
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

December 2013

Techniques for Engine Mount Modeling and
Optimization
Fadi Alkhatib
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations
by an authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Alkhatib, Fadi, "Techniques for Engine Mount Modeling and Optimization" (2013). Theses and Dissertations. 344.
https://dc.uwm.edu/etd/344

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=dc.uwm.edu%2Fetd%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/344?utm_source=dc.uwm.edu%2Fetd%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu


 
 

 
 

TECHNIQUES FOR ENGINE MOUNT MODELING AND 

OPTIMIZATION 

 

By 

Fadi Alkhatib 

 

 

 

A Dissertation Submitted in 

Partial Fulfillment of the 

Requirements for the Degree of 

 

 

 

Doctor of Philosophy 

in 

Engineering 

 

 

 

at 

The University of Wisconsin – Milwaukee 

December 2013 



ii 
 

ABSTRACT 

TECHNIQUES FOR ENGINE MOUNT MODELING AND 

OPTIMIZATION 

By 

Fadi Alkhatib 

The University of Wisconsin-Milwaukee, 2013 

Under the Supervision of Professor Anoop Dhingra 

 

 This dissertation presents techniques for the design of engine mounting system to 

address the issue of vibration isolation. While the techniques presented herein are 

general, the application of proposed techniques is demonstrated primarily through 

applications in motorcycles. The dynamic loads that are generated due to the shaking 

forces within the engine and the road loads that are transmitted to the engine through the 

tire patch are discussed. The geometrical shape of the engine mount is also considered in 

this work. All models discussed herein deal with solving the optimization problem for the 

engine mount system such that the transmitted forces to and from the engine are 

minimized in which the mount parameters are used as design variables.  

 While work has been done in the past in the area of engine mount design, this 

dissertation tries to fill in the gap when it comes to designing a comprehensive mounting 

system that takes into account modeling of the mount characteristics, the excitation load 

present in the system, and a determination of the final geometrical shape of the engine 

mount. 
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 The work presented in this dissertation discusses three major problems. The first 

problem addresses comprehensive mount modeling wherein mathematical mount models 

range from a simple Voigt model to a complex Voigt model that captures hysteresis and 

nonlinear behavior are presented. The issue of mechanical snubbing is also considered in 

these models. An optimization problem is formulated to determine the mount parameters 

by minimizing the difference between the transmitted loads predicted by the theoretical 

model and experimentally measured values. 

 The second problem addressed in this dissertation deals with mounting system 

optimization. The optimization is carried out such that the loads transmitted through the 

mount system from/to the frame are minimized. The road loads that are generated due to 

the irregularities in the road profile and the shaking loads that are generated due to the 

engine imbalance are discussed in detail. The mount parameters are considered as design 

variables. Displacement constraints, both static and dynamic are considered to account 

for packaging requirements and to prevent mechanical snubbing of the engine mount. 

Numerical examples dealing with mount system optimization are presented first for a six 

degree of freedom model that deals only with the powertrain assembly. This is followed 

by twelve degree of freedom model that builds on the previous model by considering the 

swing-arm assembly dynamics in addition to the powertrain assembly.  

 The third problem presented in this dissertation deals with finding the optimum 

geometrical shape of the mount itself. The shape optimization of the mount is done using 

a nonlinear finite element model of the mount developed in ANSYS®. An optimization 

problem is formulated to minimize the difference between the target stiffness obtained 

from the dynamic analysis and stiffness values obtained from the mount geometry. The 
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mount geometrical parameters such as the mount diameter and the thickness are used as 

design variables. Numerical examples are provided quantifying how mount geometrical 

parameters vary for different operating engine speeds. 

 All the models and techniques developed in this work will help designers 

comprehensively design a mounting system that achieves an effective vibration isolation 

of the powertrain assembly.     
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1 Chapter 1 - Introduction 

The mounting system is the primary interface between the powertrain and the 

frame; therefore, it’s vital to the determination of the vibration isolation characteristics. 

Different types of engine mount are presented in this chapter, but the only engine mount 

that will be used in the work herein are the elastomeric mounts. The elastomeric mounts 

are made of rubber which withstands large amount of deformation under loads with the 

ability to almost retain its original shape when the load is removed. This is due to the 

inherent material property of rubber. Rubber is a viscoelastic material which enables it to 

be used as an isolator and as a damper. 

1.1  Introduction 

There are two major problems that engineers must deal with when it comes to 

vibration isolation. The first problem is force isolation, which is frequently encountered 

in rotating or reciprocating machinery with unbalanced masses. The main objective in 

this problem is to minimize the force transmitted from the machine to the supporting 

foundation. The second problem is motion isolation. In this case, we are interested in 

minimizing the transmitted vibration amplitude such that the mounted equipment is 

shielded from vibrations coming from the supporting structure. This is broadly achieved 

by mounting equipment on a resilient support or an isolator such that the natural 

frequency of the equipment-support system is lower than the frequency of the incoming 

vibrations to be isolated. 
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1.2 Vibration Isolation 

 Vibration isolation can be simply defined as isolating an object from the source of 

vibration. In order for this objective to be achieved, isolators must be used. There are two 

major types of isolation. The first type is the passive isolation in which passive 

techniques such as rubber pads or mechanical springs are used. The isolation is achieved 

by limiting the ability of vibrations to be coupled to the structure being isolated. This is 

done using a mechanical connection which dissipates or redirects the energy of vibration 

before it gets to the structure to be isolated. Passive methods sometimes involve 

electromechanical controls for adjusting the system, but the isolation mechanism is 

passive. Passive systems are cost effective and their relative simplicity makes them more 

reliable and safe. Elastomers which are used in the automotive industry to isolate the 

engines are one of the most widely used passive isolators.  

The second type of isolation is active isolation which contains along with the 

spring, a feedback circuit which consists of a sensor such as a piezoelectric 

accelerometer, a controller and an electromagnetic transducer. The acceleration 

(vibration) signal is processed by a control circuit in which is feed to the electromagnetic 

actuator which amplifies the signal. As a result of such a feedback system, a considerably 

stronger suppression of vibration is achieved compared to the ordinary damping. Most 

active vibration isolation systems are relatively complex, costly, and often provide only 

marginal improvements in performance compared with conventional passive vibration 

isolation techniques. They are also more difficult to set up, and their support electronics 

often require adjustment. Nonetheless, active systems can provide function which is 

simply not possible with purely passive systems. However, due to their cost 
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effectiveness, reliability and relative simplicity passive isolators will be used in the 

design of the mounting system throughout this study.  

1.3  Engine Mounts 

To achieve the best vibration isolation for the powertrain, a mounting system is 

used to mount the powertrain in place. The mounting system will provide isolation that 

will in turn minimize the transmitted forces to/from the engine to the frame. On the other 

hand, it will also prevent engine bounce caused from shock excitation. This goal is 

achieved by making the dynamic stiffness and damping of the mounting system 

frequency and amplitude dependent. Three different types of engine mount systems are 

listed below: 

1.3.1  Elastomeric Mounts 

Elastomeric mounts, which are made of rubber, have been used to isolate engines 

since 1930s. A lot of changes have been made over the years to improve the performance 

of the elastomeric mounts. For proper vibration isolation, elastomeric mounts are 

designed for the necessary elastic stiffness rate characteristics in all directions. They are 

maintenance free, cost effective and compact. The elastomeric mounts can be represented 

by a Voigt model which consists of a spring and a viscous damping as shown in Fig. 1.1.  

It is difficult to design a mounting system that satisfies a broad array of design 

requirements. A mount with high stiffness or high damping rates can yield low vibration 

transmission at low frequency, but its performance at high frequency might be poor. On 

the other hand, low stiffness and low damping will yield low noise levels but it will 

induce high vibration transmission. A compromise is needed to obtain balance between 
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engine isolation and engine bounce. In order to achieve low vibration transmissibility, the 

mount stiffness must be as low as possible. However, this causes increased static 

deflection. Lower damping is also desirable for lower transmissibility at higher frequency 

range. One the other hand, handling and maneuverability are enhanced with higher 

stiffness. Elastomeric mounts provide a trade-off between competing requirements of low 

static deflection and enhanced vibration isolation.               

 

 

 

 

 

 

 

             

Figure  1.1: Mechanical Model for Elastomeric Mounts 

1.3.2 Passive Hydraulic Mounts 

Hydraulic mounts were first introduced in 1962 for use as vehicle mounting 

systems. Since then, their popularity has improved for two reasons. The first one is that 

the current vehicles tend to be small, lightweight and front wheel drive with low idle 

speeds. The second one is that the hydraulic mounts have developed into highly tunable 

devices. Three types of hydraulic mounts are in use these days and these are: hydraulic 

mount with simple orifice, hydraulic mount with inertia track, and hydraulic mount with 

inertia track and decoupler. A general schematic diagram of the hydraulic mount is 
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Rubber 
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Air 

shown in Fig. 1.2. Although there are differences between orifice and inertia track 

mounts, all of them cause damping at low frequency ranges. These mounts can be tuned 

to have high damping at the shock excitation frequency which is used to reduce the 

vibration levels. The dynamic stiffness of these mounts is usually higher than that of the 

elastomeric mounts. Although the damping in these mount is high at low frequency, the 

isolation at higher frequencies is degraded. This problem is handled by adding a 

decoupler to the hydraulic mount which operates as amplitude limited floating piston. It 

allows the mount to behave like an elastomeric mount to provide good vibration isolation 

at large displacement. On the other hand, it allows it to behave like a normal hydraulic 

mount providing the damping for shock excitation.           

 

     

 

 

 

 

 

 

Figure  1.2: Simple Hydraulic Mount 

1.3.3 Active Engine Mounts 

In active vibration control, a counteracting dynamic force is created by one or 

more actuators in order to suppress the transmission of the system disturbance force. A 

general active mount consists of a passive mount (elastomeric or hydraulic), force 
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(a)                                                                  (b) 

generating actuator, a structural vibration sensor and an electronic controller. The passive 

mount is used to support the structure in case of an actuator failure. The controller can 

either be feedback or feed forward. The vibration control is implemented with a closed 

loop controller that utilizes the sensor measurement. The mechanical models of 

elastomeric and hydraulic active mounts are shown in Fig. 1.3. The active mount stiffness 

is equivalent to the stiffness of the passive mount (elastomeric or hydraulic). The active 

mounts can overcome the limitations of passive mounts. Active elastomeric mounts can 

be very stiff at low frequencies and very soft at high frequencies. Meanwhile the active 

hydraulic mounts can be tuned to achieve adequate damping at engine bounce frequency 

and have very low dynamic stiffness at high frequency. Semi active mounts are used to 

improve the low frequency features of the system like increasing damping. By providing 

superior isolation, active engine mounts can allow large engine vibration levels. This may 

reduce balance shaft requirements and enable the vehicle chassis to be lighter.   

  

 

 

 

 

 

 

 

Figure  1.3: (a) Mechanical Model for Active Elastomeric Mount, (b) Mechanical Model 
for Active Hydraulic Mount. 
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1.4 Modeling of Engine Mounts 

 A typical mounting system consists of powertrain and a number of mounts that 

connect the powertrain to the supporting frame. The major objective of the engine mount 

is to isolate the engine disturbances from being transferred to the supporting structure. 

These disturbances will excite the engine 6 DOF vibration modes shown in Fig. 1.4. For 

example, the torque caused by the firing pulse will cause engine pitch vibration. To 

isolate vibrations caused by engine unbalanced disturbances, low elastic stiffness as well 

as low damping are used since the transmitted forces depends on the values of the 

stiffness and damping of the mounts. The mounts are modeled as a spring and hysteresis 

damping or viscous damping along each of the three principal directions shown in Fig. 

1.5. The mounts used herein are elastomeric mounts in which the stiffness, orientation 

and location are the main variables that need to be determined in order to achieve the 

desired isolation. This type of engine mount is modeled as Voigt Model which is shown 

in Fig. 1.1. The frame is always modeled as a rigid body thorough out this dissertation.    

The natural frequency of the mounting system should be lower than the engine 

disturbance frequency to avoid the excitation of the mounting system resonance. This 

will ensure a low transmissibility.  
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Figure  1.4: Engine Six DOF Modes (Ye, et. al. 2001) 

Figure 1.4, shows an engine and its six degrees of freedom that will be excited as 

result of the inertia forces acting on the its block and the oscillator torque acting about the 

crankshaft. Fig. 1.5, shows a typical engine mount alongside its tri-axial model consisting 

of a spring and damper along each principal direction.  

                                                                          

(a)                                                           (b)                                                      

Figure  1.5: (a) Engine Mount, (b) Tri-Axial Engine Mount Model (Kaul, 2006) 

x 

y 
z 
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1.5 Dissertation Objectives 

The emphasis in this work is to develop a complete mounting system such that the 

transmitted forces to/from the engine to the supporting frame are minimized. The loads 

can be described as external or internal. The external loads are due to external 

disturbances from the environment such as irregularities in the road profile and road 

bumps. These disturbances can be transmitted through the tire patch to the engine causing 

it to hit nearby components. The engine movement needs to be constrained due to 

packaging space limitations surrounding the engine. In order to do so, these transmitted 

external loads must be minimized by the use of the mounting system. Once the mounting 

system is defined and the transmitted loads are minimized, the focus is switched to the 

balancing masses inside the engine. This is done to minimize the internal loads. The loads 

that need to be minimized are the loads due to the shaking force resulting from the 

rotating unbalance due to eccentric masses. Material imperfections, faulty assembly and 

machining inaccuracy are among other factors that will cause eccentric masses. This will 

introduce an offset between the center of gravity and the axis of rotation leading to 

unbalanced forces. These forces, which vary in magnitude and direction, can be 

eliminated by introducing a counter force that eliminates the effect of the original 

unbalanced force. 

In order to minimize the transmitted external loads to the engine, we first need 

good load estimates. The technique used herein is to estimate the force transmitted 

through the tire patch for different load profiles. The next step after defining the external 

transmitted loads is to design the mounting system. Two different performance metrics 

will be used to solve this problem. The first one involves decoupling the vibration modes 
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through minimizing the off-diagonal terms of the global stiffness matrix. This insures that 

only the diagonal terms in the stiffness matrix are dominant, which leads to clean 

decoupled modes. The second method deals with minimizing the transmitted loads. 

Several alternate mount models will be explored. These include the Voigt model, 

Maxwell Voigt model, Voigt model with a Bouc-Wen element and Voigt model with 

Bouc-Wen element and a variable stiffness. All of these models will have a component 

that represents mechanical snubbing. Mechanical snubber is used to absorb large amount 

of energy within small displacement amplitudes. In order to capture the hysteretic 

behavior over large range of operating frequencies, a Bouc-Wen model is added. 

After fully defining the mounting system, as a final step, an optimum geometrical 

shape of the mount will be determined using topology optimization. 

1.6 Dissertation Organization 

This work has been divided into five main parts. Chapter two discusses the 

available literature on vibration isolation, vibration modes decoupling, mount design and 

shape optimization.  

Chapters three and four present the work regarding mount modeling and design. 

These chapters provide the necessary mathematical modeling along with the equations of 

motion for various mount models used in this work. Numerical examples utilizing 

experimental mount data are presented to demonstrate extraction of mount parameters 

from solution of an optimization problem.  

Chapter five discusses the issue of the load transmitted from/into the engine and 

the balancing masses. All the mathematical formulation for the internal forces and 

moments are presented along with numerical examples. External loads imposed on the 
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system due to irregularities in the road profile are discussed and different road profiles 

are analyzed. This road profile information is used to determine the force transmitted the 

tire patch in the vehicle.   

Chapter six discusses mount shape optimization problem providing examples that 

ties it to the mount modeling and design discussed in the previous chapters showing the 

effect of different engine operating speeds on the final mount shape. A nonlinear finite 

element analysis is performed to determine the optimum mount shape. 

Chapter seven summarizes the main results and conclusion of the dissertation and 

provides an outline for possible future work.  
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2 Chapter 2 – Literature Review  

Over the years, much work has been done in the area of vibration isolation. 

Throughout this thesis, the focus is on vibration isolation through the use of a mounting 

system. There are various methods that have been used to minimize vibration transmitted 

to and from the engine. Among these techniques, mount system optimization stands out. 

The mount optimization problem typically involves finding the optimum stiffness, 

orientation and location of the mounting system that will result in the best possible 

vibration isolation. Once the necessary mount characteristics are known, the problem of 

finding the optimum geometrical shape of the engine mount is also considered in this 

thesis. 

2.1  Vibration Isolation 

Spiekermann, et al. (1985) discussed the issue of minimizing forces that are 

transmitted through the mounting system. These forces can be caused as a result of 

rotational imbalance and reciprocating masses. The authors argue that in the case of small 

damping and frequencies below the natural frequency, the force transmitted through the 

mounts is proportional to the mount stiffness. Nevertheless, when the excitation 

frequency is near the rigid body natural frequency, the rigid body displacement and the 

transmitted forces may be large. The procedure used in the optimization technique is 

removing the natural frequencies form the undesired range and keeping the others. This is 

done by using an objective function in the optimization procedure that penalizes the 

natural frequencies in the undesired range without affecting other design parameters. For 

simulation purposes, a three dimensional rigid body is used. The rigid body consists of 
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six degrees of freedom (DOF) that includes three translational DOF and three rotational 

DOF.  

Ford (1985) presents a design procedure for the front wheel drive engine idle 

isolation. In this procedure, a six degree of freedom lumped system is used to represent 

engine mounts. Then decoupling the highest five natural frequencies from the idle torque 

pulse direction is achieved. The baseline mounting system and the decoupled mounting 

system are tested on a three cylinder engine with similar inertia properties to the four 

cylinder engine. The main disturbance at the idle is the crankshaft torque vibration caused 

as a result of the gas pressure firing pulse. The approach is to decouple the torque 

generated by gas pressure pulse from five of six powertrain rigid body modes. This is 

done by introducing an objective function which is the sum of the square of the roll 

component in modes two through six.  

Sui (2003) emphasized on the role of mounts in achieving better vehicle handling 

characteristics and rider comfort as well as a resulting vibration caused by engine firing 

force and other sources. This is achieved only when there is a mounting system that 

exhibits decoupled vibration modes. In order to achieve decoupling, the following 

assumptions must be considered. The powertrain is infinitely rigid and mounted to the 

ground. The excitations are assumed to be of a harmonic or periodic nature with known 

frequencies and the resulting displacements are small. The author lays down some basic 

concepts that include the following definitions of different coordinate systems: the 

vehicle coordinate system, engine coordinate system, principal moment of inertia (MOI) 

coordinate system, torque roll axis coordinate system, elastic axes and elastic center and 

center of percussion. 
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2.2 Vibration Modes Decoupling  

Six vibration modes will be generated for the engine mass since it possesses six 

degrees of freedom in 3-D space. Three of the modes are translational and three are 

rotational. Generally speaking, the shaking force will cause the engine to respond in six 

degrees of freedom. The work is done to decouple the modes or make the coupling weak. 

This technique will be used as one of the proposed methods to optimize the mounting 

system. 

Timpner (1965) suggested different techniques to eliminate vibrations due to 

internal and external disturbances. In order to decouple the modes, the elastic center of 

the mounts must coincide with the center of gravity of the engine. As a result, the ideal 

locations of the mounts are inside the mass (engine) which is infeasible. Luckily, the 

mounts can be still placed outside the engine and still achieve the goal of having the 

elastic center and the center of gravity coincide. The author discusses three different 

engine mounts orientations. First: two equal mounts symmetrically located. Second: two 

equal mounts with axes normal to each other. Third: two vertical mounts with different 

rates 

Liu (2003) presents a method used in the optimization design of engine mounts. 

The constraint problem is solved using some of the known parameters such as engine 

center of gravity, mount stiffness rates and mount location and/or orientation. The main 

objective of this work is decoupling vibration modes. This work is done using a computer 

code DynaMount. Generally speaking, it’s hard to come up with a mount design that 

decouples vibration modes. However, there are few special cases in which vibration 

modes can be completely decoupled. Throughout the study, the author used two different 
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coordinate systems. The first one is the vehicle coordinate system which is located at the 

engine center of gravity, and the equation of motion of the system is written with respect 

to it. The second one is a local coordinate system used to describe the engine mount 

properties. A rotation matrix that relates the local coordinate system to the global 

coordinate system is used in this case. The mounts are considered to be cylinders with the 

top surface attached to the engine and the bottom surface attached to the vehicle. The 

origin of the local coordinate system is located at the center of the mount. 

 Jeong and Singh (2000) examined the issue of torque roll axis (TRA) decoupling 

for a multi-dimensional mounting system of an automotive engine and gear box. They 

consider only the rigid body modes of the powertrain and the chassis is considered to be 

rigid. Since pulsating torque of the multi cylinder engine is a major source of vibration, 

therefore a mathematical model of the engine mounting system necessary to understand 

the design issues.   

Iwahara and Sakai (1999) discussed various possibilities to isolate the engine. The 

engine mount layout consists of four mounts supporting the engine. The three and five 

mount layouts among other layouts are also investigated. Eigen value analysis, frequency 

response and transient response are used to determine the best way to isolate the engine. 

Derby (1973) presents two techniques for decoupling. The first one is locating the 

isolators symmetrically in the same plane with the center of gravity. The second one is 

locating the isolators symmetrically about a ring in which the center of gravity is higher 

than the center of the ring. The author presents the necessary condition to decouple the 

translational modes from the rotational modes as well as decoupling natural frequencies. 

The isolators are located at the corners of a plane rectangle and the center of the 
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equipment is located within the rectangle formed by the isolators. In the paper, it’s 

assumed that the damping matrix is proportional to the stiffness matrix. Furthermore, it’s 

assumed that the stiffness values for all isolators are equal. Finally, the center of gravity 

is located above the center of the rectangle pattern of the isolators which reduces the 

number of equation to only two instead of eight, and the number of parameters to five.  

 Akanda and Adulla (2005) studied a six cylinder four wheel drive vehicle. In such 

a vehicle, the powertrain includes engine, transmission and transfer case. The torque roll 

axis approach is used to decouple the modes and come up with the mounting system 

locations. The author suggests locating the mounts at the nodal points of the fundamental 

bending modes of the powertrain may reduce the transmitted forces to the body.   

Bretl (1993) presents a new simulation method to design the mounting system. 

The author sets the goal to come up with a mounting system that minimizes the response 

regardless of the resulting rigid modes. The technique computes response sensitivity to 

determine changes to the mounting system that will result into a minimum response. The 

design variables are the mount location, stiffness and damping. The response sensitivities 

are used to construct a set of linear equations that represent the total difference in 

response between the target and computed as a summation of design variable changes. 

The updated factors are approximated to the design variables that are required to 

minimize response. 

 Courteille and Mortier (2005) present a new technique to find an optimized and 

robust solution for the mounting system. Multi objective algorithm (Pareto optimization) 

is used as a base to the multi objective robust optimization problem. The use of this 

technique enhances the vehicle isolation characteristics. The method focuses on the use 
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of the optimization to minimize the vibration due to pulsating torque of the crankshaft at 

idle speed without paying any attention to the unbalanced forces due to the forces of the 

engine pistons. Since there is no accurate definition of the vehicle at early stages of 

design process, the author uses a probability distribution of the system parameters. This 

leads to a random change of the system’s parameters. In order to have a sound design for 

an engine mount that will perform the intended job in isolation, a good estimate of the 

loads acting on the structure is very important. Reviewed next are some methods that can 

be used to estimate the loads acting on the mount system. 

2.3 Mount Modeling  

The first step in mount design is modeling of the mount itself. Simple Voigt 

model is frequently employed to model the mount. The model consists of a spring and a 

damper connected in parallel and supporting the isolated mass. While the Voigt model is 

sufficient in many applications, it cannot capture certain mount characteristics such as 

hysteresis behavior, mount snubbing when shock loading is present, nonlinearity in 

mount systems, etc.   

Zhang and Richards (2006) presented a study of the dynamic analysis and 

parameter identification of a rubber isolator using Maxwell-Voigt model. In the study, 

they noticed the difference between the Voigt model which simply consists of a spring 

damper connected in parallel and the Maxwell-Voigt model which includes another 

spring and a damper connected in series the Maxwell model. The Voigt model does not 

accommodate the inertial effect of the fluid present in the system and it becomes invalid. 

The Maxwell-Voigt model is used instead. Voigt model and Maxell-Voigt model are 

good enough when it comes to capturing the characteristics of isolators that are used in 
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applications that possesses small range of frequency and over small bands of 

displacements amplitudes. On the other hand, when it comes to applications where the 

isolators are used over a large operating frequency range, the above models may not be 

sufficient to capture the hysteretic behavior. In this case the hysteretic model based on 

Bouc-Wen model is used. Bouc-Wen model is a nonlinear model that has the capability 

of capturing the time dependency by introducing an additional state variable. 

 Ye and Wang (2007) conducted a study to estimate the Bouc-Wen model 

parameters. The proposed approach use particle swarm optimization (PSO) which is 

based on the movement and intelligence of swarms. The results of the PSO method are 

compared to the genetic algorithms (GAs) in terms of parameter accuracy. It is shown 

that higher quality solution and better computational efficiency can be achieved by using 

the PSO method. 

 Ikhouane, et al. (2006) focus on the fact that even if there is a good approximation 

of the true hysteresis modeled using the Bouc-Wen model, it may not keep significant 

physical properties which are inherent in the real data. The work in this paper presents a 

characterization of the different classes of Bouc-Wen models in terms of their bounded 

input bounded output stability and as a result reproducing the physical properties inherent 

in true systems that have been modeled. 

2.4 Load Estimation  

Generally speaking, in order to accurately design any component, good estimate 

of the loads acting on the component is vital. The stresses induced in a component are a 

function of the loads applied. The accuracy of estimating the loads applied to the engine 

mount plays an important role in designing the mounting system and its components (i.e. 
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stiffness and damping). The major problem that arises is measuring the loads. The 

simplest way of estimating the loads is by a direct measure using load cells. In some 

cases, inserting load cells is almost impossible due the nature of the structure. Another 

approach which is recently attracting attention is treating the structure as a load 

transducer. In this technique, the measured strains on some parts of the structure can 

provide a history of the loads acting on it 

Masroor and Zachary (1990) proposed a procedure to select the location of strain 

gauges on a structure. The procedure is valid for linear elastic static problems. It can 

accommodate both isotropic and nonisotropic materials. The procedure involves applying 

a unit load each time and collecting the corresponding strains. This will produces a 

matrix that contains the strain information at the candidate locations of the strain gauges. 

The selection of the final location of the strain gauges is determined by the best 

approximate solution (BAS) that minimizes the sum of the squared errors. 

 Wickham et al. (1995) presented a computational tool that uses the D-optimal 

design technique to find the location and orientation of the strain gauges. The tool insures 

a precise location of the selected strain gauges. This in return will insure an accurate load 

recovery.  

Dhingra and Hunter (2003) proposed a technique that considers the whole 

structure as a load transducer. The technique is valid for both 2 dimensional and 3 

dimensional structures as well. The procedure delivers the location as well as the 

orientation of the strain gauges to be used through the help of finite element software. 

The selection of the strain gauge locations and orientation is done by using optimization 
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technique. This is achieved by using the D-optimal design procedure which maximizes 

the determinant of the matrix (ATA).  

While load estimation using strain gauges mounted on the structure is a promising 

approach, it is not used herein due to resources limitations. Instead, the approach adopted 

estimates external loads transmitted through the mount system by monitoring the road 

profile in contact with the tire patch. 

2.5 Shape Optimization  

Once the mount is designed, i.e. the stiffness and damping values of the mount are 

known, the next step is to translate these numerical values into physical mount. This 

involves determining geometrical dimensions of the mount such that it have desired 

stiffness and damping characteristics  

Kim J. and Kim Heon (1997) conducted a study on bush (shear) type engine mount 

that is used frequently in the auto industry in order to come up with the optimum 

geometrical shape of the mount. The study is performed by utilizing nonlinear finite 

element commercial software. The main objective is to minimize the difference between 

a set of target stiffness values in the three principal directions obtained from dynamic 

analysis with the stiffness values in the same directions generated from the geometry of 

the mount. In this process, a set of variables that fully describes the mount are used as the 

design vector to be determined from the outcome of the optimization problem.   

 Ali, et al (2010) conducted a study reviewing the need to different types of 

constitutive modes for rubber like materials. Modeling of these Elastomers depends on 

the strain energy function. The selection of the proper rubber elastic material is essential. 
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The stress-strain response is required in order to define the hyperelastic material 

behavior. 

Scharnhorst and Pain (1978) utilized the Reissner type variational principle to 

formulate a mixed finite element model of finite strain analysis for Mooney-Rivlin like 

materials. They have adopted an incremental and stationary Lagrangian formulation. The 

variables consist of incremental displacements and incremental hydrostatic and 

distortional stresses. Four node quadrilateral plane strain elements were used in this work 

to analyze the inflation of an infinitely long thick-walled cylinder subjected to internal 

pressure.  

