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ABSTRACT 

HIGH FREQUENCY POWER DISTRIBUTION UNITS 

by 

 

Ezana T. Mekonnen 

 

The University of Wisconsin-Milwaukee, 2012 

Under the Supervision of Professor Adel Nasiri, PhD 

 

 

 

The focus of this thesis is to design, model, build, and test a series resonance 

converter that uses a high frequency isolation transformer, offering significant reduction 

in size and cost, for powering a Computed Tomography (CT) scanner. The design 

increases the power quality for the load by isolating the grid side disturbances, and 

providing regulated desired voltage. The proposed architecture also allows for an 

optimized point of integration with an UPS, a regulated DC bus to improve waveform 

fidelity of x-ray generator, and active monitoring and control of the power 

architecture. Conventional CT systems use a 60Hz transformer, which not only occupies 

large footprints but also uses large amounts of copper and iron with increasing cost 

trajectory. In comparison to the traditional Power Distribution Units (PDU), the medical 

grade high frequency PDU presented in this thesis provides higher power quality and 

performance at a lower cost. 

The new CT systems possess unprecedented performance capability in terms of 

rotational speed and x-ray voltage modulation (“Ultra-Fast kV”) fidelity. In order to 
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achieve such capabilities, a tightly regulated high power DC bus (700VDC, 150kW) is 

required. The system implemented in this thesis satisfies these new requirements. Design 

requirements, proposed architecture and controls, modeling, implementation and test 

results of the proposed system, including thermal analysis and electromagnetic 

compatibility, are presented in details in this thesis.  
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CHAPTER I 

1. INTRODUCTION    

Medicine has been greatly advanced in large part to the discoveries related to imaging 

devices such as x-ray machines. Computed Tomography (CT) is medical imaging system 

that utilizes x-ray light to produce internal image of patients by rotating the x-ray source 

and detector, which are located 180 degree apart, around the patient.   

 

Figure 1-1: A picture of GE's existing VCT660 CT scanner. 

Some of the key components that result in not only competitive advantages, but 

also produces great clinical value for CT system are:  

• Longer Z-axis coverage that can capture image of an entire organ in a scan 

• Wider bore size capable of accommodating larger patients  
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• Faster rotational speed to reduce motion artifacts 

• Robust Ultra-fast KV waveform fidelity for consistent result within views 

Among other things, the aforementioned feature requires higher power for x-ray 

generation, and tighter output voltage regulation to the CT Power Distribution Unit 

(PDU) to support faster speed and improved UFKV waveform fidelity.  This paper 

presents 150kW rated medical grade power distribution unit that provides system 

isolation, regulates output voltage, and reduces scan room footprint in an economically 

feasible method. 

1.1 Background 

Power supplies for medical devices fundamentally fall into strict sets of 

regulatory requirement in order to protect both patients and operators. This includes strict 

guidelines on leakage currents, conducted emissions, and whole set of immunity 

capabilities. Today’s CT system contains a power distribution unit that provides galvanic 

isolation, taps for voltage adjustment, and high power unregulated DC voltage. The 

current power architecture, which is shown in figure 1-2 below, illustrates the power 

distribution unit and the major CT load.  Some of these major loads are the x-ray 

Inverters, which require around 100 kW of peak power and gantry motor around 15 kW 

of peak power.  The additional secondary winding, which accounts for roughly 10 kW of 

average power, provides power to all the electronics that are used to energize the system. 
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Figure 1-2: Block diagram illustrating current CT PDU architecture 

From a close overview of the current CT PDU one would notice the possible 

variation with the unregulated high power DC bus voltage as a result of the high step 

load.  In a typical setting, where the main power source is 3-phase 480VAC, the DC 

output can vary anywhere from 660VDC during no-load to 500VDC during 100kW x-ray 

generation.  This variation puts lots of pressure on the x-ray generator controller to 

deliver continuous output voltage within the variation. In addition, an increase in the 

gantry speed puts tighter restriction on the DC bus voltage, which can be very difficult to 

achieve without some means of regulating the DC bus voltage.    

The first approach to the DC bus voltage regulation was to introduce a DC/DC or 

AC/DC power supply that can be used as a buffer between the PDU and the major CT 

load, such as, the x-ray generator and gantry motor.  This calls for a 100kw peak and 

20kW average source power supply. Unfortunately, such a solution not only adds 

equipment to the already crowded scan room, but also lacks the economic merits for 

consideration. This paper presents an innovative and integrated solution that addresses 

the new requirements for the next generation of CT PDUs, while being cost-effective.  
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1.2 Thesis Goal and Objectives  

The goal of this research is to design medical grade power distribution unit that 

has regulated high peak power DC voltage capable of handling step loads with the 

following specifications: 

Table 1-1 lists show the new requirement for the next generation CT Power 

Distribution Unit. 

TABLE 1-1: THE NEW CT PDU SPECIFICATION 

Item Rating Unit 

Input Voltage 480 +/- 30% VAC 

Output Voltage 700 +/- 5% VDC 

Peak Power 150 kW 

Average Power 20 kW 

Leakage Current <5 mA 

Efficiency >90 % 

 

To meet the aforementioned requirement, this research will investigate the use of 

resonance converter topology with integrated isolation transformer.  This paper will 

discuss most of the critical point that are necessary to put the resonance converter 

topology concept into practice. 

Chapter 2 will provide an overview of a couple of resonance convert topologies, 

and analysis their mode of operation.   

Following the overview of resonance converter, Chapter 3 will discuss the 

specific resonance converter that was selected for this project.  In addition, it will discuss 

the operational principle and mathematical overview of the selected topology. 
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Chapter 4 will briefly cover the isolation transformer that is used on this project, 

which is a key contributor to the overall cost and size advantages of the proposed 

HFPDU. 

In chapter 5, the discussion will focus on the selected control architecture, 

followed by analysis of the robustness of the control and performance.  

In what seems to be the most important measurement parameter, when thinking 

about part selection and the implementation phase, chapter 6 will be fully dedicated 

toward thermal analysis and simulation of the proposed topology. 

Chapter 7 will address the additional scrutiny that medical grade devices face, and 

what makes the propose topology particularly risky and its means of mitigation.  

Chapter 8 presents a prototype of the proposed topology and discussed 

experimental results. In this chapter, the results have been evaluated to make sure that the 

above specifications have been met.  

Finally, chapter 9 summarized the work performed for the thesis and the proposed 

solution before concluding with a recommendation that address the stated problems.     
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CHAPTER II 

2. RESONANT POWER CONVERTERS 

One of the drawbacks of most switch-mode converters is related to stress on the 

switching devices. The reason being, these power switches may have to turn on or off at 

the full power. This issue is even more problematic with the increase in power and 

switching frequency.  This leads way to a topology that allows for zero-current or zero-

volt switching by removing the energy from the switch to some form of LC resonance 

during the switch transition, known as resonance converts.  

Resonant converters are defined as the combination of converter topologies and 

switching strategies that result in zero-voltage and/or zero-current switching [11]. One 

way of classifying resonance converter is based on the arrangement of the resonant 

circuitry to what is known as Series-Loaded resonant converters (SLR) and Parallel-

Loaded resonant converters (PLR). The SLR and PLR topologies are limited to bridge-

type converters that use an LC resonant tank to create conditions for lossless turn-on or 

turn-off of the semiconductor switches (13) 

 2.1 Series Resonant Converter 

A series resonance converter gets its name from the series arrangement of the 

resonant inductor and capacitor. Figure 2-1, below, shows the main structure of a series 
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resonant DC-DC converter.  One of the benefit of this topology is the presence of the 

resonant capacitor (��) on the primary side of the transformer that can block any DC 

component.  This is particularly beneficial to help keep the transformer from saturating 

and/or being a safety concern in the event the switching device fails short.  By the same 

token, one might consider the presence of capacitor in series a disadvantage due to the 

high current requirement on the resonant capacitor. An SLR operates in a current source 

mode, where a transformer might be needed if the desire output voltage has higher 

magnitude than the input. 

