
Annual ADFSL Conference on Digital Forensics, Security and Law 2019

May 15th, 10:00 AM

Improved Decay Tolerant Inference of Previously Uninstalled Improved Decay Tolerant Inference of Previously Uninstalled

Computer Applications Computer Applications

Oluwaseun Adegbehingbe
George Mason University, oadegbeh@gmu.edu

James H. Jones Jr.
George Mason University, jjonesu@gmu.edu

(c)ADFSL

Follow this and additional works at: https://commons.erau.edu/adfsl

Scholarly Commons Citation Scholarly Commons Citation
Adegbehingbe, Oluwaseun and Jones, James H. Jr., "Improved Decay Tolerant Inference of Previously
Uninstalled Computer Applications" (2019). Annual ADFSL Conference on Digital Forensics, Security and
Law. 9.
https://commons.erau.edu/adfsl/2019/paper-presentation/9

This Peer Reviewed Paper is brought to you for free and
open access by the Conferences at Scholarly Commons.
It has been accepted for inclusion in Annual ADFSL
Conference on Digital Forensics, Security and Law by an
authorized administrator of Scholarly Commons. For
more information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/adfsl
https://commons.erau.edu/adfsl/2019
https://commons.erau.edu/adfsl?utm_source=commons.erau.edu%2Fadfsl%2F2019%2Fpaper-presentation%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/adfsl/2019/paper-presentation/9?utm_source=commons.erau.edu%2Fadfsl%2F2019%2Fpaper-presentation%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
/creativecommons.org/licenses/by-nc-nd/4.0/
/creativecommons.org/licenses/by-nc-nd/4.0/

Improved Decay Tolerant Inference of ... CDFSL Proceedings 2019

IMPROVED DECAY TOLERANT INFERENCE
OF PREVIOUSLY UNINSTALLED COJ\1PUTER

APPLICATIONS
Oluwaseun Adegbehingbe

Volgenau School of Engineering
George Mason University

Fairfax, Virginia, US
Email: oadegbeh@gmu.edu

James H. Jones, Jr.
Dept of Electrical and Computer Engineering

George Mason University
Fairfax, Virginia, US

Email: jjonesu@gmu.edu

ABSTRACT

When an application is uninstalled from a computer system, the application's deleted file
contents are overwritten over time, depending on factors such as operating system, available
unallocated disk space, user activity, etc. As this content decays, the ability to infer the application's
prior presence, based on the remaining digital artifacts, becomes more difficult. Prior research
inferring previously installed applications by matching sectors from a hard disk of interest to a
previously constructed catalog of labeled sector hashes showed promising results. This prior work
used a white list approach to identify relevant artifacts, resulting in no irrelevant artifacts but
incurring the loss of some potentially useful artifacts. In this current work, we collect a more
complete set of relevant artifacts by adapting the sequential snapshot file differencing method to
identify and eliminate from the catalog filesystem changes which are not due to application
installation and use. The key contribution of our work is the building of a more complete catalog
which ultimately results in more accurate prior application inference.

1. INTRODUCTION

Digital forensics investigations are
limited when digital artifacts have
intentionally or inadvertently deleted

often
been
and

partially overwritten. The current approach for
dealing with this situation is to use forensic
analysis tools to attempt to recover files through
file signature matching and data structure
analysis [l]. Another approach is to match
individual file sectors to known content or to
search for sub-sector strings (keywords) of

@ 2019 ADFSL

interest. This approach ignores the inferential
value of combining matched sectors and strings
from multiple source files. A partial solution to
this problem as proposed by Jones and his
collaborators [2] compares matched sectors to a
catalog of known multi-file artifact sets
associated with specific software applications,
then computes a weighted score over those
matched sectors.

The approach used by Jones is limited by the
fact that the sequential snapshot file differencing
method used to build the application sector

Page 1

Improved Decay Tolerant Inference of ...

catalog is highly restrictive in its artifact
selection. The files chosen for inclusion in the
catalog are restricted to files with filenames or
file paths matching a few selected keywords
related to the application name, i.e., a white list.
For example, only installed files whose file paths
contain the keyword "firefox" are used in
constructing a sector hash database for the
Firefox application. This approach results in the
exclusion of sectors from certain files of interest
whose file paths do not consist of the chosen
keyword of interest. Jones and his collaborators,
in their approach, produced a satisfactory result,
but removed some number of file and sector
artifacts which likely have inferential value. The
need exists for a modified approach which
produces a more complete set of artifacts for
each application.

In this work, we propose a method for
generating a more complete and accurate artifact
set for each application included in the catalog.
This method involves accurately isolating all
artifacts that are generated directly or indirectly
by an application during the application's
lifecycle. If file system changes are monitored
during an application's life cycle, it can be
observed that not all the changes can be linked
to the application. For instance, some of the
activities are from the operating system (OS),
and some might be due to user activities not
related to the application of interest. In order to
create a more accurate set of artifacts associated
with an application, we need a means of
distinguishing between application related and
non-application related changes on the system's
persistent storage. In this work, we extend the
prior sequential snapshot file differencing
method by isolating all application related file
system changes in order to collect a larger but
still accurate artifact set for the catalog
construction. This is achieved by identifying and
eliminating non-application-related file system
changes and related artifacts collected while
monitoring a file system for changes caused by

@ 2019 ADFSL

CDFSL Proceedings 2019

an application's life cycle activities. In this work,
we achieve this goal by adding a "do-nothing"
branch to the artifact collection process. The
"do-nothing" branch is simply a computer
system running concurrently with the computer
system being monitored for file system changes
during application life cycle activities (Install ,
Open, Close, Uninstall, Close, Restart). The "do
nothing" system is left untouched while the
"application-run" system gets an application
installed, used, and uninstalled. In addition to
the already reported file differencing performed
between base and post activity images of the
"application-run" branch, we also perform file
differencing between the base and post activity
images of the "do-nothing" branch. File system
changes which appear in both difference sets are
deemed to be not related to the application of
interest. These file system changes can be
removed from consideration for use in generating
artifacts for the specific application catalog set.

The key contribution of our work is
improved catalog completeness and accuracy as
compared to the previous file differencing
approach for catalog construction, and the
improvement in the accuracy of application
inference based on the more complete catalog.
We compare our new catalog sets to those
previously reported, and we compare the
inferential performance of our technique using
known ground truth test images, including
images from the M57 Patents Scenario data set
[3] . We show that improving the completeness
and accuracy of the catalog will produce
improved application inference. This work is
relevant for law enforcement, intelligence, digital
forensics, and user-activity profiling.

2.RELATED WORK

Software applications such as word
processors, spreadsheets, web browsers, media
players, etc. , are of interest to the digital
forensics community as they are the instruments

Page 2

Improved Decay Tolerant Inference of ...

of user and system activity. Determining a user's
application use is an active research area because
different types of software allow a user to
perform certain tasks that may be of
investigative interest, e.g., a web browser can be
used to access illegal content, hacking tools can
be used to illegally access a computer system,
etc. Forensic research regarding software
applications often deconstructs or observes the
application software to determine how it
operates and what digital artifacts are created,
modified, or deleted in different scenarios. Many
applications have been studied in this manner
and reported publicly, for example cloud storage
software such as Dropbox [4], anti-forensic tools
such as SecureClean [5], various browser
artifacts, etc., while other analysis has been
conducted on a one-time basis or not released
publicly for other reasons.

