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ABSTRACT 

 

Li, Wenyu MSAE, Embry-Riddle Aeronautical University, May 2019. A Hybrid Vortex 

Solution For Radial Equilibrium In Axial Compressors. 

 
A hybrid vortex solution using the radial equilibrium equation for three-

dimensional design in axial compressors is generated. One of the most common used 

vortex solutions is Free Vortex. However, it ignores the fact that axial velocity varies 

with radius. The Hybrid Vortex includes axial velocity distribution with radius, which 

gives a more effective design. A single stage is first designed using the Free Vortex 

design method. A low hub-to-tip ratio is set to ensure subsonic flow. The axial velocity 

profile is exported from the CFX solver of the inlet diffuser. Using the Hybrid Vortex 

solution to the radial equilibrium equation, a redesign is conducted by altering the 

circumferential velocity distribution to adhere to the imported axial velocity distribution 

and the newly derived method. A tip-strong pressure distribution is also used in new 

design to adjust loading on the blade. CFX simulations are generated after 1D design, 

meanline design, throughflow design and blade design.  

One of the key factors to evaluate compressor operation is off-design 

performance, which can be represented by the compressor map. Compressor maps are 

also generated and compared for each blade to show the advantage of the new design 

approach. It can be said that, by introducing real axial velocity profiles, complete with 3D 

effects, into the early stages of design and incorporating it with the new vortex solution, 

this new design approach delivers airfoils that are better aligned to the real boundary 

conditions with enhanced surge and stability margins, which is verified by CFD results. 
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1. Introduction 

1.1. Development of Axial Compressors 

One of the first documented turbomachinery invention can be traced back to 60 A. 

D. It was Heron of Alexandria (Greek origin) who designed the first steam engine. A 

radial flow reaction steam engine was a sphere rotated by hot steam expanding and going 

through attached pipes (Krain, 2005). However, there was no remarkable development 

until the emergence of Euler’s Turbomachinery Equation and one-dimensional analysis 

of Fluid Dynamics. In the eighteenth century, Leonhard Euler analyzed Heron’s steam 

turbine and performed experiments which resulted in “Euler’s Equation”. (Wilson, 1998) 

It can be described as “the change of the angular momentum is equal to the sum of the 

external moments”. Stodola (Stodola, 1905) was the first to introduce the velocity vector 

relationships between blade row inlet and outlet. It was a milestone for later 

developments, and it is still widely taught as a primary tool for blade design. 

In 1930, Frank Whittle was the first to patent a turbojet engine with an axial-plus-

centrifugal compressor and a two-stage turbine, but he failed to make it run on his first 

flight. (Wilson, 1998) However, even though Hans von Ohain started later than Whittle, 

he succeeded in his first engine sooner. It had a centrifugal compressor driven with a 

radial turbine. Notice that the concepts of centrifugal compressor and axial compressor 

came up around the same time, but the development of axial compressor was slower. This 

is because axial compressors are more aerodynamically demanding. 

The unique advantages of axial compressors are less frontal area and more 

capability to ingest higher mass flow, making it play an important role in modern 

propulsion. After decades of development, the general design process of axial 
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compressors can be divided into four parts, preliminary design, throughflow design, 2D 

blade design and 3D blade design, as shown in Figure 3.1. (Molinari & Dawes, 2006) 

The detailed design procedure and applied theories will be discussed in later sections. 

 

Figure 1.1 Four Stages of Turbomachinery Design (Molinari & Dawes, 2006). 

 

1.1.1. Preliminary Design 

Preliminary design is where one-dimensional and two-dimensional treatments are 

implemented. It resolves aerodynamic and thermodynamic properties at a specified 

spanwise location using empirical correlations. As mentioned above, one-dimensional 

analysis, Euler’s Turbomachinery Equation, and the velocity triangles introduced by 

Stodola (Stodola, 1905) are applied in this stage. 

 

Figure 1.2 Turbine Velocity Triangles for a Blade Row (Stodola, 1905). 
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However, although one-dimensional treatment is useful, it is at an elementary 

level. Early on it was determined that blade rows should be considered as passages with 

more emphasis on blade shapes. It was discovered that the inlet and outlet flow angle, 

maximum thickness, and camber distributions are what really mattered. Two-dimensional 

treatment was considered. According to cascade tests, new correlation for blade row 

performance was introduced by Lieblein (Lieblein, 1965), which is called the diffusion 

factor as shown in (1.1). 

 

The diffusion factor, as a function of blade shape and cascade configuration, 

managed to connect the blade aerodynamic loading and blade geometry together and 

evaluate blade losses at a very early stage of design. 

1.1.2. Throughflow and Streamline Curvature 

The difficulties occur when hub-to-tip ratio is small, or the slope of the annulus 

walls is large. The change of radius causes unneglectable radial accelerations, which 

leads to three-dimensional considerations. The first effective approach related to this 

problem was introduced by Wu (Wu, 1952). He simplified the flow through a cascade 

into two parts: blade-to-blade (S1) and hub-to tip (S2) along a stream surface, as shown 

in Figure 1.3. By introducing the radial dimension, this theory allows axisymmetric 

analysis. And later on, both throughflow method and streamline curvature method, which 

are still commonly used today, were based on Wu’s theory. 

(1.1) 𝐷 = (1 −
𝑉2

𝑉1
) +

∆𝑉𝜃

2𝜎𝑉1
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Figure 1.3 Intersecting S1 and S2 Surface in a Blade Row (Wu, 1952). 

 

The throughflow calculation decouples two surfaces and solves them separately, 

furthermore, it solves on a blade-to-blade surface and meridional plane instead of S2 

surface as presented in Figure 1.4.  

 

(a)                                              (b) 

Figure 1.4 Two Interacting Surfaces:(a) Blade-to-Blade Surface and (b) Axisymmetric 

Analysis of Flow in a Meridional Plane (Cumpsty & Greitzer, 2004). 
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An iterative calculation process between the two surfaces is necessary. The radial 

component of the momentum equation is calculated along the curvature of the 

streamlines until the solution has converged for mass-flow balance. (Cumpsty & Greitzer, 

2004; Wilson, 1998) 

1.1.3. 2D Blade Design 

As mentioned before, the diffusion factor can evaluate the blade losses based on 

inlet, outlet flow conditions, and blade solidity. However, it cannot estimate the peak 

local suction-surface velocity, which is a key factor of flow separation as well. With the 

development of computer and numerical method, it not only takes account of inlet and 

outlet flow conditions but also allows us to fully investigate flow in a cascade, as shown 

in Figure 1.5. 

 

Figure 1.5 Cascade View of Axial Compressor (Philip & Peterson, 1992). 

 

There are two different approaches: one is called the inverse approach, and the 

other one is called the direct approach. (Köller & Schreiber, 1999) The inverse approach 
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is to solve the equations of motion, generate the appropriate singularity (logarithms at the 

inlet and outlet velocities) and examine the streamline passing through the stagnation 

point, which describes the shape of the airfoil. (Korn, 1978) The direct approach is to 

start from a contour shape and then describe the boundary conditions, which leads to less 

computing time. (Schmidt, 1980) After the shapes of the airfoil for each section are 

determined, the 3D blade geometry can be generated. 

1.1.4. 3D Blade Design 

Notice that both throughflow calculation and the 2D blade design include 

boundary-layer calculations to some extent, but they are still inviscid and compressible 

solutions; neither of them includes viscous losses. Therefore, the blockage caused by 

three-dimensional separation is impossible to predict in previous stage of the design. 

(Cumpsty & Greitzer, 2004; Korn, 1978) The use of computational turbulence models, 

Reynolds averaged Navier-Stokes equations (RANS), is a landmark for turbomachinery 

design. It makes viscous effects possible to be examined. Thus, three-dimensional blade 

design is a tool to assess and refine the final blade geometry using CFD tools. 

1.2. Current Design Dilemma 

The possibility of whether the current turbomachinery design can have a further 

improvement is mainly in two aspects: design methodology and design process. For 

design methodology, the losses near the end walls because of viscous effects were never 

included until the last stage of 3D blade design. However, the purpose of 3D blade design 

is more concerned on testing and verifying blade behavior other than making major 

changes. The three-dimensional method still needs to be accommodated and understood. 

As for the design process, it is classified into three main categories: design-by-
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analysis, design optimization and design-by-sensitivity. (Molinari & Dawes, 2006) 

However, both the design optimization and the design-by-sensitivity processes require 

high computational cost. The design-by-analysis process is not highly demanding for 

computational resources, but it has its own disadvantages. The designer cannot predict 

the effects of the modification to the design until it is examined by expensive trial and 

error. 

1.3. Compressor Map 

The general performance of a high-speed compressor can be represented by its 

compressor map. As shown in the example in Figure 1.6, the pressure ratio across the 

whole compressor is a function of mass flow rate for several fixed rotational speeds. 

(Hall & Dixon, 2013) Each of the constant- speed characteristic lines terminate at the 

surge line. Beyond the surge line, the operation of the compressor becomes 

aerodynamically unstable.  

A compressor can operate at anywhere on the map below the surge line and above 

the choke line, but it is often constrained on a single operating line where the compressor 

performance is matched to the other components of the engine such as the turbine. 

 

Figure 1.6 Axial Compressor Map (Hall & Dixon, 2013). 
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The Surge Margin is one method to quantify the operating limit of the 

compressor. (Cumpsty, 1989) There are many different ways of defining surge margin. 

Equation (1.2) shows the most popular definition: 

 

In Equation (1.2), where 𝜋0−𝑑𝑒𝑠𝑖𝑔𝑛 is defined as the design point total pressure 

ratio, and 𝜋𝑠 is the pressure ratio on the surge line for the same mass flow rate as the 

condition on the design operating line. There is another definition given by Dixon (Hall 

& Dixon, 2013), where 𝜋𝑠 is the pressure ratio on the surge line for the same rotating 

speed on the characteristic line. In general, larger surge margin indicates more ability to 

deal with aerodynamic instability, which is a key limiting factor of compressor design. 