 

 

Figure 2-1: Series Resonant DC-DC converter Schematic 

Assuming very large output filter capacitor (C�), one can expect a ripple free DC 

voltage on the output.  Considering transformer ratio of 1:1, the reflected voltage on the 

primary side of the transformer becomes (V�) when inductor current is positive and it will 

become (−V�) when inductor current is negative. Based on these assumptions, a 

simplified equivalent circuit of the above full-bridge series resonance converter can be 

represented as shown below in Figure 2-2. 



9 

 

 

Figure 2-2: Series Resonant Converter Equivalent Circuit 

The main characteristic of Full-bridge topology is the utilization of full input 

voltage.  In a typical frequency based controller when		
 is positive, it flows though �� 

and �	if they are both on; otherwise, �� and �� will be conducting. During the negative 

cycle, where 	
 is negative, the current flows though �� and �� if they are both on; 

otherwise, �� and � will be conducting. Moreover when evaluating the waveform of the 

mentioned topology, there are three possible mode of operation that are specific to the 

ratio of the switching frequency with respect to the resonance frequency of the system. 

The derivation of the output waveform for basic undamped series-resonance can be found 

in the Appendix A.1.  Equation A-5 shows the relationship between the resonance tank 

and its resonance frequency. 

�� = 2��� = �
�
���     (2.1) 

2.1.2 Discontinuous Model 

Discontinuous mode operation is when	�� < �
���. The name refers to the 

discontinuity of the inductance current, which is also known as DCM mode.  The DCM 
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mode benefit from lower switching frequency, and better control over no-load condition, 

by adjusting the off period. Another advantage of DCM is the natural commutation of all 

switching devices resulting in Zero-Current Switching (ZCS). This will have significant 

improvement in reducing stress on switching devices. 

 

 

Figure 2-3: Discontinuous-conduction mode of operation for SLR [11] 

2.1.2 Sub-Resonance Continuous Model 

Sub-Resonance Continuous mode refers to the operation mode when the 

switching frequency is more than half of the resonance frequency, and less than the 

resonant frequency, i.e. when		��ω� < ω� < ω�. During this mode of operation, the 

transition to the opposite pair of switching devices happen at a finite current resulting in a 

�� �
 

�� ! 
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continuous inductance of AC current, as well as, turns on loss and diode recovery. 

However; the turn off happen naturally at Zero-current resulting in ZCS. This 

phenomenal is also shown in the DCM where the voltage lags current due to the more 

capacitive nature of the operation. The CCM allow for higher power conversion than the 

DCM mode. 

 

Figure 2-4: Sub-Resonance CCM operation for SLR [11] 

2.1.2 Super-Resonance Continuous Model 

Super-Resonance continuous current mode refers to the operation mode when the 

switching frequency is more than the resonance frequency, where	ω� < ω�. Super-

resonance mode is more inductive, and unlike the sub-resonance CCM or DCM, the 

current lags voltage, which result in no turn on loss due to ZCS. Another advantage of 

operating in this mode is the absence of diode recovery.  This can be seen from the 

waveform below where the diode turn’s off at zero-current.  However; the switching still 

�� �
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�� #
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�� 
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have to turn on at current and voltage, and for that reason several techniques have been 

developed to minimize turn off loss. 

 

Figure 2-5: Super-Resonance CCM of operation for SLR [11] 

2.2 Parallel-Loaded Resonant Converter 

Parallel-Loaded Resonant Converter (PLR) is similar to the SLR in terms of 

operation, which employs a series-resonant LC tank circuit, except that the resonance 

capacitor (	��) appears in parallel with the load [11].  As a result, the PLR converter 

operates as a voltage source, and would require a filter inductor (	12) on the output after 

the diode bridges. One of the advantages of this topology is that, unlike SLR topology, 

PLR is able to step up or down the output voltage without the use of transformers. In 

addition, voltage source operation is suitable when multiple output voltage is required. 

�� �
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One shortcoming of the PLR topology, in comparison to SLR, is the lack of short circuit 

protection due to the resonant capacitor location.     

 

Figure 2-6: Parallel-Loaded resonant DC-DC converter [11] 

Assuming a large output capacitor and inductor ripple free output DC current, 

(	3�) can be considered to develop an equivalent circuit. Similar to the SLR topology 

(mentioned above) the transformer is considered to be an ideal transformer with 1:1 turn 

ratio. Figure 2-7 (below) shows the equivalent circuit based on these assumptions.  

Unlink SLR, where the load is in series with the resonance tank, the PLR equivalent 

circuit shows parallel loaded capacitor.  

 

Figure 2-7: Series resonant converter with Parallel-Load equivalent circuit 
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Similar to the previous section, the relationship of the three modes of operation and the 

switching frequency will be discussed further. 

2.1.2 Discontinuous Model 

Similar to SLR discontinuous mode, PLR DCM has operating frequency of	�� <
�
���. One of the characteristics that are specific to the PLR DCM mode is that, unlike 

SLR DCM where only the current goes to discontinuous mode, both current and voltage 

briefly goes to discontinuous mode. This characteristic not only creates initial conditions 

that are consistence at every half-cycle, but also results in on turn on or off loss in either 

the switching device or diodes. Using an equation from Appendix A.2, the waveforms in 

Figure 2-8 demonstrates the state-state operation of the PLR DCM converter. 

 

Figure 2-8: PLD DC-DC converter in discontinuous mode 
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From Figure 2-8, one will notice a rather peculiar state when 	3� > 	
 during start-

up. Essentially, all output diode becomes forward bias creating what appears to be a short 

circuit on the resonant capacitor (	��) keeping it at zero voltage.  Similar to other DCM 

mode, no-load operating condition can be easily achieved by adjusting the state where 

both the current and voltage are at Zero. 

2.1.2 Sub-Resonance Continuous Model 

Sub-resonance PLR continuous conduction mode (CCM) refers to the operating 

frequency between the resonance and half of the resonance frequency i.e.		��ω� < ω� <
ω�. While operating at the same condition, the sub-resonance PLR CCM and SLR are 

similar, when it comes to their advantages and shortcomings.  Figure 2-9 demonstrates 

the steady-state waveform for this mode of operation.  It can be seen from the waveforms 

that the switch turned on at finite voltage and current, and diode turn off at finite voltage 

and current.  However, there is no turn off loss on the switch, which is consistent with 

more capacitive circuit where the voltage lags the current. 
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Figure 2-9: Sub-Resonance PLD DC-DC converter in CCM 

2.1.2 Super-Resonance Continuous Model 

Similar to what was previously stated for SLR, Super-Resonance continuous 

current mode refers to the mode operation where the switching frequency operates above 

resonance frequency or angular frequency, i.e.		ω� < ω�. Super-resonance CCM mode of 

this PLR converter operates a lot like the SLR converter under similar operating points. 

Hence, similar behavior such as being more inductive, where the current lag the voltage, 

can be seen.  This result in a no turn on loss on the switch, but the switch had to be turned 

off at finite voltage and current.  Similar technique regarding the use of snubber capacitor 

can be employed for turn off loss reduction. 
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Figure 2-10: Super-Resonance PLD DC-DC converter in continuous mode 

2.3 Thesis Research motivation 

The main objective of this research thesis is to produce feasible topology for CT 

High Frequency Power Distribution Unit (HFPDU).  There are several requirements for 

the new HFPDU, such as: (1) size reduction, (2) cost effective, (3) meet EMC 

requirement, (4) operate in wide load, and (5) low leakage current are just some to name 

a few. This research will identify the best topology that can meet all critical to quality 

specification for the HFPDU.  

Section 2.1 and 2.2 discussed the operational principle of SLR and PLR 

converters.  Also, the sections highlighted the advantages and shortcomings of this 

topology, as well as, presenting the different operating points.  This leads us to a topology 
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that may offer the best of both worlds; by integrating SLR and PLR to form an LLC 

based series-parallel converter operating in super-resonance CCM mode.  