Observation-based forensic analysis of
application programs is typically implemented
using one or both of two primary techniques:
system monitoring and differential analysis.
Both techniques identify system-level changes
that an application makes during the application
life cycle. Process Monitor [6] is a system
monitoring tool which provides a unified view of
the file system, Registry, and process activities.
It determines file system and Registry changes
using common operating system Application
Programming Interfaces (AP Is). Differential
analysis is a process that compare two objects
and reports the differences between them. The
differential forensic analysis formula developed
by Garfinkel [7] can be expressed as: A---------R
-------> B. "If A and B are disk images and the
examiner is evaluating the installation footprint
of a new application, then R might be a list of
files and Registry entries that are created or
changed" [7]. The objects that can be compared
could be disk images, memory images, files, or
network traffic capture files. The result of the
differential forensic analysis is the report of
changes between the two objects, e.g., additions,

@ 2019 ADFSL

CDFSL Proceedings 2019

modifications or deletions to the file system.
Garfinkel et al [Ibid.] authored differential
forensic analysis tools, such as idifference.py,
rdifference. py, idifference2. py. The idifference. py
and idifference2.py tools take two disk images as
input and report on the file system differences
between them. The rdifference. py tool takes two
offline Registry hive files as input and reports on
the differences between them.

Differential analysis is dependent on the
presence and persistence of differences. When an
application program gets uninstalled or deleted
by the user, files associated with the application
are deleted and the data storage areas associated
with those files are deallocated by the file
system. These application artifacts are now
subject to decay or destruction because they can
get partially or completely overwritten when the
operating system reallocates their associated
clusters for new data. When the deleted files
remain intact, there are tools such as TestDisk
[8] that can be used to recover the files. There
are also file carving techniques [9 , 10] that can
be used to recover partially overwritten files.
Other work [11] studied deleted file persistence
in digital devices and media.

During the course of the forensic
examination of a digital device, one goal is to
explain what was found in the digital device,
possibly in relation to a crime. Often a
hypothesis is proposed to explain how a
computer crime was committed, and analysis of
the digital media is performed to obtain evidence
that would support or refute such a hypothesis.
This analysis may be intended to answer simple
questions involving timelines or user or
application program activities involving a digital
device. When one aspect of a digital forensic
examination is to infer previously deleted
application program software on a digital device,
current approaches and research can be grouped
into one or more of the following categories,
discussed in the sections that follow: string and

Page 3

Improved Decay Tolerant Inference of ...

keyword searching, log analysis, file carving,
hash-based carving, and matching.

A simple approach that can be used to infer
previously uninstalled applications on a
persistent storage media is by parsing the media
for certain strings or keywords related to the
application program activities in a manner
similar to that used for memory [12], registry [13]
and network logs [14]. Tools such as EnCase [15]
are used to search digital media for specific
keywords without the need to parse the file
system. The problem with this approach is that
other information such as time stamps, file meta
data, etc., have to be used to interpret the
extracted keywords to determine whether
application program activities were responsible
for the existence of those keywords on the media.

Another approach to infer previously
uninstalled applications on digital media is
analyzing log files [16] to find evidence of
previously recorded application program
activities. Application program activities can be
logged by the application itself (for debugging or
troubleshooting purpose), another interacting
application, or the operating system. These log
files may persist even after the application
program has been uninstalled and may serve as
evidence of application program activities on the
digital device. This approach works if the desired
log exists and has not been tampered with, but
is less useful if such log files don't exist or have
been corrupted or tampered with [17].

All the approaches described above rely on
artifacts with human-readable content like log
entries, keywords, etc. Research work by GG
Richard III [18] showed that unallocated cluster
data and non-human-readable file content may
also indicate the prior existence of a file, e.g., an
application program, on the storage media. File
system references for the "deleted" files are not
necessarily needed to retrieve the application file
fragments from a storage media. The extraction
of unallocated files and file fragments is known
as file carving. File carving is the process of

@ 2019 ADFSL

CDFSL Proceedings 2019

recovering file contents from digital media
without the help of a file system. In order to
successfully extract complete files from a digital
media, knowledge of the file format (e.g., file
headers and sometimes footers) is necessary.
Earlier file carving approaches only work with
unfragmented file clusters which are in order.
Advanced recent file carving approaches work
even if the application files are made of multiple
fragmented file clusters [19] by using cluster
classification techniques to identify clusters
belonging to the same file.

When complete file recovery is not possible
due to decay of a deleted file 's contents, a sub
file forensics approach [20] is needed. Research
has shown that one can prove file existence and
hence application program activities on a digital
device through a process called hash-based
carving. Hash-based carving is a technique for
detecting the presence of specific files on digital
media by evaluating the hashes of individual
data blocks, rather than the hashes of entire files.
Hash-based carving has been successful [21] in
identifying files that are fragmented, incomplete,
or partially modified. In order for this approach
to be used to successfully identify a specific file,
a catalog or database of block hashes derived
from the file of interest has to be pre-built. The
catalog is then used to scan a test media in
search of matching hashes. The higher the
number of matching blocks, the higher the
likelihood that the full file was previously present
in the test media.

The sector matching and aggregation
approach, proposed by Jones [2], is a means of
inferring the likelihood that an application was
previously installed on a examined system by
matching sectors on the examined system with
known stored sectors associated with the
multiple files from the application of interest.
From the matched sectors, potentially probative
sector blocks are selected and weighted using an
inverse weighting scheme based on Term
Frequency - Inverse Document Frequency (TF-

Page 4

Fig. 1. Approach Overview

Improved Decay Tolerant Inference of ...

IDF) to compute the inferential value of the
matched sectors. The results from this technique
were promising in that the technique was able to
indicate past application activity even after the
application had been uninstalled and the host
system rebooted and used. Disk images from the
M57 data set [3] were used to evaluate this
approach. While the approach was able to
identify previously uninstalled applications on
the test images, it was determined that the
approach could be improved. Specifically, the
process of selecting the sectors that get stored in
the catalog was quite coarse, relying on the
sector belonging to files with keywords of
interest in its filename or file path. We are
improving this approach by implementing a
more complete selection process to build the
catalog.

3. APPROACH AND
lVIETHODOLOGY

Our approach, summarized in Figure 1, seeks
to improve on the technique used by Jones et al.
Where Jones reduced noisy sectors using a
keyword white list approach, we do so by
eliminating sectors that are obtained from
systems running without any activities
associated with the application of interest. This
is our so-called "do nothing" branch.

Our initial catalog was built by file
differencing multiple virtual machine disk
images taken while installing, using, and
uninstalling applications in a controlled
environment. The virtual disk images obtained
were processed to identify new, modified, or
deleted files between snapshots during the
application install(!) , open(0) , close(C),

@ 2019 ADFSL

CDFSL Proceedings 2019

uninstall(U) and system reboot (R) stages as
indicated in Figure 1. The purpose of this process
is to extract all the forensics artifacts an
application of interest will create on a computer
system throughout the application's life cycle.
Once extracted, the disk images are then
analyzed with custom tools based on elements of
the DFXML toolset [7] to generate a Digital
Forensic XML (DFXML) file showing new,
modified, or deleted files.

