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Abstract 

The purpose of this project is to evaluate if technological advances and implementation of 

automation have produced a decrease in the number and severity of accidents in commercial 

aviation over the last decade. To accomplish this evaluation historical commercial aviation 

accident data from 2000 to 2010 will be examined. Commercial fixed wing and rotary wing data 

will be evaluated. No aviation incident data will be collected; the project will be limited in scope 

to commercial aviation accidents. Accidents highlighting major deficiencies involving 

automation will be discussed in detail. To further support the projects purpose, emphasis will be 

given to evaluate the influence and role of pilot training in relation to automation, to pilot over-

reliance on automation, to the merits of intuitive interface design, and to the role of crew 

coordination has played in either reducing or increasing the accident rate and severity during the 

specified time period. 

 Keywords: proposal, program outcomes, automation, accidents 

 

 

 



THE INFLUENCE OF AUTOMATION ON AVIATION            3 

 

Proposal 

Automation: Human Error 

Statement of the Project 

 “On December 17, 1903, at Kitty Hawk, North Carolina, the 1903 Wright Flyer became 

the first powered, heavier-than-air machine to achieve controlled, sustained flight with a pilot 

aboard” (National Air and Space Museum, n.d., para 1). During this historic flight, the pilot 

controlled all aspects of the Wright Flyer by utilizing a set of flight controls physically linked to 

controlling surfaces. “Technological advances since the early days of flight have significantly 

transformed the aircraft cockpit and have altered the relationships among the human pilot, the 

aircraft, and the environment” (Mosier, 2010, p. 147). The role of the pilot has evolved from 

physically manipulating flight controls and interpreting cues into a role where they “interact and 

control complex systems and play a central role in system safety” (Strauch, 2002, p. 13). The 

purpose of this project is to evaluate to what extent technological advances and implementation 

of automation have resulted in a decrease in numbers and severity of accidents in commercial 

aviation over the last decade. 

 In order to provide adequate data to prove or disprove the focus of this project, a detailed 

review of relevant literature will be conducted. This review will be conducted focusing on two 

primary areas. The first focus area will consist of a review of relevant literature highlighting 

human error, or human factors in relation to automation technology. Attention during the review 

will be given to defining automation, discussing optimal automation levels, analyzing benefits 

verse shortcomings of automation, and establishing trends in causal factors related to automation 

technology accidents. The second area will consist of a review of commercial aviation accident 

data covering a time period from 2000 through 2010. The year 2000 will be used as a base for 
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comparison and provide data for an entire year prior to 2001 when commercial aviation traffic 

was severely affected by the events of September 11. The use of the year 2000 as a base for 

comparison will help identify any statistical irregularities directly caused by changes in 

commercial air traffic during 2001 and the years following. Specific accidents will be sighted as 

necessary to support findings and recommendations. 

As part of the review of relevant literature, past studies of accident statistics dealing with 

automation technology will be analyzed and used to draw inferences and distinctions when 

compared to the accident data collected for the period of 2000 to 2010. Further analysis will be 

given to evaluating pilot training in relation to automation, to pilot over-reliance on automation, 

to the merits of intuitive interface design, and to the role of crew coordination in relation to 

varying levels of automation technology. 

This project will analyze both fatal and nonfatal commercial aviation accidents relating to 

automation technology. Aviation incidents and data pertaining to near accidents involving 

automation technology will not be analyzed as part of this project. Data collection will be limited 

to U.S. based commercial air carriers, but will included accidents occurring domestically, 

international carriers included and of U.S. based commercial carriers involved in accidents 

abroad. 

Recommendations will be based on results of accident data analysis, and related to 

human factors issues or trends that are identified during the literature review and data collection. 

Recommendations are expected to be focused on improvements in system engineering, system 

testing, crew or operator training, and the continuous attempt to engineer error out of systems.  
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Program Outcomes 

PO #1 

Students will be able to apply the fundamentals of air transportation as part of a global, 

multimodal transportation system, including the technological, social, environmental, and 

political aspects of the system to examine, compare, analyze and recommend conclusion.  

 The global, multimodal transportation system aspect will be addressed when discussing 

the benefits of automation technology across commercial aviation. For example, “by reducing 

workload, automation can also raise the productivity of each operator, decreasing the number of 

operators needed and lowering operating costs” (Strauch, 2002, p. 221).The technological 

component will be addressed when evaluating the argument, “technological advances reduce the 

role of human operator, thereby leading to a reduction in operator errors or reduced 

consequences from operator errors” (Strauch, 2002, p. 220).Social, environmental, and 

political aspects will be covered while evaluating the influences of a reduction in severity and 

occurrences of aviation accidents in commercial aviation. 

PO #2. 

The student will be able to identify and apply appropriate statistical analysis, to include 

techniques in data collection, review, critique, interpretation and inference in the aviation and 

aerospace industry. 

 The statistical analysis aspect will be met by performing data collection and analysis of 

historical commercial aviation accident data ranging from 2001 to 2011 Histograms will be 

constructed to display accident data collected for each year in question. Differences in casual 

factors and severity will be highlighted. Comparisons will be provided regarding automation 

detailing size of aircraft fleets compared to accidents numbers, number and severity of accidents, 
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as well as a comparison between nonfatal and fatal accidents and rates. An ANOVA is a 

“hypothesis-testing procedure for studies with three or more groups” (Aron, Coups, & Aron, 

2011, p. 463). An ANOVA will be utalized to review, critique, interpretate, and draw 

inferences about the data collected. 

PO #3 

The student will be able across all subjects to use the fundamentals of human factors in all 

aspects of the aviation and aerospace industry, including unsafe acts, attitudes, errors, human 

behavior, and human limitations as they relate to the aviators adaption to the aviation 

environment to reach conclusions. 

Human factors play a role in all aspects of aviation. Thanks to automation, that role is 

now “performed at a higher cognitive and a lower physical level than was true of operators who 

manually controlled the machines” (Strauch, 2002, p. 13). The review of historical commercial 

accident data and specific accidents will establish trends in causal factors related to automation 

technology. More specifically, pilot training, over-reliance on automation, intuitive interface 

design, and the role of crew coordination will be examined in an effort to identify unsafe acts or 

human behaviors conducive to committing errors involving automation. 

Errors and human limitations will be evaluated dealing with automation system 

designs. “Systems that people design, manage, and operate, cannot be immune to error because 

of the inherent imperfections of the human designer and operator” (Strauch, 2002, p. 25). Human 

attitudes and behaviors will be discussed in regard to the role pilots now play as system 

monitors or facilitares in commercial aviation. Automation has caused an evolution in aviation 

on the job duties of the pilot and attitudes and behaviors are vital for the safe operation of 

automation technology. 
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P0#4 

The student will be able to develop and/or apply current aviation and industry related research 

methods, including problem identification, hypothesis formulation, and interpretation of findings 

to present as solutions in the investigation of an aviation/aerospace related topic. 

The problem identification component will be demonstrated by providing examples of 

pilot over reliance on automation, substandard training in relation to automation technologies, 

breakdowns in crew coordination, and latent automation system errors. These Latent errors, 

“whose adverse consequences may lie dormant within the system for a long time” (Reason, 

1990, p. 173), and only become obvious when other factors bring them to the surface. 

Hypothesis formulation and interpretation of findings are vital aspects of proving or 

disproving research. “A hypothesis is a logical supposition, a reasonable guess, and educated 

conjecture” (Leedy & Ormrod, 2010, p. 4).This study will be focused around the following 

hypothesis: There has been a statistical decrease in the number and severity of commercial 

aviation accidents involving automation from 2000 to 2010. Furthermore the decrease can be 

attributed to the evolution of pilot training in regard to automation, a decrease in over-reliance on 

automation, advances in intuitive interface design, and improvements in training and utilization 

of crew coordination. 

PO #5 

The student will investigate, compare, contrast, analyze and form conclusions to current 

aviation, aerospace, and industry related topics in aeronautics, including advanced 

aerodynamics, advanced aircraft performance, simulation systems, crew resource management, 

advanced meteorology, rotorcraft operations and advanced aircraft/spacecraft systems. 
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In order to meet the requirements of this program outcome I will address the aspects 

corresponding to the classes I have completed. The classes include: Rotorcraft Operations, 

Advanced Meteorology, Aviation/Aerospace Simulation Systems, and Advanced Aerodynamics.  

A discussion of advanced aerodynamics will be utilized to provide an understanding of 

considerable aerodynamic events caused by automation or errors utilizing automation 

technology. In keeping with the scope of this study, the aerodynamic events themselves will not 

necessarily be the primary focus, but understanding the nature of the event is vital to understand 

the relationship between automation and certain accidents.  

Simulation systems provide an economical and safe environment to train, evaluate, and 

study a multitude of events from emergency procedures to basic glass cockpit operation. The role 

simulation systems play in pilot training in relation to automation, testing of automation and 

intuitive design, and the evolution and training of crew coordination will be thoroughly 

discussed. The use of simulation in the initial design and testing phases of automation 

technology will also be investigated.  

Rotorcraft operations and advanced meteorology will also be discussed as part of this 

program objective. Rotorcraft operations will be discussed as part of the accident investigation 

data, and commercial rotorcraft accidents will be compared to commercial fixed wing accident 

data. Advanced Meteorology will be discussed when in relation to any commercial accidents 

where weather played a role in accident that relates to automation.  

PO #9 

The student will investigate, compare, contrast, analyze and form conclusions to current 

aviation, aerospace, and industry related topics in safety systems, including systems safety, 
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industrial safety, accident investigation and analysis, transportation security, airport safety and 

certification, safety program management, and aviation psychology. 

In order to meet the requirements of this program outcome I will address the aspects 

corresponding to the classes I have completed. The classes include: Aviation/Aerospace 

Industrial Safety Management, Aviation/Aerospace Psychology, Aviation/Aerospace Accident 

Investigation and Analysis, and Aviation/Aerospace System Safety.  

“The increased role of automation in systems has enhanced many aspects of system 

operations, but it has also led to unique antecedents to errors, errors that have led to incidents and 

accidents” (Strauch, 2002, p. 217). System safety will be discussed in detail during the 

evaluation of intuitive interface design, automation system engineering practices, the 

implementation of automation technology designed for commercial aviation, and system safety 

failures highlighted during accident investigations. The complexity of current and emerging 

next generation technology will also be addressed from a system safety standpoint.  

The important role of aviation psychology in automation technology design, training, 

implementation, and accident investigation will be addressed. Of particular interest are various 

theories of error and how they are used in engineering efforts to reach the optimal automation 

level within a system. “Modern error theory suggests that in complex systems, operator errors are 

the logical consequences of antecedents or precursors that had been present in the systems at the 

time they were committed” (Strauch, 2002, p. 16). Theories presented by error theorists Freud, 

Norman, Rasussen, and Reason will be discussed in detail during this program outcome. 

Industrial safety’s role in this program outcome will not be as extensive as system 

safety, aviation psychology, or accident investigation. However, it will provide a worthwhile 

example of how automation technology is not limited to airborne operations in commercial 
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aviation. Ground operations at airports worldwide provide a wide variety of automated industrial 

safety systems and they are evolving at a staggering rate.  

Accident investigation data will make up a large portion of this study. Data will be 

collected for commercial aviation accidents dating from 2000 to 2010. Effort will be focused on 

providing there has been a decrease in the significance and number of accidents relating to 

automation over the afore mentioned years. Significant accidents will be discussed in detail to 

support theory, “that the consequences of even “minor” will present a threat to the safety of 

complex systems” (Strauch, 2002, p. 16). 
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The Influence of Automation on Aviation Accident and Fatality Rates: 2000-2010  

Project Introduction 

To be the first is something of a rarity, especially in today’s age where a truly new 

invention is something that does not come around but once in a lifetime. The concept of flight 

was the stuff of fairy tales until the Wright Brothers introduced it to the world, and the notion of 

a pilot was no different. The Wright Brothers designed their craft to give the pilot full control, 

but advances in automation changed the role of a pilot from dreamer, designer, constructor, fixer, 

and fact gatherer – in other words, the be all and end all of flight – to less of a controller and 

more of a systems observer. Regardless of the myriad changes introduced by automation, the role 

of the pilot is still crucial; throughout early aviation history, some of the most groundbreaking 

aeronautical advancements were fueled from start to finish by the person who flew/tested 

aircraft.  

With the passage of time, the passion that once fueled the development of the aviation 

industry has subsided and the pilot’s role has forever evolved. From an early all-encompassing 

role, to a role that saw pilots perceived as “daredevils” of the sky, to the current view of a pilot as 

a working professional – all of this change has been precipitated by technology and has 

transformed flying from a task of complete aircraft control by the pilot to one of task supervision 

and system monitoring. This kind of change is not without consequence. As technology 

continues to redefine the piloting role, pilots themselves have adjusted, but not without error. To 

err is human, but the role between automation and human error is one to be explored; human 

factor errors have emerged as the number one contributing factor in commercial aviation 

accidents. 
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This study will explore the relationship between commercial aviation accidents, fatalities, 

and automation and will be presented in the following order: (1) Definition of relevant terms; (2) 

Literature review; (3) Methodology; (4) Results; (5) Conclusion; and (6) Recommendations for 

future research. 

A comprehensive literature review was conducted to establish a knowledge base in 

subject areas relevant to the aviation industry. This review focuses on the following topics, but is 

not limited to: defining automation, outlining the history of automation in aviation, discussing 

optimal automation levels, analyzing the benefits versus shortcomings of automation, defining 

the subcategories that comprise human factors analysis, and discussing the role played by 

automation in preventing or causing aviation accidents and/or fatalities. 

The literature review serves two purposes for this study. First, it makes an attempt to 

define the terms relevant to human factor analysis within the aviation and aerospace industry. 

Second, it serves to inform the theoretical underpinnings of automation technology in relation to 

human factor errors and how they relate to the aviator’s adaptation to the aviation environment, 

and how automation may or may not have affected aviation outcomes, especially in relation to 

part 121 and part 135 aviation accidents and/or fatalities.  

In defining relevant terms, the literature review plays a valuable role in describing the 

various models of accident causation, especially related to the very broad human errors factor. A 

review of the literature revealed the widely accepted and utilized Human Factors Analysis and 

Classification System (HFACS); the qualitative analysis section of this study will define this 

classification system and discuss how this study used the HFACS as a basis to classify probable 

causes of aviation accidents/fatalities.  
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The literature review also plays a crucial role in aiding the determination of variables to 

be included in the statistical models. From relevant literature, this study draws the most 

important explanations and findings and uses them as inputs into the choice of variables (causes 

and indicators) in the empirical models. This allows the elaboration of statistical models that 

include all relevant indicators, thus lessening the likelihood that the models suffer from 

limitations caused by omitted or irrelevant variables. The literature review also helps inform 

hypotheses regarding the expected direction of the statistical relationship between the 

independent and dependent variables. 

This study’s hypothesis is as follows: There has been a statistical decrease in the number 

and severity of commercial aviation accidents involving automation from 2000 to 2010. In 

addition to attempting to prove or disprove the hypothesis, an attempt will be made to attribute 

the hypothesized decrease in aviation accidents and severity to the evolution of pilot training in 

regard to automation, a decrease in over-reliance on automation, advances in intuitive interface 

design, and improvements in training and utilization of crew coordination. 

To accomplish the aforementioned, a series of statistical analyses were developed and 

executed based on the findings of the review of relevant literature. The methodology section of 

this study will follow the review of relevant literature and discuss data gathering, constraints to 

analysis, development of the statistical models, and limitations of this study.   

Definitions 

Part 121 and Part 135 Operations. Part 121 and Part 135 operations are defined as 

follows: 

In the United States, civil aviation is regulated by the U.S. Federal Aviation 

Administration (FAA), and a broad distinction is made between commercial air carrier 
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operations and general aviation operations. Air carriers are defined as operators that fly 

aircraft in revenue service, and operators are regulate by Title 14 Code of Federal 

Regulations (CFR) Parts 121 and 135. Part 121 usually refers to operators who fly large 

transport-category aircraft in controlled airspace and controlled airports that have 

available specific weather, navigational, operational, and maintenance support. Part 135 

regulates commercial air carriers flying smaller aircraft with nine or fewer passenger 

seats, often into smaller airports that do not provide the services required to support Part 

121 operations. Air carrier operations under either Pat 121 or Part 135 may be scheduled, 

meaning that the operator offers, in advance, the departure location, departure time, and 

arrival location. Operations may alternatively be non-scheduled or on-demand, meaning 

that the departure location, departure time, and arrival location are negotiated with the 

customer. Non-scheduled Part 121 operations include cargo flights and certain charter 

flights in transport-category aircraft, whereas on-demand Part 135 operation include 

charter, air-taxi, and certain medical transport operations. (National Transportation Safety 

Board, 2011, pp. 4-5). 

Aircraft Accident. The Department of Transportation (DOT) defines an aircraft accident 

as: 

An occurrence associated with the operation of an aircraft that takes place between the 

time any person boards the aircraft with the intention of flight and all such persons have 

disembarked, and in which any person suffers death or serious injury, or in which the 

aircraft receives substantial damage. For purposes of this part, the definition of “aircraft 

accident” includes “unmanned aircraft accident. (2012, para. 2)  
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Incident. The DOT defines and aircraft incident as “an occurrence other than an 

accident, associated with the operation of an aircraft, which affects or could affect the safety of 

operations” (2012, para. 5). 

Fatality. A fatal injury is defined as “any injury which results in death within 30 days of 

the accident“ (Department of Transportation, 2012, para. 4). 

Serious Injury. The DOT defines a serious injury as: 

Serious injury means any injury which: (1) Requires hospitalization for more than 48 

hours, commencing within 7 days from the date of the injury was received; (2) results in 

a fracture of any bone (except simple fractures of fingers, toes, or nose); (3) causes severe 

hemorrhages, nerve, muscle, or tendon damage; (4) involves any internal organ; or (5) 

involves second- or third-degree burns, or any burns affecting more than 5 percent of the 

body surface. (2012, para. 8) 

Review of Relevant Literature 

Automation 

Automation is the primary focus of this study, especially the influence it exerts on all 

aspects of aviation, from the effects it has on human factors to the role it plays in potentially 

contributing to or preventing aviation accidents and/or fatalities. This section will define 

automation, present a brief history of the topic, and discuss the various levels of automation. 

Automation Defined 

 The history of automation, which is not exclusive to the aviation industry, is extensive 

and dates back over 200 years. The term itself implies automatic control, and has been used in a 

variety of ways throughout the history of automation. Automation is defined by the Merriam-

Webster dictionary as: (1) the technique of making an apparatus, a process, or a system operate 
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automatically; (2) the state of being operated automatically; or (3) automatically controlled 

operation of an apparatus, process or system by mechanical or electronic devices that take the 

place of human labor (2012). To provide evidence of the diverse uses of the term, which are 

often based on the process being described, multiple definitions will be discussed in more detail 

below. 

 Mouloua, Hancock, Jones & Vincenzi (2010) define automation as the execution of a 

task, function, service or subtask by a machine agent (p. 8-2). This definition is more succinct 

using the reference to a machine agent to describe any mechanical or electronic execution of a 

task, function, service, or subtask. This execution can be in an open loop or closed loop system, 

it can imply a variety of types of controls or actions, and it can refer to anything from a basic 

level of automation to a fully automated system. The second definition does not make mention of 

a human’s task execution being replaced by a machine agent, but it is assumed.  

Billings (1991) defines automation as a system or method in which many of the processes 

of production are automatically performed or controlled by self-operating machines, electronic 

devices, etc. (p. 7). Although processes are automatically performed in these systems, it is 

important to note they do not operate completely autonomously. In aviation, pilots are still at the 

center of operation of any aviation automation system and are required for safe operation.  