1.3.1. Compressor Stall/ Surge 

As shown in Figure 1.7, when operating under normal conditions, increasing 

𝛽𝑖 does not affect 𝛽𝑖𝑖 , but it will increase the adverse pressure gradient on the suction 

surface of the blade. When the adverse pressure gradient rises to an intolerable level, 

boundary layer separation will happen and will result in increasing 𝛽𝑖𝑖. Similarly, 

decreasing 𝛽𝑖 beyond a reasonable level, separation will occur on the pressure surface of 

the blade. Separation resulting from increasing 𝛽𝑖 is called ‘positive stall’, while 

separation resulting from reducing 𝛽𝑖 is called ‘negative stall’. (Philip & Peterson, 1992) 

(1.2) 𝑆𝑀 =
(𝜋𝑠 − 𝜋0−𝑑𝑒𝑠𝑖𝑔𝑛)

𝜋0−𝑑𝑒𝑠𝑖𝑔𝑛
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Figure 1.7 Cascade Stall (Philip & Peterson, 1992). 

 

Rotating stall (Hall & Dixon, 2013) is another phenomenon when the blade 

reaches the ‘stall point’. Instead of all stalling together, only some of the blades will stall 

and the stall patches travel around the compressor annulus. So, rotating stall is a 

circumferential disturbance of the flow in the compressor. Moreover, rotating stall could 

initiate surge, which is a disturbance that affects flow conditions throughout the entire 

compression system. Both instabilities need to be avoided in compressor design. (Day, 

1971). 

1.4. Problem Statement 

As it is well known, turbomachinery design is an iterative process involving 

optimization until the design goal is achieved. Looking at the big picture, preliminary 

design has a more lasting impact compared to the others. It is because that is where the 

main stage characteristics are decided. However, there is no direct understanding how 
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subtle changes in preliminary design will affect the later stages of design and overall 

performance. Thus, the iterations between these design steps tend to be lengthy and time 

consuming. In this paper, a new hybrid vortex solution is introduced, and compared with 

other existing vortex solutions used in preliminary design. The goal is to introduce a 

higher level of fidelity early into the design process that is based on the actual physics of 

the flow. This will produce a better airfoil in less time, minimize iterations, and extend 

the surge margin of the fan or the compressor. 
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2. Literature Review 

2.1. Radial Equilibrium 

As mentioned before, two-dimensional treatment doesn’t consider radial change. 

It is acceptable when the hub-to-tip ratio is between 0.85 - 1.0, because there are only 

small changes of the velocity diagram with radius. (Wilson, 1998) However, the hub-to-

tip ratio is below 0.75, the change of radius is large enough that the velocity diagrams are 

completely different from hub to tip. The thinking of altering the velocity triangles along 

spanwise and taking account of huge static pressure change along spanwise in order to 

balance the centrifugal force is called radial equilibrium. 

2.2. Simple Radial Equilibrium Equation (SREE) 

The solution for the change of velocity diagrams for axial compressor is simple 

radial equilibrium equation (SREE), as shown in Equation (2.1). Detailed derivation will 

be given in Appendix “A”. 

With a tangential velocity distribution given, the axial velocity distribution can be 

determined. Horlock summarized several vortex solutions (Free Vortex, Constant 

Reaction, Exponential and Forced Vortex) which will be presented in Appendix “B”. 

Notice that the Equation (2.1) is valid for constant work delivery and constant total 

pressure loss along the radius. (Horlock, 1958) Simple radial equilibrium is still an 

approximation because it assumes negligible streamlines curvature in other directions 

(except for centrifugal direction). Furthermore, it also implies that the streamlines follow 

a constant radius path between blade rows, as shown in Figure 2.1. 

𝑑

𝑑𝑟
(𝑉𝑎𝑥)2 = −

1

𝑟2

𝑑

𝑑𝑟
(𝑟𝑉𝑢)2 (2.1) 

) 

) 
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Figure 2.1 Streamlines in Cylindrical Annulus for Simple Radial Equilibrium 

Assumption (Cumpsty & Greitzer, 2004). 

 

2.3. Actuator Disk Theory 

An alternative approach for radial equilibrium is called actuator disk theory. It is 

assumed that all the flow turning in the blade row is achieved in a very small axial 

distance- within an actuator disc, as shown in Figure 2.2(b).  

 

(a)                                              (b) 

Figure 2.2 Models for (a) Radial Equilibrium and (b) Actuator Disc Analysis (Horlock, 

1958). 
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However, the actuator disk theory has its own limitation. Because it assumes that 

the radial velocity and the product of axial velocity and density are continuous across the 

disk, the mathematic complexity is huge especially with various radius and density. 

(Cumpsty & Greitzer, 2004) Even though it is not very applicable in axisymmetric 

turbomachinery problems, but it becomes useful in other two areas: inlet distortions and 

conjunction with three-dimensional computation to represent boundary conditions. 

2.4. Modifications to the SREE (Deriving Radial Equilibrium with 

Streamline Curvature) 

The lengthwise change in radius will create an additional pressure gradient acting 

on the flow in axial compressors. Although the SREE can be used to balance the 

centrifugal force caused by spanwise change in radius, it assumes constant radius path 

between blade rows. Therefore, it fails to take into effect the additional pressure gradient 

from the streamwise change of streamline curvature. (Wilson, 1998)  

Korakianitis and Zou (Korakianitis & Zou, 1993) proposed a throughflow 

streamline method in addition to the SREE. With the assumption of 
𝑑𝑠

𝑑𝑟
= 0, the Equation 

(2.1) was rederived and became Equation (2.2): 

The Equation (2.2) must be solved numerically with an iterative process, as 

shown in Figure 2.3. This approach succeeds in solving radial equilibrium with 

streamwise radial change at different locations of streamlines. But it requires 

computational effort and it is not applicable in preliminary design as the SREE. 

𝑑𝑉𝑎𝑥(𝑟, 𝑢)

𝑑𝑟
+

𝑉𝑎𝑥(𝑟, 𝑢)

1 + 𝑡𝑎𝑛2𝛼𝑢
[

𝑠𝑖𝑛𝛼𝑢

𝑐𝑜𝑠3𝛼𝑢

𝑑𝛼𝑢

𝑑𝑟
−

1

𝑐𝑜𝑠2𝛼𝑟

𝑑𝛼𝑟

𝑑𝑥
+

𝑡𝑎𝑛2𝛼𝑢

𝑟
]

−
𝑡𝑎𝑛𝛼𝑟

1 + 𝑡𝑎𝑛2𝛼𝑢

𝑑𝑉𝑎𝑥(𝑟, 𝑢)

𝑑𝑥
= [

𝑑ℎ0

𝑑𝑟
] = 0 

(2.2) 
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Figure 2.3 Flow Diagram for the Solution of Equation 2.2 (Korakianitis & Zou, 1993). 
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3. Hybrid Vortex Concept and Derivations 

3.1. Concept 

As mentioned before, the simple radial equilibrium equation has the advantage of 

predicting swirling flow between blades rows and providing a radial pressure distribution 

from hub to tip, but it still has some drawbacks. As studied by Howell (Howell, 1945), 

the performance analysis of the compressor was conducted by using two-dimensional 

cascade tunnel data with certain correction factor. As shown in Figure 3.1, the losses in a 

cascade are due to the boundary layers buildup on the wall, tip clearance and wakes from 

the previous blade rows. It is very clear that the losses are not uniform. So, either more 

work must be put into where the losses are high (especially near the end walls), or the 

assumption of uniform axial velocity will fail.  

 

Figure 3.1 Three-Dimensional Flow Effects in a Cascade Tunnel (Howell, 1945). 

 

A new vortex solution is introduced and is named the Hybrid Vortex Solution. 

The intent is to infuse the reality of the end wall, and other losses, effects directly into the 
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equation. Instead of assuming some axial velocity distribution which cannot well 

represent three-dimensional effects, an axial velocity profile after an inlet guide vane will 

be imported into the radial equilibrium equation to derive a correlated tangential velocity 

distribution. The axial velocity profile selected for this study was constructed by Howell 

(Howell, 1945), with the boundary layer being fully considered, as shown in Figure 3.2. 

This realistic profile is more accurate and reliable than a constant profile. In this thesis, 

curve 0 is selected as the desired input for the Hybrid Vortex derivation, however, the 

method is independent of the profile’s shape and other profiles may be selected 

depending on the circumstance. 

 

Figure 3.2 Axial Velocity Radial Distribution Showing Uniform Profile (Yellow Line) 

and Profile with 3D Effects (Red Line) 
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3.2. Equation Derivation  

The purpose of the vortex solution is to add a pressure force (from tip to hub) to 

balance the centrifugal force (from hub to tip) that develops when the blade is spinning 

(Philip Hill, 1992).  The centrifugal force can be represented as in Equation (3.1). 

 

To ensure radial equilibrium, a pressure gradient in the radial direction is assumed 

and resolved according to Newton’s Second Law for a flow particle:  

 

 

Figure 3.3 Tangential Motion of a Small Fluid Element (Hill, 1992). 

 

Thus, the pressure distribution can be written as 

 

(3.3) 
          

𝜕𝑃

𝜕𝑟
= 𝜌 ∙

𝑉𝑢
2

𝑟
 

(3.2)            𝑃(𝑟𝑑𝜃𝑑𝑥) − (𝑃 +
𝜕𝑃

𝜕𝑟
𝑑𝑟) ([𝑟 + 𝑑𝑟]𝑑𝑥𝑑𝜃) + 2(𝑃𝑑𝑟𝑑𝑥) 

𝑑𝜃

2

= −𝛿𝑚 ∙
𝑉𝑢

2

𝑟
 

(3.1)             𝐹𝑟 = 𝛿𝑚 ∙
𝑉𝑢

2

𝑟
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With the assumptions of incompressible flow; total pressure, stagnation enthalpy 

and entropy do not vary with radius, Equation (3.4) can be derived. Full derivations are 

shown in Appendix “A”. 

