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ABSTRACT 

STEADY-STATE VOLTAGE SECURITY ASSESSMENT USING 

SYMMETRIC EIGENVALUE ANALYSIS FOR WEAK AREA 

IDENTIFICATION IN LARGE POWER TRANSMISSION NETWORK 

 

 
by 

Yagnaramasubramanian Somayajulu 

The University of Wisconsin-Milwaukee, 2013 

Under the Supervision of Professor David C. Yu 

 

The central focus of this thesis is on long-term static voltage stability analysis of large 

power transmission grid. This thesis work is a product of an attempt to comprehend the 

numerous researches that has been done over the years on voltage security assessment. 

Voltage stability is one of the essential components influencing the reliability of a power 

network. There are several Transmission planning and operation compliance standards 

pertaining to voltage criterion from NERC and Independent System Operators (ISO) 

directed toward the utilities to operate their grid within tight voltage limits. This requires 

the utility to perform comprehensive planning studies of the power system frequently for 

different load profiles like summer and winter - peak load and light load conditions 

taking into account several contingency scenarios.  The humongous number of nodes and 

branches in a typical preset-day power network has increased the complexity of 

conventional voltage stability analysis methods like PV / QV curves.  



 
 

iii 
 

Initially, this study discusses various linear algebraic techniques used in steady-state 

power system analysis and presents the results on the simulations of IEEE test systems – 

14 bus, 30 bus and 118 bus system. Later, it introduces an idea of performing a spectral 

(Symmetric Eigenvalue) analysis of the power system Jacobian and a rigorous testing of 

the same IEEE bus test systems was performed. Finally, it concludes by presenting a 

comparative result against other eigenvalue-based methods. The entire analysis has been 

performed by a combination of custom-written MATLAB programs, Python scripts and 

Siemens PTI PSS/E software for its one-line diagram capabilities.       
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1. INTRODUCTION 

 

Voltage instability is a phenomenon that causes the electric power grid to fail due to a 

collapsing voltage which penetrates across the power network. Voltage stability is a well 

understood concept thanks to the numerous researches over the past few decades but still 

the challenges exist, including formulating ways to effectively manage the electric power 

grid to avert such events, or to stop it quickly and effectively when it occurs. Considering 

the topic of voltage security, it is rather unavoidable to not to mention about the 

blackouts. Several blackout incidents that took place over last few decades have been 

victim to the voltage stability issues in the power grid. A blackout in an electric system 

means that the complete system collapses and affects all utility consumers in the area. It 

can originate from several causes. One of the prominent causes is an overload of the 

transmission system caused by congestion, forcing an overloaded transmission line to 

trip, causing increased loading of other lines which in turn results in additional trips, and, 

in the end – a voltage collapse due to the high impedance in the weakened power 

network. Thus cascading failures of several transmission lines result in a system-wide 

blackout while the root-cause being the system operating very close to its capacity. Few 

examples of significant blackout incidents are Germany in 2006 and Russia in 2005, in 

Greece 2004, Italy in 2003 and in the same year, blackouts occurred in USA and Canada, 

Sweden-East Denmark, London, UK and Croatia and Bosnia-Herzegovina and most 

recently, India in July 2012. All these blackouts have been reviewed in detail and results 

have been well documented by IEEE task forces. 
[1] 
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 Due to this very fact, voltage instability phenomenon has been regarded as a distinct 

and vital subject for power systems research and development. This chapter will discuss 

various definitions, background to this thesis research and overview of methods being 

developed as a part of this work.  

1.1. Definitions of Stability  

The term, ‘Stability’ have been extensively reviewed and explained by several power 

systems research organizations like IEEE, CIGRE, EPRI, etc. Since this research is 

focused on steady-state voltage stability, it is important to put forth the definitions of 

important types of stability to avoid any spurious assumptions.
[2]

 

(a) Static Stability: It denotes the general mathematical term for study of systems of 

algebraic equations and quasi-static disturbances. 

(b) Dynamic Stability: It denotes the general mathematical term for study of systems 

of differential equations and random and large time-varying disturbances 

(c) Steady-state Stability: It denotes the study of power system stability in steady-

state, except for the influence of slow and small disturbances. 

(d) Transient Stability: It denotes the study of power system stability under the 

influence of highly disturbed state; in particular its ability to restore or find an 

operating point acceptably close to the initial one after a large disturbance event. 

1.2. Types of Disturbances 

To determine the type of voltage stability in consideration for this research viz. steady-

state and transient, it is importance to discuss the two types of disturbances: 
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(a) Small disturbance: It refers to the disturbance for which equations that describes 

the dynamics of the power system may be linearized for the purpose of analysis. 

(b) Large disturbance: It refers to the disturbance for which the equations that 

describe the dynamics of the power system cannot be linearized for the purpose of 

analysis. 

1.3. Time frame of study: 

(a) Short-term stability: A power system is stable in the short-term if it is found to be 

stable when the study of its behavior is limited to several seconds. 

(b) Long-term stability: A power system is stable in the long-term if it found to be 

stable when the study of its behavior is extended beyond several seconds.  

From the above definitions, we can derive the definition of steady-state stability as, 

for a particular operating point, if following any small disturbance, it reaches a steady-

state operating condition that is identical or close to the pre-disturbance operating 

condition. Thus, it is now clear that this thesis work can be categorized as a study of 

long-term steady-state voltage stability.  