Billings further defines human-centered automation as automation designed to work 

cooperatively with human operators in the pursuit of stated objectives (p. 7). Expanding on the 

definition of human-centered automation, automation is considered a tool or resource. It is used 

to accomplish a task that otherwise would be impossible for a human to accomplish or to 

facilitate the accomplishment of a task with greater efficiency. It is also considered a means to 
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reduce attention or workload from operators, but does not preclude the need for a human 

operator for management and direction of the system (Billings, 1991, p. 7).  

At the center of any form of automation, an unmistakable human-machine relationship 

will exist. First, in order for automation to occur, a form of human labor is automated in some 

way. Second, any automated system requires a human operator or monitor to function properly. 

Because of this dependent relationship, Parasuraman, Sheridan & Wickens (2000) define 

automation as a device or system that accomplishes (partially or fully) a function that was 

previously, or conceivably could be, carried out (partially or fully) by a human operator (p. 287). 

Because the human-machine comparison described in the last definition is the most appropriate 

to the theme of this study, it will be used as the standard definition when referring to automation 

throughout the remainder of this study.  

“In aviation, automation most often refers to the autopilot, flight management system 

(FMS), as well as other burgeoning advanced cockpit-related systems and functions” (Mouloua, 

Hancock, Jones & Vincenzi, 2010, p. 8-2). These systems have forever altered the role of the 

pilot and will continue to become more complex. The history of aviation automation is relatively 

short, but was spurred by other technological advances and its use will continue to grow with the 

complexity and performance of the systems themselves. 

Brief History of Automation  

Leather jackets, white scarves, and flying by the seat of your pants are things of the past, 

phased out during the evolution of automation technology. The allure of aviation as an 

adventurous and daring career has fallen by the wayside as a result of advances in automation 

technology; it has since been replaced by a career filled with computer programming and 

monitoring. The history of automation is extensive and reaches far back before the birth of 
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aviation. Long before the need to reduce pilot workload, history saw the advent of simple 

machines that improved the accuracy and speed of manual tasks.  

One of the first such machines, and perhaps the most famous because of the controversy 

it created, was the automated weaving loom. Created by Joseph Marie Jacquard in 1801, the 

automated loom threatened the lifestyle and livelihood of men and women who spent years 

developing their professional skills. Confronted by this new automation technology, which was 

more precise and efficient, fear and frustration grew over the next decade. In 1811, violent riots 

occurred in Nottingham and Lancashire, England resulting in the destruction of mills and 

machinery. The British government eventually quelled the protesters, called “Luddites,” but they 

left their mark on history. Fourteen protestors were hanged in 1813, and the name “Luddite” 

became synonymous with someone who will not accept technological change (Manningham, 

1997, p. 56).  

After the invention of the automated weaving loom, “cotton gins and combines, 

automobiles and railroads, computers and robots have changed the workplace forever” 

(Manningham, 1997, p. 56). However, nowhere is the need for automation more evident than in 

aviation. “Not all of the functions required for mission accomplishment in today’s complex 

aircraft are within the capabilities of the unaided human operator” (Billings, 1991, p. 8). Prior to 

the technological advances of present-day aviation, the need for aviation automation was 

identified – even before the first powered flight. 

“In the early days of aviation, the pilot set forth unaided, with only human perceptual 

capabilities to provide necessary information” (Billings, 1991, p. 8). The machines they flew 

were recognized by their designers as unstable, thus tremendous efforts were made toward 

designing tools and/or systems that would provide pilots with needed assistance. As early as 
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1905, Orville Wright started working on a stability augmentation device. “The device, complete 

and ready for testing by the fall of 1913, was designed to keep an airplane flying straight and 

level without the intervention of the pilot” (Crouch, 1989, p. 459). Wright was awarded the 

prestigious Collier Trophy in early 1914 for a demonstration of hands-off flight, but it was later 

that year a revolution occurred in automation technology. Lawrence Sperry developed a two-

gyroscope system that would sense deviations from straight and normal flight and apply 

appropriate corrections. “The enormously complex inertial navigation system that guided the 

first men to the Moon in 1969 was directly rooted in Sperry’s automatic pilot of 1914” (Crouch, 

1989, p. 460). Stability augmentation devices continued to advance and by the 1930s autopilots 

for long distance flying were considered essential (Billings, 1991, p. 8). 

Aviation automation has flourished over the years with the introduction of new aircraft 

capabilities and technological advances. Retractable landing gear prompted the requirement for a 

landing gear configuration warning system. The invention of four-engine aircraft drove the 

development of the automatic propeller synchronizing system. This drive was similar to that 

which caused propeller-feathering devices to be produced to help control World War II airplanes, 

which were unstable if an engine failed on takeoff. Advances in electronic technology combined 

automatic navigation with stability augmentation and further advanced the autopilot (Billings, 

1991, p. 8). 

“The average transport aircraft in the mid-1970s had more than 100 hundred cockpit 

instruments and controls, and the primary flight instruments were already crowded with 

indicators, crossbars, and symbols, and the growing number of cockpit elements were competing 

for cockpit space and pilot attention” (Chambers, 2010, para. 5). Advances in digital systems 

coupled with the increasing amount of air traffic and system complexity spurred the need to 
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improve cockpit functionality and design. “Electronic flight displays were first developed for 

military applications in the 1960s, and by the 1970s, computer-driven cathode ray tubes (CRT) 

displays began replacing electromechanical instruments in commercial transport-category 

airplanes” (National Transportation Safety Board, 2010, p. 4). The use of integrated displays in 

the 1970s allowed the merging of aircraft status, position, and control information into displays, 

which saved space. Developed in conjunction with early forms of aircraft automation, the goal of 

these displays was to reduce crew workload and improve safety (National Transportation Safety 

Board, 2010, p. 4). 

 With the integration of glass cockpits and automation systems, questions began to arise as 

to the validity and reliability in conjunction with human factors error analysis. The NASA Ames 

Research Center received a mandate to evaluate safety implications and human factors in 

reference to technological advances in cockpit technology. The research was conducted utilizing 

displays capable of processing flight and aircraft system data, interpreting it, and presenting it in 

a clearly understandable manner. In 1979, “the success of the NASA-led glass cockpit work is 

reflected in the total acceptance of electronic flight displays” (Chambers, 2010, para. 6).   

 Display technology and automation continued to improve. Following every advance in 

display technology, advancements in flight management and automation systems were evident. 

“In 1981 the Presidential Task Force on Aircraft Crew Complement recommended that transport 

aircraft could be safely flown by a two-pilot crew” (Wiener, 1989, p. 2). The significance of the 

Presidential Task Force’s findings allowed manufacturers to design, produce, and retrofit 

commercial aircraft focused on two flight crewmembers.  The report also validated a previous 

certification performed by the Federal Aviation Administration (FAA) in regards to the DC-9-80 

as a two-pilot aircraft. The report also ushered in “a new era of economical trans-oceanic 
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operations for two-engine, (generally) two-pilot glass cockpit aircraft” (Chute, Wiener, & Moses, 

1999, p. I-6). The monetary savings automation integration provided to design and operations 

were of great significance to the airlines following the implementation of the Presidential Task 

Force’s findings (Wiener, 1989, pp. 1-2). 

Following the turn of the century and through present day, the widespread development 

and use of automation continues to grow. Various levels of automation are considered standard 

in commercial airlines and military aircraft, and are continuing to transition to general aviation. 

Flight and performance management systems, as well as automated flight control and navigation 

systems, were made possible with the introduction of digital computers and advances in 

automation technologies.  These technological advances will continue to fuel further 

developments and the advent of greater levels of automation. 

Levels of Automation 

“Through the auspices of the technological imperative, automation has steadily advanced 

as means have been found for automating physical, perceptual, and, more recently, cognitive 

tasks in all kinds of systems” (Endsley, 1996, p. 163). It is obvious that there are many benefits 

to automation, however none more important than trying to determine the optimal level of 

automation. This section will explore a basic four-stage model of human information processing, 

which will assist in selecting the appropriate level of automation among the 10 levels defined by 

this four-stage model. 

Establishing requirements of interaction and processing from a human user perspective is 

crucial to operate and make decisions, or simply put, to define the need for interaction with an 

automated system. Four generic functions are outlined by Endsley (1997) that are intrinsic to 

many industries, including aviation, and make it possible to evaluate optimal automation and 
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human interaction needs. The functions are: (1) monitoring/scanning displays to perceive system 

status, (2) generating/formulating options or strategies for achieving goals, (3) selecting/deciding 

on a particular option or strategy, and (4) implementing/carrying out the chosen option.  

The first function can be simplified as sensory processing, and refers to the acquisition 

and processing of various sources of data. This function includes position and orientation of 

sensory receptors, and pre-processing and processing of sensory data. The second function deals 

with perception and working memory. This stage involves using working memory to retrieve and 

manipulate processed information. Decision-making is the next function and uses a cognitive 

process to evaluate all previously gathered information to make informed choices regarding the 

information supplied. The last function can be simplified as response selection. This function 

involves implementing the decision in the form of a response or action (Parasuraman, Sheridan, 

& Wickens, 2000, p. 287). 

The 10 levels of automation contain varying roles of the human operator and automated 

controls dependent on the level. They range from full manual control to fully automated control. 

Level one, which is the lowest level of automation, requires the human operator to make all 

decisions and initiate actions with no assistance provided by a computer. The second level, or 

action support level, offers a complete set of decisions or actions to be selected or initiated by the 

human operator. Level three narrows the selections for system operations, and although the 

human operator may select the operation, the computer implements actions. Level four is known 

as the shared level and presents the human operator with one alternative to operation and sees a 

sharing of all tasks except for selection. Level five is known as decision support. This level 

offers suggestions and implements those selections only if the human operator approves. The 

next level is referred to as the blended decision making level, and allows a predetermined time to 



THE INFLUENCE OF AUTOMATION ON AVIATION            23 

 

select an alternative action before the computer will execute. Level seven is rigid, with a 

computer executing required tasks and informing the human monitor. Level eight, also referred 

to as automated decision-making, informs the human operator if information is requested. 

Automation level nine once again goes a step closer to being fully automated by only informing 

the human monitor of actions if it decides to. In the highest level of automation, the computer 

decides everything, acts autonomously, and ignores the human operator/monitor (Parasuraman, 

Sheridan& Wickens, 2000, p. 287). 

Finding the right level of automation for aviation systems is an extremely daunting task, 

and one to which extensive research has been dedicated. Proposed automation levels need to be 

carefully tested to determine if they are reliable, provide adequate feedback, and are appropriate 

for the task or situation for which they were developed.  

Problems with Automation 

 Because of the advent of automation, “designers have argued that technological advances 

reduce the role of the human operator, thereby leading to a reduction in operator errors or 

reduced consequences from operator errors” (Strauch, 2004, p. 220). There is no doubt 

automation has improved many aspects of operator performance. “It leads to superior 

productivity, efficiency, and quality control” (Norman, 1989, p. 4).  However, for these benefits 

to be realized, many problems or shortcomings to automation must be overcome. This section 

will discuss six prominent problems with automation in aviation systems. These issues are 

widely recognized as drawbacks of automation and they include increased monitoring and 

vigilance requirements, loss of pilot skills, inappropriate feedback and user interface, workload 

redistribution, over-reliance on automation and mistrust, and lack of familiarization with 

systems. 
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 As previously discussed, automation has redefined the pilot’s role from directly and 

manually controlling all aspects of flight to less of a direct operator and more of a system 

monitor. Levels of monitoring/manual control are dependent upon the level of advanced 

technology available in various aircraft. The fewer manual tasks a pilot has to perform, the more 

automated systems and subsystems they are required to monitor. Automation can also remove or 

distance the monitor from system cues that are required to make informed decisions involving 

automated systems. Automated systems may also provide information that does not correctly 

convey system operation or status, which can diminish a monitor’s mode awareness.  

“Researchers have obtained considerable evidence demonstrating that increasing automation and 

decreasing operator involvement in a system control reduces operator ability to maintain 

awareness of the system and its operating states” (Strauch, 2004, p. 224). Humans do not make 

good system monitors, and when asked to perform manual tasks in conjunction with monitoring 

automated subsystems, their performance decreases (Strauch, 2004, p. 224). Furthermore, long-

term participation as a system monitor rather than as an active controller can also lead to 

reduction in baseline skill levels, weaker internal models of system processes, and reduced 

decision-making abilities, particularly for highly automated system functions (Kantowitz & 

Campbell, 1996, p. 125). 

 Automating tasks essentially removes the pilot from executing key system functions and 

operations. “This out-of-loop time may reduce the pilot’s skills to the point that he or she is no 

longer effective in a system emergency or failure” (Kantowitz & Campbell, 1996, p. 125). This 

can be perpetuated when “the “distance” between the operator and the system under control 

increases, and workload can be increased if the operator is suddenly required to jump back into 

the active control loop and directly control the system” (Kantowitz & Campbell, 1996, p. 125). 
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From initial flight training, pilots are instructed on how to manipulate the flight controls to 

achieve a desired response.  With the incorporation of automation they are taught how to receive 

a desired response by interacting with various automated systems.  Automation studies have 

found that pilots, “despite initial manual training, those subjects who had been operating as 

supervisory controllers of automation in a simulated process control task were slower and more 

inefficient in bringing the system under control than were subjects who had operated only in a 

manual mode” (Endsley & Kiris, 1995, p. 381). 

 Inappropriate feedback or user interface can be catastrophic in automated systems. 

Complex system interfaces and the way information is presented within complex systems can 

actually increase workloads for pilots. Eliminating visual and tactical cues can also lead to 

elevated workloads. Also consider, “when automatic devices compensate for problems silently 

and efficiently, the crew is ‘out of the loop,’ so that when failure of the compensatory equipment 

finally occurs, they are not in any position to respond immediately and appropriately” (Norman, 

1989, p. 5). Proper feedback for a system monitor is essential for successful automation; it may 

not be evident during normal operational conditions but will be evident when portions of a 

system fail or an emergency occurs.  

Workload redistribution is also a large challenge facing future automation. When tasks or 

systems are easy to automate, they are automated, but historically when processes are not easy to 

automate they are not automated. These processes usually correspond to the difficulty of the task 

for a manual operator to perform as well. Therefore, historically, routine tasks for operators are 

automated and tasks requiring a high workload effort are not automated. This type of automation 

has been called “clumsy,” and actually can increase rather than decrease chances for operator 
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errors.  Maintaining vigilance when an operator’s workload is excessively reduced is difficult 

and can lead to boredom (Strauch, 2004, p. 225).  

 Over-reliance on automation and mistrust are also both major concerns regarding the use 

of automation in aviation. “Different people may be susceptible to different types of 

inappropriate automation use behaviors based on their self-confidence in doing the task, their 

level of trust in the automation, their responses to fatigue, and their incorporation of these and 

other factors into their decision-making processes” (Riley, 1996, p. 34). There is a definite 

correlation between mistrust and over-reliance on automation.  In general, an individual who is 

over-reliant on automation will more than likely trust the performance of that operation.  The 

inverse could occur; however, in the case of an individual mistrusting automation to the extent 

that the trust in his or her own capabilities outweighs their trust in automated systems. Over-

reliance on automation can lead to errors of omission, decreases in vigilance, disregard for 

system parameters, and an out-of-loop experience initiated by the operator/monitor. On the 

opposite end of the spectrum, mistrust can lead to operators choosing not to use automated 

systems and increasing their workload or becoming fixated on monitoring automated systems 

and disregard manual cues. 

 Lack of familiarity with automation technology can manifest itself in a variety of ways. 

Modern day automation systems are extremely complex and understanding automation logic 

continuously proves to be difficult. Common practice is to attain formal instruction and 

experience in becoming proficient at operating automated systems, but disregard the in-depth 

understanding of how and why tasks are accomplished within the automated system. This in 

itself usually does not present a problem if automated systems function normally, however if an 

anomaly is present the operator may be unaware or not possess the system knowledge to react 
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appropriately or address the problem. Additionally, the change in a pilot’s role to that of a 

monitor may so “remove the pilot from the active control loop that the pilot loses familiarity with 

the key system elements and processes for which he or she is responsible” (Kantowitz & 

Campbell, 1996, p. 125). “In addition, some more sophisticated automation systems have 

multiple operating modes that can be initiated by each other, and require in-depth knowledge of 

function and logic to operate safely” (Strauch, 2004, pp. 222-223). 

Human Factors 

A discussion of human error is not complete without mentioning the associated theory 

and classification systems. The best-known and comprehensive theory to discuss both latent and 

active human factors is that of James Reason – the Cumulative Effect Theory, also known as the 

Swiss Cheese theory of accident causation. Reason is the first to move beyond focusing on active 

human errors – those whose effects are felt immediately – to latent errors, which may lie 

dormant within the system for some time, and may only become evident when they combine 

with other factors to breach the system’s defenses. It is this focus on latent errors that is so 

critical in this day and age of moving beyond attributing accident causation simply to the most 

immediate and obvious cause, usually some type of pilot error. As Reason himself notes, it is 

these latent errors that “pose the greatest threat to the safety of a complex system” (Reason, 

1990, p. 173).  

Reason’s Swiss Cheese theory details the critical mistakes that lead up to an accident and 

is categorized into four levels of human failure. Each level influences one another and starts with 

the incident and works backward. Thus the Swiss cheese analogy – the holes in the cheese 

represent the failures stacked one upon another. 
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Figure 1 details the four levels of human failure as outlined by the Swiss Cheese theory: 

(1) Unsafe acts – usually referred to as pilot or aircrew error; (2) Preconditions for unsafe acts – 

describes any and all existing conditions prior to the accident, including but not limited to 

fatigue, poor communication, failures in coordination procedures or failures associated with crew 

resource management; (3) Unsafe supervision – could range from poor training programs, poor 

asset management or poor crew management; and (4) Organizational influences – may include 

budget, lack of training, and lack of experience, among others. 

 

Figure 1 

Reason’s Swiss Cheese Model for Accident Causation (Shappell & Wiegmann, 2000, p. 2) 

“The Human Factors Analysis Classification System (HFACS) is a general human error 

framework originally developed and tested by the U.S. military as a tool for investigating and 

analyzing the human causes of aviation accidents” (Weigmann & Shappell, 2001, p. 1). It 

permits the analysis of relationships between causal factors, further allowing the accurate, 

standardized, and comprehensive classification of commercial aviation data. In essence, the 
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HFACS takes the theory behind the Swiss Cheese accident causation model and puts it into 

practical application to assign probable causes to aviation accidents. 

Figure 2 shows the first of four theoretical models upon which the HFACS is based, 

classifying unsafe acts into two categories: errors and violations. To further distinguish between 

errors and violations, subcategories were created for each, to include three error types (decision, 

skill-based, and perceptual errors) and two types of violations (routine, and exceptional) 

(Shappell & Wiegmann, 2000, p. 3). 

