
H −m2

h

)2√
m2
H − 4m2

w. (4.2.55)

Assuming mH � mh, this decay width is

ΓH→hidden =
η2
χv

2
φ

16πmH

+
η2
χ∆m2v2

φ

64πm3
H

. (4.2.56)

Comparing (4.2.34) and (4.2.56) we obtain

|∆m| > 2mH

√
8.3× 10−5

η2
χ

− 1 , (4.2.57)

which is satisfied if |ηχ| < 0.009.

4.2.3 Constraints from Direct Detection Experiments

Direct detection experiments attempt to observe the recoil from the elastic scattering of dark

matter particles interacting with nuclei in the detector. Since the late 90’s the DAMA/NaI

Collaboration [303] has been claiming to observe the expected annual modulation of the dark

matter induced nuclear recoil rate due to the rotation of the Earth around the Sun [304, 305].

The upgraded DAMA/LIBRA detector confirmed [306] the earlier result adding many more

statistics, and it has reached a significance of 8.9σ for the cumulative exposure [68]. In 2010,
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the CoGeNT Collaboration reported an irreducible excess in the counting rate [69], which may

also be ascribed to a dark matter signal. One year later, the same collaboration reported further

data analyses showing that the time-series of their rate is actually compatible with an annual

modulation effect [70]. In CoGeNT data the evidence for the annual modulation is at the 2.8σ

level. In the summer of 2011, the CRESST Collaboration also reported an excess of low energy

events that are not consistent with known backgrounds [71]. In particular, 67 counts were found

in the dark matter acceptance region and the estimated background from leakage of e/γ events,

neutrons, α particles, and recoiling nuclei in α decays is not sufficient to account for all the

observed events. The CRESST Collaboration rejected the background-only hypothesis at more

than 4σ. Of particular interest here, the DAMA (after including the effect of channeling in the

NaI crystal scintillators [307]) and CoGeNT results appear to be compatible with a relatively

light dark matter particle, in the few GeV to tens of GeV mass range, with a scattering cross

section against nucleons of about 7×10−41 cm2 [266, 267, 268, 269]. The central value favored

by CRESST data points to somewhat larger dark matter masses, but it is still compatible at the

1σ level with the range determined by the other two experiments.

Very recently, CDMS II Collaboration reported three candidate events with an expected

background of 0.7 events [72]. If interpreted as a signal of elastically scattering dark matter,

the central value of the likelihood analysis of the measured recoil energies favors a mass of

8.6 GeV and a scattering cross section on nucleons of

σmw≈10 GeV
wN ≈ 1.9× 10−41 cm2 . (4.2.58)

The 68% confidence band is somewhat large and overlaps with previous signal claims.

Alongside these “signals” stands the series of null results from the XENON-100 [286] and

XENON-10 [308] experiments, which at present have the world’s strongest exclusion limit.

Some authors have pointed out that uncertainties in the response of liquid xenon to low energy

nuclear recoil may be significant, particularly in the mass region of interest [309, 310]. In light

of these suspicions, a recent re-analysis of XENON data suggests candidates in fact may have

been observed [74]. The data favor a mass of 12 GeV, though the 90% error contours extend

from 7 to 30 GeV with the cross section varying between 6 × 10−41 cm2 and 4 × 10−45 cm2.

Taken together, these different arguments suggest that the existing data set is not inconsistent

with a dark matter candidate of about 10 GeV.
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The wN cross section for elastic scattering is given by

σwN =
4

π

m2
wm

2
N

(mw +mN)2

f 2
p + f 2

n

2
, (4.2.59)

where N ≡ 1
2
(n + p) is an isoscalar nucleon, in the renormalization group-improved parton

model [311, 312]. The effective couplings to protons fp and neutrons fn are given by

fp,n =
∑

q=u,d,s

Gq√
2
f

(p,n)
Tq

mp,n

mq

+
2

27
f

(p,n)
TG

∑
q=c,b,t

Gq√
2

mp,n

mq

, (4.2.60)

where Gq is the W -WIMP’s effective Fermi coupling for a given quark species,

L =
Gq√

2
ψ̄−ψ−ψ̄qψq , (4.2.61)

with ψq the SM quark field of flavor q. The first term in (4.2.60) reflects scattering with light

quarks, whereas the second term accounts for interaction with gluons through a heavy quark

loop. The terms f (p,n)
Tq are proportional to the matrix element, 〈q̄q〉, of quarks in a nucleon, and

are given by

fpTu = 0.020± 0.004, fpTd = 0.026± 0.005, fpTs = 0.118± 0.062,

fnTu = 0.014± 0.003, fnTd = 0.036± 0.008, fnTs = 0.118± 0.062 . (4.2.62)

We also have f (p,n)
TG = 1−∑u,d,s f

(p,n)
Tq , which is fpTG ≈ 0.84 and fnTG ≈ 0.83 [311].

To establish the value of Gq/mq we look back at (4.2.32) along with the SM Yukawa in-

teraction term, which involves the mixing of both scalar fields, H and h. For interactions of

W -WIMPs with SM quarks, the relevant terms are

L =
mq cosχ

vφ
Hψ̄qψq −

mq sinχ

vφ
hψ̄qψq + · · ·+ f sinχ

2
Hψ̄−ψ− +

f cosχ

2
hψ̄−ψ−. (4.2.63)

The scattering of a w particle off a quark then gives

M = i
fmq sinχ cosχ

vφ
ūq(p

′)uq(p)

(
1

t−m2
H

− 1

t−m2
h

)
ū(k′)u(k)

≈ i
fmqηχvr
m2
Hm

2
h

ūq(p
′)uq(p)ū(k′)u(k)

≈ i
mqηχ∆m

2m2
Hm

2
h

ūq(p
′)uq(p)ū(k′)u(k). (4.2.64)

