
Annual ADFSL Conference on Digital Forensics, Security and Law 2019

May 16th, 2:00 PM

Forensic Analysis of Spy Applications in Android Devices Forensic Analysis of Spy Applications in Android Devices

Shinelle Hutchinson
Sam Houston State University, sdh053@shsu.edu

Umit Karabiyik
Purdue University, umit@purdue.edu

(c)ADFSL

Follow this and additional works at: https://commons.erau.edu/adfsl

 Part of the Aviation Safety and Security Commons, Computer Law Commons, Defense and Security

Studies Commons, Forensic Science and Technology Commons, Information Security Commons,

National Security Law Commons, OS and Networks Commons, Other Computer Sciences Commons, and

the Social Control, Law, Crime, and Deviance Commons

Scholarly Commons Citation Scholarly Commons Citation
Hutchinson, Shinelle and Karabiyik, Umit, "Forensic Analysis of Spy Applications in Android Devices"
(2019). Annual ADFSL Conference on Digital Forensics, Security and Law. 3.
https://commons.erau.edu/adfsl/2019/paper-presentation/3

This Peer Reviewed Paper is brought to you for free and
open access by the Conferences at Scholarly Commons.
It has been accepted for inclusion in Annual ADFSL
Conference on Digital Forensics, Security and Law by an
authorized administrator of Scholarly Commons. For
more information, please contact commons@erau.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Embry-Riddle Aeronautical University

https://core.ac.uk/display/217183233?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/adfsl
https://commons.erau.edu/adfsl/2019
https://commons.erau.edu/adfsl?utm_source=commons.erau.edu%2Fadfsl%2F2019%2Fpaper-presentation%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1320?utm_source=commons.erau.edu%2Fadfsl%2F2019%2Fpaper-presentation%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=commons.erau.edu%2Fadfsl%2F2019%2Fpaper-presentation%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/394?utm_source=commons.erau.edu%2Fadfsl%2F2019%2Fpaper-presentation%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/394?utm_source=commons.erau.edu%2Fadfsl%2F2019%2Fpaper-presentation%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1277?utm_source=commons.erau.edu%2Fadfsl%2F2019%2Fpaper-presentation%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fadfsl%2F2019%2Fpaper-presentation%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1114?utm_source=commons.erau.edu%2Fadfsl%2F2019%2Fpaper-presentation%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=commons.erau.edu%2Fadfsl%2F2019%2Fpaper-presentation%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=commons.erau.edu%2Fadfsl%2F2019%2Fpaper-presentation%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/429?utm_source=commons.erau.edu%2Fadfsl%2F2019%2Fpaper-presentation%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/adfsl/2019/paper-presentation/3?utm_source=commons.erau.edu%2Fadfsl%2F2019%2Fpaper-presentation%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
/creativecommons.org/licenses/by-nc-nd/4.0/
/creativecommons.org/licenses/by-nc-nd/4.0/

Forensic Analysis of Spy Applications in Android ... CDFSL Proceedings 2019

FORENSIC ANALYSIS OF SPY
APPLICATIONS IN ANDROID DEVICES

*Shinelle Hutchinson **Umit Karabiyik

*Sam Houston State University
Department of Computer Science

Huntsville, TX, 77340
sdh053@shsu.edu

**Purdue University
Department of Computer and Information Technology

West Lafayette, IN, 47907
umit@purdue.edu

ABSTRACT

Smartphones with Google’s Android operating system are becoming more and more popular
each year, and with this increased user base, comes increased opportunities to collect more of
these users’ private data. There have been several instances of malware being made available
via the Google Play Store, which is one of the predominant means for users to download
applications. One effective way of collecting users’ private data is by using Android Spyware.
In this paper, we conduct a forensic analysis of a malicious Android spyware application and
present our findings. We also highlight what information the application accesses and what
it does with that information. We then provide our findings on how Google’s Play Protect
service handles this spyware application. Lastly, we offer a simple framework that forensic
investigators can follow for performing mobile application analysis.