Swanson (1985) noted that a certain type of problems in which the finite 

compressibility of high elongation rubber like materials influence the stress distribution, 

as a result must be taken into consideration. They addressed the problem by introducing a 

new rubber elasticity model with finite compressibility and improved material 

representation.  

2.6  Summary  

A fair bit of work has been done in the area of mount system design and isolation. 

The primary goal is to achieve an enhanced performance when it comes to isolation. This 

is done by better understanding the isolator and its components. Mechanical snubbing is a 

major aspect that needs to be taken into consideration when designing any mounting 

system. This dissertation will address the snubbing problem in chapter 3. This will be 

done in the context of several alternate mount models.  

In addition, the dissertation will also look into at the external loads transmitted 

from road bumps through the mount system. Two criteria are used for designing the 
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mounting system namely; minimizing the force transmitted through the mount system or 

designs the system to decouple the vibration modes. Finally, the geometrical shape of the 

engine mount will be determined at different engine operating speeds. 
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3 Chapter 3 – Mount Characterization and Determination of Mount 

Parameters 

This chapter discusses the basic idea of mount characterization. The process starts 

with load estimation. The loads are transmitted to the frame through the tire patch. 

Multiple models for the engine mounts are developed in this chapter. These models vary 

in complexity from a simple Voigt model to a complex Voigt model that incorporates 

nonlinear stiffness, mechanical snubbing and a Bouc-Wen element to capture mount 

hysteresis. The mount parameters are then identified by minimizing the difference 

between the theoretical transmitted forces and the experimentally measured forces. All 

the necessary equations of motion and the mathematical equations for the theoretical 

transmitted forces are developed in this chapter. An optimization problem is formulated 

to help determine the mount parameters. 

3.1 Load Estimation 

A mounting system is mainly used to minimize vibrations and shaking forces 

from the engine from being passed on to the frame, and eventually to the passengers. 

Also, the mount system might serve another purpose such as minimizing the forces and 

vibrations due to road bumps from being transmitted to the powertrain. As a result, an 

important issue when designing a mounting system is figuring out the forces passing 

through the mount system that needs to be minimized.  

The problem occurs when trying to estimate the forces being transmitted through 

the whole system. The forces can be measured directly by using load cells which might 

not be easy due to the nature of the structure. One method that can be used in the case of 
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loads being transmitted from the road bumps through the tire patch is modeling the input 

force as shown in Eq. 3.1. 

                                                       𝐹𝐹𝑦𝑦(𝑡𝑡) =  𝑘𝑘 𝑥𝑥(𝑡𝑡) +  𝑐𝑐 𝑥̇𝑥(𝑡𝑡)                                                   (3.1)                                                                               

In Eq. (3.1) 𝐹𝐹𝑦𝑦(𝑡𝑡) is the forces transmitted in the y direction through the tire patch due to 

the displacement 𝑥𝑥(𝑡𝑡) and velocity 𝑥̇𝑥(𝑡𝑡) caused by the change of the road profile as 

shown in Fig. 3.1. 𝑘𝑘 and 𝑐𝑐 are the stiffness and damping of the wheels and the suspension 

in the y direction. 

  An alternate approach for estimating the forces acting on the system is by treating 

the structure as a load transducer and by measuring the strains at some previously 

determined locations. In order to find the most appropriate location and orientation of the 

strain gauges to place on the structure, there is a need to perform finite element analysis. 

By knowing the proper location and orientation of the strain gauges, and the use of the 

principle of superposition, the loads acting on the structure can be determined. This 

procedure however is not considered in this work. 

 

 

 

 

 

 

 

Figure  3.1: Schematic Diagram Showing the Tire Patch 
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3.2  Elastomeric Mount  

Engine mounts that are used in automotive industry are primarily made of rubber. 

The rubber stiffness is categorized as either static or dynamic. In motorcycle or 

automotive industry, the sag of the powertrain due to the static weight is described using 

the static stiffness. On the other hand, the dynamic stiffness is used to determine the 

vibration isolation as a result of the application of a harmonic load. The dynamic stiffness 

varies with the amplitude and frequency of the applied load or the applied displacement. 

The relation that governs the static and the dynamic stiffness is as follows: 

                                         𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑 =  𝜂𝜂 𝐾𝐾𝑠𝑠𝑠𝑠                                                                    (3.2) 

In Eq. (3.2), 𝜂𝜂 is the dynamic to static coefficient which is always greater than 1. Kst is 

the static stiffness and Kdyn is the dynamic stiffness. The dynamic to static coefficient 

varies with the input frequency leading to a higher coefficient with higher frequencies 

and as a result a higher dynamic stiffness.  

 The complex stiffness for an elastomer that is subjected to a sinusoidal 

displacement 𝑥𝑥𝑖𝑖(𝑡𝑡) with an output force 𝑓𝑓𝑜𝑜(𝑡𝑡) is the output force to the input 

displacement described as follows:                                                                                                                  

                                                     𝐾𝐾∗ =  
𝐹𝐹𝑜𝑜∗

𝑋𝑋𝑖𝑖
=  

𝐹𝐹𝑜𝑜
𝑋𝑋𝑖𝑖
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑗𝑗

𝐹𝐹𝑜𝑜
𝑋𝑋𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                                         (3.3) 

The displacement 𝑥𝑥𝑖𝑖(𝑡𝑡) =  𝑋𝑋𝑖𝑖𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗  and  the input force 𝑓𝑓𝑜𝑜(𝑡𝑡) =  𝐹𝐹𝑜𝑜𝑒𝑒𝑗𝑗 (𝜔𝜔𝜔𝜔+𝛿𝛿) =  𝐹𝐹𝑜𝑜∗𝑒𝑒𝑗𝑗𝑗𝑗 ,

where 𝐹𝐹𝑜𝑜∗ =  𝐹𝐹𝑜𝑜𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 . 

 In Eq. (3.3), 𝑋𝑋𝑖𝑖  is the peak displacement amplitude, 𝐹𝐹𝑜𝑜  is the peak force 

amplitude, 𝛿𝛿 is the phase angle between the input displacement and the output force and 

𝜔𝜔 is the input frequency. Eq. (3.3) can be generally expressed as follows: 
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                                                                𝐾𝐾∗ =  𝐾𝐾′ +  𝑗𝑗𝐾𝐾′′                                                           (3.4) 

where, 

                                                     𝐾𝐾′ =  
𝐹𝐹𝑜𝑜
𝑋𝑋𝑖𝑖
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐    and      𝐾𝐾′′  

𝐹𝐹𝑜𝑜
𝑋𝑋𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                                    (3.5) 

The elastomer dynamic stiffness 𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑  is the magnitude of 𝐾𝐾∗. 

                               𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑 =  |𝐾𝐾∗| =  �(𝐾𝐾′)2 +  (𝐾𝐾′′ )2 =  
𝐹𝐹𝑜𝑜
𝑋𝑋𝑖𝑖

                                               (3.6) 

The loss factor is defined as follows: 

                                                                  𝛽𝛽 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  
𝐾𝐾′′

𝐾𝐾′                                                        (3.7) 

The loss factor 𝛽𝛽 is used to determine the damping or the hysteresis of the engine 

mount. Both the dynamic stiffness and the loss factor are critical parameters in the 

modeling of the engine mounts. 

The engine mount is typically represented as three mutually orthogonal 

translational springs about the center of elasticity shown in Fig. 3.2. In Fig. 3.2, the 

coordinate system of the mount is also shown. It is assumed that the mount is attached to 

the rigid body by means of ball joints. This implies that the resilient element is incapable 

of applying a moment to the body it is attached to.  
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Figure  3.2: Tri-axial Engine Mount Model 

3.3  Mount Modeling 

The main component in designing a mounting system is the design of the mount 

itself. Identifying the mount parameters such as the mount stiffness and damping is a 

crucial step in the process of designing an appropriate mounting system. There are four 

candidate models that are used to represent the mounting system, all of which are 

assumed to be elastomeric isolators. The first model is the Voigt model shown in Fig. 3.3. 

This model is formulated using a spring and damper that are connected in parallel to a 

supporting mass. The second model is the Maxwell-Voigt model shown in Fig. 3.4. This 

model is formulated like the Voigt model and has an additional spring and a damper 

connected in series. The third model is the Voigt model with a Bouc-Wen element as 

shown in Fig. 3.5. This model is formulated like the first model with the addition of a 

Bouc-Wen element to capture mount hysteresis. The fourth Model is the Voigt Model 

with a Bouc-Wen element and nonlinear stiffness as shown in Fig. 3.6. This model is the 

same as the third model with one exception; the snubbing stiffness is modeled as a 

nonlinear spring.    
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All of the models presented next will have an element that represents mechanical 

snubbing. A mechanical snubber is used in mounts to absorb large amount of energy 

within small displacement amplitudes, and is modeled as a spring with linear stiffness for 

all of the models except for the last model where snubbing is modeled using spring that 

possesses a nonlinear stiffness. Mechanical snubbers are very important when it comes to 

designing an isolation system. It is used as a device to limit the motion of the mounting 

system when it undergoes overloading conditions.  

3.3.1 Model 1 - Voigt Model 

Fig. 3.3 shows the configuration of model 1. The model consists of a single 

degree of freedom system where the spring and damper are represented by the stiffness 

𝑘𝑘1 and damping coefficient 𝑏𝑏1. The snubbing effect is taken into account by adding 

additional two linear springs 𝑘𝑘2 and 𝑘𝑘3 that will be engaged when the displacement 

amplitude 𝑥𝑥 of the isolated mass exceeds the snubbing gap 𝑥𝑥𝑜𝑜 . The equations of motion 

for model 1 are as follows:  

                   𝑚𝑚𝑥̈𝑥 + 𝑏𝑏1𝑥̇𝑥 +  𝑘𝑘1𝑥𝑥 =  𝑓𝑓, for |𝑥𝑥|  <  𝑥𝑥𝑜𝑜  

        𝑚𝑚𝑥̈𝑥 +  𝑏𝑏1𝑥̇𝑥 +  (𝑘𝑘1 + 𝑘𝑘2)𝑥𝑥 = 𝑓𝑓 +  𝑘𝑘2𝑥𝑥𝑜𝑜 ,   for 𝑥𝑥 ≥  𝑥𝑥𝑜𝑜                                     (3.8)                                         

         𝑚𝑚𝑥̈𝑥 +  𝑏𝑏1𝑥̇𝑥 +  (𝑘𝑘1 + 𝑘𝑘3)𝑥𝑥 = 𝑓𝑓 −  𝑘𝑘3𝑥𝑥𝑜𝑜 ,   for 𝑥𝑥 ≤ −𝑥𝑥𝑜𝑜  

In the equation above, 𝑚𝑚 represents the mass of the isolated system and 𝑓𝑓 is the 

excitation force acting on the system. The system of 2nd order linear differential equations 

in Eq. (3.8) can be converted into a system 1st order linear differential equations as 

follows: 

                               �
𝑥̇𝑥1

𝑥̇𝑥2

� =  �
0 1
−𝑘𝑘1

𝑚𝑚
−𝑏𝑏1

𝑚𝑚
� �
𝑥𝑥1

𝑥𝑥2

� + �
0
𝑓𝑓
𝑚𝑚
�                                                              (3.9) 
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𝑘𝑘3 

𝑘𝑘2 

𝑘𝑘1 
𝑏𝑏1 

m 

x 

𝑥𝑥𝑜𝑜  

𝑥𝑥𝑜𝑜  
f 

                               �
𝑥̇𝑥1

𝑥̇𝑥2

� =  �
0 1

−(𝑘𝑘1 + 𝑘𝑘2)
𝑚𝑚

−𝑏𝑏
𝑚𝑚
�  �
𝑥𝑥1

𝑥𝑥2

� +  �
0

𝑓𝑓
𝑚𝑚

+
𝑘𝑘2𝑥𝑥𝑜𝑜
𝑚𝑚

�                               (3.10) 

                              �
𝑥̇𝑥1

𝑥̇𝑥2

� =  �
0 1

−(𝑘𝑘1 + 𝑘𝑘3)
𝑚𝑚

−𝑏𝑏
𝑚𝑚
�  �
𝑥𝑥1

𝑥𝑥2

� +  �
0

𝑓𝑓
𝑚𝑚
−
𝑘𝑘3𝑥𝑥𝑜𝑜
𝑚𝑚

�                               (3.11) 

In the above equations, 𝑥𝑥1 = 𝑥𝑥 and 𝑥𝑥2 =  𝑥̇𝑥.  Eq. (3.9) is the governing equation 

of motion for the system shown in Fig. 3.3 when |𝑥𝑥|  <  𝑥𝑥𝑜𝑜 . Eq. (3.10) is the governing 

equation of motion when 𝑥𝑥 ≥  𝑥𝑥𝑜𝑜  and Eq. (3.11) is the governing equation of motion 

when 𝑥𝑥 ≤  −𝑥𝑥𝑜𝑜 . To accommodate varying stiffness in different directions of motion, the 

snubbing stiffness 𝑘𝑘2 and 𝑘𝑘3 is assumed to be asymmetrical. This assumption can be 

relaxed for symmetric systems by making the snubbing stiffness equal for both motion 

directions. 

 

 

 

 

 

 

 

 

 

 

Figure  3.3: Voigt Model 
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3.3.2 Model 2 - Maxwell-Voigt Model 

Fig. 3.4 shows the configuration of model 2. This model consists of a single 

degree of freedom system where the spring and damper are represented by stiffness 𝑘𝑘1 

and damping 𝑏𝑏1 just like in model 1. However, there is an additional spring with stiffness 

𝑘𝑘 and a damper with damping coefficient 𝑏𝑏 connected in series in reference to Maxwell-

Voigt model. The snubbing effect is modeled just like the one presented in model 1. The 

equations of motion for the system shown in Fig. 3.4 are as follows: 

   �
𝑚𝑚 0

0 0
� �
𝑥̈𝑥

𝑦̈𝑦
� +  �

𝑏𝑏1 0

0 𝑏𝑏
� �
𝑥̇𝑥

𝑦̇𝑦
� +  �

(𝑘𝑘1 +  𝑘𝑘) −𝑘𝑘

−𝑘𝑘 𝑘𝑘
� �
𝑥𝑥

𝑦𝑦
� =  �

𝑓𝑓

0
�                                        (3.12)                           

   �
𝑚𝑚 0

0 0
� �
𝑥̈𝑥

𝑦̈𝑦
� +  �

𝑏𝑏1 0

0 𝑏𝑏
� �
𝑥̇𝑥

𝑦̇𝑦
� +  �

(𝑘𝑘1 + 𝑘𝑘2 +  𝑘𝑘) −𝑘𝑘

−𝑘𝑘 𝑘𝑘
� �
𝑥𝑥

𝑦𝑦
� =  �

𝑓𝑓 +  𝑘𝑘2𝑥𝑥𝑜𝑜

0
�              (3.13)         

   �
𝑚𝑚 0

0 0
� �
𝑥̈𝑥

𝑦̈𝑦
� + �

𝑏𝑏1 0

0 𝑏𝑏
� �
𝑥̇𝑥

𝑦̇𝑦
� +  �

(𝑘𝑘1 +  𝑘𝑘3 +  𝑘𝑘) −𝑘𝑘

−𝑘𝑘 𝑘𝑘
� �
𝑥𝑥

𝑦𝑦
� =  �

𝑓𝑓 −  𝑘𝑘3𝑥𝑥𝑜𝑜

0
�              (3.14) 

In Eq. (3.12) through Eq. (3.14), 𝑘𝑘 and 𝑏𝑏 represents the stiffness and damping of 

the additional spring and the damper added to the Maxwell model as shown in Fig. 3.4. 

Eq. (3.12) through Eq. (3.14) can be expressed as system of 1st order differential equation 

as follows: 

           

⎣
⎢
⎢
⎢
⎡
𝑥̇𝑥1

𝑥̇𝑥2

𝑦̇𝑦 ⎦
⎥
⎥
⎥
⎤

=  

⎣
⎢
⎢
⎢
⎢
⎡

0 1 0
−(𝑘𝑘 + 𝑘𝑘1)

𝑚𝑚
−
𝑏𝑏1

𝑚𝑚
𝑘𝑘
𝑚𝑚

𝑘𝑘
𝑏𝑏

0 −
𝑘𝑘
𝑏𝑏⎦
⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎡
𝑥𝑥1

𝑥𝑥2

𝑦𝑦 ⎦
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎡

0
𝑓𝑓
𝑚𝑚

0 ⎦
⎥
⎥
⎥
⎤
                                                        (3.15) 

           

⎣
⎢
⎢
⎢
⎡
𝑥̇𝑥1

𝑥̇𝑥2

𝑦̇𝑦 ⎦
⎥
⎥
⎥
⎤

=  

⎣
⎢
⎢
⎢
⎢
⎡

0 1 0
−(𝑘𝑘 + 𝑘𝑘1 + 𝑘𝑘2)

𝑚𝑚
−
𝑏𝑏1

𝑚𝑚
𝑘𝑘
𝑚𝑚

𝑘𝑘
𝑏𝑏

0 −
𝑘𝑘
𝑏𝑏⎦
⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎡
𝑥𝑥1

𝑥𝑥2

𝑦𝑦 ⎦
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎡

0
𝑓𝑓
𝑚𝑚

+
𝑘𝑘2

𝑚𝑚
𝑥𝑥𝑜𝑜

0 ⎦
⎥
⎥
⎥
⎤
                              (3.16) 



31 
 

 

𝑘𝑘3 

𝑘𝑘2 

𝑘𝑘1 
𝑏𝑏1 

m 

x 

𝑥𝑥𝑜𝑜  

𝑥𝑥𝑜𝑜  
f 

y 

b 

k 

           

⎣
⎢
⎢
⎢
⎡
𝑥̇𝑥1

𝑥̇𝑥2

𝑦̇𝑦 ⎦
⎥
⎥
⎥
⎤

=  

⎣
⎢
⎢
⎢
⎢
⎡

0 1 0
−(𝑘𝑘 + 𝑘𝑘1 + 𝑘𝑘3)

𝑚𝑚
−
𝑏𝑏1

𝑚𝑚
𝑘𝑘
𝑚𝑚

𝑘𝑘
𝑏𝑏

0 −
𝑘𝑘
𝑏𝑏⎦
⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎡
𝑥𝑥1

𝑥𝑥2

𝑦𝑦 ⎦
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎡

0
𝑓𝑓
𝑚𝑚
−
𝑘𝑘3

𝑚𝑚
𝑥𝑥𝑜𝑜

0 ⎦
⎥
⎥
⎥
⎤
                              (3.17) 

                             

 

 

 

 

 

 

 

 

 

 

 

                                           Figure  3.4: Maxwell-Voigt Model 

3.3.3 Model 3 - Voigt Model with Bouc-Wen Element 

Fig. 3.5 shows the configuration of model 3. This model is similar to model 1. In 

order to capture the hysteretic behavior over large range of operating frequencies, a 

Bouc-Wen element is added (Ikhouane, 2006). The Bouc-Wen element is a nonlinear 

element that is added to the model to capture the time dependence by adding the time 

dependent parameter (𝑧𝑧).  𝛼𝛼,𝛽𝛽, 𝛾𝛾,𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛 are the set of Bouc-Wen element parameters 
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that need to be defined.  The model that incorporates the Bouc-Wen element is shown in 

Fig. 3.5 and can be expressed as a system 1st order differential equations as follows: 

                                    𝑥̇𝑥1 =  𝑥𝑥2  

                                    𝑥̇𝑥2 =  −
𝑘𝑘1

𝑚𝑚
𝑥𝑥1 −  

𝑏𝑏1

𝑚𝑚
𝑥𝑥2 −  

𝛼𝛼
𝑚𝑚
𝑧𝑧 + 

𝑓𝑓
𝑚𝑚

                                                (3.18) 

                                     𝑧̇𝑧 =  −𝛾𝛾|𝑥𝑥2|𝑧𝑧|𝑧𝑧|𝑛𝑛−1 −  𝛽𝛽𝑥𝑥2|𝑧𝑧|𝑛𝑛 + 𝐴𝐴𝑥𝑥2                           

The nonlinear system shown above in Eq. (3.18) holds when there is no snubbing 

effect i.e. |𝑥𝑥|  <  𝑥𝑥𝑜𝑜 . 𝑥𝑥1 = 𝑥𝑥 and 𝑥𝑥2 =  𝑥̇𝑥.  𝛼𝛼,𝛽𝛽, 𝛾𝛾,𝐴𝐴 and 𝑛𝑛 are constants referred to as 

Bouc-Wen parameters. z is the time varying constant introduced by Bouc-Wen element. 

When 𝑥𝑥 ≥  𝑥𝑥𝑜𝑜 , the equations of motion (EOM) are as follows: 

                                      𝑥̇𝑥1 =  𝑥𝑥2 

                                    𝑥̇𝑥2 =  −
(𝑘𝑘1 + 𝑘𝑘2)

𝑚𝑚
𝑥𝑥1 −  

𝑏𝑏1

𝑚𝑚
𝑥𝑥2 −  

𝛼𝛼
𝑚𝑚
𝑧𝑧 +  

𝑓𝑓
𝑚𝑚

+
𝑘𝑘2

𝑚𝑚
𝑥𝑥𝑜𝑜                     (3.19) 

                                     𝑧̇𝑧 =  −𝛾𝛾|𝑥𝑥2|𝑧𝑧|𝑧𝑧|𝑛𝑛−1 −  𝛽𝛽𝑥𝑥2|𝑧𝑧|𝑛𝑛 + 𝐴𝐴𝑥𝑥2 

and finally when 𝑥𝑥 ≤  −𝑥𝑥𝑜𝑜 , the equations of motion (EOM) are as follows: 

                                      𝑥̇𝑥1 =  𝑥𝑥2 

                                    𝑥̇𝑥2 =  −
(𝑘𝑘1 + 𝑘𝑘3)

𝑚𝑚
𝑥𝑥1 −  

𝑏𝑏1

𝑚𝑚
𝑥𝑥2 −  

𝛼𝛼
𝑚𝑚
𝑧𝑧 +  

𝑓𝑓
𝑚𝑚
−
𝑘𝑘3

𝑚𝑚
𝑥𝑥𝑜𝑜                     (3.20) 

                                     𝑧̇𝑧 =  −𝛾𝛾|𝑥𝑥2|𝑧𝑧|𝑧𝑧|𝑛𝑛−1 −  𝛽𝛽𝑥𝑥2|𝑧𝑧|𝑛𝑛 + 𝐴𝐴𝑥𝑥2 
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𝑘𝑘2 
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𝑥𝑥𝑜𝑜  

𝑥𝑥𝑜𝑜  
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Figure  3.5: Voigt Model with Bouc-Wen Element 

3.3.4 Model 4 - Voigt Model with Bouc-Wen Element and Nonlinear 

Stiffness 

Fig. 3.6 shows the configuration of model 4. This model is modeled like model 3. 

However, in all of the models mentioned above, the snubbing is represented as a linear 

spring. In model 4, snubbing is represented by a nonlinear stiffness to capture the 

progressive stiffening behavior when the snubber is engaged. The governing EOM for 

model 4 are the same as defined in Eq. (3.18) when the snubber is not engaged i.e. 

|𝑥𝑥|  <  𝑥𝑥𝑜𝑜 .  When 𝑥𝑥 ≥  𝑥𝑥𝑜𝑜 , the EOM for the model are as follows: 
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𝑘𝑘3 

𝑘𝑘2 

𝑘𝑘1 
𝑏𝑏1 

m 

x 

𝑥𝑥𝑜𝑜  

𝑥𝑥𝑜𝑜  
f 

              𝑥̇𝑥1 =  𝑥𝑥2 

              𝑥̇𝑥2 =  −
𝑘𝑘1

𝑚𝑚
𝑥𝑥1 −  

𝑘𝑘2

𝑚𝑚
(𝑥𝑥1 − 𝑥𝑥𝑜𝑜) −  

𝑘𝑘2

𝑚𝑚
(𝑥𝑥1 − 𝑥𝑥𝑜𝑜)3 −  

𝑏𝑏1

𝑚𝑚
𝑥𝑥2 −  

𝛼𝛼
𝑚𝑚
𝑧𝑧 +  

𝑓𝑓
𝑚𝑚

          (3.21) 

               𝑧̇𝑧 =  −𝛾𝛾|𝑥𝑥2|𝑧𝑧|𝑧𝑧|𝑛𝑛−1 −  𝛽𝛽𝑥𝑥2|𝑧𝑧|𝑛𝑛 + 𝐴𝐴𝑥𝑥2 

In Eq. (3.21), k2 represents the snubber stiffness which is modeled as a cubic 

nonlinear relationship instead of the linear snubber stiffness used in the previous models. 

The EOM of for 𝑥𝑥 ≤  𝑥𝑥𝑜𝑜  are as follows: 

              𝑥̇𝑥1 =  𝑥𝑥2 

              𝑥̇𝑥2 =  −
𝑘𝑘1

𝑚𝑚
𝑥𝑥1 −  

𝑘𝑘3

𝑚𝑚
(𝑥𝑥1 + 𝑥𝑥𝑜𝑜) −  

𝑘𝑘3

𝑚𝑚
(𝑥𝑥1 + 𝑥𝑥𝑜𝑜)3 −  

𝑏𝑏1

𝑚𝑚
𝑥𝑥2 −  

𝛼𝛼
𝑚𝑚
𝑧𝑧 +  

𝑓𝑓
𝑚𝑚

          (3.22) 

 𝑧̇𝑧 =  −𝛾𝛾|𝑥𝑥2|𝑧𝑧|𝑧𝑧|𝑛𝑛−1 −  𝛽𝛽𝑥𝑥2|𝑧𝑧|𝑛𝑛 + 𝐴𝐴𝑥𝑥2 

 

 

 

 

 

 

 

 

 

 

 

         

Figure  3.6: Voigt Model with Bouc-Wen Element and Nonlinear Stiffness 
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3.4 Parameter Identification 

Parameter identification is used next to find the variables associated with each of 

the models presented in sections 3.3.1 to 3.3.4. An optimization procedure is used to 

determine the variables in each of the presented models. The solution technique involves 

finding the difference between the transmitted force computed from the theoretical 

models and the measured force. A time history of the measured forces transmitted to the 

base from a known excitation is used for model reconciliation.  

 The objective function for the parameter identification is defined as: 

                                                                 ‖𝑓𝑓𝑡𝑡 −  𝑓𝑓𝑚𝑚‖                                                                  (3.23) 

In Eq. (3.23), 𝑓𝑓𝑡𝑡  is the time history of the transmitted force to the base calculated from the 

theoretical model and 𝑓𝑓𝑚𝑚  is the time history of the measured force for a specified input. 

This solution technique works by minimizing the norm of the difference between the time 

history of the two forces, which results in finding the relevant parameters of the 

corresponding models. In the optimization problem, the only constraints are the side 

constraints which provide a limit for the design variables except for the models in section 

3.3.3 and 3.3.4, where the presence of the constraints is necessary to limit the Bouc-Wen 

model parameters in order to insure bounded input bounded output response (Ikhouane, 

2006). The Sequential Quadratic Programming (SQP) algorithm is used to the 

optimization problem. The ‘fmincon’ function in MATLAB® optimization toolbox is 

used to minimize the function in Eq. (3.23). 

The force transmitted to the base for the Voigt model, defined in Fig. 3.3, is 

expressed as follows: 
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                𝑓𝑓𝑡𝑡 =  𝑏𝑏1𝑥̇𝑥 +  𝑘𝑘1𝑥𝑥,    for |𝑥𝑥| < 𝑥𝑥𝑜𝑜  

                𝑓𝑓𝑡𝑡 =  𝑏𝑏1𝑥̇𝑥 +  𝑘𝑘1𝑥𝑥 +  𝑘𝑘2(𝑥𝑥 −  𝑥𝑥𝑜𝑜),     for 𝑥𝑥 ≥  𝑥𝑥𝑜𝑜                                          

                 𝑓𝑓𝑡𝑡 =  𝑏𝑏1𝑥̇𝑥 +  𝑘𝑘1𝑥𝑥 +  𝑘𝑘3(𝑥𝑥 +  𝑥𝑥𝑜𝑜),    for 𝑥𝑥 ≤  −𝑥𝑥𝑜𝑜                                 (3.24) 

In Eq. (3.24), 𝑘𝑘1,𝑘𝑘2,𝑘𝑘3 and 𝑏𝑏1 are the system parameters that need to be determined from 

the parameter identification for the Voigt model. 