In our work, we also collect artifacts
generated when the application of interest is not
installed to identify artifacts due to non
application related activities (e.g. user, other
application, or operating system related
activities). Rather than restrict sectors of
interest to files with filenames or file paths
associated with application keywords, we include
in the catalog all file system artifacts except
those also appearing in the do nothing branches.
With the understanding that operating system
activities occur simultaneously during the
application software life cycle (i.e. install, open,
close, uninstall and restart) , we identify those
artifacts in order to exclude them from the final
catalog hash database. We achieve this by
having a "do-nothing" branch that runs
concurrently with the "application-run" branch.
The "application-run" branch is a sequence of
virtual machine snapshots taken after the
occurrence of each part of the application
software life cycle (install(!), open(0), close(C),
uninstall(U) and system reboot (R)). The "do
nothing" branch is a sequence of virtual machine
snapshots taken from virtual machines cloned
from the "application-run" branch and run
undisturbed and concurrently with the
"application-run" branch. The purpose of the
"do-nothing" branch is to collect file system
activities that occur without the involvement or
influence of the application of interest. These
collected operating system related file system
activities, if found among file system activities
observed in the "application-run" branch, will be

Page 5

Fig. 2. Overview of the VM buildup procedure for "application-run" and

"do-nothing" branches with respect to catalog creation.

1) Build the first VM by installing the operating system

on the VM instance, adding the appropriate service

pack installations so that the application software

can successfully run within the VM instances.

Improved Decay Tolerant Inference of ...

excluded, resulting is a smaller and more
accurate artifact set associated with the
application of interest. The procedure described
above and further explained in the subsequent
subsections is depicted in greater detail in Figure
2.

0
Do Nothing:

[!!]
• Do Nothing ■

~

~

We have two copies of the same base
virtual machine instance (the two side-by-side
boxes labeled "B"), one designated for the
application install, use, and removal, the other
designated for the "do-nothing" branch where
the virtual machine (VM) is allowed to run
concurrently with the "application-run" branch.
The "do nothing" VM does not have the
application of interest installed and has no user
initiated activity. Immediately after the
completion of each part of the application
software life cycle, snapshots of the VMs at the
"application-run" and "do-nothing" branches
are taken. The VM at the "application-run"
branch is then copied for use in the "do-nothing"

@ 2019 ADFSL

CDFSL Proceedings 2019

branch in the next part of the experiment. This
experiment is repeated, in sequential order, going
through the stages of the application's life cycle
(Base-Install-Open-Close-U ninstall-Restart).
After each action (e.g. , Install), the "application
run" and "do-nothing" VMs are suspended and
the respective disk images are archived for
further processing in the next stage of the
experiment. The "application-run" VM is cloned
and the two VMs are set up for the next action
(e.g. Open) with one designated for the
"application-run" and the other designated for
the "do-nothing" run. The next action (e.g.
Open) is performed in the "application-run" VM
while the "do-nothing" VM runs undisturbed.
These steps are repeated as depicted in Figure 2
until all the actions in the life cycle for the
application software are completed. At each step
in the experiment, disk images from the
suspended VMs are archived. The following
subsections describe the experiment in greater
detail.

In this research effort, a catalog was
created for 16 Windows applications in a
controlled environment using virtual machine
snapshots. These applications are the same
applications selected in the original NIST
Diskprinting effort [22]. The 16 applications'
lifecycles were run in three Windows operating
systems (Windows XP, Windows 7 32-bit, and
Windows 7 64-bit) to generate 29 application-OS
combinations known as diskprints. Application
related files created during application Install,
Open, Close, Uninstall and system Reboot were
identified and associated sector and file
information collected for ingestion into the
catalog after some post-processing actions.

3.1 Build the Vrrtual lVla.chin.e
(VM) instances

Page 6

2) BASE: The base VM currently named "B" is cloned,

with one copy designated for the “application-run”

branch and the other designated for the “do-

nothing” branch.

3) INSTALL: The two VMs are run simultaneously. In

the "application-run" VM, the application software

of interest is installed while the "do-nothing" VM is

allowed to run undisturbed for a period of time

without user interaction of any kind. At the end of

the application software installation, both VMs are

suspended, the "do-nothing" VM is renamed as

"BT" (Base-Time) and the "application-run" VM is

renamed as "BI" (Base-Install) to reflect the current

state of the VMs pertaining to the application life

cycle stages. The virtual disk images in "BT" and

“BI” are converted into raw disk images named

"BT.img" and "BI.img" respectively.

4) OPEN: The VM currently named "BI" is cloned. In

the "application-run" VM, the application software

of interest is launched or run and used while the

"do-nothing" VM runs undisturbed. At the end of

the application software use, both VMs are

suspended, the "do-nothing" VM is renamed as

"BIT" (Base-Install-Time) and the "application-run"

VM is renamed as "BIO" (Base-Install-Open). The

virtual disk images in the two VMs are converted

into raw disk images.

5) CLOSE: The VM currently named "BIO" is cloned. In

the "application-run" VM, the application software

of interest is closed or terminated while the "do-

nothing" VM runs undisturbed. At the end of the

application software exit, both VMs are suspended

and renamed as "BIOC" (Base-Install-Open-Close)

and "BIOT" (Base-Install-Open-Time) respectively.

The virtual disk images in the two VMs are

converted into raw disk images.

6) UNINSTALL: The VM currently named "BIOC" is

cloned. In the "application-run" VM, the application

software of interest is uninstalled or deleted while

the "do-nothing" VM runs undisturbed. At the end

of the application software uninstall, both VMs are

suspended and renamed as "BIOCU" (Base-Install-

Open-Close-Uninstall) and "BIOCT" (Base-Install-

Open-Close-Time) respectively. The virtual disk

images in the two VMs are converted into raw disk

images.

7) RESTART: The VM currently named "BIOCU" is

cloned. The "application-run" VM is restarted while

the "do-nothing" VM runs undisturbed. At the end

of the VM restart, both VMs are suspended, the

"do-nothing" VM is renamed as "BIOCUR" (Base-

Install-Open-Close-Uninstall-Restart) and "BIOCUT"

(Base-Install-Open-Close-Uninstall-Time)

respectively. The virtual disk images in the two VMs

are converted into raw disk images.

1) The virtual disk images in the generated VMs are

converted into raw disk images. Before the

conversion, if the virtual disk images are not flat

(e.g., the disk is made up of differential snapshots,

like VDisk.vmdk, VDisk-s001.vmdk, VDisk-

s002.vmdk, VDisk-s003.vmdk, etc.), the separate

VMDK files would have to be combined into a single

VMDK file using the VMWare’s vmware-

vdiskmanager tool as follows:

$ vmware-vdiskmanager -r VDisk.vmdk -t 0

BIOCUR.vmdk

2) The resulting single VMDK file is then converted

into a raw disk image file using the qemu-img tool

as follows:

$ qemu-img convert BIOCUR.vmdk -0 raw

BIOCUR.img

1) "B.img" is compared with "BI.img" to identify file

system changes due to application software

installation. The file system changes are stored in

"B-BI.dfxml".

2) "BI.img" is compared with "BIT.img" to identify file

system changes due to the operating system in "BI"

state running undisturbed. The file system changes

are stored in "BI-BIT.dfxml".

3) "BI.img" is compared with "BIO.img" to identify file

system changes due to the specific application

Improved Decay Tolerant Inference of ...

@ 2019 ADFSL

CDFSL Proceedings 2019

3.2 Convert the VMWare
Vl\1I)K file to a raw- image file

3.3 Compare adjacent images
using the idifference tool

The next step is to compare raw disk images
and determine file system changes that have
occurred between adjacent images or adjacent
states in the "application-run" or "do-nothing"
branches. For instance, comparing "B.img" to
"BT.img" would allow us to determine the file
system changes that occurred when the base VM
is allowed to run for a period of time. The file
system changes are stored in a file named "B
BT. dfxml". Similarly:

Page 7

software being launched or executed and used. The

file system changes are stored in "BI-BIO.dfxml".