This leads to the identification of the effective coupling

2Gq√
2

=
mqηχ∆m

2m2
Hm

2
h

⇒ Gq

mq

=
ηχ∆m

2
√

2 m2
Hm

2
h

. (4.2.65)
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Insertion of (4.2.65) and (4.2.60) into (4.2.59) yields

σwN ≈ 3× 10−7

[
226.27 ηχ∆m GeV

m2
h

]2

pb . (4.2.66)

Combining (4.2.66) with the signals/bounds on elastic scattering of dark matter particles on

nucleons we obtain a constraining relation for ηχ∆m. For mw = 10 GeV, we use the cross

section reported by CDMS Collaboration (4.2.58) to obtain

ηχ∆m =
3.5× 10−2

GeV
m2
h . (4.2.67)

For mw = 50 GeV, we adopt the 90% CL upper limit reported by the XENON-100 Collabora-

tion [286] to obtain

ηχ∆m <
3.6× 10−4

GeV
m2
h . (4.2.68)

4.2.4 Constraints from Cosmological Observations

As noted in [15] the Goldstone boson α is a natural candidate for an impostor equivalent neu-

trino. The contribution of α to Neff is ∆N = ρα/ρνL , which can also be expressed as

∆N =
4

7

(
g(T dec

νL
)

g(T dec
α )

)4/3

, (4.2.69)

where g(T ) = gS(T ) ≈ gρ(T ) is the effective number of interacting (thermally coupled) rela-

tivistic degrees of freedom at temperature T [49].

We now turn to calculating the interaction rate for Goldstone bosons,

Γ(T ) =
∑

fermions

nf(T )〈σv〉 , (4.2.70)

where

nf(T ) =
gf

2π2

∫ ∞
0

k2

eβ
√
k2+m2

f + 1
dk (4.2.71)

is the number density of an interacting fermion of type f (with mass mf) in thermal equilibrium

with, β = (kBT )−1, and gf , the number of chiral states. The average in (4.2.70), indicates an

average over the statistical distribution for a given temperature. For T � mf , we obtain

nf(T ) ≈ gf
3ζ(3)

4π2

(
kBT

~c

)3

. (4.2.72)
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This results in a simplification of (4.2.70)

Γ(T ) ≈ 3ζ(3)

4π2

(
kBT

~c

)3 ∑
fermions

gf〈σv〉. (4.2.73)

Since the Goldstone boson only interacts with the SM fields via the Higgs, we can have

scatterings of the type αψ → αψ, with ψ a generic SM fermion. The α scattering off fermions

is described by SM Yukawa interaction terms that can be written as

Yfφψ̄ψ → Yfvφψ̄ψ + Yfφ
′ψ̄ψ,

= mfψ̄ψ +
mf

vφ
Hψ̄ψ cosχ− mf

vφ
hψ̄ψ sinχ , (4.2.74)

where Yf is the Yukawa coupling of the fermion in question.

We proceed to calculate the scattering cross section. The invariant amplitude follows from

the Feynman rules

iM =
2mf sinχ cosχ

vrvφ
(k · k′) i

t−m2
H

ū(p′)u(p)

− 2mf cosχ sinχ

vrvφ
(k · k′) i

t−m2
h

ū(p′)u(p). (4.2.75)

The momenta of incoming and outgoing (outgoing primed) particles are defined by

pµ = (p, p sinϕ, 0,−p cosϕ)

kµ = (k, 0, 0, k)

k′µ = (k′, k′ sinϑ, 0, k′ cosϑ)

p′µ = (p′,−p′ sinϑ′, 0,−p′ cosϑ′) , (4.2.76)

with t = p′ − p. To obtain the (unpolarized) cross section, we have to take the square of the

modulus ofM and then carry out the spin and color (if appropriate) sums

1

2

∑
spins, colors

|M|2 = 8Nc

(
mf sinχ cosχ

vrvφ

)2(
m2
H −m2

h

(t−m2
H)(t−m2

h)

)2

(k · k′)2(p · p′ +m2
f ),

(4.2.77)

where Nc = 3 for quarks and Nc = 1 for leptons. The cross section in the center-of-mass frame

(c.m.) in the highly relativistic approximation is given by

dσ

dΩ
≈ Nc

8π2s

(
mfηχ

(t−m2
H)(t−m2

h)

)2

(k · k′)2(p · p′) , (4.2.78)
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where s = (k + p)2 ≈ 4k2 and finally ηχ � 1. To make progress on this problem we take the

effective coupling form

σ(s) ≈ Nc

64π

(
mfηχ
m2
Hm

2
h

)2

s2 . (4.2.79)

Non-equilibrium thermal physics tells us that the way to do thermal averaging within Boltz-

mann’s approximation is

〈σv〉 =

∫
dΠp′dΠk′dΠkdΠp|M(k + p→ k′ + p′)|2ff(p, T )fα(k, T )

× (2π)4δ(4)(p+ k − p′ − k′), (4.2.80)

with dΠp = d3p′/[(2π)32Ep′ ] and likewise for the other parameters. Here, ff and fα are Fermi

and Bose equilibrium normalized distributions, corresponding to the f fermion and α boson,

respectively. The expression from non-equilibrium thermal physics [Eq. (4.2.80)] is approxi-

mated by

〈σv〉 ≈
∫

d3k

(2π)3

d3p

(2π)3
ff(p, T )fα(k, T ) vM σ(s) , (4.2.81)

where vM ≈ k · p/(pk) = 2(1 + cosϕ) is the Möller velocity in the ultra-relativistic limit [313,

314] and s = 2kp(1+cosϕ) is the c.m. energy of two interacting particles with initial momenta

not necessarily co-linear. The velocity average cross section then is found to be