 

Figure 2 

HFACS – Categories of unsafe acts committed by aircrews (Shappell & Wiegmann, 2000, p. 3) 

The second theoretical model entitled preconditions for unsafe acts is displayed in figure 

3. “Arguably, the unsafe acts of pilots can be directly linked to nearly 80% of all aviation 

accidents” (Shappell & Wiegmann, 2000, p. 6). Despite this overwhelming statistic, simply 

attributing accidents to the unsafe acts does not identify the latent failures present that allow the 

unsafe acts to occur. To better define the preconditions for unsafe acts, two sub-categories exist 

to differentiate between substandard conditions and practices of the operator. 
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Figure 3 

HFACS – Preconditions for unsafe acts (Shappell & Wiegmann, 2000, p. 6) 

 Reason (1990) linked causal factors associated with pilot error back to errors made in the 

supervisory chain. Hence, Shappell and Wiegmann (2000) identified four categories of unsafe 

supervision. The categories include inadequate supervision, planned inappropriate operations, 

failure to correct problem, and supervisory violations (Figure 4). Inadequate supervision includes 

errors, such as failure to provide guidance, operational doctrine, oversight, training, or track 

performance. The second category, planned inappropriate operations, covers errors related to a 

failure to provide correct data, adequate briefs, improper manning or inadequate opportunities for 

crew rest. Failures to correct a known problem is the third category and covers causal factors, 

such as failures to correct erroneous documents, initiate corrective actions, report unsafe 

tendencies, or identify at-risk aviators. The fourth category involves supervisory violations 

regarding failures to enforce rules and regulations, the authorization of unnecessary hazards or 

authorization of unqualified crews for flight (Shappell & Wiegmann, 2000, pp. 9-10). 
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Figure 4 

HFACS – Categories of unsafe supervision (Shappell & Wiegmann, 2000, p. 9) 

 The last of the four levels of failure within HFACS is organizational influences. As with 

each of the levels previously discussed, organizational influences can affect or lead to errors at 

each of the levels below it. “Unfortunately, these organizational errors often go unnoticed by 

safety professionals, due in large part to the lack of a clear framework for which to investigate 

them” (Shappell & Wiegmann, 2000, p. 11). Described by Shappell and Weigmann (2001) as 

being the most elusive of latent failures, resource management, organizational climate, and 

organizational process are the subcategories of organization influences (Figure 5). Within the 

subcategories of organizational influences, resource management includes human resources 

related issues, monetary and budget resources issues, and issues regarding equipment and 

facilities. Organizational climate covers issues dealing with organizational structure, polices, and 

culture. The last category of organizational influences includes operations procedures and 

oversight (Shappell & Wiegmann, 2000, pp. 11-12).  
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Figure 5 

HFACS – Categories of unsafe supervision (Shappell & Wiegmann, 2000, p. 11). 

On the surface, a standardized system for classifying errors should make accident cause 

assignment and analysis more accurate and tractable. Shappell and Wiegmann (2001), the 

creators of HFACS, use as an example an HFACS analysis of military pilot accident data to 

show that the system found an increase in skill-based errors and associated this with cutbacks in 

flying time. However, historical evaluations have found these classification systems to only be as 

effective as the data fed into it. In other words, “historically, accident investigators have focused 

on human operator error much more than on organizational factors – in part because it is difficult 

to be certain of the role of the latter in any given accident” (Dismukes, 2010, p. 353).  

Human Factor Focus 

For the purposes of this study, further review of relevant literature will be focused on four 

topics identified during the review of Reason’s Cumulative Effect Theory and the HFACS. 

Specifically, crew resource management (CRM), fatigue, spatial disorientation (SD), and 

situational awareness (SA) were identified as playing major roles in unsafe supervision, 

preconditions for unsafe acts, and unsafe acts.  
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 Crew resource management was identified as a major part of the unsafe supervision and 

preconditions for unsafe acts levels. Within the structure of the unsafe supervision level, CRM 

plays an active role in three of the four categories including inadequate supervision, planned 

inappropriate operations, and supervisory violations. Under the category of substandard practices 

of operations within the second level of the HFACS, CRM also plays a vital role. CRM has its 

own subcategory including failures to back-up, communicate, coordinate, conduct adequate 

briefs, use all resources, and failures of leadership. 

 Fatigue was identified as a major factor in the second level of the HFACS as well. The 

substandard conditions of operators category contains three subcategories including adverse 

mental states, adverse physiological states, and physical and mental limitations. Each of the three 

subsections can be adversely affected by varying levels and influences of fatigue. Better 

understanding of fatigue is required to understand its relationship with many conditions that can 

lead to human factor errors. 

 As part of the unsafe acts section, spatial disorientation will be researched in detail. The 

review of spatial disorientation is intended to provide a better understanding of the subsection 

entitled perceptual errors. More specifically, defining spatial disorientation and the perceptual 

errors that can occur because of it will provide better understanding into how automation can aid 

or distract from preventing and or treating spatial disorientation. 

 Situational awareness was found to be present in the skill-based errors and decision errors 

category of unsafe acts. Skill-based errors such as prioritization errors, omitted steps or 

procedures or control errors can all be attributed to improper or complete loss of situational 

awareness. Situational awareness has an extremely large influence on decision errors as well. A 

loss of situational awareness or poor situational awareness can cause misdiagnosed emergencies, 
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individual abilities to be exceeded, poor decision-making, and a variety of other decision-based 

errors. The review of CRM, fatigue, spatial disorientation, and situational awareness will provide 

vital insight into human factor errors as well as assist in defining criteria for the analysis of 

human factors within the confines of this project. 

Crew Resource Management 

 “Since the genesis and initial investigation into how crew interaction influences the flight 

process, the concept of CRM has been developed into an important aspect of aviation” (Salas, 

Maurino & Curtis, 2010, p. 5). The growth of the aviation industry has produced constant 

technological advancements, thus adding measures of reliability and in so doing introduced 

greater levels of automation. Directly proportional to the increase in automation and 

technological reliability in aviation is a shift in safety focus from technical to individual human 

factors and team performance. This shift in focus spurred the “development of what is now 

known to the aviation industry as crew resource management (CRM) in 1979, and the 

implementation of it by U.S. Airlines beginning in 1981” (Salas, Shuffler & Diaz Granados, 

2010, p. 258). 

 “Though first introduced to pilots, CRM training has since spread to others within 

aviation, such as air traffic controllers and maintenance personnel, and beyond, e.g. health care 

professionals, first responders, off-shore oil producers” (Salas, Wilson, Burke, Wightman & 

Howse, 2006, p. 6). Crew resource management (CRM) is defined by Salas, Prince, Bowers, 

Stout, Oser & Cannon-Bowers (1999) as being a set of teamwork competencies that allow the 

crew to cope with situational demands that would overwhelm any individual crewmember (p. 

163).  
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Similar to the manner in which technology has advanced to meet reliability needs, CRM 

has continuously evolved to meet technological and human constraints since its introduction. In 

addition, “advances in teamwork, team process, and team competencies have enabled a richer 

understanding of their significance in aviation crew performance” (Salas, Shuffler & Diaz 

Granados, 2010, p. 253). 

This section will provide a brief history of the evolution of CRM and outline factors that 

influence crew performance. The six generations of evolution will be discussed in detail; before 

transcontinental travel was commonplace, CRM evolved at roughly the same pace, but 

completely independently of one another in Europe and North America. Thus, differences exist 

in the first four generations of evolution on each continent, but the commonalities between the 

development of CRM during the first four generations of evolution on the two continents will be 

highlighted. 

History of CRM 

 Throughout its 30-year existence, CRM has been constantly in a state of evolution and 

change. CRM was originally known as cockpit resource management, but changed to crew 

resource management as its scope expanded beyond the cockpit. Research and training in this 

subject area have included, but not been limited to, team composition, cohesiveness, 

communication, leadership, crew behavior, evaluation methods, training development, and 

implementation methods. “The development of CRM has resulted in a shift from the 

individualistic focus of training technical skill to the complexity of teamwork that affects 

standard flight operations” (Salas, Maurino & Curtis, 2010, p. 6). 

 First generation CRM was heavily focused on classical management development and 

individual skills, specifically attitude, communication, and leadership. First generation CRM’s 
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“safety paradigm was that safety was a function of flight-crew performance exclusively” 

(Maurino & Murray, 2010, pp. 10-3). This model described individuals as either possessing the 

“right” or the “wrong stuff.” Focus of this generation was to prevent accidents caused by flawed 

flight-crew performance, or fixing the “wrong stuff” (Maurino & Murray, 2010, pp. 10-3-10-4). 

 The first generation of CRM was met with resistance, and spurred the development of the 

second generation. The second generation also focused on attitudes, communications, and 

leadership; however, it broadened its focus to include the concepts of situational awareness and 

stress management along with conceptual error chain and decision making models. The ideas of 

the “right” and “wrong stuff” were eliminated in this generation of CRM, and training was 

focused on improving crew performance as a result of improved crew synergy (Maurino & 

Murray, 2010, pp. 10-3-10-4). 

 The first two generations of CRM training included role-playing, non-aviation related 

games, and maintained a distinct separation from technology and its interaction with CRM. The 

integration of the “glass cockpit” drove the development of the third generation of CRM. The 

focus of the third generation emphasized dynamic environments and the cognitive dimensions of 

the small teams acting in those environments. This generation revisited the human-machine 

interface and introduced the concepts of mental models, stress and fatigue management, 

automation management, vigilance, and human reliability. The development of knowledge and 

understanding were vital to this generation and were a stark contrast to simply improving skills. 

Additional monumental changes in the third generation included the view that CRM was to be 

considered proactive verse reactive, the first attempts to assess CRM training, and the expansion 

of out-of-cockpit training to include the entire flight crew, maintenance personnel, dispatchers, 

and air-traffic controllers (Maurino & Murray, 2010, pp. 10-3-10-4). 
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 The early 1990s saw the advent of the fourth generation of CRM caused by “the 

recognition that safety as an outcome is the consequence of the global health of the system, and 

that training is a tool to help the process and therefore, to influence the outcome” (Maurino & 

Murray, 2010, p. 10-4). The fourth generation of CRM focuses on improving a multitude of 

system components to improve system performance. It introduces a variety of issues like 

interaction between teams, shared mental models, status and role, and organizational synergy. 

This generation also expanded the role of maintenance personnel and air-traffic controllers, 

added additional aviation related personnel to participate in CRM training, and introduced a 

focus on cultural issues. The fourth generation of CRM also incorporates Company Resource 

Management and Organizational Recourse Management. Both concepts deal with the benefits of 

CRM reaching beyond safety to include service quality, job satisfaction, and cost efficiency 

(Maurino & Murray, 2010, pp. 10-3-10-4). 

 Maurino and Murray (2010) point out since the time of broad Trans-Atlantic consensus 

within a context of increasing awareness of cultural issues, there has been a further and most 

significant milestone (10-5). They further explain this CRM milestone as a transition from broad 

strategic encompassing goals of “safer flight,” to a more focused or tactical emphasis on what 

CRM was attempting to achieve during each flight. Aiding this transition in the late 1990s was 

the introduction of line operation safety audits (LOSA). LOSAs were a method by which trained 

observers would monitor flight crews during normal operations. The goal was for the observers 

to monitor what the crews did to fly safely from takeoff to landing. The findings of LOSAs, past 

CRM data, and similarities with classic CRM “skills” yielded substantial findings. It became 

obvious that human error was inevitable and furthermore that pilots were using effective 

strategies and countermeasures to combat human error. These strategies occurred at three levels– 
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avoiding or minimizing error, stopping error early before it became consequential, and mitigating 

effects of errors that had not been stopped. From these strategies emerged error management, and 

its development and incorporation into CRM as the fifth generation (Maurino & Murray, 2010, 

pp. 10-5). 

 CRM evolved yet again with the progression of error management into threat and error 

management (TEM). As LOSA research continued, the operational environment was identified 

as playing a large role in error management. The operational environment was conceptually 

described as a threat, or potentially negative events or situations out of the control of the flight 

crew requiring their immediate actions to manage. The sixth and most recent generation of the 

CRM evolution uses TEM as its foundation, and coupled with the desire to increase cultural 

awareness, has become the focus of modern-day CRM implementation and training (Maurino & 

Murray, 2010, pp. 10-5). 

Crew Performance Factors 

 “Aviation crews are like any other type of team. For them to be effective the members 

need to perceive that they are a team, understand each other’s roles, and be well trained on 

teamwork competencies” (Salas, Shuffler & Diaz Granados, 2010, p. 263). Salas, Stagl, Burke, 

& Goodwin (2007) define a team as a complex entity consisting of: (1) two or more individuals 

(2) who interact socially and (3) adaptively, (4) have shared or common goals, and (5) hold 

meaningful task interdependencies; it (6) is hierarchically structured and (7) has a limited life 

span; in it (8) expertise and roles are distributed; and it is (9) embedded within an 

organizational/environmental context that influences and is influenced by ongoing processes and 

performance outcomes (p. 189). This section will define teamwork, discuss factors affecting 

teamwork and crew performance, and briefly explain team errors. 
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 Teamwork Defined. “Teamwork is defined as a set of behaviors, cognitions, and 

attitudes that are enacted in order to achieve mutual goals and meet the demands of the outside 

environment” (Salas, Shuffler & Diaz Granados, 2010, p. 253). A team able to work cohesively 

together can efficiently accomplish mutual goals as referenced in the definition of a team and 

teamwork. However, accomplishing mutual goals is dependent upon a multitude of factors. 

Leadership, shared mental models, adaptability, and communication will be discussed as 

examples of factors that impact crew performance. No inference will be made that this group of 

factors form an autonomous list, but rather they are a sample of factors that affect crew 

performance. 

 Factors Impacting Teamwork and Crew Performance. “Team leaders in complex 

systems contribute to the climate in which the group operates, whether autocratic, democratic or 

something in between” (Strauch, 2004, p. 100). The captain of any flight assumes responsibility 

for the aircraft and entire crew; however, that responsibility in itself does not guarantee quality 

leadership. The quality of any aviation crew’s performance directly relates to the leadership 

skills of the captain. Later generations of CRM also broaden the scope of leadership within a 

flight crew, citing the leadership responsibilities many subordinate crewmembers have that 

contribute to the safe operation of any flight. Quality leaders attend to both operating tasks and 

subordinate concerns. In addition, quality leaders should not be overbearing and should foster 

open communication. Negative results can arise from overbearing leadership, especially in high 

stress situations such as emergencies.  

A leader must also recognize and understand team dynamics and how cultural differences 

can affect performance and interaction. Another vital aspect of leadership is the ability to 

understand how “individual characteristics might interact with automation to affect team 
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performance” (Bowers, Oser, Salas& Cannon-Bowers, 1996, p. 247). A leader’s clear 

conveyance of expectations, understanding of flight progress, and continual evaluation of the 

flight and crew performance is also essential to prevent an ambiguity and a breakdown in crew 

coordination (Strauch, 2004, pp. 264-265). 

Team functionality also depends on shared mental models. Rouse and Morris (1985) 

define mental models as the mechanisms whereby humans can generate descriptions of system 

purpose and form, explanations of system functioning and observed system states, and 

predictions of future system states (p. 7). Multiple shared mental models can exist for tasks, 

technology, teamwork or other relevant items to aviation operations. Task mental models would 

include knowledge and experience regarding task completion and procedures. Technology 

mental models can cover technological systems and other relevant equipment and a crew or 

individual’s understanding of its function and operation. Shared mental models will facilitate 

team members to use technology or equipment to “1) interact with other team members, 2) 

access the information presented to other team members, and 3) control the system from other 

team members” (Strauch, 2004, p. 96). This ability coincides with teamwork mental models in 

many ways, but teamwork mental models also include interdependencies of individual roles and 

knowledge of others’ roles. Shared mental models also improve team function by allowing the 

team to anticipate actions and strategy formation (Strauch, 2004, p. 266). 

A team’s ability to adapt to situations as they arise is essential for performance at high 

levels. Unexpected technical, mechanical, external or human-based issues can easily negatively 

influence safety and degrade crew coordination. Adaptability will vary depending on knowledge, 

experience, and cognitive ability. It also can be greatly influenced by crew mix and leadership 

presence. The need to be adaptable deals with unexpected situations; it is thus very difficult to 
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train for. Extensive experience and a great deal of training scenarios are required to provide a 

solid base to make decision and instill adaptive qualities (Strauch, 2004, p. 270). 

Communication has been mentioned or alluded to in all of the previously discussed crew 

performance factors. This is important to note because “a team needs to communicate with one 

another in order to develop a shared mental model, team situational awareness, and adaptability” 

(Strauch, 2004, p. 271). A breakdown or problem with communication is often implicated in 

aviation accidents and incidents. This further supports the importance of effective and explicit 

communication skills in the aviation industry. The type of communication is also important to 

consider when dealing with the efficiency of team performance. Proactive communication, 

concise communication, and closed-loop communication have proved effective in teams 

functioning at high levels. The meaning of proactive and concise communication are clear – 

closed-loop communication involves the receiver of a message acknowledging receipt of the 

message as well as the sender verifying it for accuracy. Communications is not limited to the 

cockpit, but rather extends to all interaction a flight crew may have at any time during the flight. 

As previously mentioned when discussing leadership, the captain should encourage open lines of 

communication to help overcome obstacles to communication and obstructive reaction in times 

of high workload or stress (Strauch, 2004, pp. 271-272). 

 Team Errors. In order for team errors to be committed, there must be two or more 

individuals involved with the operation of a system or execution of a task. Team errors include 

but are not limited to, failing to notice or respond to another’s errors, excessively relying on 

others, inappropriately influencing the action or decisions of others, and failing to delegate team 

duties and responsibilities (Strauch, 2004, p. 93). 
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 Failing to notice or respond to another’s errors is the most common multi-operator team 

error. This error can occur in two different ways. The first is when an operator fails to attend to 

or monitor the actions of another. The second way this error can occur is when individuals notice 

errors of another, but fail to respond or correct the error for any reason (Strauch, 2004, p. 93).  

 Excessively relying on others is another common team error. This error occurs 

extensively when system operators have a variety of experience and expertise involving a 

specific task or system. This error can occur when an individual fails to perform their own duties 

because they rely so heavily on someone else, when a person who is relied upon makes a 

mistake, or when the person being relied upon does not possess the necessary skills for the task 

or operation to be performed. This error is prevalent when junior team members disregard their 

own knowledge when confronted with team members who possess much more experience, 

seniority, authority, or status (Strauch, 2004, p. 94). 

 Operators who inappropriately influence the actions or decisions of others is another type 

of team error. This error is often seen in dynamic stressful situations when certain operators have 

extremely strong or weak personalities. An individual can inappropriately diagnose a situation 

and exert an error influence on their team member who may have assessed the situation 

correctly. Consequently, multi-operator error may occur because of one team member’s 

interference with other team members’ assessments of the situation (Strauch, 2004, p. 94). 

 Failing to delegate team duties and responsibilities can also lead to catastrophic multi-

operator errors. This type of error often occurs when an abnormality has occurred and demands 

the attention of the crew. If there is not a clear and concise delegation of duties among the crew, 

effective control of the system or effective response to the abnormality can easily suffer. This 
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type of multi-operator error was present in many of the cases that spurred the development of 

cockpit resource management (Strauch, 2004, pp. 94-95).  

Fatigue 

“Fatigue is classically defined as a decrease in performance or performance capability as 

a function of time on task” (Mallis, Banks& Dinges, 2010, p. 401). It is one of the most prevalent 

and historically recognized aviation human factors. The U.S. Department of the Army (2000) 

further defines this classical definition of fatigue as “the state of feeling tired, weary or sleepy 

that results from prolonged mental or physical work, extended periods of anxiety, exposure to 

harsh environments, or loss of sleep” (U.S. Department of the Army, 2000, pp. 3-13). The effects 

of fatigue have been extensively researched and documented throughout the history of aviation 

and were the primary cause of “the now 70-year-old federal duty time regulations in U.S. 

commercial aviation” (Mallis, Banks& Dinges, 2010, p. 401).  

To understand why fatigue affects the body, the circadian rhythm of the human body 

must be examined. Almost all biological organisms will show physiological and behavioral 

changes based on the 24-hour rotation of the Earth. The body undergoes highs and lows in its 

circadian rhythm, depending on the time of day, which can cause changes in “many 

physiological and behavioral functions, including sleep cycle, digestion, hormonal activity, and 

body temperature” (Strauch, 2004, p. 55), as well as plasma cortisol, plasma melatonin, alertness, 

subjective fatigue, and cognitive performance. The human body simply cannot operate twenty-

four hours a day seven days a week. Everyone requires sleep, and in consistent intervals and 

amounts (Mallis, Banks & Dinges, 2010, pp. 401-404). 