The force transmitted to the base for the Maxwell-Voigt model, defined in Fig. 3.4, 

is expressed as follows: 

     𝑓𝑓𝑡𝑡 =  𝑏𝑏1𝑥̇𝑥 +  𝑘𝑘1𝑥𝑥 + 𝑏𝑏𝑦̇𝑦 

          =  𝑏𝑏1𝑥̇𝑥 +  𝑘𝑘1𝑥𝑥 + 𝑘𝑘(𝑥𝑥 − 𝑦𝑦), for |𝑥𝑥| <  𝑥𝑥𝑜𝑜   

     𝑓𝑓𝑡𝑡 =  𝑏𝑏1𝑥̇𝑥 +  𝑘𝑘1𝑥𝑥 + 𝑏𝑏𝑦̇𝑦 +  𝑘𝑘2(𝑥𝑥 −  𝑥𝑥𝑜𝑜) 

          =  𝑏𝑏1𝑥̇𝑥 +  𝑘𝑘1𝑥𝑥 + 𝑘𝑘(𝑥𝑥 − 𝑦𝑦) + 𝑘𝑘2(𝑥𝑥 −  𝑥𝑥𝑜𝑜),    for 𝑥𝑥 ≥  𝑥𝑥𝑜𝑜                          (3.25)                    

    𝑓𝑓𝑡𝑡 =  𝑏𝑏1𝑥̇𝑥 +  𝑘𝑘1𝑥𝑥 + 𝑏𝑏𝑦̇𝑦 +  𝑘𝑘3 (𝑥𝑥 + 𝑥𝑥𝑜𝑜) 

         =  𝑏𝑏1𝑥̇𝑥 +  𝑘𝑘1𝑥𝑥 + 𝑘𝑘(𝑥𝑥 − 𝑦𝑦) + 𝑘𝑘3(𝑥𝑥 +  𝑥𝑥𝑜𝑜),    for 𝑥𝑥 ≤  −𝑥𝑥𝑜𝑜                          

In Eq. (3.25), 𝑘𝑘1,𝑘𝑘2,𝑘𝑘3,𝑘𝑘, 𝑏𝑏1 and 𝑏𝑏 are the system parameters that need to determined 

from the parameter identification for the Maxwell-Voigt model. 

 The force transmitted to the base for the Voigt model with Bouc-Wen element, 

defined in Fig. 3.5 is expressed as follows: 

                        𝑓𝑓𝑡𝑡 =  𝑏𝑏1𝑥̇𝑥 +  𝑘𝑘1𝑥𝑥 +  𝛼𝛼𝛼𝛼, for |𝑥𝑥| <  𝑥𝑥𝑜𝑜  

            𝑓𝑓𝑡𝑡 =  𝑏𝑏1𝑥̇𝑥 +  𝑘𝑘1𝑥𝑥 +  𝛼𝛼𝛼𝛼 +  𝑘𝑘2(𝑥𝑥 −  𝑥𝑥𝑜𝑜),     for 𝑥𝑥 ≥  𝑥𝑥𝑜𝑜                             (3.26)                               

            𝑓𝑓𝑡𝑡 =  𝑏𝑏1𝑥̇𝑥 +  𝑘𝑘1𝑥𝑥 +  𝛼𝛼𝛼𝛼 +  𝑘𝑘3(𝑥𝑥 +  𝑥𝑥𝑜𝑜),     for 𝑥𝑥 ≤  −𝑥𝑥𝑜𝑜                         

In Eq. (3.26), 𝑘𝑘1,𝑘𝑘2,𝑘𝑘3, 𝑏𝑏1 and 𝛼𝛼 need to be determined. 𝑧𝑧 in the equation above is a time 

varying variable that comes as a result of using Bouc-Wen element which depends on the  
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parameters 𝛽𝛽, 𝛾𝛾,𝑛𝑛 and 𝐴𝐴 which need to be determined also for the Voigt model with 

Bouc-Wen element. 

The force transmitted to the base for the Voigt model with Bouc-Wen element 

and nonlinear stiffness, defined in Fig. 3.6, is expressed as follows: 

 𝑓𝑓𝑡𝑡 =  𝑏𝑏1𝑥̇𝑥 +  𝑘𝑘1𝑥𝑥 +  𝛼𝛼𝛼𝛼, for |𝑥𝑥|  <  𝑥𝑥𝑜𝑜  

 𝑓𝑓𝑡𝑡 =  𝑏𝑏1𝑥̇𝑥 +  𝑘𝑘1𝑥𝑥 +  𝛼𝛼𝛼𝛼 + 𝑘𝑘2(𝑥𝑥 −  𝑥𝑥𝑜𝑜) +  𝑘𝑘2(𝑥𝑥 −  𝑥𝑥𝑜𝑜)3,        for 𝑥𝑥 ≥  𝑥𝑥𝑜𝑜                    (3.27)    

𝑓𝑓𝑡𝑡 =  𝑏𝑏1𝑥̇𝑥 +  𝑘𝑘1𝑥𝑥 +  𝛼𝛼𝛼𝛼 + 𝑘𝑘3(𝑥𝑥 +  𝑥𝑥𝑜𝑜) +  𝑘𝑘3(𝑥𝑥 +  𝑥𝑥𝑜𝑜)3, for 𝑥𝑥 ≤  −𝑥𝑥𝑜𝑜               

In Eq. (3.27), 𝑘𝑘1,𝑘𝑘2,𝑘𝑘3, 𝑏𝑏1 and 𝛼𝛼 need to be determined. 𝑧𝑧 which depends on 

𝛽𝛽, 𝛾𝛾,𝑛𝑛 and 𝐴𝐴 are also need to be determined for the Voigt model with Bouc-Wen element 

and nonlinear stiffness.  

3.4.1 Numerical example 

To illustrate the parameter identification procedure, consider the following test 

situation. Experimental test results obtained from an elastomeric engine mount are used 

to find the mount parameters. The experimental force-displacement data was furnished by 

Dr. Kaul. The force-displacement data collected from the experiment is shown in Fig. 

3.7. The data computed for the four models is shown in Table 3.1 and the results for the 

force-displacement relationship for the four models are shown in Figs. 3.8, 3.9, 3.10 and 

3.11 respectively. 
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Figure  3.7: Measured Force – Displacement Curve. 

 

 

Figure  3.8: Force Displacement Curve (Voigt Model) 
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Figure  3.9: Force Displacement Curve (Maxwell-Voigt Model) 

 

 
Figure  3.10: Force Displacement Curve (Voigt Model with Bouc-Wen Element) 
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Figure  3.11: Force Displacement Curve (Voigt Model with Bouc-Wen Element and 
Nonlinear Stiffness) 
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Table  3.1: Computed Parameters for the Four Models 

 Stiffness Parameters 

(N/mm) 

Damping Parameters 

(N-s/mm) 

Bouc-Wen 

Parameters 

Optimized  

F 

 

Model 1 

𝑘𝑘1 = 116.31 

𝑘𝑘2 = 314.83 

𝑘𝑘3 = 746.35 

 

𝑏𝑏1 = 1.38 

 

  

5.44E+03 

 

 

Model 2 

𝑘𝑘1 = 112.35 

𝑘𝑘2 = 299.29 

𝑘𝑘3 = 732.14 

𝑘𝑘 = 45.18 

 

𝑏𝑏1 = 0.001 

𝑏𝑏 = 2.78 

 

  

 

 

5.82E+03 

 

 

 

Model 3 

 

𝑘𝑘1 = 116.31 

𝑘𝑘2 = 314.83 

𝑘𝑘3 = 746.35 

 

 

𝑏𝑏1 = 1.37 

 

𝛼𝛼 = 0.01 

𝛽𝛽 = 0.48 

𝛾𝛾 = 1 

𝑛𝑛 = 1.65 

𝐴𝐴 = 1.1 

 

 

 

 

5.44E+03 

 

 

 

Model 4 

 

𝑘𝑘1 = 118.76 

𝑘𝑘2 = 154.31 

𝑘𝑘3 = 429.62 

 

 

𝑏𝑏1 = 1.36 

 

𝛼𝛼 = 0.01 

𝛽𝛽 = 0.5 

𝛾𝛾 = 0.94 

𝑛𝑛 = 1.42 

𝐴𝐴 = 0.83 

 

 

 

 

4.81E+03 

 

 

 



42 
 

 

The parameters for the four models, based on the formulation presented in sections 

3.3 and 3.4, are presented in Table 3.1. As can be seen from Table 3.1, the value for the 

isolation stiffness variable 𝑘𝑘1, varies by 5% between the four models. The same can be 

said about 𝑏𝑏1, except for the Maxwell-Voigt model, which overestimates damping. The 

force displacement plots that correspond to the four models are shown in Figs. 3.9 to 

3.11. It can be seen that the closest correlation with the experimental plot is achieved in 

Fig. 3.11 which corresponds to the Voigt model with Bouc-Wen element and nonlinear 

stiffness. This result is achieved because this particular model is the most comprehensive 

model among the four models. This model contains a time varying Bouc-Wen element 

and a cubic relationship to model the transition in stiffness due to snubbing.  The Voigt 

model with Bouc-Wen element shows similar results as the Voigt model with Bouc-Wen 

element and nonlinear stiffness since it uses a time varying Bouc-Wen element as well. 

But, it does not capture the transition in stiffness characteristics of the snubbing system. 

The Voigt model is the easiest model among all of the four models, although it might not 

be a good candidate if monitoring hysteresis and stiffness transition is the goal. It’s best 

suited for application with little damping and snubbing application with low hysteresis 

and limited range of excitation frequency. With regards to using the Maxwell-Voigt 

model, there are no clear advantages in using it over the Voigt model. The Maxwell-

Voigt model overestimates the damping as can be seen in Table 3.1. 
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3.5 Summary 

In this chapter, mount characterization is discussed. The development of the 

equations of motion for the different mounting systems to characterize the mount and 

determine its parameters is presented herein. Four different models are proposed; the 

Voigt model, the Maxwell-Voigt model, Voigt model with Bouc-Wen element and Voigt 

model with Bouc-Wen element and nonlinear stiffness. In all of these models, mount 

parameters are identified by solving an optimization problem. The objective is to 

minimize the transmitted loads to the frame. The hysteresis loop for the four models is 

generated and compared to the hysteresis loop generated from the experimental data. It is 

seen that model 4 yields the best correlation with the experimental data. 
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4 Chapter 4 – Mount Modeling and Design 

This chapter provides the necessary mathematical equations needed to describe 

the mounting system. Two different models are formulated. The first one is a six degree 

of freedom model that treats the powertrain as a six DOF rigid body. The second model is 

a more elaborate twelve DOF model that treats the powertrain and the swing-arm as two 

6 DOF rigid bodies. The main goal is to achieve an appropriate mounting system that 

fulfils the major task of vibration isolation. The models suggested above are used to 

formulate the optimization problem such that the mounting system stiffness, orientation 

and location are estimated. Several examples are provided based on the theoretical 

models presented herein. 

4.1  Mathematical Modeling 

This section presents two different configurations of the engine mount system that 

is used in the motorcycle vibration isolation application. The first one is a six degree of 

freedom (DOF) model and the second one is a twelve DOF model. The equations of 

motion are developed for both models. For both models, an optimization problem is set 

up in order to solve for the engine mount characteristics by minimizing the transmitted 

loads to the frame due to engine excitation loads and road loads. As mentioned above, the 

optimization problem used the engine mount parameters i.e. stiffness, location and 

orientation as the design vector.  

4.1.1 Six DOF Model 

 In this section, the equations of motion for a six DOF model which captures the 

engine dynamics are formulated. The model discussed in this section consists of a 
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powertrain that is treated as a six DOF rigid body. The powertrain assembly consists of 

the engine and the exhaust system connected to the frame via engine mounts. The 

powertrain assembly used herein is considered to be rigid; this assumption is used 

throughout this dissertation. The frame structure is also assumed to be infinitely rigid. 

Fig. 4.1 shows the layout that represents the model defined above where the powertrain is 

directly assembled to the frame at points (1, 2, 3) without being coupled to the swing-arm 

assembly. The swing-arm is attached to the frame below point 2.   

 
Figure  4.1: Six DOF Model (Cocco, 2001) 

 The equation of motion of the six DOF system defined above is given as follows: 

                                       𝑀𝑀𝑒𝑒𝑋̈𝑋𝑒𝑒 + 𝐶𝐶𝑒𝑒𝑋̇𝑋𝑒𝑒 +  𝐾𝐾𝑒𝑒𝑋𝑋𝑒𝑒 = 𝐹𝐹𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗                                                       (4.1) 

In Eq. (4.1), Fe denotes the input force vector which can be caused either by the shaking 

force due to engine imbalance or due to road load. Me, Ce and Ke are 6x6 that represents 
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mass, damping and stiffness matrices respectively. The 6x1 vector 

𝐹𝐹𝑒𝑒 =  �𝑓𝑓𝑥𝑥𝑥𝑥  𝑓𝑓𝑦𝑦𝑦𝑦  𝑓𝑓𝑧𝑧𝑧𝑧  𝑚𝑚𝑥𝑥𝑥𝑥  𝑚𝑚𝑦𝑦𝑦𝑦  𝑚𝑚𝑧𝑧𝑧𝑧 �
𝑇𝑇

, where the first three terms in the column vector 

represents the forces in the x, y, z directions and the last three terms represents the 

moments about the x, y, z axes. The terms of the generalized inertia matrix Me of the 

powertrain are with respect of the global coordinate system. The 6x1 displacement vector 

Xe, consists of three translational x, y and z and three rotational 𝛼𝛼,𝛽𝛽 and 𝛾𝛾 degrees of 

freedom of the powertrain.  

𝑋𝑋𝑒𝑒 =  [𝑥𝑥   𝑦𝑦    𝑧𝑧   𝛼𝛼   𝛽𝛽   𝛾𝛾]𝑇𝑇 

In order to account for different orientations of the mounts, the stiffness and 

damping are represented in the local coordinate system of the mount. A transformation 

matrix is used to express the stiffness and damping in the global coordinate system.  The 

generalized mass matrix of the powertrain is as follows (Harris, 1961): 

        𝑀𝑀𝑒𝑒 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝑚𝑚𝑒𝑒 0 0 0 𝑚𝑚𝑒𝑒𝑧𝑧𝑒𝑒 −𝑚𝑚𝑒𝑒𝑦𝑦𝑒𝑒
0 𝑚𝑚𝑒𝑒 0 −𝑚𝑚𝑒𝑒𝑧𝑧𝑒𝑒 0 𝑚𝑚𝑒𝑒𝑥𝑥𝑒𝑒
0 0 𝑚𝑚𝑒𝑒 𝑚𝑚𝑒𝑒𝑦𝑦𝑒𝑒  −𝑚𝑚𝑒𝑒𝑥𝑥𝑒𝑒 0
0 −𝑚𝑚𝑒𝑒𝑧𝑧𝑒𝑒 𝑚𝑚𝑒𝑒𝑦𝑦𝑒𝑒 𝐼𝐼𝑥𝑥𝑥𝑥𝑥𝑥 −𝐼𝐼𝑥𝑥𝑥𝑥𝑥𝑥 −𝐼𝐼𝑥𝑥𝑥𝑥𝑥𝑥

𝑚𝑚𝑒𝑒𝑧𝑧𝑒𝑒 0 −𝑚𝑚𝑒𝑒𝑥𝑥𝑒𝑒 −𝐼𝐼𝑥𝑥𝑥𝑥𝑥𝑥 𝐼𝐼𝑦𝑦𝑦𝑦𝑦𝑦 −𝐼𝐼𝑦𝑦𝑦𝑦𝑦𝑦
−𝑚𝑚𝑒𝑒𝑦𝑦𝑒𝑒  𝑚𝑚𝑒𝑒𝑥𝑥𝑒𝑒 0 −𝐼𝐼𝑥𝑥𝑥𝑥𝑥𝑥 −𝐼𝐼𝑦𝑦𝑦𝑦𝑦𝑦 𝐼𝐼𝑧𝑧𝑧𝑧𝑧𝑧 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

                         (4.2) 

 In Eq. (4.2), me is the mass of the powertrain, (xe, ye, ze) is the location of the 

center of gravity (C.G.) of the powertrain with respect to the origin of the global 

coordinate system, Ixxe, Iyye, Izze, … are the inertia terms of the powertrain assembly with 

respect to the origin of the global coordinate system.  

 If the center of gravity of the powertrain coincides with the origin of the global 

coordinate system, the generalized mass matrix simplifies to the following form: 
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                               𝑀𝑀𝑒𝑒 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑚𝑚𝑒𝑒 0 0 0 0 0
0 𝑚𝑚𝑒𝑒 0 0 0 0
0 0 𝑚𝑚𝑒𝑒 0 0 0
0 0 0 𝐼𝐼𝑥𝑥𝑥𝑥𝑥𝑥 −𝐼𝐼𝑥𝑥𝑥𝑥𝑥𝑥 −𝐼𝐼𝑥𝑥𝑥𝑥𝑥𝑥
0 0 0 −𝐼𝐼𝑥𝑥𝑥𝑥𝑥𝑥 𝐼𝐼𝑦𝑦𝑦𝑦𝑦𝑦 −𝐼𝐼𝑦𝑦𝑦𝑦𝑦𝑦
0 0 0 −𝐼𝐼𝑥𝑥𝑥𝑥𝑥𝑥 −𝐼𝐼𝑦𝑦𝑦𝑦𝑦𝑦 𝐼𝐼𝑧𝑧𝑧𝑧𝑧𝑧 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

                                 (4.3) 

        The stiffness and damping matrices 𝑘𝑘𝑖𝑖∗ and 𝑐𝑐𝑖𝑖∗ of an individual mount ‘i’ expressed in 

its own local coordinate system is given as follows: 

                                                     𝑘𝑘𝑖𝑖∗ =  �
𝑘𝑘𝑥𝑥𝑥𝑥 0 0
0 𝑘𝑘𝑦𝑦𝑦𝑦 0
0 0 𝑘𝑘𝑧𝑧𝑧𝑧

�                                                           (4.4)                                                                                     

                                         𝑐𝑐𝑖𝑖∗ =  �
𝑐𝑐𝑥𝑥𝑥𝑥 0 0
0 𝑐𝑐𝑦𝑦𝑦𝑦 0
0 0 𝑐𝑐𝑧𝑧𝑧𝑧

�                                                             (4.5)              

In Eq. (4.4), kxi, kyi, kzi represents the stiffness of the engine mount ‘i’ in the x, y 

and z directions respectively. In the above representation it is assumed that the engine 

mount is modeled about its center of elasticity which consists of three principal stiffness 

coefficients without any cross coupling influence. The same can be said about the 

damping matrix 𝑐𝑐𝑖𝑖∗ represented in Eq. (4.5).  A transformation matrix (Ai) is used in order 

to transform both, the stiffness and damping matrices to the global coordinate system as 

follows:  

                                                                  𝑘𝑘𝑖𝑖 =  𝐴𝐴𝑖𝑖𝑇𝑇  𝑘𝑘𝑖𝑖∗ 𝐴𝐴𝑖𝑖                                                              (4.6)                                                                                                   

                                                      𝑐𝑐𝑖𝑖 =  𝐴𝐴𝑖𝑖𝑇𝑇  𝑐𝑐𝑖𝑖𝑇𝑇  𝐴𝐴𝑖𝑖                                                             (4.7)         

𝑐𝑐𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘𝑖𝑖  in Eq. (4.6) and Eq. (4.7) respectively are the individual mount damping and 

stiffness matrices expressed in the global coordinate system. The matrix Ai is a 

transformation matrix which is a combination of three different rotations  𝜃𝜃1,𝜃𝜃2 𝑎𝑎𝑛𝑛𝑛𝑛 𝜃𝜃3 

about x, y and z axes with respect to the global coordinate system shown in Eq. (4.8). 
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Hence, for the systems where the local and global coordinate systems coincide, the 

transformation matrix Ai is a 3x3 identity matrix.  

     𝐴𝐴𝑖𝑖 =  

⎣
⎢
⎢
⎢
⎡
𝐶𝐶𝐶𝐶2𝑖𝑖𝐶𝐶𝐶𝐶3𝑖𝑖 −𝐶𝐶𝐶𝐶1𝑖𝑖𝑆𝑆𝑆𝑆3𝑖𝑖 + 𝑆𝑆𝑆𝑆1𝑖𝑖𝑆𝑆𝑆𝑆2𝑖𝑖𝐶𝐶𝐶𝐶3𝑖𝑖 𝑆𝑆𝑆𝑆1𝑖𝑖𝑆𝑆𝑆𝑆3𝑖𝑖 + 𝐶𝐶𝐶𝐶1𝑖𝑖𝑆𝑆𝑆𝑆2𝑖𝑖𝐶𝐶𝐶𝐶3𝑖𝑖

𝐶𝐶𝐶𝐶2𝑖𝑖𝑆𝑆𝑆𝑆3𝑖𝑖 𝐶𝐶𝐶𝐶1𝑖𝑖𝐶𝐶𝐶𝐶3𝑖𝑖 + 𝑆𝑆𝑆𝑆1𝑖𝑖𝑆𝑆𝑆𝑆2𝑖𝑖𝑆𝑆𝑆𝑆3𝑖𝑖 −𝑆𝑆𝑆𝑆1𝑖𝑖𝐶𝐶𝐶𝐶3𝑖𝑖 + 𝐶𝐶𝐶𝐶1𝑖𝑖𝑆𝑆𝑆𝑆2𝑖𝑖𝑆𝑆𝑆𝑆3𝑖𝑖

−𝑆𝑆𝑆𝑆2𝑖𝑖 𝑆𝑆𝑆𝑆1𝑖𝑖𝐶𝐶𝐶𝐶2𝑖𝑖 𝐶𝐶𝐶𝐶1𝑖𝑖𝐶𝐶𝐶𝐶2𝑖𝑖 ⎦
⎥
⎥
⎥
⎤
        (4.8) 

where; 𝐶𝐶𝜃𝜃𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃𝑖𝑖) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆𝜃𝜃𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃𝑖𝑖). Euler angles, Bryant angles, etc. can be used 

to calculate the transformation matrix Ai as well (Crede, 1965). Appendix A presents a 

detailed discussion of some alternate transformation matrix formulations. 

The transformed damping and stiffness matrices are for the overall six DOF 

powertrain assembly is as follows: 

                                             𝐶𝐶𝑒𝑒 =  �
𝐶𝐶11 𝐶𝐶12

𝐶𝐶21 𝐶𝐶22

�                                                                  (4.9)                                                                                            

                              𝐾𝐾𝑒𝑒 =  �
𝐾𝐾11 𝐾𝐾12

𝐾𝐾21 𝐾𝐾22

�                                                             (4.10)               

where; 

                                                  𝐾𝐾11 =  ∑𝑘𝑘𝑖𝑖  

                                            𝐾𝐾12 =  −∑𝑘𝑘𝑖𝑖𝑟̃𝑟𝑖𝑖 , 𝐾𝐾21 =  𝐾𝐾12                                          (4.11)                                                                           

                                            𝐾𝐾22 =  −∑ 𝑟̃𝑟𝑖𝑖𝑘𝑘𝑖𝑖 𝑟̃𝑟𝑖𝑖                                         

                                            𝐶𝐶11 =  ∑𝑐𝑐𝑖𝑖  

                                            𝐶𝐶12 =  −∑𝑐𝑐𝑖𝑖𝑟̃𝑟𝑖𝑖 , 𝐶𝐶21 =  𝐶𝐶12                                           (4.12)                                                                              

                                            𝐶𝐶22 =  −∑ 𝑟̃𝑟𝑖𝑖𝑐𝑐𝑖𝑖 𝑟̃𝑟𝑖𝑖    
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𝐶𝐶𝑒𝑒  and 𝐾𝐾𝑒𝑒  represents the overall damping and stiffness matrices of the powertrain 

assembly shown in Eq. (4.9) and Eq. (4.12). 𝑟̃𝑟𝑖𝑖  represents the skew-symmetric matrix that 

corresponds to an individual mount position �𝑟𝑟𝑥𝑥𝑥𝑥 , 𝑟𝑟𝑦𝑦𝑦𝑦 , 𝑟𝑟𝑧𝑧𝑧𝑧 � and it is given by: 

                                                           𝑟̃𝑟𝑖𝑖 =  �
0 −𝑟𝑟𝑧𝑧𝑧𝑧 𝑟𝑟𝑦𝑦𝑦𝑦
𝑟𝑟𝑧𝑧𝑧𝑧 0 −𝑟𝑟𝑥𝑥𝑥𝑥
−𝑟𝑟𝑦𝑦𝑦𝑦 𝑟𝑟𝑥𝑥𝑥𝑥 0

�                                            (4.13) 

For the powertrain assembly used herein, the connection of the infinitely rigid 

powertrain is done to an infinitely rigid frame through four engine mounts. The 

governing equations of motion (EOM) are expanded below. It is assumed that the global 

coordinate system is not located at the C.G. of the powertrain. The position vector from 

the origin to the C.G. of the powertrain assembly is (xbe, ybe, zbe). 