〈σv〉 ≈ 1

8π4

∫ ∞
0

p2dp

∫ ∞
0

k2dk

∫ π

0

sinϕdϕ ff(p, T )fα(k, T )

× 2(1 + cosϕ) σc.m.[2kp(1 + cosϕ)],

= Nc
15ζ2(5)

πζ2(3)

(
mfηχ
m2
Hm

2
h

)2

(kBT )4,

≈ 3.55Nc

(
mfηχ
m2
Hm

2
h

)2

(kBT )4. (4.2.82)

Putting this all together, we obtain

Γ(T ) ≈ 0.32

(
ηχ

m2
Hm

2
h

)2

(kBT )7
∑

fermions

gf Nc m
2
f . (4.2.83)

Now, since we can approximate the energy density (at high temperatures) by including only

particles species i with T � mi, it follows that

ρR =

(∑
bosons

gb +
7

8

∑
fermions

gf

)
π2

30
(kBT )4 =

π2

30
g(T )(kBT )4 (4.2.84)

and therefore the Hubble parameter (4.1.69) becomes

H(T ) ' 1.66

MPl

√
g(T ) (kBT )2 , (4.2.85)
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where gb(f) is the number of degrees of freedom of each boson (fermion) and the sum runs over

all boson and fermion states with T � mi. The factor of 7/8 is due to the difference between

the Fermi and Bose integrals.

The Goldstone boson decouples from the plasma when its mean free path becomes greater

than the Hubble radius at that time

Γ(T dec
α ) = H(T dec

α ) . (4.2.86)

The most interesting thermodynamics originates if α goes out of thermal equilibrium while

T is still above the mass of the muons but below the mass of all other particles of the SM,

a time when neutrinos are still in thermal equilibrium. For instance, with ηχ = 0.005 and

mh ≈ 500 MeV we obtain [15]

∆N = (4/7)(43/57)4/3 = 0.39 . (4.2.87)

This corresponds to a number of equivalent light neutrino species that is consistent at the 1σ

level with both the estimate of Neff using Planck + BAO data as well as the estimate using

Planck + H0 data.

However, of particular interest here is the case where the mass of the Goldstone boson

companion field is mh ≈ 98 GeV and ηχ = 0.0003. For such set of parameters, α decouples

when

0.32

(
ηχ

m2
Hm

2
h

)2

(kBT )7 12 m2
b =

1.66

MPl

√
86.25 (kBT )2 , (4.2.88)

where we have approximated
∑

fermions Nc gf m
2
f ≈ 12m2

b . This gives T ≈ 5 GeV, and so the

α contribution to Neff is found to be

∆N ≈ 0.036. (4.2.89)

The corresponding value of Neff is within the 1σ interval of the value reported by the Planck

Collaboration using Planck + BAO data, but far out from the value derived using Planck +

H0 data. Should future data point towards the Planck + H0 value, one should find a different

origin to explain the extra relativistic degrees of freedom (if mh ≈ 98 GeV). One interesting

possibility is to include the right-handed partners of the three left-handed, SM neutrinos. It was

shown elsewhere [224, 141, 225, 226, 221] that milli-weak interactions of these Dirac states
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(through their coupling to a TeV-scale Z ′ gauge boson) may allow the νR’s to decouple during

the course of the quark-hadron crossover transition, just so that they are partially reheated

compared to the νL’s. Remarkably, the required mass for the Z ′ gauge boson is within the

range of discovery of LHC.

4.2.5 Fitting Fermi data and the Observed Dark Matter Density

Next, in line with our stated plan, we use Fermi data and the observed relic density to determine

the free parameters of the model. To this end we first calculate the annihilation rate into SM

fermions and Goldstone bosons.

4.2.6 W-WIMP Annihilation into SM Fermions

The W -WIMP can annihilate into SM fermions via ψ̄−ψ− → φ∗/r∗ → ψ̄ψ, with an s-channel

Higgs or h mediator. The matrix element of this process is given by

iM = if sinχ cosχ v̄(p′)u(p)

(
i

s−m2
H

− i

s−m2
h

)
imf

vφ
ū(k′)v(k) . (4.2.90)

The minus sign in the second propagator is necessary because the r couples with a negative

sign to fermions compared to the Higgs; see (4.2.74). The spin-averaged invariant amplitude

reads

1

4

∑
|M|2 = Nc

(
fmf sinχ cosχ

vφ

)2
4 (m2

h −m2
H)

2
(p · p′ −m2

w)(k · k′ −m2
f )

(s−m2
h)

2(s−m2
H)2

. (4.2.91)

Now, let’s calculate the cross section for f f̄-pair production

dσ =
1

8Ep|p|
|M|2 d3k

(2π)32Ek

d3k′

(2π)32Ek′
(2π)4δ(3)(k′ + k)

× δ(2Ep − Ek − Ek′), (4.2.92)

and so

σ =
|M|2
64π

|k′|
|p|E2

p

=
Nc

16π

(
fmf sinχ cosχ

vφ

)2 |k′|
|p|

(m2
h −m2

H)
2

(s−m2
h)

2(s−m2
H)2

(p · p′ −m2
w) (k · k′ −m2

f )

E2
p

≈ Nc

16π

(
ηχmf∆m

2(s−m2
h)(s−m2

H)

)2
√
|s− 4m2

f |
|s− 4m2

w|
(s− 4m2

w)(s− 4m2
f )

s
. (4.2.93)



186
In this case the out state does not consist of identical particles. For phenomenological pur-

poses, the h pole needs to be softened to a Breit-Wigner form by obtaining and utilizing the

correct total widths Γh of the resonance. This is accomplished by modification of the s-channel

propagator for h via
i

s−m2
h

→ i

s−m2
h − imhΓh

. (4.2.94)