Interacting with the human circadian cycle is the homeostatic sleep drive. “Consequently, 

three factors can result in elevated homeostatic sleep drive: (1) increasing time continuously 
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awake; (2) inadequate sleep duration for one or more consecutive days; and (3) sleep that is 

physiologically disrupted (fragmented) due to medical conditions or environmental factors” 

(Mallis, Banks& Dinges, 2010, pp. 403-404). A human’s circadian rhythm and homeostatic sleep 

drive oppose each other and promote a balance that turns into the fundamental need for the 

human body to sleep during its biological night (Mallis, Banks& Dinges, 2010, pp. 401-404).  

The normal workday of a human is based on the 24-hour rotation of the earth. The body 

has the tendency to require sleep based on the light and dark progression of the day. In a 24 hour 

period, the average human requires approximately seven to eight hours of sleep, leaving 

approximately 16 waking hours. The feeling of needing an afternoon nap, or feeling lethargic or 

weary in the afternoon is simply a low point in the biological cycle. By nighttime, or on average 

nine o’clock, that homeostatic sleep drive is at its peak and the body has the overwhelming urge 

to sleep for the night (Mallis, Banks& Dinges, 2010, pp. 403-406). 

Circadian rhythms modulate human alertness and performance and simply were not 

designed to function under the pressure of a 24-hour schedule. It is further understood “fatigue 

cannot be eliminated from aviation operations because of the inherent schedule requirements for 

trans-meridian travel, irregular and unpredictable schedules, long duty days, early report times, 

night flights, and reduced sleep opportunities” (Mallis, Banks& Dinges, 2010, p. 402). With the 

realization fatigue cannot be avoided, understanding the effects of fatigue are important for 

anyone in the aviation industry. The effects include, but are not limited to degraded human 

performance, diminished alertness, impairment of information processing, diminished memory, 

impaired communication skills, and slowed reaction time. This section will further define fatigue 

by explaining the three types of fatigue, and will discuss the effects of fatigue on performance 

and techniques to prevent fatigue. 
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Types of Fatigue 

 The three types of fatigue are acute, chronic, and cumulative. Fatigue is cumulative in 

nature and can result from a multitude of causes. Some fatigue yields little or no disruption in 

performance whereas other levels can render an individual incapable of completing simple tasks. 

Some major issues leading to fatigue are the time of day, disrupted circadian rhythms, substantial 

sleep loss over a 24-hour period, and accumulated sleep loss over several days. 

 Acute Fatigue. Miller (2001) defines acute fatigue as fatigue that develops within one 

work period and from which recovery occurs during one major sleep period (p. 5). A second 

definition states, “acute fatigue is associated with physical or mental activity between two 

regular sleep periods” (Department of the Army, 2000, pp. 3-13). Regardless of the definition, it 

is obvious that acute fatigue is the lowest level of fatigue and is manifested after relatively short 

periods. This paper will use the first definition of acute fatigue and relate it to the human intrinsic 

biological clock within a 24-hour cycle.  

 It is important to note that when dealing with acute fatigue, mental deficits like 

inattention, distractibility, errors in timing, neglect of secondary tasks, loss of accuracy and 

control, lack of awareness of error accumulation, and irritability will be noticed before any 

physical signs of fatigue will be felt (Department of the Army, 2000, pp. 3-14). 

 Chronic Fatigue. Chronic fatigue is much more dangerous occurring “over a longer 

period and is typically the result of inadequate recovery from successive periods of acute 

fatigue” (Department of the Army, 2000, pp. 3-14). This type of fatigue cannot be recovered 

from quickly; it may take several weeks to adequately recover from chronic fatigue. During 

chronic fatigue not only does an individual experience being physically tired but also the feeling 

of being mentally tired is experienced (Department of the Army, 2000, pp. 3-14). 
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 Chronic fatigue can manifest itself in all the ways acute fatigue does. In addition, chronic 

fatigue can cause an individual to experience insomnia, feel depressed, lose weight, exercise 

poor judgment, lose their appetite, experience slowed reaction time, as well as experience poor 

motivation and performance on-the-job (Department of the Army, 2000, pp. 3-14). 

 Cumulative Fatigue. Cumulative fatigue can also be compared to motivational 

exhaustion or burnout. It occurs when chronic fatigue persists and is never dealt with or 

recovered from. Cumulative fatigue usually will occur over a great deal of time but can occur 

more quickly depending on the nature of disruption to circadian rhythms, work performed, and 

rest that occur. This type of fatigue will eventually lead to the body no longer being able to 

perform or shutting down. 

Effects of Fatigue on Performance 

Understanding the three types of fatigue and symptoms associated with each is extremely 

important. To better understand the effects of fatigue, this section will discuss how those 

symptoms manifest, influence performance and how they can be detrimental when combined 

with automated systems. Reaction-time changes, reduced attention, diminished memory, changes 

in mood and social interaction, and impaired communication will be discussed along with work 

factors conducive to fatigue affecting performance. 

 Reaction-time changes can be seen in two distinct ways, depending on the level of fatigue 

combined with the individual involved. A decrease in reaction time can occur because an 

individual may react impulsively. A decrease in reaction time due to fatigue usually results in a 

rash, uninformed, or poor decision. A decrease in reaction time is usually a result of the common 

behavior that accompanies the onset of fatigue, such as decrease in motivation or sluggishness 

(Department of the Army, 2000, pp. 3-14). 
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Combined with automation operation or monitoring reaction-time change can adversely 

affect safety. Reacting impulsively can lead to decisions based on a small amount of information 

or the wrong information about a system, the crew, the environment or the aircraft. Rash 

reactions also run the risk of erroneous inputs or commands. An increase in reaction times can 

also affect safety but in different ways. Lethargic or slowed reaction can allow errors to occur or 

parameters to be exceeded without timely intervention. 

 Reduced attention is another common effect of fatigue. Reduced attention can result in 

the tendency to overlook or misplace sequential task elements. An example of this would be 

omitting a step on a checklist or not using a checklist at all. Automated systems require a number 

of tasks to be performed sequentially, and omitting or conducting steps out of order to lead to 

undesirable consequences. Reduced attention also includes preoccupation with a single task or its 

elements. This type of failure can be catastrophic if one or both pilots become fixated on a light 

or indication in an automated system and lose situational awareness of the aircraft altitude or 

obstacles in its flight path. Reduction of audiovisual scan both inside and outside the cockpit and 

a lack of awareness of poor performance are also results of reduced attention. Errors of scan 

omission or missed indications in automated systems followed by the inability to recognize a 

decrease in performance are examples of how reduced attention can once again adversely affect 

flight safety (Department of the Army, 2000, pp. 3-15). 

 Diminished memory is another negative effect of fatigue on human performance. A 

decrease in short term memory and processing capacity, difficulty adapting to change, inaccurate 

recall of operational events, neglect of peripheral tasks, and a decreased ability to integrate new 

information and solve problems are all results of diminished memory’s effect on performance. 

Analyzing all the effects of diminished memory, an operator’s inability or difficulty analyzing 
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and solving problems presents the gravest danger when dealing with automated systems. 

Neglecting tasks such as configuring automated systems properly for takeoff or landing could 

also introduce a potentially fatal problem (Department of the Army, 2000, pp. 3-15).  

 Changes in mood and social interaction can also result from fatigue and greatly affect 

human performance. A common characteristic of fatigue is irritability; this symptom can 

manifest with individuals being combative. Forms of depression are also related to fatigue and 

can lead to individuals withdrawing socially. A major concern with operators of automated 

systems deals with their knowledge of the system and familiarity with the way it operates. 

Confusion, unexpected operation or false alarms in automated systems can easily lead to 

irritability. Depression and social withdrawal will greatly influence an individual’s crew 

coordination and motivation, yet again posing problems when dealing with automated systems 

(Department of the Army, 2000, pp. 3-15). 

 The last major effect of fatigue on performance that will be discussed in this section is 

impaired communication. The importance of communication was outlined in the previous section 

dealing with crew resource management, and the negative effects related to communication are 

just as important to understand. An operator’s ability to communicate and receive information is 

affected due to misinterpretation, omission of important details, or disregarding portions of 

information they receive. All vital components of good crew resource management, and without 

which automated system interaction can be impaired. Changes in pronunciation, rate of speech, 

tone, and volume also can be adversely effected due to fatigue (Department of the Army, 2000, 

pp. 3-15). 
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Prevention of Fatigue 

Research outlining fatigue, risks associated with restriction of sleep, loss of sleep, 

circadian desynchronosis and the relationship between sleep and circadian systems began around 

1930. Around this same time, duty and flight time regulations were originally developed. 

Original research was based on time-on-task theories rather than sleep loss and circadian 

misalignment. “Although a large body of scientific research in the past 40 years has established 

that the interaction of sleep and circadian dynamics determines fatigue levels in otherwise 

healthy individuals such as pilots, the prescriptive scheduling regulations from the 1930s remain 

in place today with very few changes” (Mallis, Banks& Dinges, 2010, p. 419).  

Current commercial aviation operations place pilots at risk for fatigue related to 

operational challenges including irregular and unpredictable schedules, long duty days, early 

report times, night flights, reduced sleep opportunities, and circadian disruption. These risks are 

“further complicated by highly automated cockpits that require minimal interaction with aviation 

systems, which results in a high requirement for relatively passive vigilance in flight crews” 

(Mallis, Banks, 2010, p. 414). Prolonged vigilance and sustained attention are difficult tasks to 

perform reliably when fatigued, but vital to the safe operation of automated aviation systems 

(Mallis, Banks & Dinges, 2010, p. 414). 

There is a clear need to “develop scientifically valid fatigue-management approaches to 

mitigate sleep loss, enhance alertness during extended duty periods and cope with circadian 

factors that are primary contributors to fatigue-related aviation incidents and accidents” (Mallis, 

Banks & Dinges, 2010, p. 402). The fatigue risk management system (FRMS) is an evidence-

based and non-prescriptive approach for addressing performance, safety levels, and fatigue 

challenges associated with aviation operations. Combined with existing safety management 
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systems, this approach can be implemented for the measurement, management, and mitigation of 

the risks associated with fatigue. In addition to this system, research in bio-mathematical 

scheduling tools is being conducted and implemented regarding mitigation of the risks associated 

with fatigue. The goals of this effort are to predict times neurobehavioral functions and 

performance will be maintained, establish time periods for maximal recovery sleep, and to 

determine the cumulative effects various work-to-rest schedules have on overall performance 

(Mallis, Banks & Dinges, 2010, p. 420). 

“Humans are often unable to accurately estimate how variable or uneven their alertness 

and performance have become due to inadequate sleep or working at night” (Mallis, Banks & 

Dinges, 2010, p. 427). Because fatigue cannot be prevented, this fact provides evidence as to the 

importance of continuous fatigue prevention for aviation personnel, and especially for aviation 

personnel requiring elevated vigilance due to automated systems.  

Controlling the sleep environment by maintaining a dark and quiet setting, and avoiding 

work or other cognitive activities in bed tend to improve quality of rest. Adhering to a set work 

schedule or adjusting to shift work is vital to getting adequate rest. To help prevent circadian de-

synchronization, it is recommended to maintain a constant sleep schedule even on days off, do 

not go to sleep on an empty or full stomach, and avoid caffeine consumption within six hours of 

attempting to sleep. It is further recommended that one maintain a healthy lifestyle to include 

proper diet and exercise as well as taking naps when needed (Department of the Army, 2000, pp. 

3-17-3-18). 

“Operational demands resulting in extended work days, increased workload levels, 

reduced sleep opportunities and circadian disruption continue to pose significant challenges 

during aviation operations” (Mallis, Banks & Dinges, 2010, p. 430). Fatigue cannot be prevented 
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and is closely intertwined with physiological and behavioral functions. Acute, chronic, and 

cumulative fatigue are all aggregate in nature, and all lead to degraded performance on a variety 

of levels. The requirements of prolonged vigilance and sustained attention dealing with 

automation are extremely difficult tasks to perform reliably when dealing with fatigue. Many 

preventive measures are available to manage fatigue, but programs to deal with fatigue in 

commercial aviation operations are extremely outdated and do not correspond to current 

research. 

Spatial Disorientation 

 Spatial disorientation is one of the most common and most deadly challenges facing 

aviators. Spatial disorientation “refers to a false perception of distance, attitude, or motion 

relative to the plane of the Earth’s surface when a correct perception is necessary for controlling 

position, attitude or motion” (Collins, 1995, p. 1). It can occur during every phase of a flight 

from ground taxi to landing. No set conditions exist that dictate when it will occur, therefore a 

pilot’s knowledge of spatial disorientation, the illusions that cause it, the human systems behind 

the illusions, and a knowledge of system operation and displays are vital to combating spatial 

disorientation. The human visual, vestibular, and proprioceptive systems provide spatial 

orientation but are not without error. The systems have a number of illusions that may be caused 

by a variety of factors such as acceleration, angular movements or perception. The human body’s 

interpretation of these factors or conflicting interpretations lead to spatial disorientation. 

 Visual System. Spatial disorientation is the mistaken perception of one’s position; in 

contrast, spatial orientation is defined as, “our natural ability to maintain our body orientation 

and/or posture in relation to the surrounding environment at rest and during motion” (Antuñano, 

2011, p. 1). Humans’ eyes, or the visual system, provide 90% of the information the human body 
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uses to orientate itself with respect to the Earth. The visual system is by far the most reliable of 

any human sensory system. Visions oftentimes will override mismatched signals from other 

sensory systems, with the brain unaware conflicting signals were received. Vision is very 

reliable; however, vision is susceptible to illusions or mistakes in interpretation, which can lead 

to spatial disorientation (Wynbrandt, 2004, pp. 1-2). 

 The aerial perspective illusion is very common and will oftentimes go unrecognized. 

Aerial perspective deals with the way that a pilot interprets what they are seeing from the air. 

Perception is usually tied to experience or in reference to known data but can be misinterpreted 

very easily. For example, an aircraft on final approach may view a runway in a multitude of 

ways depending on the width, length, lighting, the sloping of the runway itself or the sloping 

terrain surrounding an airfield. An example of this would be an approach over flat terrain with a 

down sloping runway. The perception can give the pilot the illusion they are on a low altitude 

final approach; if the pilot responds to this illusion they will slow the aircraft that may result in a 

stall. Just the opposite is true for an approach over flat terrain with an up sloping runway. The 

pilot may perceive the aircraft is on a high-altitude final approach and may lower the nose. If 

there is insufficient altitude the pilot may end up running the aircraft into the ground (Antuñano, 

2011, pp. 2-3). 

 Another example of a visual illusion is the black hole approach illusion. Black hole 

illusion occurs during final approach in night operations with no moon or stars present, over 

water, or over terrain with no lights to a lighted runway. A pilot will believe that the runway is 

tilted left and up sloping. If a visible horizon is present this illusion can be easily overcome; 

however, like the aerial perspective illusion, many variations to the illusion exist. A very 

dangerous version of this illusion occurs when on final approach to a runway with no lights 
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before it and rising lighted terrain directly after. The pilot will perceive a high altitude approach, 

and the reaction could nose the aircraft over and contact the ground well short of the runway 

(Antuñano, 2011, p. 3). 

 Staring at a fixed point of light during hours of darkness causes the auto kinetic illusion. 

The light source could be a star, any light on the ground or any visible light on the horizon. After 

staring at the light, the pilot may get the sensation that the light is moving. If fixated on the light, 

the pilot may also get the impression that the light is moving in their path of flight or directly 

toward the aircraft. If the pilot remains fixated on the light they may not pick up any other visual 

cues that would tell them their perception was not accurate (Antuñano, 2011, p. 4). 

 False visual reference illusion can be extremely dangerous for any pilot that may 

experience it. This illusion occurs when a pilot references something other than the viewable 

horizon as their horizon. They may use a cloud layer, a ridgeline or a string of lights on the 

horizon. The pilot will use the false horizon and orient the aircraft in reference to it. If 

unrecognized, the aircraft may be placed in a turn, climb, descent or any combination of the 

above (Antuñano, 2011, p. 4). 

 The vection illusion is another visual illusion that can cause any pilot to become 

disorientated. Vection illusions deal with the pilot’s false interpretation of another aircraft or 

object’s movement as their own. This illusion is very common and can be quite confusing if 

proper scanning and use of other types of vision are not incorporated (Antuñano, 2011, p. 4). 

 Many other visual illusions and variations of those mentioned above have the possibility 

of occurring during flight. Proper use of visual references and experience will contribute greatly 

to safe operation of any aircraft. Many techniques are used to identify and work through visual 

illusions, comparing the known size of an object, comparing the known shape of an object, using 
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known distance of illumination, an object’s position or layer in the field of view, and using 

texture and contrast of known objects. It is crucial for the pilot to know what he/she is looking 

for and be able to identify illusions in an attempt to avoid spatial disorientation (Antuñano, 2011, 

p. 4). 

 Vestibular System. The vestibular system is the human body’s secondary positioning 

system. The primary purpose of the system is to maintain balance, which is achieved by signals 

being sent from the inner ear to the brain. Each ear consists of two structures to achieve this 

communication, the semicircular canals and the otolith organs. Both provide the brain with 

gravity and motion information, which can supplement vision by providing reference to position 

or motion. These organs’ signals can be misleading due to many factors, such as illness, 

dizziness or one of many illusions associated with the vestibular system (Wynbrandt, 2004, p. 2).  

 The semicircular canals are associated with angular or somatogyral illusions. The 

semicircular canals consist of three tubes, which are perpendicular to each other. Each tube 

contains sensory hairs and fluid, which moves with the motion of the head or the body. Fluid 

movement within the canals provides the brain with signals, which produce the human body’s 

perception of pitch, roll, and yaw. The four somatogyral illusions associated with the 

semicircular canals are the leans, graveyard spiral, graveyard spin, and the coriolis illusion. Each 

illusion varies in severity and is more prevalent during conditions of unreliable visual reference 

and angular motion (Wynbrandt, 2004, p. 2). 

 The most common of the four illusions is the leans. The leans occur after a pilot levels 

the wings following a prolonged unrecognized turn. This illusion is due to the semicircular 

canals not being able to detect rotational acceleration that results in turns that are less than two 

degrees per second. If the semicircular canals were stimulated during the turn the pilot would 
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feel as if they were straight and level, when actually in the turn. When the pilot actually leveled 

the wings, they would have the sensation of entering a turn in the opposite direction. A common 

response is for the pilot to lean in the direction of the original turn, in an attempt to regain what 

they perceive as a correct orientation to the horizon (Department of the Army, 2000, pp. 9-14-9-

15). 

 Another illusion dealing with unrecognized turns is the graveyard spiral. This illusion 

occurs during high-speed descents. During the descent the wings can drop causing the aircraft to 

enter a turn. If the turn is less than two degrees per second the pilot may not realize they are in a 

turn. As the speed during the descent increases, the turn may also increase in severity. As the 

aircraft spirals toward the Earth, the pilot will sense the rate of descent, but will not realize they 

are in a turn. Because the turn gradually was built up and is now coupled with the aggressive rate 

of descent, control movements will only aggravate the turn (Department of the Army, 2000, pp. 

9-15-9-16). 

 The graveyard spin is not as common as the leans, but the graveyard spin is much more 

dangerous. Graveyard spins occur after a prolonged turn, greater than 20 seconds, when the 

semicircular canals are stimulated and the pilot perceives that they are no longer in a turn, or that 

the severity of the turn is decreased. When the pilot levels the wings, they will perceive that they 

have entered a turn in the opposite direction. Flying straight and level creates a sensory conflict 

that could result in the pilot reentering their original turn. During the duration the pilot may be 

losing altitude due to the prolonged turn, which if not arrested could result in fatality 

(Department of the Army, 2000, pp. 9-15-9-16). 