 

Figure 2-11: LLC Resonance Converter 

LLC resonant is the most attractive option as switch’s and rectifier diodes 

operates in ZVS. ZCS operating conditions are guaranteed over the entire operation 

range, dramatically reducing switching losses while improving EMI performance [5]. In 

addition, higher frequency operation allows for size advantage on the high frequency 

isolation transformer. The selected resonance topology will be further investigated for its 

merit and use in the CT HFPDU architecture.   
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CHAPTER III 

3. LLC RESONANT CONVERTER FOR HFPDU 

LLC resonant converters that are operated above the resonant frequency shows 

many advantages including, but not limited to inherent short-circuit protection, zero-

voltage commutations, limited harmonics in the resonant current, maximum power 

transfer at minimum switching frequency, transformer leakage inductance included in the 

resonant link. [9] As a result, this thesis selects a series-parallel loaded resonance 

converter to implement for the CT High Frequency PDU. The proposed topology is 

expected to operate at a range of 100W of preload to 150kW of load.  Moreover, the 

input voltage for the converter could vary by +/-30%. This presents a challenge to the 

topology because it requires have enough gains to operate across the full power range 

down to low or no-load condition. This will be further evaluated through the use of a 

phase-shift switching methodology.   

Figure 3-1 shows the high level topology on the CT HFPDU, which takes in 

three-phase	4809:�.  It includes AC line filters, three-phase full-bridge rectifier, and 

soft-start circuitry that create DC bus voltage for the H-bridge. For the sake of simplicity, 

the analysis begins with a DC voltage source and does not consider the effects from the 

input diode rectification. In contrast, the transformer used in the HFPDU will be further 

expanded to show the full characteristic since it is an integral part of the resonance 

circuitry.  
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A prototype was also developed, and results of the experiments performed are 

included in this paper. In building the prototype, PowerEx CM600DU-24NFH IGBTs 

was selected. This IGBT is capable of switching at up to 70 kHz during Soft-switching or 

at 30 kHz if the IGBTs are expected to operate in hard-switching mode. As previously 

mentioned, one of the shortcomings of the topology is the high current rating requirement 

on the resonant capacitor. And for that reason, a 4 uF AVX capacitor with 600 A rms 

current rating was selected. The output stage consists of high frequency rated capacitor 

together with few bulk capacitors, and a fast acting diode-bridge.  Further discussion on 

the prototype and experimental will be presented at a later section in the paper.  

 

Figure 3-1: Topology of the proposed CT High Frequency Power Distribution Unit. 

3.1  Equivalent Model Analysis  

 The resonant network results in the filtering of the square wave voltage output 

from the full-bridge converter, which results in sinusoidal current on the primary side of 

the transformer. From practicality stance, the LLC converter can be said to operate at or 

close to the series resonance frequency, and all higher order harmonic can be ignored for 



21 

 

calculating the transfer ratio.  These assumptions allow for the use of first harmonic 

approximation (FHA) method.   

The HF-PDU DC-DC converter section can be simplified into the circuit shown in 

Figure 3-2, where ;<� represent the output load and transformer turn ratio. Thus, the AC 

equivalent load resistance	;<� can be expressed as: 

;=> = ?@A
BA ;�      (3.1) 

 

Figure 3-2: Equivalent circuit for the HFPDU DC-DC selected topology. 

The input-output transfer ratio of the converter can be easily calculated from   

CD = E �
F||HIJ
�
�K(���)MNK�
F//HIJE     (3.2) 

Eq. (3.2), and can be transferred to frequency domain by the equivalence of P = Q� as [7] 

CD = R Q�1S||;TU
(Q�1S)||;TU+Q�1W+ 1

Q��W
R ≅ 91S

9	Z      (3.3) 

Where	Q = √−1 

Based on equation (3.3), a relationship can be established between the input and the 

output voltage using the gain of the system and any transformer turn ratio. 
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9� = CD\ �
@ \9]@     (3.4) 

In order to evaluate the DC gain characteristic of the LLC resonance converter under 

various load conditions, equation (3.3) is expressed in a normalized format for better 

readability. Starting from the operating frequency, the series resonance frequency 

(���)	can be used for normalization.   

�@ = 2̂ _
2�N      (3.5) 

Where��� = �
�B�
���, 

What is also true about LLC resonance converter is the presence of second resonance 

(���) frequency that is the result of the combined inductances. The definition of (���) is 

shown in equation (3.6), and the effect can be seen in figure 3-3. 

��� = �
�B`(
�abF)��

     (3.6) 

Furthermore, in order to combine two inductances into one, an inductance ratio can be 

defined as 

 1@ = 
F

�      (3.7) 

The quality factor of the series resonant circuit is defined as 

  �=> = �
�/��
Hcd      (3.8) 

Notice that	�@,	1@, and	�=>are no-unit variables. With the help of these definitions, the 

voltage gain function can then be normalized and expressed as: 
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  CD = e 
fg2fA
h(
fK�)g2fAi�jKkhl2fAi�mg2fgncdg
oje     (3.9) 

Using equations (3.4) and (3.9), the relationship between the input and the output voltage 

is: 

 9� = CD(�@ , 1@ , �<�)\ �
@ \9]@	                                                     (3.10)  

 The equivalent circuitry of the topology shown in Figure 3-2 and equation (3.9) 

form the basis for the design method and operating mechanism. In order to understand 

the design behavior, a plot of the voltage gain across the switching frequency at a 

different quality factors	(�<�) is indispensable.  

 

Figure 3-3: Voltage gain vs. normalized frequency for different Q factor. 

In figure 3-3, the circuit response depends on the load consumption, which is 

represented in terms of quality factor	(�). The figure goes from 100 w or a no-load 

condition to 150kW of output load. As expected in LLC configuration, there are two 
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resonance frequencies. The first frequency (	���) is the effect of the series resonance, and 

the result is a voltage gain of	CD = 1, which in essence implies a short circuit.  On the 

other hand, the second resonant (���) is the combined effect of the two inductances 

together with the resonant capacitor. In the above figure (1@), which is the ratio of the 

magnetizing inductance and resonance inductance represented in equation (3.7), stayed 

fixed. With constant 1� and ��, a decrease in 1q would increase the reactive current in 

the switching devices that results in increased losses, while improving the gain margin in 

region 1 of Figure 3-3, as well as, moving the second resonance frequency (���) more to 

the left. 

 Figure 3-3 shows three different operating regions across the frequency spectrum. 

The super-resonance region, which is labeled as region 1, operates at zero-voltage 

switching (ZVS) conditions.  In this mode, the magnetizing inductance has minimum 

effect in terms of acting as a resonant. In fact, for the purposes of this research, the 

intended use of the magnetizing inductance is to maintain ZVS in phase-shift switching. 

The area between ���and	���, or Region 2, on the other hand shows significant effect as a 

result of changes in output load.  This means that ZVS or ZCS operating condition would 

be dependent on the output load. Finally, in region 3, the converter goes to fully 

discontinuous conduction mode resulting in a ZCS mode of operation.   

In any case, the focus for this research is operation at super-resonance and, 

looking at Figure 3-3, it can be seen that at light load the resonance circuit would need to 

switch above 100 kHz to maintain gain margin.  In addition, the input voltage is allowed 

to vary by +/-30%. In order to maintain regulation and avoid going to frequency that 

exceed the device rating, a phase-shift modulation techniques have been proposed. This 
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technique adds phase-shifting competent to the frequency modulation that was initially 

proposed resulting in better no-load control. 

3.2  Operation Principle 

Phase-shift and frequency control full-bridge converter operates by turning off 

one set of the H-bridge leg earlier than the other sets of leg. Essentially, the leading and 

lagging leg firing signals are shifted. As a result, the excitation square wave can be 

modulated with three levels	(9], −9], TZr	0). By controlling the shifting angle, the 

amount of energy sent to the resonant tank is controlled, which reduces the inverter 

frequency range significantly [14]. This type of operation creates discontinuity in the 

current every half period, which results in a DCM type of operation at super-resonance 

frequency. This is a key feature that helps mitigate the shortcoming of maintaining 

enough gain in a super-resonance to control no-load or low-load condition. 