Axial velocity and circumferential velocity are correlated together by this 

equation as a function of radius to represent the radial pressure distribution. In order to 

produce the new vortex solution, a matching curve and corresponding equation are 

generated by using Plot Digitizer and MATLAB. The equation describing the axial 

velocity distribution is: 

 

 

Figure 3.4 The Comparison of Vax Profile Shape Between Uniform Profile and Profile 

Derived from Equation (3.5) 

 

(3.5) 
𝑉𝑎𝑥 =       9.4718 × 106𝑟7 − 2.7984 × 107𝑟6 

                 +3.3557 × 107𝑟5      − 2.148 × 107𝑟4 

            +7.9936 × 106𝑟3 − 1.739 × 106𝑟2 

+2.0553 × 105𝑟 − 10073 

𝑑

𝑑𝑟
(𝑉𝑎𝑥)2 = −

1

𝑟2

𝑑

𝑑𝑟
(𝑟𝑉𝑢)2 (3.4) 

) 
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The corresponding comparison of the axial velocity profile shapes is shown in 

Figure 3.4 above. With this axial velocity (Equation (3.5), and from Equation (2.1)), the 

tangential velocity profile can be obtained: 

 

As can be seen in Equation (3.6), the non-constant distribution of the axial 

velocity component results in a highly non-linear radial equilibrium equation. This new 

solution alters the circumferential component and the entire velocity triangle, as will be 

demonstrated in later sections. 

3.3. Hybrid Vortex Implementation 

The general turbomachinery design process can be divided into four stages, 

preliminary design, throughflow design, 2D blade design and 3D blade design. With the 

development of computers, computational tools play a key role in advancing 

turbomachinery design. Meanline (Arthur, 1995) and Throughflow codes (Crouse, 1981) 

are used for one-dimensional analysis to obtain stream surface designs. NASA’s grid 

generating code, GRAPE, and Quasi 3-D Viscous solver Code, RVCQ3D (Chima, 1999) 

are used for the two-dimensional blade design in order to get an optimized 2D 

streamsection profile which corresponds to the aerodynamic and thermodynamic 

boundary conditions gained from the throughflow design. Then, the airfoil will be 

(3.6) 

𝑉𝑢 =     𝑆𝑄𝑅𝑇(−7.85 × 1013𝑟16 + 4.594 × 1014𝑟15

−
8.512 × 1015𝑟14

7
+

2.51 × 1016𝑟13

13

−
6.199 × 1015𝑟12

3
+

1.729 × 1016𝑟11

11

+ 8.79 × 1014𝑟10 +
3.3 × 1015𝑟9

9
− 1.147 × 1014𝑟8

+
1.865 × 1014𝑟7

7
−

1.348 × 1013𝑟6

3
+ 5.25 × 1011𝑟5

− 3.86 × 1010𝑟4 + 1.38 × 109𝑟3 − 93576.6)/𝑟 



20  

   
 

stacked in ANSYS bladegen and 3D overall stage performance will be conducted to 

finalize the design by using ANSYS TurboGrid and ANSYS CFX software. The design 

process for the baseline case is shown in Figure 3.5. 

 

Figure 3.5 Baseline Design Flowchart  

 

As for the Hybrid Vortex case, the design process is similar to the baseline case. 

Isentropic Mach profiles will be verified and kept in line with the baseline case for each 

airfoil section in order to isolate the effect of the new method. It is essential to check the 

axial velocity profile from the CFX results to eliminate potential errors using inaccurate 

input. The design process for the Hybrid Vortex case is shown in Figure 3.6. The Hybrid 

Vortex Solution is derieved from an actual axial velocity profile after an inlet guide vane 

generated from 3D CFD analysis, as discussed in the section 3.1. The annulus boundary 

condition was taken into account at the early stage of preliminary design, which is closer 
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to mimicking real operating conditions. This procedure takes less efforts during the 

iteration process. 

 

 

Figure 3.6 Hybrid Vortex Design Flowchart  

 

 

 

 

 

 

 

 

 

 

 

 

 

Start 
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4. Blade Design and Methodology 

4.1. 1D Design 

A low hub-to-tip ratio was selected for the design to fully examine the impact of 

the new method with differently staggered sections. The main design parameters are 

summarized in Table 4.1 below. 

Table 4.1  

Mid-Section Design Values 

Variable  Value 

Mass Flow ṁ 80 kg/s 

Total Pressure Ratio 𝜋0 1.3 

Hub-to-Tip Ratio H/T 0.4 

Rotational Speed RPM 6,100 

Absolute Mach Number at LE 𝑀𝐿𝐸 0.38 

Total Pressure at LE 𝑃𝑂,𝐿𝐸 101,005 Pa 

Total Temperature at LE 𝑇𝑂,𝑇𝐸 298.49 K 

Absolute Inlet Flow Angle 𝛼𝐿𝐸 13° 

Number of Blades NOB 20 

 

  

4.1.1. Baseline Design Choice 

The first task is to construct a baseline case to act as a benchmark. After initial 

and 1D design choices were decided, the same aerodynamic, thermodynamic and 

geometric properties at the mid were maintained for all existing vortex solutions. Using 

radial equilibrium equation 3.4 to complete the velocity triangles from hub to tip. Figure 
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4.1 to Figure 4.4 show spanwise angle distributions with a mid-reaction of 0.638 for 

Constant Reaction, Forced Vortex, Free Vortex and Exponential Vortex cases. The 

shadowed range in the figures highlights the difference between LE and TE beta angle. 

These results are consistent with plots generated by Horlock (Horlock, 1958), sharing the 

same trends. 

 

Figure 4.1 Constant Reaction 1D Design Angle Distribution  

 

Figure 4.2 Forced Vortex 1D Design Angle Distribution  
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Figure 4.3 Free Vortex 1D Design Angle Distribution  

 

Figure 4.4 Exponential 1D Design Angle Distribution  

 

As is shown in Figure 4.1, at the same mid-reaction condition, the Constant 

Reaction solution has a crossed beta distribution, which causes the blade section to alter 
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its curvature. This design should be avoided. The forced Vortex solution, Figure 4.2, 

seems to have the same amount of beta variation from hub to tip, which is undesired 

because the wheel speed is much larger at the tip than at the hub. Therefore, the blade 

loading is likely to vary widely and flow at the tip is more likely to separate. From 

analytical reasoning, blade turning, or net deflection, at the hub should be larger than at 

the tip. Hence, Forced Vortex should be avoided as well. 

Figure 4.3 and Figure 4.4 show the Free Vortex and the Exponential Vortex angle 

distributions, with no doubt that they are superior designs compared with the previous 

two cases. The Free Vortex solution at the hub has a ∆β of over 50 degrees, while ∆β for 

the Exponential solution at the hub is around 40 degrees, which indicates that the 

Exponential solution hub is working at a reduced loading. However, with respect to 

efficiency and convenience, the Exponential Vortex design procedure is much more 

complicated than the Free Vortex. It requires two different axial velocity profiles at LE 

and TE. Furthermore, each equation has three unknown constants to resolve, which 

makes the Exponential solution less suitable for a highly iterative design process. Hence, 

the Free Vortex solution has been chosen as the baseline case. 

4.1.2. Hybrid Vortex Design Cases 

In order to determinate the best way to investigate the new hybrid vortex solution, 

three cases have been studied in this thesis. All three cases shared the same methodology 

but had slight differences in the leading edge design. As for the trailing edge, attempts to 

express the velocity profile using the same method have been made. However, after 

comparing the results with the free vortex solution at the TE, it was decided that keeping 

the Free Vortex method was acceptable.  
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Figure 4.5 Circumferential Mass Flow Averaged Axial Velocity Profiles for R1 and S1 

Using Steady and Unsteady Simulations (Zheng, 2017) 

 

Figure 4.6 Fitting Curve for Axial Velocity Profile of The First Rotor Outlet  

 

A curve fit was applied to the result of the trailing edge design as well. Zheng and 

Yang studied the end-wall boundary layer and introduced blockages for multistage axial 

compressors. (Zheng, 2017) According to their study, the normalized axial velocity 

profiles of the first rotor and the first stator are shown in Figure 4.5. The profile for the 

first rotor outlet has been selected for the investigation. Figure 4.6 is the corresponding 

matching curve plotted by the same method mentioned in section 3.2. 
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(a)                                              (b) 

Figure 4.7 Trailing Edge Pressure Profile Comparison between The Free Vortex Solution 

(a) and The Hybrid Vortex Solution (b)  

 

In Figure 4.7, the result shares the same trend with the free vortex solution. 

Therefore, the characteristics of the Hybrid Vortex solution at the TE can be represented 

by the Free Vortex solution. The new design method was the combination of the Hybrid 

Vortex solution at the LE and the Free Vortex solution at the TE. The details are 

summarized in Table 4.2 and will be discussed in the following paragraphs. 

Table 4.2 

 Hybrid Vortex Solution Design Cases – LE Distribution 

 

 

Case  Axial Velocity Circumferential Velocity 

A HV method: profile after IGV HV method: equation 3.6 

B HV method: profile after IGV HV method: equation 3.3 

C HV method: profile from CFX HV method: equation 3.3 
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Case #A 

The first case applied equation 3.5 and equation 3.6 to build the axial and 

circumferential velocity profiles. They were derived originally from equation 3.3 with the 

assumptions of incompressible flow, and that the total pressure, stagnation enthalpy and 

entropy do not vary with radius. Those assumptions might affect the results and deliver 

unrealistic alpha and circumferential velocity distributions as will be discussed later. This 

leads to case B, which is an improvement over case A. 

Case #B 

Instead of deriving the circumferential velocity from the axial velocity 

distribution (equation 3.5), case B applied equation 3.5 and the alpha profile from the 

baseline to complete the velocity triangles at the leading edge.  

Case #C 

It was discovered that the axial velocity profile generated from CFX results was 

not the same as what was used for the hybrid vortex cases A and B. One iteration of the 

design process was necessary to ensure the axial velocity profile was properly imported 

into the new design methodology. Therefore, case C uses the axial velocity profile from 

the CFX result of case B. 