 The most dangerous of the three somatogyral illusions is the coriolis illusion. Coriolis 

illusion involves the simultaneous stimulation of two semicircular canals, caused by sudden or 
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abrupt tilting or movement of the head while in a turn resulting in the oftentimes overwhelming 

sensation of movement on all three axis at once. The Coriolis illusion can immediately 

disorientate a pilot and cause them to lose control of the aircraft (Antuñano, 2011, p. 4). 

 The second of the two vestibular sensory organs are the otolith organs. “The otolith 

organs are small sacs at the base of the semicircular canals. They are embedded with sensory 

hairs and contain a gelatinous membrane with chalk-like crystals – called otoliths” (Wynbrandt, 

2004, p. 2). The otolith organs provide the body with the sense of acceleration and deceleration. 

The membrane moves when the head or body are in motion and pushes against the sensory hairs 

that results in a feeling of gravity and accelerative forces. Three illusions are associated with the 

otolith organs, which are referred to as somatogravic illusions (Wynbrandt, 2004, p. 2). 

 The first of the three somatogravic illusions is the oculogravic illusion. “The oculogravic 

occurs when an aircraft accelerates and decelerates” (Department of the Army, 2000, pp. 9-17). 

When a pilot increases their speed, the gelatinous layer containing the otolith organ is shifted aft. 

If the pilot then fails to crosscheck the instruments, they will perceive the aircraft to be in a nose 

high attitude.  The natural reaction if the pilot perceives attitude would be to induce a dive. The 

inverse illusion and reaction is true with a deceleration (Department of the Army, 2000, pp. 9-

17). 

 The second somatogravic illusion is the elevator illusion. This illusion occurs during 

upward acceleration and is commonly experienced by pilots encountering updrafts. The inputs 

supplied by the pilot’s otolith organs cause the sensation of a nose high attitude and the natural 

response is to initiate a dive.  The opposite is true regarding the last of the three somatogravic 

illusions. The oculoagravic illusion results in the sensation of a nose low attitude and the pilot 

has a tendency to pull back on the stick or reduce speed. This a common occurrence when 
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encountering downdrafts or when a helicopter enters autorotation (Department of the Army, 

2000, pp. 9-18) 

 Proprioceptive System. The proprioceptive system consists of the “nerves in the skin, 

muscles, joints, and internal organs, along with hearing” (Wynbrandt, 2004, p. 2). The phrase 

“seat of the pants flying,” is associated with the proprioceptive system and the body’s 

interpretation of where it is in space or how it is moving through space due to forces exerted on 

the aforementioned body parts. The forces on the system are not as apparent as on the ground; in 

flight they are felt as changes in G-forces and pressures are exerted on the body. Hearing 

contributes to position estimation relative to a sound source or movement. Despite the fact that 

no illusions are directly related to the proprioceptive system, every system’s inputs are compared 

and the discrepancies between them are what causes disorientation (Wynbrandt, 2004, pp. 2-3). 

 Prevention. As with many things, experience is truly a lifesaver. Every system discussed 

provides signals to the brain relaying vital information to establish the human position and 

motion relative to the surface of the Earth. When illusions occur, the signals are contradicting 

each other, which if not corrected can lead to spatial disorientation. Knowing what to look for or 

recognizing the illusions and their symptoms is very beneficial for prevention, treatment, and 

avoidance of spatial disorientation. 

 The prevention and treatment of spatial disorientation have common practices associated 

with each. Trusting instruments, understanding and utilizing an appropriate digital display setup, 

knowledge and understanding of automated systems, and proper use of automated systems are all 

vital in preventing and treating the onset of spatial disorientation.  

 Trusting the instruments, along with understanding and utilizing appropriate digital 

display setups, is the most prevalent way to prevent or treat spatial disorientation. With the onset 
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of automation and more advanced cockpits becoming commonplace in the aviation industry 

these practices now coincide due the fact instruments are more often than not displayed on 

digital displays.  Possessing relevant and appropriate information displayed will help provide 

adequate reference to combat the onset of spatial disorientation or treat it if symptoms are 

experienced. Referencing, trusting, and having confidence in instrument displays will help 

combat the onset of illusions; however, knowledge of location and functionality of displays is 

vital for the efficient use of the aforementioned displays.  Experience will also improve a pilot’s 

ability to discern what is important regarding displayed indications and the speed at which they 

can refer to such indications. 

 Along with more advanced cockpit displays, present day aircraft often have multiple 

automation features that can help with dealing with spatial disorientation. A detailed knowledge 

of automated system function along with the proper use of automated systems can greatly reduce 

the chances of accidents resulting from spatial disorientation. When experiencing the onset of 

spatial disorientation, rather than fight through the illusion on the controls, a pilot can allow the 

aircraft to fly itself utilizing an autopilot feature and provide the pilot time to re-orientate 

themselves. This is, of course, dependent on location and proximity to hazards. Many other 

automated features, such as ground proximity warning systems, provide extra inputs or warnings 

if a spatial disorientation situation has occurred.  

Pilots of modern day aircraft have many automated systems to help them combat spatial 

disorientation. However, if they do not know how to use the systems at their disposal, or if they 

do not understand their operations, they may not provide help or may even be counterproductive 

in dangerous situations. A pilot’s indecision to rely on their displays and automation usually 

result in accidents when spatial disorientation is present. Trusting instrument displays, 
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maintaining proficiency and knowledge of how automated systems are designed to operate and 

assist, and being familiar with spatial disorientation and its illusions are vital to combating 

spatial disorientation. 

Situational Awareness 

“Situational awareness (SA) can be conceived of as the pilot’s internal model of the 

world around him at any point in time” (Endsley, 1988, p. 97). Situational awareness is vital to 

the safe and efficient operation of any automated system and is recognized as a crucial 

component for success in the aviation community. Often overlooked during routine operation, a 

lack of situational awareness by pilots can lead to catastrophic or fatal system failures. The 

following discussion on situational awareness in relation to aviation automation systems will 

provide a brief introduction and definition of situational awareness, discuss the levels of 

situational awareness, and examine the negative impacts automation can have on situational 

awareness in complex automated aviation systems.  

The automation of tasks has not removed the pilot from playing a critical part in system 

operation, but their role has changed from operator to system monitor. This role may not be 

ideally suited for humans, but automation system functionality and efficiency exceeds the 

possibilities of human performance. High levels of efficiency and functionality are designed to 

reduce operator workload and increase situational awareness. However, an increase in situational 

awareness by system operators has not always been achieved, and an operator’s level of 

situational awareness can vary as easily as the level of complexity in automation systems. 

System designers have strived to increase situational awareness, but in so doing have discovered 

many challenges (Endsley, 1996, pp. 163-164).  
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 “Originally a term used solely in the aircraft community, situational awareness has 

developed as a major concern in many other domains where people operate complex, dynamic 

systems, including the nuclear power industry, automobiles, air traffic control, medical systems, 

teleoperations, maintenance, and advanced manufacturing systems” (Endsley, 1996, p. 165). 

Situational awareness is formally defined by Endsley (1988) as the perception of the elements in 

the environment within a volume of time and space, the comprehension of their meaning, and the 

projection of their status in the near future (p. 97). In aviation, a pilot uses their senses and 

aircraft displays to form a basis for their situational awareness. Their ability to further improve 

their level of situational awareness is dependent upon their preconceptions, experience, training, 

capabilities, mission, and current workload. A pilot’s level of situational awareness forms a vital 

input to the pilot’s decision making process (Endsley, 1988, p. 97). 

 An operator’s level of situational awareness can be categorized into three distinct levels. 

The first, or level 1 SA, involves the operator recognizing critical environmental factors. Level 2 

SA involves “understanding what those factors mean, particularly when integrated together in 

relation to the operator’s goals” (Endsley, 2001, p. 4). Level 3 SA occurs when an operator is 

able to understand future system actions or reactions based on environmental factors and system 

indications. The higher the level of situational awareness an operator possesses the timelier and 

more effective they can function (Endsley, 2001, p. 4). 

“The first step of achieving SA is to perceive the status, attributes, and dynamics of 

relevant elements in the environment” (Endsley, 2001, p. 4). When flying, a pilot needs to 

perceive important situational elements such as altitude, airspeed, and location relative to their 

desired flight path. In addition, they must be aware of their flight system operations in reference 

to flight parameters and other system characteristics. They must monitor the weather as well as 
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other traffic and navigational data relevant to their flight. Depending on the type of aircraft and 

its designated tasking, additional information would need to be considered to achieve the first 

level of situational awareness. Any combination of the aforementioned items could severely tax a 

pilot, and combining them all could at times be overwhelming (Endsley, 2001, p. 4). 

A level 1 SA failure would result in a pilot failing to correctly perceive crucial 

environmental elements. This can occur for a number of reasons, which include the data not 

being available, the data being hard to discriminate or detect, a failure to monitor or observe 

data, the misperception of data or from memory loss. Of the level 1 SA failures, to monitor or 

observe due to omission, distractions imposed by other relevant tasks, and a high task load are 

the most prevalent. Data not being available to an operator is also a large cause of failures, and is 

often attributed to a failure of system design or a failure of an operator to perform a necessary 

task. Some causes of information being difficult to detect or perceive would include inadequate 

lighting, high noise levels, or obstructions blocking and operators view. A loss of memory, often 

associated with a distraction or task saturation, negatively affects situational awareness because 

pilots’ situational awareness is based upon their ability to rely on a number of factors in memory 

(Endsley, 1999, pp. 3-4).  

 Comprehension of the current situation, or Level 2 SA, sees a transition from the 

operator merely recognizing environmental factors to gaining an understanding of how factors 

interact and are important. When level 2 SA is reached, “the operators put together Level 1 data 

to form a holistic picture of the environment, including a comprehension of the significance of 

objects and events” (Endsley, 2001, pp. 4-5). For example, if a warning light illuminates during 

takeoff, the pilot must immediately determine if the warning light warrants aborting the takeoff 

and combine this decision with their knowledge of the remaining runway and determine if the 
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takeoff can be aborted safely. Pilots with less experience will be able to evaluate the elements of 

the sample situation, but may fall short when attempting to comprehend the severity of the entire 

situation and integrate the various data elements in order to make a good decision based on 

situational awareness (Endsley, 2001, pp. 4-5). 

A lack of poor mental models, the use of incorrect mental models or the over-reliance on 

default values can all lead to a failure to comprehend the situation. Of the three, the lack of a 

good mental model is the most common; simply put, a pilot does not have a good mental model 

for combining information or associating that information with goals within an automated 

system. When a pilot has a mental model, but it is for a similar system, they can misinterpret 

information or misunderstand the system that leads to incorrect system diagnoses and situational 

awareness errors. In the absence of real-time data, pilots can rely on habitual expectations rather 

than current data that can lead to over-reliance situational awareness errors. Level two situational 

awareness errors also can be caused by memory limitations or when significant information is 

simply not comprehended or properly integrated (Endsley, 1999, pp. 3-5). 

Lever 3 SA or projection of future status is the highest level of situational awareness. 

This level of situational awareness based on being able to predict the future state of the system 

by evaluating the current state and knowledge of the system dynamics is “critical for allowing 

decision makers to function in a timely and effective manner” (Endsley, 1996, p. 166). Only with 

comprehensive and accurate situational awareness can operators accurately diagnose and correct 

automated system deviations and provide the proper inputs for automated system operation 

(Endsley, 2001, p. 5). 

Over-projecting current trends, a lack of a mental model or a poor mental model can lead 

to a level 3 situational awareness failure. Projecting future actions to the state of the system is an 
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extremely demanding task. This failure can occur frequently when pilots have a high level of 

situational awareness but are not capable of projecting future actions (Endsley, 1999, pp. 3-5). 

 Automation was designed to improve situational awareness by reducing stress, workload, 

and the overall complexity of a system for the operator. However, the optimal automation system 

design meant to improve situational awareness is not always realized during operation. Endsley 

and Kiris (1995) lists three major mechanisms through which automation can directly affect 

situational awareness: (1) a loss of vigilance and increase in complacency associated with the 

assumption of a monitoring role; (2) a move from active processor of information to passive 

recipient of information; and (3) a loss of or change in the type of feedback provided to operators 

concerning the state of the system (p. 382). In addition to these three mechanisms, a lack of 

understanding of automation can also negatively influence situational awareness. 

 Changes in vigilance and complacency associated with monitoring can cause significant 

reductions in situational awareness. These reductions can be caused by human neglect to monitor 

system parameters or automation itself, vigilance problems that result in a failed attempt at 

monitoring or system alerts informing the operator of problems that result in the operator failing 

to grasp the severity of the problem due to high false alarm rates within the system (Endsley, 

1996, p9. 166-167). 

Many aviation accidents have been attributed to pilots failing to detect critical automation 

system changes. “Complacency or over-reliance on automation is one major factor associated 

with a lack of vigilance in monitoring automation” (Endsley, 1996, p. 167). Complacency can be 

attributed to pilots placing too much trust in automated systems due to the low failure rates of 

automated systems. This trust is vital for manufactures producing the automation systems to 

establish but can lead to pilots diverting their attention away from the automation systems, thus 
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reducing their situational awareness. The probability of an undetected automation failure due to a 

lack in situational awareness is increased when automation systems behave reasonably but in an 

incorrect manner. In contrast to undetected automation failures, monitoring problems are also 

prevalent in systems producing high false alarm rates. High false alarm rates can produce a lack 

of trust, and cause pilots to ignore or disable noticeable usual or auditory warning signals or 

alarms (Endsley, 1996, p. 167).  

In addition to vigilance, complacency, and monitoring, the role the operator performs, 

whether active or passive can negatively affect situational awareness. When actively processing 

or controlling systems operations, operators tend to have an easier time detecting anomalies and 

reacting to them. When performing a passive observer role of an automated system, the operator 

tends to have difficultly determining the need for system intervention and orienting themselves 

to the current system performance parameters to accomplish such an intervention. “Turning a 

human operator from a performer into an observer can, in and of itself, negatively affect 

situational awareness, even if the operator is able to function as an effective monitor, and this can 

lead to significant problems in taking over during automation failure” (Endsley, 1996, p. 168). 

Passive processing of information may also inhibit the integration of system information into 

active working memory. As a result, a monitor may have a lower comprehension of data 

pertaining to overall system function. This can further cause a more passive approach to decision 

making regarding system data and an over reliance on manufacture or expert recommendations 

rather than interpretation and evaluation of actual system performance (Endsley, 1996, pp. 167-

168). 

Feedback is another mechanism that can directly affect situational awareness. Actions 

require feedback for appropriate monitoring, error detection, error correction, and for the 
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operator performing actions to stay engaged with respect to system operation. “When processes 

are automated, new forms of feedback are created, frequently incorporating more accurate visual 

displays; yet the fact that information is in a different format may make it harder to assimilate 

with other information or less salient in a complex environment” (Endsley, 1996, p. 168-169). 

However, Norman (1990) points out adequate feedback to the human operators is absent far 

more than it is present, whether the system is a computer operating system, an autopilot or a 

telephone system (p. 11). Automation designs have in some cases intentionally concealed 

information from the operator. Lack of feedback prohibits learning of tasks and the way systems 

respond to various inputs, both of which lead to a reduction in situational awareness. “Without 

appropriate feedback, people are indeed out of the loop: they may not know if their requests have 

been received, if the actions are being performed properly or if problems are occurring” 

(Norman, 1990, p. 11). The elimination or change of system feedback provided to operators, 

whether intentional or inadvertent during the design process, represents a substantial challenge to 

operators when it comes to maintaining situational awareness (Norman, 1990, pp. 10-12). 

Another major obstacle to achieving situational awareness in relation to automation in 

aviation is a lack of understanding of automation. This topic was briefly mentioned when 

discussing the levels of situational awareness failures but is much more complex and requires 

further explanation. Endsley (1996) notes one of the major impediments to the successful 

implementation of automation is the difficulty many operators have in understanding automated 

systems, even when they are attending to them and the automation is working as designed (p. 4).  

The inherent complexity of automated systems, poor training, and inadequate interface 

designs are some of the leading causes of this lack of understanding. The development and 

sustainment of situational awareness requires a pilot to track a “large quantity of rapidly 
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changing system parameters, and then integrating them with other parameters, active goals and 

one’s mental model of the system to understand what is happening and project what the system is 

going to do” (Endsley, 1996, p. 4). This understanding is imperative to permit a pilot to 

proactively perform as an operator and take actions accordingly to prevent future problems. The 

problem of understanding becomes more evident as system complexity increases, as automation 

has done since its inception. Tasks become more complex and demanding, and the system 

function itself becomes more complex and difficult to understand. With complexity also comes 

an increase in parameters and information that must be monitored and understood. 

Comprehension and projection increasingly become more difficult and situational awareness can 

be lost or become much more difficult to obtain. Continuity in design changes and development 

are vital to increasing understanding of complex automated systems and allow pilots to gain 

situational awareness. 

Methodology 

Study Design 

This study is designed as an eleven-year qualitative and quantitative time series analysis 

of the causal factors of accidents and ensuing fatalities in part 121 and part 135 U.S. civil 

aviation accidents. A specific focus is given to evaluating the role played by human factor errors 

in flight accidents and fatalities and whether technological advances and the implementation of 

automation have affected the number and severity of commercial aviation accidents over the 

defined time period. Further emphasis is placed on: (1) evaluating the influence and role of pilot 

training in relation to automation; (2) pilot over-reliance on automation; (3) the merits of 

intuitive interface design; and (4) the effect crew coordination has on reducing or increasing the 

rate and severity of aviation accidents and fatalities. 
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The qualitative section of this analysis strives to determine whether there are practical 

and/or theoretical underpinnings in the causal analysis of civil aviation accidents and fatalities. In 

other words, this study will determine whether one factor is more likely to result in an accident 

or fatality and to what extent certain types of human error are likely to cause an accident that 

results in fatalities. Furthermore, this study will analyze the role played by the implementation of 

automation in affecting the number and severity of commercial aviation accidents over the 

defined time period. 

The qualitative analysis splits its focus between the different components of latent and 

active human errors (defining and analyzing as necessary), as well as other factors that might 

contribute to aviation accidents and fatalities, and the role played by technological advances in 

the implementation of automation on aviation accidents.  

Data was compiled by reviewing aircraft accident data provided by the U.S. National 

Transportation Safety Board (NTSB) for the years 2000-2010. This particular time period was 

chosen for data collection because it was determined that it would provide enough data for robust 

statistical analysis, and because it was the most recent continuous 11-year period of time when 

data was available. Perhaps most importantly, the year 2000 will be used as a base for 

comparison and provide data for an entire year prior to 2001 when commercial aviation traffic 

was severely affected by the events of September 11. The use of the year 2000 as a base for 

comparison will help identify any statistical irregularities directly caused by changes in 

commercial air traffic during 2001 and subsequent years.  

The inclusion criteria for this study include civil aviation accidents, as defined by the 

NTSB, during the above specified time period for part 121 and 135 commercial aircraft. Part 121 

refers to scheduled U.S. air carrier operations, while part 135 commercial aircraft are scheduled 



THE INFLUENCE OF AUTOMATION ON AVIATION            68 

 

or non-scheduled charter and air taxi operations. Data collection is limited to U.S. based 

commercial air carriers; whether the accident occurred domestically or abroad, the accident is 

included in this analysis. Aviation incidents and data pertaining to near accidents involving 

automation technology will not be analyzed as part of this project.  