Figure 3-4 shows the theoretical waveform of a full-bridge LLC resonance 

converter operating in phase-shift control.  The operating frequency of the converter is 

evaluated at super-resonance i.e.	��s > ���. In order to maintain soft switching across the 

different loads, the converter also adjusts the frequency simultaneously with the change 

in phase angle. As a result the change in both phase and frequency there would be point 

of load that would have fewer operating mode than the 8 modes showing in Figure 17. 

The waveform in Figure 3-4 (a) shows the output voltage from the inverter switching 

devices	(9]@t), magnetizing voltage	(9q), and resonant capacitor voltage	(9>�).  While 
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Figure 3-4 (b) shows the current in the resonant inductor	(	u�), magnetizing current	(	q), 
and output current through the diodes	(	v). 

   

(a)                                                         (b) 

Figure 3-4: Theoretical waveform for phase-shift Operation. 

Mode 1: This mode start with �� and �� turning on. On this mode of operation, 		
�		and 

	v begins to increase and causes the output voltage to reflect back to the primary side of 

the transformer.  The presence of the output voltage on the magnetizing inductor	(1q), 
leads to a linear buildup of energy limiting its resonance operation during this period [7]. 

The equation for both 	
�		and w>�		is 

	
�(x) = 	
�(x�) cosl���(x − x�)m + (9v> − �
@9| − w>�(x�))`��


� sin	(���(x − x�))  (3.11)  

w>�(x) = 9v> − ��
@ + �9v> − ��

@ + w>�(x�)� cosl���(x − x�)m + 	
�(x�)`
�
�� sin	(���(x − x�)) (3.12)  

Where	�q = 1 �1q��� , and ��� = 1 �1����   

Mode 2: This mode is known as Freewheel state where ��turns off and the resonant 

current (i��) is forced to go though	D� and	Q�. This sets the inverter full-bridge output 

voltage	(V���) to become zero, providing a mode of operation that limits the output power 
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during low-load. However; the voltage at the magnetizing inductor remains	V� =	− t�
@ , 

which would allow the output diode to be forward biased.  

	
�(x) = 	
�(x�) cosl���(x − x�)m + (�@ 9| − 9v>)`��

� sin	(���(x − x�))  (3.13)  

w>�(x) = −9v> + ��
@ + �9v> − ��

@� cosl���(x − x�)m + 	
�(x�)`
�
�� sin	(���(x − x�))  (3.14)  

Mode 2 operation ends when the resonant current (i��) becomes equal to the current 

through the magnetizing inductor (i�), and	(i� = 0) implying that the output diodes are 

turned off.  

Mode 3: During this mode, the output will be separated from the transformer leaving the 

magnetizing inductor to take part in the resonant circuitry creating an LLC resonant tank 

[7]. 

	
�(x) = 	q(x)= 	
�(x�)cosl���(x − x�)m − 9>�(x�)` ��

�K
F sin	(���(x − x�))  (3.15)  

w>�(x) = w>�(x�) cosl���(x − x�)m + 	
�(x�)`
�abF�� sin	(���(x − x�))  (3.16)  

Where ��� = 1 �(1q + 1�)���  

Mode 4: This mode consist of brief period known as “dead time” were all the switching 

device are in off state to guarantee safe operation when opposite pair of switching are 

ready to turn on. 

Mode 5, 6, 7 & 8: Basically repeat the same principle that was discussed from Mode 1 to 

Mode 4 only this time the focus would be on �� and �. 
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(Mode 1)                                                               (Mode 2) 

  

(Mode 3)                                                                (Mode 4) 

    

(Mode 5)                                                                  (Mode 6) 

 

(Mode 7)                                                                    (Mode 8) 

      

Figure 3-5: Phase-shift operating modes of LLC resonant converter. 
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3.2  Soft-Switching Techniques 

Soft-switching refers to the technique used to minimize the loss or stress on 

switching devices during turn on or off transition. For instance, when a switch goes from 

blocking the full voltage to conducting the load current, there will be a finite amount of 

time where the switch is forced to conduct current at voltage leading to significant loss.  

Typically, an effective means of mitigation, in a resonant converter, is to remove the 

energy from the switches to the resonant circuit for a brief period; allowing enough time 

to let the transition to occur either during zero voltage or zero current switching. For this 

research, both ZCS and ZVS technique have been employed using what is known as 

asymmetric snubber circuits. 

As previously discussed, operating the full-bridge converter at super-resonance 

benefit from natural commutation that results in no turn-on losses on the switching 

devices.  This puts the focus on the turn off transition of these IGBTs. To help analyze 

the asymmetric snubber soft-switching technique, the full-bridge converter will be split 

into leading and lagging leg. In this case, the leading leg consists of one snubber 

capacitor between the output of the leading legs and either side of the DC bus.  The use 

of one snubber capacitor for two switches in the leading leg was made possible through 

the use of superposition theorem, which replaces the DC voltage source with a short 

circuit for analysis.  The result shows the true operation of the circuit that placed the 

snubber capacitor across both switches on the leading leg. The selection of this snubber 

capacitor is rather an art that involves the switching frequency, the size of the 

magnetizing inductance, and the output load. 
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The method first involve in specifying the maximum operating frequency, and the 

selected magnetizing inductance. On this case, the calculation would be to find the 

maximum possible capacitance that can be used at which the time constant for the 

capacitor discharge is less than the minimum half period at no load. This help limit from 

having the capacitor being short circuited during turn on.  

��@�����_q=g = �

F(�B2)A	    (3.17) 

 

Figure 3-6: Asymmetric snubber soft switching technique. 

The result is ZVS on the leading leg, as the snubber capacitor maintain the bus voltage 

during the turn off transition keeping the potential difference on the switch to zero. 

However; the lagging leg benefits from the control varying frequency, which times the 

turn off transition to be at ZCS across the full load range.   
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CHAPTER IV 

4. ISOLATION TRANSFOMER   

One of the main requirements for the CT PDU is to provide galvanic isolation, 

which is accomplished through the use of an isolation transformer. In fact, the primary 

function of the current generation PDU is to provide isolation with the use of a bulky 

60Hz transformer. Some of the reasons for using a transformer in CT PDU are: 

• Achieve voltage step up/down through the use of tabs in order to provide the 

required voltage to the system. 

• Provides locally grounded neutral line, which greatly enhances the reliability of 

sensitive electronics by limiting the potential difference between the neutral and 

ground. 

• Limits ground loop current due to poor infrastructure or multiple power sources. 

• Reject stray common mode, DC voltage, and electromagnetic interference from 

being conducted though the power line. 

In general, medical grade isolation transformer falls in strict safety rules. Some of these 

rules cover the construction process as well as, materials used for insulation, which has 

direct implication in meeting low leakage current and high isolation voltage requirement. 

 Figure 4-1 (below) shows the current generation CT PDU transformer.  The figure 

shows that the input or primary is connected in “delta” configuration, while the secondary 
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side consists of two “wye” configurations, each with three phase power and a center or 

neutral point.  

 

Figure 4-1: Current Generation CT PDU Isolation Transformer. 

That being said, the bulky 60Hz transformer, which is currently in operation, was able to 

meet all performance expectations. However, this transformer not only takes up large 

footprints, but also uses large amounts of copper and iron with increasing cost trajectory. 

Therefore, the use of high frequency transformer, which is an integral part of the 

resonance converter, can significantly reduce the overall size and cost of the transformer.  

4.1 High Frequency Transformer 

As previously mentioned, the transformer used in the resonance converter is a 

component that holds key parameters, which dictate the characteristic of the converter. 

The inclusion of certain parasitic component in the transformer as part of the converter’s 
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design has helped to reduce the part count and, ultimately, save on cost.  This is 

highlighted through the use of the transformer leakage inductance to serve as the resonant 

inductor, while the magnetizing inductance becomes the parallel inductance in the LLC 

converter.  In further clarification, this section will discuss the design methodology and 

go over some of the basics for the proper selection of this transformer.  