Keywords: Android, Malware, Mobile Forensics, Mobile Security, Spyware Analysis, Play
Protect.

1. INTRODUCTION

The Android Operating System (OS) is the
most used mobile OS in the world, account-
ing for 76.61% of the global market share (?,
?). This makes it an ideal target for cyber-
criminals who make their living stealing and
selling persons’ Personally Identifiable Infor-
mation (PII). Malicious applications (apps)
that make it possible for attackers to obtain
such PII are called Spyware.

Google has put several measures in place

to protect its users from malicious apps, in-
cluding their more recent security implemen-
tation, the Play Protect service (?, ?). Play
Protect is advertised as an always on fea-
ture that provides protection against mali-
cious applications on devices through ma-
chine learning, provides a means of locating
a misplaced device through Find My Device,
and provides secure Internet browsing with
Safe Browsing protection in Chrome (?, ?).

Unfortunately, even with being in opera-
tion for well over a year, there have been in-

c© 2019 ADFSL Page 1

CDFSL Proceedings 2019 Forensic Analysis of Spy Applications in Android ...

stances where the Play Protect service was
unable to detect and remove rogue apps be-
fore they were downloaded and used by mil-
lions of unsuspecting users (?, ?)(?, ?) from
the Play Store.

This paper aims to provide an analysis
of one such Spyware that was able to by-
pass Google’s Play Protect service and also
present an answer to two integral questions:

1. What does the Spyware do?

2. How does the Spyware accomplish what
it does?

We believe that this information would
be beneficial to other Android security re-
searchers as it would highlight some app be-
haviors that indicate said app may be mali-
cious.

The rest of this paper is organized as fol-
lows: Section 2 gives background informa-
tion on the topic of Android Spyware de-
tection. Section 3 specifies the experiment
setup that was followed. Our findings are
presented in Section 4 while Section 5 offers
a simple framework for performing applica-
tion analysis. Section 6 concludes our paper.

2. RELATED WORK
Within recent years, there have been several
spyware attacks plaguing Android devices.
Some of these attacks occurred in the wild
(?, ?) and (?, ?), while others were developed
specifically to shed light on the need for im-
proved security within the Android platform
(?, ?).

Abualola et al. (?, ?) developed a Trojan
Spyware that leveraged the capabilities of
Android’s NotificationListener service. The
malicious app was advertised as an SMS
Backup app. However, the app came with
a backdoor which allowed it to forward noti-
fication content from WhatsApp, Facebook
Messenger, BBM and SMS to the attacker’s

email. The app was able to accomplish this
with the use of two permissions: “Notifica-
tion Access” and “Internet”.

In addition to researcher-made spyware,
there have been real-world spyware attacks
perpetrated via the Google Play Store. In
2017, there were two such attacks. A rogue
developer, who seemingly bore the same
name as the legitimate company, WhatsApp
Inc., was able to successfully upload a fake
WhatsApp app, titled “Update WhatsApp
Messenger” (?, ?). This fake app was down-
loaded over one million times despite only
being an ad-loaded wrapper with Internet
access permission. Once installed, the app
would download another apk, called what-
sapp.apk. Interestingly, this app was not
first detected by Google’s Play Protect ser-
vice.

However, Play Protect did discover the de-
ceptive Tizi spyware (?, ?). Tizi is described
as a full-featured Android backdoor that can
gain root access on affected devices in order
to steal users’ PII. This PII may include data
from popular social media apps like What-
sApp, Facebook, Twitter, etc., as well as
SMS messages. In the event Tizi is unable
to root the affected device, it still attempts
to obtain sensitive data through the use of
high level permissions the user would have
granted.

There have been several malware detec-
tion techniques put forth; below we highlight
five (5):

2.1 Behavior Based

Multi-Level Anomaly Detection for Android
Malware (MADAM) (?, ?) was designed as a
multi-level and behavior-based malware de-
tection tool for Android. MADAM’s detec-
tion ability relies on analyzing five groups
of features from four levels of abstraction:
kernel-level, application-level, user-level and
package-level. These features pass through
a Signature-based detector and a Behavior-

Page 2 c© 2019 ADFSL

Forensic Analysis of Spy Applications in Android ... CDFSL Proceedings 2019

based detector before a decision is made on
whether the app is malicious and should be
removed. MADAM prides itself on being
able to detect several classes of malware, in-
cluding spyware. It also boasts a high de-
tection rate of 96.9% and negligible perfor-
mance overhead. However, this tool requires
a rooted device to perform.