It should be noted that we could also do the same analysis on the H pole which may also have

some phenomenological interest as an independent analysis of the Fermi bubbles resulted in a

best fit annihilation of dark matter of a particle with mass mw ≈ 61 GeV into bb̄ [315]. After

this is done, the contribution of the f f̄ channel is as follows:

σ =
Nc

16π

(
ηχmf∆m

2(m2
H −m2

h)(s−m2
H)

)2
(m2

H −m2
h)

2
+m2

hΓ
2
h

(s−m2
h)

2 +m2
hΓ

2
h

√
|s− 4m2

f |
|s− 4m2

w|

× (s− 4m2
w)(s− 4m2

f )

s
,

≈ Nc

16π

(
ηχmf∆m

2(s−m2
H)

)2
1

(s−m2
h)

2 +m2
hΓ

2
h

√
|s− 4m2

f |
|s− 4m2

w|
(s− 4m2

w)(s− 4m2
f )

s
.

(4.2.95)

For ∆m > mH/2, the decay channels of the h field are: h → f f̄, h → ww̄, and h → 2α′. The

corresponding decay widths are given by

Γh→f f̄ =
∑

fermions

Nc

8πm2
h

(
mf sinχ

vφ

)2

(m2
h − 4m2

f )3/2

≈
∑

fermions

Nc

8πm2
h

(
mfηχvr
m2
H −m2

h

)2

(m2
h − 4m2

f )3/2

≈
∑

fermions

Nc

8πm2
hf

2

(
mfηχ∆m

2(m2
H −m2

h)

)2

(m2
h − 4m2

f )3/2

≈ 3

8πm2
hf

2

(
mbηχ∆m

2(m2
H −m2

h)

)2

(m2
h − 4m2

f )3/2 (4.2.96)

(in the last line we have taken mb < mw < mt),

Γh→ww̄ =
2 (m2

h − 4m2
w) f 2 cos2 χ

32πm2
h

√
m2
h − 4m2

w

≈ f 2

16πm2
h

(m2
h − 4m2

w)3/2 (4.2.97)
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(inclusion of this channel requires 2mw < mh), and

Γh→2α′ =
1

32π

(
cosχ

vr

)2

m3
h

≈ f 2

8π∆m2
m3
h . (4.2.98)

The dominant terms of the total decay width come from the hidden sector. Hence, in what

follows we neglect terms accounting for h decay into the visible sector and considermh < 2mw

(so that the decay h → ww̄ is closed). Under these assumptions the decay width takes a

particularly simple form

Γh =
f 2

8π∆m2
m3
h . (4.2.99)

Next, we compute the averaged cross section for thermal interactions. In the cosmic co-

moving frame (the frame where the gas is assumed to be at rest as a whole) we have

〈σv〉 =

∫
d3pd3p′fw(p, T )fw(p′, T )σvM∫
d3pd3p′fw(p, T )fw(p′, T )

, (4.2.100)

where p and p′ are the three-momenta of the colliding particles, whose equilibrium distribution

function at temperature T is Maxwell-Boltzmann,

fw(p, T ) ≈ e−β
√
p2+m2

w , (4.2.101)

with p = |p| and p′ = |p′|. The Maxwell-Boltzmann distribution remains a good approximation

provided 3mw β > 1. The Möller velocity can be expressed as

vM =
1

EE ′

√
(p · p′)2 −m4

w =
1

2EE ′

√
s(s− 4m2

w) , (4.2.102)

where E and E ′ are the energies of the scattering particles. Note that in the c.m. frame the

velocity of the colliding W -WIMPs is half the Möller velocity, v =
√

1− 4m2
w/s = vM/2.

For s� mf , from (4.2.93) and (4.2.102) we obtain

σvM =
Nc

8π

(
ηχmf∆m

2(s−m2
h)(s−m2

H)

)2

(s− 4m2
w) . (4.2.103)

We evaluate (4.2.100) by expanding σvM around

s = 4E2 =
4m2

w

1− v2
≈ 4m2

w(1 + v2 + . . . ) (4.2.104)

to obtain a series solution in powers of v of which the leading order term is

〈σv〉 ≈ Nc

2π

(
ηχmfmw∆m

2(4m2
w −m2

h)(4m
2
w −m2

H)

)2

〈v2〉 , (4.2.105)
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where 〈v2〉 is the W -WIMP thermally averaged velocity.

All in all, the total average annihilation cross section into SM particles (labelled by subindex

i) is given by∑
fermions

〈σiv〉 ≈
3

2π

(
ηχmbmw∆m

2(4m2
w −m2

H)

)2 〈v2〉
(4m2

w −m2
h)

2 +m2
hΓ

2
h

, (4.2.106)

where we have assumed that the overwhelming contribution into bb̄ dominates the process.

Provided the theory is not strongly coupled, (4.2.106) is generally a good approximation

for relativistic particles, but for low velocities and in the presence of a long-range force (clas-

sically, when the potential energy due to the long-range force is comparable to the particles’

kinetic energy), the perturbative approach breaks down. In the non-relativistic limit, the ques-

tion of how the long-range potential modifies the cross section for short-range interactions can

be formulated as a scattering problem in quantum mechanics, with significant modifications to

the cross sections occurring when the particle wavefunctions are no longer well approximated

by plane waves (so the Born expansion is not well-behaved). The deformation of the wave-

functions due to a Coulomb potential was calculated by Sommerfeld [316], yielding a ∼ 1/v

enhancement to the cross section for short-range interactions (where the long-range behavior

due to the potential can be factorized from the relevant short-range behavior). Along these

lines, for low-velocity (v ∼ 10−3) W -WIMPs in our Galactic halo, we expect interactions with

the H and h fields to enlarge the cross section, as the attractive Yukawa potential

Vw(r) = −f
2 cos2(χ)

4π

e−mhr

r
− f 2 sin2(χ)

4π

e−mHr

r
≈ − f

2

4π

e−mhr

r
' − f

2

4π

1

r
. (4.2.107)

cause passing W -WIMPS to be drawn toward each other [317]. For p-wave scattering, 〈v2〉 →
〈S(v)v2〉, where

S(v) ≈ πα̃

v

1

1− e−πα̃/v
(

1 +
π2α̃2

4v2

)
, (4.2.108)

is the Sommerfeld enhancement factor in the Coloumb approximation, with α̃ = f 2/(4π) [318].