Figure 4-2 (below) shows the major magnetic components that make up the high 

frequency transformer used in this research.  Few items that are not shown in the figure 

below are: 

• Series resistance due to the wire used to construct the transformer 

winding.  This is an important factor when calculating the winding loss, 

and will have to be considered when determining the wire length and size 

used in the winding. 

• The secondary leakage inductance is not shown in order to simplify the 

analysis. This was done because the converter only sees the primary side, 

and the leakage inductance on the secondary has minimal effect on the 

converter operating point.  

• Parasitic capacitance between windings, as well as, between winding and 

ground.  In general, this type of parasitic capacitance has minimum effect 

on the performance of resonance converter, but might provide common 

mode noise path to ground creating EMI concern. 
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Figure 4-2: High frequency transformer equivalent magnetic component. 

Unlike low frequency transformers that use steel lamination as it core material, a 

high frequency transformer uses ferrites material.  This is due to the high eddy current 

losses due to the steel laminated core. However, for all its advantages in efficiency and 

size, ferrites come with lower saturation limits that cannot be surpassed at any point.  

Table 4-1 (below) shows some of the operating points that are used to design the high 

frequency transformer. 

TABLE 4-1: HF TRANSFORMER OPERATING POINT 

Item Rating Unit 

Minimum Input Voltage 380 VAC 

Output Voltage 700 +/- 5% VDC 

Max Current 500 A 

Minimum Frequency 35 kHz 

Nominal Input Voltage 500 VAC 

Leakage Inductance  7 uH 

Magnetizing Inductance 200-300 uH 
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4.1.1 High Frequency Transformer Design 

Using equation of an ideal transformer, we can calculate the turn ratio (Z) that 

can support an output of 700V from minimum voltage of 380V. 

Z = ��
�� = ��

�̂      (4.1) 

Therefore,   

Z = 380
700 = 0.54 

The next important rating in designing high frequency transformer is determining the 

operating voltage, which is different from the input and output voltage due to the 

presence of leakage inductance. The especial consideration for this result is because this 

voltage determines the core size, core material, and number of turns of the transformer. 

Using value from Table 4-1, the voltage on the leakage inductance can be calculated 

using equation 4.2. 

9
 = 2��1�	�     (4.2) 

The maximum voltage in the leakage inductance occurs during maximum power, which 

is when the resonance converter operates at its lowest frequency. The result is: 

	9
 = 2� ∗ 35��� ∗ 7�� ∗ 500: = 7709	 
Assuming nominal input voltage of 500V through the transformer, the magnetizing 

inductance 9q can also be assumed to be at this voltage.  Therefore, the transformer 

operating voltage	(9 ) will become the sum of the leakage and magnetizing inductance 

voltage.  



36 

 

9  = 9q + 9
 = 5009 + 7709 = 12709 

 

The next step is the selection of core material and core shape. This is an iterative process 

designed to make the best trade-off between the core losses vs., what is typically known 

as copper loss. Ferrites core comes in different shapes and characteristic. For this 

research, “U” shaped ferrites from Ferroxcube have been selected. These ferrites will be 

configured in a “UU” shape, where a set of core would have an effective area	(:� =
0.00084S�). In addition, a ferrite material of “3C94”, which comes with specific core 

loss characteristic and maximum flux density, has been selected. Based on a review of the 

datasheet on the maximum flux density, which is	¡q=g = 0.2	¢, for this design a 30% 

margin was chosen as the new maximum flux density. (Below) 

 

Figure 4-3: Ferroxcube’s U93/76/30 core dimension in mm. 

With that in mind, given the size of each core and the intent to minimizing the number of 

turns, 5 set of core were selected to build the high frequency transformer in a “UU” 

configuration. This will increase the effective area of the transformer in five fold.  Using 
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equation 4.3, we can calculate the maximum flux density	(¡q=g) for a given number of 

turn on the primary. Another approach is to set a	¡q=g, and calculate for minimum 

number of turns.  An integer number of turns with a practical value for building the 

transformer were picked. As a result the flux density would have to be lower than the set 

maximum flux density at maximum power. For that reason, £¤ = 14 was selected to give 

magnetic flux density of 0.14T using equation 4.3. 

¡q=g = √�∗�¥
¦∗�§∗<¨    (4.3) 

Where 

¡q=g = √2 ∗ 1270
2� ∗ 35��� ∗ 14 ∗ (5 ∗ 0.00084S�) = 0.138¢ 

Based on the turn ratio that was set above, where	Z = 0.57, the number of turns for the 

secondary side of the transformer will be: 

£� = �§
@ = �

|.�=25.9 

Thus, setting the number turns to the nearest integer, £� = 26 turns. 

From Figure 4-2, we can see the presence of magnetizing inductance.  This is set by 

adding air gap or non-magnetic spacer between the cores. The air gap causes a 

considerable decrease in the effective relative permeability. However, it produces a more 

stable effective permeability and reluctance, resulting in a more predictable and stable 

inductance [10]. The relationship between the air gap and the magnetizing inductance is 

shown in equation 4.4. 

1q = ª«<¨�§A
u¬      (4.4) 
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Where | = 4�\10i®£:i� and	l¯Dm,	is the air gap length, where its effective length 

would be twice the single air gap to account for both leg of the “U” shape ferrite. Using 

the values from Table 4-1, for maximum of 2mm air gap, where ̄D = 4SS, the 

magnetizing inductance will be; 

1q = 4�\10i® ∗ (5 ∗ 0.00084S�) ∗ (14�)
0.004S = 258.6�� 

Finally, an important consideration during the designing phase of the high frequency 

transformer is losses. There are two types of losses that have significant effect on 

performance. These are core loss and copper loss.  Information regarding core loss can be 

found in the manufacture’s datasheet as a function of peak flux density with frequency as 

a parameter.  Therefore, the core loss of the selected core material can be calculated as 

follows. 

°> = 20�±
S� \9� = 20�±/S� ∗ 0.00158S� 

°> = 31.6± 

Similarly, the copper losses, as it is commonly known, would be the loss on the wire, 

which may or may not be made out of copper. Based on the number of turns, and number 

of core used to construct the transformer, it is easy to calculate the total length of wire 

used.  Once the length and the size of wire have been determined, a nominal RMS current 

can be used to calculate the losses on the wire. In order to determine the appropriate size 

of wire to be used in a high frequency transformer, the “skin effect” needs to be kept to a 

minimum. This is due to the tendency of an AC current to flow on the wire’s surface, 
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with the increase in frequency creates current crowding. Therefore, in order to fully 

utilize the wire, the skin depth	(²) needs to be calculated. 

² = |.|³³�
�2 	[S]   [1]   (4.5) 

Where (²) is defined as the distance below the surface, and the current density has fallen 

to 37 percent of its value at the surface [10]. Therefore, using equation 4.5, the skin depth 

for our maximum operating frequency,� = 60��� would be: 

² = 0.0662
√60��� = 2.7¶i	[S] 

Therefore, a radius of equals to	² = 2.7¶iS would approximate the wire size of 30 

AWG. Based on industry recommendation and additional consideration for design 

margin, 38 AWG size of wire was selected. Next step would be to determine the number 

of strands of 38 AWG wire needed to have in order to carry the full current without an 

excessive copper loss. With the intention of keeping the copper loss to no more than 3x 

of the core loss, or <100w of loss, a 4 AWG equivalent litz wire is assembled using 

approximately 2,625 number of strands. From the manufacturing datasheet, a 4 AWG 

equivalent litz using 38 AWG strands of wire have dc resistance of	; = 0.928Ω/1000m. 

The approximate required length of wire needed on the primary side of the transformer, 

based on the number of turn and core used is ~4.9m. 

