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ABSTRACT 

 
ESSAYS IN HEALTH ECONOMICS AND  

PUBLIC HEALTH POLICY 

by 
 

Rahi Abouk 
The University of Wisconsin–Milwaukee, 2013 
Under the Supervision of Professor Scott Adams 

 
 

This dissertation consists of three essays. In the first essay I study the effect of texting bans 

on fatal accidents on roadways. Since 2007, many states passed laws prohibiting text 

messaging while driving.  Using vehicular fatality data from across the United States and 

standard difference-in-differences techniques, bans appear moderately successful at 

reducing single vehicle, single occupant accidents if they are universally applied and 

enforced as a primary offense.  Bans enforced as secondary offences, however, have at best 

no effect on accidents.  Any reduction in accidents following texting bans is short-lived, 

however, with accidents returning to near former levels within a few months.  This is 

suggestive of drivers reacting to the announcement of the legislation only to return to old 

habits shortly afterward. 

The second chapter studies the effect of homeschooling on child health. Homeschooling, 

which is becoming increasingly popular in the United States, has received some attention 

by researchers, but there has been no study of the potential health benefits.  Given that 

homeschooled children receive more close supervision and guidance from parents, and 
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perhaps are less exposed to communicable illnesses, a benefit is possible. By adopting 

different identification strategies and using the Parent and Family Involvement (PFI) data 

from National Center for Education Statistics (NCES) for 2003 and 2007, I find that 

homeschooled children are healthier compared with their counterparts who go to  public or 

private school. The effect is most pronounced for children between 8 to 12 years old. 

Finally, in the third essay, as a note, I study the effect of school shootings in the United 

States on private and public school enrollment. I find that school shootings are followed by 

a 10%t of school shootings in the United States on private and public school enrollment. 

The effects are most pronounced following shootings in nonurban areas, which is 

consistent with their more intense media coverage. 
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Chapter 1: Texting bans on Roadways 

 

 

I. Introduction 
 
Using the text message feature of mobile devices while driving is thought by some to be 

the most dangerous thing one can do while attempting to operate a motor vehicle.  

According to an experiment carried out in 2009 by Car and Driver, text messaging has a 

greater negative impact on safely operating a motor vehicle than being drunk.1  Text 

messaging is part of what has generally been seen as the broad new scourge of the 

roadways—distracted driving.  While accidents in general are on the decline and those 

attributable to drunk driving have been somewhat curbed by a myriad of legislative actions 

and public awareness campaigns, the National Highway Traffic Safety Administration 

(NHTSA) reported a steady increase in fatalities caused by distracted drivers from 2004-

2008.   During the period, over 25,000 fatalities were estimated to be caused by a 

distracted driver (NHTSA 2009).  Distracted driving is a rather broad concept, however, 

including drivers preoccupied with texting, talking to a passenger, eating, reading, or using 

global positioning systems.   

Although encompassing a variety of sources, the recent upward swing in the 

fatalities attributable to distracted driving has coincided with an upward trend in text 

messaging in particular.  In 2000, the number of cell phone subscribers was under 100 

million, but by the end of 2008, this number reached over 250 million.  According to an 

International Association for the Wireless Telecommunications Industry report, over 2 

trillion text messages were sent in 2011, which is almost twenty times the number sent in 

2006 (CTIA, 2012).  

To mitigate the portion of fatal distracted driving accidents caused by sending or 

                                                      
1 See http://wheels.blogs.nytimes.com/2009/06/25/texting-is-more-dangerous-than-driving-drunk/. 
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receiving text messages, many states have banned texting while driving.   Washington was 

the first state to do so, and they were followed by 32 other states through January 2012.  In 

this paper, we conduct a set of tests to determine whether there was a reduction in fatal 

accidents following state bans on text messaging.  By limiting attention to those crashes 

that are most likely the result of distracted drivers sending messages, specifically single 

vehicle accidents with a sole occupant crashing into a non-vehicular object, we isolate 

whether the bans have their expected effect.  The evidence is highly suggestive that the 

bans can reduce the number of such crashes if legislation is universally applied and 

enforced as a primary offence.2   

 The most important finding, however, is that while the reduction in the number of 

accidents is substantial in the month following a ban, the effect begins to decline rapidly.  

Thus, drivers appear to be reacting to bans by initially altering their behavior, only to 

return to normal behavior later.  Drivers are likely are reacting to limited enforcement of 

bans or learning new ways to evade detection.  We present evidence consistent with these 

explanations as bans with more limited enforcement or coverage seem to result in drivers 

returning to old behaviors more rapidly.   

The rest of the paper is organized as follows.  Section I provides background on 

related literature.   In section II, we introduce the data and methodology we employ in our 

study.  Section III presents and discusses the basic difference-in-difference results.  Section 

IV analyzes effects over time, providing the evidence that drivers are likely reacting to the 

announcement of a ban rather than permanently changing their behavior.  Section V 

concludes.  

 

II.  Background 
A number of studies have assessed the risk of cell phones, with McEvoy et al. 

(2005) presenting compelling evidence that using a phone while driving increases the 

                                                      
2 By primary offense, we mean that law enforcement officers can stop someone suspected to be texting while 
driving.  No other offense needs to be committed.  Texting bans that are secondarily enforced require a driver 
be stopped for a separate infraction.  We find no evidence suggesting these latter types of secondarily 
enforced bans reduce accidents. 
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accident risk fourfold.    Recently, the Virginia Tech Transportation Institute (Klauer et al. 

2006; VTTI, 2009) completed several naturalistic driving studies to assess the risk of cell 

phones.   This technique uses cameras and instrumentation in vehicles to determine the 

heightened risk of certain driving behaviors.  Cell phones were shown to increase the risk 

of accidents and near-accidents by anywhere from 1.3 times in the case of talking on a 

phone to 5.9 times in the case of dialing a phone.  They also looked at text messaging 

specifically, which they found increases the likelihood of a crash or near crash event by 23 

times.  The fact that text messaging could be nearly 20 times more dangerous than talking 

on a cell phone means that it likely merits particular attention from policy makers and 

researchers.  

Despite the widespread belief and evidence that cell phone use while driving is 

dangerous, drivers still continue to engage in the risky behavior (Nelson et al. 2009).  This 

may be suggestive that drivers underestimate the risk associated with their own use of 

phones while driving.   In fact, a recent survey of new and prospective teen drivers 

performed by State Farm Insurance and Harris Interactive show that 36% believe texting 

and driving can be fatal.  Despite texting while driving being at least as dangerous as 

driving drunk, many more teenagers (55%) believe drinking and driving can be fatal than 

text messaging.3   This underestimation of risk may lead to more texting than is socially 

desirable and a market failure that legislation could potentially correct. 

If those who text and drive underestimate the risk to themselves, they likely would 

not internalize the costs they impose on others.  Pedestrians and cyclists are at a risk of 

being injured or killed by distracted drivers.  Property damage could be caused by those 

texting and driving.  Moreover, costs associated with responses to accidents scenes, 

emergent care, and increased traffic congestion following accidents all likely lead to a 

negative externality that could justify government intervention.  

Wilson and Stimpson (2010) find substantial linkages between cell phone texting 

volumes and deaths from distracted driving.  They conclude that in the absence of text 

messaging, predicted fatalities from distracted driving would have declined from 2001 to 

                                                      
3 See http://www.harrisinteractive.com/vault/State-Farm-Teens-Texting-2010-09-20.pdf for the complete 
study details. 
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2007 instead of increasing.  Their estimates suggest about 2,690 deaths per year were 

attributable to drivers text messaging.   

Given that texting while driving has only recently been banned by states, studies of 

the effectiveness of bans like the one we undertake are limited.   Prior to banning texting, 

however, a few states acted to limit speaking on cell phones while driving with the hope of 

encouraging drivers to use hands-free devises more generally.4   The studies of the impact 

of these regulations have been narrow as well because of the limited number of laws and 

the peculiarities of their provisions.  Nikolaev et al. (2010) is one exception, as they 

investigated accident rates in New York.  New York was the first state to pass a 

comprehensive ban on the use of hand-held cell phones while driving in late 2001.  Using a 

cross-county analysis, they find significant reductions in fatal accident rates.   Sampaio 

(2010) correctly note, however, that Nikolaev et al. only looked at New York and failed to 

account for underlying trends in accident rates.   Proper analyses of policies restricting cell 

phone use necessitate cross-state analyses to infer a causal effect, and Sampaio (2010) 

shows that the Nickolaev et al. findings are a combination of a ban effect and factors that 

are unobservable in their study.  We also note that those speaking on a cell phone are only 

1.3 times more likely to get into an accident or near accident (VTTI, 2009), so general 

restrictions on speaking on cell phones may have limited impact unless there are some 

specific text message provisions. 

The Highway Loss Data Institute (HLDI, 2010) provides the only study known to 

us that specifically tests the effect of texting bans on crashes.   The HLDI use collision 

claim frequencies in four states to assess the impact of bans.  Considering California, 

Louisiana, Minnesota and Washington as treated states and using neighboring states as 

control states, the authors find that bans on text messaging actually were followed by an 

increase in collision claims.  They control for collision-level variables, such as vehicle 

model year, driver age groups, gender, marital status, garaging state, vehicle density and 

year and month.  The most notable case in their data was California, for which they find a 

                                                      
4 Variation of such general cell phone legislation was insufficient during our sample period to include as a 
control variable but we did use information on existing handheld bans to perform several additional tests later 
in the paper. 
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large and significant increase in the number of collisions after the state passed a ban.  This 

increase was also observed in Louisiana and Minnesota.   The increase in collisions is an 

unexpected result, and the justification provided by the authors is that texting bans 

encourage drivers to hide their phones while they are texting.  Consequently, they are even 

less cognizant of the road than they would be had they been allowed to text in the open.   

The HLDI (2010) study has received some attention in the popular press because of 

its surprising findings, but there are several reasons to question the approach.  First, the 

authors use insurance collision claims as a measure of accident rates.  Although they have 

the advantage of isolating accidents in which a driver is culpable, they miss all accidents 

for which claims were not filed.  This selected sample partially explains the curious 

finding.   Most existing research on the effects of public policies on traffic accidents 

focuses on censuses of fatal accidents rather than self-reported claims (e.g., Dee (2001), 

Eisenberg (2003), and Carpenter and Dobkin (2009)).  Second, HLDI combines all types 

of accidents, whether they involve single or multiple drivers or vehicles.  This includes 

many accidents for which no effect is expected, a point we take up later using our data.5  

Finally, any analysis of the effect of texting bans needs to assess the lead and lagged 

effects of the legislation.  Given the bans HLDI studied were passed in January, July, and 

August, with December and July being particular accident-heavy months, the lead effects 

are likely needed.  Moreover, the lagged effects would assess whether the bans took a few 

months to become effective or waned in terms of impact after some time.     

In our study, we aim to advance the understanding of the effect of texting on traffic 

safety by modeling our strategy after the strengths of the existing studies while overcoming 

some of the limitations.  Specifically, we exploit cross-state variation in the 

implementation of texting bans to identify the unique effects of texting on driving safety, 

separating the more strongly enforced bans from the weaker bans.  Most importantly, we 

test for effects of the legislation over time, with the aim of assessing whether there is an 

                                                      
5 We also add that limiting attention to just a handful of states has problems as well, 
particularly given the variation in the impact of legislation we observe in Table 5.  
Considering that bans have recently extended to dozens of states, a nationwide analysis 
will allow for more data points to assess the effect of bans.   
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announcement effect of the legislation.  That is, we are concerned that a texting ban is 

followed by an immediate reaction by drivers and law enforcement, only to have everyone 

revert to prior behavior after a number of months.    Announcement effects have long been 

recognized in financial markets, as investors react immediately to new information (e.g., 

Barclay and Litzenberger, 1988).  It is not surprising that drivers react similarly to 

investors, as they observe the extent to which the law will be enforced or learn new ways 

to not be detected, such as hiding their phone from view.6  Given past experience with 

similar legislation curbing cell phone use, this pattern of behavior is certainly plausible 

(McCarrt et al. 2003; McCarrt and Geary, 2004).      

 

III.  Data and methodology 

A. Crash data and information of texting bans 
The crash data used in this study come from the Fatality Analysis Reporting 

System (FARS) of National Highway Traffic Safety Administration (NHTSA), which is a 

nationwide census for all fatal motor vehicle crash fatalities.  We are interested in using the 

crash-level information to determine whether the accident included a single vehicle with a 

single occupant.  Wilson and Stimpson (2010)’s data show that the large jump in distracted 

accidents from 2001-2007 is mirrored by increases in the proportion of distracted accidents 

involving single vehicles and single drivers.   These patterns in the data also make intuitive 

sense.  A driver with passengers might be less willing to put them in danger by texting.  

Moreover, they may find less need to text if someone is there to speak with them or stop 

them from texting if they perceived the risk to be dangerous.  Multiple vehicle accidents 

typically are caused by more than one factor since there are multiple drivers.  In picking a 

single group of accidents or a set of accident types to assess the effect of a policy is similar 

to the approach taken in the drunk driving literature before more advanced means of 

imputing blood alcohol content from crash scene variables were developed.  For example, 

Eisenberg (2003) used crashes that occurred at night or on the weekend to infer those most 

                                                      
6 Anecdotal evidence suggests that such a pattern of results is to be expected for these reasons.  For example, 
see http://www.gazette.com/articles/texting-89993-tuesday-entirely.html. 
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likely to be associated with driving drunk.7  We use monthly data from 2007-2010 on fatal 

accidents because all texting bans were passed after 2007 and the latest data available were 

from 2010.  After removing Alaska from the sample because of some missing data, our 

final sample consists of 49 states over a 48 month period for a total of 2352 observations. 