Following [319] we compute the thermally averaged Sommerfeld enhancement factor by ap-

proximating
(
1− e−πα̃/v

)−1 with α̃� 1

〈S(v)v2〉 ≈ 6x−1 + 4
√
πα̃x−1/2 +

4π2α̃2

3
+ π5/2α̃3x1/2 +

π4α̃4

6
x, (4.2.109)

where x = mw/T . Figure 4.2.6 shows the effect of the Sommerfeld enhancements at low

temperatures. For interactions in the Galactic halo (G.h.), we have 〈v2〉 ∼ 10−6, and therefore
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Figure 48 : Sommerfeld enhancements allow the thermally averaged cross section to increase at low
temperatures T. The figure shows varying values of α̃ and the red curve is the result with no Sommerfeld
enhancement.

the thermally average annihilation cross section into bb̄ becomes

〈σbv〉 ≈
3

2π

(
ηχmbmw∆m

2(4m2
w −m2

H)

)2
1

(4m2
w −m2

h)
2 +m2

hΓ
2
h

× 1

4

(
6x−1

G.h. + 4
√
πα̃x

−1/2
G.h. +

4π2α̃2

3
+ π5/2α̃3x

1/2
G.h. +

π4α̃4

6
xG.h.

)
,

(4.2.110)

with xG.h. ≈ 3× 106.

4.2.7 W-WIMP Annihilation into Pairs of Goldstone Bosons

In addition to the annihilation into SM fermions we must consider the ww̄ → 2α′ annihilation

channel. The invariant amplitude for this process is given by

iM =
2if

vr
v̄(p)u(p′)

(
sin2 χ

s−m2
H

− cos2 χ

s−m2
h

)
k · k′. (4.2.111)

We then average over the in state spins to obtain

1

4

∑
s,s′

|M|2 =
f 2s2[(s−m2

h) sin2 χ− (s−m2
H) cos2 χ]2

2v2
r(s−m2

h)
2(s−m2

H)2
(s− 4m2

w).

The general expression for the cross section reads

σ =
1

16π
√
s
√
|s− 4m2

w|
f 4s2[(s−m2

h) sin2 χ− (s−m2
H) cos2 χ]2

∆m2(s−m2
h)

2(s−m2
H)2

(s− 4m2
w) . (4.2.112)
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Using the small angle approximation, i.e. cosχ ≈ 1, we obtain

σ ≈ f 2s2
√
|s− 4m2

w|
16π
√
s(s−m2

h)
2

(
f 2

∆m2
+

(m2
h +m2

H − 2s)

2(s−m2
H)2

η2
χv

2
φ

(m2
H −m2

h)
2

)
. (4.2.113)

Taking a thermal average gives

〈σα′v〉 ≈
2f 4m4

w

π∆m2[(m2
h − 4m2

w)2 +m2
hΓ

2
h]
〈v2〉 . (4.2.114)

If the W -WIMPs are highly non-relativistic we have to correct (4.2.114) to account for the

Sommerfeld enhancement

〈σα′v〉 ≈
2f 4m4

w

π∆m2[(m2
h − 4m2

w)2 +m2
hΓ

2
h]
〈S(v)v2〉 . (4.2.115)

4.2.8 W-WIMP Parameter Fits

The total flux of γ-rays per solid angle from W -WIMP annihilation into SM particles (labelled

by subindex i) is given by

dΦγ

dEγ
=

∑
fermions

〈σiv〉
2

J∆Ω

J0

1

∆Ωobsm2
w

dNγ

dEγ

∣∣∣∣
i

, (4.2.116)

where J /J0 is the normalized integral of mass density squared of the dark matter in the line

of sight, dNγ/dEγ is the γ-ray spectrum per annihilation into particle species i, ∆Ωobs is the

observational solid angle in steradians, and the sum runs over all possible annihilation channels.

It is noteworthy that dΦγ/dEγ is the total photon number flux per unit energy per unit steradian

for a full sky observation and, when compared to the total photon count of the Fermi-LAT

observation with |b| > 10◦, must be scaled to the field of view of that observation, ∆Ωobs =

10.4 sr. From (4.2.106) we see that, for 10 GeV < mw < 50 GeV, the dominant annihilation

channel is bb̄. Annihilation into cc̄ and τ+τ− are suppressed by about an order of magnitude.

Hereafter we make the case for a w with a mass of about 50 GeV, which annihilates into bb̄.

The photon flux expected from the Fermi Bubbles is shown in Fig. 4.2.8. Comparing (4.2.2)

and (4.2.106) we obtain

〈σbv〉 ≈
3

2π

(
ηχmbmw∆m

2(4m2
w −m2

H)

)2
1

(4m2
w −m2

h)
2 +m2

hΓ
2
h

1
4

(
6x−1

G.h. + 4
√
πα̃x

−1/2
G.h. +

4π2α̃2

3
+ π5/2α̃3x

1/2
G.h. +

π4α̃4

6
xG.h.

)
= 6.7× 10−10GeV−2 .