Leading Edge Treatment 

Velocity triangles comparison among the free vortex case, the hybrid vortex cases 

A and B at the LE at 2%, 50%, and 98% span locations are given. A closer look shows 

that, in Figure 4.8, the three velocity triangles overlap at the 50 % span location. This 

indicates that the 3 cases have identical mid conditions for the 1D design. It was 

guaranteed that the velocity triangle differences among the three cases were caused by 
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the different vortex solution treatments. 

 

Figure 4.8 LE Velocity triangle comparison at 50%  

 

It is obvious that case B has the largest beta angle at LE hub and tip as shown in 

Figure 4.9. By introducing the axial velocity profile after the IGV and maintaining the 

same mid conditions for all cases, the free vortex case (“FV”) has a larger beta but also a 

smaller alpha at the LE hub section than the hybrid vortex (“HV”) case A. While the HV 

case A has nearly the same beta angle at the LE tip section, but a larger alpha angle than 

the FV case as shown below. It is evident that the HV case A had no improvement in beta 

distribution compared with the FV case, because of the larger alpha. But it can be said 

that the HV case A has the potential to have larger surge margin if the change of alpha 

profile can be isolated, because the beta profile is more aligned with the flow. 

― FV 

― HV case A 

― HV case B 
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(a)                                                                     (b) 

Figure 4.9 LE Velocity Triangle Comparison at (a) 2% Span Location and (b) 98% Span 

Location 

 

An understanding of the mechanism of the IGV is crucial to investigating what 

caused the differences among the three cases shown above. IGVs can be considered as 

convergent channels formed by blades that accelerate the flow. They are used to generate 

inlet swirl and reestablish optimum incidence for the rotor. It is common to design an 

IGV that delivers a positive pre-swirl to maintain optimum incidence at reduced mass 

flow. Moreover, mass flow is reduced at the hub and tip because of the blockage near the 

wall. So, the off-design absolute angle at hub and tip is larger than at the mid. However, 

the IGV and rotor use different methods to deal with stall. The rotor, when it is designed 

― FV 

― HV case A 

― HV case B 
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with negative incidence, will have better operation near stall. 

By introducing a real normalized Vax profile after the IGV into the hybrid vortex 

design, the circumferential velocity distribution and alpha profile at the leading edge can 

be determined. Moreover, the hybrid vortex solution LE alpha profile inherits the same 

tendency as the IGV exit profile (the off-design alpha angle at the hub and tip is larger 

than at the mid). However, this method also introduced an unrealistic alpha profile for the 

compressor rotor and swirl was introduced even though the mid radius absolute angle 

was zero.  

Therefore, a modification has been made for the hybrid vortex case B, which 

provides a better option by decoupling the axial velocity profile from the alpha profile. It 

has the advantage of incorporating the actual Vax distribution after the IGV, and prevents 

the alpha profile from being unrealistically altered. As presented in Figure 4.9, the HV 

case B has the same alpha profile as the FV case and a bigger beta profile than the FV 

case. The methodology used for the hybrid vortex case B was employed for the final 

leading edge treatment. 
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Trailing Edge Treatment 

The trailing edge was designed by using the free vortex method as discussed in 

section 4.1.2. However, after closely investigating the pressure profile at the TE, an 

undesired adverse pressure distribution was observed near the hub section, as shown in 

Figure 4.11(a). As mentioned in chapter 3, the purpose of the vortex solution is to impose 

a force due to a pressure gradient from hub to tip to balance the centrifugal force caused 

by the rotation. Therefore, a positive pressure gradient is demanded for design purposes. 

Even though there was a better positive pressure gradient in Figure 4.11(a) than in Figure 

4.11 (b), the hub section was showing expansion instead of compression. Hence, the hub 

section needed additional modification. By maintaining the same amount of ∆ℎ𝑜, total 

temperature ratio and total pressure ratio, the total pressure distribution at the trailing 

edge can be manipulated by changing alpha at the trailing edge. The final pressure 

distribution for the hybrid vortex case B is shown in Figure 4.10(b). 

(a)                                                                  (b) 

Figure 4.10 Pressure Distribution at the Trailing Edge for case B without modification (a) 

and With “tip-strong” modification (b)  
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(a)                                                               (b) 

Figure 4.11 Pressure Distribution at the Trailing Edge Hub for case B without 

modification (a) and with “tip-strong” modification (b)  

 

4.1.3. Meanline and Throughflow 

The computational code CSPAN (Arthur, 1995) and ACD (Crouse, 1981) were 

used to perform meanline and throughflow analysis. CSPAN provides conceptual sizing 

analysis and determines the flowpath given certain input parameters for axial 

compressors. The result is shown in Figure 4.12. 

Code ACD delivers streamline analysis, it can produce thermodynamic and 

aerodynamic analysis, and has the capability for designing and stacking the blade 

elements. However, the limitations of CSPAN and ACD were evident. It did provide 

reliable flowpath parameters and streamline analysis, but the corresponding blade 

elements (stream sections) were impractical. The solidity of the blade at the hub section 

was 1.4 in the 1D analysis compared with 2.52 delivered by the ACD code. The result is 

shown below. The blade geometry will be corrected and studied in the next stage of 

design. 
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Figure 4.12 CSPAN code flowpath result 

 

Figure 4.13 ACD 3D Blade Elements Stacking 
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4.2. 2D Design and CFD 

The streamline analysis from the throughflow code was used in 2D CFD section 

design and the computed streamtube contraction used as one of the inputs for the Quasi 

3D Viscous solver Code. The 2D blade design and aerodynamic analysis were performed 

at five different span locations 3%, 35%, 61%, 82% and 98%.  

The GRAPE code (Grids about Airfoils using Poisson’s Equation) is an elliptic 

grid generator to produce C-type grids and is able to give good resolution of the blade 

leading edge and wakes. (Chima, 1999) It works directly with RVCQ3D code. RVCQ3D 

(Rotor Viscous Code Quasi-3-D) is a rapid computer program for quasi-three-

dimensional viscous flow analysis in turbomachinery. (Chima, 1999) This code uses an 

explicit finite-difference technique to solve thin-layer Navier-Stokes equations on blade-

to-blade surfaces. NASA’s grid generating code, GRAPE, and Quasi 3D Viscous solver 

Code, RVCQ3D were used for assessing the isentropic Mach profile for the stream 

sections. The blade shape design, which was conducted using ANSYS BladeGen, has 

been modified to deliver the desired Mach profiles and ensure a smooth 3D blade surface. 

The shape of the Mach profiles for the free vortex and hybrid vortex blades were kept 

identical in order to isolate the effect of the new design approach. Examples of inputs for 

the two programs are given in Appendix “C” and “D”. 

4.2.1. 2D Meshing and Sensitivity Studies 

Mesh sensitivity analysis was performed for the GRAPE code in order to 

eliminate numerical variation due to mesh size. The mesh size was varied from 6000 to 

21000 nodes. An appropriate mesh size is desired to balance numerical accuracy with 

computational resources. Table 4.3 is a summary of the tested sizes and the selected mesh 
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size is highlighted. 

Table 4.3  

2D Mesh Sensitivity study total nodes count. 

Total Nodes 
k 

60 45 30 

j 

350 21000 15750 10500 

300 18000 13500 9000 

250 15000 11250 7500 

200 12000 9000 6000 

 

Figure 4.14 Mesh Sensitivity Analysis for Baseline at 3% Location (a) and 

Enlarged View (b) presents the pressure surface Mach number distribution for the 

baseline case at 3% span location. As is shown, mesh independence was achieved when 

the mesh size was over 10000 nodes.  

 

(a)                                                         (b) 

Figure 4.14 Mesh Sensitivity Analysis for Baseline at 3% Location (a) and Enlarged 

View (b) 

 



37  

   
 

A sample of the computational grid, enlarged view of the leading edge region, 

density contours, and the corresponding Mach profile for the 35% span location, are 

given in Figure 4.15 to Figure 4.17 below. 

 

(a)                                                                            (b) 

Figure 4.15 Hybrid Vortex Case Grid Sample of LE at 35 % Span (a) and LE Enlarged 

View at 35 % Span (b)  

 

 

(a)                                                                    (b) 

Figure 4.16 Density Contour at 35 % Span for Free Vortex Case(a) and Hybrid Vortex 

Case (b)  
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(a)                                                                  (b) 

Figure 4.17 Mach Profile at 35 % Span for Free Vortex Case (a) and Hybrid Vortex Case 

(b)  

 

4.3. 3D Design and CFD 

The software ANSYS BladeGen, TurboGrid, and CFX were used to complete the 

three-dimensional design of the blades. ANSYS BladeGen is a geometry creation tool 

that is customized for turbomachinery blades. The preliminary airfoil and stream section 

shapes were initialized in BladeGen and refined using the NASA 2D analysis described 

earlier. Five span sections were stacked on the centroid to generate the 3D blade 

geometry using ANSYS BladeGen. ANSYS TurboGrid is a meshing tool that is 

specialized for CFD analysis of turbomachinery blade rows. ANSYS CFX is composed 

of two parts: CFX-Pre is for preprocessing and simulation set up and CFX-Post is for 

postprocessing simulation results (ANSYS, 2013). 
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4.3.1. 3D Meshing and Sensitivity Studies 

ANSYS TurboGrid uses ATM Optimized topology, which can automatically 

select the appropriate topology based on the blade type and blade angles. Hexahedral 

meshes were utilized to resolve boundary layer regions and tip gap. It is critical that the 

boundary layer is well captured in order to predict stall. Figure 4.18 is a topology 

example; the master topology is shown with thick lines, while the refined mesh is shown 

with fine lines. Five topology layers were produced at 3%, 35%, 61%, 82% and 98% 

span locations to capture the 3D features of the airfoil and improve mesh quality. A 

constant tip gap of 0.5% was selected for mesh generation. An example of tip gap 

meshing is presented in Figure 4.20 (b). 