4) "BIO.img" is compared with "BIOT.img" to identify

file system changes due to the operating system in

"BIO" state running undisturbed. The file system

changes are stored in "BIO-BIOT.dfxml".

5) "BIO.img" is compared with "BIOC.img" to identify

file system changes due to the launched or running

application software getting terminated. The file

system changes are stored in "BIO-BIOC.dfxml".

6) "BIOC.img" is compared with "BIOCT.img" to

identify file system changes due to the operating

system in "BIOC" state running undisturbed. The file

system changes are stored in "BIOC-BIOCT.dfxml".

7) "BIOC.img" is compared with "BIOCU.img" to

identify file system changes due to the application

software getting uninstalled. The file system

changes are stored in "BIOC-BIOCU.dfxml".

8) "BIOCU.img" is compared with "BIOCUT.img" to

identify file system changes due to the operating

system in "BIOCU" state running undisturbed. The

file system changes are stored in "BIOCU-

BIOCUT.dfxml".

9) "BIOCU.img" is compared with "BIOCUR.img" to

identify file system changes due to the operating

system in "BIOCU" state getting restarted. The file

system changes are stored in "BIOCU-

BIOCUR.dfxml".

Fig. 3. Comparing disk images

 $ python idifference2.py -x B-BT.dfxml B.img

BT.img

Improved Decay Tolerant Inference of ...

These comparisons are depicted in Figure 3.

B-Bl.dfxml

;----;;j·'
', B1-BIT.dfxml _

BIT

B10-BIOC.dfxml ',,, B10-BIOT.dfxml

I ~~T I
BIOC-BIOCU.dfxml ;-:~:r .. ~,

@ 2019 ADFSL

',,, BIOCU-BIOCUT.dfxml ,,.

CDFSL Proceedings 2019

The tool used to compare two raw disk image
files is the idifference (idifference2. py) tool [7].
The idifference tool is a Python program that
compares two raw image files and reports the
differences on the file objects that they contain.
It reports on file system changes such as files
deleted, files created, files moved or renamed,
and files modified. The output is a DFXML file.
The general command used for comparing the
two raw image files (e.g., B.img and BT.img) is
as follows:

3 .4 Shrink the DFXlviL files and
generate a JSON file containing

digital artifu.cts

One of the motivations of this research
experiment is to eliminate all file system changes
attributed to operating system or other
application activities from the digital artifacts
that would be ingested into the catalog database.
For instance, "B-Bl.dfxml" supposedly
represents file system activities due to
application software installation. However, while
the application software program was being
installed, there are other file system changes
occurring simultaneously that are actually due
to operating system activities and not due to the
application installation. These operating system
related activities must be removed from our
current data sets.

We remove the operating-system related
activities from "B-BI.dfxml" by comparing "B
BI.dfxml" with "B-BT.dfxml", a dataset that
was created from running the base VM instance
("B.vmware") undisturbed during the same time
that the other base VM instance was having the
application software program installed in it.
Upon comparing "B-Bl.dfxml" to "B
BT.dfxml", it was observed that there are some
file system changes common to both data sets.
Therefore it can be assumed that the file system
changes common to "B-Bl.dfxml" and "B-

Page 8

1) "BI-BIO.dfxml" is compared to "BI-BIT.dfxml" to

remove common operating system related

activities observed during the "Open" phase. This

results in a reduced "BI-BIO.dfxml".

2) "BIO-BIOC.dfxml" is compared to "BIO-BIOT.dfxml"

to remove common operating system related

activities observed during the "Close" phase. This

results in a reduced "BIO-BIOC.dfxml".

3) "BIOC-BIOCU.dfxml" is compared to "BIOC-

BIOCT.dfxml" to remove common operating system

related activities observed during the "Uninstall"

phase. This results in a reduced "BIOC-

BIOCU.dfxml".

4) "BIOCU-BIOCUR.dfxml" is compared to "BIOCU-

BIOCUT.dfxml" to remove common operating

system related activities observed during the

"Restart" phase, resulting in a reduced "BIOCU-

BIOCUR.dfxml".

Improved Decay Tolerant Inference of ...

BT.dfxml" are due to operating system or other
application activities in both "do-nothing" and
"application-run" paths in this portion of the
experiment. These common file system changes
are not application artifacts and so are removed
from "B-Bl.dfxml".

Following a similar pattern as described m
the above paragraph:

These comparisons ultimately result in the
reduced "application-run" DFXML files.

After eliminating non-application-related file
system changes from the DFXML files , we are
left with file system activities that are assumed
to be attributable to the application's run in the
VM environment. The file system activities
include file creations, file deletions, file
renaming/ moving and other file changes.

Upon reviewing the DFXML files, it was
observed that the application related files were
recorded several times among the different
DFXML files under different categories of file
system activities. For example, during the
application run process for Firefox, configuration
and usage files are created during the "Install"
phase and modified during the "Run" phase. Due
to these repetitions, it was decided during the
design stage of this research effort that only file

@ 2019 ADFSL

CDFSL Proceedings 2019

creations would be considered for inclusion in the
catalog. Another justification for this design
choice is also due to the fact that there are file
system changes that remain in the reduced
DFXML files that would be not be unique to the
specific application. For example, Windows
event logs are modified when an application is
installed and used. However, it is not wise to
include the Windows event logs in the catalog as
most application activity results in modification
of Windows event logs. If only newly created files
are considered for inclusion in the catalog, files
such as windows event logs would not be
included m the catalog. Therefore, only
information about file creations are extracted
from the DFXML files. Information about folder
creations are not included for ingestion into the
catalog because folders have a sub-sector
footprint and so would not be useful in our
design.

After new file lists are extracted from the
DFXML files , the next step is to generate sector
hashes of the indicated files. This information is
not available in the DFXML files. The DFXML
files only contain file metadata such as file inode
number, file path, filename, partition, file id,
name type, file size, mac time, file system offset,
image offset, byte run length, MD5 file hash, and
SHAl file hash. Since the goal of this research
effort is to be able to accurately infer previously
uninstalled applications from partially
overwritten files, the catalog needs to be built
with sector information. A sector is the smallest
physical storage unit on a disk and is typically
512 or 4096 bytes in size. Therefore, in order to
build the catalog with sector information from
the files attributed to the application of interest,
one would need to locate the files in the raw disk
images and compute the block hash in
increments of 512 or 4096 bytes (we chose 512 in
order to be applicable to either 512 byte or 4096
byte image sources) . The files , once located in
the raw disk images, are broken down into blocks
of 512-byte size, an md5 hash is computed, and

Page 9

$ python get_sector_hashes.py {path to DFXMLs}

{path to IMGs} {path to JSONs} Firefox19-

W7x64.json Firefox19-W7x64

$ hashdb create -b 512 Chrome28-W7x64.hdb

$ hashdb import Chrome28-W7x64.hdb Chrome28-

W7x64.json

1https://github.com/seunfuta/AppDetective/blob/mas

ter/get_sector_hashes.py

$ hashdb create -b 512 W7x64.hdb

$ hashdb ingest -r W7x64 W7x64.hdb W7x64.img

$ hashdb subtract_hash Chrome28-W7x64.hdb

W7x64.hdb Chrome28-noW7x64.hdb

$ hashdb add_multiple Chrome28-noW7x64.hdb

Chrome28-W7x32.hdb … catalog.hdb

Improved Decay Tolerant Inference of ...

the resulting block hash is stored in a JSON file.
A custom Python script is used for generating
the JSON file containing sector and file
information related to each application program.
The custom Python script, named
"get_sector_hashes.py" 1 is used to generate a
JSON file that contains sector and file
information belonging to the "Firefox19-W7x64"
application diskprint in the following example:

3. 5 Create catalog hashdb and
ingest taggro. application

meta.data. into it

Once the JSON file containing the sector and
file information is created, the next step is to
create the catalog database into which the
information in the JSON file is ingested. We
chose to use the hashdb tool [22] version 3.1.0
for the database since it was specifically designed
for hash value storage and lookup. The hashdb
tool is also used to create hash databases, import
block hashes, and scan and manage block hash
databases.