2.2 Taint Analysis

Rathi and Jindal (?, ?) define taint analysis
as the analysis of an application and the pre-
sentation of potentially malicious data flows.
With this in mind, these authors developed
the DroidMark tool which is capable of de-
tecting Android malware with 96.88% accu-
racy. DroidMark made use of taint analysis
through the use of FlowDroid. This first step
is able to detect sensitive data flows within
Android applications by reverse engineering
the app’s APK file. DroidMark’s second step
identifies sources and sinks through the use
of the SuSI framework. The third step uses
deep learning to classify apps as malicious
or safe through the use of Bayesian Net-
works. DroidMark is capable of performing
real-time analysis on Android systems.

2.3 Network Traffic Analysis

Malik and Kaushal (?, ?) proposed an alter-
native method of detection, focused on ana-
lyzing apps’ network traffic, specifically their
Domain Name Server (DNS) queries and the
type of information being transmitted to a
remote server. Their approach, titled CRE-
DROID, was able to successfully detect ma-
licious apps and determine what PII was
being transmitted to questionable remote
servers. CREDROID was tested manually
and was unable to identify malicious apps
which did not generate network traffic.

Ren et al. (?, ?) also focused on apps’ net-
work traffic to determine potential PII leaks.
They developed a cross-platform system, ti-
tled ReCon, which uses machine learning, to

offer its users a means of controlling those
PII leaks. ReCon used a C4.5 Decision
Tree to handle classification of network traf-
fic that produce PII leaks. ReCon’s accuracy
was most desirable at 99%. From their ex-
periments, it was found that the top three
(3) most leaked PIIs were DeviceID, Loca-
tion and Credentials. The authors also noted
that these credentials were being transmit-
ted in plaintext.

2.4 Hybrid

Kaur and Sharma (?, ?) utilized a hybrid ap-
proach to detect spyware and improve users’
privacy. Their detection frameworks anal-
yses apps based on the app’s Description,
Interface Layout and Source Code. When
an app is installed or updated, the .apk
file for that app is reverse engineered and
its permissions are extracted from its An-
droidManifest.xml file. These permissions
are checked against the app’s description and
source code, to ensure only required permis-
sions are being requested. This approach
was able to achieve better detection rates
than popular antiviruses like McAfee, Avast
and AVG

2.5 Machine Learning

Wang et al. (?, ?) re-purposed the XGBoost
model to detect Android malware. Their de-
tection system consisted of static analysis of
both benign and malicious app .apk files to
extract permission and API call features and
the use of a Random-Forest Feature Selec-
tion model to reduce the feature set. They
also based their classification accuracies on
using select features, higher weighted fea-
tures and various combinations of both per-
mission features and API call features. This
detection system was able to outperform or
match the Support Vector Machine model as
it was able to obtain high accuracy and re-
duced training time.

Mahindru and Singh (?, ?) also utilized

c© 2019 ADFSL Page 3

CDFSL Proceedings 2019 Forensic Analysis of Spy Applications in Android ...

machine learning in order to successfully de-
tect Android malware. However, instead of
using one classifier, they tested with five.
Their method consisted of three phases. In
the first phase, they would collect the .apk’s
for several Android apps. The second phase
included a dynamic analysis of the .apks and
the extraction of the permissions being re-
quested by each app. The last phase saw
the execution of five machine learning algo-
rithms, as they classify each app as mal-
ware or benign depending on the permis-
sions extracted. They achieved highest ac-
curacy of 99.7%, using the Simple Logistic
algorithm when it was trained using 70% of
their dataset.