Therefore, the copper loss on the wire is: 

°s = �0.928Ω1000m� 4.9m ∗ (150�) = 102	º 



40 

 

However, for ease of manufacturing the transformer and a tighter control over the leakage 

inductance, two 8 AWG litz wire in parallel have been selected to replace the 4 AWG litz 

wire of the primary side of the transformer. With almost double the number of turns on 

the secondary, use of one 8 AWG litz wire could result in a similar performance as the 

primary side.    

4.2 Transformer Simulation Analysis  

Following the different design iterations, and calculations of section 4.1.1, the 

final specification of the high frequency transformer has been developed.   

TABLE 4-2: HF TRANSFORMER SPECIFICATION 

Item Rating Unit 

Primary Turns 14 Turns 

Secondary Turns 26 Turns 

Primary winding 2x8 AWG 

Secondary winding 1x8 AWG 

Gap 2 Mm 

Leakage Inductance  7 uH 

Magnetizing Inductance 200-300 uH 

 

Using the specifications in Table 4-2, a model of the high frequency transformer 

was developed using Ansoft® software tool.  A 2mm spacer material was also been 

added to develop the expected leakage inductance result.   
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Figure 4-4: Ansoft high frequency transformer model using “UU” shape ferrites. 

Simulation of the model was also done using PExpert® software, in order to compare the 

result with the expected value. Figure 4-5, shows a simulation of the magnetic flux 

density, which showed	¡q=g = 0.1371	¢. Similar result was found during calculation of 

	¡q=g	using equation 4.3 above.  

           

Figure 4-5: Magnetic field density model in high frequency transformer. 
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CHAPTER V 

5. CONTROL ARCHITECTURE   

One of the main requirements that initiated this research is the need for a regulated output 

voltage. Therefore, regardless of the topology or operating mode chosen, the high frequency 

power distribution unit needs to guarantee a regulated output voltage.  This includes maintaining 

a specification of 700VDC +/-5% across the full output load range including 100 kW step load. 

TABLE 5-1: HIGH FREQUENCY PDU SPECIFICATION 

Item Rating Unit 

Input Voltage 600 +/-30% VDC 

Output Voltage (including transit) 700 +/- 5% VDC 

Average Output Power 15 kW 

Peak Output Power 150 kW 

Minimum Output Power 100 W 

5.1 HFPDU Control Scheme 

 The high frequency PDU controller is a classical voltage-current cascaded loop, 

where the error from the output voltage loop becomes a virtual current reference. The two 

loop concept shown in Figure 5-1 works by correcting the output voltage by way of 

adjusting the resonant current using proportional and integral (PI) controller. Since the 

current experiences less delay than the voltage, the two-loop approach tends to have 

better dynamics than voltage-mode control alone. [12] In addition, due to the extremely 

high step load requirement, output load current has been used to create a feed-forward 
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signal to improve HFPDU transient response.  Reason being, the additional output current 

information gives early update on the output load before the effect is shown in the 

voltage feedback.  

 

Figure 5-1: HFPDU control scheme using cascaded two-loop control. 

5.2 HFPDU Control Modeling  

Matlab/Simulink model was developed based on the above mentioned control 

scheme together with the LLC resonance converter that was discussed in Chapter III. 

Small output pre-load together with a switch controlled 135 kW resistive step load were 

used for simulation. 
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Figure 5-2: HFPDU Matlab/SIMULINK model of LLC topology and controller. 

Figure 5-2 (below) shows the start-up waveform of the HFPDU.  High gain is expected 

during start-up, due to the high voltage difference between the output and the input DC 

volt.  Therefore, in order to provide soft start function, a controlled ramp has been 

incorporated in the input command. As a result, a good controlled ramp to the output 

voltage is shown in the figure below, followed by a controlled resonant current and 

inverter PWM voltage, respectively.   

   

 Control Section 

 

Power 

Figure 5-3: HFPDU simulation results during start-up. 
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Another important performance specification is transient response of output 

voltage.  Figure 5-4 shows a converter starting from steady state running with an output 

load of 15 kW, and followed by additional 135 kW step load using only 2500 uF 

capacitor on the output. The waveform shows 2.1 % of its 700 VDC, and 2.2% over shoot 

when the 135kW load is finally removed, which is well within the expected specification 

of less than 5% regulation.  

 

Figure 5-4: HFPDU Transient Response to 135kW step load. 

5.3 Monte Carlo Analysis 

 On this section, Monte Carlo simulations were done to consider variation within 

components and disturbance to the resonance converter, while still guaranteeing 

performance. For this simulation, a Matlab script was develop to alter major component 

values and compute different combination of the adjusted disturbance. Finally, the results 

were aggregated to show the effect of the adjusted domain. 

~2.2% Rise ~-2.1% droop 
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TABLE 5-2: SPEC FOR INPUT DOMAIN WITH DEGREE OF FREEDOM 

Item Value Degree of Freedom Unit 

Input Voltage 600 +/-30% VDC 

Leakage Inductance 7 +/- 14% uH 

Resonant Capacitor 4 +/-10% uF 

Output Capacitor 10,000 -/+10% uF 

 

The items from Table 5-2 were set to vary within their degree of freedom, and a total 

of 81 different combinations of runs were performed. Figure 5-5 shows step load of 

135kW, while the converter were at a steady state with the output loaded at 15kW.  After 

completing the 81 runs, the maximum measured percentage droop values were 

aggregated, and 2.2% was determined as the maximum droop value. 

       

Figure 5-5: Monte Carlo Analysis of HF PDU Transient Response when 135 kW load 

were added, and droop measurement in percentage. 

Similarly, once the converter is at steady state with the output loaded at 150kW load, any 

sudden removal of the load will result in some transient response.  Using values from 
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Table 5-2, similar Monte Carlo result shows in Figure 5-6, the max rise on the output 

voltage was less than 2%. 

       

Figure 5-6: Monte Carlo Analysis of HF PDU Transient Response when 135kW load is 

removed and voltage rise measurement in percentage.
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CHAPTER VI 

6. THERMAL ANLYSIS    

Thermal analysis is a fundamental issue in power converter design, since it is 

instrumental in determining the most convenient switching power device. The associated 

heatsink and choice of cooling method are strictly related to the basic requirement for 

keeping the junction temperature below the maximum admissible value [6]. In this 

chapter, we will identify the converter’s source of losses, and discuss the simulation of 

the thermal performance for the selected heatsink. 

6.1 Loss Calculations 

There are primarily two sources of losses on the IGBT’s used for the resonance 

converter. They are classified as switching losses and conduction losses.  In setting up the 

experiment for thermal analysis of the converter, a single heatsink with a size of 150 mm 

x 380 mm was selected. The heatsink will be shared by two IGBT modules, with each 

consisting of 2 IGBTs, and two diode modules, which also consist of 2 diodes each. 

As previously discussed, the selected LLC resonance converter will not have any turn on 

loss due to super-resonance operation. However, there will be some turn off losses. The 

section on softstart operation shows techniques for reducing or eliminating these turn off 

loss. Manufacturer of IGBTs or similar devices provides an energy turn on and turn off 
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estimate loss for corresponding current. Figure 6-1 shows both the turn on and turn off 

losses for PowerEx CM600DU-24FH IGBTs. To determine specific »�s(�22) value, the 

resonant current will have to be determined through simulation of the model. Based on 

the difference in the operation of the leading and lagging sets of IGBTs, a separate 

analysis will be required.  

 

Figure 6-1: PowerEx CM600DU-24FH switching loss vs. collector current. 

We begin with the leading leg, which uses a snubber capacitor to reduce the switching 

losses.  In this case, in order to include the impact of the snubber capacitor, we apply a 

reduction factor	(K�½�¾¿À����), which is a function of the snubber capacitor, the 

commutation current, the commutation voltage and switching characteristics of the 

devices [2]. 