The process of building the catalog hash
database involves creating an empty hash
database using the hashdb "create" command
and ingesting the previously generated JSON file
into it using the hashdb "import" command, as
in the following example for the "Chrome28-
W7x64" application:

The content of the created hash database for
each application can be reduced further by
removing from it data about blocks that can
found in other non-application-related
environments, like in a computer system with
only the base operating system running.

@ 2019 ADFSL

CDFSL Proceedings 2019

Eliminating these common blocks reduces the
false positive matches when the catalog hash
database is used to scan against a test image.
Removing the common sector information from
the application hash database is accomplished
using the hashdb "subtract_hash" command.
This is accomplished by first creating a new hash
database using the hashdb "create" command,
ingesting sector and file information collected
from a clean Windows 7 64-bit OS image
("W7x64.img") into the database using the
hashdb "ingest" command, and then using the
hashdb "subtract hash" to remove sector
information that this new database has in
common with the application sector hash
database. This series of commands is run as
follows for the "Chrome28-W7x64" application:

The next step is to combine all the separate
application hash databases into a single hash
database. This is accomplished using the hashdb
"add_multiple" command. All twenty-nine (29)
hash databases are combined as follows:

3.6 Scan test image5 and generate
JSON file containing matched

sector information

Once the catalog hash database has been
built, the next step is to test it for its ability to
infer previously uninstalled applications in test
disk images. In this research effort, the true test
of the improvement of our research methodology
over the one previously proposed is to see an
increase in the sectors captured per application,
and an ability to infer previously uninstalled

Page 10

$ hashdb scan_media -j e catalog.hdb test.img >

catalog-test.match.json

$ python process_matched_json.py catalog-

test.match.json

• the number of sectors found per application

• the total number of sectors in the catalog per

application

• the sector percentage, which is number of found

sectors/total number of sectors per application

• the weighted sector percentage, which

considers the frequency of each matched sector

among the 29 applications in the catalog

• the number of files, based on the sectors found,

per application

• the total number of files in the catalog per

application

2

https://github.com/seunfuta/AppDetective/blob/master
/process_matched_json.py

• the file percentage, which is the number of files

with found sectors/total number of files per

application

• the weighted file percentage, which considers

the fraction matched sector/total sectors for

each matched file per application

Improved Decay Tolerant Inference of ...

applications in test images despite significant
decay of the application's file artifacts.

The process of scanning test images against
the catalog hash database involves using the
hashdb "scan media" command, which

CDFSL Proceedings 2019

generates information about matched blocks in a The final step in our research methodology is
JSON file. The hashdb "scan media" command to compare the tables generated in our research
is used as follows: work to the tables generated based on the prior

3. 7 AnalY7£ the JSON file
containing matched sector

information

The information about matched blocks,
stored in a JSON file, is then processed to obtain
information that demonstrates how much of a
previously uninstalled application can be
inferred in the scanned test raw disk images. A
custom python script was developed to process
the JSON file generated in the previous step.
The python script, named
"process_ matched _json. py"2 is used as follows:

The output of the Python command line
execution is a table that shows information
about:

@ 2019 ADFSL

work of Jones et al. The tables are generated
using the two catalogs scanned against identical
test images. Identifying more sectors per
applications known to be previously installed in
the test images would be a sufficient initial proof
of our hypothesis.

4. FINDINGS AND
ANALYSIS

This experiment was conducted with 16
applications m three operating systems
environments, namely Windows XP, Windows 7
32-bit and Windows 7 64-bit (not every
application was printed for every OS). Table 1
shows the distribution of the applications
analyzed, which were the same applications and
operating systems used in the initial NIST
Diskprinting effort [23]. The combination of the
applications and operating systems resulted into
29 applications that were used to build the
catalog hash database. Each application was
catalogued using a set of sequential VM
snapshots, each snapshot capturing a slice of
time in the software's life cycle on the system.

The experiment, as presumed, revealed that
there were file system changes that were
common between disk images obtained from the
"application-run" path of the experiment and
those obtained from the "do-nothing" path.
Eliminating these common file system changes
reduced the number of files whose sectors are
included in the catalog when compared to all

Page 11

Table 1: NIST Diskprints

App-OS WinXP Win7x32 Win7x64
Advanced Keylogger X

Chrome28 X X X
Eraser X
Firefox X X X

HxD Hex Editor X
Invisible Secrets X

MS Office X X X
Python264 X
Safari517 X X X
Sdelete X X

Thunderbird2 X
TrueCrypt63 X

UPX X X

WinRar5beta X X

WinZip17Pro X X

Wireshark X X

 sector %DP = sector_matches / sectors_totalDP

 file %DP = files_found / files_totalDP

Table 2: Total hashes and files per Application Diskprint

 Current Jones et al

diskprint sectors files sectors files

AdvKeylogger-WinXP 34,021 113 4,682 25

Chrome28-W7x32 1,628,813 417 563,047 181

Chrome28-W7x64 1,326,264 394 618,344 191

Chrome28-WinXP 1,302,446 349 616,707 175

eraser-W7x32 473,414 106 88,952 32

Firefox19-W7x32 772,936 285 136,069 79

Firefox19-W7x64 327,374 235 143,607 99

Firefox19-WinXP 306,791 203 136,276 93

HxD171-W7x32 16,003 35 8,005 18

InvSecrets21-WinXP 24,593 111 1,197 18

OfficePro2003-W7x32 3,655,215 6,322 1,435,417 2,961

OfficePro2003-W7x64 2,735,821 1,834 1,073,253 864

OfficePro2003-WinXP 4,707,778 9,255 1,415,905 2,967

Python264-WinXP 110,556 4,427 47,062 2,035

Safari157-W7x32 1,068,187 2,975 407,531 1,434

Safari157-W7x64 847,899 1,736 301,256 806

Safari157-WinXP 1,015,377 2,252 312,454 804

sdelete-W7x32 1,740 7 249 3

sdelete-W7x64 4,054 6 225 2

Thunderbird2-WinXP 123,855 335 44,669 153

TrueCrypt63-WinXP 21,750 41 9,014 15

UPX-W7x32 3,324 17 1,340 8

UPX-W7x64 2,260 19 798 8

Winrar5beta-W7x32 641,637 135 9,209 41

Winrar5beta-W7x64 36,947 107 15,311 62

Winzip17pro-W7x32 1,449,498 355 323,735 149

Winzip17pro-W7x64 750,663 320 283,153 149

Wireshark-W7x32 681,631 505 102,309 237

Wireshark-W7x64 448,605 475 129,684 223

Total 24,519,452 33,371 8,229,460 13,832

Improved Decay Tolerant Inference of ...

differing files and sectors, but resulted in more
files and sectors than the previous method which
used a white list reduction approach. A review
of the remaining files showed that they are
unique to the "application-run" branch and thus
true indicators of activities that are attributable
to the application of interest. These include
created files that can be directly linked to the
application installation package content and
other related file systems changes. These
candidates are included in the catalog hash
database.