 

Figure 4.18 Topology Example 

 

Table 4.4 shows mesh statistics for the baseline case rotor. According to 

Cornelius (Cornelius, 2014), typical mesh size per blade passage is one million cells and 

the near wall spacing 𝑦+should be below 2. However, after conducting mesh sensitivity 

analysis, it was discovered that a medium mesh was good enough for CFX simulations.  
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Table 4.4  

2D Mesh Size and Parameters for Baseline Case. 

 

33 mesh planes were built across the whole domain from inlet to outlet in order to 

well capture the blade twist, which is demonstrated in Figure 4.20 (a). The final Domain 

Mesh is shown in Figure 4.19 (a) with the leading edge refined view presented in Figure 

4.19 (b).  

 

(a)                                                              (b) 

Figure 4.19 Final Domain Mesh (a) and LE Enlargement View (b)  

 

(a)                                                              (b) 

Figure 4.20 Final Domain Mesh with Mesh Planes (a) and Tip Gap Enlargement (b)  

Rotor Course Mesh  Medium Mesh Fine Mesh 

Cells 1.0M 2.5M 5.0M 

Target Y+ ≤10 ≤5 ≤2 
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4.3.2. Simulation Setup 

ANSYS CFX was used for this analysis, it has the capability to achieve reliable 

and accurate solutions quickly and robustly. 

Boundary Conditions 

The boundary conditions for the simulations were taken from the previous stage 

of design. Steady state has been chosen for the simulation type. Total pressure and total 

temperature profiles at inlet were specified, as well as mass flow rate at outlet, which is a 

more stable method to run the simulations than other boundary controls, especially near 

the stall points. By conducting simulations at different mass flow rate and RPM, off-

design operations can be examined, and the compressor map can be generated. 

In addition to the inlet conditions, an inlet initialized velocity profile was 

imported into the simulations to assume same rotor inlet conditions from the inlet guide 

vane were achieved for all four cases. The initialized profile is shown in Appendix “E”. 

Turbulence Model 

There are several turbulence models available to complete the simulation setup. 

However, most standard two-equation turbulence model fails to predict the proper 

amount of flow separation under adverse pressure gradient (ANSYS, 2013). 휀- equation 

turbulence model tends to have overly optimistic prediction performance characteristics 

and delay the prediction of stall. 𝑘 − 휀 model is an improvement but still has the same 

tendency according to Cornelius (Cornelius,2014). Cornelius further mentioned Shear 

Stress Transport (SST) with the Reattachment Model (RM) can better predict the stall 

than applying Shear Stress Transport (SST) turbulence model alone.  

A sensitivity study was performed between the SST model and SST with RM 
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model. However, as shown in Figure 4.21, there was no noticeable difference between 

the two models for pre-stall prediction. Therefore, the Shear Stress Transport model has 

been chosen as the turbulence model of all simulations. 

 

Figure 4.21 Results for Baseline Case Using SST and SST+RM Comparison 

 

Convergence Criteria 

The residuals were monitored in order to declare convergence has been achieved. 

RMS (root mean square) residual type has been chosen and its residual level is 10−4, 

which is a relatively loose convergence, but it is sufficient for these cases. Mass flow 

variation was also monitored. Convergence was achieved between 1500-2000 iterations, 

however it tended to take more iterations to converge near the surge line, as shown from 

Figure 4.22 to Figure 4.25. 

 

RPM 5795 

RPM 6100 

RPM 7200 
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Figure 4.22 RMS Convergence Sample near the Design Point  

 

Figure 4.23 Mass Imbalance Convergence Sample near the Design Point  
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Figure 4.24 RMS Convergence Sample near the Surge Line  

 

Figure 4.25 Mass Imbalance Convergence Sample near the Surge Line  
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5. Results 

5.1. Baseline – Free Vortex 

As discussed in section 4.1.1, the free vortex solution was chosen as the baseline 

and a blade has been built as the baseline case.  

5.1.1. 1D Design Point 

Blade designer’s choices have been highlighted in section 4.1. Additionally, there 

are some other design parameters which are critical and need to be highlighted as well. In 

the early stage of design, they can evaluate the aerodynamic health of the blade based on 

comparison with past successful cases and empirical criteria. Those parameters are listed 

in Table 5.1 below. 

Table 5.1 

 Mid-Section Design Values 

 

In Table 5.1, all the design parameters are within the acceptable range except 

work coefficient. Work coefficient represents how much work is added compared with 

the wheel kinetic energy, which is an alternative way to express a stage characteristic 

Variable  Value Criteria 

Flow Coefficient 𝜑 0.56 0.3 - 0.9 

Work Coefficient 𝜆 0.52 0.2 - 0.5 

 Degree of Reaction Rm 0.6263 N/A 

Lieblein's Diffusion Factor DFm 0.5459 < 0.6 

Average Diffusion Factor DF𝑎𝑣𝑔 0.4362 ≤ 0.45 

DeHaller number DH 0.68 ≥ 0.68 
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similarly like blade tangential Mach number (Mach number for the wheel speed). Higher 

tangential Mach number, more stage total temperature increase and also higher shock 

wave loss (Farokhi, 2009). Because the Mach number at the tip in the relative frame of 

reference is 0.894 for this baseline case, the work coefficient, which is slightly larger than 

the criteria, seems acceptable.  

5.1.2. 2D Airfoil Design 

The 2D design of the airfoils was performed by using the method discussed in 

section 4.2.  The flow field and Mach profile were examined by specifying the airfoil 

shape and the flow conditions upstream and downstream of the cascade. This procedure 

was repeated at five different span locations, which were 3%, 35%, 61%, 82% and 98% 

span locations.  

 

(a)                                                                       (b) 

Figure 5.1 Free Vortex Baseline Blade Stacking View 
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Once the ideal Mach profiles were achieved for all locations, the airfoils were 

stacked on their centroids in order to form the 3D blade. The stacking view is shown in 

Figure 5.1. 2D Mach profiles for each span locations are presented in Appendix “F”. 

5.1.3. 3D Performance and Observation 

The 3D performance of the baseline case has been examined using the process 

mentioned in section 4.3. The design point performance is summarized in Table 5.2. 

Table 5.2  

Baseline 3D Design Point Parameters   

 

As is shown in the table above, pressure ratio reached the target at 57.5 kg/s mass 

flow rate, which is less than what was designed in the 1D analysis (80 kg/s). This is 

because of the viscous effects and blockage including end-wall blockage.  

 

Figure 5.2 Free Vortex Baseline 3% Span location Velocity Streamline Plot 

Variable Value 

Mass Flow Rate m (kg/s) 57.5015 

Pressure Ratio 𝜋0 1.2945 

 Isentropic Efficiency (%) 93.7871 
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Figure 5.3 Free Vortex Baseline 3% Span location Velocity Contour 

 

Because of the nature of the Free Vortex design, and the constant axial velocity 

assumption, which doesn’t take into account the effect of end-wall blockages, the 

baseline case behaved poorly as predicted in 3D simulations. It is evident near the hub 

section as presented above. As shown in Figure 5.2 velocity streamline plot and Figure 

5.3 velocity contour, the baseline case at 3% span location has a significant positive 

incidence issue. 

Even though it was designed perfectly in 2D CFD analysis, the feedback from 3D 

CFD varies a lot from the earlier results, which more illustrates the importance of viscous 

effects and the futility of the uniform axial velocity assumption. The stagnation point was 

perfectly located on the center of the leading edge which was examined in 2D analysis 

for the baseline case at 35% span location, as shown in Figure 4.15 (a). However, as 

presented in Figure 5.4, the stagnation point moved considerably from the design intent 

as shown by the 3D analysis. 
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(a)                                                                    (b) 

Figure 5.4 Free Vortex Baseline 35% Span location Density Contour (a) and LE 

Enlarged View(b) 

 

Figure 5.5 Free Vortex Baseline Streamline Plot near Hub (Side View) 
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As discussed in section 3.2, the function of the vortex solution is to balance the 

centrifugal force from hub to tip which is imposed on the flow when the blade is 

spinning. A closer observation of the flow feature at the hub shows the streamlines on the 

blade surface were centrifuged from hub to tip and then traveled downstream, which 

indicates the free vortex solution didn’t balance the centrifugal force as demonstrated by 

Figure 5.5.  

 

Figure 5.6 Static Pressure Distribution Comparison for the Baseline Case  

 

As shown in Figure 5.6, the static pressure distribution at the leading edge and the 

trailing edge were examined. There is no doubt that the design intention was not achieved 

for the baseline case. The slope of the pressure gradient at the trailing edge from CFX 

results is smaller than the 1D design intent from 5% to 50% span location, which caused 

the radial force imbalance shown in Figure 5.5.  
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(a)                                                                        (b) 

Figure 5.7 Mach Profile Comparison for Baseline Case (a) 3% Span Location and (b) 

35% Span Location  

 

Figure 5.8 Mach Profile Comparison for Baseline Case at 98% Span Location 
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As shown in Figure 5.7 and Figure 5.8, the Mach profile distributions were 

evaluated and compared as well. 

The distinctions between the 2D and 3D Mach profiles are significant for the 

baseline case at 3%, 35% and 98% span locations. Huge positive incidences indicate that 

the blade didn’t align with the inlet flow angle in the 3D simulations where viscous 

effects played an important role in the turbulence model, even though it was designed 

perfectly in the 2D analysis. It is not only part of the reason why the flow didn’t behave 

as what was designed at the beginning, but also can harm the compressor stall margin as 

will be discussed in later sections. 

Therefore, it can be easily concluded that the design intent for both the leading 

edge treatment and trailing edge treatment failed for the Baseline case. 

5.2. Hybrid Vortex  

5.2.1. 1D Design Point  

Care must be taken when it comes to the Hybrid Vortex. As mentioned before, an 

axial velocity profile after an inlet guide vane needs to be imported into the radial 

equilibrium equation. However, because of the characteristic difference, slight 

modifications such as inlet mass flow rate and inlet Mach number need to be performed, 

at the mid span location, in order to maintain the same overall boundary conditions and 

not distort the outcome.  