                          𝑚𝑚𝑒𝑒  𝑥̈𝑥 + 𝑚𝑚𝑒𝑒  𝑧𝑧𝑏𝑏𝑏𝑏  𝛽̈𝛽 +  𝑚𝑚𝑒𝑒  𝑦𝑦𝑏𝑏𝑏𝑏  𝛾̈𝛾 +  (𝑘𝑘𝑥𝑥1 + 𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑥𝑥3 + 𝑘𝑘𝑥𝑥4)𝑥𝑥 +

                           (𝑘𝑘𝑥𝑥1𝑟𝑟𝑧𝑧1 + 𝑘𝑘𝑥𝑥2𝑟𝑟𝑧𝑧2 +  𝑘𝑘𝑥𝑥3𝑟𝑟𝑧𝑧3 +  𝑘𝑘𝑥𝑥4𝑟𝑟𝑧𝑧4)𝛽𝛽 −

                                        �𝑘𝑘𝑥𝑥1𝑟𝑟𝑦𝑦1 +  𝑘𝑘𝑥𝑥2𝑟𝑟𝑦𝑦2 + 𝑘𝑘𝑥𝑥3𝑟𝑟𝑦𝑦3 + 𝑘𝑘𝑥𝑥4𝑟𝑟𝑦𝑦4�𝛾𝛾 =  𝑓𝑓𝑥𝑥𝑥𝑥  𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗               (4.14)  

 

                          𝑚𝑚𝑒𝑒  𝑦̈𝑦 −  𝑚𝑚𝑒𝑒  𝑧𝑧𝑏𝑏𝑏𝑏  𝑧̈𝑧 +  𝑚𝑚𝑒𝑒  𝑥𝑥𝑏𝑏𝑏𝑏  𝛾̈𝛾 +  �𝑘𝑘𝑦𝑦1 + 𝑘𝑘𝑦𝑦2 + 𝑘𝑘𝑦𝑦3 + 𝑘𝑘𝑦𝑦4�𝑦𝑦

−  �𝑘𝑘𝑦𝑦1𝑟𝑟𝑧𝑧1 + 𝑘𝑘𝑦𝑦2𝑟𝑟𝑧𝑧2 +  𝑘𝑘𝑦𝑦3𝑟𝑟𝑧𝑧3 + 𝑘𝑘𝑦𝑦4𝑟𝑟𝑧𝑧4�𝛼𝛼

+  �𝑘𝑘𝑦𝑦1𝑟𝑟𝑥𝑥1 +  𝑘𝑘𝑦𝑦2𝑟𝑟𝑥𝑥2 +  𝑘𝑘𝑦𝑦3𝑟𝑟𝑥𝑥3 +  𝑘𝑘𝑦𝑦4𝑟𝑟𝑥𝑥4�𝛾𝛾 =  𝑓𝑓𝑦𝑦𝑦𝑦  𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗                      (4.15)  

 

                          𝑚𝑚𝑒𝑒  𝑧̈𝑧 −  𝑚𝑚𝑒𝑒  𝑦𝑦𝑏𝑏𝑏𝑏  𝛼̈𝛼 +  𝑚𝑚𝑒𝑒  𝑥𝑥𝑏𝑏𝑏𝑏  𝛽̈𝛽  +  (𝑘𝑘𝑧𝑧1 + 𝑘𝑘𝑧𝑧2 + 𝑘𝑘𝑧𝑧3 + 𝑘𝑘𝑧𝑧4)𝑧𝑧

+  �𝑘𝑘𝑧𝑧1𝑟𝑟𝑦𝑦1 +  𝑘𝑘𝑧𝑧2𝑟𝑟𝑦𝑦2 +  𝑘𝑘𝑧𝑧3𝑟𝑟𝑦𝑦3 +  𝑘𝑘𝑧𝑧4𝑟𝑟𝑦𝑦4�𝛼𝛼

−  (𝑘𝑘𝑧𝑧1𝑟𝑟𝑥𝑥1 +  𝑘𝑘𝑧𝑧2𝑟𝑟𝑥𝑥2 +  𝑘𝑘𝑧𝑧3𝑟𝑟𝑥𝑥3 +  𝑘𝑘𝑧𝑧4𝑟𝑟𝑥𝑥4)𝛽𝛽 =  𝑓𝑓𝑧𝑧𝑧𝑧  𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗                        (4.16) 
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                       −𝑚𝑚𝑒𝑒  𝑧𝑧𝑏𝑏𝑏𝑏  𝑦̈𝑦  +  𝑚𝑚𝑒𝑒  𝑦𝑦𝑏𝑏𝑏𝑏  𝑧̈𝑧 +  𝐼𝐼𝑥𝑥𝑥𝑥𝑥𝑥  𝛼̈𝛼 −  𝐼𝐼𝑥𝑥𝑥𝑥𝑥𝑥  𝛽̈𝛽 −  𝐼𝐼𝑥𝑥𝑧𝑧𝑧𝑧  𝛾̈𝛾

−  �𝑘𝑘𝑦𝑦1𝑟𝑟𝑧𝑧1 +  𝑘𝑘𝑦𝑦2𝑟𝑟𝑧𝑧2 + 𝑘𝑘𝑦𝑦3𝑟𝑟𝑧𝑧3 +  𝑘𝑘𝑦𝑦4𝑟𝑟𝑧𝑧4�𝑦𝑦

+ �𝑘𝑘𝑧𝑧1𝑟𝑟𝑦𝑦1 +  𝑘𝑘𝑧𝑧2𝑟𝑟𝑦𝑦2 + 𝑘𝑘𝑧𝑧3𝑟𝑟𝑦𝑦3 +  𝑘𝑘𝑧𝑧4𝑟𝑟𝑦𝑦4�𝑧𝑧

+ ��𝑘𝑘𝑦𝑦1𝑟𝑟𝑧𝑧1
2 +  𝑘𝑘𝑧𝑧1𝑟𝑟𝑦𝑦1

2 � +  �𝑘𝑘𝑦𝑦2𝑟𝑟𝑧𝑧2
2 + 𝑘𝑘𝑧𝑧2𝑟𝑟𝑦𝑦2

2 � +  �𝑘𝑘𝑦𝑦3𝑟𝑟𝑧𝑧3
2 + 𝑘𝑘𝑧𝑧3𝑟𝑟𝑦𝑦3

2 �

+ �𝑘𝑘𝑦𝑦4𝑟𝑟𝑧𝑧4
2 +  𝑘𝑘𝑧𝑧4𝑟𝑟𝑦𝑦4

2 ��𝛼𝛼

−  ��𝑘𝑘𝑧𝑧1𝑟𝑟𝑥𝑥1𝑟𝑟𝑦𝑦1� +  �𝑘𝑘𝑧𝑧2𝑟𝑟𝑥𝑥2𝑟𝑟𝑦𝑦2� +  �𝑘𝑘𝑧𝑧3𝑟𝑟𝑥𝑥3𝑟𝑟𝑦𝑦3� +  �𝑘𝑘𝑧𝑧4𝑟𝑟𝑥𝑥4𝑟𝑟𝑦𝑦4��𝛽𝛽

−  ��𝑘𝑘𝑦𝑦1𝑟𝑟𝑥𝑥1𝑟𝑟𝑧𝑧1� +  �𝑘𝑘𝑦𝑦2𝑟𝑟𝑥𝑥2𝑟𝑟𝑧𝑧2� +  �𝑘𝑘𝑦𝑦3𝑟𝑟𝑥𝑥3𝑟𝑟𝑧𝑧3� +  �𝑘𝑘𝑦𝑦4𝑟𝑟𝑥𝑥4𝑟𝑟𝑧𝑧4��𝛾𝛾

=  𝑚𝑚𝑥𝑥𝑥𝑥  𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗                                                                                                     (4.17) 

 

                        𝑚𝑚𝑒𝑒  𝑧𝑧𝑏𝑏𝑏𝑏  𝑥𝑥 ̈ −  𝑚𝑚𝑒𝑒  𝑥𝑥𝑏𝑏𝑏𝑏  𝑧̈𝑧  −  𝐼𝐼𝑥𝑥𝑥𝑥𝑥𝑥  𝛼̈𝛼 +  𝐼𝐼𝑦𝑦𝑦𝑦𝑦𝑦  𝛽̈𝛽 −  𝐼𝐼𝑦𝑦𝑦𝑦𝑦𝑦  𝛾̈𝛾

+  (𝑘𝑘𝑥𝑥1𝑟𝑟𝑧𝑧1 +  𝑘𝑘𝑥𝑥2𝑟𝑟𝑧𝑧2 + 𝑘𝑘𝑥𝑥3𝑟𝑟𝑧𝑧3 +  𝑘𝑘𝑥𝑥4𝑟𝑟𝑧𝑧4)𝑥𝑥

−  (𝑘𝑘𝑧𝑧1𝑟𝑟𝑥𝑥1 +  𝑘𝑘𝑧𝑧2𝑟𝑟𝑥𝑥2 + 𝑘𝑘𝑧𝑧3𝑟𝑟𝑥𝑥3 +  𝑘𝑘𝑧𝑧4𝑟𝑟𝑥𝑥4)𝑧𝑧

−  ��𝑘𝑘𝑧𝑧1𝑟𝑟𝑦𝑦1𝑟𝑟𝑥𝑥1� + �𝑘𝑘𝑧𝑧2𝑟𝑟𝑦𝑦2𝑟𝑟𝑥𝑥2� +  �𝑘𝑘𝑧𝑧3𝑟𝑟𝑦𝑦3𝑟𝑟𝑥𝑥3� +  �𝑘𝑘𝑧𝑧4𝑟𝑟𝑦𝑦4𝑟𝑟𝑥𝑥4��𝛼𝛼

+  [(𝑘𝑘𝑥𝑥1𝑟𝑟𝑧𝑧1
2 +  𝑘𝑘𝑧𝑧1𝑟𝑟𝑥𝑥1

2 ) +  (𝑘𝑘𝑥𝑥2𝑟𝑟𝑧𝑧2
2 +  𝑘𝑘𝑧𝑧2𝑟𝑟𝑥𝑥2

2 ) +  (𝑘𝑘𝑥𝑥3𝑟𝑟𝑧𝑧3
2 +  𝑘𝑘𝑧𝑧3𝑟𝑟𝑥𝑥3

2 )

+  (𝑘𝑘𝑥𝑥4𝑟𝑟𝑧𝑧4
2 +  𝑘𝑘𝑧𝑧4𝑟𝑟𝑥𝑥4

2 )]𝛽𝛽

−  ��𝑘𝑘𝑥𝑥1𝑟𝑟𝑦𝑦1𝑟𝑟𝑧𝑧1� + �𝑘𝑘𝑥𝑥2𝑟𝑟𝑦𝑦2𝑟𝑟𝑧𝑧2� +  �𝑘𝑘𝑥𝑥3𝑟𝑟𝑦𝑦3𝑟𝑟𝑧𝑧3� +  �𝑘𝑘𝑥𝑥4𝑟𝑟𝑦𝑦4𝑟𝑟𝑧𝑧4��𝛾𝛾

=  𝑚𝑚𝑦𝑦𝑦𝑦  𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗                                                                                                      (4.18) 
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                      −𝑚𝑚𝑒𝑒  𝑦𝑦𝑏𝑏𝑏𝑏  𝑥𝑥 ̈ +  𝑚𝑚𝑒𝑒  𝑥𝑥𝑏𝑏𝑏𝑏  𝑦̈𝑦 – 𝐼𝐼𝑥𝑥𝑥𝑥𝑥𝑥  𝛼̈𝛼 −  𝐼𝐼𝑦𝑦𝑦𝑦𝑦𝑦  𝛽̈𝛽 +  𝐼𝐼𝑧𝑧𝑧𝑧𝑧𝑧  𝛾𝛾 ̈

−  �𝑘𝑘𝑥𝑥1𝑟𝑟𝑦𝑦1 +  𝑘𝑘𝑥𝑥2𝑟𝑟𝑦𝑦2 +  𝑘𝑘𝑥𝑥3𝑟𝑟𝑦𝑦3 + 𝑘𝑘𝑥𝑥4𝑟𝑟𝑦𝑦4�𝑥𝑥 

+  �𝑘𝑘𝑦𝑦1𝑟𝑟𝑥𝑥1 +  𝑘𝑘𝑦𝑦2𝑟𝑟𝑥𝑥2 +  𝑘𝑘𝑦𝑦3𝑟𝑟𝑥𝑥3 + 𝑘𝑘𝑦𝑦4𝑟𝑟𝑥𝑥4�𝑦𝑦 

−  ��𝑘𝑘𝑦𝑦1𝑟𝑟𝑥𝑥1𝑟𝑟𝑧𝑧1� + �𝑘𝑘𝑦𝑦2𝑟𝑟𝑥𝑥2𝑟𝑟𝑧𝑧2� +  �𝑘𝑘𝑦𝑦3𝑟𝑟𝑥𝑥3𝑟𝑟𝑧𝑧3� +  �𝑘𝑘𝑦𝑦4𝑟𝑟𝑥𝑥4𝑟𝑟𝑧𝑧4��𝛼𝛼 

−  ��𝑘𝑘𝑥𝑥1𝑟𝑟𝑦𝑦1𝑟𝑟𝑧𝑧1� + �𝑘𝑘𝑥𝑥2𝑟𝑟𝑦𝑦2𝑟𝑟𝑧𝑧2� +  �𝑘𝑘𝑥𝑥3𝑟𝑟𝑦𝑦3𝑟𝑟𝑧𝑧3� +  �𝑘𝑘𝑥𝑥4𝑟𝑟𝑦𝑦4𝑟𝑟𝑧𝑧4��𝛽𝛽

+  ��𝑘𝑘𝑥𝑥1𝑟𝑟𝑦𝑦1
2 +  𝑘𝑘𝑦𝑦1𝑟𝑟𝑥𝑥1

2 � +  �𝑘𝑘𝑥𝑥2𝑟𝑟𝑦𝑦2
2 +  𝑘𝑘𝑦𝑦2𝑟𝑟𝑥𝑥2

2 � +  �𝑘𝑘𝑥𝑥3𝑟𝑟𝑦𝑦3
2 +  𝑘𝑘𝑦𝑦3𝑟𝑟𝑥𝑥3

2 �

+  �𝑘𝑘𝑥𝑥4𝑟𝑟𝑦𝑦4
2 +  𝑘𝑘𝑦𝑦4𝑟𝑟𝑥𝑥4

2 �� 𝛾𝛾 =  𝑚𝑚𝑧𝑧𝑧𝑧  𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗                                                       (4.19) 

 

In the equations presented above, Eq. (4.14) to Eq. (4.19), the damping 

coefficients has been ignored in order to simplify the equations of motion. It may noted 

that the transformation matrices A1, A2, A3 and A4 are represented as identity matrices 

since the local frame of the individual mounts are aligned with the global coordinate 

system.  

The equations of motion presented above are for a motorcycle application in 

which the powertrain is directly mounted to the frame as shown in Fig. 4.1. The swing-

arm assembly used in this model is not connected to the powertrain. Fig. 4.1 shows the 

connection points that connect the powertrain to the frame. This type of connection is 

widely used in the motorcycle industry.           

4.1.2 Twelve DOF Model 

         A six DOF model is used to represent the powertrain assembly that is attached to 

the frame through engine mounts has been discussed in the previous section. The model 

developed in section 4.1.1 could come out short in capturing the isolation characteristics 
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in this layout. Therefore, an alternative model shown in Fig. 4.2, will be developed in this 

section. This model is a twelve DOF system that takes into consideration a layout that is 

widely used in the motorcycle industry. This layout assumes that there are two rigid 

bodies, one represents the powertrain and the second one represents the swing-arm. The 

swing arm is pivoted to the powertrain through a shaft assembly referred to as the 

coupler. Fig. 4.3 shows the layout of the twelve DOF model with the two rigid bodies 

attached. In this section, the EOM of the 12 DOF model are developed. More details 

regarding the coupler shaft are presented in Appendix C.                     

The general equations of motion for the twelve DOF system described above are 

as follows: 

                                                       𝑀𝑀 𝑋̈𝑋 +  𝐶𝐶 𝑋̇𝑋 +  𝐾𝐾 𝑋𝑋 = 𝐹𝐹 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗                                           (4.20)  

In Eq. (4.20), M, C and K are a 12x12 mass, damping and stiffness matrices respectively. 

𝑋𝑋 =  [𝑥𝑥𝑠𝑠𝑠𝑠    𝑦𝑦𝑠𝑠𝑠𝑠    𝑧𝑧𝑠𝑠𝑠𝑠    𝛼𝛼𝑠𝑠𝑠𝑠    𝛽𝛽𝑠𝑠𝑠𝑠    𝛾𝛾𝑠𝑠𝑠𝑠    𝑥𝑥𝑒𝑒    𝑦𝑦𝑒𝑒    𝑧𝑧𝑒𝑒    𝛼𝛼𝑒𝑒    𝛽𝛽𝑒𝑒    𝛾𝛾𝑒𝑒]𝑇𝑇 is the displacement vector 

that contains translational and rotational degrees of freedom for both the swing-arm and 

the powertrain. The subscript ‘sa’ represents parameters related to the swing-arm 

assembly and the subscript ‘e’ represents parameters related to the powertrain assembly. 

F denotes the input force vector due to the shaking force resulting from engine imbalance 

and/or the road loads due to the irregularities in the road profile. The overall mass matrix 

of the system is as follows: 

                                                       𝑀𝑀 =  �
𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑍𝑍6

𝑍𝑍6 𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

�                                          (4.21) 

In Eq. (4.21), Mengine, Mswingarm are the 6x6 mass matrices of the powertrain and the swing-

arm assemblies respectively and Z6  is a 6x6 zero matrix. The powertrain mass matrix and 
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the swing-arm mass matrix are similar and they are the same as the mass matrix defined 

in Eq. (4.20). The inertia matrices for both the powertrain and the swing-arm are defined 

at their local center of gravity. 

 The stiffness and damping matrices of the twelve DOF system are defined as 

follows: 

                                                          𝐾𝐾 =  �
𝐾𝐾𝑠𝑠𝑠𝑠 + 𝐾𝐾𝑐𝑐 −𝐾𝐾𝑐𝑐

−𝐾𝐾𝑐𝑐 𝐾𝐾𝑒𝑒 +  𝐾𝐾𝑐𝑐
�                                         (4.22) 

                                                           𝐶𝐶 =  �
𝐶𝐶𝑠𝑠𝑠𝑠 +  𝐶𝐶𝑐𝑐 −𝐶𝐶𝑐𝑐

−𝐶𝐶𝑐𝑐 𝐶𝐶𝑒𝑒 + 𝐶𝐶𝑐𝑐
�                                          (4.23)  

In Eq. (4.22), Ke and Kse are the stiffness matrices of the powertrain and the swing-arm 

respectively. Both of these stiffness matrices are constructed in the same fashion as 

described in the previous section. The swing-arm stiffness matrix is constructed using the 

stiffness characteristics of the two rear shock springs connecting the swing-arm to the 

frame. Ce and Csa shown in Eq. (4.23) are the damping matrices of the powertrain and the 

swing-arm respectively and they are constructed in the same way as Ke and Ksa. Kc and Cc 

are the stiffness and damping matrices of the coupler respectively. Both of these matrices 

are 6x6 diagonal matrices. The construction of coupling stiffness and damping matrices 

of the coupler is discussed in details in Appendix C. A modeling of the shaking forces 

and the road loads will be discussed in detail in chapter 5.  

 The model discussed in this section assumes that the frame is infinitely rigid just 

like the assumption in the previous section. This assumption means that connection 

points between the engine mounts and the frame as well as the connection points between 

the frame and the rear suspension undergo zero deflection.  
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Figure  4.2: Twelve DOF Model (Cocco, 2001) 
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Figure  4.3: Twelve DOF Engine-Swingarm Layout 
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4.2 Mount Optimization 

In this section, a formulation of the optimization problem for the models discussed 

in section 4.1 is presented using. The optimization problem is solved using the method of 

Sequential Quadratic Programming (SQP). SQP is used throughout this dissertation to 

solve the engine mount optimization problem.  

The objective function that is used in this work is the weighted sum of the 

transmitted force through each individual mount. The transmitted forces through the 

mounts are due to the shaking forces generated inside the engine and/or the forces 

generated from the varying road profile. Loads calculated at several steady speeds can be 

used to construct the objective function. 

The force ‘fi’ transmitted to the frame through the individual mount ‘i’ is given as 

follows: 

                                                              𝑓𝑓𝑖𝑖 =  [−𝑘𝑘𝑖𝑖∗   𝑘𝑘𝑖𝑖∗ 𝑟̃𝑟𝑖𝑖] �
𝑋𝑋𝑡𝑡𝑡𝑡

𝑋𝑋𝑟𝑟𝑟𝑟
�                                              (4.24) 

In Eq. (4.24), 𝑋𝑋𝑡𝑡𝑡𝑡  and 𝑋𝑋𝑟𝑟𝑟𝑟   represent the translational and rotational displacement at the 

center of gravity of the powertrain as result of the input load. 𝑘𝑘𝑖𝑖∗ is the local stiffness 

matrix for the individual mount ‘i’  and 𝑟̃𝑟𝑖𝑖  is the skew symmetric matrix from the position 

vector of the individual mount ‘i’. Both of these matrices are defined in section 4.1.1 by 

Eq. (4.4) and Eq. (4.13).  

The objective function 𝑓𝑓𝑤𝑤   is assembled by summing the Euclidean norm of the 

individual force transmitted through each mount as follows:  

                                                        𝑓𝑓𝑤𝑤 =  �𝜆𝜆𝑗𝑗  �‖𝑓𝑓𝑖𝑖‖                                             (4.25)
𝑖𝑖𝑗𝑗
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In Eq. (4.25), 𝜆𝜆𝑖𝑖  is the weighting parameter that corresponds to different loading 

conditions. The complete engine mount optimization problem can be stated as follows: 

                                                       𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓𝑤𝑤  (𝑘𝑘𝑖𝑖 , 𝑟𝑟𝑖𝑖 ,𝜃𝜃𝑖𝑖)                                            

                                                       𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 𝑔𝑔𝑗𝑗 (𝑘𝑘𝑖𝑖 , 𝑟𝑟𝑖𝑖 ,𝜃𝜃𝑖𝑖)  ≤ 0    𝑗𝑗 = 1, … ,𝑁𝑁                 (4.26)      

In Eq. (4.26), the mount stiffness, location and orientation (𝑘𝑘𝑖𝑖 , 𝑟𝑟𝑖𝑖 ,𝜃𝜃𝑖𝑖) are the design 

variables that are subjected to a total of N number of constraints 𝑔𝑔𝑗𝑗 . The constraints that 

are used in the above problem consist of constraints on the engine mount stiffness, 

constraints on the mount location based on the available space, constraints on the mount 

orientation that is dictated by symmetry and finally a constraint on the deflection of the 

center of gravity of the powertrain due to the static weight of the powertrain. The 

objective function fw is defined in Eq. (4.25). Both fw and  𝑔𝑔𝑗𝑗  are functions of the design 

variables (𝑘𝑘𝑖𝑖 , 𝑟𝑟𝑖𝑖 ,𝜃𝜃𝑖𝑖). 

 The Sequential Quadratic Programming (SQP) method is used to solve the 

optimization problem. A brief description of the SQP method is presented next. 

4.2.1 Sequential Quadratic Programming  

The general function of an optimization problem is given below: 

                                              𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓(𝑥𝑥); 𝑥𝑥 ∈  ℛ𝑛𝑛  

                                             𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 ℎ𝑖𝑖(𝑥𝑥) = 0      𝑖𝑖 = 1, … ,𝑝𝑝                                       (4.27)  

                               𝑔𝑔𝑗𝑗 (𝑥𝑥)  ≤ 0    𝑗𝑗 = 1, … ,𝑚𝑚         

                               𝑥𝑥𝑙𝑙  ≤ 𝑥𝑥 ≤  𝑥𝑥𝑢𝑢                                                                                 

In Eq. (4.27), f(x) is the objective function. hi(x) and gi(x) are the ith equality and 

inequality constraints respectively and x is the vector of design variables. xl and xu are the 

lower and upper bound vectors for the design variables. The optimization problem 
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defined in Eq. (4.27) consisting of ‘p’ equality constraints and ‘m’ inequality constraints 

is said to be linear if the objective function and all the constraints are linear function of 

the design variables. The problem is said to be quadratic if the objective function is 

quadratic and the constraints are linear. If the objective function and/or the constraints are 

nonlinear function of the design variables, then the problem is said to be a nonlinear 

optimization problem. In the case of the engine mount optimization, the problem is 

nonlinear, and the Sequential Quadratic Programming (SQP) algorithm is employed to 

solve the problem. The (SQP) method uses the Newton’s method and Kuhn-Tucker 

conditions to solve the optimization problem as mentioned in (Rao, 2000).   

 For the optimization problem with p equality constraints and n design variables, a 

quadratic sub-problem is constructed based on the approximation of the Lagrangian 

function L(x, λ) which stated as follows: 

                                                      𝐿𝐿(𝑥𝑥, 𝜆𝜆) = 𝑓𝑓(𝑥𝑥) +  �𝜆𝜆𝑘𝑘  ℎ𝑘𝑘(𝑥𝑥)                                       (4.28)
𝑝𝑝

𝑘𝑘=1

 

In Eq. (4.28), λk is the Lagrange multiplier for the kth equality constraint and hk(x) is the 

kth equality constraint and f is the objective function. x is a vector of n design variables.   

 The Kuhn-Tucker necessary conditions for the problem stated in Eq. (4.28) can be 

stated as follows: 

                                                           ∇𝐿𝐿 = 0   or   ∇𝑓𝑓 +  �𝜆𝜆𝑘𝑘∇ℎ𝑘𝑘 = 0
𝑝𝑝

𝑘𝑘=1

 

 
                                                            ℎ𝑘𝑘(𝑥𝑥) = 0,𝑘𝑘 = 1, … ,𝑝𝑝                                                (4.29) 
Eq. (4.29) consists of a set of (n + p) nonlinear equations that is solved using Newton’s 

method. The above equation can be represented in the following form: 
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                                                            𝐹𝐹(𝑌𝑌) = 0 where 𝐹𝐹 =  �
∇𝐿𝐿

ℎ
�

(𝑛𝑛+𝑝𝑝)𝑥𝑥1
  and  

 

                                                             𝑌𝑌 =  �
𝑥𝑥

𝜆𝜆
�

(𝑛𝑛+𝑝𝑝)𝑥𝑥1
                                                            (4.30)   

 
where the (n + p) system of equation shown in Eq. (4.30) is solved using the Newton’s 

method iteratively as follows: 

                                                              [∇𝐹𝐹]𝑗𝑗𝑇𝑇  ∆𝑌𝑌𝑗𝑗 =  −𝐹𝐹�𝑌𝑌𝑗𝑗 �                                                  (4.31) 

In Eq. (4.31) Yj is the solution at the beginning of the the jth iteration, ΔYj is the change in 

the Yj and [𝛻𝛻𝐹𝐹]𝑗𝑗  is the Jacobian matrix of the (n + p) nonlinear equations. The updated 

solution is given as follows: 

                                                                 𝑌𝑌𝑗𝑗+1 =  𝑌𝑌𝑗𝑗 +  ∆𝑌𝑌𝑗𝑗                                                         (4.32) 
 
Eq. (4.32) can be rewritten as: 

                                                           �
[∇2𝐿𝐿] [𝐻𝐻]

[𝐻𝐻]𝑇𝑇 [0]
�
𝑗𝑗

�
∆𝑥𝑥

∆𝜆𝜆
�
𝑗𝑗

=  −�
∇𝐿𝐿

ℎ
�
𝑗𝑗

                               (4.33) 

In Eq. (4.33), ∆𝑥𝑥𝑗𝑗 =  𝑥𝑥𝑗𝑗+1 −  𝑥𝑥𝑗𝑗  and ∆𝜆𝜆𝑗𝑗 =  𝜆𝜆𝑗𝑗+1 −  𝜆𝜆𝑗𝑗  and ∇2𝐿𝐿 is the Hessian matrix of 

the Lagrange function and 𝐻𝐻 =  [∇ℎ𝑘𝑘]. The first equation from the system of equation in 

Eq. (4.33) can be rewritten in the following form: 

                              [∇2𝐿𝐿]𝑗𝑗  Δ𝑥𝑥𝑗𝑗 +  [𝐻𝐻]𝑗𝑗  𝜆𝜆𝑗𝑗+1 =  −∇𝐿𝐿𝑗𝑗  +  [𝐻𝐻]𝑗𝑗  𝜆𝜆𝑗𝑗 =  −∇𝑓𝑓𝑗𝑗                         (4.34) 

Eq. (4.33) can be rewritten as: 

                                            �
[∇2𝐿𝐿] [𝐻𝐻]

[𝐻𝐻]𝑇𝑇 [0]
�
𝑗𝑗

�
∆𝑥𝑥𝑗𝑗

𝜆𝜆𝑗𝑗+1

� =  −�
∇𝑓𝑓𝑗𝑗

ℎ𝑗𝑗
�                                               (4.35) 
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Eq. (4.35) can be solved iteratively to determine ∆𝑥𝑥𝑗𝑗  and 𝜆𝜆𝑗𝑗+1, the design variables and 

the Lagrange multipliers. For a general problem with both equality and inequality 

constraints, the optimization problem can be stated as follows: 

Find 𝑋𝑋 that  

                                           𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  𝑄𝑄 =  ∇𝑓𝑓𝑇𝑇∆𝑋𝑋 +
1
2
∆𝑥𝑥𝑇𝑇[∇2𝐿𝐿]∆𝑋𝑋 

                                           𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 𝑔𝑔𝑗𝑗 + ∇𝑔𝑔𝑗𝑗𝑇𝑇∆𝑋𝑋 ≤ 0    𝑗𝑗 = 1, … ,𝑚𝑚                            (4.36)                          

                                                                 ℎ𝑘𝑘 +  ∇ℎ𝑘𝑘𝑇𝑇∆𝑋𝑋 = 0    𝑘𝑘 = 1, … ,𝑝𝑝                             

and the Lagrangian function is given as: 

                                            𝐿𝐿� = 𝑓𝑓(𝑥𝑥) +  �𝜆𝜆𝑗𝑗  𝑔𝑔𝑗𝑗 (𝑥𝑥) + �𝜆𝜆𝑚𝑚+𝑘𝑘  ℎ𝑘𝑘(𝑥𝑥)                         (4.37)
𝑝𝑝

𝑘𝑘=1

𝑚𝑚

𝑗𝑗=1

 

In Eq. (4.37), X is the design variable vector and L is the corresponding Lagrangian 

function. 𝑔𝑔𝑗𝑗  and ℎ𝑘𝑘  are the inequality and equality constraints respectively. A first order 

Taylor series is used to linearize the nonlinear constraint function. This problem can be 

solved with a similar procedure as the optimization problem with only equality 

constraints mentioned earlier in this section. 

4.2.2  Six DOF Model 

In this section, the force transmitted through the engine mount to the frame due to 

the engine imbalance is used as the objective function. The optimization problem is 

formulated based on the six DOF model presented in section 4.1.1. The design vector is 

based on the mount parameters; stiffness, orientation and location. Some constraints 

imposed on the problem include limits on the powertrain deflection due to the static and 
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dynamic loads combined with constraints on the lower and upper bounds for the design 

variables. 

4.2.2.1 Numerical Example 

The example presented herein is based on the model presented in section 4.1.1 in 

order to solve the optimization problem of minimizing the transmitted loads formulated 

in section 4.2. The objective function is compiled by summing the transmitted force 

through the individual mounts that are supporting the powertrain. The objective function 

is described as follows: 

                                                  𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜 =  ‖𝑓𝑓1‖ + ‖𝑓𝑓2‖ +  ‖𝑓𝑓3‖ +  ‖𝑓𝑓4‖                                (4.38) 

In Eq. (4.38), f1, f2, f3 and f4 are the force vectors transmitted to the frame through the four 

mounts that are supporting the powertrain due to the shaking force at the engine steady 

speed of 4000 rpm. The formulation of the shaking force at the steady state speed is 

discussed in depth in chapter 5. The general layout of the mounting system for this 

example is shown in Fig. 4.4. Mount parameters which consist of mount stiffness, mount 

location and mount orientation are compiled to form the design vector. The lower and 

upper bounds used for the design variables are shown in Table 4.1. A limit that is 

imposed on the design variables by constraining the deflection of the powertrain as 

follows: 

                                                                   |𝑈𝑈𝑠𝑠𝑠𝑠 |  ≤  𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚                                                          (4.39) 

In Eq. (4.39), Ust is the static deflection vector of the powertrain due to the static loading 

at its C.G. and Umax is the maximum allowable displacement due to the static load. 

𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 =  [0.025 𝑖𝑖𝑖𝑖      0.050 in      0.025 in     0.5𝑑𝑑𝑑𝑑𝑑𝑑         0.5𝑑𝑑𝑑𝑑𝑑𝑑         0.5 𝑑𝑑𝑑𝑑𝑑𝑑]. An 

additional constraint is added to the allowable displacement at the mount in the y-



62 
 

 

direction to prevent premature snubbing. A maximum displacement of 0.5 in is used as an 

upper bound for the displacement for all four mount locations. The maximum steady state 

displacement is as follows: 

|𝑈𝑈1|𝑑𝑑𝑑𝑑𝑑𝑑  ≤   𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑𝑑𝑑𝑑𝑑       |𝑈𝑈2|𝑑𝑑𝑑𝑑𝑑𝑑  ≤   𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚

𝑑𝑑𝑑𝑑𝑑𝑑      |𝑈𝑈3|𝑑𝑑𝑑𝑑𝑑𝑑  ≤   𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑𝑑𝑑𝑑𝑑       |𝑈𝑈4|𝑑𝑑𝑑𝑑𝑑𝑑  ≤   𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚

𝑑𝑑𝑑𝑑𝑑𝑑  

In this example, the mounting system used herein consists of four identical 

circular cross section elastomeric mounts. For each mount, two dynamic stiffness 

parameters completely define the stiffness characteristics. These stiffness parameters are 

radial and axial stiffness and are used as the design variables. A loss factor of 0.3 

(Carfagni, 1998) and a dynamic-to-static stiffness coefficient of 1.2 have been used. In 

order to reduce the total number of design variables, symmetry constraints are imposed. 

This is done by symmetrically placing two mounts on each side of the x-y plane resulting 

in six position variables instead of twelve and four orientation variables instead of twelve. 

The radial and axial stiffness values are identical for all four mounts resulting in a total of 

twelve design variable for the engine mounting system. The mass of the powertrain is 0.5 

lb-s2/in and inertia values of the powertrain are given in Table 4.2.  

The optimization problem is solved using the SQP technique to minimize the 

value of the objective function. The design variables resulting from the optimization 

process are shown in Table 4.3. The computed mount location and orientation vectors are 

shown in Table 4.4. The resulting mode shapes are shown in Fig. 4.5. Each mode shape is 

presented with its corresponding un-damped natural frequency with respect to their 

degrees of freedom 𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝛼𝛼,𝛽𝛽 and 𝛾𝛾 respectively.  
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Figure  4.4: Mount System Layout 
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Figure  4.5: Mode Shapes for the Optimized Configuration (6 DOF Model) 

 

Table  4.1: Bounds for Design Variables 

    Min. Max. 

Mount Stiffness 
(x,y) lb/in 

100 5000 

Mount Stiffness (z) 500 10000 

Orientation Angles deg. 0 50 

 

Table  4.2: Inertia Tensor of Powertrain Assembly 

  x y Z 

Ix 

(lb-in2) 

20.7 1.86 0.12 

Iy 1.86 12.81 2.3 

Iz 0.12 2.3 26.14 
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Table  4.3: Optimization Results (6 DOF Model) 

  Load 
Transmitted Mount Stiffness (lb/in) 

  (lb) x y z 

Initial Guess 110.90 475 475 7500 

Optimized Design 39.90 1016.6 1016.6 7503.5 

Natural Frequencies 10.898 16.078 20.846 28.804 48.741 58.126 (un-
damped) 

(Hz) 10.89 16.07 20.823 28.743 48.447 57.627      
(damped) 

Damping 
Coefficients 0.025 0.036 0.047 0.065 0.110 0.131 

 

Table  4.4: Optimization Results for Position and Orientation (6 DOF Model) 

  Mount 1 Mount 2 Mount 3 Mount 4 
Orientation (deg) (0.1, 50, 0) (-0.1, -50, 0) (0.5, 25, 0) (-0.5, -25, 0) 
 Starting Guess 

Results (16.6, 50, 0) (-16.4, -50, 0) (45.7, 12.7, 0) (-45.7, -12.7, 0) 

Position (in) 
(12, -9, 0) (12, -9, 0) (-19, -5, 0) (-19, -5, 0)  Starting Guess 

Results (9.2, -5, -7) (9.2, -5, 7) (-11, -10, -3) (-11, -10, 3) 

 

4.2.2.2  Discussion of Results 

It is worth mentioning that for the example presented in section 4.2.2.1, the 

starting guess for the problem was changed couple of times to make sure that the final 

optimum solution does not get stuck at local minima. This is due to the fact that the 

engine mount optimization problem is a highly nonlinear and could easily get stuck at a 

local minimum as a final solution.  
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As can be seen in Table 4.3, the optimum stiffness values have changed a lot in 

the x and y direction while barely changing in the z-direction. The small amount of 

change in the stiffness along the z-direction is due to the fact that the force transmitted to 

the frame is least sensitive to the stiffness in the z-direction of the engine mount. This 

fact is used in the motorcycle design by tuning the (out-of-plane) stiffness in the z-

direction to achieve the best handling possible. By tuning the (in-plane) stiffness values 

in the x and y direction, the isolation characteristics of the motorcycle are enhanced with 

minimal cross coupling between the out-of-plane and the in-plane stiffness coefficients. 

Table 4.4, shows the optimum values for the mount locations and orientations. It can be 

seen that the mount locations have not changed a lot, meanwhile the mount orientations 

have changed significantly. This observation shows the effect of mount orientation on 

achieving minimum load transmission. On the other hand it also indicates that the effect 

of mount location on load transmission has less impact than mount orientation. 

4.2.3  Twelve DOF Model 

The equations of motion of the six DOF model formulated in section 4.1.1 along 

with the example shown in section 4.1.2 represents a mounting system that is connected 

to the frame only. Fig. 4.2 shows an alternate twelve DOF model that couples the 

powertrain and the swing-arm using a shaft assembly. The model presented herein is an 

extension of the model presented in section 4.2.2. It provides sufficient information to 

capture the isolation characteristics of such a layout. This model is based on two rigid 

bodies, one is for the powertrain assembly and the other one is for the swing-arm 

assembly connected together using a coupler.  
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This section uses the equations that were formulated in section 4.1.2 to develop an 

optimization problem in order to solve for the mount parameters. It will also provide 

examples where the road loads and the shaking loads are present as input loads.  

4.2.3.1 Numerical Example I 

The example presented next is based on the model presented in section 4.1.2 in 

order to solve the optimization problem of minimizing the transmitted loads formulated 

in section 4.2. The objective function is computed by summing the transmitted force 

through the individual mounts that are supporting the powertrain. The objective function 

is described in Eq. (4.38).  The input load vector corresponds to the force due to the 

shaking loads only. 

The mounting system used in this example consists of four identical circular cross 

section elastomeric mounts with symmetry constraints. Two of these engine mount are at 

the front of the powertrain assembly and the other two are located at the rear of the 

powertrain assembly as shown in Fig. 4.4. The powertrain assembly and the swing-arm 

assembly are connected using a shaft assembly which will be referred to as the coupler. 

The swing-arm assembly is connected to the frame via two shock absorbers one at each 

side of the motorcycle.  

The swing arm assembly used herein (Kaul, 2006) has a mass of 0.13 lb-s2/in. the 

inertia properties of the swing arm with respect to its C.G. are listed in Table 4.5. The 

swing-arm is connected to the frame using two shock absorbers which are inclined by an 

angle of 47o with respect to the horizontal axis. The shock absorber exhibits an axial 

stiffness and damping of 45 lb/in and 4.4 lb-s/in respectively. The stiffness of the coupler 

used in the example is 42655 lb/in in the x and y direction and 658252 lb/in along the z 
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axis. The rotational stiffness values is 682493 lb-in/rad about the x and y axes. The 

rotational stiffness about the z axis is zero. A 2% structural damping has been used to 

compute the coupler damping properties. The input load, the design parameters, bounds 

and constraints are the same as the example presented in section 4.2.2.1. The results of 

the optimization problem are presented in Table 4.6 and Table 4.7.  

 

Table  4.5: Inertia Tensor of the Swing-arm Assembly 

  x y z 

Ix 

(lb-in2) 

0.465 0.002 -0.007 

Iy 0.002 30 -0.008 

Iz -0.007 -0.008 29 

 

Table  4.6: Optimization Results (12 DOF Model – Shaking Load only) 

  Load Transmitted Mount Stiffness (lb/in) 

  (lb) x y Z 

Initial Guess 88.59 475 475 7500 
Optimized 

Design 59.32 2341.7 2341.7 2157.9 

Natural 
Frequencies 

1.640 8.719 10.436 21.394 22.221 24.305 

59.842 75.703 103.415 104.025 200.567 1271.369 
(undamped) 

(Hz) 
1.574 8.618 10.426 21.375 22.217 24.244 

59.3309 75.119 103.373 104.024 198.376 1270.350 
(damped) 

Damping 
Coefficients 

0.005 0.020 0.028 0.040 0.042 0.044 

0.071 0.124 0.130 0.147 0.152 0.282 
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Table  4.7: Optimization Results for Position and Orientation (12 DOF Model – Shaking 
Load only) 

  Mount 1 Mount 2 Mount 3 Mount 4 
Orientation (deg) 

(0.1, 50, 0) (-0.1, -50, 0) (0.5, 25, 0) (-0.5, -25, 0)  Starting Guess 

Results (50, 50, 0) (-50, -50, 0) (50, 50, 0) (-50, -50, 0) 

Position (in) (12, -9, 0) (12, -9, 0) (-19, -5, 0) (-19, -5, 0) 
 Starting Guess 

Results (12, -9,-3) (12, -9,3) (-12.5, -10, -7) (-12.5, -10, 7) 

 

 

 

 
Figure  4.6: Mode Shapes - 1 to 6 (12 DOF Model – Shaking Load only) 
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Figure  4.7: Mode Shapes - 7 to 12 (12 DOF Model – Shaking Load only) 

 

4.2.3.2 Numerical Example II 

This example is based on the model presented in section 4.1.2 in order to solve 

the optimization problem of minimizing the transmitted loads formulated in section 4.2. 

The objective function is computed by summing the transmitted force through the 

individual mounts that are supporting the powertrain. The objective function is described 

in Eq. (4.38).  The input load vector corresponds to the force is a linear combination of 

the shaking force and the road load. The example presented in this section is identical to 

the example presented in the previous section. An additional constraint is added to 

control the maximum steady state displacement due to the presence of the road load. The 

load profile used in this example is shown in Fig. 4.8. The governing equation used for 

the V-Twin engine configuration used for the computation of the shaking force and the 

road load will be discussed in detail in chapter 5. An elaborate road load model based on 
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the Pacejka tire model is presented in Appendix B. This model is used to compute the 

forces and moments acting on the tire patch. The results of the optimization problem are 

presented in Table 4.8 and Table 4.9.  

 

Table  4.8: Optimization Results (12 DOF Model – Combined Loading) 

  Load Transmitted Mount Stiffness (lb/in) 

  (lb) x y z 

Initial Guess 566.45 475 475 7500 
Optimized 

Design 122.68 2405 2405 1564.5 

Natural 
Frequencies 

1.482 9.087 10.800 11.639 22.275 35.658 

37.437 103.036 103.396 105.657 200.603 1271.338 (un-
damped) 

(Hz) 
1.41 9.08 10.766 11.621 22.270 35.54 

37.3068 103.002 103.378 103.628 198.41 1270.326 
(damped) 

Damping 
Coefficients 

0.019 0.021 0.026 0.034 0.040 0.055 

0.079 0.081 0.083 0.147 0.195 0.315 
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Table  4.9: Optimization Results for location and Orientation (12 DOF Model – 
Combined Loading) 

  Mount 1 Mount 2 Mount 3 Mount 4 

Orientation (deg) 
(0.1, 50, 0) (-0.1, -50, 0) (0.5, 25, 0) (-0.5, -25, 0) 

 Starting Guess 

Results (0.6, 50, 0) (-0.6, -50, 0) (4.9, 0, 0) (-4.9, 0, 0) 

Position (in) 
(12, -9, 0) (12, -9, 0) (-19, -5, 0) (-19, -5, 0) 

 Starting Guess 

Results (8, -8,-3.4) (8, -8,3.4) (-17, -6.8, -3.2) (-17, -6.8, 3.2) 

 

 

 
Figure  4.8: Road Profile 
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Figure  4.9: Mode Shapes - 1 to 6 (12 DOF Model – Combined Loading) 

 

  
Figure  4.10: Mode Shapes - 7 to 12 (12 DOF Model – Combined Loading) 
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4.2.3.3 Discussion of Results 

The results for the two optimization problems presented in sections 4.2.3.1 and 

4.2.3.2 are shown in Table 4.6, Table 4.7 and Table 4.8, Table 4.9 respectively. Just like 

the six DOF model, multiple starting guesses were used due to the nonlinearity of the 

mount optimization problem. As can be seen from the tables mentioned above, the out-

of-plane stiffness values are less sensitive to the transmitted loads. The optimum 

transmitted load in Tables 4.8 is significantly higher than that shown in Table 4.6. This is 

due to the use of a combined loading vector. This loading vector contains the shaking 

load and the road load. The in-plane mount stiffness has increased to satisfy the 

additional displacement constraint due to the addition of the road load to the input force 

vector. The location and orientation vectors show a similar trend to the vectors shown in 

the previous section. The optimized mode shapes that correspond to the results shown in 

Tables 4.6 and 4.8 are shown in Figs. 4.6, 4.7, 4.9 and 4.10 are normalized. The modes 

are numbered from 1 to 12 representing the modes that corresponds to the swing-arm 

assembly (modes from 1 to 6), namely (𝑥𝑥𝑠𝑠𝑠𝑠 , 𝑦𝑦𝑠𝑠𝑠𝑠 , 𝑧𝑧𝑠𝑠𝑠𝑠 ,𝛼𝛼𝑠𝑠𝑠𝑠 ,𝛽𝛽𝑠𝑠𝑠𝑠 , 𝛾𝛾𝑠𝑠𝑠𝑠 ), and the modes that 

corresponds to the powertrain assembly (modes from 7 to 12), namely 

(𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒 , 𝑧𝑧𝑒𝑒 ,𝛼𝛼𝑒𝑒 ,𝛽𝛽𝑒𝑒 , 𝛾𝛾𝑒𝑒) .  

 The work done thus far characterizes the engine mount by setting up an objective 

function that minimizes the transmitted loads. In certain application, the goal is to design 

the mounting system keeping in mind the space limitations where the importance of   

decoupling the vibration modes becomes very clear. When the vibration modes are 

decoupled the effect of each mode can be examined independently. Although decoupling 

vibration modes is not an easy task, a fair bit of work has been done trying to achieve this 
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goal in the content of vibration isolation. Different approaches have been proposed to 

come up with clean decoupled modes for a powertrain mounting system. These methods 

include: inclining the isolators and minimizing the off-diagonal terms of the stiffness 

matrix. 

4.3 Isolator Inclining 

The natural modes of vibration can be decoupled through a proper orientation of 

the supporting isolators. By doing so, all the modes will exist independently and vibration 

of one mode will not excite the other modes. The necessary conditions for decoupling 

modes can be stated as follows as mentioned in the vibration and shock handbook 

(Harris, 1961). “The resultant of the forces applied to mounted body by the isolators 

when the mounted body is displaced in translation must be a force directed through the 

center of gravity; or the resultant of the couples applied to the mounted body by the 

isolators when the mounted body is displaced in rotation must be a couple about an axis 

through the center of gravity”.  

Decoupling vibration modes can be achieved by placing the isolators in a plane 

that passes through the center of gravity of the powertrain. If this can’t be done, 

decoupling can be achieved by inclining the isolators as shown in the below. 
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Figure  4.11: Schematic diagram of equipment supported by inclined isolators 

If the elastic axis of the mounting system is chosen in a way to pass through the 

center of gravity of the powertrain, translational and rotational modes will be decoupled. 

Decoupling occurs because the inertia force is being applied through the center of 

gravity; as a result the body will not undergo any rotation. To insure complete mode 

decoupling, the angle in which the isolators must be inclined must satisfy the following 

relation: 

                                                          
𝑎𝑎𝑧𝑧
𝑎𝑎𝑟𝑟

=  

1
2 �1 −  �

𝑘𝑘𝑝𝑝
𝑘𝑘𝑟𝑟
��  𝑠𝑠𝑠𝑠𝑠𝑠2𝜙𝜙

𝑘𝑘𝑞𝑞
𝑘𝑘𝑟𝑟

+  
𝑘𝑘𝑝𝑝
𝑘𝑘𝑟𝑟

+  �1 −  �
𝑘𝑘𝑝𝑝
𝑘𝑘𝑟𝑟
��  𝑠𝑠𝑠𝑠𝑠𝑠2𝜙𝜙

                       (4.40) 

In Eq. (4.40), rqp kkk ,,  are the stiffness values along the principal elastic axes of the 

isolator and ∅ is the angle between the Z axis and the R axis shown in Fig. 4.11. 
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4.3.1 Numerical Example 

Consider the mounts arranged symmetrically as shown in Fig. 4.12. The mounts 

are arranged symmetrically about the z axis. They are attached to one end of the cylinder 

at a distance 𝑎𝑎𝑟𝑟  from the z axis and a distance 𝑎𝑎𝑧𝑧  from the x-y plane. The mounts are 

inclined so that their principal axes R and P are intersect respectively at two common 

points on the z axis. Let the angle between the z axis and the R axis for each mount is ∅. 

Let the angle between the z axis and the P axis be 90° −  ∅. The Q principal elastic axes 

are tangent to the circle of radius 𝑎𝑎𝑟𝑟  which bounds the end face of the cylinder. The mass 

m = 200 kg. The inertia values are Ix = Iy = 25 kg.m2 and Iz = 12 kg.m2. The inclination 

angle φ = 30o. The stiffness values and the distance are shown in Table 4.10.  

 

 

 

 

 

 

 

 

Figure  4.12: Mount Arrangement 

Table  4.10: Stiffness Values and the Distance 

kp (N/mm) kq (N/mm) kr (N/mm) az (mm) 

50 100 150 123.72 
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Results for the example presented in this section are shown in Fig. 4.13. The 

effect of inclining the mount is clearly seen in Fig. 4:13. This suggests that we need to 

find the set of angles that will be used to orient the mount about its axis. This will 

decouple the vibration modes. As it’s clearly shown, all of the six modes are completely 

decoupled. The natural frequencies of each of the modes are also shown in the Fig. 4.13.  

 

Figure  4.13: Decoupled Modes Along with the Associated Natural Frequency 
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4.4 Vibration Modes Decoupling 

The final approach for mode decoupling considered is formulation of an 

optimization problem. The objective function that has been used in this section to achieve 

mode decoupling is to minimize the Frobenius norm of the off-diagonal terms of the 

overall stiffness matrix. While the value of the objective function is being minimized, the 

values of the stiffness, orientation and location of the mounts are being estimated the 

SQP optimization technique. The objective function is given by: 

                                                               𝐹𝐹 =  ��  �𝑘𝑘𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

�

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

, 𝑖𝑖 ≠ 𝑗𝑗                        (4.41) 

In Eq. (4.41), 𝑘𝑘𝑖𝑖𝑖𝑖  are the terms of the stiffness matrix. The Frobenius norm is defined as 

follows:   

                                       𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =  ��𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝐾𝐾𝑜𝑜𝑜𝑜𝑜𝑜 _𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑇𝑇 ∗ 𝐾𝐾𝑜𝑜𝑜𝑜𝑜𝑜 _𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 �               (4.42) 

To illustrate this procedure a numerical example is presented next where three 

different sets of variables are used to achieve mode decoupling. 

4.4.1 Numerical Example 

A V-6 engine is supported using four mounts. The mass of the engine is 𝑚𝑚 =

276.70 𝑘𝑘𝑘𝑘. The inertia tensor for the engine are shown Table 4.11. The mount 

coordinates were measured from the engine center of gravity to each mount attachment 

point. The mount’s compression, lateral and force/aft axes define the engine’s x, y and z 

coordinate system. Mount orientation is obtained by rotating about the engine x-axis, the 

y-axis and the z-axis.   
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There are three cases through which the approach presented herein is discussed. 

The first case corresponds to using the mount stiffness values as the only variables in the 

design vector. The second case is where the mount stiffness and orientation form the 

design vector. The third and the final case include the mount stiffness values, mount 

locations and mount orientation combined together in the design vector. The results for 

the three different cases are shown in the Fig. 4.14 through Fig. 4.16. The initial guess 

and the final mount parameters along with the matrix showing the minimized off-

diagonal terms of the overall stiffness matrix are shown in Table 4.12 through Table 4.20.  

Table  4.111: Inertia Tensor for the Engine 

  x y z 

Ix 15.8 0 0 

Iy 0 11.64 0 

Iz 0 0 15.69 
 

Table  4.12: Initial Guess of the Mount Locations in (m) 

Mount x y z 

1 -0.2246 -0.3093 -0.1990 

2 0.3614 -0.2823 -0.2510 

3 -0.1946 0.1407 -0.2290 

4 0.2934 0.1667 -0.2450 
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Table  4.13: Initial Guess of the Mount Orientations (deg.) 

Mount 𝜃𝜃𝑥𝑥  𝜃𝜃𝑦𝑦  𝜃𝜃𝑧𝑧  

1 0 -45 0 

2 0 -39 180 

3 0 -75 0 

4 0 -45 180 

 

 

Table  4.14: Initial Guess of the Mount Stiffness (N/m) 

Mount x y z 

1 223667 44733 44733 

2 170167 126050 48619 

3 217167 434334 108583 

4 232167 464334 116083 

 

Table  4.15: Optimum Mount Stiffness (Case I) 

  kx ky kz 

1 100 100 36437 
2 100 100 26427 
3 100 100 77636 
4 100 100 46833 
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Table  4.16: Stiffness Matrix Showing Off-Diagonal Terms (Case I) 

4.00E+02 0.00E+00 0.00E+00 0.00E+00 -9.24E+01 2.84E+01 

0.00E+00 4.00E+02 0.00E+00 9.24E+01 0.00E+00 2.36E+01 

0.00E+00 0.00E+00 1.87E+05 2.92E-04 -9.46E-04 0.00E+00 

0.00E+00 9.24E+01 2.92E-04 8.45E+03 2.53E-03 7.33E+00 

-9.24E+01 0.00E+00 -9.46E-04 2.53E-03 1.23E+04 -5.93E+00 

2.84E+01 2.36E+01 0.00E+00 7.33E+00 -5.93E+00 5.28E+01 
 

 

Table  4.17: Optimum Mount Stiffness (Case II) 

  kx ky kz θ1 θ2 θ3 

1 253873 36444 10928 -161.81 -57.67 47.57 
2 221988 58054 1575 -178.88 55.46 -35.62 
3 118594 499001 9737 -106.49 19.36 -78.72 
4 135131 410392 12926 108.56 -135.85 169.58 

 

 

Table  4.18: Stiffness Matrix Showing Off-Diagonal Terms (Case II) 

4.73E+05 8.37E-03 -5.32E-03 -1.56E-02 -8.22E-03 2.01E-03 

8.37E-03 2.81E+05 1.10E-02 -7.48E-03 5.86E-04 -9.95E-04 

-5.32E-03 1.10E-02 1.01E+06 -6.43E-03 1.78E-02 1.50E-02 

-1.56E-02 -7.48E-03 -6.43E-03 3.10E+04 2.49E-02 -5.95E-03 

-8.22E-03 5.86E-04 1.78E-02 2.49E-02 4.08E+04 3.61E-02 

2.01E-03 -9.95E-04 1.50E-02 -5.95E-03 3.61E-02 2.65E+04 
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Table  4.19: Optimum Mount Stiffness (Case III) 

  kx ky kz θ1 θ2 θ3 x y z 

1 255170 39646 7580 -150.39 47.95 -143.55 -0.32 -0.20 -0.16 

2 221410 52800 1005 -173.77 22.53 -43.88 0.46 -0.38 -0.19 

3 125570 52542 8132 -153.09 -60.25 -64.77 -0.29 0.24 -0.12 

4 133770 408330 12438 104.30 -163.91 173.29 0.19 0.06 -0.24 
 

Table  4.20: Stiffness Matrix Showing Off-Diagonal Terms (Case III) 

3.96E+05 -6.74E-02 9.02E-02 1.20E-01 -1.65E-01 -1.09E-01 

-6.74E-02 2.78E+05 1.37E-01 1.63E-01 -9.33E-02 -1.22E-01 

9.02E-02 1.37E-01 6.45E+05 -8.82E-02 2.16E-02 -2.65E-02 

1.20E-01 1.63E-01 -8.82E-02 9.56E+03 -1.40E-01 -4.42E-02 

-1.65E-01 -9.33E-02 2.16E-02 -1.40E-01 3.14E+04 9.03E-02 

-1.09E-01 -1.22E-01 -2.65E-02 -4.42E-02 9.03E-02 3.28E+04 
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Figure  4.14: Decoupled Modes and the Corresponding Frequencies (Case I) 

 

 
Figure  4.15: Decoupled Modes and the Corresponding Frequencies (Case II) 
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Figure  4.16: Decoupled Modes and the Corresponding Frequencies (Case III) 

 

As can be seen from Fig. 4.14 through Fig. 4.16, the vibration modes are being 

decoupled. In the first case were the mount stiffness is the only variable, most of the 

modes were decoupled. In the second and third cases, where on top of mount stiffness, 

the mount orientations are also considered; all the modes are completely decoupled. This 

observation is in line with the previous findings that we have found in the earliear 

sections, which emphasize on the importance of mount orientation in achieving 

decoupling. These results are seen in Fig. 4.15 and Fig. 4.16 where it can be clearly seen 

that all the modes are decoupled nicely.  

4.5 Summary 

This chapter presents different techniques that are used to characterize the engine 

mounting system. All of the techniques presented use the method of Sequential Quadratic 

Programming to solve the optimization problem. The SQP method is also introduced in 
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this chapter as well. The development of two different models of the mounting system is 

discussed herein. Both models are presented in detail where the equations of motion are 

described in detail. The first model is a simple six DOF powertrain model that is solved 

by minimizing the transmitted forces while finding the mount characteristics. The second 

model is a more comprehensive model that is used to better understand the vibration 

isolation in the motorcycle. The second model is solved in the same way as the first 

model. The second model is capable of capturing the effect of the shaking load, the road 

load or a combination of both loads. Two more techniques were used to characterize the 

mounting system. These techniques are, isolator inclining and vibration modes 

decoupling to achieve a complete decoupling of the vibration modes of the system. 
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5 Chapter 5 – Optimum Design of a Mount System for a V-Twin Engine 

This chapter discusses the V-Twin engine configuration that is commonly used in 

motorcycle applications. There are two sources of vibration that affect the performance of 

a motorcycle engine mount system; the first one is due to the shaking forces which are 

generated due to the engine imbalance in the moving parts inside the engine. This force is 

transmitted to the frame through the mounting system. The second force is due to the 

road loads which are caused by the irregularities in the road profile. These forces are 

transmitted to the frame thorough the tire patch. The road load could be periodic or non-

periodic whereas the shaking load is periodic. Numerical examples are presented for 

solving the mounting system optimization problem when shaking forces and/or road 

loads are present.  

5.1 Shaking Loads 

This chapter focuses on designing the most suitable mounting system that provides 

isolation against forces transmitted from the powertrain to the frame. It is known that 

force and motion isolation are the major problems that engineers encounter when 

designing an engine mount. Motorcycle engines contain reciprocating parts that produce 

shaking forces due to the movement of various parts of the engine. The main objective 

herein is to minimize these shaking forces. This objective is achieved by supporting the 

powertrain by using a resilient support or an isolator. The largest lumped mass that the 

vehicle carries is the powertrain, which is attached to the frame using rubber mounts. The 

mounting system that is used in these cases must ensure low vibration transmission 

from/into the engine. There are a lot of factors to consider when looking at the source of 

vibration, which could be internal or external or both. In this section, attention will 
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focused on the internal shaking forces which are created due to the engine imbalance 

(Paul, 1979). The shaking force is defined as the sum of the inertia and static forces that 

are transmitted to the frame through the mounting system (Kaul, 2006). Minimizing the 

transmitted loads from the engine to the frame is discussed as well in the literature (Tao, 

2000) and (Snyman, 1995) which is considered in detail in Appendix D.  

Before developing the expressions for shaking forces in a V-Twin engine, an 

analysis will be performed to develop expressions for shaking forces in a single cylinder 

engine. 