3. EXPERIMENTAL

SETUP

For our malware analysis experi-
ment, we opted to investigate the An-
droid.Spy.277.origin malware family. We
obtained a sample of the malware from
GitHub (?, ?). It was downloaded as a File
type and had to be extracted to obtain the
AndroidManifest.xml and classes.dex files.
The classes.dex file was then converted to
its corresponding classes.jar file, using the
dex2jar tool. Analysis of the .jar file was
done using the JD-GUI application.

All experiments were done on a Windows
10 system. We chose to use Android Studio
version 3.1.3 to conduct our experiment on
an Android Virtual Device. This device took
the form of a Nexus S phone running An-
droid 5.0 Lollipop (API 21). After the mal-
ware app was installed on the emulator, we
used Wireshark version v2.6.1-0-g860a78b3,
to capture the network traffic of the device
while the app was active and while we per-
formed some manipulations.

Figure 1. A snippet of the AndroidMani-
fest.xml file

4. SPYWARE

ANALYSIS
In this section, we present our observations
and findings having analyzed the applica-
tion’s Manifest file, source code, installation
and execution on an Android device.

4.1 A look at the
AndroidManifest.xml file

After performing an analysis of the manifest
file (see Figure 1), several interesting points
were found.

1. Package name was identified as
com.inoty.os with displayed version
1.3.0.1. The minSdkVersion for the app
is 5.0 while the targetSdkVersion is 21.
The package being used is
net.suckga.inoty2.

2. Permissions : the app requests sev-
eral seemingly benign permissions, if
considered on their own, such as
Receive, System Alert Window, Ac-
cess Fine Location,
Access Network State, etc. However,
when these permissions are considered

Page 4 c© 2019 ADFSL

Forensic Analysis of Spy Applications in Android ... CDFSL Proceedings 2019

together, they can be used for nefarious
reasons. For example, these permissions
can allow a malicious app to capture
incoming messages and transmit them,
along with the device’s location at the
time, over a network. These and some
other possibly harmful permissions are
identified and briefly explained in Table
1.

3. Activities, Services, Receivers and
Content-Filters : Some of the more
important ones will be examined in
Section 4.5 below.

4.2 An Initial Look at the
App’s Behavior

Installing the .apk file was as simple as drag-
ging and dropping it onto the emulator’s
screen. After the app was installed it was
presented as an app named “Notify Ios” as
shown in Figure 2a. When the app is
launched, the first screen, depicted in Figure
2b offers several personalization options as
well as a means of enabling the app. When
the “Enable Notify Ios” option is selected,
the user is presented with two services that
could be turned on: Accessibility and No-
tifications. This is shown in Figure 2c.
When the user chooses the Accessibility op-
tion, they are taken to the Accessibility Set-
tings where they will be able to turn on “No-
tify Ios”. Once enabled, the user is told what
privilege the app requires and asked for con-
firmation, as shown in Figure 2d. When the
user chooses the Notifications option and en-
ables the service, they are presented with a
confirmation screen informing them of what
access privileges the service will now have,
as shown in Figure 3a. When the user en-
ables both the accessibility and notification
services, the app takes over the status bar
(becomes the status bar) as shown in Figure
3b.

4.3 Manipulations made while
the app was active

(sending texts, etc.)

In order to test the functionality of the No-
tify Ios app, we enabled both the Acces-
sibility and Notification services and then
performed some activities to create notifica-
tions on the device. We sent text messages
using the default Messages app and emails
using the Gmail service. Figure 3c shows
previously received notifications while Fig-
ure 3d shows an incoming notification from
the Messages app.

4.4 Network Analysis Process

For us to determine whether the app was do-
ing anything nefarious, we decided to cap-
ture the phone’s network traffic while the
app was active. We discovered that every
time the app was opened, it sent a GET re-
quest with some of the user’s private data
to an IP address (204.11.56.48). We deter-
mined that this IP address was malicious
and was based in the British Virgin Islands.
Some information this app transmitted in-
cluded the device’s model, the Operating
System version, the phone’s IMEI number,
the email address connected to the Google
account on the device, the device’s MAC ad-
dress, the current carrier, whether the device
is rooted or not, the country location, etc.,
as shown in Figure 4. When both services
were enabled, the app sent another GET re-
quest with the same information to the same
IP address. However, this time it included a
list of all the currently installed packages on
the device, as shown in Figure 5.