Table 2 shows the total sector hashes and
files per diskprints in our catalog and in the work
of Jones.

The higher sector and file count per
application in our method supports our assertion
that this is a more complete catalog. Manual
review of the artifact source files indicates that
these are application related files, hence the new
catalog has maintained accuracy as well.

Jones used the following equations to
compute a score based on matched sectors:

@ 2019 ADFSL

CDFSL Proceedings 2019

num_sector matches l
weighted sector %0 p = (~ --) / sectors_total0 p

S=l freqs

num_file_matcltes matched sectors
weighted file %0 p = (~ - F)/ files_total0 p

F=l total_sectors F

We tested our catalog using the same twelve
(12) test images used by Jones and these scoring
equations; the full results are presented in Tables
4 and 5 (in the Appendix). Our catalog typically
scored lower than the Jones catalog due to the
fact that the Jones catalog is smaller. Total

Page 12

Table 3: Sector and File Match Comparison between

Methods
 Diff (current – Jones) Diff %

diskprint Sectors files sectors files

AdvKeylogger-WinXP 29,339 88 627% 352%

Chrome28-W7x32 1,065,766 236 189% 130%

Chrome28-W7x64 707,920 203 114% 106%

Chrome28-WinXP 685,739 174 111% 99%

eraser-W7x32 384,462 74 432% 231%

Firefox19-W7x32 636,867 206 468% 261%

Firefox19-W7x64 183,767 136 128% 137%

Firefox19-WinXP 170,515 110 125% 118%

HxD171-W7x32 7,998 17 100% 94%

InvSecrets21-WinXP 23,396 93 1955% 517%

OfficePro2003-W7x32 2,219,798 3,361 155% 114%

OfficePro2003-W7x64 1,662,568 970 155% 112%

OfficePro2003-WinXP 3,291,873 6,288 232% 212%

Python264-WinXP 63,494 2,392 135% 118%

Safari157-W7x32 660,656 1,541 162% 107%

Safari157-W7x64 546,643 930 181% 115%

Safari157-WinXP 702,923 1,448 225% 180%

sdelete-W7x32 1,491 4 599% 133%

sdelete-W7x64 3,829 4 1702% 200%

Thunderbird2-WinXP 79,186 182 177% 119%

TrueCrypt63-WinXP 12,736 26 141% 173%

UPX-W7x32 1,984 9 148% 113%

UPX-W7x64 1,462 11 183% 138%

Winrar5beta-W7x32 632,428 94 6867% 229%

Winrar5beta-W7x64 21,636 45 141% 73%

Winzip17pro-W7x32 1,125,763 206 348% 138%

Winzip17pro-W7x64 467,510 171 165% 115%

Wireshark-W7x32 579,322 268 566% 113%

Wireshark-W7x64 318,921 252 246% 113%

1

Improved Decay Tolerant Inference of ...

sectors (and total files) are a denominator in
Jones ' scoring equations, so our scores are
usually lower even when we match more sectors.
Given a more complete and still accurate catalog
(no irrelevant artifacts), a better measure would
emphasize the number of sectors (and files)
matched, rather than the % of total sectors or
files. Further, our more complete catalog is
inherently more decay tolerant, as it provides
more sectors against which matches can be
made. This revised scoring equation is noted as
future work, but here we present a comparison
of the number of sectors and files matched
(Table 3)

4.1 Remit of Catalog Scan against
Test Images with Single

Applications

@ 2019 ADFSL

CDFSL Proceedings 2019

The same five single-application test images
used by Jones for testing their catalog hash
database were used to test our newly built
catalog hash database. Testing with the same
test images would allow one to compare the two
catalog hash databases and methodologies for
difference in accuracy of detection. The five
single-application test images were built using
Chrome28, Firefox19, UPX, Winrar5beta, and
sdelete within Windows 7 64-bit environments.
The results of the scans, using the five images
which contained the installation, use and
uninstallation of a single application, show
improvement in the number of sectors matched
for known previously uninstalled applications.
Table 4 (in the Appendix) shows the full results
of the comparisons.

4. 2 Result of Catalog Scan against
Test Images with Multiple

Applications

Similarly, the same three multiple
application test images used by Jones for testing
their catalog hash database were used to test our
newly built catalog hash database. Each test
image contained the installation, use and
uninstallation of multiple applications
(Chrome28-Firefoxl 9, Chrome28-Firefoxl 9-
Safari517 and Winrar5beta-Winzip17pro) in
Windows 7 64-bit environments. The test results
show improvement in the number of sectors
matched for known previously uninstalled
applications. Table 5 (in the Appendix) shows
the full results of the comparisons.

4. 3 Result of Catalog Scan against
M57Dataset

The new catalog hash database was also
tested against the M57 Patents dataset [3]. The
M57-Patents dataset corresponds to a case
involving four employees of a fictitious
corporation, three of whom were involved in
various types of criminal activity. In producing

Page 13

Improved Decay Tolerant Inference of ...

the dataset, the scenario participants engaged in
scripted and normal user activities every day for
one month. Researchers made forensic images of
the user workstations at the end of each day.
Testing the catalog hash database using these
images would help determine the ability of our
catalog hash dataset to accurately infer the
presence of previously uninstalled applications
under semi-realistic conditions. Testing against
the M57-Patents dataset also completes our
comparison to the methodology and catalog hash
database of Jones.

The test images used are the final day
snapshots of the workstations of the four
employees, namely Charlie, Jo, Pat and Terry.
The results from scanning the final day images
for the four scenario users are summarized in
Table 6 (in the Appendix).

A review of Tables 4-6 (in the Appendix)
shows that our methodology has resulted in more
identified sectors and files per application known
to be previously present on the test images.
However, the previous approach of inferring
application presence based on sector
percentages, weighted sector percentages, file
percentages and weighted file percentages does
not take advantage of the more complete
catalog, nor does it capture the increased decay
tolerance of the new catalog. To demonstrate
this point, we used our catalog to scan all of the
M57 Pat workstation images collected over the
one-month period and plotted the count of
sectors associated with Advanced Keylogger over
the time period of the scenario. Advanced
Keylogger is malware that was installed and
active 12/ 3 and 12/ 4, then uninstalled. Figure 4
shows how our approach was able to identify
considerably more sectors (308 vs 20 for the final
image captured) associated with the Advanced
Keylogger application program in Pat's system,
even after uninstallation and continued system
use. In digital forensic investigations, we
frequently analyze systems well after the event
has occurred. The presence of significantly more

@ 2019 ADFSL

CDFSL Proceedings 2019

sectors against which we can match may be the
difference between whether we identify a
previously uninstalled application or not.

5. CONCLUSION

In this work, we proposed a method of
generating an application-related artifact set for
our catalog hash database by extending the
sequential snapshot file differencing method of
Jones et al, adding a "do-nothing" branch to the
collection activity. This additional process
eliminates artifacts due to operating system and
other application activities while retaining more
of the relevant artifacts than the previous
method. This provides a more decay tolerant
catalog, although we note the need for a new
quantitative measure of application presence
which takes advantage of the more complete
catalog.