(4.2.117)
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Figure 49 : Comparisons of the observed γ-ray spectrum of the low-latitude (|b| = 10◦ − 20◦) emission,
after subtracting the contribution from inverse Compton scattering to that predicted from 50 GeV W -
WIMPs annihilating to bb̄. We have adopted a generalized NFW profile with an inner slope of γ =

1.2, and normalized the signal to a local density of 0.4 GeV/cm3 and an annihilation cross section of
〈σbv〉 = 8 × 10−27 cm3/s. The band shows the variation in the mass range 45 GeV < mw < 55 GeV

for the same normalization. Adapted from Fig. 14 of Ref. [274].

To be produced thermally in the early universe in an abundance equal to the measured dark

matter density, ΩDMh
2 = 0.1120±0.0056 [1], the 50 GeV w-particle must have an annihilation

cross section of

∑
all species

〈σiv〉 ∼ 3× 10−26 cm3/s = 2.5× 10−9 GeV−2, (4.2.118)

when thermally averaged over the process of freeze-out, xf.o. ∼ 20 [320, 251]. It is noteworthy

that for α̃ / 0.01 the effect of the Sommerfeld enhancement on the final relic particle abun-

dance is negligible [321, 322]. Herein we will work on the range of the coupling α̃ over which

Sommerfeld annihilation can be neglected in the calculation of relic densities. Because a pri-

ori we do not know whether 〈σα′v〉 or 〈σbv〉 dominates the total annihilation cross section at

freeze-out, we combine (4.2.106) and (4.2.114) evaluated at v(xf.o.) together with (4.2.118) to
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Table 9 : Best fit parameters for ∆m = 6000 GeV.

∆m 6000 GeV

mh 98.8 GeV

f 0.34

α̃ 0.009

ηχ 1.8× 10−4

χ 0.049

ΓH→ invisible 0.65 MeV

〈σα′v(xf.o.)〉 2.7× 10−26 cm3s−1

〈σbv(xf.o.)〉 0.3× 10−26 cm3s−1

〈σα′v(xG.h.)〉 7.8× 10−26 cm3s−1

obtain[
2f 4m4

w

π∆m2
+

3

2π

(
ηχmbmw∆m

2(4m2
w −m2

H)

)2
]

1

(4m2
w −m2

h)
2 +m2

hΓ
2
h

3

2xf.o.

≈ 2.5× 10−9GeV−2.

(4.2.119)

To determine the allow region of the parameter space, formw = 50 GeV, we solve (4.2.117)

and (4.2.119) while simultaneously demanding that α̃ / 0.01, and that the upper limit on

the invisible decay width for the SM Higgs (4.2.34) is not violated by (4.2.55). The best fit

parameters are given in Table 9, for an example with ∆m = 6000 GeV. We can see that the

annihilation into pairs of Goldstone bosons is dominating the ww̄ interactions at freeze-out by

a factor of about 9. Precise determination of the parameters is at present hampered by the large

uncertainties in the dark matter halo profile. Interestingly, the W -WIMP-nucleon cross section

is within the reach of the XENON1T experiment [323], providing a strong motivation for the

ideas discussed in this section. Again I reiterate that the fine tuned nature of the dark sector

may be avoidable by the use of the result of mw = 61 GeV [315] we may fit the result to the

Higgs pole.

Duplicating the procedure described above, we have scanned the mass range of the param-

eter space that is consistent with Fermi data: 45 GeV < mw < 55 GeV; see Fig. 4.2.8. Our
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results are encapsulated in Figs. 4.2.8, 4.2.8 and 4.2.8. In particular, Fig. 4.2.8 and 4.2.8 dis-

play, for ∆m = 5500 GeV, the region of the parameter space of mw vs. σwN not yet excluded

by current direct detection experiments or the LHC. Future LHC data will either more tightly

constrain this parameter space or will turn up evidence for a signal. Note that the region ex-

cluded by nonexistence of a solution (ΓH→ invisible ≈ 0.3 MeV) up to the current LHC bound

will be very tightly constrained after the LHC coming upgrade, assuming no signal appears. In

the case that a signal does appear, the combination of relations shown in Figs. 4.2.8 and 4.2.8

will constrain model parameters providing the XENON1T experiment with the specific cross

section required to confirm this model. As an illustration, in Fig. 4.2.8 we show contours of

constant ηχ in the ∆m−mw plane for the case in which B(H → invisible) saturates the current

limit, ΓH→ invisible = 0.8 MeV. The direct detection cross section sampling this sub-region of

the parameter space varies between 1.8 × 10−46 cm2 and 2.2 × 10−46 cm2, with an average of

1.9× 10−46 cm2.

4.2.9 W-WIMP Interpretation for Hints of Light Dark Matter

Signals broadly compatible with ∼ 10 GeV dark matter have been observed in four direct

detection experiments: DAMA/LIBRA [68], CoGeNT [69, 70], CRESST [71], and CDMS-

II [72]. In this section we explore the compatibility with one particular region of the W -WIMP

parameter space. The features of this region of the parameter space has bearing on the evidence

for extra-relativistic degrees of freedom at the CMB epoch.

In order to elaborate on the case for mw ∼ 10 GeV, we consider mh ≈ 500 MeV and

ηχ ≈ 0.005. Substituting these values in (4.2.67), it is straightforward to see that to comply with

the elastic cross section “signal” reported by the CDMS Collaboration [72], we must set ∆m ≈
1.75 GeV. This in turn determines via (4.2.106) a thermal average annihilation cross section

into quarks: 〈σbv(xG.h.)〉 ≈ 1.3 × 10−39 cm3 s−1. Note that this is more than ten orders of

magnitude smaller than current limits on light dark matter from anti-proton data [324, 325, 326].