We merge crash data to information on the enactment of text message bans.   Table 

1 lists each state with a ban, along with the month the ban became effective and some basic 

enforcement information.   Most text message laws are similar in wording, and there are no 

remarkable differences in the size of the penalties associated with text messaging as the 

penalties are typically small fines.  

There are two distinctions that allow us to classify bans as “weak” or “strong.” 

Bans in Indiana and Missouri covered only younger drivers but had considered universal 

bans, thus likely rendering the scope of coverage confusing to some drivers.  Nevertheless, 

bans in these states are likely “weak” in terms of effectiveness.  The second distinction is 

whether text messaging is a primary or secondary offense.  Text messaging while driving 

is typically considered a primary offence by most states.  That is, law enforcement officials 

can pull over a driver suspected of text messaging even if another infraction or crime has 

not been committed.  There were four states (Nebraska, New York, Virginia, and 

Washington) for which texting is enforced only as a secondary offense during our sample 

period.  These state bans are also likely “weak” in terms of effectiveness.  Our research 

design will delineate effects by ban type, with the strong bans expected to have a 

measurable effect.   

There were also a few states that had concurrent handheld cell phone bans for all 

drivers.8  We use this variation across states in a number of additional tests in the paper in 

an attempt to determine the relevance of ban heterogeneity.  If drivers will still allowed to 

                                                      
7 Blood alcohol content was previously estimated though discriminant analyses because of the infrequency 
and inconsistency of actual measurement of blood alcohol content at accident scenes.  More recent analyses 
have used the NHTSA’s new multiple imputation procedure.   See Adams et al. (2011) for a discussion.  No 
such detailed imputation exists for distracted driving. 
8These were California, Connecticut, New Jersey, and New York. We exclude DC given its unique driving 
conditions and long-existing cell phone ban.  Washington’s handheld ban came six months after their texting 
ban so we do not consider it concurrent for our estimations. We did not code the two states with secondary 
enforcement of their handheld cell phone bans (Maryland and Utah) as part of this group since this would not 
be relevant to the enforcement issues we bring up later in the paper. 
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dial and talk on a phone while driving, we would suspect that enforcing text messaging 

bans would be even more difficult.  Thus, we suspect the states with concurrent bans on 

cell phone use might have the stronger impact and perhaps one that lasts longer. 

 

B. Basic empirical model 
 Our first step is to determine whether there is any evidence of reduced accidents 

following texting bans in a standard difference-in-differences framework by estimating:    

 

Yim = α + γi  + δm  + Ximβ + ωBim + εim     (1) 

 

Yim represents the log (number of fatal accidents + 1) for state i in month m.   We chose 

log accidents since this would provide an easy way to interpret the effects of the policies in 

percentage terms.  State and month fixed effects are γ and δ, respectively.  B indicates 

whether a state has a texting ban in place in a month and the estimate of ω is our 

coefficient of interest.9   We weight our estimations by state population because of the 

greater variation in accidents in smaller states.  The ωBim can also easily be expanded to 

account for strong bans (universal, primarily enforced) and weak bans (secondarily 

enforced or applicable just to a subset of the population).  To do so, a dummy variable for 

the strong ban states is interacted with B, as is a dummy for the weak ban states, to yield 

ωSBSBim + ωWBWBim.  This replaces ωBim. 

The X matrix in equation (1) is the set of controls.  We include a control for the log 

of the population in the state and the proportion male in the state.  These data are available 

annually from the Census Bureau.  Population, once state fixed effects are included, will 

likely be related to population density and congestion, which could increase the risk of 

accidents.  However, an increase in density would most likely affect accidents in general, 

rather than single vehicle, single occupant accidents.  The proportion male may heighten 

                                                      
9 A concern with estimating equation (1) is that accident data from within a jurisdiction are correlated, raising 
problems with inference and necessitating clustering standard errors as a simple correction (Bertrand et al. 
(2004)).  The HLDI (2010) study examining the effect of texting bans on collision claims did not consider the 
potential for observations to be correlated within state. 
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the potential for accidents as males typically are more likely to be involved in fatal 

accidents.10   Also, we control for two other factors that might be related to accidents—the 

real prevailing gasoline tax and the state unemployment rate.  Gas taxes did not vary by 

much during the sample period, but the unemployment rate did.  The unemployment rate 

may reduce accidents if fewer drivers are on the road because of less economic activity 

(Cotti and Tefft, 2011).  There is no reason to think that the imposition of a texting ban 

should be related in any way to these control variables, however, so their inclusion is only 

expected to improve the efficiency of our estimates.   

Given that the control variables most expected to be relevant are effectively 

determinants of traffic congestion, another approach would simply redefine the dependent 

variable Y as a measure of accidents per vehicle miles driven in a month.   As shown later, 

the results are robust to this redefinition of the dependent variable.   Additionally, one 

might suspect some non-congestion related factors to have a role in accidents, such as 

weather or construction.  We think that the geographic dispersion of the passage of the 

state laws and the timing of laws render this a second order concern, given that we include 

state and month fixed effects in our specifications.  For example, there is little reason to 

believe that an extreme weather month would hit the states in our treatment group 

systematically around the time they pass texting bans but not also somehow be captured by 

nearby states that did not change their texting ban status in that month.  Nevertheless, we 

use a control that has proved useful in studies that look at the effects of policies on 

particular types of accidents (Adams et al. (2011) and Cotti and Walker (2010)).  

Specifically, for some specifications we add to the X vector the log of other types of 

accidents—namely those involving multiple vehicles or multiple occupants.  The same 

factors that might affect accidents in general, like weather, should affect all types of 

accidents.   Including other accidents as a control holds constant this confounding variation 

in single accidents.   

 Although including a control for other accidents is one way to control for 

confounding influences on accidents over time, a more complete means of controlling for 

                                                      
10 See data from the Hawaii Department of Transportation (2003) and the Washington Department of 
Highways (2008) for some representative statistics. 
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these changes would add a unique time trend for each state.  Although this limits some 

identifying information, particularly if we also include a fixed effect for every month in the 

sample, state-specific time trends are most robust.  We will consider results with and 

without these state-specific time trends. 

Table 2 presents summary statistics for the variables in the analysis.  We first report 

the number of single vehicle-single occupant crashes for both the treatment and control 

group.   This will serve as our primary variable to test for the fatal impact of texting and 

the efficacy of bans.  The control states that do not pass a ban during our sample period 

had an average of 16.84 fatal single vehicle- single occupant accidents per month.  The 

treatment states showed no notable change in the raw number of accidents, but the 

population of the post-ban sample in the treatment group is notably larger.11  Therefore, 

assuming a state with a constant population of 6 million in both the pre and post ban 

sample, the bans actually were followed by a reduction of over 2.5 fatalities a month.  This 

decline does not account for the general downward trend in such accidents that was 

occurring nationwide and necessitates the difference-in-differences research design 

described above.  Moreover, the bulk of this decline might be concentrated in just a few 

months following the ban, which we discuss in the next subsection.       

The remaining control variables summarized in Table 2 suggest no extreme 

differences between the treatment and control states.  There is nothing notably different 

about the unemployment rate, proportion male, or gas tax.  The unemployment rate was 

rising in all states over this sample period so our post-ban period will naturally have higher 

unemployment rates.  Given that there may be a relationship between unemployment rates 

and traffic accidents, controlling for unemployment is sensible but only necessary if we 

expect texting bans to be systematically passed by states in a deeper (or shallower) 

economic downturn.  This is unlikely.   

In addition to estimating equation (1), we examine whether the estimated effects of 

texting bans on accidents are robust to several assumptions concerning the distribution of 

fatal accidents across the states in the sample and other empirical decisions we made in the 

                                                      
11 The larger post-ban population reflects the fact that the large states in the treatment group, namely 
California and New York, enacted bans fairly early. 
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research design.  As part of this, we engage in a series of checks where we test for the 

effects of texting bans on other types of accidents, some of which might be less likely to be 

affected by texting bans.  These amount to falsification exercises. We also utilize different 

features of accidents, including whether there is a concurrent handheld cell phone ban, to 

further assess the impact of the legislation.    

 

C. Additional estimation of lead and lag effects    
We suspect that a simple difference-in-difference test might mask effects of texting 

bans in the months leading up to their effective dates and the pattern of results after 

passage.  To test for these possibilities, we estimate: 

 

    Yim = α + γi  + δm  + Ximβ  + φ’Bim*γi   

+ 









5

5
,

5

5
,





  imWBimSB WBSB  +  εim                (2)  

 

The addition of φ’Bim*γi  allows for a differential treatment effect for each state.  Given 

that some states are observed for fewer periods post ban than others, this allows for lagged 

effects to be estimated free of concerns about composition bias.12   

The summation of leads and lags are essentially a series of dummy variables: SB-5 

and WB-5 are set to one for a month if the state will enact a “strong” (SB) or “weak” (WB) 

texting ban five months in the future and zero otherwise; likewise, SB-4 through SB-1 (and 

WB-4 through WB-1) are dummy variables that are similarly defined for months leading up 

to enactment.  The estimates of ω.,-5 through ω.,-1 jointly measure the lead effects of the 

texting bans and will capture any unusual activity in states just prior to the actual effective 

month of the texting ban.  This will also provide a test of whether the treatment and control 

states differ just prior to passage, giving a stronger sense of whether there were 
                                                      
12 Note that the coefficient estimates ω are therefore not to be interpreted relative to no legislation.  Rather, 
they are interpreted relative to an average treatment effect.  An alternative would be to limit attention to a 
balanced panel of states that are in the sample for all of the lagged periods.  In all cases, the pattern of 
announcement effects are the same. 
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confounding trends in the data and whether the imposition of bans are exogenous.    

Also added are a dummy for one (SB1 and WB1) through five or more months (SB5 and 

WB5) following enactment.  Estimates of ω.,1 through ω.,5 measure the lagged effects of 

the ban and answer the essential question of the paper—that is, whether the effects are 

sustained over time or whether they merely reflect an announcement effect.  We 

experiment with lags of different lengths in the appendix.  State-specific treatment effects 

are also perfectly collinear with a contemporaneous effect of texting bans, so the latter 

estimates are not identified.    

 

IV.   Results 

A. Basic difference-in-differences estimates 
 We first present estimates of the effect of texting bans on fatal accidents to 

establish whether the results have any detectable impact.   We first consider all state 

texting bans, regardless of coverage or enforcement rules.  Column (1) of Table 3 shows a 

3.7% reduction in single vehicle, single occupant crashes in states after they pass a texting 

ban compared with states not passing a ban, but the effect is not significant.    

In column (2), we separate the effects by “weak” and “strong” bans with the 

simplest set of controls used from column (1).  The strong ban effects are negative and 

significant, suggesting an 8.1% reduction in accidents.  Given there were 16.1 single 

vehicle-single occupant accidents a month in states before a ban was put in place, this 

suggests that accidents are reduced by about 1.3 per month per state or roughly eight 

hundred lives per year nationally if there were a national ban with universal coverage and 

primary enforcement.13  This of course assumes the effect is sustained.14 If we assume $6 

                                                      
13 This is a very rough calculation based on the weighted average of accident totals of states in the treatment 
and control group and assumes one death per single vehicle-single occupant accident.  Specifically, 802  lives 
saved = (0.081 estimate x 16.1  treatment state deaths x 21 treatment states x 12 months) + (0.081 estimate x 
16.8 control state deaths x remaining 29 states x 12 months).     
14 Given that Wilson and Stimpson (2010) estimates suggest about 2,690 fatal accidents per year were 
associated with texting from 2002-2007, the harm from texting could be cut by just about 25% - 30% 
following a ban. We note that these totals are only for single vehicle-single occupant crashes.  Given the 
results later in the paper suggest that ban effects on other types of accidents are limited, however, the 
estimated effects on single-vehicle-single occupant crashes in this section represent a substantial proportion 
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million as an approximation of the value per life saved, this amounts to $4.8 billion saved 

annually from texting bans.15  Given 2.12 trillion text messages are currently sent a year 

according to CTIA-The Wireless Association, this amounts to 0.2 cents per text message of 

benefit.16  The proportion of text messages sent from roadways is unknown, however, so 

the cost to drivers from prohibiting them from texting from their vehicle cannot be 

estimated.  Therefore, any assessment of welfare implications of texting bans would be 

incomplete.  That said, we suspect delaying texting until a time when one is not driving to 

be of negligible cost.  Thus, even the small $.002 benefit per text message likely supports 

an economic rationale for legislation.   

On the other hand, column (2) reports an estimated effect of the “weak” texting 

bans that is positive.  This means a poorly enforced bans might be worse than no ban at all.  

This finding is consistent with anecdotes of law enforcement officials being frustrated with 

bans that are difficult to enforce because of limited coverage.17  There are two other points 

to be made about these positive effects for “weak” bans.  First, we acknowledge that the 

limited number of cases of weakly enforced bans limits how much weight should be placed 

on these results.  Second, the overall positive effect masks a meaningful pattern of effects 

over time that we revisit in the next section.  For most of the estimations presented in the 

remainder of the paper, we keep focus on the strong ban cases but also consider the weak 

bans where meaningful. 