6. FUTURE WORK

Future work involves reviewing the makeup
of the catalog hash database to see how sectors
that don't contribute much value to the
application inference calculation can be
identified and eliminated. In addition, a revised
measure of application presence and thresholds
using our more complete catalog needs to be
devised. Such a measure may incorporate factors
such as the application footprint, relative sector
locations , artifact decay contributing factors,
etc. We also intend to generate more test images
to continue testing our catalog hash database.

REFERENCES

[1] J. Haggerty and M. Taylor, "Forsigs:
Forensic signature analysis of the hard drive
for multimedia file fingerprints," New
Approaches Secur. Priv. Trust Complex
Environ., pp. 1- 12, 2007.

[2] J. Jones, T. Khan, K. Laskey, A. Nelson, M.
Laamanen, and D. White, "Inferring

Page 14

Improved Decay Tolerant Inference of ...

previously uninstalled applications from
digital traces," m Proceedings of the
Conference on Digital Forensics, Security
and Law, 2016, pp. 113- 130.

[3] K. Woods, C. A. Lee, S. Garfinkel, D.
Dittrich, A. Russell, and K. Kearton,
"Creating realistic corpora for security and
forensic education," in Proceedings of the
Conference on Digital Forensics , Security
and Law, 2011, p. 123.

[4] D. Quick and K.-K. R. Choo, "Dropbox
analysis: Data remnants on user machines,"
Digit. Investig., vol. 10, no. 1, pp. 3-18, 2013.

[5] M. Geiger and L. F. Cranor, "Scrubbing
stubborn data: An evaluation of counter
forensic privacy tools," IEEE Secur. Priv.,
vol. 4, no. 5, pp. 16-25, 2006.

[6] A. Margosis and M. E. Russinovich,
Windows Sysinternals administrator's
reference. Pearson Education, 2011.

[7] S. Garfinkel, A. J. Nelson, and J. Young, "A
general strategy for differential forensic
analysis," Digit. Investig., vol. 9,
Supplement, pp. S50- S59, Aug. 2012.

[8] CGSecurity, "TestDisk - Partition Recovery
and File Undelete," 04-Jun-2016. [Online].
Available:
https: / / www.cgsecurity.org/ wiki/ TestDisk.
[Accessed: 22-Dec-2018].

[9] A. Ravi, T. R. Kumar, and A. R. Mathew,
"A method for carving fragmented document
and image files," in Advances in Human
Machine Interaction (HMI), 2016
International Conference on, 2016, pp. 1-6.

[l0]G . Richard, Scalpel. The Sleuth Kit, 2005.

[ll]J. H. Jones and T. M. Khan, "A method and
implementation for the empirical study of
deleted file persistence in digital devices and
media," in Computing and Communication
Workshop and Conference (CCWC), 2017
IEEE 7th Annual, 2017, pp. 1-7.

@ 2019 ADFSL

CDFSL Proceedings 2019

[12]M. H. Ligh, A. Case, J. Levy, and A.
Walters, The art of memory forensics:
detecting malware and threats in windows,
linux, and Mac memory. John Wiley & Sons,
2014.

[13]A. Nelson, "XML Conversion of the Windows
Registry for Forensic Processing and
Distribution," in Advances in Digital
Forensics VIII: 8th IFIP WG 11. 9
International Conference on Digital
Forensics, Pretoria, South Africa, January
3-5, 2012, Revised Selected Papers, G.
Peterson and S. Shenoi, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 51-65.

[14]E. Casey, "Network traffic as a source of
evidence: tool strengths, weaknesses, and
future needs," Digit. Investig., vol. 1, no. 1,
pp. 28-43, 2004.

[15]L. Garber, "Encase: A case study in
computer-forensic technology," IEEE
Comput. Mag. January, 2001.

[16]E. Casey, Digital evidence and computer
crime: Forensic science, computers, and the
internet. Academic press, 2011.

[17]C. Painter, "Threats to the Net: Trends and
Law Enforcement Responses," in Crime and
Technology: New Frontiers for Regulation,
Law Enforcement and Research, E. U.
Savona, Ed. Dordrecht: Springer
Netherlands, 2004, pp. 69-77.

[18]G. G. Richard III and V. Roussev, "Scalpel:
A Frugal, High Performance File Carver.," in
DFRWS, 2005.

[19] C. J. Veenman, "Statistical Disk Cluster
Classification for File Carving," in Third
International Symposium on Information
Assurance and Security, 2007, pp. 393-398.

[20] S. Garfinkel, A. Nelson, D. White, and V.
Roussev, "Using purpose-built functions and
block hashes to enable small block and sub-

Page 15

Improved Decay Tolerant Inference of ...

file forensics," Digit. Investig., vol. 7, pp.
S13-S23, 2010.

[21]S. L. Garfinkel and M. McCarrin, "Hash
based carving: Searching media for complete
files and file fragments with sector hashing
and hashdb," Digit. Investig., vol. 14, pp.
S95-S105, 2015.

[22]M. Laamanen and A. Nelson, NSRL Next
Generation-Diskprinting. Forensics@ NIST,
Gaithersburg, MD, December 3, 2014 . Last
accessed 10.4, 15. 2014.

@ 2019 ADFSL

CDFSL Proceedings 2019

Page 16

Figure 4: Sector artifact persistence for Advanced Keylogger on Pat’s M57 system

Table 4: Single Application Test Case Results.

0

2000

4000

6000

8000

10000

12000

6-Nov 11-Nov 16-Nov 21-Nov 26-Nov 1-Dec 6-Dec 11-Dec 16-Dec

se
ct

o
r

co
u

n
t

OLU JONES

 Chrome28-W7x64

 Current Jones et al

diskprintName sectors sector% w_sector% files file% w_file% sectors sector% w_sector% files file% w_file%

Chrome28-W7x32 1,291,798 79.31% 21.95% 355 85.13% 71.26% 536,235 95.24% 31.61% 161 88.95% 76.43%

Chrome28-W7x64 1,280,272 96.53% 27.98% 379 96.19% 85.01% 597,655 96.65% 34.03% 180 94.24% 82.29%

Chrome28-WinXP 1,256,343 96.46% 27.81% 317 90.83% 79.86% 596,006 96.64% 33.85% 156 89.14% 77.38%

 Firefox19-W7x64

 Current Jones et al

diskprintName sectors sector% w_sector% files file% w_file% sectors sector% w_sector% files file% w_file%

Firefox19-W7x32 373,590 48.33% 15.85% 212 74.39% 61.52% 133,310 97.97% 32.12% 65 82.28% 76.06%

Firefox19-W7x64 320,358 97.86% 32.55% 216 91.91% 79.65% 141,362 98.44% 32.81% 92 92.93% 82.90%

Firefox19-WinXP 299,812 97.73% 32.08% 161 79.31% 68.10% 134,009 98.34% 32.38% 73 78.49% 70.60%

 UPX-W7x64

 Current Jones et al

diskprintName sectors sector% w_sector% files file% w_file% sectors sector% w_sector% files file% w_file%

UPX-W7x32 1,996 60.05% 26.08% 11 64.71% 59.52% 662 49.40% 24.68% 5 62.50% 56.81%

UPX-W7x64 2,083 92.17% 42.21% 17 89.47% 80.26% 711 89.10% 47.58% 7 87.50% 77.07%

 Winrar5beta-W7x64

 Current Jones et al

diskprintName sectors sector% w_sector% files file% w_file% sectors sector% w_sector% files file% w_file%