5.2.2. Axial Velocity Convergence Iteration 

The procedure for the hybrid vortex case design was the same as the baseline 

case. Referencing the hybrid vortex design flowchart, Figure 3.6, one iteration of 

redesign was necessary if the axial velocity profile generated from CFX results was not 
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the same as what was used for the hybrid vortex cases A and B.  

 

Figure 5.9 The Comparison of Vax Profile Shape 

 

As shown in Figure 5.9 above, the normalized axial velocity profiles are 

completely different, but they share the same average axial velocity. Furthermore, they 

are all plotted at the leading edge of the rotor and the axial velocity profile generated 

from CFX results is more accurate for this particular design compared with the axial 

velocity profile found from reference. Therefore, the hybrid vortex case C has been 

created using the axial velocity profile from the CFX result of the hybrid vortex case B, 

which was the final design result. The corresponding initialized profile is attached in 

Appendix “E”. 

5.3. Final Hybrid Vortex Case 

5.3.1. 2D Airfoil Stacking and Comparison 

The 2D design of the Hybrid Vortex airfoils were constructed using the same 

method as the Baseline case discussed in section 5.1.2. The stacking view is shown in 
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Figure 5.10. 2D Mach profiles for each span locations conform to the same principles 

and criteria as those utilized for the FV design and are presented in Appendix “G”. 

 

(a)                                                         (b) 

Figure 5.10 Hybrid Vortex Case C Blade Stacking View 

 

Figure 5.11 shows the 3D blade geometry comparison between the baseline case 

and the Hybrid Vortex case C. As can be seen in the picture, the HV case C has less 

solidity at the tip and more stagger below the mid. A closer observation about airfoil 

shape at the hub shows that the HV case C has bigger beta and less camber than the 

baseline case in Figure 5.12. It is beneficial to compressor stall margin because the 

separation at the hub is mainly due to the high camber and the ability to handle positive 

incidence. Because of less camber at the hub, the work load was redistributed. It resulted 

in more camber and more work loading at the 35% span location as demonstrated in 

Figure 5.13. The remaining 2D airfoil comparisons for each span location are presented 
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in Appendix “H”. 

  

(a)                                                              (b) 

Figure 5.11 3D Blades Geometry Comparison (a) Free Vortex and (b) Hybrid Vortex 

Case C  

 

 

Figure 5.12 2D Airfoils Shape Comparison at 3% Span Location  
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Figure 5.13 2D Airfoils Shape Comparison at 35% Span Location 
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5.3.2. Observed Flow Features and Comparison 

The 3D performance of the Hybrid Vortex case C has been examined using the 

same process as the baseline case. The design point performance is summarized in Table 

5.3. 

Table 5.3 

Hybrid Vortex Case C 3D Design Point Parameters  

 

 

(a)                                                            (b) 

Figure 5.14 3D Geometry Comparison between Baseline Case (a) and Hybrid Vortex 

Case C (b) 

 

As is shown in the table above, pressure ratio reached the target at 72.5 kg/s mass 

flow rate, which is less than what was designed in the 1D analysis (80 kg/s) as well. 

Variable  Value 

Mass Flow Rate m (kg/s) 72.5001 

Pressure Ratio 𝜋0 1.2927 

 Isentropic Efficiency (%) 95.8165 
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However, it is a great improvement over the baseline case. As is shown in Figure 5.14, 

because the new Hybrid Vortex solution took account of viscous effects, it delivered a 

blade with less solidity and blockage. Thus, it resulted in more mass flow at the design 

point. 

Unlike the baseline case, the feedback from the 3D CFD for the Hybrid Vortex 

case C agrees with the previous 2D analysis. As shown in Figure 5.15, the stagnation 

point was on the center of the leading edge, which is consistent with the density contour 

plot in figure 5.15 (b). This indicates that the new vortex design methodology 

successfully captured the 3D effects in the early stages of design, which is one of the 

goals for this research. 

 

(a)                                                                                     (b) 

Figure 5.15 Hybrid Vortex Case C 35% Span location Density Contour (a) and LE 

Enlarged View(b) 

 

The improvement is also evident when checking the streamline plot for the 

Hybrid Vortex case C as demonstrated by Figure 5.16 to Figure 5.19. From the side 

view, the streamlines were subject to the centrifugal forces from hub to tip in the Baseline 
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case, while this phenomenon was eliminated in the Hybrid Vortex case C. There were a 

few negligible streamlines at the trailing edge because the flow was outside the channel. 

It was a significant improvement compared with the baseline case, as is shown clearly in 

Figure 5.17.  

 

Figure 5.16 Baseline Case Flow Path Streamline Plot on 3% Span Location (Side View) 
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Figure 5.17 Hybrid Vortex Case C Flow Path Streamline Plot on 3% Span Location (Side 

View) 

 

Figure 5.18 Baseline Case Flow Path Streamline Plot on 3% Span Location (Front View) 
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Figure 5.19 Hybrid Vortex Case C Flow Path Streamline Plot on 3% Span Location 

(Front View) 

 

Because of the added viscous on the blade surface, the momentum of the flow 

particles near the surface is more impacted and thus, it is more difficult to reach radial 

equilibrium. Examining the streamlines in the channel is a better way to evaluate whether 

the new vortex solution balanced the centrifugal force in the streamwise direction. As 

shown in Figure 5.18 and Figure 5.19, the improvement is evident and it can be said the 

new vortex solution was a success as close to the hub as the 3% span location. The 

streamlines were straight from the leading edge to the trailing edge in the Hybrid Vortex 

case C, while they were centrifuged out in the Baseline case. 

A similar study was performed at the 10% span location as well. As shown in 

Figure 5.20 to Figure 5.23, the same phenomenon was observed and radial equilibrium 

was achieved at the 10% span location. 
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Figure 5.20 Baseline Case Flow Path Streamline Plot on 10% Span Location (Side View) 

 

Figure 5.21 Hybrid Vortex Case C Flow Path Streamline Plot on 10% Span Location 

(Side View) 
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Figure 5.22 Baseline Case Flow Path Streamline Plot on 10% Span Location (Front 

View) 

 

Figure 5.23 Hybrid Vortex Case C Flow Path Streamline Plot on 10% Span Location 

(Front View) 
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(a)                                                                                   (b) 

Figure 5.24 Static Pressure Distribution Comparison for Baseline Case (a) and Hybrid 

Vortex Case C (b)  

 

As shown in Figure 5.24, the static pressure distribution comparison between the 

two cases indicates that the Free Vortex case didn’t achieve the desired pressure gradient 

since it neglected end-wall effects. While the 3D results for the Hybrid Vortex case C 

highly agreed with the 1D design intent, which is to impose a greater pressure gradient 

near the hub to stabilize the flow.  Introducing viscous effects early in the design stage, as 

is the case with the HV method, resulted in the blade being more aligned with the flow. 

The improved performance is clear. 

Contrary to the Baseline case, the distinctions between the 2D and 3D Mach 

profiles are insignificant for the Hybrid Vortex case C at 35% and 98% span locations. 

The leading edge treatment and the trailing edge treatment appear to have accomplished 

the objective for the new vortex solution. 
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(a)                                                               (b) 

Figure 5.25 Mach Profile Comparison for Hybrid Vortex Case C (a) 3% Span Location 

and (b) 35% Span Location 

 

 

Figure 5.26 Mach Profile Comparison for Hybrid Vortex Case C at 98% Span Location 
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5.3.3. Off-Design Behavior 

The general behavior of a compressor can be evaluated from its compressor map. 

And it is also a tool to verify the improvement introduced by the new design method. 

Three characteristic lines were produced to generate the full map for both cases at 

different rotational speeds: 5,795 rpm, 6,100 rpm and 7,200 rpm. 

Figure 5.27 shows the compressor map for the FV case (red) and the HV case 

(blue). The design point values for both cases are summarized in Table 5.4. Apparently, 

the Hybrid Vortex blade can deliver more pressure ratio as well as more mass flow 

operating range.  

 

Figure 5.27 Compressor Map Comparison between Free Vortex Case and Hybrid Vortex 

Case C 
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Table 5.4  

Design Point Values 

 

Characteristic line comparison at rpm 6100 between the Free Vortex case and the 

Hybrid Vortex case C was performed in Figure 5.28. It shows a considerable increase in 

the operating range for the airfoil. The design point for the Baseline case was close to 

stall, while the design point for the Hybrid Vortex case C was operating at 72.5 kg/s, 15 

kg/s more than the Baseline case (+26%) with the same total pressure ratio. The detailed 

mass flow operating range comparison is summarized in Table 5.5. The increase in 

operating range is 16.15% for the new vortex solution. 

 

Figure 5.28 Characteristic Line Comparison at RPM 6100 between Free Vortex Case and 

Hybrid Vortex Case C 

Case 
Mass Flow 

Rate(kg/s) 

Pressure Ratio 

𝜋0 

Isentropic 

Efficiency 

Free Vortex 57.5 1.2945 93.7871 

Hybrid Vortex Case C 72.5 1.2927 95.8165 
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Table 5.5  

Mass Flow Operating Range Comparison 

 

Theoretically, the compressor map can be relocated by redesigning the blade 

while maintaining the Hybrid Vortex methodology. The design point would be matched 

at the same total pressure ratio and the same mass flow rate. This redesign has the 

potential to relocate the characteristic line as illustrated in Figure 5.29, where the Hybrid 

Vortex characteristic line has been relocated 15kg/s to the left to match the design points 

of both designs. 

 

Figure 5.29 Hypothetical Characteristic Line Comparison at RPM 6100 between Free 

Vortex Case and Hybrid Vortex Case C 

Case 
Surge Mass Flow 

Rate(kg/s) 

Choke Mass Flow 

Rate(kg/s) 

Difference 

 (kg/s) 

Free Vortex 55.9884 77.5135 21.5251 

Hybrid Vortex Case C 57.5002 82.5014 25.0012 

  Increase 16.149% 
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In Figure 5.29, the surge margin for the hypothetical characteristic lines were 

marked in black. With the same design point, the increase in surge margin for the 

hypothetical characteristic line has been calculated. The values of the surge margin are 

summarized and presented in Table 5.6. The potential for the Hybrid Vortex solution are 

significant. It has 23.77% surge margin compared with 2.356% surge margin for the Free 

Vortex solution. 