The causal factors used by this study were determined by examining those defined by the 

NTSB and classifying them accordingly, as well as from information gleaned from a review of 

relevant literature. Thus, causal factors are defined for the purposes of this study as: (1) human 

factor errors; (2) environmental factors; (3) mechanical failures; and (4) ground crew errors. An 

“other” category was introduced into the analysis due to the fact that a number of accidents were 

categorized by the NTSB in this manner as the accident’s cause could not be entirely attributed 

to any one of the above mentioned categories or was simply not captured by the defined causal 

factors – the most prevalent error/failure in the “other” category were accidents involving 

wildlife, of which bird strikes were most common. 

A total of 1,165 accidents (430 – Part 121 accidents and 735 – Part 135 accidents) were 

examined during the specified time period. The NTSB’s identified causes were recorded and an 

interpretation of the reports was conducted based on the researcher’s experience in the aviation 

field to determine the specific human factors involvement and the presence of automation errors. 

Eight sub-categories of the human factor errors were specified for this report based on the review 

of relevant literature. For the purpose of this study, human error causal sub-categories are 

defined as: (1) pilot error not explained or casual factor impossible to determine with information 

provided on accident report; (2) errors relating to CRM; (3) errors in which fatigue was noted as 

a contributing factor; (4) errors involving spatial disorientation; (5) situational awareness errors; 

(6) errors linked to deficiencies in training; (7) system error leading to a mistake due to 
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insufficient information or faulty information; and (8) errors involving checklists or the 

organization’s standard operating procedures. Detailed exploration into every human factor error 

was conducted with the intent of discovering relationships between the human factor error with 

automation or obvious automation errors. 

The quantitative section of this analysis will attempt to separate out the automation factor 

from all other human factor errors to more accurately determine statistical relationships, while 

the qualitative analysis of this sub-factor will focus on defining automation, discussing optimal 

automation levels, analyzing the benefits versus shortcomings of automation, and establishing 

trends in causal factors related to automation technology accidents. 

The quantitative analysis attempts to determine whether a significant quantitative 

relationship exists between the identified causal factors and aviation accidents and fatalities. 

Statistical regression also attempts to determine the direction and strength of this quantitative 

relationship, i.e. does an increase in errors among any of the causal factors lead to an increase or 

decrease in fatalities and to what degree? Furthermore, the regression assists in identifying if any 

of the causal factors are correlated with each other and to what degree.  

Statistical Methodology 

Several statistical models were developed to gain an understanding of the quantitative 

relationships that may exist between the identified causal factors and accidents and fatalities. For 

the purposes of statistical regression, the following linear regression models were elaborated for 

each aviation type (part 121 and part 135) and are used as part of this study’s analysis: 

1. Dependent variable (Y)=Accident rate (total #/flight hours for years 2000-2010) 
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a. Independent variables (X)=HF (human factors), ENV (environmental 

factors), MECH (mechanical factors), GRNDCREW (ground crew errors), 

& OTHER 

2. Dependent variable (Y)=Fatality rate (total #/flight hours for years 2000-2010) 

a. Independent variables (X) – total # of accidents attributed to each category 

for years 2000-2010=HF (human factors), ENV (environmental factors), 

MECH (mechanical factors), GRNDCREW (ground crew errors), & 

OTHER 

3. Dependent variable (Y)=Accident rate (total #/flight hours for years 2000-2010) 

a. Independent variable (X) – total # of accidents attributed to automation 

errors for years 2000-2010=AUTO (automation) 

4. Dependent variable (Y)=Fatality rate (total #/flight hours for years 2000-2010) 

a. Independent variable (X) – total # of accidents attributed to automation 

errors for years 2000-2010=AUTO (automation) 

A few more statistical models were considered but were eliminated due to the fact that 

they were not the correct functional form, i.e., the data was not a good fit for the model. For 

example, the first model chosen was a binary logistic regression format. This was because the 

data for our chosen dependent variable (either accidents or fatalities) were dummy variables and 

thus seemed well suited to the binary logistic model. However, this functional form did not 

account for the flight hours, which if not included, would lead to problems with omitted 

variables or incorrect assumptions of significance. The solution would be to include this data, 

however to include this data, the dependent variable would have to be made into a nominal rather 

than dummy variable, which then made the binary logistic model a poor choice for the data. 
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In correcting for this error, the linear models were found to be a better fit for the data. 

This was determined by reviewing the theory more carefully, analyzing the relationship between 

X and Y, and observing that the non-linear models had biased and inconsistent estimates and 

overall poor fits.  

Theoretical considerations were determined by a review of the relevant literature as well 

as accident report data. The determination of the variables was especially informed by the 

literature review, in particular by the various theoretical models of human error classification. 

Possible problems in identifying the variables included omitted and irrelevant variables – this 

was overcome by carefully reviewing the literature and by testing the models for reasonable 

indicators of a good measure of fit.  

After the models were developed and tested, and it was determined that the models did 

not include irrelevant variables nor were there omitted variables, the regressions were examined 

for violations of the Classical Assumptions. All models were tested for multicollinearity, serial 

correlation, and heteroskedasticity.  

Multicollinearity was a specific concern for this study as many of the identified causal 

factors of both accidents and fatalities are correlated with one another. For example, a pilot may 

make a mistake due to poor weather. While the accident may be ultimately classified as due to 

the pilot’s error (HF) and not the weather (ENV), clearly these two variables can affect one 

another. While test results reflected some multicollinearity, the available solutions would have 

only made the model worse, so nothing was done to correct the problem; however, its presence 

(and its effect on results) is noted in the results section of this study.  

The models were tested for serial correlation, which is a problem with regressions which 

observations of the error term are correlated. If serial correlation is impure, omitted variables can 
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be added to fix the problem, but the functional forms chosen for this study did not have any 

omitted variables. Another option in the presence of serial correlation is to use the Generalized 

Least Squares method. In this case, none of the chosen models suffered from serious serial 

correlation, as revealed by the Durbin-Watson d test.  

The models were also tested for heteroskedasticity, which results in the variance of the 

error term being not constant for all observations. The White test did not reveal a problem with 

heteroskedasticity for any of the elaborated models; therefore, a Weighted Least Squares 

approach was not necessary.  

An analysis of variance (ANOVA) was also carried out to add specific focus on the 

statistical relationship between automation and accidents/fatalities. The objective of the ANOVA 

is to determine if there is a statistically significant difference in the means of the variables to 

draw conclusions about their statistical relationship.  Of specific interest to this study is the 

relationship between automation and resulting accidents and automation and fatalities. An 

objective of automation is to reduce accidents and ensuing fatalities, therefore it is hypothesized 

that automation and accidents/fatalities would be negatively correlated.  

Four ANOVA models were developed and run for both parts 121 and 135 resulting in eight 

sets of output: 

1. Dependent variable (Y) = accidents (accident rate for each of the 11 years); Independent 

variable (X) = automation 

2. Dependent variable (Y) = fatalities (fatality rate for each of the 11 years); Independent 

variable (X) = automation 

3. Dependent variable (Y) = accidents attributed to HF causes (accident rate for each of the 

11 years); Independent variable (X) = automation 
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4. Dependent variable (Y) = fatalities attributed to HF causes (fatality rate for each of the 11 

years); Independent variable (X) = automation 

Limitations 

A number of limitations exist that test the validity of the results of this study: 

 The definition of causal factors was subjective. While the causal factors were 

developed by reviewing NTSB data, the list of causal factors was finalized by combining 

several associated sub-categories. This was done partially for the sake of simplicity in 

data collection, but ultimately to avoid having too many independent variables that were 

correlated. However, the creation of an “other” category to capture what we determined 

to be random events was entirely subjective and may have introduced bias into the report. 

 Accident reporting and casual factor determination is by nature subjective. The 

NTSB has exclusive and full control over how aviation accidents are investigated and 

causal factors determined – this may introduce bias if the investigators are not looking 

beyond the immediate cause of the accident to identify the underlying systemic factors 

that create conditions under which accidents are more likely to occur. Some of the 

literature revealed that accidents occur through the combination of multiple latent failures 

and that each is insufficient to cause the failure itself unless is occurs in combination with 

other failures. The data reflected this as well, as multiple cases of multicollinearity were 

observed, revealing that many of the causal factors work together, even if categorized 

separately. The danger in this study is that statistical results may be a bit biased to 

indicate a quantitative relationship when one does not exist or it may simply be over-

exaggerating the strength of an existing relationship. 
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 The statistical analysis was limited in scope to the type of data available, which was 

primarily data collected and categorized by the NTSB. While the data itself was 

comprehensive, the subjective nature of its collection and classification almost entirely 

introduces bias into statistical results. Furthermore, statistical analyses are useful in 

demonstrating quantitative relationships but not in proving causation. Thus, while 

qualitatively it may be shown that automation has been on the increase and accidents and 

fatalities have decreased over the defined 10-year study period, this supposed causation 

cannot be proven by statistical analysis. This type of analysis can show a quantitative 

relationship, but cannot prove that x (automation) causes a decrease in y 

(accidents/fatalities). This is a limitation of statistical analysis that is not restricted to this 

study. 

 One way ANOVA only tested the one-way relationship between the variables when a 

two-way ANOVA would have been more informative regarding the dynamic relationship 

that inevitably exists between the independent and dependent variables. 

 Automation data was limited in that it was difficult to accurately determine the type & 

level of automation within the time and scope of this project. 

Results 

Statistical Analysis 

A qualitative analysis was carried out on data culled from NTSB reports for the years 

2000-2010. Available data included total accidents, total fatalities, and total flight hours for both 

Part 121 and Part 135 flight operations. Accident reports detailing the probable cause of the 

accident/fatality were reviewed and probable causes assigned for each accident reported for the 

observed time period. 
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Figure 6 

Total Aviation Accidents resulting in Fatalities (Part 121 & Part 135) 2000-2010 

 

For the years 2000-2010 for parts 121 and 135 flight operations, the data included a total 

of 1,165 accidents, of which 191 were associated with fatalities (figure 1). The vast majority of 

accidents/fatalities for part 135 flight operations were attributed to human factor causes, while 

part 121 flight operation accidents/fatalities were more equally distributed among the five 

probable causes. 

 
Figure 7 

Total Aviation Accidents (Part 121 & Part 135) 2000-2010 
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An examination of the data reveals the following: 

 In relation to this study’s hypothesis, which is “there has been a statistical decrease in the 

number and severity of commercial aviation accidents involving automation from 2000 to 

2010,” the following was determined: 

o Both the number and severity of commercial aviation accidents have declined 

over the observed time period (figures 6 & 7). 

o Automation related accidents have also decreased over the observed time period 

(figures 6 & 7). 

o A statistically significant relationship was observed in an ANOVA exercise 

between automation and part 135 human factor related fatalities. However, 

although this was a statistically significant finding, the relationship was not what 

was expected. Data showed that the two variables have an inverse relationship – 

when automation increases, so do part 135 fatalities. 

o The remainder of the predictor variables (evolution of pilot training, over reliance 

on automation, advances in intuitive interface design, and improvements in 

training and crew coordination) could not be easily quantified within the scope of 

this project, thus this part of the hypothesis could not be evaluated. 

 Accidents and related fatalities are higher for part 135 flight operations, although the gap 

appears to be closing since 2009 when both declined, with fatalities dropping 

dramatically. 

 Accidents were predominantly attributed to human factor related causes across both types 

of flight operations, although the distribution among probably causes for part 121 

operations was more equally distributed (figures 8 & 9). 
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Figure 8 

Accidents by Probable Cause – Part 121 

 

 
Figure 9 

Accidents by Probable Cause – Part 135 

Regression 

Analysis of regression results reveals that two of the four models are statistically 

significant. Notably, statistically significant models are ones that test the relationship between 

the identified causal factors and aviation accidents. The two models that are not statistically 

significant test the relationship between the identified causal factors and aviation fatalities. 
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However, regardless of the statistical significance of the model, regression analysis provides 

valuable information regarding quantitative relationship among the variables, the theoretical 

underpinnings of the models themselves, and the actual versus expected behavior of the 

independent variables in relation to one another and to the dependent variable. This section will 

discuss these areas as well as the individual results of each regression model. 

Regression 1 Output: Part 121 Accident Rate 

Model 

Dependent Variable (y) = Accident Rate 

Independent Variable (x) = HF, ENV, MECH, GRNDCREW, OTHER 

The r2 for this model is .975 and the adjusted r2 is .950, meaning that the overall model fit 

to the data is exceptionally good (table A3). Ninety-seven percent of the variance in the 

dependent variable can be explained by the independent variables included in this model. While 

this is an overall measure of the strength of association between the variables, it does not reflect 

the extent to which any particular independent variable is associated with the dependent variable 

– parameter estimate data shows that some of the independent variables are statistically 

significant. The adjusted r2 is meant to compensate for extraneous variables, but the fact that the 

r2 and adjusted r2 are not much different is indicative of a very well defined model.  

With a p value of .001, the model is statistically significant at both the .05 and .01 levels 

(table A4). The F ratio is 39.09, which is significantly greater than 1 and thus reveals that the 

effects observed between the independent and dependent variables is highly unlikely to have 

happened by chance. Because both the p value and the F ratio are statistically significant, the 

model significantly improves our ability to predict the outcome variable. 
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According to p values for each of the independent variables, only ENV (.031), MECH 

(.009), and OTHER (.030) are statistically different from 0 at the .05 level. Thus, for every unit 

increase in environmental factors, the part 121 accident rate would increase by 66% (parameter 

estimate β = .667); for mechanical factors, the accident rate would increase by 120% (β = 1.2); 

and for other factors, the accident rate would increase by 78% (β = .787) (table A5). It should be 

noted that the human factor (HF) contribution to accidents in the 11-year period was not 

statistically significant. If significant, human factor errors would have accounted for 63% (table 

A2) of the variance in the part 121 accident rate. 

Regression analysis revealed that the actual direction of relationships between the 

independent and dependent variables was as expected; the hypothesized relationship would be 

positive and each parameter estimate resulted in a positive sign, indicating a positive 

relationship. In other words, as errors for each probable cause increased, the part 121 accident 

rate would increase as well.  

VIF (variance inflation factor) tests for multicollinearity revealed none – all VIF scores 

were significantly less than 10 (ranging from a low of 1.3 to a high of 2.4) indicating that 

multicollinearity for this model is not a concern. Therefore, predictor variables are likely not 

correlated according to this post hoc test (table A5). 

As time series data can lead to autocorrelation of the error term, the Durbin-Watson test 

was carried out to test for correlated adjacent residuals. Regression assumes independence 

among error terms – Durbin-Watson tests this assumption. For this model, the Durbin-Watson 

score is 2.24, which is close to the goal value of 2 indicating no autocorrelation of the error term 

(table A3).  
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Regression 2 Output: Part 121 Fatality Rate 

Model 

Dependent Variable (y) = Fatality Rate 

Independent Variable (x) = HF, ENV, MECH, GRNDCREW, OTHER 

The r2 for this model is .967 and the adjusted r2 is .884 (table B3). The drop in value from 

r2 to adjusted r2 indicates the possibility that there are extraneous variables in this model.  

Eighty-eight percent of the variance in the dependent variable can be explained by the 

independent variables included in this model.  

With a p value of .081, the model is not statistically significant at the .05 level (table B4). 

The F ratio is 11.644, which is greater than 1 and thus, if the model were statistically significant, 

would reveal that the effects observed between the independent and dependent variables is 

highly unlikely to have happened by chance. Because both the p value and the F ratio are not 

statistically significant, the model does not allow us to predict the outcome variable. 

According to p values for each of the independent variables, none are statistically 

different from 0 at the .05 level. 

Regression analysis revealed that the actual direction of relationships between the 

independent and dependent variables was different from expected; the hypothesized relationship 

would be positive and several of the parameter estimates resulted in unexpected signs. The actual 

signs for ENV and GRNDCREW were negative and different from hypothesized. This indicates 

that for every environmental or ground crew error, the part 121 fatality rate would decrease.  

VIF (variance inflation factor) tests for multicollinearity revealed none – all VIF scores 

were significantly less than 10 (ranging from a low of 1.3 to a high of 3) indicating that 

multicollinearity for this model is not a concern. However, other measures of collinearity 
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indicated correlation between GRNDCREW and ENV (.729), MECH and ENV (.714), and 

GRNDCREW and MECH (.688) (tables B2 and B5). 

As time series data can lead to autocorrelation of the error term, the Durbin-Watson test 

was carried out to test for correlated adjacent residuals. Regression assumes independence 

among error terms – Durbin-Watson tests this assumption. For this model, the Durbin-Watson 

score is 3.075, which is significantly above the goal value of 2 indicating possible 

autocorrelation of the error term (table B3). No corrections were made to improve the model 

since all other indicators revealed it to be a statistically insignificant model with possible 

extraneous variables. 

Regression 3 Output: Part 135 Accident Rate 

Model 

Dependent Variable (y) = Accident Rate 

Independent Variable (x) = HF, ENV, MECH, GRNDCREW, OTHER 

The r2 for this model is .974 and the adjusted r2 is .947, meaning that the overall model fit 

to the data is exceptionally good (table C3). Ninety-seven percent of the variance in the 

dependent variable can be explained by the independent variables included in this model. While 

this is an overall measure of the strength of association between the variables, it does not reflect 

the extent to which any particular independent variable is associated with the dependent variable 

– parameter estimate data shows that some of the independent variables are statistically 

significant. The adjusted r2 is meant to compensate for extraneous variables, but the fact that the 

r2 and adjusted r2aren’t much different is indicative of a very well defined model.  

With a p value of .001, the model is statistically significant at both the .05 and .01 levels 

(table C4). The F ratio is 36.91, which is significantly greater than 1 and thus reveals that the 
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effects observed between the independent and dependent variables is highly unlikely to have 

happened by chance. Because both the p value and the F ratio are statistically significant, the 

model significantly improves our ability to predict the outcome variable. 

According to p values for each of the independent variables, only HF (.001) and MECH 

(.033) are statistically different from 0 at the .05 level. Thus, for every unit increase in human 

factor errors, the part 135 accident rate would increase by 100% (parameter estimate β = 1.004); 

for mechanical errors, accidents would increase by 77% (β = .771) (table C5). 

Regression analysis revealed that the actual direction of relationships between the 

independent and dependent variables was as expected; the hypothesized relationship would be 

positive and each parameter estimate resulted in a positive sign, indicating a positive 

relationship. In other words, as errors for each probable cause increased, the part 135 accident 

rate would increase as well.  

VIF (variance inflation factor) tests for multicollinearity revealed none – all VIF scores 

were significantly less than 10 (ranging from a low of 1.4 to a high of only 1.8) indicating that 

multicollinearity for this model is not a concern. Therefore, predictor variables are likely not 

correlated according to this post hoc test (table C5). 

As time series data can lead to autocorrelation of the error term, the Durbin-Watson test 

was carried out to test for correlated adjacent residuals. Regression assumes independence 

among error terms – Durbin-Watson tests this assumption. For this model, the Durbin-Watson 

score is 2.05, which is close to the goal value of 2 indicating no autocorrelation of the error term 

(table C3).  

 



THE INFLUENCE OF AUTOMATION ON AVIATION            83 

 

Regression 4 Output: Part 135 Fatality Rate 

Model 

Dependent Variable (y) = Fatality Rate 

Independent Variable (x) = HF, ENV, MECH, GRNDCREW, OTHER 

The r2 for this model is .877 and the adjusted r2 is .769 (table D1). The drop in value from 

r2 to adjusted r2 indicates the possibility that there are extraneous variables in this model.  

Eighty-seven percent of the variance in the dependent variable can be explained by the 

independent variables included in this model.  

With a p value of .107, the model is not statistically significant at the .05 level (table D2). 

The F ratio is 3.32, which is greater than 1 and thus if the model were statistically significant, 

would reveal that the effects observed between the independent and dependent variables is 

highly unlikely to have happened by chance. Because both the p value and the F ratio are not 

statistically significant, the model does not allow us to predict the outcome variable. 