4.5 A look at the classes.jar
file

When the classes.jar file was opened with
JD-GUI, we were presented with seven pack-
ages, each with several sub-packages which
in turn contained several class files. The

c© 2019 ADFSL Page 5

CDFSL Proceedings 2019 Forensic Analysis of Spy Applications in Android ...

Table 1. Permissions the Notify Ios Application Requests

Permission Details

android.permission.SYSTEM ALERT WINDOW Allows an application to create windows that are shown on top of
all other apps.

android.permission.ACCESS WIFI STATE Allows applications to access information about Wi-Fi networks.

android.permission.ACCESS NETWORK STATE Allows applications to access information about networks.

android.permission.READ CALENDAR Allows an application to read the user’s calendar data.

android.permission.ACCESS FINE LOCATION Allows an app to access the device’s precise location.

android.permission.BLUETOOTH Allows applications to connect to paired Bluetooth devices.

android.permission.WAKE LOCK Allows using PowerManager WakeLocks to keep processor from
sleeping or screen from dimming.

android.permission.EXPAND STATUS BAR Allows an application to expand or collapse the status bar.

android.permission.READ PHONE STATE Allows read only access to the features of the phone, including the
phone number of the device, current cellular network information,
the status of any ongoing calls, and a list of any Phone Accounts
registered on the device.

android.permission.INTERNET Allows applications to open network sockets.

android.permission.GET ACCOUNTS Allows access to the list of accounts in the Accounts Service.

com.android.launcher.permission.INSTALL SHORTCUT Allows an application to install a shortcut in Launcher.

android.permission.WRITE EXTERNAL STORAGE Allows an application to write to external storage.

com.inoty.os.permission.C2D MESSAGE Only this application can receive the messages and registration
result.

com.google.android.c2dm.permission.RECEIVE This app has permission to register and receive messages.

(a) (b) (c) (d)

Figure 2. Screenshots of the Notify Ios app

Page 6 c© 2019 ADFSL

Forensic Analysis of Spy Applications in Android ... CDFSL Proceedings 2019

(a) (b) (c) (d)

Figure 3. Screenshots of the Notify Ios app

Figure 4. Screenshot of PII data

most interesting packages were found to be
net.suckga.inoty2 and com.sweet.rangermob.

The important classes and methods that
were responsible for collecting and transmit-
ting identifiable information about the de-
vice and user are highlighted below:

1. net.suckga.inoty2.preferences.PreferencesActivity :
It is the first class that runs when the
app is launched by pressing its icon.

2. com.sweet.rangermob.helper.e.a(this.b):
This method determines if there is an
active internet connection. In such
case, the com.sweet.rangermob.a()
method is started.

3. com.sweet.rangermob.a(): This method
collects identifying information about
the device and user which is subse-
quently transmitted to the rogue IP ad-
dress. This information is stored in a
variable called localArrayList.

4. RootUtil.a(): It looks for superuser ac-
cess (determines if phone is rooted).
If the device is rooted, collects sev-
eral other pieces of information, includ-
ing whether the device has Google Play

c© 2019 ADFSL Page 7

CDFSL Proceedings 2019 Forensic Analysis of Spy Applications in Android ...

Figure 5. List of all installed applications

Store installed, whether there is an ac-
tive device admin, etc., and adds this
information to the localArrayList vari-
able.

5. paramAnonymousVarArgs = URLEn-
codedUtils.format
(localArrayList, “utf-8”): converts the
localArrayList to a URL.

6. j.a() + paramAnonymousVarArgs :
This builds the website’s URL and
concatenates it with the Encoded URL
from localArrayList with help from the
com.sweet.rangermob.helper.c class.

7. com.sweet.rangermob.helper.c: This
class contains variables used to build
the HTTP GET request and the
domain website.