5.1.1 Transmitted Shaking Loads 

Figure 5.1 shows a schematic diagram of a single cylinder slider crank 

mechanism. The standard slider crank mechanism is the basic building block of virtually 

all internal combustion engines. Presented next is the position, velocity, acceleration and 

the forces analysis of the slider-crank mechanism. Let the crank radius be r and the 

connecting rod length be l. The crank angle is θ and the angle that the connecting rod 

makes with the x axis is φ, the crank rotates at a constant speed 𝜔𝜔 then: 

                                                               𝑞𝑞 = 𝑟𝑟 sin𝜃𝜃 = 𝑙𝑙 sin𝜙𝜙                                                  (5.1) 

                                            𝜃𝜃 =  𝜔𝜔𝜔𝜔                                                                           (5.2) 

                                                               sin𝜙𝜙 =  
𝑟𝑟
𝑙𝑙

 sin𝜔𝜔𝜔𝜔                                                          (5.3) 

                                                               𝑠𝑠 = 𝑟𝑟 cos𝜔𝜔𝜔𝜔  and 𝑢𝑢 = 𝑙𝑙 cos𝜙𝜙                                  (5.4) 

The distance x that is measured from the pivot point O to the slider at point B is 

given as follows: 

                                𝑥𝑥 = 𝑠𝑠 + 𝑢𝑢 = 𝑟𝑟 cos𝜔𝜔𝜔𝜔 + 𝑙𝑙 cos𝜙𝜙                                                             (5.5) 
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                               cos𝜙𝜙 =  �1 −  𝑠𝑠𝑠𝑠𝑠𝑠2𝜙𝜙 =  �1 −  �
𝑟𝑟
𝑙𝑙

sin𝜔𝜔𝜔𝜔�
2

                                        (5.6) 

                               𝑥𝑥 = 𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑙𝑙 �1 −  �
𝑟𝑟
𝑙𝑙

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�
2

                                                        (5.7) 

 

 

 

 

 

 

 

 

 

 

Figure  5.1: Slider Crank Mechanism 

 

The expression given by Eq. (5.7) gives the position of the piston along the x axis 

as a function of crank angle θ. If a derivative of Eq. (5.7) is taken once with respect to 

time, the velocity of the piston will be determined as shown below:  

                                            𝑥̇𝑥 =  −𝑟𝑟𝑟𝑟

⎣
⎢
⎢
⎡
sin𝜔𝜔𝜔𝜔 +  

𝑟𝑟
2𝑙𝑙

sin 2𝜔𝜔𝜔𝜔

�1 −  �𝑟𝑟𝑙𝑙 sin𝜔𝜔𝜔𝜔�
2

⎦
⎥
⎥
⎤
                              (5.8) 
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If a derivative of the piston velocity is taken once with respect to time, the piston 

acceleration is obtained as shown below:  

                                      𝑥̈𝑥 =  −𝑟𝑟𝜔𝜔2 �cos𝜔𝜔𝜔𝜔 −  
𝑟𝑟[𝑙𝑙2 (1 − 2𝑐𝑐𝑐𝑐𝑐𝑐2𝜔𝜔𝜔𝜔) −  𝑟𝑟2 𝑠𝑠𝑠𝑠𝑠𝑠4𝜔𝜔𝜔𝜔]

[𝑙𝑙2 −  (𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)2]
3
2

�        (5.9) 

 
In the velocity expression shown in Eq. (5.8) and the acceleration expression shown in 

Eq. (5.9), a steady state solution is considered where it is assumed that the crank speed ω 

is constant.  

Using the binomial theorem, an approximate expression for the position, velocity 

and acceleration of the piston can be written as follows: 

                                                      𝑥𝑥 ≅ 𝑙𝑙 −  
𝑟𝑟2

4𝑙𝑙
+  𝑟𝑟 �cos𝜔𝜔𝜔𝜔 +  

𝑟𝑟
4𝑙𝑙

cos 2𝜔𝜔𝜔𝜔� 

                                                      𝑥̇𝑥  ≅  −𝑟𝑟𝑟𝑟 �sin𝜔𝜔𝜔𝜔 +  
𝑟𝑟
2𝑙𝑙

sin 2𝜔𝜔𝜔𝜔�               

                                                𝑥̈𝑥  ≅  −𝑟𝑟𝜔𝜔2  �cos𝜔𝜔𝜔𝜔 +  𝑟𝑟
𝑙𝑙

cos 2𝜔𝜔𝜔𝜔�                                 (5.10) 

The inertia force 𝐹𝐹𝑖𝑖  is the sum of the inertia forces at points A and B on the slider 

crank mechanism. 

                                                       𝐹𝐹𝑖𝑖 =  𝑚𝑚𝐴𝐴  𝑎𝑎𝐴𝐴 + 𝑚𝑚𝐵𝐵  𝑎𝑎𝐵𝐵                                                        (5.11) 
 

In Eq. (5.11), the acceleration term 𝑎𝑎𝐵𝐵 is the acceleration of the piston which is 

given in Eq. (5.10). The acceleration term 𝑎𝑎𝐴𝐴 could be found by taking the second 

derivative of the position vector at point A with respect to time. The position vector that 

describes the location of point A is given as follows: 

                                                          𝑅𝑅𝐴𝐴 = 𝑟𝑟 cos𝜔𝜔𝜔𝜔  𝑖𝑖̂ +  𝑟𝑟 sin𝜔𝜔𝜔𝜔 𝑗𝑗̂                                        (5.12) 

Differentiate the position vector given in Eq. (5.12) twice with respect to time and 

an expression for the acceleration at point A is achieved as follows: 
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            𝑎𝑎𝐴𝐴 =  [−𝑟𝑟𝑟𝑟 sin𝜔𝜔𝜔𝜔 − 𝑟𝑟𝜔𝜔2 cos𝜔𝜔𝜔𝜔] 𝑖𝑖̂ +  [𝑟𝑟𝑟𝑟  cos𝜔𝜔𝜔𝜔 − 𝑟𝑟𝜔𝜔2 sin𝜔𝜔𝜔𝜔] 𝑗𝑗̂                 (5.13) 

In Eq. (5.12), 𝑖𝑖̂ and 𝑗𝑗̂ are unit vectors defined along the x and y axis. The inertia force 

along the x and y axis are given as follows: 

                     𝐹𝐹𝑖𝑖𝑖𝑖 =  −(𝑚𝑚𝐴𝐴 +  𝑚𝑚𝐵𝐵) 𝑟𝑟𝜔𝜔2 cos𝜔𝜔𝜔𝜔 −  𝑚𝑚𝐵𝐵
𝑟𝑟2𝜔𝜔2

𝑙𝑙
cos 2𝜔𝜔𝜔𝜔                                      

− (𝑚𝑚𝐴𝐴 +  𝑚𝑚𝐵𝐵) 𝑟𝑟𝑟𝑟 sin𝜔𝜔𝜔𝜔  −   𝑚𝑚𝐵𝐵
𝑟𝑟2𝛼𝛼
2𝑙𝑙

sin 2𝜔𝜔𝜔𝜔 

                     𝐹𝐹𝑖𝑖𝑖𝑖 =  𝑚𝑚𝐴𝐴  𝑟𝑟𝑟𝑟 cos𝜔𝜔𝜔𝜔 −  𝑚𝑚𝐴𝐴  𝑟𝑟𝜔𝜔2 sin𝜔𝜔𝜔𝜔                                                           (5.14) 

In Eq. (5.14), mA and mB are the equivalent rotating and reciprocating masses 

respectively. The shaking force is 𝐹𝐹𝑠𝑠 =  −𝐹𝐹𝑖𝑖 . It is fully described taking into account the 

equivalent balancing masses as shown below: 

                     𝐹𝐹𝑠𝑠𝑠𝑠 =  (𝑚𝑚𝐴𝐴 + 𝑚𝑚𝐵𝐵 −  𝑚𝑚𝑐𝑐𝑐𝑐 ) 𝑟𝑟𝜔𝜔2 cos𝜔𝜔𝜔𝜔 +  𝑚𝑚𝐵𝐵
𝑟𝑟2𝜔𝜔2

𝑙𝑙
cos 2𝜔𝜔𝜔𝜔  

+ (𝑚𝑚𝐴𝐴 +  𝑚𝑚𝐵𝐵 −  𝑚𝑚𝑐𝑐𝑐𝑐 ) 𝑟𝑟𝑟𝑟 sin𝜔𝜔𝜔𝜔 +   𝑚𝑚𝐵𝐵
𝑟𝑟2𝛼𝛼
2𝑙𝑙

sin 2𝜔𝜔𝜔𝜔                                     

                     𝐹𝐹𝑠𝑠𝑠𝑠 =  (𝑚𝑚𝐴𝐴 −  𝑚𝑚𝑐𝑐𝑐𝑐 ) 𝑟𝑟𝜔𝜔2 sin𝜔𝜔𝜔𝜔  −  (𝑚𝑚𝐴𝐴 −  𝑚𝑚𝑐𝑐𝑐𝑐 ) 𝑟𝑟𝑟𝑟 cos𝜔𝜔𝜔𝜔                     (5.15)  

In Eq. (5.15), Fsx and Fsy denote the net shaking forces in the x and y directions 

respectively and 𝑚𝑚𝑐𝑐𝑐𝑐  is the equivalent mass. These shaking forces result from a single 

cylinder.  
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Presented next is the development of shaking force expressions for a V-twin 

engine shown in Fig. 5.2. The shaking force analysis that was done on a single cylinder 

engine is generalized to accommodate the V-twin engine and the shaking forces will be 

computed along the global X-Y coordinate system. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  5.2: V-twin Engine Configuration. 

In order to determine the shaking forces for the V-Twin engine, the shaking force 

expression for single cylinder engine given in Eq. (5.15) are used. The forces in each 

bank will be computed separately. Then by combining the corresponding terms of the 

shaking forces in each bank, the total shaking forces and moments can be computed in 

the global X-Y coordinate system for the V-Twin engine. 

 The shaking force in the left cylinder (bank) (Fs)left is given as follows: 
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(𝐹𝐹𝑠𝑠)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =  �(𝑚𝑚𝐴𝐴 +  𝑚𝑚𝐵𝐵)𝑟𝑟𝜔𝜔2 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 − 𝛽𝛽) −  𝑚𝑚𝑐𝑐𝑐𝑐1𝑟𝑟1𝜔𝜔2 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 − 𝛽𝛽)  

+  𝑚𝑚𝐵𝐵
𝑟𝑟2𝜔𝜔2

𝑙𝑙
 𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃 − 𝛽𝛽) +  (𝑚𝑚𝐴𝐴 +  𝑚𝑚𝐵𝐵)𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃 − 𝛽𝛽)

−  𝑚𝑚𝑐𝑐𝑐𝑐1𝑟𝑟1𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃 − 𝛽𝛽) +  𝑚𝑚𝐵𝐵
𝑟𝑟2𝛼𝛼
2𝑙𝑙

 𝑠𝑠𝑠𝑠𝑠𝑠2(𝜃𝜃 − 𝛽𝛽)�  𝑙𝑙

+   {𝑚𝑚𝐴𝐴𝑟𝑟𝜔𝜔2 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃 − 𝛽𝛽) −  𝑚𝑚𝑐𝑐𝑐𝑐1𝑟𝑟1𝜔𝜔2 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃 − 𝛽𝛽) −  𝑚𝑚𝐴𝐴𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 − 𝛽𝛽)

+  𝑚𝑚𝑐𝑐𝑐𝑐1𝑟𝑟1𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 − 𝛽𝛽)} 𝑚𝑚�                                                                        (5.16) 

 

The shaking force in the right cylinder (bank) (Fs)right is given as follows: 

(𝐹𝐹𝑠𝑠)𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 =  �(𝑚𝑚𝐴𝐴 +  𝑚𝑚𝐵𝐵)𝑟𝑟𝜔𝜔2 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 + 𝛽𝛽) −  𝑚𝑚𝑐𝑐𝑐𝑐2𝑟𝑟2𝜔𝜔2 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 + 𝛽𝛽)

+  𝑚𝑚𝐵𝐵
𝑟𝑟2𝜔𝜔2

𝑙𝑙
 𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃 + 𝛽𝛽) + (𝑚𝑚𝐴𝐴 +  𝑚𝑚𝐵𝐵)𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃 + 𝛽𝛽)

−  𝑚𝑚𝑐𝑐𝑐𝑐2𝑟𝑟2𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃 + 𝛽𝛽) +  𝑚𝑚𝐵𝐵
𝑟𝑟2𝛼𝛼
2𝑙𝑙

 𝑠𝑠𝑠𝑠𝑠𝑠2(𝜃𝜃 + 𝛽𝛽)�  𝑟̂𝑟

+  {𝑚𝑚𝐴𝐴𝑟𝑟𝜔𝜔2 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃 + 𝛽𝛽) −  𝑚𝑚𝑐𝑐𝑐𝑐2𝑟𝑟2𝜔𝜔2 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃 + 𝛽𝛽) −  𝑚𝑚𝐴𝐴𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 + 𝛽𝛽)

+  𝑚𝑚𝑐𝑐𝑐𝑐2𝑟𝑟2𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 + 𝛽𝛽)} 𝑛𝑛�                                                                         (5.17) 

 

In Eq. (5.16) and Eq. (5.17), 𝑟̂𝑟 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛� are the unit vectors along the x and y axis of the 

local coordinate system for the right cylinder. 𝑙𝑙 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚�   are the unit vectors along the x 

and y local coordinate system for the left cylinder. mcb1 and mcb2 are the equivalent 

masses at distances r1 and r2 for the left and right banks respectively. Combining the 

shaking forces for the right and left cylinders in their corresponding local coordinate 

system and transferring them into the global coordinate system X-Y to come up with the 

overall shaking forces of the V-twin engine yields: 
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   𝐹𝐹𝑠𝑠𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �2(𝑚𝑚𝐴𝐴 + 𝑚𝑚𝐵𝐵)𝑟𝑟𝜔𝜔2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 2(𝑚𝑚𝐴𝐴 + 𝑚𝑚𝐵𝐵)𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+  2𝑚𝑚𝐵𝐵
𝑟𝑟2𝜔𝜔2

𝑙𝑙
 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃2𝛽𝛽 −  𝑚𝑚𝐵𝐵

𝑟𝑟2𝛼𝛼
𝑙𝑙

 𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃2𝛽𝛽�

+   𝜔𝜔2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 {𝑚𝑚𝑐𝑐𝑐𝑐2𝑟𝑟2 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 + 𝛽𝛽) −   𝑚𝑚𝑐𝑐𝑐𝑐1𝑟𝑟1 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 − 𝛽𝛽)}

+  𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 {𝑚𝑚𝑐𝑐𝑐𝑐2𝑟𝑟2 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃 + 𝛽𝛽) −   𝑚𝑚𝑐𝑐𝑐𝑐1𝑟𝑟1 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃 − 𝛽𝛽)}   

+  𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽 {2𝑚𝑚𝐴𝐴𝑟𝑟𝑟𝑟2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 2𝑚𝑚𝐴𝐴𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐}  

+  𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 {𝑚𝑚𝑐𝑐𝑐𝑐1𝑟𝑟1 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 − 𝛽𝛽) +  𝑚𝑚𝑐𝑐𝑐𝑐2𝑟𝑟2 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 + 𝛽𝛽)}   

−  𝜔𝜔2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 {𝑚𝑚𝑐𝑐𝑐𝑐1𝑟𝑟1 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃 − 𝛽𝛽) +  𝑚𝑚𝑐𝑐𝑐𝑐2𝑟𝑟2 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃 + 𝛽𝛽) }                     (5.18) 

 

𝐹𝐹𝑠𝑠𝑠𝑠 =  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �2(𝑚𝑚𝐴𝐴 + 𝑚𝑚𝐵𝐵)𝑟𝑟𝜔𝜔2 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 2(𝑚𝑚𝐴𝐴 + 𝑚𝑚𝐵𝐵)𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

+  2𝑚𝑚𝐵𝐵
𝑟𝑟2𝜔𝜔2

𝑙𝑙
 𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃2𝛽𝛽 +  𝑚𝑚𝐵𝐵

𝑟𝑟2𝛼𝛼
𝑙𝑙

 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃2𝛽𝛽�  

−   𝜔𝜔2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 {𝑚𝑚𝑐𝑐𝑐𝑐1𝑟𝑟1 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 − 𝛽𝛽) +  𝑚𝑚𝑐𝑐𝑐𝑐2𝑟𝑟2 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 + 𝛽𝛽)}   

−  𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 {𝑚𝑚𝑐𝑐𝑐𝑐1𝑟𝑟1 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃 − 𝛽𝛽) +  𝑚𝑚𝑐𝑐𝑐𝑐2𝑟𝑟2 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃 + 𝛽𝛽)}  

+  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 {2𝑚𝑚𝐴𝐴𝑟𝑟𝑟𝑟2 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +  2𝑚𝑚𝐴𝐴𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠}  

+  𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 {𝑚𝑚𝑐𝑐𝑐𝑐2𝑟𝑟2 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 + 𝛽𝛽)  −  𝑚𝑚𝑐𝑐𝑐𝑐1𝑟𝑟1 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 − 𝛽𝛽)}  

+  𝜔𝜔2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 {𝑚𝑚𝑐𝑐𝑐𝑐1𝑟𝑟1 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃 − 𝛽𝛽) −  𝑚𝑚𝑐𝑐𝑐𝑐2𝑟𝑟2 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃 + 𝛽𝛽) }                      (5.19) 

The shaking forces shown in Eq. (5.18) and Eq. (5.19) can be employed to find 

the shaking moments by multiplying each term by the moment arm. The moments exist 

within each bank and their vectors will be orthogonal to the cylinder planes. For the right 

bank, a moment unit vector 𝑛𝑛� is defined which is perpendicular to the unit vector 𝑟̂𝑟. 
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Similarly, a moment unit vector 𝑚𝑚�  is defined which is perpendicular to the unit vector 𝑙𝑙 

for the left bank as shown in Fig. 5.2.  

 The shaking moment in the left cylinder (bank) (Ms)left is given as follows: 

(𝑀𝑀𝑠𝑠)𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓 =  �(𝑚𝑚𝐴𝐴 +  𝑚𝑚𝐵𝐵)𝑟𝑟𝜔𝜔2 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 − 𝛽𝛽)  −  𝑚𝑚𝑐𝑐𝑐𝑐1𝑟𝑟1𝜔𝜔2 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 − 𝛽𝛽)

+  𝑚𝑚𝐵𝐵
𝑟𝑟2𝜔𝜔2

𝑙𝑙
 𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃 − 𝛽𝛽)  +  (𝑚𝑚𝐴𝐴 +  𝑚𝑚𝐵𝐵)𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃 − 𝛽𝛽)

−  𝑚𝑚𝑐𝑐𝑐𝑐1𝑟𝑟1𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃 − 𝛽𝛽)  +  𝑚𝑚𝐵𝐵
𝑟𝑟2𝛼𝛼
2𝑙𝑙

 𝑠𝑠𝑠𝑠𝑠𝑠2(𝜃𝜃 − 𝛽𝛽)�  𝑧𝑧 𝑚𝑚�                       (5.20) 

The shaking moment in the right cylinder (bank) (Ms)right is given as follows: 

  (𝑀𝑀𝑠𝑠)𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 =  �(𝑚𝑚𝐴𝐴 + 𝑚𝑚𝐵𝐵)𝑟𝑟𝜔𝜔2 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 + 𝛽𝛽) – 𝑚𝑚𝑐𝑐𝑐𝑐2𝑟𝑟2𝜔𝜔2 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 + 𝛽𝛽)

+  𝑚𝑚𝐵𝐵
𝑟𝑟2𝜔𝜔2

𝑙𝑙
 𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃 + 𝛽𝛽)  +  (𝑚𝑚𝐴𝐴 + 𝑚𝑚𝐵𝐵)𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃 + 𝛽𝛽)

−  𝑚𝑚𝑐𝑐𝑐𝑐2𝑟𝑟2𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃 + 𝛽𝛽)  +  𝑚𝑚𝐵𝐵
𝑟𝑟2𝛼𝛼
2𝑙𝑙

 𝑠𝑠𝑠𝑠𝑠𝑠2(𝜃𝜃 + 𝛽𝛽)�  𝑧𝑧 𝑛𝑛�                      (5.21) 

In Eq. (5.20) and Eq. (5.21), z is the moment arm. Combining the shaking moments for 

the right and left cylinders that have been shown Eq. (5.20) and Eq. (5.21) in their 

corresponding local coordinate system and transferring them into the global coordinate 

system X-Y to come up with the overall shaking moments for the V-twin engine yields: 

𝑀𝑀𝑠𝑠𝑠𝑠 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �2(𝑚𝑚𝐴𝐴 + 𝑚𝑚𝐵𝐵)𝑟𝑟𝜔𝜔2 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 2𝑚𝑚𝐵𝐵
𝑟𝑟2𝜔𝜔2

𝑙𝑙
𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃2𝛽𝛽 

+ 2(𝑚𝑚𝐴𝐴 +  𝑚𝑚𝐵𝐵)𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 +  𝑚𝑚𝐵𝐵
𝑟𝑟2𝛼𝛼
𝑙𝑙
𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃2𝛽𝛽�  . 𝑧𝑧 

−  𝜔𝜔2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 {𝑚𝑚𝑐𝑐𝑐𝑐1𝑟𝑟1 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 − 𝛽𝛽) +  𝑚𝑚𝑐𝑐𝑐𝑐2𝑟𝑟2 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 + 𝛽𝛽)} . 𝑧𝑧 

−  𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 {𝑚𝑚𝑐𝑐𝑐𝑐1𝑟𝑟1 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃 − 𝛽𝛽) +  𝑚𝑚𝑐𝑐𝑐𝑐2𝑟𝑟2 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃 + 𝛽𝛽)} . 𝑧𝑧                (5.22) 
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𝐹𝐹𝑖𝑖34  

𝐹𝐹𝑖𝑖14  

𝑚𝑚𝐵𝐵𝑥̈𝑥 
B 

  𝑀𝑀𝑠𝑠𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �−2(𝑚𝑚𝐴𝐴 +  𝑚𝑚𝐵𝐵)𝑟𝑟𝜔𝜔2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 2𝑚𝑚𝐵𝐵
𝑟𝑟2𝜔𝜔2

𝑙𝑙
𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃2𝛽𝛽

+  2(𝑚𝑚𝐴𝐴 +  𝑚𝑚𝐵𝐵)𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +  𝑚𝑚𝐵𝐵
𝑟𝑟2𝛼𝛼
𝑙𝑙
𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃2𝛽𝛽�  . 𝑧𝑧 

+  𝜔𝜔2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 {𝑚𝑚𝑐𝑐𝑐𝑐1𝑟𝑟1 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 − 𝛽𝛽) −  𝑚𝑚𝑐𝑐𝑐𝑐2𝑟𝑟2 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 + 𝛽𝛽)} . 𝑧𝑧 

+  𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 {𝑚𝑚𝑐𝑐𝑐𝑐1𝑟𝑟1 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃 − 𝛽𝛽) −  𝑚𝑚𝑐𝑐𝑐𝑐2𝑟𝑟2 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃 + 𝛽𝛽)} . 𝑧𝑧                    (5.23) 

The shaking torque or one cylinder is calculated using the inertia force acting on 

the piston Fi14 multiplied by the distance x from the piston at point B to the origin of the 

coordinate system at point O as shown in Fig. 5.1. The free body diagram of the piston 

showing all the acting forces are shown below in Fig. 5.3. 

 

 

 

 

 

 

Figure  5.3: Free Body Diagram of the Piston 

                                          𝑇𝑇𝑠𝑠 =  (𝐹𝐹𝑖𝑖14 ∗ 𝑥𝑥)𝑘𝑘�     

                                              =  𝑚𝑚𝐵𝐵𝑥̈𝑥 𝑡𝑡𝑡𝑡𝑡𝑡∅ ∗ 𝑥𝑥                                                                         (5.24) 

In Eq. (5.24), 𝑥̈𝑥 is the piston acceleration represented in Eq. (5.10). Substitute the piston 

acceleration expressed in Eq. (5.10) into Eq. (5.24), the shaking torque will be expressed 

as follows: 

𝑚𝑚𝐵𝐵𝑥̈𝑥 

φ 

𝐹𝐹𝑖𝑖34  

𝐹𝐹𝑖𝑖14  



97 
 

 

               𝑇𝑇𝑠𝑠 =  𝑚𝑚𝐵𝐵 �−𝑟𝑟𝜔𝜔2 �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +
𝑟𝑟
𝑙𝑙
𝑐𝑐𝑐𝑐𝑐𝑐2𝜔𝜔𝜔𝜔� −  𝑟𝑟𝑟𝑟 �𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 +

𝑟𝑟
2𝑙𝑙
𝑠𝑠𝑠𝑠𝑠𝑠2𝜔𝜔𝜔𝜔�� 𝑡𝑡𝑡𝑡𝑡𝑡∅ ∗  𝑙𝑙

−
𝑟𝑟2

4𝑙𝑙
+ 𝑟𝑟 �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +

𝑟𝑟
4𝑙𝑙
𝑐𝑐𝑐𝑐𝑐𝑐2𝜔𝜔𝜔𝜔�                                                                   (5.25) 

                𝑡𝑡𝑡𝑡𝑡𝑡∅ ≈  
𝑟𝑟
𝑙𝑙

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �1 +
𝑟𝑟2

2𝑙𝑙2
𝑠𝑠𝑠𝑠𝑠𝑠2𝜔𝜔𝜔𝜔�                                                                     (5.26) 

In Eq. (5.25), x is described in Eq. (5.10) and 𝑘𝑘� is unit vector acting along the z axis 

which is perpendicular to the plane of the slider crank mechanism shown in Fig. 5.1. 

Assume that the angular acceleration α is zero and approximating tan φ as shown in Eq. 

(5.26) we get an expression for the shaking torque for both the left and the right banks. 

The shaking torque in the left bank (Ts)left is as follows: 

            (𝑇𝑇𝑠𝑠)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =  
1
2
𝑚𝑚𝐵𝐵𝑟𝑟2𝜔𝜔2 �

𝑟𝑟
2𝑙𝑙
𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃 − 𝛽𝛽) − 𝑠𝑠𝑠𝑠𝑠𝑠2(𝜃𝜃 − 𝛽𝛽)

−
3𝑟𝑟
2𝑙𝑙
𝑠𝑠𝑠𝑠𝑠𝑠3(𝜃𝜃 − 𝛽𝛽)� 𝑘𝑘�                                                                                      (5.27) 

  
The shaking torque in the right bank (Ts)right is as follows: 

          (𝑇𝑇𝑠𝑠)𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 =  
1
2
𝑚𝑚𝐵𝐵𝑟𝑟2𝜔𝜔2 �

𝑟𝑟
2𝑙𝑙
𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃 + 𝛽𝛽) − 𝑠𝑠𝑠𝑠𝑠𝑠2(𝜃𝜃 + 𝛽𝛽)

−
3𝑟𝑟
2𝑙𝑙
𝑠𝑠𝑠𝑠𝑠𝑠3(𝜃𝜃 + 𝛽𝛽)� 𝑘𝑘�                                                                                      (5.28) 

 
The combined shaking torque Ts due to shaking torque from both left and right banks is 

the algebraic sum of both (Ts)left and (Ts)right shown below: 

            𝑇𝑇𝑠𝑠 =  
1
2
𝑚𝑚𝐵𝐵𝑟𝑟2𝜔𝜔2 �

𝑟𝑟
𝑙𝑙
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 2𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃2𝛽𝛽 −

3𝑟𝑟
𝑙𝑙
𝑠𝑠𝑠𝑠𝑠𝑠3𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃3𝛽𝛽� 𝑘𝑘�               (5.29) 

 
 
The final shaking force vector is a 6x1 vector shown below: 
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                                              𝐹𝐹𝑠𝑠 =  �𝐹𝐹𝑠𝑠𝑠𝑠    𝐹𝐹𝑠𝑠𝑠𝑠    𝐹𝐹𝑠𝑠𝑠𝑠    𝑀𝑀𝑠𝑠𝑠𝑠    𝑀𝑀𝑠𝑠𝑠𝑠    𝑇𝑇𝑠𝑠�
𝑇𝑇

                                      (5.30) 

 

5.1.2 Numerical Example 

The example discussed herein is based on the six DOF model presented in section 

3.4.1 and the optimization problem of minimizing the transmitted load was formulated in 

section 4.2. This example is a continuation of the example presented in section 4.2.2.1 

where the shaking force is the only input load. The input load is calculated at different 

steady speeds of 800 rpm, 3000 rpm and 5000 rpm. The powertrain is supported by four 

identical circular cross section elastomeric mounts. The layout of this system is shown in 

Fig. 4.4, and the objective function is presented in Eq. (4.38). Mount parameters, which 

consists of mount stiffness, mount locations and mount orientations are compiled to form 

the design vector. The powertrain mass and inertia tensor and the lower and upper bounds 

used for the design variables and the limit that is imposed on the design variables by 

constraining the deflection of the powertrain are the same as those imposed in the 

example presented in section 4.2.2.1.  