According to p values for each of the independent variables, none are statistically 

different from 0 at the .05 level. Only human factors came even slightly close to being 

statistically significant with a p value of .086. 

Regression analysis revealed that the actual direction of relationships between the 

independent and dependent variables was different from expected; the hypothesized relationship 

would be positive and several of the parameter estimates resulted in signs that were not expected. 

The actual signs for ENV and OTHER were negative and different than hypothesized. This 

indicates that for every environmental or ground crew error, the part 135 fatality rate would 

decrease.  
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VIF (variance inflation factor) tests for multicollinearity were not available for this model 

due to data constraints – several data points were zero.  

As time series data can lead to autocorrelation of the error term, the Durbin-Watson test 

was carried out to test for correlated adjacent residuals. Regression assumes independence 

among error terms – Durbin-Watson tests this assumption. For this model, the Durbin-Watson 

score is 3.97, which is significantly above the goal value of 2 indicating possible autocorrelation 

of the error term. No corrections were made to improve the model since all other indicators 

revealed it to be a statistically insignificant model with possible extraneous variables. 

ANOVA 

An analysis of variance (ANOVA) was conducted to test for statistical significance 

between the variance in the means of the variables for automation and accidents/fatalities. Due to 

the fact that there are only two variables in this case, one of which is the dependent 

(ACCIDENTS or FATALITIES) and the other independent (AUTO), it was determined that the 

best test of statistical significance would be the ANOVA, rather than a regression. Regression is 

best suited when there are more than one dependent variable so that the effects between 

dependent variables can be held constant; in this case, there is only one dependent variable, so 

the added controls introduced by the various regression models are superfluous and thus not 

necessary. 

ANOVA results showed no statistical significance between the means of any of the 

variables with the notable exception of the relationship between automation and human factor 

attributed fatalities in part 135 aviation (p=.031, statistically significant at the .05 level). This 

statistically significant relationship indicates that the variance in the means is not due to chance 

and is more likely due to the cause and effect between automation and human factor attributed 
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fatalities. In this case, the data suggests a positive correlation between the two variables. 

However, theory suggests a negative correlation, such that as automation increases, the fatality 

rate would decrease. The results of this ANOVA suggest the opposite – as automation increases, 

the fatality rate would increase as well. Figure 10 demonstrates the positive, albeit non-linear 

relationship between automation and human factor attributed fatalities in part 135 aviation 

operations. 

 

Figure 10 

Non-linear Correlation between Part 135 Mean of HF Fatalities and Automation 

For the remaining models, the ANOVA results show that the differences in means are 

likely due to chance rather than the cause and effect between the two variables. However, it 

should be noted that although not statistically significant, the variables automation and human 

factor attributed accidents for part 121 aviation show a strong positive linear relationship (figure 
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11).  Although the results are not significant, it should be pointed out that the positive nature of 

the relationship as detailed in Figure 11 is not expected according to theory. Theory suggests a 

negative relationship – as automation increases, the accident rate should decrease. 

 

Figure 11 

Linear Correlation between Part 121 Mean of HF Accidents and Automation 

The output is as follows: 

1. Part 121: variance between automation and accidents: p = .552 (table E3) 

2. Part 121: variance between automation and human factor related accidents: p = .169 

(table I3) 

3. Part 121: variance between automation and fatalities: p = .819 (table F3) 

4. Part 121: variance between automation and human factor related fatalities:  p = .576 

(table J3) 
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5. Part 135: variance between automation and accidents: p = .267 (table G3) 

6. Part 135: variance between automation and human factor attributed accidents: p = .558 

(table K3) 

7. Part 135: variance between automation and fatalities: p = .272 (table H3) 

8. Part 135: variance between automation and human factor attributed fatalities: p = .031 

(table L3) 

Conclusion 

The study’s qualitative foundation is a comprehensive literature review, which defined 

applicable terms based on the project proposal, defined and discussed automation, and provided 

insight into the evolution of automation technology within the aviation industry. The 10 levels of 

automation were presented, which revealed a variety of challenges that are present when trying 

to determine the need for appropriate automation levels in any system. Six prominent automation 

related errors were discussed in detail, including increased monitoring and vigilance 

requirements, loss of pilot skills, inappropriate feedback and user interface, workload 

redistribution, over-reliance on automation and mistrust, and lack of familiarization with 

systems. The literature review revealed the majority of the most prominent automation errors had 

a strong relationship with human error. 

Because of the strong presence of human error within the review of automation, Reason’s 

Cumulative Effect Theory and the HFACS were examined. The HFACS was examined in detail 

because it provided a proposed means by which to quantify human error. The review yielded 

four main levels of error, three of which are labeled as latent failures and one as active.  Unsafe 

acts, preconditions for unsafe acts, unsafe supervision, and organizational influences and their 

corresponding subcategories produced four additional topics for in-depth review. CRM, fatigue, 
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spatial disorientation, and situational awareness were selected because of their strong presence 

and influence on subcategories of unsafe acts, preconditions for unsafe acts, and unsafe 

supervision.  

Due to the nature of this study and its intended purpose, the review of CRM, fatigue, 

spatial disorientation, and situational awareness was aimed at explaining each of the identified 

contributors to human error and defining their relationship to automation. A review of CRM 

provided a brief history discussing the evolution of the six generations of CRM. Factors affecting 

crew performance were outlined and relationships to CRM’s effect on automation were 

discussed. Fatigue was discussed by explaining the types, effects on performance, and prevention 

measure available. The review of spatial disorientation provided a detailed explanation of the 

phenomena and illusion associated with it. The review also yielded prevention techniques as well 

as its ties to automation technology. Situational awareness was discussed in detail defining the 

concept, describing the levels of situational awareness, and listing major obstacles to achieving 

and maintaining good situational awareness. 

A quantitative analysis of 2000-2010 parts 121 and 135 aviation operations data revealed 

that accidents and related fatalities are higher for part 135 flight operations both in sheer number 

and rates. Additionally, accidents were predominantly attributed to human factor related causes 

across both types of flight operations.  

Regression analysis demonstrated a statistically significant relationship between predictor 

variables and accidents for both parts 121 and 135 aviation operations. In fact, for every unit 

increase in environmental factors, the part 121 accident rate would increase by 66% (parameter 

estimate 𝛽 = .667); for mechanical factors, the part 121 accident rate would increase by 120% (𝛽 

= 1.2); and for other factors, the part 121 accident rate would increase by 78% (𝛽 = .787) (table 



THE INFLUENCE OF AUTOMATION ON AVIATION            89 

 

A5). For every unit increase in human factor errors, the part 135 accident rate would increase by 

100% (parameter estimate 𝛽 = 1.004); for mechanical errors, the part 135 accident rate would 

increase by 77% (𝛽 = .771) (table C5).  

Analysis of variance resulted in only one statistically significant relationship – between 

automation and human factor attributed fatalities in part 135 aviation (p=.031, statistically 

significant at the .05 level). This statistically significant relationship indicates that the variance in 

the means is not due to chance and is more likely due to the cause and effect between automation 

and human factor attributed fatalities. 

Analysis of variance showed the variables automation and human factor attributed 

accidents for part 121 aviation show a strong positive linear relationship.  Although the results 

are not statistically significant, it should be pointed out that the positive nature of the relationship 

is not expected according to theory.  

In relation to this study’s hypothesis, which is “there has been a statistical decrease in the 

number and severity of commercial aviation accidents involving automation from 2000 to 2010” 

 the following was determined: both the number and severity of commercial aviation accidents 

involving automation decreased over the observed time period, thus disproving the null 

hypothesis. 

Furthermore, this study could not link hypothesized decrease in aviation accidents to the 

evolution of pilot training in regard to automation, a decrease in over-reliance on automation, 

advances in intuitive interface design, and improvements in training and utilization of crew 

coordination because data regarding these factors could not be easily quantified within the scope 

of this project. 
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Recommendations 

Organizational influences on human error have been extremely difficult to assess 

historically.  Whether the error is due to resource management, organizational climate, or 

organizational processes, there is a strong need for further development of a classification and 

quantification system to analyze these influences. The HFACS is a comprehensive and detailed 

approach, which is well suited for this task.  However, without a change in the way accident 

investigations are conducted these factors will continue to be difficult to ascertain. Research 

into the accident investigation procedures and the methodology behind the inclusion or 

exclusion of possible organizational influences on accidents is recommended. 

Research yielded ten distinct levels of automation in this study. Endsley (1997) identified 

four generic functions to evaluate optimal automation and human interaction needs.  They 

include monitoring/scanning displays to perceive system status, generating/formulating options 

or strategies for achieving goals, selecting/deciding on a particular option or strategy, and 

implementing/carrying out the chosen option. There is a definite need to develop a 

comprehensive analysis system to discern the optimal automation levels that can be utilized 

in the conceptual, design, and production of future automated systems. Detailed research 

into the four generic functions in conjunction with the ten levels of automation discussed in 

this study is recommended. 

This study identified six problems with automation technology including increased 

monitoring and vigilance requirements, loss of pilot skills, inappropriate feedback, workload 

redistribution, over-reliance on automation and mistrust, and lack of familiarity with automation 

technology. These six problems are not all encompassing, but when combined with the review of 

CRM a need for further research regarding training methods and their development was clear. 
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The nature of CRM and its evolution, which now focuses on TEM, stands as the most widely 

used apparatus for training in today’s aviation industry post initial flight training. As such, this 

study recommends further analysis of the way TEM training approaches TEM, and if 

further development of such training could be developed to be more proactive in nature 

versus the historical reactive nature of such training. 

In proving this study’s hypothesis, human factor attributed accidents emerged as the 

largest causal factor for the time period specified for both part 121 and part 135 aviation 

operations. This significant finding provides evidence that more research is required to 

ascertain the extent to which human factors influence accident rates, and to further 

validate this study’s classification system of human factors. Distorted numbers of human 

factor errors noted during the data gathering phase of this study lend the researcher to believer 

that some of the predetermined categories to classify human error may be too vague or too 

encompassing.  

 The statistical analysis of part 135 fatality rates and automation yielded an unexpected 

finding. Not all the statistically significant models provided the expected results, but ANOVA 

showed an inverse relationship compared to what was hypothesized to occur. The need to 

determine whether the statistically significant relationship between automation increases 

and part 135 fatality increases in this study was an anomaly or does indeed exist is 

important. Due to limitations of this study previously mentioned in determining some causal 

factors in part 135, this relationship needs further exploration. 

This study operated under the assumption that during the specified time period, 

automation technology continuously advanced and was more prevalent in both part 121 and part 

135 operations from one year to the next. In order to better determine the effect of 
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automation on accident rates and severity there is a need to develop a means to analyze and 

quantify this assumed increase. Without a means to quantify this factor, significant 

relationships and patterns can be identified regarding accident rates and severity caused by 

automation but their significance cannot truly be explained or understood. 
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Appendix A 

 

Regression 1 Output: Part 121 Accident Rate 

 

Dependent Variable (y) = Accident Rate 

Independent Variable (x) = HF, ENV, MECH, GRNDCREW, OTHER 
 

Table A1 

Descriptive Statistics 

 Mean 
Std. 

Deviation 
N 

Accidents 39.0909 10.24163 11 

ENV 9.0909 4.27679 11 

HF 9.6364 4.12971 11 

MECH 4.8182 3.89405 11 

GRNDCREW 5.9091 2.58668 11 

OTHER 4.7273 3.16515 11 

 

 

Table A2 

Correlations 

 Accidents ENV HF MECH GRNDCREW OTHER 

Pearson 

Correlation 

Accidents 1.000 .701 .632 .901 .582 .550 

ENV .701 1.000 .127 .572 .471 .216 

HF .632 .127 1.000 .543 .203 .420 

MECH .901 .572 .543 1.000 .505 .336 

GRNDCREW .582 .471 .203 .505 1.000 .021 

OTHER .550 .216 .420 .336 .021 1.000 

Sig. 

(1-tailed) 

Accidents . .008 .018 .000 .030 .040 

ENV .008 . .355 .033 .072 .262 

HF .018 .355 . .042 .275 .099 

MECH .000 .033 .042 . .057 .156 

GRNDCREW .030 .072 .275 .057 . .475 

OTHER .040 .262 .099 .156 .475 . 

N 

Accidents 11 11 11 11 11 11 

ENV 11 11 11 11 11 11 

HF 11 11 11 11 11 11 

MECH 11 11 11 11 11 11 

GRNDCREW 11 11 11 11 11 11 

OTHER 11 11 11 11 11 11 
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Table A3 

Model Summary 

Model R 
R 

Square 

Adjusted 

R Square 

Std. Error 

of the 

Estimate 

Change Statistics 
Durbin-

Watson R Square 

Change 

F 

Change 
df1 df2 

Sig. F 

Change 

 1 .987 .975 .950 2.28756 .975 39.089 5 5 .001 2.248 

 

 

Table A4 

ANOVA 

Model 
Sum of 

Squares 
df 

Mean 

Square 
F Sig. 

1 

Regression 1022.745 5 204.549 39.089 .001 

Residual 26.165 5 5.233   

Total 1048.909 10    

 

 

Table A5 

Coefficients 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 
t Sig. 

95.0% 

Confidence 

Interval for B 

Correlations 
Collinearity 

Statistics 

B 
Std. 

Error 
Beta 

Lower 

Bound 

Upper 

Bound 

Zero-

order 
Partial Part Tolerance VIF 

1 

Constant 14.443 2.785  5.187 .004 7.285 21.601      

ENV .667 .223 .279 2.986 .031 .093 1.242 .701 .800 .211 .573 1.746 

HF .524 .229 .211 2.291 .071 -.064 1.111 .632 .716 .162 .588 1.702 

MECH 1.206 .291 .459 4.146 .009 .458 1.954 .901 .880 .293 .408 2.453 

GRND 

CREW 
.678 .342 .171 1.981 .105 -.202 1.557 .582 .663 .140 .668 1.497 

OTHER .787 .261 .243 3.009 .030 .115 1.459 .550 .803 .212 .764 1.309 

 

 

 

 

 

 

 

 

 

 

 



THE INFLUENCE OF AUTOMATION ON AVIATION            100 

 

Table A6 

Coefficient Correlations 

Model OTHER GRNDCREW HF ENV MECH 

1 

Correlations 

OTHER 1.000 .198 -.320 -.167 -.098 

GRNDCREW .198 1.000 -.034 -.266 -.299 

HF -.320 -.034 1.000 .288 -.499 

ENV -.167 -.266 .288 1.000 -.466 

MECH -.098 -.299 -.499 -.466 1.000 

Covariances 

OTHER .068 .018 -.019 -.010 -.007 

GRNDCREW .018 .117 -.003 -.020 -.030 

HF -.019 -.003 .052 .015 -.033 

ENV -.010 -.020 .015 .050 -.030 

MECH -.007 -.030 -.033 -.030 .085 
 

 

Table A7 

Collinearity Diagnostics 

Model Dimension Eigenvalue 
Condition 

Index 

Variance Proportions 

(Constant) ENV HF MECH 
GRND 

CREW 
OTHER 

 1  

1 5.295 1.000 .00 .00 .00 .00 .00 .01 

2 .257 4.535 .00 .03 .01 .10 .05 .52 

3 .218 4.930 .07 .01 .00 .39 .05 .07 

4 .124 6.530 .01 .29 .33 .01 .00 .20 

5 .070 8.670 .04 .33 .09 .00 .79 .21 

6 .035 12.371 .87 .34 .57 .50 .11 .00 
 

 

Table A8 

Residuals Statistics 

 Minimum Maximum Mean 
Std. 

Deviation 
N 

Predicted 

Value 
28.5834 55.7626 39.0909 10.11308 11 

Residual -2.47279 2.41659 .00000 1.61755 11 

Std. 

Predicted 

Value 

-1.039 1.649 .000 1.000 11 

Std. 

Residual 
-1.081 1.056 .000 .707 11 
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Appendix B 

 

Regression 2 Output: Part 121 Fatalities 

 

Dependent Variable (y) = Fatality Rate 

Independent Variable (x) = HF, ENV, MECH, GRNDCREW, OTHER 
 

Table B1 

Descriptive Statistics 

  Mean 
Std. 

Deviation 
N 

FATALITY 2.375 1.68502 8 

HF 9.875 4.51782 8 

ENV 9.625 4.74906 8 

MECH 5.375 3.92565 8 

GRNDCREW 5.5 2.82843 8 

OTHER 5.75 2.96407 8 

 

 

Table B2 

Correlations 

 FATALITY HF ENV MECH GRNDCREW OTHER 

Pearson 

Correlation 
FATALITY 1.000 .814 .109 .364 .045 .765 

HF .814 1.000 .157 .430 .240 .403 

ENV .109 .157 1.000 .714 .729 .236 

MECH .364 .430 .714 1.000 .688 .157 

GRNDCREW .045 .240 .729 .688 1.000 .136 

OTHER .765 .403 .236 .157 .136 1.000 

Sig.  

(1-tailed) 
FATALITY . .007 .398 .187 .458 .013 

HF .007 . .355 .144 .283 .161 

ENV .398 .355 . .023 .020 .287 

MECH .187 .144 .023 . .030 .356 

GRNDCREW .458 .283 .020 .030 . .374 

OTHER .013 .161 .287 .356 .374 . 

N FATALITY 8 8 8 8 8 8 

HF 8 8 8 8 8 8 

ENV 8 8 8 8 8 8 

MECH 8 8 8 8 8 8 

GRNDCREW 8 8 8 8 8 8 

OTHER 8 8 8 8 8 8 
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Table B3 

Model Summary 

Model R 
R 

Square 

Adjusted 

R 

Square 

Std. 

Error of 

the 

Estimate 

Change Statistics 

Durbin-

Watson 
R 

Square 

Change 

F 

Change 
df1 df2 

Sig. F 

Change 

 1 .983 .967 .884 .57449 .967 11.644 5 2 .081 3.075 

 

Table B4 

ANOVA 

Model 
Sum of 

Squares 
df 

Mean 

Square 
F Sig. 

1 

Regression 19.215 5 3.843 11.644 .081 

Residual .660 2 .330   

Total 19.875 7    

 

Table B5 

Coefficients 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 
t Sig. 

95.0% 

Confidence 

Interval for B 

Correlations 
Collinearity 

Statistics 

B 
Std. 

Error 
Beta 

Lower 

Bound 

Upper 

Bound 

Zero-

order 
Partial Part Tolerance VIF 

1 

Constant -.772 .710  -1.086 .391 -3.828 2.285      

HF .195 .061 .523 3.193 .086 -.068 .458 .814 .914 .411 .620 1.613 

ENV -.052 .079 -.148 -.662 .576 -.394 .289 .109 -.424 -.085 .333 3.007 

MECH .156 .095 .362 1.632 .244 -.255 .566 .364 .756 .210 .337 2.969 

GRND 

CREW 
-.179 .120 -.301 -1.492 .274 -.696 .337 .045 -.726 -.192 .409 2.445 

OTHER .326 .084 .574 3.880 .060 -.036 .688 .765 .940 .500 .759 1.317 
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Table B6 

Coefficient Correlations 

Model OTHER GRNDCREW HF MECH ENV 

1 

Correlations 

OTHER 1.000 .071 -.440 .204 -.297 

GRNDCREW .071 1.000 -.058 -.283 -.461 

HF -.440 -.058 1.000 -.466 .322 

MECH .204 -.283 -.466 1.000 -.501 

ENV -.297 -.461 .322 -.501 1.000 

Covariances 

OTHER .007 .001 -.002 .002 -.002 

GRNDCREW .001 .014 .000 -.003 -.004 

HF -.002 .000 .004 -.003 .002 

MECH .002 -.003 -.003 .009 -.004 

ENV -.002 -.004 .002 -.004 .006 

 

 

Table B7 

Collinearity Diagnostics 

Model Dimension Eigenvalue 
Condition 

Index 

Variance Proportions 

(Constant) HF ENV MECH GRNDCREW OTHER 

 1  

1 5.401 1.000 .00 .00 .00 .00 .00 .00 

2 .284 4.361 .02 .03 .02 .12 .03 .16 

3 .127 6.519 .04 .33 .08 .18 .06 .02 

4 .100 7.350 .27 .08 .01 .08 .03 .66 

5 .053 10.056 .31 .07 .11 .17 .82 .03 

6 .035 12.471 .36 .48 .79 .45 .07 .13 

 
Table B8 

Residuals Statistics 

 Minimum Maximum Mean 
Std. 