Table 5.6  

Surge Margin Comparison 

 

 

 

Figure 5.30 Hypothetical Compressor Map Comparison between Free Vortex Case and 

Hybrid Vortex Case C 

 

Case 
Designed Pressure 

Ratio 

Surge Pressure 

Ratio 

Surge Margin 

% 

Free Vortex 1.2945 1.325 2.356 

Hybrid Vortex Case C 1.2927 1.6 23.772 
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The corresponding compressor map for hypothetical Hybrid Vortex redesign is 

presented in Figure 5.30. The new map is a marked increase in both mass flow operating 

range and surge margin. The potential for the new Hybrid Vortex solution is certain, 

requiring additional optimization to match the design point. 
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6. Conclusion 

A new Hybrid Vortex theory and design methodology for preliminary design in 

axial compressors has been presented. The simple radial equilibrium equation has the 

advantage of predicting swirling flow between blades rows and providing a radial 

pressure distribution from hub to tip, but it fails to predict the end-wall effect. An axial 

velocity profile based on the actual physics of the flow is imported in radial equilibrium 

equation in order to introduce a higher level of fidelity early into the design process. 

Preliminary design comparisons among Free Vortex solution, Constant Reaction 

solution, Forced Vortex solution and Exponential solution are performed. Although 

Exponential solution has the best performance among four cases, the Free Vortex 

solution has been chosen as the Baseline case because of the limitation of throughflow 

code. 

Three different approaches were studied in order to find a good way to implement 

the Hybrid Vortex theory. The Hybrid Vortex Case C is the best one. It was found out 

that introducing a real normalized Vax profile after the IGV into the hybrid vortex design 

and deriving the circumferential velocity distribution will introduce an unrealistic alpha 

profile for the compressor rotor. Therefore, decoupling the axial velocity profile from the 

alpha profile is the final treatment for the leading edge. Furthermore, the trailing edge 

treatment has a tip-strong total pressure modification in order to maintain a positive 

pressure gradient.  

The blade performance was examined and verified using CFX simulations. At the 

design point, 3D simulation results for the Hybrid Vortex case C were highly agreed with 

2D analysis results. While, 3D results and 2D results had huge differences for the 
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Baseline case. It validated the reliability of the Hybrid Vortex theory. Moreover, the 

Hybrid Vortex case C had great improvements in off-design performance. The design 

point for the Baseline case was close to stall, while the design point for the Hybrid 

Vortex case C was operating at 72.5 kg/s, 15 kg/s more than the Baseline case (+26%) 

with the same total pressure ratio. With further re-design the Hybrid Vortex case C, it has 

23.77% surge margin compared with 2.356% surge margin for the Baseline case. 
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7. Recommendations 

Many issues occurred throughout the study. It is highly recommended to change a 

better throughflow code to perform the streamline curvature analysis. The current code is 

easy to use but does not provide reasonable solidity (especially at the hub) which will 

affect the input for 2D analysis. It is also recommended to choose a front-loaded shape of 

Mach profile in 2D analysis in order to eliminate or smaller the deviation angle for 

convergence.  

This thesis only studied the Hybrid Vortex solution for the rotor. It would be 

better to have a further study in rotor-stator interaction (after the refinement of the rotor 

blade) and to see how the hybrid vortex theory works through multi-stage axial 

compressors.
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A. Radial Equilibrium Derivations 

Radial Momentum Equation  

Starting from the momentum equation: 

Applying equation (A.1) to a small element: 

Splitting equation (A.2) into components: 

With the assumption of axisymmetric flow: 

The radial velocity is assumed to be zero: 

Assume steady flow: 

 

 

𝐹 − ∯ 𝑝 ∙ 𝑑𝑆 = ∯ (𝜌𝑉 ∙ 𝑑𝑆) ∙ 𝑉 +
𝐶𝑆𝐶𝑆

𝑑

𝑑𝑡
∰ 𝜌 ∙ 𝑉 𝑑∀

𝐶𝑉

 (A.1) 

𝑓 − ∇𝑝 = (𝜌𝑉 ∙ ∇)𝑉 + 𝜌𝑉 ∙ (∇ ∙ 𝑉) +
𝑑

𝑑𝑡
(𝜌 ∙ 𝑉) (A.2) 

𝑓𝑟 −
1

𝜌

𝛿𝑝

𝛿𝑟
=

𝜕𝑉𝑟

𝜕𝑡
+ 𝑉𝑟

𝜕𝑉𝑟

𝜕𝑟
+

𝑉𝑢

𝑟

𝜕𝑉𝑟

𝜕𝑢
+ 𝑉𝑎𝑥

𝜕𝑉𝑟

𝜕𝑎𝑥
−

𝑉𝑢
2

𝑟
 (A.3) 

𝑓𝑢 −
1

𝑟𝜌

𝛿𝑝

𝛿𝑢
=

𝜕𝑉𝑢

𝜕𝑡
+ 𝑉𝑟

𝜕𝑉𝑢

𝜕𝑟
+

𝑉𝑢

𝑟

𝜕𝑉𝑢

𝜕𝑢
+ 𝑉𝑎𝑥

𝜕𝑉𝑢

𝜕𝑎𝑥
−

𝑉𝑢𝑉𝑟

𝑟
 (A.4) 

𝑓𝑎𝑥 −
1

𝜌

𝛿𝑝

𝛿𝑎𝑥
=

𝜕𝑉𝑎𝑥

𝜕𝑡
+ 𝑉𝑟

𝜕𝑉𝑎𝑥

𝜕𝑟
+

𝑉𝑢

𝑟

𝜕𝑉𝑎𝑥

𝜕𝑢
+ 𝑉𝑎𝑥

𝜕𝑉𝑎𝑥

𝜕𝑎𝑥
 (A.5) 

𝛿

𝛿𝑢
= 0 (̠A.6) 

𝑉𝑟 = 0 (̠A.7) 

𝜕

𝜕𝑡
= 0 (̠A.8) 
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Assume infinitely long cylinder: 

With the assumption of no body forces: 

Equation (A.3) can be rewritten to: 

Which is the same as the Equation 3.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑓𝑟 = 𝑓𝑎𝑥 = 𝑓𝑢 = 0 
(̠A.10) 

𝜕

𝜕𝑎𝑥
= 0 (̠A.9) 

1

𝜌

𝑑𝑝

𝑑𝑟
=

𝑉𝑢
2

𝑟
 (A.11) 
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Radial Equilibrium Equation 

From the first law of thermodynamics: 

Work can be represented by: 

From the second law of thermodynamics for an internally reversible process: 

Because enthalpy is a function of the energy of the system: 

Thus, 

Substitute equations (A.12), (A.13) and (A.16) into equation (A.14): 

In the radial direction, considering a per mass system: 

Assuming  
𝑑𝑇

𝑑𝑟
𝑑𝑠 is a higher order term than the remaining parts of equation, it can 

be eliminated. Substitute into equation (3.3): 

𝑑𝑄 = 𝑇𝑑𝑠 (̠A.14) 

𝐻 = 𝑈 + 𝑝𝑉 (̠A.15) 

𝑑𝐻 = 𝑑𝑈 + 𝑉𝑑𝑝 + 𝑝𝑑𝑉 (̠A.16) 

𝑑𝑄 = 𝑑𝑈 + 𝑑𝑊 (̠A.12) 

𝑑𝑊 = 𝑝𝑑𝑉 (for a reversible process) (̠A.13) 

𝑇𝑑𝑠 = 𝑑𝐻 − 𝑉𝑑𝑝 (̠A.17) 

𝑑ℎ

𝑑𝑟
= 𝑇

𝑑𝑠

𝑑𝑟
+

𝑑𝑇

𝑑𝑟
𝑑𝑠 +

1

𝜌

𝑑𝑝

𝑑𝑟
 (A.18) 

𝑑ℎ

𝑑𝑟
= 𝑇

𝑑𝑠

𝑑𝑟
+

𝑉𝑢
2

𝑟
 (A.19) 
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The total enthalpy is defined as: 

Equation (A.20) in the radial direction can be written as: 

Substitute equation (A.19) into equation (A.21): 

Thus, with the assumption of  
𝑑ℎ0

𝑑𝑟
= 0, 

𝑑𝑠

𝑑𝑟
= 0 and 

𝑑𝑉𝑟

𝑑𝑟
= 0, the equation can be 

rearranged as: 

 

Which is the same as the Equation 3.4. 