Winrar5beta-W7x32 25,430 3.96% 1.69% 64 47.41% 22.49% 5,563 60.41% 30.16% 27 65.85% 36.26%

Winrar5beta-W7x64 27,094 73.33% 41.56% 98 91.59% 64.97% 11,767 76.85% 51.02% 56 90.32% 70.31%

 sdelete-W7x64

 Current Jones et al

diskprintName sectors sector% w_sector% files file% w_file% sectors sector% w_sector% files file% w_file%

sdelete-W7x32 1,646 94.60% 39.66% 3 42.86% 42.18% 171 68.67% 34.34% 1 33.33% 30.81%

sdelete-W7x64 4,026 99.31% 72.06% 6 100.00% 99.21% 211 93.78% 55.78% 2 100.00% 96.22%

Improved Decay Tolerant Inference of ... CDFSL Proceedings 2019

@ 2019 ADFSL Page 17

Table 5: Multiple Application Test Case Results

Table 6: M57 Patent Scenario Results

CHARLIE Current Jones et al JO Current Jones et al

diskprintName sectors files sectors files diskprintName sectors files sectors files

Python264-WinXP 101,164 4,381 46,289 2,025 Python264-WinXP 101,167 4,382 46,289 2,025

Thunderbird2-WinXP 16,848 281 8,033 129 TrueCrypt63-WinXP 17,802 15 8,680 8

InvSecrets21-WinXP 5,096 41 1,173 12 Thunderbird2-WinXP 537 141 236 63

Safari157-W7x64 8,001 328 2,867 127 Safari157-W7x64 7,980 332 2,857 131

Safari157-WinXP 8,549 413 2,912 128 Safari157-WinXP 8,507 419 2,902 132

Safari157-W7x32 8,468 434 3,125 177 Safari157-W7x32 8,471 442 3,126 182

AdvKeylogger-WinXP 124 11 1 1 UPX-W7x32 2 2 1 1

eraser-W7x32 157 13 31 3 UPX-W7x64 2 2 1 1

Firefox19-WinXP 838 65 288 25 AdvKeylogger-WinXP 265 13 1 1

Firefox19-W7x64 983 77 290 26 InvSecrets21-WinXP 132 15 0 0

diskprintName sectors sector% w_sector% files file% w_file% sectors sector% w_sector% files file% w_file%

Chrome28-W7x32 876,383 53.81% 15.97% 222 53.24% 22.73% 375,906 66.76% 22.12% 102 56.35% 26.04%

Chrome28-W7x64 911,897 68.76% 20.36% 230 58.38% 26.04% 441,175 71.35% 25.42% 113 59.16% 28.25%

Chrome28-WinXP 910,660 69.92% 20.70% 198 56.73% 25.17% 441,107 71.53% 25.48% 99 56.57% 26.88%

Firefox19-W7x32 416,080 53.83% 15.89% 220 77.19% 61.25% 126,693 93.11% 30.45% 66 83.54% 76.00%

Firefox19-W7x64 289,043 88.29% 28.75% 198 84.26% 67.27% 132,776 92.46% 29.89% 85 85.86% 74.26%

Firefox19-WinXP 272,363 88.78% 29.08% 164 80.79% 67.57% 127,284 93.40% 30.70% 76 81.72% 73.56%

diskprintName sectors sector% w_sector% files file% w_file% sectors sector% w_sector% files file% w_file%

Chrome28-W7x32 242,532 14.89% 3.18% 207 49.64% 15.63% 51,827 9.20% 3.07% 94 51.93% 17.56%

Chrome28-W7x64 254,361 19.18% 4.08% 216 54.82% 18.07% 117,143 18.94% 8.08% 105 54.97% 19.77%

Chrome28-WinXP 254,186 19.52% 4.15% 188 53.87% 16.70% 117,077 18.98% 8.09% 93 53.14% 18.16%

Firefox19-W7x32 77,977 10.09% 1.61% 138 48.42% 4.71% 4,119 3.03% 1.01% 40 50.63% 3.45%

Firefox19-W7x64 10,014 3.06% 0.99% 123 52.34% 4.45% 4,297 2.99% 1.01% 48 48.48% 4.00%

Firefox19-WinXP 9,646 3.14% 1.01% 106 52.22% 4.14% 4,260 3.13% 1.06% 44 47.31% 3.75%

Safari157-W7x32 923,854 86.49% 28.83% 2,608 87.66% 81.54% 349,176 85.68% 28.55% 1,252 87.31% 82.02%

Safari157-W7x64 732,700 86.41% 28.94% 1,521 87.62% 81.73% 255,830 84.92% 28.30% 708 87.84% 82.48%

Safari157-WinXP 886,689 87.33% 29.11% 1,980 87.92% 83.12% 266,329 85.24% 28.41% 703 87.44% 82.24%

diskprintName sectors sector% w_sector% files file% w_file% sectors sector% w_sector% files file% w_file%

Winrar5beta-W7x32 4,514 0.70% 0.32% 53 39.26% 3.75% 1,993 21.64% 10.80% 23 56.10% 6.74%

Winrar5beta-W7x64 6,046 16.36% 8.05% 54 50.47% 6.46% 3,908 25.52% 12.75% 29 46.77% 6.66%

Winzip17pro-W7x32 1,104,163 76.18% 38.08% 315 88.73% 85.16% 302,247 93.36% 49.58% 141 94.63% 93.94%

Winzip17pro-W7x64 725,194 96.61% 48.36% 308 96.25% 93.34% 274,260 96.86% 48.52% 146 97.99% 96.49%

Current Jones et al

Chrome28, Firefox19-W7x64

Chrome28, Firefox19, Safari517-W7x64

 Winrar5beta, Winzip17pro-W7x64

Jones et al

Current Jones et al

Current

Improved Decay Tolerant Inference of ... CDFSL Proceedings 2019

@ 2019 ADFSL Page 18

PAT Current Jones et al TERRY Current Jones et al

diskprintName sectors files sectors files diskprintName sectors files sectors files

Python264-WinXP 101,161 4,382 46,289 2,025 Python264-WinXP 73,755 3,958 33,091 1,814

AdvKeylogger-WinXP 308 27 20 7 HxD171-W7x32 5,778 10 2,862 4

HxD171-W7x32 5,398 6 2,698 3 Thunderbird2-WinXP 684 157 303 71

Thunderbird2-WinXP 520 137 224 61 Winzip17pro-W7x64 13,209 112 6,711 53

InvSecrets21-WinXP 124 17 0 0 Winzip17pro-W7x32 13,932 121 6,724 54

Chrome28-W7x64 513 43 258 21 Safari157-W7x32 1,728 290 718 130

eraser-W7x32 214 12 48 3 Safari157-W7x64 1,264 178 498 76

Firefox19-WinXP 1,045 107 361 49 eraser-W7x32 231 15 62 3

Firefox19-W7x64 1,187 123 364 51 Firefox19-WinXP 1,113 71 390 26

Firefox19-W7x32 1,376 127 341 41 Safari157-WinXP 1,358 203 512 77

Improved Decay Tolerant Inference of ... CDFSL Proceedings 2019

@ 2019 ADFSL Page 19

	Improved Decay Tolerant Inference of Previously Uninstalled Computer Applications
	Scholarly Commons Citation

	Improved Decay Tolerant Inference of Previously Uninstalled Computer Applications