8. paramAnonymousVarArgs=com.sweet.rangermob.
helper.b.b(j.a() + paramAnonymous-
VarArgs): This passes the completed
URL string to be created in the HTTP
GET request.

9. Within the
com.sweet.rangermob.xser.RangerSer

class, there is a method that handles
collecting and sending the device and
user information, in addition to a list of
all the installed packages on the device,
to the rogue IP address. This method
closely resembles the one that runs
every time the app is opened.

4.6 Interesting Findings

In an attempt to determine whether or
not this app would be flagged by Google’s
Play Protect service, we attempted to install
the Notify Ios app on a physical Samsung
Galaxy S5 device running Android 6.0. The
device was set to allow installation of apps
from third parties. We performed this instal-
lation on three separate occasions because
the Play Protect service detects malware us-
ing machine learning techniques. This will
show us whether those techniques are effi-
cient against such malware as Notify Ios.

4.6.1 July 28th, 2018

We copied the .apk file onto the device
and was able to successfully install the app.
When Play Protect scanned all the apps on
the device, none were flagged as suspicious.

Page 8 c© 2019 ADFSL

Forensic Analysis of Spy Applications in Android ... CDFSL Proceedings 2019

Figure 6. Screenshot of Play Protect service
blocking the installation of Noty Ios

4.6.2 Oct 12th, 2018

We again copied the .apk file onto the device
and attempted to install the app. However,
the Play Protect service immediately flagged
the app as suspicious, as shown in Figure 6.

4.6.3 Oct 14th, 2018

We tried one last time to install the app on
the device, however this time there was no
Play Protect warning and the app simply did
not install, as shown in Figure 7.

From these occurrences, we believe that
the Play Protect service learned from our
first installation of the Notify Ios app and
now is able to block any installation of the
app on devices.

5. GUIDELINES FOR

MOBILE APPLICATION

ANALYSIS

Application analysis is a multi-part process
if we are to obtain as much information as
possible about an app’s workings. In this
section, we provide a brief guideline that in-
vestigators can follow should they need to do
application analysis.

Figure 7. Screenshot of Noty Ios app refus-
ing to be installed.

1. Static Analysis: Be sure to investi-
gate the source code and app manifest
files, looking for suspicious implemen-
tations and unnecessary permission re-
quests that do not fit the described use
of the app. This step can be extremely
cumbersome should the app developer
obfuscate the source code, specifically
class, method and variable names.

2. Dynamic Analysis: Static analysis alone
tends to be insufficient for determining
exactly what an app is doing. Once you
have an idea of what the app is doing
from the static analysis, be sure to in-
stall the app on a clean device and run
it. This way, you can interact with the
app, manipulate various features and
note its effects on the device.

3. Network Analysis: Many apps, espe-
cially spyware apps, use network fea-
tures and chances are if you suspect the
app is doing something nefarious after
doing static and dynamic analysis, the
app may be communicating with a ma-
licious, remote server. You should make
network analysis a step during your dy-
namic analysis. Using a network sniffer

c© 2019 ADFSL Page 9

CDFSL Proceedings 2019 Forensic Analysis of Spy Applications in Android ...

like Wireshark could allow you to as-
certain what communications the app
is doing while it’s running on a device.
This includes determining what infor-
mation the app is transmitting and to
whom that data is going to.

After performing each of these, you should
have a fairly comprehensive understanding
of what the app does and how its features
are implemented.

6. CONCLUSION
Android smartphones are widely used, and
their users require protection from nefarious
individuals set on obtaining these users’ PII.
Unfortunately, it is possible for some apps
to covertly collect user’s PII and transmitted
that data to unauthorized persons.

After our analysis of the Notify Ios mali-
cious app, we determined that various pieces
of users’ PII were being transmitted to an
unauthorized location. We also combed
through the source code to identify exactly
how this was being accomplished and quickly
found that the app developer relied heavily
on obfuscation of their code to mask their
ill intent. We also tested the capacity of
Google’s Play Protect service to detect this
malicious app and was able to prove that
the service initially failed to detect the app.
However, it was able to learn and flag the
app on subsequent installations.