The observed dark matter density is obtained again through dominant W -WIMP annihila-

tion into the hidden sector. To demonstrate this point, we must first compute the ww̄ → 2h

annihilation cross section, as this channel is now open. We consider the relevant terms of
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(4.2.32),
f cosχ

2
hψ̄−ψ− +

f sinχ

2
Hψ̄−ψ− , (4.2.120)

as well as the relevant terms of the scalar potential

V ≈ · · · − m2
h

2vr
h3 − ηχvφ

2

(
m2
H + 2m2

h

m2
H −m2

h

)
Hh2 ; (4.2.121)

together this gives the total reaction matrix element

M = if v̄(p)u(p′)
i

s−m2
h

(−i3!m2
h

2vr

)
+ if

ηχvrvφ
m2
H −m2

h

v̄(p)u(p′)
i

s−m2
H

×
(−iηχvφ(m2

H + 2m2
h)

m2
H −m2

h

)
. (4.2.122)

Assuming ηχ � 1 and mh � mH , we arrive at a manageable form of the spin-averaged
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(4.2.123)

and the scattering cross section

σ ≈ f 2

32πs

√
s− 4m2

h

s− 4m2
w

(
18f 2m4

h

∆m2(s−m2
h)

2
+

3m2
hη

2
χv

2
φm

2
H

(s−m2
h)(s−m2

H)

)
(s− 4m2

w) . (4.2.124)

We take the thermal average in the low temperature limit, that is T � mw,

〈σhv〉 ≈
(

9f 4m4
h

8π∆m2(m2
h − 4m2

w)2
+

3f 2v2
φη

2
χm

2
h

16π(m2
h − 4m2

w)

)
〈v2〉. (4.2.125)
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By demanding the total annihilation cross section to comply with the relic density require-

ment [251] we obtain

〈σα′v〉+〈σhv〉+
∑

fermions

〈σiv〉 ∼ 3× 10−26 cm3/s , (4.2.126)

and so

f ≈ 0.070 , (4.2.127)

yielding χ ≈ 10−3. The latter is consistent with the upper bound on the mixing angle χ <

10−2 [252] derived from the invisible Higgs search by the OPAL Collaboration [253]. In ad-

dition, the production of pion pairs plus a large missing energy carried away by the Goldstone

boson, α′, could become a smoking gun at the LHC [252]. As a final check we ensure that the

LHC upper limit on the hidden decay width of the Higgs is satisfied; taking note that the decay
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channel H → ψ̄+ψ+ is now open, we have

η2
χv

2
φ

16πmH

+
η2
χ∆m2v2

φ

32πm3
H

= 0.24 MeV < 0.8 MeV . (4.2.128)

In Fig. 4.2.9 we exhibit the range of parameters consistent with the 95% CL upper limit on

B(H → invisible) [300, 301, 302] together with possible signal regions associated with data

from CDMS-II [72]. For mw = 10 GeV, the best-fit intervals at the 68% CL and the 90% CL

are 3×10−42 < σwN/cm2 < 2.5×10−41 and 2×10−42 < σwN/cm2 < 3×10−41, respectively.

The horizontal lines preserve the constant ηχ/mh ratio that allows decoupling of α′ at T ≈ mµ,

yielding Neff = 3.39.
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Figure 53 : ΓH→invisible for varying values of σwN . The plotted values are nearly constant as the terms
from ΓH→α,h dominate the decay width, and thus there is weak dependence on the direct detection cross
section. For varying values of mh we adjust the value of ηχ so that the Goldstone bosons decouple from
the primordial plasma at kBT ≈ mµ, yieldingNeff = 3.39. For 200 MeV ≤ mh ≤ 700 MeV, the Higgs
decay width into the hidden sector varies between (0.006 − 0.92) MeV. The constant ηχ/mh contours
shown here are independent of mw, and therefore span the mass range 7 GeV / mw/GeV / 10.

In summary, we have shown that W -WIMPs of about 10 GeV can simultaneously explain
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the observed relic density and the possible signals observed by direct detection experiments,

while avoiding limits from indirect detection experiments. In the near future, the Large Under-

ground Xenon (LUX) dark matter experiment [327] will collect enough statistics to probe the

∼ 10 GeV dark matter hypothesis. Concurrent with LUX observations will be precise measure-

ments of the Higgs branching fractions by the LHC ATLAS and CMS experiments (operating

at
√
s = 14 TeV). This new arsenal of data, when combined with observations the Phased

IceCube Next Generation Upgrade (PINGU) [328], will have the potential to single out this

distinctive Higgs portal light dark matter model.3

4.3 Summary of the Results and Conclusions

Light-element abundances probing big bang nucleosynthesis and precision data from cosmol-

ogy probing the CMB decoupling epoch have hinted at the presence of extra relativistic degrees

of freedom. This is widely referred to as “dark radiation”, suggesting the need for new light

states in the UV completion of the SM. We provided a brief and concise overview of the current

observational status of such dark radiation and we investigated the interplay between two pos-

sible interpretations of the extra light states: the right-handed partners of three Dirac neutrinos

(which interact with all fermions through the exchange of a new heavy vector meson) and dark

matter particles that were produced through a non-thermal mechanism, such us late time decays

of massive relics. Interestingly, the first scenario ties together cosmological indications of the

extra light states in SM++ and the production of the heavy vector particle Z ′′ at the LHC.