The estimates so far do not account for state specific-trends in single vehicle, single 

occupant crashes.  In the third column, we add the control for other types of accidents in a 

state-month.  The aim here is to control for all factors that might affect accidents in 

general, regardless of type.  This will leave only accident variation unique to single 

vehicle-single occupant crashes to identify the texting ban effect.  The effect of strong bans 

remains negative and significant. 
                                                                                                                                                                 
of the effect of texting bans on accident reduction. 
15 See http://www.nytimes.com/2011/02/17/business/economy/17regulation.html?_r=2 for the justification of 
the value of a life saved calculation, which is taken from the U.S. Department of Transportation guidelines. 
16 See http://www.ctia.org/advocacy/research/index.cfm/aid/10323 for the number of text messages sent. 
17 See, for example, http://www.daytondailynews.com/news/crime/enforcing-texting-ban-could-be-tricky-for-
police-1377406.html 
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We next explicitly allow for state-specific trends in columns (4) and (5). In column 

(4), we replace the time dummy variables with a linear time trend over the 48 sample 

months, which is then interacted with each state variable.  In column (5), we include both 

the time dummies and unique linear time trends.  Column (4) results reveal a significant 

accident reduction for the “strong” bans, suggesting both time dummies and linear time 

trends for each state reveal similar results.  The column (5) results, however, suggest 

substantially reduced effects for strong bans and a very large weak ban result.   Column (5) 

is the most robust estimation, but it comes with a cost in terms of limiting identifying 

variation in a sample with one observation per time period for each state.  Thus, the 

coefficient estimates for the texting bans (and other variables) are highly affected.  

Throughout the remainder of the paper, we will always present results comparable to at 

least column (3) and column (5).  We therefore illustrate the tradeoff between a more 

robust specification and one that allows for more identifying variation.  Our results should 

be interpreted with these limitations in mind.   

   

B.   Falsification exercises and sensitivity checks for the “strong” ban results 
 If texting bans are effective, they would be most likely to reduce single vehicle, 

single occupant crashes, with less clear effects on other types of accidents.  We verify this 

is true in the second row of Table 4.  Compared with the estimates for single vehicle, 

single occupant crashes, which we repeat in the first row, the effects of texting bans on all 

types of accidents falls.  In the third row, we consider the log of multiple vehicle or 

multiple occupant accidents and find virtually no effect of the texting bans.  This 

essentially amounts to a falsification exercise, as this is the accident type we expect least 

likely to be affected by texting.   We take this point a step farther in row (4) by pooling the 

single vehicle, single occupant crash counts and other crash counts by state-month into one 

sample and perform a difference-in-difference-in-differences estimation.  A dummy for a 

single vehicle, single accident count observation is added and interacted with the texting 

bans.  The estimates are strongly suggestive that the relative effect on single vehicle, single 

occupant accidents are larger.   
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 In row (5), we undertake an additional falsification exercise.   The imposition of 

bans should have no effect on vehicle miles travelled, and this is verified.  Since the 

control variables we added in previous estimations are essentially proxy variables for 

traffic volume, we also divide the log of the total number of accidents, which is our 

dependent variable throughout most of the paper, by millions of vehicle miles travelled.  In 

row (6), the alternative definition of the dependent variable yields very similar results.  

The next two rows consider whether the lack of a concurrent restriction on the use 

of handheld cell phones influence the efficacy of texting bans.  This is consistent with the 

concerns of law enforcement officials.  Without a handheld cell phone ban, there is no way 

to know whether someone is texting, which is not legal, or dialing a phone, which is legal.  

It appears that this concern has some merit, as the states with the handheld bans experience 

larger reductions in accidents.  Unfortunately, dividing the sample in this fashion leaves us 

with relatively few states to identify an effect and the results are imprecise.  We will 

explore this distinction more in the next section when we plot effects over time. 

In the remainder of Table 4, we confront other potential critiques of the basic 

approach used in the earlier estimates of the paper.  Given we used a dependent variable 

that is the log of count data, we re-estimate using a negative binomial, resulting in weaker 

effects. We explored the weakening effect of the negative binomial results in appendix 

Table 7 and determine this is likely due to the undue influence of smaller states when we 

estimate count data models, which are not weighted by population.18  

 The results presented thus far employ individual month fixed effects.  We also 

could have used year fixed effects (2007-2010) and month-of-year (i.e, Jan, Feb, March, 

etc.) fixed effects as well.  This would allow us to capture both seasonality and annual 

changes in accidents common across states, but it would also allow more identifying 

variation than in our original estimation.   We find an effect that is not substantially 

different than in our basic estimates.   
                                                      
18 Specifically, once we limit attention to those states with population above 2 million or states with at least 
one accident in every month, the effects of the Poisson model, negative binomial or unweighted/weighted 
OLS are all quite similar.  Since these nuances are not relevant for the main points of the paper, specifically 
the announcement effects, they are relegated to the appendix. In the course of assessing robustness, we 
conducted a number of additional tests, as well tests allowing for differential trends for the treatment group.  
These additional estimates are also added to appendix table A3. 
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Finally, as a precursor to looking at the lagged effects of the legislation, we 

consider a specification that only includes the bans that were enacted through 2009 and 

exclude 2010 data.19  The effects are stronger, suggesting that adding the 2010 data 

weakened the estimates.  There are two potential reasons.  First, the effects of bans enacted 

through 2009 have a smaller impact by 2010, resulting in lower estimated effects of the 

legislation.  Second, bans enacted in 2010 have less of an influence than those enacted 

earlier.  Both estimates hint that drivers might learn over time that ban enforcement is 

limited.  We return to more formal estimates of lagged effects in the next section. 20 

We return briefly to the only paper that has also assessed state-level bans (HLDI, 

2010).  Although their outcome of interest is a sample of collisions, rather than fatal 

accidents, the positive effect on accidents estimated for three out of the four states they 

analyze stand in contrast to the basic difference-in-difference evidence we present for the 

nation as a whole.  Given fatal accident data are a census of all accidents across the nation 

and are not self-reported collisions, however, we are more confident that our results 

represent more credibly the effects of texting bans. Additionally, inferring any meaningful 

effect from analyzing one state at a time is problematic.  Table 5 confirms that effects 

across states are highly variable.21 

                                                      
19 An earlier version of the paper used data only through 2009.  We thought it useful to discuss briefly the 
changes to the results from adding the 2010 data and what this might imply about the lagged effects of 
legislation.  
20 Simple estimations limiting attention to bans only passed in 2010 (and dropping older bans) results in 
weaker estimates, as does dropping new bans and assessing the impact of adding 2010 data for earlier bans.  
We also point out that the announcement effect results of the next section, however, are present in both the 
data through 2009 and 2010. 
21 There are some additional issues with the HLDI study that render the study difficult to evaluate, some of 
which were noted earlier.  First, HLDI do not adjust their standard errors for the likely correlation of 
observations from the same state.   This adjustment would likely increase their standard errors notably and 
perhaps change their assessment of significance.  Such adjustment has become standard in difference-in-
differences estimations since Bertrand et al. (2004).  Second, HLDI focus on collision claims rather than fatal 
accidents.  The makeup of collision claims may differ drastically from fatal accidents.  The former is self-
reported and may be less likely to be divulged by someone who feels entirely at fault and wishes not to see 
his insurance premiums rise.  This is likely why most existing studies of traffic safety focus on the census of 
fatal accidents. Looking at Table 5, the results for California, Minnesota, Illinois, and Washington again 
show a difference between our results and those of HLDI. Interestingly, when we use the selected control 
groups used by HLDI and estimate effects for all accidents (see Table A2), we find no effects of bans and 
certainly cannot rule out positive effects like those found by HLDI. 
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V.  Effects over time and evidence of the announcement effect 
 Up until this point, we established that texting bans are followed by reduced traffic 

accidents in states with primary enforcement of legislation.  This says nothing about 

whether the effects are sustained, however, nor does it say anything about whether there 

were changes in accident levels prior to ban enactment.  In this section, we explore lead 

and lagged effects of the bans.   The lead effects are meant to deal with a concern that the 

estimates presented thus far might reflect some unexpected change in accidents just prior 

to the laws taking effect, which may lead to a spurious finding.    Most of the texting bans 

listed in Table 1 became effective in the winter or summer, which are typically more 

dangerous driving months.   Thus, it is useful to assess whether there are any differences in 

accidents just prior to the laws taking effect.    

Figure 1a plots the coefficients ω.,τ from equation (2) where the dependent variable 

is the log of single vehicle, single occupant accidents.  Effects for bans that are universally 

applied and enforced (SB) and effects for bans that have limited coverage or enforcement 

(WB) are presented separately.  The X vector variables are those from column (3) of Table 

2, which does not include state-specific time trends.  Looking at the months before laws 

are enacted, there are no anticipatory effects or remarkably different trends in accidents 

between the treatment and control states for the universally applied and enforced 

legislation.  There are a moderately larger number of accidents in the month preceding 

bans, but combined with the other lead effects, a joint test of the lead coefficients 

concludes they are not significant.  This is strongly suggestive that the treatment and 

control groups are comparable in terms of single vehicle, single occupant accidents and 

that the imposition of texting bans is exogenous in the case of the stronger bans.   Figure 

1b repeats the analysis adding controls for state-specific linear time trends.  Again, there 

are no significant lead effects of the “strong” bans.22  For both Figure 1a and 1b, however, 

the weak ban lead effects are positive and significant, lending perhaps less credibility to 

                                                      
22 Appendix Table A3 includes the full set of coefficient estimates for the leads and lags, as well as the 
control variables, for these specifications. 
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these estimates.  The relatively higher number of accidents in these localities after bans 

reflects what was a generally higher level of accidents prior to the bans. 

 Figures 1a and 1b also plot the effect of legislation during the months following 

enactment.  The estimated effect in the month following a ban is substantial, suggesting a 

17% - 18% relative reduction in accidents that is statistically significant for the strongly 

enforced bans.   Figures 1a and 1b also reveal a rapid decline in the effect of bans in 

subsequent months.   For the stronger bans, the effect declines substantially by the second 

month and has essentially disappeared by month 4.   

This announcement effect could be explained in two ways.  First, drivers may 

initially alter behavior by reducing texting but soon learn ways to evade detection, such as 

texting while out of view of police or hiding their phones.  This explanation was advanced 

by the HLDI (2010) to explain their curiously positive impact on accidents.  An 

explanation we view as more likely is that enforcement is not sufficient.  This point is 

illustrated in Figures 1a and 1b where we consider the lagged effects for the bans that are 

enforced as secondary offenses or are limited in terms of coverage.  After a slight decline 

the month after these bans were passed, it appears that drivers returned to the relatively 

high level of texting they had been engaging in even before the bans.  Compared with 

drivers in states with primary enforcement, it appears that drivers return more quickly to 

past behaviors where laws are difficult to enforce. 

As further evidence of lax enforcement as an explanation for only a short-term 

impact of bans, we turn to another test.  Specifically, law enforcement officials have 

expressed frustration over a number of aspects of the legislation.  Primary among these is 

the inability to tell the difference between drivers who are actually texting and drivers that 

are using a handheld cell phone.23  This should therefore be reflected in a more pronounced 

announcement effect in those states without handheld cell phone bans that are in place 

when texting bans are passed.   We illustrate this possibility in Figure 2 by dividing the 

states in our sample into those with bans on handheld cell phone use and those without.  

We also limit attention in Figure 2 to only those estimates of effects of universal, primarily 

                                                      
23 See for example http://www.gazette.com/articles/texting-89993-tuesday-entirely.html. 
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enforced bans.  It is in the case of no handheld bans (Figure 2b) where the announcement 

effect is clearly stronger.   The Figure 2a results actually have significant leads and lags, 

the former of which likely questions any inference drawn about the unique effects of 

texting bans post enactment.  The results of Figures 2a and 2b suggest that law 

enforcement officials find it difficult to discern what a driver holding a cell phone is doing 

and thus limit the impact a texting ban might have.     

While ultimately suggestive of lax enforcement being to blame, the results cannot 

rule out other explanations, such as drivers learning to circumvent the laws.  Nevertheless, 

we add that the announcement effect pattern of the results exhibited in Figures 1 and 2 are 

robust.  We show under a wide variety of tests in Tables A5 and Figure A1 that effects in 

the first month or two tend to be substantial (as well as significant or nearly significant) in 

the case of primarily enforced bans, and the results after the third month tend not to be.  

When we add in the secondarily enforced ban, it is basically just the first lag that shows a 

meaningful reduction.    

 

VI.  Conclusion 
We provide the first national level study of the effect of texting bans imposed by 

states on the incidence of fatal automobile accidents.  Texting while driving is now 

considered a major public health issue, with Senator Charles Schumer (D-NY) recently 

pushing for a nationwide ban.24  By targeting a specific group of drivers (solo drivers) and 

a specific group of crashes (those involving just one vehicle), we isolated the accidents 

most likely to be affected by text message bans.  Our evidence suggests fatal accidents are 

reduced by bans if they are enforced as a primary offense and cover all drivers.  

Alternatively, accidents less likely to be related to text messaging, particularly multiple 

vehicle or multiple occupant accidents, are not reduced significantly.   

The strong impact of texting bans on single vehicle, single occupant crashes is 

short-lived.  While the effects are strong for the month immediately following ban 

imposition, accident levels appear to return toward normal levels in about three months.  