 

𝑑ℎ0 = 𝑑ℎ + 𝑑(
𝑉𝑟

2

2
+

𝑉𝑢
2

2
+

𝑉𝑎𝑥
2

2
) (A.20) 

𝑑ℎ0

𝑑𝑟
=

𝑑ℎ

𝑑𝑟
+ 𝑉𝑟

𝑑𝑉𝑟

𝑑𝑟
+ 𝑉𝑢

𝑑𝑉𝑢

𝑑𝑟
+ 𝑉𝑎𝑥

𝑑𝑉𝑎𝑥

𝑑𝑟
 (A.21) 

𝑑ℎ0

𝑑𝑟
= 𝑇

𝑑𝑠

𝑑𝑟
+

𝑉𝑢
2

𝑟
+ 𝑉𝑟

𝑑𝑉𝑟

𝑑𝑟
+ 𝑉𝑢

𝑑𝑉𝑢

𝑑𝑟
+ 𝑉𝑎𝑥

𝑑𝑉𝑎𝑥

𝑑𝑟
 (A.22) 

𝑑

𝑑𝑟
(𝑉𝑎𝑥)2 = −

1

𝑟2

𝑑

𝑑𝑟
(𝑟𝑉𝑢)2 (A.23) 
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B. Various Vortex Solutions 

Table B.1  

Vortex solutions (Horlock, 1958) 

Method of 

Design 

Work 

variation 

with 

radius 

Tangential 

velocity 

distribution 

Axial 

velocity 

distribution 

Reaction 

distribution 

with radius 

Radial 

equilibrium 

A. Two-

dimensional 

Supposed 

constant 

Supposed 

constant 

Supposed 

constant 

Supposed 

constant 
Ignored 

B. Free vortex Constant 
Vur = 

constant 
Constant 

Increases 

with radius 
Yes 

C. Constant 

reaction 

(without 

equilibrium) 

Supposed 

constant 
𝑉𝑢 = 𝑎𝑟𝑛 ±

𝑏

𝑟
 

Supposed 

constant 

Supposed 

constant 
Ignored 

D. Half vortex 
Supposed 

constant 

Arithmetic 

mean of free 

vortex and 

constant 

reaction 

distributions 

Supposed 

constant 

Not far 

from 

constant 

Ignored 

E. ‘Constant α2’ 
Supposed 

constant 

Fixed by the 

condition that 

Vu2 (entry to 

stator) = 

(constant) 

Vu1 (entry to 

rotor) = a – 

b/r 

Supposed 

constant 

Not far 

from 

constant 

Ignored 

F. Constant 

reaction 
Constant 𝑉𝑢 = 𝑎𝑟𝑛 ±

𝑏

𝑟
 

From radial 

equilibrium 
Constant Yes 

G. Forced vortex 
Increases 

with r2 

Vu 

proportional 

to r 

From radial 

equilibrium 

Varies with 

radius 
Yes 

H. ‘Exponential’ Constant 𝑉𝑢 = 𝑎 ±
𝑏

𝑟
 

From radial 

equilibrium 

Varies with 

radius 
Yes 
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C. NASA GRAPE Sample Input  

'3% Span – Hybrid Vortex Case C' 

&grid1  jmax=300 kmax=60 ntetyp=3 nairf=5 nibdst=7 nobshp=7 

  jairf=121 jtebot=25 jtetop=276 norda=0 3 maxita= 0 3000 nout=4  

  dsi=1.18733e-5 xle=0.0 xte=0.3307 xleft=-.1005 xright=.45 rcorn=0.025 

 &end 

 &grid2  nobcas=0 nle=40 nte=22 dsra=.49 dsle=.001 dste=.0007 

  pitch=0.2011 yscl=1. xtfrac=1. dsobi=.0017 dswex=.0047 

  aaai=0.45 bbbi=0.45 ccci=0.35 dddi=0.35 jwakex=1 kwakex=0 csmoo=1. 

  jcap=28 

 &end 
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D. NASA RVCQ3D Sample Input  

'3% Span – Hybrid Vortex Case C' 

 &nl1 m=MMM n=NNN mtl=xxxMTLxxx mil=xxxMILxxx &end 

 &nl2 nstg=4 ivdt=1 irs=1 eps=1.0 ndis=2 cfl=5.6 avisc2=0. avisc4=.5 

      ipc=0 pck=.1 refm=0.4 hcuspk=.10 ausmk=0.6 icdup=0 &end 

 &nl3 ibcinu=1 ibcinv=1 ibcex=1 itmax=4340 iresti=0 iresto=1 ires=10 

      icrnt=50 ixrm=0 ibcext0=1 &end 

 &nl4 amle=.295816 alle=21.141 bete=5.709 prat=0.965439 p0in=1. t0in=1. 

g=1.4 &end 

 &nl5 ilt=5 jedge=35 renr=5.93e6 prnr=.7 tw=0. vispwr=.667 

      itur=2 cmutm=14. &end 

 &nl6 omega=-0.24 nblade=20 nmn=20 &end 

 &nl7 tintens=.01 tlength=2.20e-5 hrough=0. &end 

 -0.1676 -0.1482 -0.1289 -0.0859 -0.0429  0.0000  0.0355  0.0711  0.1067 

  0.1423  0.1778  0.2134  0.2490  0.2846  0.3201  0.3572  0.3942  0.4313 

  0.4683  0.5053 

  0.6224  0.6263  0.6302  0.6336  0.6369  0.6403  0.6550  0.6698  0.6846 

  0.6993  0.7141  0.7289  0.7436  0.7584  0.7732  0.7774  0.7816  0.7858 

  0.7899  0.7942 

  1.0000  1.0171  1.0342  1.0492  1.0641  1.0790  1.0649  1.0508  1.0366 

  1.0225  1.0084  0.9943  0.9802  0.9660  0.9519  0.9489  0.9459  0.9429 

  0.9399  0.9369 
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E. Sample CFX Inlet Velocity Profile File  

The following file is the inlet initialized velocity profile which was imported into 

the simulations to assume same rotor inlet conditions from the inlet guide vane for all 

four cases. The file is in ‘.csv’ format and provides the unit vector ‘s velocity direction at 

corresponding location. 

[Name]      

R1 Inlet      

      

[Spatial Fields]     

x  y  z    

      

[Data]      

x [ in ]  y [ in ]  z [ in ] 

 Velocity 
Direction 
in Stn 
Frame u 

 Velocity 
Direction 
in Stn 
Frame v 

 Velocity 
Direction 
in Stn 
Frame w 

18.39 0 -5.413 0 0.159538 0.987192 

18.1662 0 -5.413 0 0.161425 0.986885 

17.9424 0 -5.413 0 0.163357 0.986567 

17.7186 0 -5.413 0 0.165336 0.986237 

17.4948 0 -5.413 0 0.167362 0.985896 

17.271 0 -5.413 0 0.169437 0.985541 

17.0472 0 -5.413 0 0.171564 0.985173 

16.8234 0 -5.413 0 0.173744 0.984791 

16.5996 0 -5.413 0 0.17598 0.984394 

16.3758 0 -5.413 0 0.178272 0.983981 

16.152 0 -5.413 0 0.180625 0.983552 

15.9282 0 -5.413 0 0.183039 0.983106 

15.7044 0 -5.413 0 0.185517 0.982641 

15.4806 0 -5.413 0 0.188062 0.982157 

15.2568 0 -5.413 0 0.190676 0.981653 

15.033 0 -5.413 0 0.193363 0.981127 

14.8092 0 -5.413 0 0.196125 0.980579 

14.5854 0 -5.413 0 0.198966 0.980006 

14.3616 0 -5.413 0 0.201888 0.979409 

14.1378 0 -5.413 0 0.204895 0.978784 

13.914 0 -5.413 0 0.207991 0.978131 

13.6902 0 -5.413 0 0.21118 0.977447 

13.4664 0 -5.413 0 0.214467 0.976731 

13.2426 0 -5.413 0 0.217854 0.975981 
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[Data]      

x [ in ]  y [ in ]  z [ in ] 

 Velocity 
Direction 

in Stn 
Frame u 

 Velocity 
Direction 

in Stn 
Frame v 

 Velocity 
Direction 

in Stn 
Frame w 

13.0188 0 -5.413 0 0.221347 0.975195 

12.795 0 -5.413 0 0.224951 0.97437 

12.5712 0 -5.413 0 0.228671 0.973504 

12.3474 0 -5.413 0 0.232513 0.972593 

12.1236 0 -5.413 0 0.236482 0.971636 

11.8998 0 -5.413 0 0.240585 0.970628 

11.676 0 -5.413 0 0.244827 0.969567 

11.4522 0 -5.413 0 0.249218 0.968447 

11.2284 0 -5.413 0 0.253763 0.967266 

11.0046 0 -5.413 0 0.258471 0.966019 

10.7808 0 -5.413 0 0.26335 0.9647 

10.557 0 -5.413 0 0.26841 0.963305 

10.3332 0 -5.413 0 0.27366 0.961827 

10.1094 0 -5.413 0 0.27911 0.960259 

9.8856 0 -5.413 0 0.284773 0.958595 

9.6618 0 -5.413 0 0.290659 0.956827 

9.438 0 -5.413 0 0.296782 0.954945 

9.2142 0 -5.413 0 0.303155 0.952941 

8.9904 0 -5.413 0 0.309793 0.950804 

8.7666 0 -5.413 0 0.316712 0.948522 

8.5428 0 -5.413 0 0.323928 0.946082 

8.319 0 -5.413 0 0.331461 0.943469 

8.0952 0 -5.413 0 0.339329 0.940668 

7.8714 0 -5.413 0 0.347553 0.93766 

7.6476 0 -5.413 0 0.356157 0.934426 

7.4238 0 -5.413 0 0.365164 0.930943 

7.2 0 -5.413 0 0.374601 0.927186 
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F. 2D Mach Profile Output for the Baseline Case 

 

Figure F.1 Free Vortex Baseline 3% Span location 2D Mach Profile 

 

Figure F.2 Free Vortex Baseline 35% Span location 2D Mach Profile 
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Figure F.3 Free Vortex Baseline 61% Span location 2D Mach Profile 

 

Figure F.4 Free Vortex Baseline 82% Span location 2D Mach Profile 
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Figure F.5 Free Vortex Baseline 98% Span location 2D Mach Profile 
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G. 2D Mach Profile Output for the Hybrid Vortex Case C 

 

Figure G.6 Hybrid Vortex Case C 3% Span location 2D Mach Profile 

 

Figure G.7 Hybrid Vortex Case C 35% Span location 2D Mach Profile 
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Figure G.8 Hybrid Vortex Case C 61% Span location 2D Mach Profile 

 

Figure G.9 Hybrid Vortex Case C 82% Span location 2D Mach Profile 
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Figure G.10 Hybrid Vortex Case C 98% Span location 2D Mach Profile 
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H. 2D Blade Geometry Comparison 

 

Figure H.11 2D Airfoil Comparison at 3% Span location 

 

 

Figure H.12 2D Airfoil Comparison at 35% Span location 
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Figure H.13 2D Airfoil Comparison at 61% Span location 
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Figure H.14 2D Airfoil Comparison at 82% Span location 
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Figure H.15 2D Airfoil Comparison at 98% Span location 
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