We have also studied the minimal hidden sector recently introduced by Weinberg, which

communicates with the visible sector via the Higgs portal. We have re-examined the possi-

bility that the Goldstone boson associated with the hidden scalar may be masquerading as a

fractional cosmic neutrino. The broken symmetry associated with this Goldstone boson could

regulate the conservation of the particles in the dark matter sector. We have studied the im-

plications of this model for direct and indirect detection experiments. In particular we have

shown that W -WIMPs (with mw ≈ 50 GeV) are capable of accommodating the desired ef-

fective annihilation into bb̄ to reproduce the photon spectrum of the Fermi Bubbles. We have

3Since the annihilation rate into SM particles is largely suppressed compared to annihilations into the
hidden sector, this particular model predicts null results at PINGU.
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also demonstrated that the thermal cross section required to account for the relic dark matter

abundance can easily be obtained if ww̄ → 2α is the dominant annihilation channel. However,

given that the Goldstone bosons would decouple at 5 GeV (i.e. in the very early universe), the

contribution to the effective number of neutrinos for the described parameter space is negligi-

ble, and thus cannot explain the evidence for dark radiation. In the near future, the upgraded

LHC together with the new XENON1T experiment will further whittle down the parameter

space, or else make a discovery. On the other hand, if mw ≈ 10 GeV, Weinberg’s hidden

sector does not provide a viable explanation of the Fermi Bubbles. However, there remains

an interesting region of the parameter space which can account for the alleged signals recently

reported by direct detection experiments. In this region, the Goldstone bosons decouple from

the primordial plasma near the 100 MeV temperature, consistent with the two measurements

of the effective number of neutrinos reported by the Planck Collaboration. In this region of

the parameter space, W -WIMP annihilation into Goldstone bosons is also sufficient for con-

sistency of the observed dark matter abundance. Furthermore, future LHC measurements will

further constrain this sector of the Higgs portal (or better, find a signal), while LUX will close

the deliberations on the alleged direct signals.
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Chapter 5

Future Prospects on Beyond the Standard

Model Physics

In 2012, the LHC entered its first long shutdown for upgrades. Starting as early as 2015 the

LHC beams will attain collisions at an energy
√
s = 13 TeV [329], in an effort to prepare for

design collision energy of
√
s = 14 TeV at a luminosity of 1034 cm−2 s−1. In addition to the

2015 run of the LHC, there are also plans for high luminosity-LHC (HL-LHC) in 2023, which

has the prospective goal of accumulating 3000 pb−1 of data. With this exciting future nearly

here, beyond the standard model physics may soon become experimental fact.

The Higgs-like boson discovery [8, 9] of 2012 seems to be more and more likely the actual

Higgs boson of the standard model, as evidenced in Fig. 54. As discussed in Sec. 2.1, it may

be possible in the future for the LHC to detect additional gauge bosons, which may reflect

an underlying symmetry that can be supported by a D-brane construct [141]. The additional

bosons may also help to solve the vacuum stability problem of the standard model as shown

in Sec. 2.2.5 [142]. Furthermore, in Sec. 4.1, it was shown that it may be possible to bring

collider physics and cosmological observations together by explaining the possible additional

relativistic degrees of freedom inferred from CMB anisotropy analysis, with the addition of

extra gauge bosons and the right chiral components of neutrinos [221]. The latter also solves

the neutrino oscillation problem outlined in Sec. 1.1.4.

Further investigation into the Higgs boson particle can result in a portal to BSM physics.

In Sec. 4.2 we have explored the minimal hidden sector recently introduced by Weinberg [15].
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Figure 54 : The best fit to observation couplings for the Higgs-like boson detected at CMS, along with
corresponding confidence intervals. The couplings are for κV , κb, κτ , κt, κg, κγ for the vector bosons
(W±, Z0), bottom, τ , top, gluon, and photon couplings assuming no BSM physics. This results in a
p-value of pSM = 0.78, allowing BSM physics while restricting the vector boson coupling to κV ≤ 1.0

results in an upper limit on the branching ratio for the Higgs into invisibles (image from [329]).

This model can explain the γ-ray emission from the low-latitude regions of the Fermi Bubbles,

for which the spectral shape is consistent with an approximately 50 GeV dark matter particle

annihilating into bb̄, with a normalization corresponding to 〈σbv〉 ∼ 8 × 10−27 cm3/s. More-

over, in a separate region of the parameter space, mw ≈ 10 GeV the model has the potential

to explain recent hints from dark matter direct detection experiments and at the same time it

provides predictions for LHC [330]. In the near future, the upgraded LHC, together with the

new XENON1T experiment, will further whittle down the parameter space, or else make a

discovery.

Far from the particle physics experiments lies another method of discovery of BSM physics,

that of gravitational wave astronomy. As of 2011, the LIGO detectors at Hanford, WA, and

Livingston, LA, are undergoing upgrades to Advanced LIGO, whose prospective noise curve

can be seen in Fig. 55. Advanced LIGO is expected to be completed in 2015, which should

allow unprecedented detection ability of gravitational waves [331]. The study of gravitational

wave astronomy opens the door to probes of matter densities that are far from obtainable in
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Figure 55 : The prospective noise curve for Advanced LIGO results in a spectral strain sensitivity of
order

√
Noise ∼ 10−23 Hz−1/2, allowing for better noise suppression and possible direct detection of

gravitational waves. Image from [331].

a lab, such as that found in pulsars [150]. It is a new set of eyes on the sky as everything

we have received from the cosmos has been in the form of photons. The field of gravitational

wave astronomy may even reveal a pathway to probing physics of the GUT scale as discussed

in Sec. 3.2, though detection of a signal of the strength Ωgwh
2 ∼ 10−24 − 10−15 [179] lies

out of reach of even possible future detectors except the possible future big bang observer

(BBO) [332] (see Fig. 56); the possibility is exciting that far in the future, it may be possible.

Whatever lies beyond the SM whether it be SUSY, a Higgs portal, a GUT theory, or string

theory, it may soon be within reach with as the discovery of the Higgs, future upgrades of the

LHC, and Advanced LIGO hold in store an exciting future for all.
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Figure 56 : The future detection of a gravitational wave stochastic background with the projected sensi-
tivity curves of possible future detectors such as Advanced LIGO and BBO. The spectra of gravitational
waves from second order global phase transitions may be detected in the far future if BBO is actually
completed, but in the near future seems to be out of reach for detection. Image modified from [167].
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