                                                      
24 See http://schumer.senate.gov/record.cfm?id=318484&. 
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This suggests that a texting ban immediately saves lives, but the positive effect cannot be 

sustained.  The declining impact of traffic safety policies over time is not uncommon and 

has been observed in other regulations.  Given the large impact of texting bans in the initial 

months following enactment, however, the evidence of the paper suggests greater 

enforcement of these laws likely can save more lives.  More complete bans on handheld 

devices for all purposes might also lead to texting bans being more effective.  The latter 

solution would impose additional costs on drivers, however, rendering the welfare effect of 

such legislation uncertain.   
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Table 1 Effective date of text messaging bans across US states enacted 2007-2010 

 
State 
 

 
Month effective 

 
Enforcement 

 
Universal Concurrent 

Handheld ban 
 
Arkansas 

 
Oct 2009 

 
Primary 

 
No 

California Jan 2009 Primary Yes 
Colorado Dec 2009 Primary No 
Connecticut Oct 2010 Primary Yes 
Georgia Aug 2010 Primary No 
Illinois Jan 2010 Primary No 

Indiana Jul 2009 Primary 
(only 18 and under) 

No 

Louisiana Jul 2008 Primary No 
Maryland Oct 2009 Primary No 
Massachusetts Oct 2010 Primary No 
Michigan Jul 2010 Primary No 
Minnesota Aug 2008 Primary No 
Missouri Aug 2009 Primary 

(only 21 and under) 
No 

Nebraska Jul 2010 Secondary No 
New Hampshire Jan 2010 Primary No 
New Jersey Mar 2008 Primary Yes 
New York Nov 2009 Secondary Yes 
North Carolina Dec 2009 Primary No 
Oregon Jan 2010 Primary No 
Rhode Island Nov 2009 Primary No 
Tennessee Jul 2009 Primary No 
Utah May 2009 Primary No 
Vermont June 2010 Primary No 
Virginia July 2009 Secondary No 
Washington Jan 2008 Secondary 

(until primary in June 
2010) 

No 

Wisconsin Dec 2010 Primary No 
Wyoming Jul 2010 Primary No 
Note: Alaska enacted a ban in September 2008 but is excluded because of inconsistent information for some 
control variables.  Delaware, Iowa, Kansas, and Kentucky passed laws for which official enforcement did not 
begin until 2011. 
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Table 2 Summary statistics for relevant variables 

   

 

Control states 

 
 

Treatment states 
 

     All months         Pre-ban months     Post-ban months

 
Number of single vehicle- 
single occupant accidents  
(monthly) 
 

 
 
 
 
 

 
 

16.84 

 
 

16.13 

 

16.12 

 
 

16.16 

Population (annual) 
 

 
 
 

5,157,694 7,064,738 6,614,487 8,066,044 

Unemployment rate (monthly) 
 

 
 
 

6.51 6.83 6.01 8.63 

Proportion male (monthly)  
 
 

49.32 49.34 49.37 49.26 

Real gas tax in 1983 cents 
(monthly) 
 

 
 
 

19.94 20.57 20.50 20.73 

Sample size  
 

1056 1296 894 402 

Note: The treatment states are those listed in Table 1 and the control states are the remainder of states (less 
Alaska). 
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Table 3 Determinants of Fatal, Single-Vehicle Single Occupant Crashes 

 (1) (2) (3) (4) (5) 

Texting ban in place 
 

-0.0374 
(0.0272) 

    

   x universally applied, primarily enforced  -0.0807 
   (0.0255) 

-0.0764 
(0.0252)   

-0.0712    
(0.0445) 

-0.0253    
(0.0414) 

   x limited coverage/enforcement  0.0753 
(0.0374)   

0.0751  
 (0.0360) 

0.0372    
(0.0294) 

0.1158    
(0.0327) 

Log of population 
 

-0.3346 
(1.3172) 

-0.2376 
   (1.1800) 

-0.0279     
(1.1800) 

-2.7000    
(1.8214) 

1.1811   
 (1.3073) 

Log of unemployment rate 
 

-0.1972 
(0.1215) 

-.01798 
   (0.1205) 

-0.0128 
   (0.1186) 

-0.0863    
(0.06547) 

0.2978   
 (0.1838) 

Percent male 
 

-0.0130 
(0.0400) 

-0.0179 
(0.0254) 

-0.0144 
(0.0259) 

-0.0010    
(0.0377) 

-0.0712    
(0.0323) 

Log of gas tax 
 

-0.0605 
(0.1012) 

-0.0421 
   (0.0854) 

-0.0362 
(0.0781) 

-0.1113    
(0.1051) 

0.0232   
 (0.0778) 

Other accidents 
 

… … 0.1797    
(0.0485) 

0.4128   
 (0.0498) 

0.1649   
 (0.0487) 

Including 48 month fixed effects Yes Yes Yes No Yes 

Including differential monthly trend for all states No No No Yes Yes 

Note: Reported are coefficients from weighted least squares regressions, weighted by state population size for 49 states over 48 months.  The dependent 
variable is the natural logarithm of the number of fatal accidents + 1.     Each specification includes state fixed effects.  Standard errors are in parentheses 
and are clustered to allow for non-independence of observations from the same state.  
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Table 4 Additional estimates of the effect of texting bans, with robustness checks 

 

  
With state 
dummies  

With state- 
specific trends 

With both 

 
(1) 

 
Table 3 estimates 

 
-0.0764   
(0.0252)   

 
-0.0712 
(0.0445) 

 
-0.0253 

   (0.0414) 

 
(2) 

Alternative dependent variables  
and falsification  
Total of all crashes as dependent variable 
 
 

 
 

-0.0378 
(0.0143) 

 
 

-0.0506 
(0.0315) 

 
 

-0.0024   
(0.0303) 

(3) Multiple vehicles or multiple occupants 
As dependent variable 

-0.0240   
 (0.0152) 

-0.0343 
(0.0299) 

0.0076  
 (0.0314) 

(4)  
 

Difference-in-difference-in-differences 
(single vehicle, occupant vs.  
multiple vehicle, occupant) 
 

-0.1443   
(0.0610) 

-0.1443   
 (0.0610) 

-0.1443   
 (0.0613) 

(5) Vehicle miles travelled as dependent 
 variable 

-0.0029   
(0.0064) 

-0.0278 
(0.0235) 

-0.0199   
 (0.0172) 

(6) Accidents per million vehicle  
miles travelled as dependent variable -0.0735   

(0.0269) 
-0.0423 

   (0.0455) 
-0.0054   

  (0.0488) 

 
(7) 

Alternative legislation/enforcement 
Handheld cell phone ban also in place -0.1108   

(0.0388) 
-0.1352 

  (0.0616) 
-0.0897   

 (0.0802) 

(8) Handheld ban not in place 
 

-0.0253   
(0.0380) 

-0.0204 
   (0.0654) 

0.0065  
 

(0 0595) 
(9) 

Alternative modeling 
Negative Binomial 
 

-0.0050   
(0.01916) 

-0.0082 
   (0.0287) 

0.0078   
 (0.0271) 

(10) Year fixed effects, month of year  
fixed effects 

-0.0755   
(0.0256) 

… 
-0.0274    
(0.0421) 

(11) Data through 2009 -0.0778   
(0.0211) 

-0.1254 
(0.0364) 

-0.0469   
 (0.0526) 

   
Note: Each cell is from a separate regression.  The specification in the left column includes both 49 state and 
48 month fixed effects and controls listed in Table 2 and used in the third column of Table 3.  The middle 
column replaces the time dummies with state-specific time trends and the rightmost column add the dummies 
back in For row (1), as well as rows (7) – (11), the dependent variable is constructed from single vehicle, 
single occupant crashes.  Additional robustness checks are reported in the appendix.
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Figure 1 The announcement effect: Impacts of texting bans over  
1a. Estimates without state-specific trends  
 
Universally applied, primarily enforced bans 
 

 
 

Bans with limited coverage and enforcement  
 

 
 

 
1b. Estimates with state-specific trends 
 
Universally applied, primarily enforced bans 
 

 
 

Bans with limited coverage and enforcement  
 

 
 

 
Note: These figures plot the estimated lead and lag coefficients from equation (2), along with 95% 
confidence bands.  Panel (a) is derived from an estimation without state trends and panel (b) derived from an 
estimation with state trends .  Regressions include both 49 state and 48 month fixed effects and control 
variables from the third column of Table 3. 
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Figure 2 Impacts of universal, primarily enforced texting bans by presence of handheld bans 

2a. Effects in states with bans on all handheld cell phone use 
 
Without state-specific trends 
 

 
 

With state-specific trends 
 

 
 

 
2b. Effects in states with a texting ban only (i.e., no handheld ban) 
 
Without state-specific trends 
 

 
 

With state-specific trends 
 

 
 

 
Note: Each graph is from a separate estimation of equation (2), including all control variables from column 
(3) of Table 3.   
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Table 5 Effects of texting bans by state 

 

Arkansas 

 
0.0475 

(0.0768) 

 
New Hampshire 

 
0.4732 

(0.1399) 

California -0.0991 
(0.0420) 

New Jersey -0.1941 
(0.0823) 

Colorado 0.0137 
(0.1047) 

New York 0.1829 
(0.0761) 

Connecticut -0.3754 
(0.3552) 

North Carolina -0.1799 
(0.1136) 

Georgia 0.0119 
(0.0679) 

Oregon -0.3380 
(0.1204) 

Illinois 0.0011 
(0.1092) 

Rhode Island 0.3523 
(0.1825) 

Indiana 0.0571 
(0.0721) 

Tennessee -0.0150 
(0.0810) 

Louisiana -0.1759 
 (0.0732) 

Utah -0.0662 
(0.1538) 

Maryland -0.0391 
(0.0836) 

Vermont 0.2945 
(0.2749) 

Massachusetts 0.0342 
(0.2252) 

Virginia -0.0744 
(0.0809) 

Michigan 0.3271 
 (0.0778) 

Washington 0.0828 
(0.0666) 

Minnesota -0.1494 
 (0.1089) 

Wisconsin -0.9781 
(0.0743) 

Missouri 0.1042 
(0.0822) 

Wyoming 0.4859 
(0.1394) 

Nebraska 0.0119 
(0.1045) 

  

Note: Reported are coefficients on an interaction of the texting ban variable with state dummy.  The dependent 
variable is the natural logarithm of the number of fatal accidents plus one.  Newey-West (1987) standard errors are 
reported in parentheses correcting for  heteroskedasticity and allowing autocorrelation up to one lag.   Each 
regression includes 49 states and 48 month dummy variables, as well as controls listed in Table 2 and used in the 
third column of Table 3. 
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Table 6 Effects in selected states 

 

Accidents 
 

 
Single vehicle,  

single occupant  

 
All crashes 

 
California 
(vs. Arizona, Nevada, and Oregon) 

 
-0.1395 
(0.1080) 

 

 
-0.0148 
(0.0500) 

Louisiana 
(vs. Arkansas, Mississippi, and Texas) 

-0.1128 
(0.0695) 

  

-0.0637 
(0.0423) 

Minnesota 
(vs. Iowa and Wisconsin) 

-0.0429 
(0.2263) 

0.0574 
(0.0832) 

 
Washington 
(vs. Idaho and Oregon) 

 
0.0090 

(0.1816) 

 
0.1093 

(0.0902) 

Note: Each cell is from a separate regression.  Reported are coefficients from a weighted least squares regression, 
weighted by state population size.  The dependent variable is the natural logarithm of the number of fatal accidents 
plus one.  Robust standard errors are in parentheses.   Each regression includes state and month dummy variables, as 
well as controls listed in Table 2 and used in the third column of Table 3.  The control states are those chosen by 
HLDI (2010) 
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Table 7 Additional estimates of the effect of texting bans, with robustness checks 

  
With state 
dummies  

With state- 
specific trends 

With both 

(1) Preferred Table 3 estimates 
 

-0.0764   
(0.0252)   

-0.0712 
(0.0445) 

-0.0253 
   (0.0414) 

 
(2) 

Different weights and population sizes 
Unweighted OLS 
 

-0.0099  
(0.0493) 

 

-0.0147    
(.0696) 

0.0149    
(0.0644) 

(3) Unweighted OLS for states with at least 
2 million residents 
(drops 14 small states; total of 35) 
 

-0.0945   
(0.0378) 

-0.1212   
(0.0624) 

-0.0929   
(0.0559) 

(4) Unweighted OLS for states with at least  
one accident in every month 
(drops 12 small states; total of 37) 

-0.0780    
(0.0456) 

-0.0935    
(0.0756) 

-0.0625   
(0.0677) 

(5)  
 

Poisson for states with at least one  
accident in every month 
 

-0.0613   
(0.0300) 

-0.0648   
(0.0459) 

-0.0198    
(0.0425) 

(6) Negative binomial for states with at least one  
accident in every month 

-0.0606   
(0.0311) 

-0.0714   
(0.0499) 

-0.0226   
(0.0434) 

 
 
(7) 

Removing questionable states from  
Control group 
Illinois because of Chicago ban 
(42 states) 

-0.0838   
(0.0261) 

-0.0803   
(0.0459) 

-0.0340   
(0.0434) 

(8) New Mexico because of Albuquerque,  
Las Cruces, and Santa Fe  -0.0766   

(0.0253) 
-0.0713   
(0.0445) 

-0.0257   
(0.0414) 

 
(9) 

Alternative estimations 
Balanced set of states with laws in effect for 
at least 6 months 
 

-0.0611   
(0.0256) 

-0.0478   
(0.0435) 

0.0041   
(0.0404) 

Note: See Table 4 notes.   
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Table 8 Full Lead and lag specifications 

 
Without state-specific trends With state-specific trends 

 
Weak bans Strong bans Weak bans Strong bans 

 
Lead 5 

 
0.0097 

(0.0373) 

 
-0.0001 
(0.0591) 

 
0.0825 

(0.0374) 

 
0.0259 

(0.0598) 
Lead 4 -0.1834 

(0.0967) 
-0.0282 
(0.0699 

-0.1028 
(0.0861) 

0.0011 
(0.0653) 

Lead 3 0.0982 
(0.0722) 

-0.0031 
(0.0576) 

0.1833 
(0.0897) 

0.0295 
(0.0571) 

Lead 2 0.0396 
(0.1191) 

0.0210 
(0.0593) 

0.1304 
(0.1434) 

0.0566 
(0.0601) 

Lead 1 0.1375 
(0.0626) 

0.0908 
(0.0636) 

0.2404 
(0.0477) 

0.1291 
(0.0699) 

P-value leads 0.83 0.04 0.54 <0.01 

Lag 1 -0.1385 
(0.0787) 