 °�s_u�=v = Á��v�>Â]�@�(�\»�22Ã¨IÄ)     (5.1) 

While the conduction loss, also called the saturation loss, of the IGBTs can be calculated 

using the saturation voltage (9�=Â) found in the manufacturing datasheet.  Due to the 

nature of phase shifting, the leading leg will natural have lower saturation loss as a result 
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of freewheeling state. The leading leg uses the diode in the module, which has much 

lower order of conduction loss, to circulate current. As a result, the current on the leading 

leg can be considered roughly half. Similarly, this can be expressed in a reduction factor 

(Á��v�>Â]�@�)  
°�=Â_u�=v = Á��v�>Â]�@�(9�=Â\3q�=@)     (5.2) 

As previously mentioned the total losses on the IGBT will be the sum of the conduction 

and switching loss. 

°ÅÆÇ _u�=v = °�=Â_u�=v + °�s_u�=v     (5.3) 

However, the loss in the IGBT module also includes the parallel diode, which is 

uncontrolled and consists of conduction losses only. The diode forward drop 

voltage	(9�È) is also found in the manufacturing datasheet. 

°>�@vÉ]�v� = (9�È\3q�=@)     (5.4) 

Where	°>�@vÉ]�v� = 	°u�=v_É]�v� 
 
Finally, the total loss of the IGBT module is the sum of the losses for two IGBTs and two 

freewheeling diodes. This provides the power loss value needed for heatsink thermal 

analysis. 

°u�=v]@D_ÅÆÇ _q�v�u� = °ÅÆÇ _u�=v + °u�=v_É]�v�   (5.5) 

Similarly, we conducted analyses of the lagging leg, where the IGBT module benefits 

from ZCS or near ZCS operation.  

Once losses from IGBTs and diode gets totaled, the thermal impedance would need to be 

analyzed to make sure junction temperature is still below the maximum allowable value. 
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Figure 6-2 shows a simple model of thermal interface from the junction temperature to 

ambient temperature. Where	(;ÂÊ(ki>)), which is in	 �/±			| , is the thermal resistance 

between the junction and the module case. The manufacturer of the IGBT and diode, 

inside the module, provides this value. Series connection of thermal resistance of the 

thermal interface material	(;ÂÊ(>iÊ)) and the thermal resistance of the 

heatsink	(;ÂÊ(Êi=)) can highlight the relationship between the ambient temperature and 

the virtual junction temperature.  

 

Figure 6-2: Simple model of the IGBT module thermal interface. 

An excel file was developed based on the above equations at different operation 

points. Also included in the equation is the expected duty cycle from CT machine 

operation, which results in the heatsink temperature shown in Table 6-1. 

TABLE 6-1: CALCULATED LOSS AND EXPECTED JUNCTION TEMPERATURE 

Power Frequency Peak 
Current 

Power 
leading 

Power 
Lagging 

Heatsink 
Temp 

Junction 
Temp 

15 kW 47 kHz 165 A 303.1 W 371.2   W 47.1|� 57.6|� 
75 kW 41 kHz 470 A 733.7 W 1303.5 W 67.6|� 66.0|� 
115 kW 39 kHz 600 A 995 W 1750    W 65.1|� 94.0|� 
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6.2 Heatsink Temperature Simulation 

 Using results from Table 6-1 above, a selected heatsink coupled with three fans 

each running at 150 CFM were thermally simulated. Figure 6-3 shows the steady state 

heatsink temperature with the converter running at 15 kW of load. 

 

Figure 6-3: Simulation result from 15 kW average power of HFPDU. 

Next, a thermal simulation of the heatsink was done for transient response. In this setup 

60 kW load was introduced for 60 seconds, once the heatsink have reached steady state 

temperature on 15 kW average. The maximum measured heatsink temperature is found to 

be	67|�. 

 

Figure 6-4: Simulation result from 15kW average plus 60kW for 1 minute. 
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Finally, 115 kW step load that has 5% duty cycle were simulated after the heatsink 

reached steady state running 15 kW average loads.  The maximum heatsink temperature 

is found to be	65|�, which puts the junction temperature below	100|� leaving 

over	25|� of margin from maximum allowable junction temperature. 

 

Figure 6-5: Simulation Result from 15kW Average plus 115kW for 2 seconds.
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CHAPTER VII 

7. ELECTROMAGNETIC COMPATIBILITY   

 

One of the main concerns of replacing 60Hz transformer by high frequency 

transformer is the introduction of switching devices on the primary side of the 

transformer.  These switching devices are the main enabler of this technology, yet are of 

potential concern for electromagnetic noise due to high	rt rÂË . The  discipline  of  EMC 

has often  been  accused  of  being  a  "black art"  wherein  measures  used to  reduce the 

effect  of  a  potential interference source are ineffectual [3].  This is typically due to lack 

of understanding on the source of noise, or the dominant effect to the overall conducted 

emission contributor. Figure 7-1, below shows the effect of differential-mode and 

common-mode current, and the frequency range where they are most dominant. This 

helps determine the potential source of noise, and means of mitigation. 

 

Figure 7-1: Illustration of the dominance of one conducted emission component over 

another in the contribution to the total emission [4]. 
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7.1 Filter Design 

To limit excess amount of conducted emission though the input power line, line 

filters possible on both the AC side and the rectified DC section, would be required. 

However; to make matter more challenging for this topology, medical grade power 

supply falls under strict leakage current requirements. This means that the filter design 

will be limited by the size of capacitance to ground it can use as part of the filter.   Figure 

7-2 (below) identify possible path of current to ground on the primary side of the 

transformer. 

 

Figure 7-2: Primary Side Earth leakage Current Path. 

The maximum allowed capacitor to ground on the AC side can be calculated using the 

line voltage, line frequency, and maximum earth leakage current.  

3>=¤ = �Ìf
Í = �Ìf

�B2>       (7.1) 

Where 3�q�_q=g = 1S:  per capacitor 

      ~ �ST\ =
�q<

�®®∗�B∗³|
= !%/Î 

 Similarly the maximum allowed capacitor to ground on the DC side can be calculated 

using equation 7.1. However, due to 6-pulse rectification, the ripple frequency will be 
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360Hz, while the ripple voltage would be around 70V.  Assuming 3�q�_q=g = 1.5S:  per 

capacitor for the DC side 

~�ST\ = 1.5S:
70 ∗ 2� ∗ 360 = Ð/Î	 

Therefore; this sets the precondition on any filter design to have a capacitor value no 

more than 10nF to ground on the primary side. Simulations were also conducted to check 

and see if the above calculation produces the expected leakage current. Figure 7-3 shows 

the current from each phase to ground = 1.5 mA, however the total current to ground 

becomes 0 mA.  This is due to the assumption in the simulation were all the 3 phase are 

balanced, and the result would be zero due to phase cancelation.  

 

Figure 7-3: Leakage current on 3 phase AC line due to line frequency. 

Followed by a simulation on the DC side, result in leakage current from line to ground 

=1.6mA 

 

Figure 7-4: Leakage Current measurement on DC bus line due to line frequency. 
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Based on the precondition for the filter design, and information regarding the dominant 

source of noise, LTSpice simulation of EMC filter was conducted for both common-

mode and differential mode noise. 

Common-mode noise is when current flow out on all phase conductors and return on 

ground mostly though parasitic capacitors. Figure 7-5 below shows common-mode noise 

source together with common-mode noise filter or chock. 

 

Figure 7-5: Common-mode noise simulation model using 10nF capacitor to ground. 

The result from the common-mode filter model shows good insertion loss above 1 MHz 

frequency, which is greater than -36dB.  Based figure 7-1 on the expected dominant noise 

contributor, the common-mode filter is expected to have significant contribution in 

reduce the overall EMI measurement in the frequency of interest for common-mode 

noise.  

 

Figure 7-6: Insertion loss from the proposed LTSpice model of common-mode filter. 
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A similar filter model was also developed in LTSpice for the differential-mode noise, 

which is when current flows out of  a phase conductor and returns on another phase. 

 

Figure 7-7: Differential-mode noise simulation model using 10nF capacitor to ground. 

The result from the differential-mode filter model also shows good insertion loss across 

the full frequency range (100 KHz – 30 MHz) for conducted emission. With the 

minimum insertion loss of -40dB, this simulated filter contributes in great deal in 

minimizing the overall EMI measurement.  