For future work, we intend to develop our
own malicious spyware app in an attempt to
successfully avoid detection by the Play Pro-
tect service. In doing so, we aim to identify
certain malicious characteristics the service
is still incapable of detecting as well as spe-
cific vulnerabilities the service is still suscep-
tible to.

REFERENCES
Abualola, H., Alhawai, H., Kadadha, M.,

Otrok, H., & Mourad, A. (2016). An

android-based trojan spyware to
study the notificationlistener service
vulnerability. Procedia Computer
Science, 83 , 465 - 471. Retrieved from
http://www.sciencedirect.com/

science/article/pii/

S1877050916302435 (The 7th
International Conference on Ambient
Systems, Networks and Technologies
(ANT 2016) / The 6th International
Conference on Sustainable Energy
Information Technology (SEIT-2016)
/ Affiliated Workshops) doi: https://
doi.org/10.1016/j.procs.2016.04.210

Ashishb. (2018). ashishb/android-malware.
Retrieved from
https://github.com/ashishb/

android-malware/tree/master/

Android.Spy.277.origin

Google detects android spyware that spies
on whatsapp, skype calls. (2017, Nov).
The Hacker News. Retrieved from
https://thehackernews.com/2017/

11/android-spying-app.html?utm

source=feedburner&utm medium=

feed&utm campaign=ewlineFeed:

TheHackersNews(TheHackersNews

-SecurityBlog)& m=3n.009a.1629

.pv0ao08grr.zf0

Google play protect. (2018). Android.
Retrieved from https://

www.android.com/play-protect/

Kaur, P., & Sharma, S. (2015). Spyware
detection in android using
hybridization of description analysis,
permission mapping and interface
analysis. Procedia Computer Science,
46 , 794–803.

Khandelwal, S. (2017, Nov). Fake whatsapp
on google play store downloaded by
over 1 million android users. The
Hacker News. Retrieved from
https://thehackernews.com/2017/

11/

fake-whatsapp-android.html?utm

Page 10 c© 2019 ADFSL

Forensic Analysis of Spy Applications in Android ... CDFSL Proceedings 2019

source=feedburner&utm medium=

feed&utm campaign=ewlineFeed:

TheHackersNews(TheHackersNews

-SecurityBlog)& m=3n.009a.1616

.pv0ao08grr.z3r

Mahindru, A., & Singh, P. (2017). Dynamic
permissions based android malware
detection using machine learning
techniques. In Proceedings of the 10th
innovations in software engineering
conference (pp. 202–210).

Malik, J., & Kaushal, R. (2016). Credroid:
Android malware detection by
network traffic analysis. In
Proceedings of the 1st acm workshop
on privacy-aware mobile computing
(pp. 28–36).

Mobile operating system market share
worldwide. (2018, Oct). Retrieved
from
http://gs.statcounter.com/os

-market-share/mobile/worldwide#

monthly-201708-201709-bar

Rathi, D., & Jindal, R. (2018). Droidmark:
A tool for android malware detection
using taint analysis and bayesian
network. arXiv preprint
arXiv:1805.06620 .

Ren, J., Rao, A., Lindorfer, M., Legout, A.,
& Choffnes, D. (2016). Recon:
Revealing and controlling pii leaks in
mobile network traffic. In Proceedings
of the 14th annual international
conference on mobile systems,
applications, and services (pp.
361–374).

Saracino, A., Sgandurra, D., Dini, G., &
Martinelli, F. (2018). Madam:
Effective and efficient behavior-based
android malware detection and
prevention. IEEE Transactions on
Dependable and Secure Computing ,
15 (1), 83–97.

Wang, J., Li, B., & Zeng, Y. (2017).
Xgboost-based android malware

detection. In Computational
intelligence and security (cis), 2017
13th international conference on (pp.
268–272).

c© 2019 ADFSL Page 11

	Forensic Analysis of Spy Applications in Android Devices
	Scholarly Commons Citation

	Forensic Analysis of Spy Applications in Android Devices