-0.1733 
(0.1092) 

-0.1362 
(0.0825) 

-0.1754 
(0.1074) 

Lag 2 0.0357 
(0.1523) 

-0.1382 
(0.0939) 

0.0404 
(0.1595) 

-0.1367 
(0.0905) 

Lag3  -0.0789 
(0.0955) 

-0.0729 
(0.1318) 

-0.0717 
(0.1001) 

-0.0671 
(0.1296) 

Lag4 -0.0052 
(0.0933) 

0.0014 
(0.1118) 

0.0062 
(0.0918) 

0.0133 
(0.1103) 

Lag 5 0.1128 
(0.0676) 

-0.0619 
(0.0935) 

0.1654 
(0.0696) 

0.0040 
(0.0889) 

Log of population 
 

1.4408 
(1.1378) 

2.5868 
(1.4878) 

Log of unemployment 
rate 

-0.0753 
(0.1161) 

0.3490 
(0.1732) 

Percent male 
 

-0.0145 
(0.0357) 

-0.06077 
(0.0491) 

Log of gas tax 
 

-0.0486 
(0.0825) 

0.0430 
(0.0758) 

Other accidents 
 

0.1742 
(0.0488) 

0.1586 
(0.0497) 

Note: Each column is from a separate regression (equation (3)).  Each specification includes both 49 state and 48 
month fixed effects, as well as controls listed in Table 2 and used in column (2) of Table 3.   The lead and lag 
coefficients are plotted in Figure 1. 
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Table 9 Tests of significance of leads and lags in alternative models 

  

Universally applied and primarily 

 
Limited coverage or  

secondary enforcement 
 

p-vl. 
leads 

 
lag 1 

 
 

 
lag 2 

 
lag 3 

 
lag 4 

 
 

 
lag 5  

 

 
p-vl. 
leads 

 
lag 1 

 
 

 
lag 2 

 
lag 3 

 
lag 4 

 
 

 
lag 5  

 

 
Alternative dependent 
variables 
Multiple vehicles or  
multiple occupants 
 

 
 
 

<.01 

 
 
 

.022 
(.041) 

 
 
 

-.076 
(.049) 

 
 
 

-.009 
(.052) 

 
 
 

.005 
(.063) 

 

 
 
 

.003 
(.044) 

 

 
 
 

<.01 

 
 
 

-.248 
(.077) 

 
 
 

-.043 
(.136) 

 
 
 

-.137 
(.096) 

 
 
 

-.206 
(.102) 

 

 
 
 

-.185 
(.067) 

 

Accidents per million 
 vehicle miles travelled  

.49 -.193 
(.108) 

-.155 
(.101) 

-.118 
(.150) 

.006 
(.115) 

 

-.033 
(.094) 

 

<.01 -.180 
(.087) 

.026 
(.146) 

-.104 
(.115) 

-.044 
(.078) 

 

.126 
(.064) 

 
Alternative legislation/ 
enforcement 
Handheld cell phone ban  
also in place 

 
 

.09 

 
 

-.312 
(.149) 

 
 

-.257 
(.099) 

 
 

-.396 
(.166) 

 
 

-.129 
(.119) 

 

 
 

-.114 
(.103) 

 

 
 

<.01 

 
 

-.002 
(.116) 

 
 

.257 
(.113) 

 
 

.035 
(.133) 

 
 

.295 
(.118) 

 

 
 

.413 
(.136) 

 
Handheld ban not in 
place 

.76 -.122 
(.120) 

-.067 
(.105) 

.082 
(.107) 

.086 
(.121) 

 

.093 
(.087) 

 

<.01 -.181 
(.125) 

-.036 
(.246) 

-.029 
(.117) 

-.079 
(.111) 

 

.087 
(.053) 

 
Alternative modeling 
Negative Binomial 
 

 
.35 

 
-.090 
(.067) 

 
-.082 
(.044) 

 
.023 

(.041) 

 
.006 

(.044) 
 

 
.002 

(.038) 
 

 
.14 

 
-.073 
(.040) 

 
-.031 
(.064) 

 
-.006 
(.035) 

 
-.017 
(.039) 

 

 
.040 

(.020) 
 

Additional tests 
Removing the control for  
state-specific effects 
 

 
.68 

 
-.116 
(.060) 

 
-.075 
(.060) 

 
.006 

(.081) 

 
.085 

(.075) 
 

 
.052 

(.051) 
 

 
<.01 

 
-.017 
(.087) 

 
.147 

(.144) 

 
.035 

(.071) 

 
.111 

(.101) 
 

 
.266 

(.068) 
 

Balanced set of states 
with laws  in effect for at 
least 6 months  
 

 
.02 

 
-.174 
(.104) 

 
-.164 
(.092) 

 
-.065 
(.136) 

 
.009 

(.112) 
 

 
-.005 
(.089) 

 

 
<.01 

 
-.132 
(.087) 

 
.063 

(.161) 

 
-.041 
(.098) 

 
.023 

(.094) 
 

 
.190 

(.070) 
 

Note: Each row is from a separate regression estimation of equation (2).  Each specification includes state and month fixed 
effects, as well as controls listed in Table 2 and used in the fifth column of Table 3.  These include state-specific trends. 
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Figure 3: Lead and lag effect  
1a. Universally applied and primarily enforced bans; lags extended to 8 months  
 
Without state-specific trends 
 

 
 

With state-specific trends 
 

 
 

 
1b. Universally applied and primarily enforced bans; lags extended to 11 months  
 
Without state-specific trends 
 

 
 

With state-specific trends 
 

 
 

 
Note: These figures plot the estimated lead and lag coefficients from equation (2) extended to additional leads and 
lags.  Regressions include both 49 state and 48 month fixed effects and the control variables from the third column 
of Table 3. 
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Chapter 2: Homeschooling and Child Health 

 

I. Introduction 

Poor health during childhood can affect health in later stages of life. Blackwell et al. (2001) show 

that poor childhood health increases morbidity during adulthood. In addition, unhealthy children 

have lower educational attainment, which can lead to poor adult health. Case et al. (2005) find a 

significant relationship between child health and their socioeconomic status. Their study 

emphasizes that children born into poor families have poor health and low investment in human 

capital, which leads to health deterioration when they become older. There is a broad literature 

examining a variety of determining factors of children’s health, such as parents’ education and 

employment status, family income, child’s birth weight, child’s gender, mother’s age at birth of 

child, and other factors (See Currie and Madrian, 1999; Case et al, 2002; Currie, 2009).  One 

potentially overlooked determinant of childhood health is the method of schooling, particularly if 

that schooling method increases the time a parent spends with a child.  

Child homeschooling has become widespread during the past ten years in many 

developed countries, including the United States. In the United States, the number of 

homeschooled students grew from an estimated 1.3 million in 1999 to 2.4 million in 2010. 

Bielick (2008) estimates the growth rate of homeschooling at around 8 percent per year. Despite 

this growth, there is little economic research on home education and almost no previous 

investigation on the health aspects of homeschooling.  This study fills that void. 

Grossman’s health production model (1972) characterizes health as a type of capital, 

which depreciates at a constant rate. One can invest in health by allocating time to health 

improvement or purchasing a set of market goods such as medical care, diet, housing or 

recreation. In his model, the utility of the representative agent in the economy depends on his 

health status. Jacobson (2000) extends the Grossman model by considering the family as both 

producer and consumer of health. She also adds the child’s health in the family utility function 

emphasizing that better child health increases the parent’s utility. Therefore, parents use the 

market good inputs and their own time to upgrade their child’s health.  

According to the Grossman and Jacobson models, homeschooling could be taken into 
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account in production of health by either affecting the productivity parameters or by increasing 

the parental time spent on the production of child health. The latter path seems to fit the 

provision of homeschooling well.  There are obligations on the minimum number of hours that 

parents should homeschool their child. For example, in Pennsylvania and Kansas, parents have to 

teach their children 900 to 990 hours per year in at least 180 days of instruction. Therefore, 

parents (especially mothers) who homeschool their children have more direct contact with them, 

allowing greater time to devote to observing and fostering healthy behaviors. Therefore, the 

allocated time by parents could result in better health directly or could upgrade health via 

improving productivity factors in the health production function.  

There are several other reasons to expect a homeschooling-health link.  Because of less 

exposure to the public, it is less likely that homeschooled students suffer from infectious 

diseases.  According to Cai et al. (2002), another threat for the non-homeschooled students, 

especially teenagers, is exposure to drugs.  The most important reason, however, for why 

homeschooled children would be healthier is that they are under close attention and training of 

their parents, especially their mothers. Therefore, parents can control their child’s health-related 

behaviors, as well as observe their health problems and take them to the physician early on to 

prevent more severe issues. On the other hand, regular students spend 6 to 10 hours out of the 

home every day and therefore their parents are less likely to be vigilant regarding their health.  

Moreover, the homeschooled students are provided with better nutrition than regular students. 

During the school hours, students usually get low quality foods that normally have higher fat 

content. Instead, their counterparts benefit from fresh and healthy homemade foods (See Perry, 

2008).  

In this paper, by adopting two different identification strategies, one IV and one quasi-

experimental, I estimate the effect of homeschooling on the health status of children between 5 

and 17 years old. There is a strong effect of homeschooling, particularly for students ages 8-12.  

This concentrated effect suggests increased parental involvement and time spent is the likely 

mechanism. Homeschooling does not affect the health of teenagers. Since drug usage and 

deficiency occurs mostly in the teenage years, it is unlikely home education enhances children’s 

health through this route.  The limited impact on younger children also suggests the infectious 

disease route is also of secondary importance.   
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The novelty of this research is that it introduces the method of schooling itself as another 

determinant of child’s health. Previous research typically considers education’s effect in two 

stages.  First, individuals achieve a given level of education.  Then, their health status is 

determined based on how that education can improve their production of health (Grossman, 

1972).   In other words, this literature assesses the long term effect of education on adult health 

rather than the more immediate question of whether a child’s health status varies with the 

schooling method that his or her parents chose.  

In Section II, I review the literature on child health that identifies its determinant factors. 

Section III discusses the reasons of choosing home education by parents. Data used in this study 

are discussed in Section IV. I explain estimation methods and discuss results in Section V. 

Finally, Section VI concludes.  

 

II. Literature Review 
 

The application of health production to homeschooling requires one to believe that 

homeschooled students are receiving better health inputs than their non-homeschooled 

counterparts. Although studies on the comparative health of the homeschooled are limited, there 

is some evidence to suspect they might be benefitting from a healthier environment. By studying 

a sample of 65 homeschooled children and 47 public school children between 7-11 years old, 

Perry (2008) tests if there is any difference in nutrient intake of public school children compared 

with their homeschooled counterparts. The study shows that homeschooled children get 15 

percent more calories, 17 percent more protein and 20 percent more fiber than the regular 

students. In this study, 81 percent of the hoeschooled children were lean, 13 percent were 

overweight and 6 percent were classified as obese.  On the other hand, 68 percent of regular 

students were lean, 19 percent were overweight and 13 percent were obese.  

Neuville et al. (2006) studied a sample of 26 children between 10 to 14 years old, 9 of 

which were homeschooled, who were timed running for one mile. Using the recorded time, along 

with other individual characteristics such as height and weight, students’ aerobic capacity was 

calculated. The results show that the difference in cardiovascular fitness between homeschooled 
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children and the public school children was significant. It was shown that home-educated 

students on average have 15 percent higher aerobic capacity (VO2 max) value than public school 

students.25 In addition to a small sample size, there were some problems in the design of the 

experiment. The homeschooled children knew that they were part of the experiment, and the 

regular students did not. The other issue is that for the homeschooled children, the test was done 

indoors while regular students did the test in an outdoor soccer field. Despite these facts, the 

experiment is certainly suggestive that the homeschooled children are likely more physically 

fit.26   

Although the particular question of the health effects of homeschooling has not been 

tested in large-scale studies using population data, ample study of the effect of education and 

socioeconomic factors on health have been undertaken.  Although one might suspect income to 

be critical, the one message that these studies seems to have in common is that mothers’ 

characteristics are critically important for child health.  Khanam et al. (2009), for example, 

recently showed that the effect of family income diminishes when more maternal characteristics 

are added to the model.  Propper et al. (2007) suggest that family income becomes ineffective on 

child health when maternal mental health is taken into account. 

Over the past several decades of study, two maternal characteristics that are likely 

relevant to homeschooling have emerged as particularly important.  The first is mother’s 

education, which has long been observed to be negatively correlated with child mortality 

(Caldwell, 1979).  The second is the amount of time a mother spends with a child, which is 

inversely related to maternal education but would be positively correlated with homeschooling.   

The literature on the effect of maternal education on child health is more extensive than 

the literature on time spent with a child.  Although a complete review is beyond the scope of the 

paper, it is useful to discuss a few highlights of this literature.  Desai and Alva (1998), using data 

from 22 countries, conclude that mother’s education is correlated with child health. Using 

Brazilian demographic and health survey, Thomas et al. (1991) show that mother’s education 

                                                      
25VO2 max is the maximum rate of oxygen that body can take up and utilize. This index could be regarded as a 
measure of healthiness. 
26 The study was also limited in controlling for other reasons for the differences in the results, including 
socioeconomic status. 
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could affect child health through access to more information in the form of reading newspapers, 

watching television and listening to radio. Barrera (1990) suggests other reasons for the maternal 

education-child health link, such as changing the productivity of health inputs via an increase in 

mother’s non-market efficiency, changing household preferences, and increasing the chance of 

marrying a wealthier husband.  He also concludes that well-educated mothers improve the health 

of children under 2 years old since their health has not yet stabilized.   Case et al. (2002) 

indicates that educated mothers have healthier children and suggests that maternal health has a 

greater effect on child health compared with paternal health for all age groups.  Currie and 

Stabile (2003) use the National Longitudinal Survey of Children and Youth (NLSCY) data to 

estimate the effect of family income and maternal education on health of children  between ages 

3 and 15 in Canada. Their results are quite similar to those in Case et al. (2002).  Chen and Li 

(2009) consider a sample of adopted children in China, which helps them remove the genetic 

determinants of child health, and find that adopted children with well-educated mothers are 

healthier even after controlling for income.  