 

Figure 7-8: Insertion loss from the proposed LTSpice model of differential-mode filter. 

 7.2 Preliminary Conducted Emission Test 

Conducted EMI from switching devices can be narrowband and broadband. The 

latter is caused by diode recovery, re-conducted radiated emissions and other, mostly 

parasitic phenomena, which are difficult, even impossible to predict theoretically. The 
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way to minimize the broadband noise is to follow good design practices, i.e. proper 

layout, grounding, switching etc. If these are followed, the broadband emissions are 

unlikely to exceed the standard limits [8]. For this thesis, a prototype was put together to 

get a preliminary result of conducted emission noise with a caveat that the result is very 

dependent on the specific packaging of prototype.  This requires an understanding of the 

types of noise being produced, and the noise path as a result of parasitic of the package 

that need to be well understood. 

A preliminary measurement of conducted EMI was done using line impedance 

stabilization network (LISN) in accordance to Comité International Spécial des 

Perturbations Radioélectriques (CISPR 11) specification. The above simulated line filter 

has been put to the test, and have shown promising resulting related to conducted 

emission of high frequency PDU architecture.  

 

Figure 7-9: Preliminary quasi peak conducted emission measurement result of proposed 

topology shows -11dB margin from quasi peak limit. 
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CHAPTER VIII 

8. EXPERIMENTAL RESULT   

To show the validity of the design procedure presented in this thesis, the proposed 

LLC resonant converter topology have been built and tested. This chapter presents the 

first HFPDU prototype, and test result of the prototype to demonstrate conformance of 

the design to the requirements and expected results from simulation.  Figure 8-1 shows 

the overall package of the first HFPDU prototype with a shown significant reduction in 

size, with height less than 200 mm. 

What was not discussed on this thesis report, but is of an important part 

contributor to the overall performance, is the design and implementation of control board. 

The first prototype uses an FPGA based control board that is not only used for 

monitoring but also control the resonance converter. In addition an isolated gate driver 

has been used to drive the gate signals from FPGA’s TTL signals. 

 

Figure 8-1: First HFPDU prototype built according to the proposed topology. 
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8.1 Measurement Setup 

A picture of the major components on the first HFPDU prototype is shown in 

figure 8-2.  It is mainly composed of FPGA control board, gate driver board, isolation 

transformer, 3-phase full bridge rectifier, full H-bridge configuration, output full bridge 

diodes, and fuses. This is consistent with the detail schematic shown in chapter III of this 

thesis report.  

 

Figure 8-2: Overview of the main component of the first HFPDU prototype.  

Before applying any power from the prototype, proper safety precaution must be taken 

due to the presence of lethal voltage. In order to collect both voltage and current 

measurement a Tektronic TDS5000 digital oscilloscope together with high voltage prop 
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were used. For the experiment result, PWM output voltage, resonant current, and output 

regulated voltage are presented. 

8.2 Converter waveforms 

Because of the difference in voltage between the input, and the output voltage at 

the beginning, the converter will see very high gain.  As a result, given the same control 

law, the expectation is a very high inrush current during startup.  Therefore; for this 

research a controlled ramp command were introduced to bring up the voltage in a 

controlled manner. Figure 8-3 and 8-4 show the measured result where starting from the 

top to bottom, a controlled output voltage ramp, PWM output voltage, and resonant 

current respectively. The initial start up waveform shows the output PWM being at 

maximume freqeuency, and minimume pulse width.  As a result the output resonant 

current is very close to zero, thus limiting the output power. 

   

Figure 8-3: HFPDU initial pulse waveform during startup. 
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Figure 8-4 shows HFPDU during start up at 3 kW output laod. The output voltage have 

followed the command ramp by limiting the resoanant current in accordance to the output 

load. 

 

Figure 8-4: HFPDU startup waveform with a controlled ramp on the voltage. 

Finally converter steady state waveform is presented in figure 8-5 below, where the 

output is connected to 15 kW of load. Similarly from top to bottom, figure 8-5 shows, the 

regulated 700 VDC voltages, PWM output voltage, and resonant current respectively. 

 

Figure 8-5: HFPDU steady state waveform with a 15 kW loads on the output.  
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CHAPTER IX 

9. SUMMARY AND CONCLUSION   

This thesis developed medical grade high frequency power distribution units 

using resonant converter to replace traditional CT power distribution units.  Starting with 

the over view of resonance topology, and operating scheme, the paper have pointed out 

the benefits and shortcoming of different series resonant converter.  Following in chapter 

3, an LLC resonant converter topology, and super resonance operation has been selected 

in order to benefit from both the series and parallel load resonant converter.  The selected 

topology provides inherent short circuit protection and lower part counts, particularly 

because of resonant converter capability of using leakage inductance, and magnetizing 

inductance of a transformer for its resonant tank.  

Following the section of LLC resonant converter topology, a design model was 

developed using Matlab/Simulink, and control capability has been simulated.  In order to 

account for variation in operating environment and part to part variation, Monte Carlo 

analysis were conducted to show conformance to the specification.  Furthermore; 

simulation of the magnetics, filter design, and the thermal performance were conducted to 

set the stage for design implementation.    

A prototype of the selected topology was built and result was evaluated.  The 

measured result has been found to show an excellent correlation with the simulation 

result. This gave confidence in the accuracy of the model, and the results from the 

various simulations. 
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Finally, the technique and topology that were discussed here are by no means 

exclusive only to CT system, or even medical system.  In fact, it can be used in many 

other applications that can benefit from isolating grid disturbance, regulated output 

voltage, and reduction in overall size in a cost effective manner.  
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A. APPENDICES 

A.1 UNDAMPED SERIES-RESONANT CIRCUIT 

Figure A-1 shows an undamped series-resonant circuit where the input voltage is 

9v at timex�. The initial conditions are 3
Ñ and9�Ñ. With the inductor current 	
 and the 

capacitor voltage w> as the state variables, the circuit equations are [11]            

1� v]b
vÂ + w> = 9v     (A-1)  

and      �� vtJ
vÂ = 	
                       (A-2)  

For	x ≥ x�, the solution is as follows:      

	
(x) = 3
� cos��(x − x�) + �Äi�J�
Ó� P	Z��(x − x�)    (A-3)  

and   9>(x) = 9v − (9v − 9>�)UÔP��(x − x�) + Õ�3
�P	Z��(x − x�)                (A-4)  

where   angular resonance frequency = �� = 2��� = �
�
���                 (A-5) 

and   Characteristic impedance = �� = `
�
��	                             (A-6) 

 

Figure A-1: Undamped series-resonant circuit [11]. 
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A.2 SERIES-RESONANT CIRCUIT WITH A CAPACITOR-PARALLEL LOAD 

Figure A-2 shows series resonant circuit, where the capacitor is loaded in parallel 

with	3�. In this circuit, 9v and,	3� are dc quantities. The initial conditions are 3
Ñ and9�Ñ 

at time	x� [11]. Therefore  

w> = 9v − 1� v]b
vÂ      (A-7)  

and      	
 − 	> = 3�                       (A-8)  

By differentiating Eq. A-7     

	> = �� vtJ
vÖ = −1��� vA]b

vÂA     (A-9)  

Substituting 	> from Eq. A-9 into Eq. A-8 yields 

      
vA]b
vÂA + ���	
 = ���	�                         (A-10)  

Where angular resonance frequency ��is still the same as Eq. (A-5), solution for x ≥ x� 

is as follow: 

 	
(x) = 3� + (3
Ñ − 3�)UÔP��(x − x�) + �Äi�J�
Ó� 	P	Z��(x − x�)              (A-11) 

And 

   w>(x) = 9v − (9v − 9>�)UÔP��(x − x�) + Õ�(3
Ñ − 3�)P	Z��(x − x�)        (A-12) 

 

Figure A-2: Series-resonant circuit with capacitor-parallel load [11]. 
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