The optimization problem is solved using the SQP technique that employs a 

function (fmincon) to minimize the value of the objective function. The force vector 

corresponding to different engine steady speeds is shown in Table 5.1. The design 

variables resulting from the optimization process are shown in Table 5.2 to Table 5.4. 

The resulting force plots in the x and y directions for different engine speeds are shown in 

Fig. 5.4 to Fig. 5.6 and the resulting torque plots for different engine speeds are shown in 

Fig. 5.7 to Fig. 5.9. 
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Figure  5.4: Shaking Force in the x and y Directions (800 rpm) 

 

 

Figure  5.5: Shaking Force in the x and y Directions (3000 rpm) 
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Figure  5.6: Shaking Force in the x and y Directions (5000 rpm) 

 

 

Figure  5.7: Shaking Torque (800 rpm) 
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Figure  5.8: Shaking Torque (3000 rpm) 

 

 
Figure  5.9: Shaking Torque (5000 rpm) 
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Table  5.1: Shaking Force Vector at Different Speeds 

ω  Fx Fy Fz Mx My T 

(rpm) (lb) (lb.ft) 

800 131.12 308.82 0 0 0 12.15 

3000 1843.87 4342.79 0 0 0 170.89 

5000 5121.87 12063.3 0 0 0 474.70 

 

 

Table  5.2: Optimization Results for the Shaking Force Vector Corresponding to 800 rpm 

  Load 
Transmitted Mount Stiffness (lb/in) 

  (lb) x y z 

Initial Guess 412.48 475 475 7500 

Optimized Design 188.81 5000 5000 7585.3 

 

 

Table  5.3: Optimization Results for the Shaking Force Vector Corresponding to 3000 
rpm 

  Load 
Transmitted Mount Stiffness (lb/in) 

  (lb) x y z 

Initial Guess 815.49 475 475 7500 

Optimized Design 247.18 1728 1728 7993.6 
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Table  5.4: Optimization Results for the Shaking Force Vector Corresponding to 5000 
rpm 

  Load 
Transmitted Mount Stiffness (lb/in) 

  (lb) x y z 

Initial Guess 448.19 475 475 7500 

Optimized Design 259.83 1278.2 1278.2 7515.7 

 

As can be seen from the plots shown above, the forces in the x and y directions as 

well as the shaking torque exhibit a periodic behavior. It is clear from Table 5.1 that the 

value of the forces and moments increase with the increase of the engine operating speed. 

Table 5.2 through Table 5.4 shows the optimum stiffness values for the mounting system. 

The results are consistent with the results found in section 4.2.2.1 where the stiffness 

along the z-axis was seen to have no influence on the objective function value and thus 

did not deviate much from the starting guess value whereas the stiffness values in the x 

and y direction do change significantly. This is due to the fact the force transmitted to the 

frame is less sensitive to the stiffness in the z-direction.  

5.2 Road Loads 

In this section, the effect of external loads on the mounting system is investigated. 

One of the main problems that engineers encounter in vibration isolation is the problem 

of motion isolation. This problem is seen in the case of external loads that are transmitted 

to the engine. These loads which are due to the irregularities of the road profile are 

transmitted to the frame through the tire patch. Two different road profiles are 

investigated in this work with one road profile which is periodic while the other road 
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profile is non-periodic. The main goal is to come up with an appropriate mounting system 

that minimizes the transmission of these external loads.  

5.2.1 Transmitted Road Loads 

The road loads are due to irregularities in the road profile which could be periodic 

or non-periodic. These road profiles are analyzed for a specific displacement functions in 

which the frequency content is analyzed. For the periodic profiles, the frequency content 

is obtained by using the Fourier series expansion of the displacement function. For the 

non-periodic profiles, it’s obtained using the Fourier transform. Herein, the Fourier series 

coefficient and the frequency content are obtained using the Fast Fourier Transforms 

(FFT) (Chen, 2001). The input force resulting from a certain road profile is determined as 

follows: 

                                                                𝐹𝐹𝑦𝑦 = 𝑘𝑘𝑘𝑘 + 𝑐𝑐𝑥̇𝑥                                                             (5.31)  

In Eq. (5.31), Fy is the vertical component of the force that is transmitted through the tire 

patch due to the displacement x and the velocity 𝑥̇𝑥 as a result of the road profile change. k 

and c are the stiffness and damping of the rear wheel in the y-direction. 

The continuous time Fourier series (CTFS) for a periodic road profile is 

represented as follows: 

                                                   𝑥𝑥(𝑡𝑡) =  � 𝑐𝑐𝑚𝑚𝑒𝑒𝑗𝑗𝑗𝑗 𝜔𝜔𝑜𝑜𝑡𝑡  ; where 𝜔𝜔𝑜𝑜 =  
2𝜋𝜋
𝑃𝑃

                    (5.32)
∞

𝑚𝑚= −∞

 

 

In Eq. (5.32), cm represents the Fourier series coefficients and are determined as follows: 

                                                            𝑐𝑐𝑚𝑚 =  
1
𝑃𝑃

� 𝑥𝑥(𝑡𝑡) 𝑒𝑒−𝑗𝑗𝑗𝑗 𝜔𝜔𝑜𝑜𝑡𝑡  𝑑𝑑𝑑𝑑                                    (5.33)

𝑃𝑃
2�

−𝑃𝑃
2�
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In Eq. (5.33), P is the fundamental period of the displacement function x(t) that 

corresponds to the fundamental frequency ωo. On the other hand, the discrete time 

Fourier series (DTFS) is represented for the discrete displacement function as follows: 

                                                            𝑥𝑥[𝑛𝑛] = 𝑥𝑥(𝑛𝑛𝑛𝑛) =  � 𝑐𝑐𝑚𝑚𝑚𝑚  𝑒𝑒𝑗𝑗𝑗𝑗 𝜔𝜔𝑜𝑜𝑛𝑛𝑛𝑛

𝑚𝑚= <𝑁𝑁>

                   (5.34) 

where  𝜔𝜔𝑜𝑜 =  2𝜋𝜋/𝑁𝑁𝑁𝑁 and cmd are the Fourier series coefficients which are determined as 

follows: 

                                                             𝑐𝑐𝑚𝑚𝑚𝑚 =  
1
𝑁𝑁
� 𝑥𝑥[𝑛𝑛]𝑒𝑒−𝑗𝑗𝑗𝑗𝜔𝜔𝑜𝑜𝑛𝑛𝑛𝑛
𝑁𝑁−1

𝑛𝑛=0

                                    (5.35) 

In Eq. (5.34) and Eq. (5.35), ωo is the fundamental frequency and T is the sampling 

period. The DTFS coefficients can be determined using Eq. (5.36), if the band limited 

displacement function x(t) and an appropriate sampling period T is chosen using FFT. 

                                                               𝑐𝑐𝑚𝑚𝑚𝑚 =  
𝑋𝑋[𝑚𝑚]
𝑁𝑁

                                                               (5.36) 

In Eq. (5.36), X[m] is the FFT of x[n] and N is the number of terms of x[n] used to 

compute the FFT. 

The continuous time Fourier transform (CTFT) of the displacement function is 

given in Eq. (5.37) and the Discrete time Fourier transform (DTFT) is given in Eq. (5.38) 

below. 

                                                                𝑋𝑋(𝜔𝜔) =  � 𝑥𝑥(𝑡𝑡)𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗 𝑑𝑑𝑑𝑑                                        (5.37)
∞

−∞

 

 

                                                                𝑋𝑋𝑑𝑑(𝜔𝜔) =  � 𝑥𝑥(𝑛𝑛𝑛𝑛)𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗                                 (5.38)
∞

𝑛𝑛=−∞
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In Eq. (5.37) and Eq. (5.38), X(ω) is the spectrum of x(t) which can used for periodic and 

non-periodic displacement functions.  

5.2.2 Numerical Example 

The example presented herein discusses the presence of both the shaking loads 

and the road loads. The input load vector is a linear combination of the shaking loads and 

the road loads in which the shaking loads are evaluated at a steady engine speed of 4000 

rpm. The example is a continuation for the example presented in section 4.2.3.2. The 

optimization problem is formulated such that the mount parameters which consist of 

mount stiffness, location and orientation are compiled to form the vector of design 

variables. The layout of the problem considered in this example is shown in Fig. 4.4 and 

all the data are presented in section 4.2.3.2.  

The optimization problem is solved using the SQP technique that employs a 

function (fmincon) to minimize the value of the objective function. Two different road 

profiles examined in this example separately in which one is periodic (Profile #1) and the 

other one is non-periodic (Profile #2). Both of the road profiles along with their 

displacement functions and their corresponding magnitude spectrum and their 

reconstructed plots are presented in Fig. 5.10 to Fig. 5.15.  
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Figure  5.10: Road Profile #1 

 

 
Figure  5.11: Magnitude Plot of the Spectrum for Road Profile #1 
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Figure  5.12: Reconstructed Time Plot for Road Profile #1 

 

Figure 5.13 shows road profile #2. This road profile is non-periodic with bump 

height of 3.5 in. The time displacement plot is shown in Fig. 5.13. The magnitude plot of 

the spectrum and the reconstructed plot are shown in Fig. 5.14 and Fig. 5.15 respectively.  
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Figure  5.13: Road Profile #2 

 

 
Figure  5.14: Magnitude Plot of the Spectrum of Road Profile #2 
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Figure  5.15: Reconstructed Time Plot for Road Profile #2 

 

The design variables resulting from the optimization process are shown in Table 

5.5 and Table 5.7, meanwhile the optimum mount location and orientation for both load 

profiles are shown in Table 5.6 and Table 5.8.  

 

Table  5.5: Optimization Results for Road Profile #1 

  Load 
Transmitted Mount Stiffness (lb/in) 

  (lb) x y z 

Initial Guess 110.40 475 475 2400 

Optimized Design 60.01 2336.5 2336.5 2344.8 
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Table  5.6: Optimization Results for location and Orientation (Profile #1) 

  Mount 1 Mount 2 Mount 3 Mount 4 

Orientation (deg) 
(0.1, 50, 0) (-0.1, -50, 0) (0.5, 25, 0) (-0.5, -25, 0) 

 Starting Guess 

Results (0, 50, 0) (0, -50, 0) (50,50, 0) (-50,-50, 0) 

Position (in) 
(12, -9, 0) (12, -9, 0) (-19, -5, 0) (-19, -5, 0) 

 Starting Guess 

Results (12, -8.9, -3) (12, -8.9, 3) (-17, -10, -7) (-17, -10, 7) 

 

Table  5.7: : Optimization Results for Road Profile #2 

  Load 
Transmitted Mount Stiffness (lb/in) 

  (lb) x Y z 

Initial Guess 599.63 475 475 7500 

Optimized Design 113.47 2116.2 2116.2 5884.5 
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Table  5.8: Optimization Results for location and Orientation (Profile #2) 

  Mount 1 Mount 2 Mount 3 Mount 4 

Orientation (deg) 
(0.1, 50, 0) (-0.1, -50, 0) (0.5, 25, 0) (-0.5, -25, 0) 

 Starting Guess 

Results (50, 50, 0) (-50, -50, 0) (50, 50, 0) (-50, -50, 0) 

Position (in) 
(12, -9, 0) (12, -9, 0) (-19, -5, 0) (-19, -5, 0) 

 Starting Guess 

Results (12, -5.5,-7) (12, -5.5,7) (-11, -10, -3) (-11, -10, 3) 

 

As can be seen from the tables above, the value of the load transmitted for both 

cases is larger than the transmitted loads in the corresponding example discussed in 

section 4.3.2.1 where only the shaking force is considered. This due to the fact that the 

input force vector contains alongside the shacking load at 4000 rpm the road load due to 

different road profiles. It is worth mentioning that different starting guess vector is used 

to insure that the final solution is not at local minima. Again, the influence of mount 

orientation is seen to be more significant than mount location. The results are consistent 

with the results found in section 4.2.2.1 where the stiffness along the z axis does not 

affect objective function values and therefore does deviate much from the starting guess 

values whereas the stiffness values in the x and y direction do change significantly. An 

alternate model is used to estimate the forces and moments transmitted through the tire 

patch using the Pacejka model discussed in Appendix B. This tire model is not used in 

this dissertation.  
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5.3 Summary 

In this chapter, the input load vector acting on the mounting system is discussed. 

The load vector is a linear combination of the shaking force and the road loads. The 

shaking force vector is developed first for a single cylinder engine and then generalized 

to accommodate a V-Twin engine configuration. The road loads which are due to 

irregularities in the road profile are also discussed. Two different road profiles are 

considered. Road profile #1, which is periodic and road profile #2, which is non-periodic 

are employed in this work. The frequency content of the road profiles is obtained using 

the FFT technique. The technique used herein could be used for any other load profile. It 

is seen that for both examples considered herein significant reduction in the loads 

transmitted through the mount are obtained by varying the mount stiffness values, 

location and orientation. 
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6 Chapter 6 – Shape Optimization of Engine Mounts 

In this chapter, a parametric approach is presented to determine the optimum 

geometric shape of an engine mount in order to minimize the vibrations transmitted to 

and from the engine. The engine mount used in this chapter is an elastomeric mount 

which is made of rubber. For proper vibration isolation, elastomeric mounts are designed 

such that they have the necessary stiffness rate in all directions. As shown in chapters 4 

and 5, an optimization problem is solved first to determine the optimum values of 

stiffness, orientation and location of the mount system such that vibrations transmitted 

are minimized. Besides knowing the mount stiffness values, a determination of the 

optimum shape of the mount is also vital. This chapter addresses determining the shape 

of the mount such that it meets the required stiffness of the mounting system obtained 

from dynamic analysis. A nonlinear finite element analysis is used to determine the final 

optimum shape corresponding to the desired mount stiffness values. 

6.1 Finite Element Modeling 

The general shape of the shear rubber engine mount, also known as bush engine 

mount, is shown in Fig. 6.1. This type of engine mount is common in motorcycle 

applications. The finite element model of the mount used herein is created using the finite 

element software ANSYS® and is built to fully describe the geometry of the bush type 

engine mount. The finite element model is built using solid 186 elements shown in Fig. 

6.2. This element is a three dimensional, 20 node structural solid element. The solid 

element exhibits quadratic displacement behavior. Each node has a 3 DOF, namely 

translation in the x, y and z directions. The element supports plasticity, hyperelasticity, 

stress stiffening and large deformations.   
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The mount is connected to the frame via metal steel plates on both sides. These 

plates are bonded to the mount and the connection is at the mount attachment holes. Since 

the stiffness of the steel plates is higher than the mount stiffness, the constraints are 

moved from the plate holes directly into the mount surface as shown in Figs. 6.3 and 6.4. 

The boundary conditions are applied by constraining the displacement of the surface of 

the mount in all directions. A shaft which is connected to the source of vibration runs 

through the mount which transmits the loads from the powertrain to the frame. Since load 

transmitting shaft runs through the center hole of the mount, the loading can be modeled 

by using rigid bodies that runs from the center node into the inner mount surface or by 

defining a constraint equation as shown in Figs. 6.5 and 6.6. The input load, which is 

determined from the dynamic analysis performed in chapters 4 and 5, can be defined by 

applying a force at the center node in the x, y and z directions.  

 
Figure  6.1: Mount Geometry 
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Figure  6.2: Solid 186 Element (ANSYS, 2009) 

 

 

Figure  6.3: Isometric View Showing the Boundary Conditions 
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Figure  6.4: Front View Showing the Boundary Conditions 

 

 

Figure  6.5: Isometric View Showing the Constraint Equation 
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Figure  6.6: Front View Showing the Constraint Equation 

6.2 Parameter Optimization 

A parametric study is employed herein to determine the optimum geometric 

dimensions of the isomeric mount. These dimensions could be selected to describe the 

entire mount as shown in Fig. 6.1. The shape of the mount can be determined by 

matching the stiffness that is determined from the dynamic analysis which is performed 

in chapter 4 and 5 and the stiffness obtained from the geometry of the mount. Once the 

design parameters are chosen which are 𝑡𝑡𝑟𝑟 , 𝑡𝑡𝑠𝑠 , 𝑡𝑡𝑧𝑧 , and 𝜃𝜃, the objective function is set up as 

follows: 

     𝜓𝜓 = 𝑤𝑤𝑤𝑤(1)(𝑘𝑘𝑥𝑥 −  𝑘𝑘𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑 )2 +  𝑤𝑤𝑤𝑤(2)�𝑘𝑘𝑦𝑦 −  𝑘𝑘𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑 �
2

+  𝑤𝑤𝑤𝑤(3)(𝑘𝑘𝑧𝑧 −  𝑘𝑘𝑧𝑧𝑑𝑑𝑑𝑑𝑑𝑑 )2                (6.1) 

The bounds of the design variables must satisfy the condition described in Eq. 

(6.2), where xi is the ith design variable and n is the number of design variables. 

                                            𝑥𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚  ≤  𝑥𝑥𝑖𝑖  ≤  𝑥𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚  𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … ,𝑛𝑛                                         (6.2) 
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In Eq. (6.1), 𝑤𝑤𝑤𝑤(𝑖𝑖) is the weighting function that corresponds to the stiffness in 

the ith direction. The superscript ‘des’ indicates the desired stiffness that is obtained from 

the dynamic analysis of the mounting system. Meanwhile the design parameters selected 

will determine the stiffness values for the geometry that is obtained from the nonlinear 

finite element analysis. The process of determining the design variables is expensive and 

time consuming, therefore in order to reduce the number of function evaluations, the least 

effective stiffness could be dropped from the objective function 𝜓𝜓. 

6.3 Design Model and Analysis 

The mount that is used herein is a bush type which is typically used in the 

automotive industry. The actual geometry of such mount is shown in Fig. 6.1 along with 

the parameters that define its shape. There are a total of six parameters that dictates the 

shape of the mount of which four are used as the design variables; namely 𝑡𝑡𝑠𝑠 , 𝑡𝑡𝑧𝑧 , 𝑡𝑡𝑟𝑟  and 𝜃𝜃. 

The other two parameters (𝑟𝑟𝑖𝑖  and 𝑟𝑟𝑜𝑜) are constants. These design variables affect the 

mount stiffness directly. The weighting function that is used in the objective function 

could be used to take into account the importance of the stiffness in a particular direction. 

The dynamic analysis is done for a motorcycle powertrain in which is supported by four 

isomeric mounts. The connection between the powertrain and the swing-arm are taken 

into consideration generating a twelve DOF system (Kaul, 2006). The exciting force will 

be a mix of the shaking force evaluated at different engine steady state speeds and/or the 

road loads. 

In the work presented in this chapter, the stiffness values corresponding to 

specific mount geometry are obtained using a nonlinear finite element analysis. The 

geometry shown in Fig. 6.1 is used to generate a mesh for the analysis. The optimization 
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is carried out using ANSYS®. Solid 186 is the element that has been used for this purpose 

is shown in Fig. 6.2. Appropriate boundary conditions have been applied to the model as 

discussed in section 6.2. The boundary conditions along with the constraint equation are 

shown in Fig. 6.3 to Fig. 6.6. This model is assumed to exhibit small deflections, for this 

reason the Mooney Rivlin model is sufficient to describe the fully incompressible 

hyperelastic material behavior of rubber (Kim, 1997), (Rivlin, 1992) and (Ali, 2010). The 

Mooney Rivlin model of the strain energy is expressed as follows: 

                                               𝑈𝑈 =  𝐶𝐶10(𝐼𝐼1 −  3) +  𝐶𝐶01(𝐼𝐼2 −  3)                                             (6.3) 

In Eq. (6.2), I1 and I2 are the first and second strain invariants. The coefficients C10 and 

C01 are determined from the uniaxial tension test. The rubber that is used in this work is 

carbon black filled natural rubber (Rivlin, 1992). The values of the coefficients are:    

C10 = 0.03622 and C01 = -0.00335. 

All the design variables must satisfy the design range which could be considered 

as inequality constraints that dictates the lower and upper bound of these variables. Each 

one of these ranges that specify the upper and lower limit of the design variables are 

considered as inequality constraints and are incorporated in the finite element optimizer. 

The static deflection that is due to the static weight of the engine is measured along the 

axis of gravity is given by: 

                                                                       𝛿𝛿 =  �
𝐹𝐹𝑔𝑔
𝑘𝑘
�                                                                  (6.4) 

In Eq. (6.4), Fg represents the static weight of the engine and k represents the stiffness in 

the gravity direction. 

The optimization problem described by Eq. (4.8) is solved using the SQP 

technique that employs a MATLAB built in function (fmincon) to minimize the value of 
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the objective function formulated in Eq. (4.7). Once the operation is complete, the design 

vector that corresponds to the optimum value of the objective function is known. The 

design vector includes the stiffness values of the engine mount. The second part of the 

problem is initiated by setting the objective function described in Eq. (6.1) to minimize 

the difference between the desired stiffness values obtained from the first optimization 

done through the dynamic analysis and the stiffness values obtained from the geometric 

shape of the mount. As a first step, a static analysis is performed to determine the 

deflections. The objective function employs the mount geometric data as the design 

vector. The design vector consists of 𝑡𝑡𝑠𝑠 , 𝑡𝑡𝑧𝑧 , 𝑡𝑡𝑟𝑟  and 𝜃𝜃. The shape optimization takes into 

account the range of the design variables that acts like lower and upper bounds. These 

bounds are as shown in Eq. (6.5) below. 

                                                 0.3 ≤  𝑡𝑡𝑟𝑟  ≤ 0.59 

                                 0.3 ≤  𝑡𝑡𝑠𝑠  ≤ 1.5                                                                          (6.5) 

                                 0.5 ≤  𝑡𝑡𝑧𝑧  ≤ 1.77                                                                       

                                                −𝜋𝜋 18� ≤  𝜃𝜃 ≤  −𝜋𝜋 6�                                                                  

6.4 Examples 

In this section two examples dealing with shape optimization of mounts are 

presented. The first example is based upon the six DOF model formulated in section 

4.1.1. The second example will be based upon the twelve DOF model formulated in 

section 4.1.2. For both of these examples, the final geometrical shape of the mount will 

be determined. The systems in both of the examples are subjected to different types of 

loading conditions.  
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6.4.1 Example I 

The example presented herein is a continuation of the example presented in 

section 4.2.2.1. This example is based on the six DOF model presented in section 4.1.1. 

The input load vector corresponds to the engine shaking load at the steady engine speed 

of 4000 rpm. The design variables resulting from the optimization process are shown in 

Table 4.3. The data given in Table 4.3 which represent the stiffness values of the mounts 

are used to set up the objective function presents in Eq. (6.1). The optimization problem 

is formulated and solved using the finite element software ANSYS®. The design vector 

consists of the four parameters that fully describe the geometry of the mount 

𝑡𝑡𝑠𝑠 , 𝑡𝑡𝑧𝑧 , 𝑡𝑡𝑟𝑟  and 𝜃𝜃 as shown in Fig. 6.1. The optimized design variables must satisfy the 

lower and upper bounds set in Eq. (6.5). The final values of the design vector are shown 

in Table 6.1 along with the minimum value of the objective function. The initial shape of 

the mount is shown in Figs. 6.7 and 6.8 and the final optimized shape of the mount is 

shown in Figs. 6.9 and 6.10. An analysis was also performed for three different engine 

speeds corresponding to idling (800 rpm), steady state cruising (3000 rpm) and over 

revving situation (5000 rpm). The results for the shaking force vectors calculated at 800 

rpm, 3000 rpm and 5000 rpm are shown in Table 5.1. The corresponding design variable 

vector 𝑡𝑡𝑠𝑠 , 𝑡𝑡𝑧𝑧 , 𝑡𝑡𝑟𝑟  and 𝜃𝜃 that corresponds to these different shaking force vectors are shown 

in Table 6.2 and Fig. 6.11.  
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Figure  6.7: Isometric View of the Initial Geometry 

 

 
Figure  6.8: Front View of the Initial Geometry 
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Figure  6.9: Isometric View of the Optimized Geometry (Example I) 

 

 
Figure  6.10: Front View of the Optimized Geometry (Example I) 



125 
 

 

 
Figure  6.11: Design Variables Vector Vs. Steady State Speed 

 

Table  6.1: Parameter Optimization Results 

    Initial Optimized Target 
Stiffness 

Design Variables 

θ (rad) 6.021 5.9052   

tr (in) 0.591 0.4259   

ts (in) 0.787 0.9387   

tz (in) 1.378 1.4016   

Stiffness (lb/in) 

kx 3411.3 1065.5 1016.6 

ky 9183.8 1042.7 1016.6 

kz 1852.5 7520.6 7503.5 

Obj. Function ψ 104371544.93 3364.83   
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Table  6.2: Design Variables Vector Corresponding to different Steady State Speeds 

  ω (rpm) 

  800 3000 5000 

θ (rad) 6.00189 5.8888 5.9394 

tr (in) 0.57968 0.4110 0.4795 

ts (in) 1.18617 0.9951 0.9154 

tz (in) 1.46379 1.4299 1.4100 
 

Table  6.3: Transmitted Loads at Different Operating Speeds 

  ω (rpm) 

  800 3000 5000 

Transmitted Load 188.807 266.812 258.616 

Transmitted Load for  
189.727 266.812 259.62 Optimum values at 3000 

rpm 
 

Figure 6.11 shows the variation in the optimized mount geometry parameters 

𝑡𝑡𝑠𝑠 , 𝑡𝑡𝑧𝑧 , 𝑡𝑡𝑟𝑟  and 𝜃𝜃 as a function of the engine speed. Table 6.3 shows the optimum 

transmitted force at different engine speeds as a result of having the optimum stiffness 

values at 3000 rpm which are obtained from the geometrical optimization. As can be 

clearly seen from Table 6.3, that there is minimal change to the transmitted loads at 800 

rpm and 5000 rpm when selecting an optimum geometry corresponding to 3000 rpm   

6.4.2 Example II 

The example presented herein is a continuation of the example presented in 

section 4.2.3.1. This example is based on the twelve DOF powertrain-swing-arm model 
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presented in section 4.1.2. The input load vector in this example is a linear combination 

of the engine shaking load at the steady speed of 4000 rpm and road loads due to road 

load profile #1 shown in Fig. 5.10. The design variables resulting from the optimization 

process are shown in Table 4.8. The data given in Table 4.8, which represent the stiffness 

values of the mounts are used to set up the objective function presents in Eq. (6.1). The 

optimization problem is formulated and solved using the finite element software 

ANSYS®. The design vector consists of the four parameters that fully describe the 

geometry of the mount 𝑡𝑡𝑠𝑠 , 𝑡𝑡𝑧𝑧 , 𝑡𝑡𝑟𝑟  and 𝜃𝜃 as shown in Fig. 6.1. The optimized design 

variables must satisfy the lower and upper bounds set in Eq. (6.5). The final values of the 

design vector are shown in Table 6.4 along with the minimum objective function value. 

The initial shape of the mount is shown in Figs. 6.7 and 6.8 and the final optimized shape 

of the mount is shown in Figs. 6.12 and 6.13.  

 
Figure  6.12: Isometric View of the Optimized Geometry (Example II) 
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Figure  6.13: Front View of the Optimized Geometry (Example II) 

 

Table  6.4: Parameter Optimization Results 

    Initial Optimized Target 
Stiffness 

Design Variables 

θ (rad) 6.021 5.923   

tr (in) 0.591 0.454   

ts (in) 0.787 0.965   

tz (in) 1.378 1.430   

Stiffness (lb/in) 

kx 3411.3 2410.40 2405 

ky 9183.8 2400.10 2405 

kz 1852.5 1572.80 1564.5 

Obj. Function ψ 47047713.13 122.06   

 

The design of a shear (bush) type mount has been obtained using the geometrical 

shape optimization using the parameterization technique. The method was done through 

utilizing a nonlinear finite element analysis. Part of the design was done using SQP 
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method in MATLAB® in order to find the target stiffness values. More details regarding 

these results are available in sections 4.2.2.1 and 4.2.3.2. As can be noticed from the 

results above, the optimum shape of the mount is acceptable and can be used as the final 

shape. It is worth mentioning that this approach is applicable for any type of engine 

mounts. The stiffness values that are obtained from the shape optimization are slightly 

different than those values obtained from the dynamic analysis; however, the shape 

obtained from the parametric optimization is acceptable and can be used in real design 

situations.  