Contrary to the above findings, Schultz (1984) suggests a well-educated mother has a 

higher opportunity cost, which limits the time she can spend with her child as she might intend to 

work more.  This hints that there may be other pathways for mothers’ characteristics to improve 

health.  Particularly, the time mothers spend with children might prove crucial.  A series of 

studies have offered evidence that speak to this issue.  Using 1997-2002 data from Health Survey 

of England (HSE), Currie et al. (2007) finds no evidence to support that parental unemployment 

might deteriorate child health, which at first might seems to run counter to the expected effects 

of the lower income and education of the unemployed. Although generous unemployment 

benefits in the UK are a mitigating factor, parental unemployment also increases the time parents 

spend with their child, which may have an offsetting positive effect on child health.  Currie et al. 

(2007) also conclude that nutrition and family lifestyle choices play an important role in child’s 

health. They conclude that children who eat vegetables regularly are healthier regardless of 

family income. 

Other studies have looked more directly at maternal employment’s effect on child health.   

Using the National Longitudinal Survey of Youth (NLSY), Anderson et al. (2003) find that there 

is a positive causal relationship between the number of hours that a mother works per week and 
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the likelihood that her child is overweight. Their results indicate that it is hours per week worked 

that affects the likelihood that a child is overweight, rather than the number of weeks worked. 

Fertig et al. (2009) replicate the Anderson et al. (2003) study using the Panel Survey of Income 

Dynamics (PSID) and obtain very similar results. Their study also indicates that maternal 

employment is related to children’s Body Mass Index (BMI) through the average number of 

meals consumed and time spent on sedentary activities. Cawley and Liu (2007) find that 

employed women spend significantly less time cooking, eating with their children, and playing 

with their children.  They are also more likely to purchase prepared foods, which could increase 

the likelihood of child obesity. 

As these studies imply, childhood health could be sensitive to the time mothers spend 

with their children. Homeschooling, as an alternative form of educational provision, leads 

mothers to allocate more time to their own child and might enhance child health. The results in 

Section V support this conjecture.    

 

III. What is known about decision to homeschool a child? 
 

Most children receive education by going to a public or private school outside of the home. 

However, due to perceived delinquencies in various aspects of public and private education 

systems, parents may prefer to homeschool their children. According to the NCES report in 

2007, 85 percent of students used the public system and 11.4 percent used private schools.  Apart 

from this, 2.9 percent of students were homeschooled.  

According to Bielick (2008), 35 percent of homeschooling parents cite that the most 

important reason they chose homeschooling was to provide their children with religious or moral 

instruction. Later, we take into account the degree of religiosity as a determining factor of 

homeschooling. In addition, 20 percent of them believe that their incentive for homeschooling 

was to protect their children from the negative aspects of the public school environment, 

especially issues such as safety, drug use, and negative peer group pressure. According to Grady 

et al. (2010), 77 percent of families involved in homeschooling are white, 10 percent are 

Hispanic and only 4 percent are from black. This report also shows that 45 percent of 
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homeschooled children are in grades 1 to 5. In addition, this type of education is more popular in 

suburbs and rural areas in which 77 percent of US homeschooling takes place. 

Isenburg (2002) investigated the effect of public or private school quality on parents’ 

decisions to homeschool their children. The findings are consistent with poor quality of 

traditional schooling options being to blame. Parents also believe that by homeschooling their 

children, they could reduce the likelihood that their children engage in risky behaviors, such as 

alcohol consumption, drugs, violence and premarital sex.  

Houston and Toma (2003) discuss how maternal education and heterogeneous income 

distributions within public school districts increase the rate of homeschooling, but tight 

regulations negatively affect it. In addition, poor quality has a similar effect to that found in other 

studies.    

Belfield (2002) studied the major reasons for why parents end up choosing a schooling 

method among public, private-independent, private-religious and homeschooling. He finds that 

the families involved in homeschooling are not that different from those who choose other 

schooling methods. However, he finds that mothers’ characteristics are very important in 

parental choice of homeschooling, especially her employment status as well as religiosity.  

Howell and Sheran (2008) use the same data that I use to study the determinants of the 

homeschooling decision in the United States. Their findings show that the probability of 

homeschooling increases by 1.5 percentage points in families in which the mother is not in the 

labor force, assuming maternal employment to be exogenous. Maternal employment, along with 

a set of socioeconomic variables, however, could be both determinants of child health as well as 

homeschooling decision. On the other hand, the degree of religiosity of a family likely does not 

affect child health.   Therefore, I will propose using religiosity, among other instruments, to 

address what is likely to be the endogenous choice to homeschool a child. Endogeneity of 

homeschooling and my empirical strategy are discussed more extensively in Section 5.  
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IV. Data 
 

I use the Parent and Family Involvement (PFI) survey of NCES to test my hypothesis about the 

association of homeschooling and child health. This survey is a random digit dialing phone 

survey, which is carried out nationally every four years across all states in the United States. 

NCES changes the panel of households each year and interviews a new cross section of them. In 

the PFI survey, parents answer some questions about the type of schooling they choose for their 

kids, including public and private schools, as well as home education. Since 2003, the parents 

were asked about their child’s health status and some other health related questions.   

Unfortunately, the health status and homeschooling variables are not available for years 

prior to 2003 and they are jointly available only for 2003 and 2007. Table 10 illustrates the 

summary statistics of data both for homeschooled and non-homeschooled children. The health 

status of the child is reported by parent or guardian in an ordinal manner from 1 to 5. This 

measure is similar to those used in Case et al. (2002) and Currie and Stabile (2003).27 I rescale 

the health status variable such that 1 represents poor health, 2: fair, 3: good, 4: very good and 5: 

excellent. For some specifications, I also generate a dummy for health status that equals one for 

those with very good or excellent health and zero otherwise. I restrict attention to children in the 

traditional schooling age rage  5 to 17. The survey includes 21,701 children who were sent to 

public or private schools, and 537 homeschooled children in the combined 2003 and 2007 

samples.  

Child age, a gender dummy, and a set of race and ethnicity dummy variables indicating 

whether a child is white, black or Hispanic are included as covariates to serve as controls for 

socioeconomic status (SES). Household income is available in the survey in a categorical format. 

I consider the midpoint of the income category as household income for each individual and use 

the log of income in the regressions.28 In addition, to take into account maternal characteristics, a 

dummy for her educational background is considered. The rest of Table 10 reports mother’s 

education , as well as year and region dummies.  Column 2 of Table 10 presents the summary 

statistics for homeschooled students.  

                                                      
27 For more explanation, see Currie, 2008. 
28 Since the last category is unbounded, I assume that the highest income is $150,000. 
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Table 11 shows the unconditional child health variation for three age groups: 5-7, 8-12 

and 13-17 years old. According to Table 2, 59.54 percent of non-homeschooled children between 

8 to 12 years old are reported to have excellent health status while 72.96 percent for their 

homeschooled counterparts have excellent health. On the other hand, 59.08 percent of non-

homeschooled teenagers (those older than 12) benefit from excellent health while this number is 

57.40 for homeschooled kids in this age group. The test for homogeneity of proportions is 

significant, suggesting that child health is different across homeschooled and non-homeschooled 

children. This does not take into account the influence of the covariates listed in Table 1, nor 

does it consider the endogeneity of homeschooling.  Yet, it does stand as an important pre-

condition that the health of homeschooled children ages 8-12 is better than their traditionally-

schooled counterparts.   

 

V. Method and Estimation 

     A.    Identification strategies 
Each strategy begins by using an ordered Probit analysis, with the dependent variable being child 

health status on a 1-5 scale.  The covariate of interest is a dummy equal to one if the child is 

homeschooled and zero otherwise. A set of other explanatory variables are typically included, 

including child age and gender, race and ethnicity, family income, child disability, mother’s 

education , and year and region dummies.29  

 The first means to identify plausibly exogenous variation in homeschooling is an 

instrumental variable ordered Probit model.  Such an approach requires identifying variables that 

affect the decision to homeschool but are free of correlation with unobserved factors affecting 

health. While finding a perfect IV is very difficult, I introduce a set of IVs.  Each IV has merit in 

terms of explaining homeschooling and passing the typical statistical tests for instrument 

validity.   

 I consider two instruments. The first instrument is based on a question, which reflects the 

degree of religiosity of the family. The question is “During this school year, has (CHILD) 
                                                      
29 Inclusion of a dummy for living in urban area and family size in the reduced form regression results in statistically 
insignificant estimated coefficients. While I do not report in Table 3, I use this point to employ these variables as the 
second set of IVs for homeschooling given that they can explain homeschooling decision. 
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participated in any of the following activities (outside of school)? Church or temple youth group 

or religious instruction”. This question is asked from all individuals in the sample, including 

homeschooled as well as non-homeschooled children. This variable might be a suitable 

instrumental variable because according to Bielick (2008), religion is a determining factor of 

homeschooling decision. On the other hand, there are a number of studies which address the 

region-health link (Levin 1994, Deaton 2009). However, as we will see later, homeschooling is 

only positively associated with a better child health for children between 8 to 12 years old and 

ineffective to the health of children in other age groups. This differential effect might be 

suggestive in that religiosity is a valid IV and could be used in our analysis with less concern.   

This assumption is of course testable with additional instruments.  

The second instrumental variable is related to extracurricular activities that might indicate 

a parent would home school a child. Specifically, the question “During this school year, has 

(CHILD) participated in any of the following activities (outside of school)?  Scouting or other 

group and club activities”. Again, this question was asked of all individuals in the sample 

regardless of their schooling type. Many states give equal right to homeschoolers to utilize the 

public school districts’ extracurricular activities.30 Scouting and other group activities might have 

a positive effect on the decision making process to homeschool, as families observe successful 

experiences of homeschooling children among other families in these group activities. As we see 

later, the first stage results in Table 12 Column (4) support this idea.31  

                                                      
30 For a list of states that have such laws see http://www.hslda.org/docs/nche/Issues/E/Equal_Access.pdf. 

31 In the appendix, Table A1 illustrates the results including three IVs in this first set. It includes log of number of 
regional internet users per regional population as another IV. I appeal to the fact that much information on the 
benefits of homeschooling comes from the internet.  Homeschoolers can learn about the benefits, as well as receive 
the curricular materials through the internet. For example, Illinois and Florida provide some online high school 
courses designed for homeschoolers. There are also some private companies that produce online materials for home 
education. In order to utilize these online products, it is essential for the families to have an internet connection. 
Therefore, it is reasonable to consider internet penetration in US families as an instrumental variable (IV) for 
homeschooling. In order to do so, the number of internet users in different regions in the United States weighted by 
regional population in 2003 and 2007 is construed as a proxy for internet penetration among US families. In 
addition, the information of whether the family has access to the internet at home or not is also available in the 
survey. This variable itself may be endogenous as an instrument, which I verified using the Hansen J statistics when 
I conduct robustness check using Two-Stage Least Square (2SLS). As I explain later, regional internet penetration 
does not suffer from these issues. However, comparing the p-value of Hansen J statistic including the two first IVs 
proposed in the main text preferred to all three. Therefore, the main results are based on including Church and 
scouting/club activities as IVs. But I report the three IV case in the appendix.  Appendix Figure 1 illustrates the 
percentage of home internet users by income for 2003 and 2005 and shows that it is not correlated with the 
household income. Hence, this IV might not be correlated with family income, which itself can affect child health. 
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 In order to make sure that IVs are not weak, I conduct a test of joint significance of IVs 

for the first stage. In addition to that, I carry out an overidentification test for each set of IVs in 

which the null hypothesis of valid IVs (not correlated with the error term) could not be rejected. I 

discuss these tests in detail in section 5.2.     

The econometric model, with individual subscripts suppressed, is as follows: 

  

The variable y represents child health, HS is the homeschooling dummy variable and X is the 

vector of other explanatory variables. In the first stage regression, Z are the IVs that predict 

homeschooling. Column (4) of Table 12 illustrates the IVs are significant and the F-test of joint 

significance of IVs in the first stage regression is reported separately. I recognize there are a 

number of alternatives to estimating my model in this fashion and take these up in a series of 

robustness checks later in the paper.  

 

B. Quasi-experimental approach 
While the IV approach illustrates strong evidence of positive effect of homeschooling on child 

health, one might question the validity of the results obtained, especially on conceptual grounds 

with regard to the exogeneity of the IVs used. In this section, by adopting a different 

identification strategy, I try to mitigate this concern. I implement a quasi-experiment in which I 

restrict the sample to families with two children, only one of which is being homeschooled.  This 

holds family background fixed.  What remains as the only difference is that one of the children is 

being homeschooled but the other one is being sent to a public or private school. This approach 

helps tackle the endogeneity problem we faced in previous section and provides validation that 

those findings were indeed correct. To conduct such analysis a data set that includes children in 

the same family is needed. The 2003 PFI survey from NCES is the only known survey that gives 

the flexibility to carry out such experiment.  In that year, there were fifty families with one 

homeschooled child and one not homeschooled. Although this leaves me with just hundred 

observations, it is a more plausible exogenous experiment.  
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VI. Results 
Column (1) of Table 12 shows the results considering health as a function of homeschooling 

only. Column (2) adds a series of socioeconomic covariates, as well as mother’s education.  The 

first two columns of Table 12 show that, assuming homeschooling is exogenous, it has a positive 

but only marginally significant impact. The explanatory variables predict health as expected; 

child health depreciates by age and boys are healthier compared to girls assuming all other 

factors to be constant. In addition, white children are healthier regardless of which estimation 

method we use. The results also indicate that household income positively affects health.  