Deviation 
N 

Predicted 

Value 
.9888 5.8796 2.3750 1.65680 8 

Residual -.35949 .59552 .00000 .30708 8 

Std. 

Predicted 

Value 

-.837 2.115 .000 1.000 8 

Std. 

Residual 
-.626 1.037 .000 .535 8 
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Appendix C 

 

Regression 3 Output: Part 135 Accident Rate 

 

Dependent Variable (y) = Accident  Rate 

Independent Variable (x) = HF, ENV, MECH, GRNDCREW, OTHER 
 

Table C1 

Descriptive Statistics 

 Mean 
Std. 

Deviation 
N 

Accidents 66.8182 14.83117 11 

HF 36.2727 9.13336 11 

ENV 6.4545 3.14209 11 

MECH 15.3636 5.57266 11 

GRNDCREW 1.3636 1.12006 11 

OTHER 6.5455 2.16165 11 

 

Table C2 

Correlations 

 accidents HF ENV MECH GRNDCREW OTHER 

Pearson 

Correlation 

Accidents 1.000 .858 .704 .703 -.020 .527 

HF .858 1.000 .487 .393 -.089 .169 

ENV .704 .487 1.000 .407 .289 .416 

MECH .703 .393 .407 1.000 -.248 .505 

GRNDCREW -.020 -.089 .289 -.248 1.000 .116 

OTHER .527 .169 .416 .505 .116 1.000 

Sig. 

(1-tailed) 

Accidents . .000 .008 .008 .477 .048 

HF .000 . .065 .116 .397 .310 

ENV .008 .065 . .107 .194 .101 

MECH .008 .116 .107 . .231 .057 

GRNDCREW .477 .397 .194 .231 . .367 

OTHER .048 .310 .101 .057 .367 . 

N 

Accidents 11 11 11 11 11 11 

HF 11 11 11 11 11 11 

ENV 11 11 11 11 11 11 

MECH 11 11 11 11 11 11 

GRNDCREW 11 11 11 11 11 11 

OTHER 11 11 11 11 11 11 
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Table C3 

Model Summary 

Model R 
R 

Square 

Adjusted 

R Square 

Std. Error 

of the 

Estimate 

Change Statistics 
Durbin-

Watson R Square 

Change 

F 

Change 
df1 df2 

Sig. F 

Change 

 1 .987 .974 .947 3.40669 .974 36.907 5 5 .001 2.057 

 

Table C4 

ANOVA 

Model 
Sum of 

Squares 
df 

Mean 

Square 
F Sig. 

1 

Regression 2141.609 5 428.322 36.907 .001 

Residual 58.028 5 11.606   

Total 2199.636 10    

 

Table C5 

Coefficients 

Model 

Unstandardize

d Coefficients 

Standardized 

Coefficients 
t Sig. 

95.0% 

Confidence 

Interval for B 

Correlations 
Collinearity 

Statistics 

B 
Std. 

Error 
Beta 

Lower 

Bound 

Upper 

Bound 

Zero-

order 
Partial Part Tolerance VIF 

1 

Constant 3.435 5.604  .613 .567 -10.969 17.840      

HF 1.004 .143 .619 7.019 .001 .637 1.372 .858 .953 .510 .679 1.472 

ENV .931 .472 .197 1.971 .106 -.283 2.145 .704 .661 .143 .527 1.898 

MECH .771 .264 .290 2.917 .033 .092 1.451 .703 .794 .212 .535 1.870 

GRND 

CREW 
.367 1.145 .028 .320 .762 -2.576 3.309 -.020 .142 .023 .706 1.416 

OTHER 1.312 .616 .191 2.130 .086 -.271 2.896 .527 .690 .155 .654 1.528 
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Table C6 

Coefficient Correlations 

Model OTHER GRNDCREW HF MECH ENV 

1 

Correlations 

OTHER 1.000 -.172 .125 -.455 -.201 

GRNDCREW -.172 1.000 .170 .408 -.423 

HF .125 .170 1.000 -.188 -.442 

MECH -.455 .408 -.188 1.000 -.255 

ENV -.201 -.423 -.442 -.255 1.000 

Covariances 

OTHER .380 -.121 .011 -.074 -.058 

GRNDCREW -.121 1.310 .028 .123 -.229 

HF .011 .028 .020 -.007 -.030 

MECH -.074 .123 -.007 .070 -.032 

ENV -.058 -.229 -.030 -.032 .223 

 

Table C7 

Collinearity Diagnostics 

Model Dimension Eigenvalue 
Condition 

Index 

Variance Proportions 

(Constant) HF ENV MECH 
GRND 

CREW 
OTHER 

  

1 

  

1 5.406 1.000 .00 .00 .00 .00 .01 .00 

2 .367 3.838 .00 .00 .00 .02 .59 .00 

3 .102 7.275 .06 .00 .69 .00 .03 .02 

4 .067 8.967 .05 .20 .00 .08 .01 .37 

5 .039 11.817 .03 .01 .05 .90 .26 .45 

6 .019 16.806 .86 .78 .25 .00 .10 .15 

 

Table C8 

Residuals Statistics 

 Minimum Maximum Mean 
Std. 

Deviation 
N 

Predicted 

Value 
36.1090 89.1128 66.8182 14.63424 11 

Residual -5.12344 3.48569 .00000 2.40889 11 

Std. 

Predicted 

Value 

-2.098 1.523 .000 1.000 11 

Std. 

Residual 
-1.504 1.023 .000 .707 11 
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Appendix D 

Regression 4 Output: Part 135 Fatalities 

 

Dependent Variable (y) = Fatality Rate 

Independent Variable (x) = HF, ENV, MECH, GRNDCREW, OTHER 
 

Table D1 

Model Summary 

Model R R Square 
Adjusted 

R Square 

Std. Error of 

the Estimate 

 1 .877 .769 .537 4.79106 

 

 

Table D2 

ANOVA 

Model 
Sum of 

Squares 
df 

Mean 

Square 
F Sig. 

1 

Regression 381.411 5 76.282 3.323 .107 

Residual 114.771 5 22.954   

Total 496.182 10    

 

 

Table D3 

Coefficients 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients t Sig. 

B Std. Error Beta 

1 

(Constant) -6.040 7.881  -.766 .478 

HF .430 .201 .557 2.136 .086 

ENV .778 .664 .347 1.172 .294 

MECH .258 .372 .204 .693 .519 

GRNDCREW -.813 1.610 -.129 -.505 .635 

OTHER -.329 .866 -.101 -.379 .720 
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Table D4 

Descriptive Statistics 

 N Minimum Maximum Mean Std. Deviation 

HF 11 18.00 47.00 36.2727 9.13336 

ENV 11 2.00 13.00 6.4545 3.14209 

MECH 11 8.00 22.00 15.3636 5.57266 

GRNDCREW 11 .00 3.00 1.3636 1.12006 

OTHER 11 5.00 11.00 6.5455 2.16165 

Valid N 

(listwise) 
11     
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Appendix E 

 

ANOVA 1 Output: Part 121 Automation Accidents 

 

Dependent Variable (y) = Accident Rate 

Independent Variable (x) = Automation 
 

Table E1 

Descriptives 

 N Mean 
Std. 

Deviation 

Std. 

Error 

95% Confidence 

Interval for Mean 
Minimum Maximum 

Between- 

Component 

Variance Lower 

Bound 

Upper 

Bound 

.00 2 42.5000 16.26346 11.50000 -103.6214 188.6214 31.00 54.00   

1.00 3 32.3333 3.21455 1.85592 24.3479 40.3187 30.00 36.00   

2.00 1 29.0000 . . . . 29.00 29.00   

3.00 4 44.0000 11.40175 5.70088 25.8573 62.1427 30.00 57.00   

5.00 1 43.0000 . . . . 43.00 43.00   

Total 11 39.0909 10.24163 3.08797 32.2105 45.9713 29.00 57.00   

Model 

Fixed 

Effects 
    10.60791 3.19841 31.2647 46.9171       

Random 

Effects 
      3.19841 30.2107 47.9711     -9.33395 

 

Table E2 

Test of Homogeneity of Variances 

Levene 

Statistic 
df1 df2 Sig. 

3.226 2 6 .112 

 

Table E3 

ANOVA 

 
Sum of 

Squares 
df 

Mean 

Square 
F Sig. 

Between 

Groups 
373.742 4 93.436 .830 .552 

Within 

Groups 
675.167 6 112.528     

Total 1048.909 10       

 

 



THE INFLUENCE OF AUTOMATION ON AVIATION            110 

 

Appendix F 

 

ANOVA 2 Output: Part 121 Automation Fatalities 

 

Dependent Variable (y) = Fatality Rate 

Independent Variable (x) = Automation 
 

Table F1 

Descriptives 

 N Mean 
Std. 

Deviation 

Std. 

Error 

95% Confidence 

Interval for Mean 
Minimum Maximum 

Between- 

Component 

Variance Lower 

Bound 

Upper 

Bound 

.00 2 1.5000 .70711 .50000 -4.8531 7.8531 1.00 2.00   

1.00 3 1.6667 .57735 .33333 .2324 3.1009 1.00 2.00   

2.00 1 1.0000 . . . . 1.00 1.00   

3.00 4 2.7500 2.50000 1.25000 -1.2281 6.7281 .00 6.00   

5.00 1 3.0000 . . . . 3.00 3.00   

Total 11 2.0909 1.57826 .47586 1.0306 3.1512 .00 6.00   

Model 

Fixed 

Effects     1.82193 .54933 .7467 3.4351       

Random 

Effects       .54933 .5657 3.6161     -1.01265 

 

Table F2 

Test of Homogeneity of Variances 

Levene 

Statistic 
df1 df2 Sig. 

1.672 2 6 .265 

 

Table F3 

ANOVA 

 
Sum of 

Squares 
df 

Mean 

Square 
F Sig. 

Between 

Groups 
4.992 4 1.248 .376 .819 

Within 

Groups 
19.917 6 3.319   

Total 24.909 10    
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Appendix G 

 

ANOVA 3 Output: Part 135 Automation Accidents 

 

Dependent Variable (y) = Accident Rate 

Independent Variable (x) = Automation 
 

Table G1 

Descriptives 

 N Mean 
Std. 

Deviation 
Std. Error 

95% Confidence 

Interval for Mean 
Minimum Maximum 

Between- 

Component 

Variance 
Lower 

Bound 

Upper 

Bound 

.00 3 59.6667 18.77054 10.83718 13.0380 106.2953 38.00 71.00  

1.00 2 58.0000 12.72792 9.00000 -56.3558 172.3558 49.00 67.00  

2.00 4 68.0000 10.00000 5.00000 52.0878 83.9122 55.00 79.00  

5.00 2 84.0000 11.31371 8.00000 -17.6496 185.6496 76.00 92.00  

Total 11 66.8182 14.83117 4.47177 56.8545 76.7819 38.00 92.00  

Model 

Fixed 

Effects 
  13.59972 4.10047 57.1221 76.5143    

Random 

Effects 
   5.36186 49.7544 83.8820   43.76407 

 

 

Table G2 

Test of Homogeneity of Variances 

Levene 

Statistic 
df1 df2 Sig. 

1.319 3 7 .342 

 

 

Table G3 

ANOVA 

 
Sum of 

Squares 
df 

Mean 

Square 
F Sig. 

Between 

Groups 
904.970 3 301.657 1.631 .267 

Within 

Groups 
1294.667 7 184.952   

Total 2199.636 10    

 

 



THE INFLUENCE OF AUTOMATION ON AVIATION            112 

 

Appendix H 

 

ANOVA 4 Output: Part 135 Automation Fatalities 

 

Dependent Variable (y) = Fatality Rate 

Independent Variable (x) = Automation 
 

Table H1 

Descriptives 

 N Mean 
Std. 

Deviation 

Std. 

Error 

95% Confidence 

Interval for Mean 
Minimum Maximum 

Between- 

Component 

Variance 
Lower 

Bound 

Upper 

Bound 

.00 3 13.3333 8.73689 5.04425 -8.3703 35.0370 6.00 23.00  

1.00 2 8.0000 8.48528 6.00000 -68.2372 84.2372 2.00 14.00  

2.00 4 17.5000 4.50925 2.25462 10.3248 24.6752 11.00 21.00  

5.00 2 21.0000 2.82843 2.00000 -4.4124 46.4124 19.00 23.00  

Total 11 15.2727 7.04402 2.12385 10.5405 20.0050 2.00 23.00  

Model 

Fixed 

Effects 
  6.47707 1.95291 10.6548 19.8906    

Random 

Effects 
   2.53519 7.2046 23.3408   9.58225 

 

 

Table H2 

Test of Homogeneity of Variances 

Levene 

Statistic 
df1 df2 Sig. 

1.718 3 7 .250 

 

 

Table H3 

ANOVA 

 
Sum of 

Squares 
df 

Mean 

Square 
F Sig. 

Between 

Groups 
202.515 3 67.505 1.609 .272 

Within 

Groups 
293.667 7 41.952   

Total 496.182 10    
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Appendix I 

 

ANOVA 5 Output: Part 121 Automation Human Factors Accidents 

 

Dependent Variable (y) = Accident Rate for all Human Factor attributed accidents 

Independent Variable (x) = Automation 
 

Table I1 

Descriptives 

 N Mean 
Std. 

Deviation 

Std. 

Error 

95% Confidence 

Interval for Mean 
Minimum Maximum 

Between- 

Component 

Variance 
Lower 

Bound 

Upper 

Bound 

.00 2 6.0000 5.65685 4.00000 -44.8248 56.8248 2.00 10.00  

1.00 3 7.0000 1.00000 .57735 4.5159 9.4841 6.00 8.00  

2.00 1 9.0000 . . . . 9.00 9.00  

3.00 4 12.2500 3.30404 1.65202 6.9925 17.5075 8.00 16.00  

5.00 1 15.0000 . . . . 15.00 15.00  

Total 11 9.6364 4.12971 1.24516 6.8620 12.4107 2.00 16.00  

Model 

Fixed 

Effects 
  3.33542 1.00567 7.1756 12.0971    

Random 

Effects 
   1.69354 4.9343 14.3384   7.24722 

 

 

Table I2 

Test of Homogeneity of Variances 

Levene 

Statistic 
df1 df2 Sig. 

3.070 2 6 .121 

 

 

Table I3 

ANOVA 

 
Sum of 

Squares 
df 

Mean 

Square 
F Sig. 

Between 

Groups 
103.795 4 25.949 2.332 .169 

Within 

Groups 
66.750 6 11.125   

Total 170.545 10    
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Appendix J 

 

ANOVA 6 Output: Part 121 Automation Human Factors Fatalities 

 

Dependent Variable (y) = Fatality Rate for all Human Factor attributed fatalities 

Independent Variable (x) = Automation 
 

Table J1 

Descriptives 

 N Mean 
Std. 

Deviation 

Std. 

Error 

95% Confidence 

Interval for Mean 
Minimum Maximum 

Between- 

Component 

Variance 
Lower 

Bound 

Upper 

Bound 

.00 2 .0000 .00000 .00000 .0000 .0000 .00 .00   

1.00 3 1.0000 1.00000 .57735 -1.4841 3.4841 .00 2.00   

2.00 1 1.0000 . . . . 1.00 1.00   

3.00 4 .7500 .50000 .25000 -.0456 1.5456 .00 1.00   

5.00 1 1.0000 . . . . 1.00 1.00   

Total 11 .7273 .64667 .19498 .2928 1.1617 .00 2.00   

Model 

Fixed 

Effects 
    .67700 .20412 .2278 1.2267       

Random 

Effects 
      .20412 .1605 1.2940     -.04907 

 

 

Table J2 

Test of Homogeneity of Variances 

Levene 

Statistic 
df1 df2 Sig. 

1.878 2 6 .233 

 

 

Table J3 

ANOVA 

 
Sum of 

Squares 
df 

Mean 

Square 
F Sig. 

Between 

Groups 
1.432 4 .358 .781 .576 

Within 

Groups 
2.750 6 .458     

Total 4.182 10       
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Appendix K 

 

ANOVA 7 Output: Part 135 Automation Human Factors Accidents 

 

Dependent Variable (y) = Accident Rate for all Human Factor attributed accidents 

Independent Variable (x) = Automation 
 

Table K1 

Descriptives 

 N Mean 
Std. 

Deviation 

Std. 

Error 

95% Confidence 

Interval for Mean 
Minimum Maximum 

Between- 

Component 

Variance 
Lower 

Bound 

Upper 

Bound 

.00 3 30.3333 12.01388 6.93622 .4892 60.1775 18.00 42.00   

1.00 2 34.5000 13.43503 9.50000 -86.2089 155.2089 25.00 44.00   

2.00 4 38.7500 6.94622 3.47311 27.6970 49.8030 33.00 47.00   

5.00 2 42.0000 4.24264 3.00000 3.8814 80.1186 39.00 45.00   

Total 11 36.2727 9.13336 2.75381 30.1369 42.4086 18.00 47.00   

Model 

Fixed 

Effects 
    9.50125 2.86474 29.4987 43.0468       

Random 

Effects 
      2.86474 27.1559 45.3896     -8.56953 

 

 

Table K2 

Test of Homogeneity of Variances 

Levene 

Statistic 
df1 df2 Sig. 

1.270 3 7 .356 

 

 

Table K3 

ANOVA 

 
Sum of 

Squares 
df 

Mean 

Square 
F Sig. 

Between 

Groups 
202.265 3 67.422 .747 .558 

Within 

Groups 
631.917 7 90.274     

Total 834.182 10       
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Appendix L 

 

ANOVA 8 Output: Part 135 Automation Human Factors Fatalities 

 

Dependent Variable (y) = Fatality Rate for all Human Factor attributed fatalities 

Independent Variable (x) = Automation 
 

Table L1 

Descriptives 

 N Mean 
Std. 

Deviation 

Std. 

Error 

95% Confidence 

Interval for Mean 
Minimum Maximum 

Between- 

Component 

Variance 
Lower 

Bound 

Upper 

Bound 

.00 3 6.0000 6.08276 3.51188 -9.1104 21.1104 2.00 13.00   

1.00 2 5.5000 4.94975 3.50000 -38.9717 49.9717 2.00 9.00   

2.00 4 11.5000 2.38048 1.19024 7.7121 15.2879 8.00 13.00   

5.00 2 10.0000 .00000 .00000 10.0000 10.0000 10.00 10.00   

Total 11 8.6364 4.38800 1.32303 5.6885 11.5843 2.00 13.00   

Model 

Fixed 

Effects 
    4.06202 1.22474 5.7403 11.5324       

Random 

Effects 
      1.56175 3.6662 13.6065     3.44318 

 

 

Table L2 

Test of Homogeneity of Variances 

Levene 

Statistic 
df1 df2 Sig. 

5.358 3 7 .228 

 

 

Table L3 

ANOVA 

 
Sum of 

Squares 
df 

Mean 

Square 
F Sig. 

Between 

Groups 
77.045 3 25.682 15.56 .031 

Within 

Groups 
115.500 7 16.500     

Total 192.545 10       
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