6.5 Summary 

In this chapter, a determination of the geometrical shape of the engine mount is 

discussed. The shape optimization is performed using ANSYS®. The process begins by 

performing dynamic analysis which is represented in chapter 4 and then the shape 

optimization is performed. Two different examples are considered in this chapter. The 

first example is based on the six DOF model in which the objective function is 

formulated using the shaking force vector as the only input load. The second example is 

based on the twelve DOF model in which the objective function is formulated using a 

combination of the force vector consisting of both the shaking force and forces 

transmitted through the tire patch.   
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7 Chapter 7 - Conclusion 

The mount system modeling work presented in this dissertation can be generally 

divided into three main areas. The first area deals with development of mathematical 

models of the mount and the mounting system that varies in complexity, in order to 

examine their vibration isolation quality. The second area makes use of the developed 

theoretical models in order to come up with the design of an optimum passive engine 

mounting system such that the forces transmitted to the frame to the system are 

minimized. The third area explores finding the optimum engine mount geometrical shape 

with desired stiffness and damping characteristics.  

This chapter summarizes the work that has been done in this dissertation and 

provides an outline for possible future work on this topic. 

7.1 Theoretical Modeling 

Several engine mounting system were discussed in chapter 3 which the model 

complexity varied from a simple Voigt model to more complex Voigt model with Bouc-

Wen element and nonlinear stiffness. In all of the models that have been discussed, the 

major concern was to eventually enhance the vibration isolation quality. A close attention 

was paid to the problem of mechanical snubbing when the isolated mass undergoes large 

displacements. 

All the models proposed in this work are generic and are applicable to a wide 

range of motorcycle layouts. All the models account for motorcycle systems that exhibit 

very rigid frames. The overall motorcycle stiffness is affected by the structural 

compliance of some components such as the frame, the swing-arm, the powertrain and 
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the connecting elements between these components. All of these components are 

discussed in detail in this dissertation.  

Unlike the automobile vibration isolation problem, the motorcycle vibration 

isolation depends heavily on the loading conditions where the engine excitation force is 

not the only source of vibration; the motorcycle is affected by the engine excitation force 

and the road loads as well. In addition, the overall motorcycle stiffness and the ride 

quality is strongly affected by the isolation system. The work presented in this 

dissertation discusses both loading conditions in order to come up with the optimum 

mounting system configuration. The road loads are calculated using the vertical stiffness 

and damping characteristics of the tire patch and the displacement profile of the road 

surface. The engine excitation loads are computed from the shaking forces present in a V-

Twin engine. 

Two major mounting system models were used in this dissertation. The first 

model is formulated by considering the mounting system to be a six degree of freedom 

system and the second model is formulated by considering the mounting system to be a 

twelve degree of freedom model. In both models, the frame is assumed to infinitely rigid. 

In the second model, the powertrain assembly and the swing-arm assembly are connected 

via a coupler shaft at a pivot point. The second model allows for the road loads to be in 

the problem solution. 

7.2 Mounting system optimization 

The major role of the mounting system in addition to physically mount the 

powertrain to the vehicle frame is to provide vibration isolation. It is important to insure 

sufficient clearance between the powertrain and the surrounding components. This is 
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achieved by imposing the appropriate boundaries when designing the mounting system. 

The mounting system should be able to isolate the frame under steady state loading 

conditions at the same time limiting the maximum excursion of the powertrain under 

transient loading conditions.  

In chapter 4, the mount models were developed to determine the optimum 

mounting system characteristics by minimizing the load transmitted from the engine to 

the frame through the mounting system under multiple loading conditions. This objective 

was achieved while satisfying the displacement constraints to limit the maximum 

excursion at specific locations on the powertrain. In the design process, the mount 

location, orientation and stiffness parameters were used as the design vector. It was found 

that the mount orientation is significant and very important in achieving enhanced 

vibration isolation. The optimization problem was solved using MATLAB®. 

7.3 Shape Optimization 

Finding the mounting system characteristics, which was done in chapters 4 and 5 

has proven to be very important when it comes to vibration isolation. Finding the 

optimum geometrical mount shape has proven to be vital also. The shape optimization of 

the engine mount is done with the help of a finite element model that employs a nonlinear 

analysis technique. This work is done using ANSYS®. The mount geometry is built in 

ANSYS® using the major dimensions that will fully describe the geometry. The finite 

element model is generated using a suitable element to accommodate the nonlinear 

properties of rubber from which the mount is made off. A Money Rivlin rubber model is 

used to describe the fully incompressible hyperelastic material behavior of rubber. 
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 The geometrical parameters of the mount such as the mount diameter, rubber 

thickness, etc. are used as the design vector. All the assumptions that are necessary to 

find the best loading conditions as well as boundary conditions are discussed in chapter 6. 

The loading and boundary conditions are important when it comes to considering 

different sources of vibration and physically mounting the powertrain on the frame.  

7.4 Future Work 

There are some issues that have surfaced in the work discussed in this dissertation 

which are related to this work. These issues have not been addressed in this work, but 

could be investigated in the future research.  

All the models that have been discussed in this work were used to optimize the 

engine mount which is a passive mount. Future models could be modified such that 

engine mounting system consists of active mounts in addition to or in line of passive 

mounts. The mounting system could include a variable stiffness and damping properties 

that are under a control law based on accelerations at certain points on the frame. 

The focus of this work was on the in-plane stiffness properties. The out-of plane 

stiffness properties could be considered by considering an enhanced representation of the 

front and rear end of the motorcycle. 

All the models presented in chapters 4 and 5 of this dissertation are based on 

simple Voigt model that employs simple linear spring stiffness. Future work could 

consider more complex model that used a nonlinear stiffness. Mechanical snubbing will 

be better represented using such models which in turn will enhance the understanding of 

the mounting system vibration isolation.  
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External loads are transmitted through the tire patch to the engine through the 

mounting system. The load calculation is based on the vertical stiffness and damping of 

the tire which is affected by the displacement profile of the road. An alternative technique 

for load estimation that could be used in the future research is treating the structure as a 

load transducer. In this technique, strains are measured by placing strain gauges at some 

specific locations on the frame which can be used to provide a history of the loads acting 

on it. A finite element analysis can be used to find the appropriate locations and 

orientations of the strain gauges to be mounted on the frame.  
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APPENDIX A 

The transformation matrix (A) is used extensively throughout this dissertation to 

transform the stiffness matrix values from one coordinate to another. This transformation 

matrix is a composition of three successive rotations through angles 𝜃𝜃1,𝜃𝜃2, and 𝜃𝜃3 about 

the x, y and z axes respectively of a global coordinate system (Crede, 1965). The 

transformation matrix is defined as follows: 

                                                        𝐴𝐴 =  𝑅𝑅𝑧𝑧(𝜃𝜃3) 𝑅𝑅𝑦𝑦(𝜃𝜃2) 𝑅𝑅𝑥𝑥(𝜃𝜃1)                                             (𝐴𝐴. 1) 

Substituting all the rotation matrices represented in Eq. (A.1) yields the following: 

                     𝐴𝐴 =  �
𝐶𝐶𝜃𝜃3 −𝑆𝑆𝜃𝜃3 0
𝑆𝑆𝜃𝜃3   𝐶𝐶𝜃𝜃3 0

0 0 1
� �

𝐶𝐶𝜃𝜃2 0 𝑆𝑆𝜃𝜃2
0 1 0

−𝑆𝑆𝜃𝜃2 0 𝐶𝐶𝜃𝜃2

� �
1 0 0
0 𝐶𝐶𝜃𝜃1 −𝑆𝑆𝜃𝜃1
0 𝑆𝑆𝜃𝜃1    𝐶𝐶𝜃𝜃1

�                     (𝐴𝐴. 2) 

In Eq. (A.2), 𝐶𝐶𝜃𝜃𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖  and 𝑆𝑆𝜃𝜃𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖 . The expression represented in Eq. (A.2) can 

be rewritten in the following form: 

                    𝐴𝐴 =  

⎣
⎢
⎢
⎢
⎡
𝐶𝐶𝜃𝜃2𝐶𝐶𝜃𝜃3 −𝐶𝐶𝜃𝜃1𝑆𝑆𝜃𝜃3 + 𝑆𝑆𝜃𝜃1𝑆𝑆𝜃𝜃2𝐶𝐶𝜃𝜃3   𝑆𝑆𝜃𝜃1𝑆𝑆𝜃𝜃3 + 𝐶𝐶𝜃𝜃1𝑆𝑆𝜃𝜃2𝐶𝐶𝜃𝜃3

𝐶𝐶𝜃𝜃2𝑆𝑆𝜃𝜃3    𝐶𝐶𝜃𝜃1𝐶𝐶𝜃𝜃3 + 𝑆𝑆𝜃𝜃1𝑆𝑆𝜃𝜃2𝑆𝑆𝜃𝜃3 −𝑆𝑆𝜃𝜃1𝐶𝐶𝜃𝜃3 + 𝐶𝐶𝜃𝜃1𝑆𝑆𝜃𝜃2𝑆𝑆𝜃𝜃3

−𝑆𝑆𝜃𝜃2 𝑆𝑆𝜃𝜃1𝐶𝐶𝜃𝜃2 𝐶𝐶𝜃𝜃1𝐶𝐶𝜃𝜃2 ⎦
⎥
⎥
⎥
⎤
      (𝐴𝐴. 3) 

The expression given in Eq. (A.3) is the same expression for the transformation matrix 

that has been used throughout this dissertation. 

        Beside the rotation matrix expressed in Eq. (A.3), Euler angles could be used as 

an alternative way of computing the rotation matrix (A). Euler angle transformation 

matrix is composed by using a rotation through angle φ about the z axis followed by a 

rotation through angle θ about the y axis followed by a rotation through angle of ψ about 

the z axis. All of the above rotations are performed about the latest frame or the current 

frame. The composition is expressed as follows: 
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                                                          𝐴𝐴 =  𝑅𝑅𝑧𝑧(𝜙𝜙) 𝑅𝑅𝑦𝑦(𝜃𝜃) 𝑅𝑅𝑧𝑧(𝜓𝜓)                                               (𝐴𝐴. 4) 

Eq. (A.4) can be rewritten as follows: 

                       𝐴𝐴 =  �
𝐶𝐶𝐶𝐶 −𝑆𝑆𝑆𝑆 0
𝑆𝑆𝑆𝑆 𝐶𝐶𝐶𝐶 0
0 0 1

� �
𝐶𝐶𝐶𝐶 0 𝑆𝑆𝑆𝑆
0 1 1

−𝑆𝑆𝑆𝑆 0 𝐶𝐶𝐶𝐶
� �
𝐶𝐶𝐶𝐶 −𝑆𝑆𝑆𝑆 0
𝑆𝑆𝑆𝑆 𝐶𝐶𝐶𝐶 0
0 0 1

�                             (𝐴𝐴. 5) 

After computing the rotation matrices represented in Eq. (A.5), the following 

transformation matrix results: 

                     𝐴𝐴 =  

⎣
⎢
⎢
⎢
⎡
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 −𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 −𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶𝐶𝐶 ⎦
⎥
⎥
⎥
⎤
                       (𝐴𝐴. 6) 

Other representations such as the Bryant angles or roll-pitch-yaw angles can also 

be used in order to construct the transformation matrix. 
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APPENDIX B 

A comprehensive tire model has been developed by Pacejka to represent the tire 

dynamics. This model which is referred to as the magic formula has been used 

extensively in the motorcycle industry. This model generates a set of equations for the 

forces and moments as a result of the interaction of the tire with road surface which is 

calculated at different slip conditions. These slip conditions contains a pure longitudinal 

slip, pure lateral slip or a combination of the mentioned slip conditions.  

The governing equation of the Pacejka tire model for a specific vertical load and a 

camber angle is as follows: 

                                𝑦𝑦(𝑥𝑥) = 𝐷𝐷 𝑠𝑠𝑠𝑠𝑠𝑠�𝐶𝐶 𝑡𝑡𝑡𝑡𝑡𝑡−1 �𝐵𝐵 𝑥𝑥 − 𝐸𝐸�𝐵𝐵 𝑥𝑥 −  𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝐵𝐵 𝑥𝑥)���                (𝐵𝐵. 1) 

In Eq. (B.1), y is the output variable which could be either the longitudinal force or the 

lateral force or the aligning torque and x is the input variable which could be the slip ratio 

or the slip angle. Eq. (B.1) generates a curve that passes through the origin. In order for 

this curve to offset with respect to the origin, a shift coordinate system is introduced as 

follows: 

  𝑌𝑌(𝑋𝑋) = 𝑦𝑦(𝑥𝑥) +  𝑆𝑆𝑣𝑣 

                                                                 𝑥𝑥 = 𝑋𝑋 +  𝑆𝑆ℎ                                                                  (𝐵𝐵. 2) 

In Eq. (B.2), 𝑆𝑆𝑣𝑣  and 𝑆𝑆ℎ  are the two shift parameters along the x and y axes respectively, Y 

represents the output variable which could be the longitudinal force Fx, or the lateral 

force Fz or the aligning torque My. X represents the input variables which could as a result 

of the lateral or longitudinal slip. Fig. B.1 shows the Pacejka curve with the terms listed 

above. B, C, D and E are semi-empirical constants with physical meaning associated to 

each constant. For example B, C and D represent the cornering stiffness of the tire. These 
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constants are function of the wheel load, slip, slip angle and slip ratio. The computation 

of these constants is based on the experimental results multiple wheel loads, slip angles, 

slip ratios and chamber angles.  

 

 

                                     Figure B.1: Pacejka Tire Model Plot [35] 

 

 

 

 

 

 

 

Slip % 

−𝑆𝑆ℎ  

𝑥𝑥𝑚𝑚         −𝑆𝑆𝑣𝑣 

tan−1(𝐵𝐵𝐵𝐵𝐵𝐵) 
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𝜋𝜋
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𝐶𝐶� 



144 
 

 

APPENDIX C 

Some models discussed in this dissertation are developed by assuming that the 

powertrain is connected to the swing-arm via a coupler. This model is presented in 

section 3.4.2. The coupler shaft is modeled as a simply supported beam with bearing 

supports at both ends of the beam.  

The stiffness matrix of the coupler shaft Kc, is developed by using a two-element 

finite element model. Each node is assigned six degrees of freedom. The complete 

stiffness matrix is 18 x 18. By imposing the boundary conditions which consists of 

translational and rotational displacements, the stiffness matrix is reduced to a diagonal 

matrix. All the translational degrees of freedom of the end points are restrained for the 

coupler shaft. Zero moment inputs are used at the end nodes to reduce the overall 

stiffness matrix to six degrees of freedom at the center node in which assigned at the 

midpoint of the shaft. 

𝐾𝐾𝑐𝑐

=  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

24 𝐸𝐸1𝐼𝐼𝑦𝑦1

𝐿𝐿1
3 (4 + 𝜙𝜙𝑧𝑧1) 0 0 0 0 0

0
24 𝐸𝐸1𝐼𝐼𝑧𝑧1

𝐿𝐿1
3�4 + 𝜙𝜙𝑦𝑦1�

0 0 0 0

0 0  
2𝐴𝐴1𝐸𝐸1

𝐿𝐿1
0 0 0

0 0 0

�
�4 + 𝜙𝜙𝑦𝑦1�

2

−�2 − 𝜙𝜙𝑦𝑦1�
2� 2𝐸𝐸1𝐼𝐼𝑧𝑧1

𝐿𝐿1�1 + 𝜙𝜙𝑦𝑦1� + �4 + 𝜙𝜙𝑦𝑦1�
0 0

0 0 0 0
�

(4 + 𝜙𝜙𝑧𝑧1)2

−(2 − 𝜙𝜙𝑧𝑧1)2�2𝐸𝐸1𝐼𝐼𝑦𝑦1

𝐿𝐿1(1 + 𝜙𝜙𝑧𝑧1) + (4 + 𝜙𝜙𝑧𝑧1) 0

0 0 0 0 0 0⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

(𝐶𝐶. 1) 
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In Eq. (C.1), the diagonal terms of Kc are referred to as 𝑘𝑘𝑐𝑐𝑐𝑐 ,𝑘𝑘𝑐𝑐𝑐𝑐 , 𝑘𝑘𝑐𝑐𝑐𝑐 ,𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐  and 𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐  

respectively in the section 4.2.3.1. 𝜙𝜙𝑦𝑦1 and 𝜙𝜙𝑧𝑧1 are defined as follows: 

                                           𝜙𝜙𝑦𝑦1 =  
12 𝐸𝐸1𝐼𝐼𝑧𝑧1

𝐺𝐺2𝐴𝐴𝑠𝑠𝑠𝑠1𝐿𝐿1
2 = 24(1 + 𝜈𝜈1)

𝐴𝐴1

𝐴𝐴𝑠𝑠𝑠𝑠1
�
𝑟𝑟𝑧𝑧1

𝐿𝐿1
�

2
                           (𝐶𝐶. 2) 

 

                                            𝜙𝜙𝑧𝑧1 =  
12 𝐸𝐸1𝐼𝐼𝑦𝑦1

𝐺𝐺2𝐴𝐴𝑠𝑠𝑠𝑠1𝐿𝐿1
2 = 24(1 + 𝜈𝜈1)

𝐴𝐴1

𝐴𝐴𝑠𝑠𝑠𝑠1
�
𝑟𝑟𝑦𝑦1

𝐿𝐿1
�

2
                           (𝐶𝐶. 3) 

In Eq. (C.2) and Eq. (C.3), 𝑟𝑟𝑧𝑧1 and 𝑟𝑟𝑦𝑦1 are the radii of gyration, 𝜈𝜈1 is the passion ratio and 

𝐴𝐴𝑠𝑠𝑠𝑠1 and 𝐴𝐴𝑠𝑠𝑠𝑠1 are the effective cross sectional areas in shear. In the above equations, 𝐸𝐸1 

is the modulus of elasticity, 𝐴𝐴1 is the cross sectional area, 𝐺𝐺1 is the shear modulus of the 

shaft, 𝐼𝐼𝑦𝑦1 and 𝐼𝐼𝑧𝑧1 are the area moments of inertia in which they are equal since the shaft 

cross sectional area is circular and 𝐿𝐿1 is the half the length of the shaft.  
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APPENDIX D 

The engine is modeled as a rigid body of mass M which is attached to the frame 

by means of the mounting system as shown in Fig. D.1. The origin of the global 

coordinate system G is located at the center of mass of the engine C. However, this not 

necessarily true when the engine is idling. The Z-axis of the global coordinate system is 

parallel to the crankshaft and the X axis is in the vertical direction. 

The general translational EOM of the engine is given by: 

                                      𝑀𝑀 𝑟̈𝑟 = 𝑓𝑓                                                                                     (𝐷𝐷. 1)                                                                                                                

In Eq. (D.1), M is the mass of the engine and 𝑓𝑓 =  �𝑓𝑓𝑥𝑥 , 𝑓𝑓𝑦𝑦 , 𝑓𝑓𝑧𝑧�
𝑇𝑇
 is the sum of all forces 

acting on the engine block. 𝑟𝑟 =  [𝑥𝑥,𝑦𝑦, 𝑧𝑧]𝑇𝑇 is the position of the center of mass C. 

 The general rotation EOM is given by: 

                                      𝐼𝐼𝜔̇𝜔 +  𝜔𝜔 × 𝐼𝐼𝐼𝐼 =  𝜂𝜂                                                                  (𝐷𝐷. 2)                                                                                              

In Eq. (D.2), 𝜂𝜂 =  �𝜂𝜂𝑥𝑥 , 𝜂𝜂𝑦𝑦 , 𝜂𝜂𝑧𝑧�
𝑇𝑇
, is the sum of the moments of the individual forces about 

C, 𝜔𝜔 =  �𝜃̇𝜃𝑥𝑥 , 𝜃̇𝜃𝑦𝑦 , 𝜃̇𝜃𝑧𝑧�
𝑇𝑇
 is the angular velocity with 𝜃𝜃𝑥𝑥 , 𝜃𝜃𝑦𝑦 , 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃𝑧𝑧  are the rotational angles 

about the x, y and z axis respectively. I is the inertia tensor which is given by Eq. (D.3). 

                                       𝐼𝐼 =  �
𝐼𝐼𝑥𝑥𝑥𝑥 −𝐼𝐼𝑥𝑥𝑥𝑥 −𝐼𝐼𝑥𝑥𝑥𝑥
−𝐼𝐼𝑦𝑦𝑦𝑦 𝐼𝐼𝑦𝑦𝑦𝑦 −𝐼𝐼𝑦𝑦𝑦𝑦
−𝐼𝐼𝑧𝑧𝑧𝑧 −𝐼𝐼𝑧𝑧𝑧𝑧 𝐼𝐼𝑧𝑧𝑧𝑧

�                                                    (𝐷𝐷. 3)  

There are two types of forces acting on the engine body that one needs to be 

aware of. The first one is the shaking force and moments that are generated as a result of 

the movement of the internal components in the cylinder. The second one is the reaction 

force that is applied to the engine at each supporting mount.  
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Figure D.1: Rigid body engine model 

Consider an engine that is supported by Nm mounts located at (𝑥𝑥𝑚𝑚𝑚𝑚 ,𝑦𝑦𝑚𝑚𝑚𝑚 , 𝑧𝑧𝑚𝑚𝑚𝑚 ), 

where 𝑖𝑖 = 1, 2, … ,𝑁𝑁𝑚𝑚 . It is assumed the three principal stiffness �𝑘𝑘𝑥𝑥𝑥𝑥 , 𝑘𝑘𝑦𝑦𝑦𝑦 ,𝑘𝑘𝑧𝑧𝑧𝑧 � of each 

mount are independent of each other. The force moments that are exerted by the elastic 

mounts on the engine is given by Eq. (D.4). and Eq. (D.5). It is assumed that the 

displacements at the supports are small compared to their distance from the center of 

gravity C. 

 𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥 =  −𝑘𝑘𝑥𝑥𝑥𝑥 �𝑥𝑥 + 𝑧𝑧𝑚𝑚𝑚𝑚 𝜃𝜃𝑦𝑦 −  𝑦𝑦𝑚𝑚𝑚𝑚 𝜃𝜃𝑧𝑧� 

  𝑓𝑓𝑦𝑦𝑦𝑦𝑦𝑦 =  −𝑘𝑘𝑦𝑦𝑦𝑦 (𝑦𝑦 +  𝑥𝑥𝑚𝑚𝑚𝑚 𝜃𝜃𝑧𝑧 −  𝑧𝑧𝑚𝑚𝑚𝑚 𝜃𝜃𝑥𝑥)                                                                   

 𝑓𝑓𝑧𝑧𝑧𝑧𝑧𝑧 =  −𝑘𝑘𝑧𝑧𝑧𝑧 �𝑧𝑧 +  𝑦𝑦𝑚𝑚𝑚𝑚 𝜃𝜃𝑥𝑥 −  𝑥𝑥𝑚𝑚𝑚𝑚 𝜃𝜃𝑦𝑦�,𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, 2, … ,𝑁𝑁𝑚𝑚                                    (𝐷𝐷. 4)  

 

 𝜂𝜂𝑥𝑥𝑥𝑥𝑥𝑥 =  𝑓𝑓𝑧𝑧𝑧𝑧𝑧𝑧 𝑦𝑦𝑚𝑚𝑚𝑚 −  𝑓𝑓𝑦𝑦𝑦𝑦𝑦𝑦 𝑧𝑧𝑚𝑚𝑚𝑚  

 𝜂𝜂𝑦𝑦𝑦𝑦𝑦𝑦 =  𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥 𝑧𝑧𝑚𝑚𝑚𝑚 −  𝑓𝑓𝑧𝑧𝑧𝑧𝑧𝑧 𝑥𝑥𝑚𝑚𝑚𝑚                                                                                

 𝜂𝜂𝑧𝑧𝑧𝑧𝑧𝑧 =  𝑓𝑓𝑦𝑦𝑦𝑦𝑦𝑦 𝑥𝑥𝑚𝑚𝑚𝑚 −  𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥 𝑦𝑦𝑚𝑚𝑚𝑚 ,𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2, … ,𝑁𝑁𝑚𝑚                                                  (𝐷𝐷. 5) 
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A set of differential equations shown in Eq. (D.6) and Eq. (D.7) may be solved 

numerically over a period of time   [0, T].  

𝑀𝑀𝑥̈𝑥 =  𝑓𝑓𝑥𝑥𝑥𝑥 + 𝑓𝑓𝑥𝑥𝑥𝑥 + 𝑓𝑓𝑥𝑥𝑥𝑥  

                                                            𝑀𝑀𝑦̈𝑦 =  𝑓𝑓𝑦𝑦𝑦𝑦 + 𝑓𝑓𝑦𝑦𝑦𝑦 +  𝑓𝑓𝑦𝑦𝑦𝑦                                                (𝐷𝐷. 6)  

𝑀𝑀𝑧̈𝑧 =  𝑓𝑓𝑧𝑧𝑧𝑧 + 𝑓𝑓𝑧𝑧𝑧𝑧 +  𝑓𝑓𝑧𝑧𝑧𝑧  

 

𝐼𝐼𝑥𝑥𝑥𝑥 𝜃̈𝜃𝑥𝑥 =  �𝐼𝐼𝑦𝑦𝑦𝑦 − 𝐼𝐼𝑧𝑧𝑧𝑧 �𝜃̇𝜃𝑦𝑦 𝜃̇𝜃𝑧𝑧 + 𝜇𝜇𝑥𝑥𝑥𝑥 +  𝜇𝜇𝑥𝑥𝑥𝑥 +  𝜇𝜇𝑥𝑥𝑥𝑥  

                                      𝐼𝐼𝑦𝑦𝑦𝑦 𝜃̈𝜃𝑦𝑦 =  (𝐼𝐼𝑧𝑧𝑧𝑧 − 𝐼𝐼𝑥𝑥𝑥𝑥 )𝜃̇𝜃𝑧𝑧 𝜃̇𝜃𝑥𝑥 + 𝜇𝜇𝑦𝑦𝑦𝑦 +  𝜇𝜇𝑦𝑦𝑦𝑦 +  𝜇𝜇𝑦𝑦𝑦𝑦                              (𝐷𝐷. 7) 

𝐼𝐼𝑧𝑧𝑧𝑧 𝜃̈𝜃𝑧𝑧 =  �𝐼𝐼𝑥𝑥𝑥𝑥 − 𝐼𝐼𝑦𝑦𝑦𝑦 �𝜃̇𝜃𝑥𝑥 𝜃̇𝜃𝑦𝑦 + 𝜇𝜇𝑧𝑧𝑧𝑧 +  𝜇𝜇𝑧𝑧𝑧𝑧 +  𝜇𝜇𝑧𝑧𝑧𝑧  

In Eq. (D.6) and Eq. (D.7), 𝑓𝑓𝑥𝑥𝑥𝑥 , 𝑓𝑓𝑦𝑦𝑦𝑦 , 𝑓𝑓𝑧𝑧𝑧𝑧 ,  𝜇𝜇𝑥𝑥𝑥𝑥 , 𝜇𝜇𝑦𝑦𝑦𝑦  and 𝜇𝜇𝑧𝑧𝑧𝑧  are the forces and 

moments exerted by the mount on the engine. The terms 𝑓𝑓𝑥𝑥𝑥𝑥 , 𝑓𝑓𝑦𝑦𝑦𝑦 , 𝑓𝑓𝑧𝑧𝑧𝑧 , 𝜇𝜇𝑥𝑥𝑥𝑥 , 𝜇𝜇𝑦𝑦𝑦𝑦  and 𝜇𝜇𝑧𝑧𝑧𝑧  

are the inertial forces and moments exerted by the engine. The terms 𝑓𝑓𝑥𝑥𝑥𝑥 , 𝑓𝑓𝑦𝑦𝑦𝑦 , 𝑓𝑓𝑧𝑧𝑧𝑧 , 𝜇𝜇𝑥𝑥𝑥𝑥 ,

𝜇𝜇𝑦𝑦𝑦𝑦  and 𝜇𝜇𝑧𝑧𝑧𝑧  are the forces and moments associated by the balancing masses.  

The solution yields dynamic forces represented in Eq. (D.4) and moments 

represented in Eq. (D.5) exerted by the mounts on the supporting structure due to the 

displacement of the engine supports. A suggested objective function is compiled as the 

sum of the squares of the forces over the interval [0, 0.4 sec] as follows: 

                          𝐹𝐹 =  
1
𝑇𝑇
� ���|𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥 |2 +  �𝑓𝑓𝑦𝑦𝑦𝑦𝑦𝑦 �

2
+  |𝑓𝑓𝑧𝑧𝑧𝑧𝑧𝑧 |2�

𝑁𝑁𝑚𝑚

𝑖𝑖=1

� 𝑑𝑑𝑑𝑑                                    (𝐷𝐷. 8)
𝑇𝑇

0

 

The proposed objective function may be used as an alternate function to find the 

minimum transmitted internal loads from the engine to the frame in order to achieve the 

desired vibration isolation. The transmitted force may be minimized with respect to any 

set system parameters such as balancing masses and the associated phase angles.    
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