An important factor that stands out is mother’s education. This factor has long been 

considered important determinants of child health. My results show that child health could be 

adversely affected by mothers’ low level of education (less than a college degree). We will return 

to this variable and its possible relationship with home schooling’s effect later. 

Column (3) and (4) take endogeneity into account by using the two IVs. The coefficient of 

homeschooling becomes more pronounced and statistically significant. The estimation results 

indicate that homeschooling positively affects the child health. Using IV approach necessitates a 

series of post-estimation diagnostic tests. We should verify that the IVs are jointly significant 

and they are valid and not correlated with the error term. The results from the F-test of joint 

significance of IVs are reported in Column (4) of Table 12 and show that the excluded IVs 

(Church, Scouting activities) are jointly significant when we control for other explanatory 

variables in the first stage. To test the validity of IVs, I use the Hansen test of overidentification 

restrictions in 2SLS estimation since a similar test is not available for IV ordered Probit model, 

and the estimation results from 2SLS is similar to that of IV ordered Probit. Table 16 reports the 

results for the Hansen J statistic. The p-value is large enough for both sets of IVs to imply that 

the null hypothesis of valid IVs is not rejected.32 

In Table 13, I conduct a subsample analysis for children within the age groups of 5 to 7, 8 to 

12 and 13 to 17 years old.  Panel A considers no instrument while Panel B corrects for 

endogeneity. The results indicate that homeschooling has the more pronounced effect on child 

                                                      
32 In Table 16, Rows (1) and (3) report the p-values of Hansen test of overidentification restrictions. 
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health for children of age 8 to 12 across all two panels. This result is in accord with the existing 

literature on the association of children’s health and time they spend with their mothers. During 

the pre-teen ages, children would likely be more influenced by the additional time spent with a 

mother. This result is also very suggestive in that although the homeschooling does not have an 

immediate effect on child health, it improves the child’s health after two or three years of 

positive health inputs. This might be related to healthy nutrition at home. It is also the case that 

the homeschooled children ages 8-12 likely have more limited contact with other students, but 

the lack of an effect for younger children ages 5-7 suggests it is the maternal contact that is likely 

causing the better health.   

A.  Maternal characteristics and homeschooling effect  
Table 5 explores the mechanisms of the effect of homeschooling and child health further by 

presenting the estimated coefficient of homeschooling on child health given information about 

one’s potential maternal influence.  I use the same set of IVs and sample from Table 12.  I first 

am interested in whether mother’s education, which has its own strong influence on health, 

matters in terms of whether homeschooling is more or less influential on health.  Interestingly, 

children of less educated mothers are the ones whose health is improved by homeschooling.  

Row (2) analyzes the effect of homeschooling on child health for two income levels: below 

$50,000 and above $50,000. The results show that homeschooling has a larger effect on child 

health for families at or below the national average income. It also indicates that homeschooling 

does not affect child health in families with income above $50,000.33  Taken together, these 

results suggest that the maternal involvement that comes with home schooling has a strong effect 

on health but only for the less educated, lower income families.  This is indicative that 

homeschooling somewhat substitutes for these families what higher education and income buys 

for other children.  Specifically, there are multiple ways mothers can improve the health of their 

children.  It can be achieved through highly educated mothers being better able to provide 

                                                      
33 Unfortunately, I could not find a way to test if the estimated coefficients of homeschooling in two different 
subsamples are statistically different using IV ordered Probit models. However, I use another strategy for estimating 
the effect of homeschooling in which I generate a dummy from the interaction of homeschooling dummy and 
another dummy equal to one if the child belongs to the subsample of interest. Since the homeschooling dummy is 
endogenous, so is the interaction variable. Therefore, in the simplest case two more IVs are added which are 
themselves interactions of initial IVs (Church and Scouting), with the dummy for the subsample of interest. The 
results support the findings in Table 14, especially those related to mothers’ education and family income and are 
reported in the Appendix Table A4. However, there are still some concerns that the IVs for endogenous interaction 
dummies are not valid conceptually, although Hansen J test validates them mechanically.  
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positive health inputs to their children.  Alternatively, those inputs could also be fostered with 

time spent with children. I conduct some additional estimations to confirm this point in rows (3) 

and (4).  When a mother works full time, homeschooling is ineffective on child health. However, 

homeschooling enhances health of a child whose mother either does not work or works part time. 

Row (4) considers the presence and the absence of mothers in the family and indicates that, in 

the presence of a mother, homeschooling affects the child health positively.  When a mother is 

absent, homeschooling becomes ineffective. Although the sample size is small for the latter 

subsample, the result is suggestive that mothers’ time spend with a child is a key determinant of 

child health.   

Results in Table 14 imply that the time a less educated mother or a parent in a low-

income family spends with the child (in the form of homeschooling) matters to the child health. 

In other words, time spent by a less educated mother or a parent in a low-income family makes 

up part of the child’s health gap with a child living in a family with high socioeconomic 

backgrounds.  It could also be that part of the gain to mother’s education is mitigated by the 

higher opportunity cost of a mother’s time in providing inputs to their children.  In either case, 

these results are strongly supportive of the notion that maternal time with children is valuable to 

child health. 

  

B.  Alternative models and robustness checks 
Table 15 illustrates the results for the quasi-experimental approach. Column (1) shows the 

estimated coefficients of homeschooling using an ordered Probit regression for the sample of 

hundred children in fifty families. It includes age, gender dummy, disability, race and ethnicity 

dummies, maternal education and log of household income. Column (2) reports the results from 

the same set of regressions but in a sample including homeschooled children not older than 12 

year of age. This sample is very similar to the subsample analysis in Section V.A, However, I 

was unable to split the sample into three age categories due to the lack of enough observations.  

The effect of homeschooling is positive and more pronounced for the restricted sample, and it is 

statistically significant. This strongly suggests that the homeschooled children under 13 are 

healthier than their siblings who are not being homeschooled. This finding is consistent with the 

result I obtained using the first set of IVs, confirming that it is very likely that homeschooling 
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could lead to better health outcome for children.  

In Table 16, I present batteries of additional robustness checks. Given that there are 

reasonable alternatives to the IV ordered Probit model, I test whether alternative models yield 

similar results. In panel A, Row (1), I show the estimated coefficient of homeschooling on child 

health from 2SLS using church and scouting activities as IVs. The 2SLS results in a larger 

coefficient, which is also statistically significant. The p-value of Hansen J statistic also implies 

that the instruments are valid and are uncorrelated with the error term. Since child health is an 

ordinal outcome, it is recommended to use ordered Probit rather than 2SLS. However, the 

diagnostic tests available for 2SLS method enable us to confirm the appropriateness of the IVs.   

In Row (2), using an IV ordered Probit model, I exclude the students attending private 

schools. Since many private schools have religious affiliations, excluding private school 

attendees should help us identify the effect of homeschooling on child health better. The 

estimated coefficient of homeschooling does not change notably.  

In panel B, results are reported using the same models as in rows (1) and (2) but with a 

different measure of child health. It also adds Row (4) in which I report the results using an IV 

Probit model. We use a binary variable equal to one if child health is excellent or very good and 

zero otherwise.  Again the results are consistent with those in panel A, each confirming the 

positive association of child health and homeschooling.  

 

VII.     Conclusion 
 

Homeschooling plays a small, but growing role in the education of children. Since 1999 the 

number of homeschooled children has increased by almost 60 percent. The results of this paper 

show that being homeschooled significantly enhances the health status of children between 8 to 

12 years old relative to their private and public school counterparts. The findings suggest that 

home education does not affect health of those of age 13 and older.  

The likely pathway from homeschooling to better early childhood health is the increased 

time,  spent with a child, particularly by a mother.  The results also indicate that mother’s 
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education is a crucial factor in determining child health. Mothers with higher level of education 

have healthier children. Homeschooling, however, can partially alleviate the gap between the 

early health of children with educated mothers and children with less educated mothers. This 

result shows that by spending more time with her child and providing him  with healthier foods 

and other positive physical and mental health inputs, s a mother can partially make up forthe 

benefits that come with higher education.  Additional estimations confirm that itis indeed the 

presence of the mother and the time spent with a child that likely explains the health-

homeschooling correlation. 

This study is one of the first of what will likely be a large literature on the effects of 

homeschooling on children.  The study is far from concluding whether homeschooling is a 

socially desirable means of schooling kids.  It does highlight one important aspect of home 

schooling, however, which is the health benefit of increased contact between mother and child at 

early ages. 
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Table 10 Summary statistics 

 (1) (2) (3) 
  Non-homeschooled Homeschooled     

Variable Mean Std. Dev. Mean Std. Dev. Min Max 

Health 4.41 0.84 4.46 0.89 1 5 

Homeschooling 0 0 1 0  0 1 

Age 11.28 3.69 11.27 3.84 5 17 

White 0.60 0.48 0.75 0.43 0 1 

Black 0.12 0.33 0.06 0.23 0 1 

Hispanic 0.20 0.40 0.11 0.31 0 1 

Disability 0.24 0.43 0.24 0.43 0 1 

Income  69144 47694 61419 40801 2500 150000 

Mom education  ≤ some college 0.63 0.48 0.63 0.48 0 1 

Mom employed 0.68 0.47 0.40 0.49 0 1 

Church involvement 0.58 0.49 0.73 0.44 0 1 

Scouting and/or Clubs activities 0.23 0.42 0.33 0.47 0 1 

Midwest 0.22 0.41 0.18 0.39 0 1 

West 0.25 0.43 0.25 0.43 0 1 

South 0.36 0.48 0.44 0.50 0 1 

yr07 0.46 0.50 0.55 0.50 0 1 

Obs. 21701 537     
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Table 11 Percentage of homeschooled and non-homeschooled children with different health status 
in two age groups. 

   Health 

Age 

Not homeschooled Homeschooled Chi-squared test 

1 2 3 4 5 1 2 3 4 5 
 

5-7            

Percentage 0.40 2.63 9.96 24.06 62.94 0.85 1.69 7.63 18.64 71.19 4.238 
[0.375] 

Frequency 18 119 450 1087 2843 1 2 9 22 84  

8-12            

Percentage 0.40 2.94 11.21 25.91 59.54 0.51 2.55 6.12 17.86 72.96 15.207 
[0.004] 

Frequency 33 242 923 2133 4902 1 5 12 35 143  

13-17            

Percentage 0.58 3.52 11.66 25.16 59.08 1.79 6.28 11.66 22.87 57.40 10.42 
[0.034] 

Frequency 52 315 1044 2252 5288 4 14 26 51 128  

Note: Numbers in parenthesis are P-value of the homogeneity test. 
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Table 12 Effect of homeschooling on child health 

 
 Ordered Probit IV Ordered Probit 

 (1) (2) (3) (4) 

   Stage 2 Stage 1 

Homeschooling 0.124 0.086 1.514

 (0.080) (0.089) (0.266)***

Age -0.011 -0.010 0.000

 (0.003)*** (0.003)*** (0.006)

Male 0.071 0.077 -0.057

 (0.022)*** (0.022)*** (0.047)

White 0.208 0.188 0.118

 (0.034)*** (0.034)*** (0.085)

Black -0.002 0.040 -0.443

 (0.045) (0.045) (0.111)***

Hispanic -0.267 -0.213 -0.401

 (0.033)*** (0.035)*** (0.076)***

Disability -0.182 -0.174 0.027

 (0.024)*** (0.024)*** (0.053)

Log of income 0.086 1.514 0.000

 (0.089) (0.266)*** (0.006)

Some college or lower -0.011 -0.010 -0.057

 (0.003)*** (0.003)*** (0.047)

Excluded IVs 
Church activities 0.328

 (0.050)***

Scouting activities 0.182

 (0.049)***

F-test     61.17 
[0.000] 

Obs. 22,238 22,238 22,238          22,238 

Note: The coefficients for year and region dummies are included but not reported in the table. All regressions are 

weighted and numbers in parentheses are robust standard errors. F-test reports the F statistic for testing the joint 

significance of IVs in the first stage regression with the p-value reported in the brackets.  *, ** and *** indicate 

p<0.1, p<0.05 and p<0.01, respectively. 
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Table 13 Effect of homeschooling on health across different age groups 

Panel A: No instrument 
(1) 

5-7 

(2) 

8-12 

(3) 

13-17 

    

Homeschooling 
-0.046 

(0.280) 

0.309 

(0.104)*** 

-0.011 

(0.107) 

Panel B: With instrument    

Second stage    

Homeschooling -1.345 1.983 0.760 

 (0.832) (0.095)*** (0.623) 

First stage (Excluded IVs)    

Church activities 0.334 0.480 0.224 

 (0.106)*** (0.079)*** (0.082)*** 

    

Scouting activities 0.250 0.219 0.150 

 (0.156) (0.069)*** (0.092) 

F-test 
       10.84 

[0.004] 

       51.65 

[0.000] 

        9.28 

[0.010] 

Obs.       4,635        8,429        9,171 

Note: Each column reports the result from an IV Ordered Probit regression for a specified age group. The first row shows 
the estimated coefficient of homeschooling on child health followed by the first stage results for the estimated coefficient 
of excluded IVs. Variables included in both stages are age, a gender dummy, race, and disability dummy, log of family 
income, region and year dummy. F-test reports the F statistic for testing the joint significance of IVs in the first stage 
regression with the p-value reported in the brackets. All regressions are weighted and the numbers in parenthesis are 
robust standard errors. *, ** and *** indicate p<0.1, p<0.05 and p<0.01, respectively.
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Table 14 Subsample analysis of the effect of homeschooling on child health 

With instrument, IVs: Church, scouting activities 

 Mothers with some college or lower 
education   

Mothers with college degree or higher 
education 

 

 (1) 

1.629 

(0.154)*** 

0.233 

(2.179) 

Obs. 14,956 7,282 

 Income < $50K       Income > $50K 

(2) 
1.445 

(0.197)*** 

1.162 

(1.931) 

Obs. 9,501 12,737 

 

Mothers do not work or work part time Mothers work full time 

 

 (3) 

1.532 

(0.260)*** 

0.161 

(0.466) 

Obs. 10,966 11,272 

 Mother is present Mother is absent 

 

(4) 

1.441 

(0.304)*** 

0.015 

(0.722) 

Obs. 20,668 1570 

 

Note: All coefficients are coefficients of homeschooling on child health estimated using IV ordered Probit. 
All regressions are weighted and numbers in parentheses are robust standard errors.   *, ** and *** indicate 
p<0.1,  p<0.05 and p<0.01, respectively. 
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Table 15 Effect of homeschooling on child health, quasi-experimental approach 

 
 (1) 

Full sample 

(2) 
Homeschooled=1 & Age < 13 

Yrs. 

Panel A Ordered child health (1=poor to 5=excellent) 

Homeschooling 0.112 
(0.252) 

0.776 
(0.330)** 

Panel B Binary child health (0=good or below, 1=very good & excellent) 

Homeschooling 
0.068 

(0.294) 
0.830 

   (0.394)** 

Obs. 100 88 
Note: All regressions are weighted and numbers in parenthesis are within family 
clustered standard errors. Region and year dummies are excluded to achieve convergence 
due to lack of enough observations. The family background variables are included in the 
regression but are not reported.  *, ** and *** indicate p<0.1,  p<0.05 and p<0.01, respectively 
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Table 16 Robustness checks 

Panel A Ordered child health (1=poor to 5=excellent) 

2SLS  

(1) IVs: Church and scouting activities   
3.607 

(0.975)*** 

 P-value of Hansen J statistic [0.479] 

IV ordered Probit  

(2) 
Excluding private schools 
IVs: Church and scouting activities   

1.480 
(0.275)*** 

Panel B Binary child health (0=good or below, 1=very good & excellent) 

2SLS  

(3) IVs: Church and scouting activities   1.802 
(0.455)*** 

 P-value of Hansen J statistic [0.739] 

IV Probit  

(4) IVs: Church and scouting activities 5.097 
 (0.514)*** 

(5) 
Excluding private schools 
IVs: Church and scouting activities   

4.873 
 (0.482)*** 

Note: Each row shows the estimated coefficient of homeschooling for the specified regression. P-value of 
Hansen J statistic is reported for 2SLS regression in the brackets in Rows (1) and (3) both implying that the 
IVs are valid. Bivariate ordered Probit and Bivariate Probit in the absence of endogeneity represent ordered 
Probit and Probit, respectively. Rows (2) and (4) show the effect of homeschooling on child health 
excluding children who go to private schools.  All regressions are weighted and numbers in parentheses are 
robust standard errors. 
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Figure 4 Internet home users by income (%) 
 

 

      Source: U.S. Census Bureau  
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Note: School shootings and private school enrollment 

 

 

 

I.  Introduction 
 

School shootings, through excessive media coverage, create panic (Jemphrey and 

Berrington 2000; Muschert 2007) and generate a perception of a public health problem 

that exceeds its actual danger (Burns and Crawford 1999).  According to a post-

Columbine survey, two-thirds of Americans believed that it is at least somewhat likely 

that a similar shooting could happen in their area (Saad 1999).  Such widespread fear may 

prompt reactions from the public that surpass the scope of these isolated events.  We offer 

evidence of one such reaction to school shootings by showing a significant increase in 

private school enrollments the school year following a shooting.  At the same time, public 

school enrollments decline.34   

 We confirm that these reactions are likely media-driven.  Since socioeconomic 

factors drive the nature of how school violence is covered by the media, with shootings in 

urban and predominantly minority schools receiving more limited coverage (See, e.g., 

Menifield et al., 2001), we would expect stronger effects to follow shootings in nonurban 

settings.  This is supported by our data. We also find that the impact of school shootings 

is temporary, with a post-shooting effect only observed in the Fall following the shooting.  

No effects are found in subsequent years, confirming that these enrollment decisions are 

likely heat-of-the-moment in nature.   

                                                      
34 The only study of the effect of school shootings by economists that we are aware of showed that test 
scores for high school students fell following school shootings in Finland.  The results were linked to post-
traumatic stress syndrome (Poutvaara and Ropponen, 2010).   
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 These results suggest school shootings serve as a viable source of exogenous 

variation in private school enrollments for future studies wishing to employ a natural 

experiment approach for assessing the economic implications of private school 

enrollment.   

III. Basic empirical approach and data 

 

To assess the impact of school shootings on enrollments, we estimate weighted least 

squares regressions on state-level data, summarized by: 

ititittiit XSSlprivate   '= 21      (1) 

and 

 ititittiit XSSlpublic   '= 21       (2). 

These regressions are weighted by population, which allows for less weight to be placed 

on smaller states that have higher variability in enrollment.  The variables lprivate and 

lpublic are logs of private and public school enrollment in state i in year t for the school 

year beginning in the Fall.  State (α) and year (γ) fixed effects are included.   The variable 

SS is a dummy variable indicating that a shooting occurred in the previous academic 

year.  We also separate the SS variable into urban shootings and nonurban shootings.  

Specifically, we define urban shootings as those in places with more than 100,000 

people.35   

 The variable X comprises the control variables in all specifications, including the 

log of a state’s population of those ages 14-18.  The log of unemployment is also 

included since a poorer economic climate might limit private school enrollments.  In 

some specifications, each state dummy variable is interacted with a linear time trend.  

This allows for identification of state enrollment effects free of confounding trends. 36  

                                                      
35 There were two cases (Antioch, CA and El Cajon, CA) that were close to the 100,000 cutoff but 
circumstances of the shootings clearly guided the classifications into urban and nonurban, respectively.   
36 Adding  a richer set of control variables such as mean personal income, percentage of people with 
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 We consider shootings to be exogenous so the controls only add to the efficiency 

of the estimations.  To verify that shootings are exogenous, we use the 2007-2008 School 

Survey on Crime and Safety from the National Center for Education Statistics to test if 

school characteristics such as school size, location (urban vs. nonurban) and racial 

characteristics are statistically different between schools in which a shooting has 

happened versus other schools. They are not.  Moreover, since shootings in our database 

included wealthy states (CA and MD), poor states (AL and TN), and quintessentially 

average states (GA and WI), these shootings can and do occur anywhere.    

 We aggregate private and public high school enrollments using data from the 

1998-2009 October Current Population Surveys (CPS) and the CPS population weights.  

Annual unemployment rates are obtained from the Bureau of Labor Statistics.  Our final 

data consist of fifty states and the District of Columbia from 1998-2009, which totals 612 

observations. 

III.  Results 

A. Basic weighted least squares estimation 

Panel A and Panel B of Table 17 present the basic private and public enrollment results, 

respectively.  Starting in column (1), where only state and year fixed effects are included, 

and proceeding through column (3), which adds state-specific trends to the population 

and unemployment controls, the effect on private school enrollment is a 9.7%-11.6% 

increase.  The public school enrollment effect shows a 0.4%-1.3% decrease.    

 Despite being statistically insignificant and small, the public school enrollment 

decrease is consistent with the private school enrollment increase in both sign and 

magnitude.  According to Snyder and Dillow (2011), 1,389,000 students were enrolled in 

private high schools and 14,807,000 were enrolled in public high schools in 2009.  A 

9.7%-11.6% increase in private school enrollment therefore corresponds to an 135,000-

161,000 increase in the number of students enrolled.  A 0.4%-1.3% decline in public 

school enrollment corresponds to a 59,000-192,000 decrease in public school enrollment.   

                                                                                                                                                              
Bachelor's degree, and percentage of African American people only makes the estimated coefficient of 
shootings on private school enrollment stronger. 
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 The mechanism by which we suspect school shooting to translate into changes in 

enrollment is excessive media coverage.  Such coverage is more likely following 

shootings in suburban and rural areas, as opposed to urban areas where youth violence is 

more expected and not overplayed.   In column (4), we report different effects for the 

urban vs. suburban shootings, and the results are consistent with the expected 

mechanism. 

B. Additional estimates 

 

Table 18 presents additional estimates and robustness checks applied specifically to the 

private school enrollment results, which were the effects that proved significant in the 

basic specifications.  We first probe the media coverage explanation more deeply by 

eliminating those shootings that resulted in no deaths, which we would suspect might 

prompt more limited reaction from parents.  The difference in the nonurban and urban 

effects on enrollment becomes more pronounced, with only the former being negative. 

 The log specifications using weighted least squares provide easily interpretable 

elasticities, but we recognize there was an obvious alternative.  In the second row of 

Table 18, we create a measure of the proportion of enrollments among those ages 14-18 

that were in private high schools in each state-year cell.  The effect of nonurban shootings 

is a 0.011 increase in the proportion enrolled in private schools.  Given that the 

proportion enrolled in private high schools is just under 9% in the sample, the magnitude 

of this estimation is comparable in size to the log enrollment specification estimates 

presented in Table 17.  We also present unweighted OLS estimations, confirming 

weighted least squares was providing, if anything, more conservative estimates. 

 We used school shootings in the previous academic year to explain enrollment in 

the subsequent year.  We suspect these reactions are heat-of-the-moment decisions amid 

intense coverage and do not last long.  The last three rows of Table 18 are consistent with 

these expectations.  Private school enrollments surge in the school year immediately 

following a shooting but quickly return to old levels.   
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IV. Conclusion  

 

We establish a previously overlooked result linking school shootings to private school 

enrollments.    Despite the fact that shooting incidents are relatively rare, their impacts 

are widely felt.  Parents overestimate the potential for such events to be repeated, 

particularly those that occur in suburban and rural areas, because of intense media 

coverage.  Because this manifests itself in changes in enrollment, we provide a potential 

source of exogenous variation in school enrollment type for future studies wishing to 

assess the implications of private school enrollment through a natural experiment  

approach.  For example, the literature on the effect of private schools on student 

achievement is wrought with conflicting results stemming from issues related to the 

unobservable factors that explain private school enrollment decisions.37  Currently, the 

best evidence on the benefit of private schools comes from randomized field trials.38  As 

an alternative, one could presumably track students over time that switch schools 

following school shootings.  These students might provide a reliable treatment group for 

studies of private schooling.  

                                                      
37 See Vandenberghe and Robin (2004) for a comprehensive review of the international evidence. 

38 For example, voucher experiments provide compelling evidence of the potential benefits of private 
school (see, for example, Angrist et al., (2002) and Wolf et al. (2011)). 
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Table 17 Weighted least squares regression 

Panel A: Private high school enrollment 

 
 

 

(1) 

 

(2) 

 

(3) 

 

(4) 

   x nonurban shooting    0.151 

(0.080) 

   x urban shooting    0.071 

(0.082) 

Log of 14 to 18 yrs old pop  0.631 

(0.437) 

-0.195 

(0.971) 

-0.263 

(0.987) 

Log of unemployment  0.123 

(0.131) 

0.082 

(0.183) 

0.102 

(0.184) 

State specific trends No No Yes 

 

Yes 

Panel B: Public high school enrollment 

 

 

 

(1) 

 

(2) 

 

(3) 

 

(4) 

   x nonurban shooting 

 

   -0.010 

(0.026) 

   x urban shooting 

 

   0.001 

(0.023) 

Log of 14 to 18 yrs old pop  0.707 

(0.201) 

0.533 

(0.334) 

0.543 

(0.334) 

Log of unemployment  0.017 

(0.047) 

-0.045 

(0.053) 

-0.048 

(0.054) 

State specific trends 

 

No No Yes Yes 

Note: Each column from each panel is from a separate regression, weighted by the population of 
the state, with the log of state private school enrollment the dependent variable in the top panel 
and log of state public school enrollment the dependent variable in the bottom panel.  State and 
year fixed effects are included in all regressions. The level of observation is the state-year.  Each 
regression includes 612 observations (50 states and the District of Columbia from 1998-2009). 
The numbers in parenthesis are clustered (at the state level) standard errors. 
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Table 18 Robustness checks for enrollment effects in private schools 

 (1) 

Nonurban 

(2) 

Urban 

 

Robustness checks 

  

Excluding shootings with no deaths 

 

0.185 

(0.084) 

-0.047 

(0.110) 

Proportion enrolled in private  

high schools as dependent variable 

0.011 

(0.006) 

0.005 

(0.009) 

Unweighted OLS 0.217 

(0.090) 

0.110 

(0.108) 

Lagged effect of shootings 

Subsequent school year 

 

0.154 

 

0.038 

Two school years later -0.073 

(0.075) 

0.070 

(0.135) 

Three or more school years later -0.017 

(0.134) 

-0.209 

(0.194) 

 

Note: Each row is from a separate regression, with shooting effects separated into those that occur 
in non-urban and urban areas, as in the last column of Table 17. State and year fixed effects, 
state-specific trends, and controls listed in Table 17 are included in all estimations in this table.  
The numbers in parenthesis are clustered (at the state level) standard errors. The number of 
observations in the first row, which removes observations where a non-fatal shooting occurred, is 
605. Results in other rows include the full 612 observations. The results in the last part of the 
table (lagged effects) comes from a single regression in which we include first lag, second lag and 
third or more lag in the model. 
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