1.4. Importance of Voltage Stability Analysis 

Amongst other stability issues like rotor angle and frequency stability, voltage 

stability is deemed to be the most important and critical in modern-day power network. 

The long-term voltage stability cannot be fully analyzed by the use of transient angular 

stability because of the fact that during the final stages of grid collapse, the phenomenon 

of angle and voltage instability are deeply associated and when the system collapses, 
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there are a number of concurrently occurring events. It is known fact that voltage stability 

largely depends on the capability of the power system to provide reactive power support 

and it has to be locally available. Thus, in the event of grid collapse, the transmission 

system is affected the most by voltage instability due to the lack of reactive power 

support.  This problem has rather become more obvious in the present-day scenario with 

the growing complexity of power network.  

1.5. Voltage Stability versus Voltage Security 

The following definitions from IEEE Power Engineering Society best describe the 

difference between the terms ‘stability’ and ‘security’.  

(a) Voltage Stability: It is the ability of the system to maintain voltage so that when 

load admittance is increased, the load power will increase so that both voltage and 

power are controllable. 

(b) Voltage security: It is the ability of the power system, not only to operate stably 

but to remain stable following any reasonably credible contingency or adverse 

system change. 

Thus, from the above definition, it is realized that to successfully alleviate system-wide 

blackout which occurs as a result of  a “Domino Effect” of tripping transmission lines, 

the voltage stability has to be studied taking into consideration several possible 

contingency scenarios. So, it is essential to perform voltage security analysis as 

“security” is a more stringent measure than “stability”.  
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1.6. Overview of Methodology 

               It is to be noted that only static aspects of long-term voltage stability issues have 

been studied based on power flow computations, aimed at determining the voltage 

stability margins. On reviewing several literatures on voltage stability analysis, it is 

realized that a common opinion on voltage stability is modal analysis of Reduced 

Jacobian matrix. Compared with the conventional PV/QV curve methods where the 

voltage magnitude at the nodes is plotted against changes in the active power injections, 

the use of eigenvalue analysis technique will attempt to determine both the distance to 

voltage collapse and the mechanisms of voltage instability.
[3]

 Due to the high non-

linearity of the power system in the vicinity of nose point region, the eigenvalue 

decomposition of the Jacobian matrix becomes less accurate or in some cases erroneous. 

To overcome this issue, the thesis work explores the idea of using approximate 

expression of Jacobian matrix, based on the degree of symmetricity of the matrix, into the 

conventional reduced eigenvalue decomposition method. Thus, by utilizing various 

properties of a symmetric eigenvalue decomposition (spectral decomposition), a better 

prediction of voltage collapse margin is identified. This thesis consists of primarily four 

parts: Discussion of conventional voltage stability analysis methods, Formulation and 

simulation of symmetric eigenvalue decomposition techniques, Comparative results and 

verification section and Future work.  
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2. DISCUSSION OF CONVENTIONAL VOLTAGE STABILITY 

ANALYSIS METHODS 

2.1. PV/QV Curves 

 

The PV/QV curves illustrate the variation of voltage with respect to the variation of P 

and Q components of the load power. These curves are plotted by simulating the load 

flow solution at several points of increasing load factors until the power flow solution 

diverges; by maintain a constant power factor. Since the conventional Newton-Raphson 

method cannot solve near the voltage collapse scenarios, continuation algorithm is 

generally used to plot the curve beyond the voltage collapse point. The purpose of 

continuous load flows is to find a set of load flow solutions in a scenario where the load 

is continuously changing, starting from a base case until the critical point. Thereafter, the 

continuous load flows had been applied to understand and evaluate the problem of 

voltage stability and those areas that are likely to the voltage collapse. Besides, they have 

also been applied in other related problems like the evaluation of power transfer limits 

between regions. The general principle of continuous load flows employs a predictor-

corrector scheme to find a trajectory of solutions for the set of load flow equations which 

are reformulated to include the load parameter λ.
[4]

  The process is started from a known 

solution and a predictor vector which is tangent to the corrected solutions is used to 

estimate the future solutions with different values of the load parameter. The estimation is 
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corrected using the same technique of the Newton-Rhapson employed in the conventional 

load flow with a new added parameter: 

f (θ,V, λ) = 0  

This parameterization plays an important role in the elimination of the Jacobian non-

singularity. In a nutshell, Continuation power flow method can be used to trace the path 

of a power system from a steady state equilibrium point to a bifurcation point according 

to the load increase. In this method, we can move along the bifurcation path by taking the 

following two steps: Predictor step realized by the computation of the tangent vector and 

corrector step that can be obtained by perpendicular intersection. Figure 1 portrays an 

example of a complete PV curve.  

 

Figure 1. Example of PV Curve 

Although PV curves are good indicators of voltage magnitudes at each nodes or buses, it 

may be a good tool to study the effects of shunt capacitor compensation at individual 

buses. But, from a system-wide perspective, voltage magnitudes at nodes, alone, do not 
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constitute reliable indicators of the proximity of the system to the steady-state voltage 

stability limit. In reality, decisions on reactive power compensation made per the PV 

curves may hide the imminent close-to-stability limit operating conditions by showing 

misleading voltage magnitudes in the study area.  

 

 

2.2. Minimum Singular Value Technique 

In this method, a singular value decomposition of the Jacobian matrix is performed at 

a stable operating point and the minimum singular value is used as a stability index to 

determine the distance from the operating point to the point of voltage collapse. 
[5]

 

Although, it is successful in finding a valid stability indicator, it cannot find the cause of 

the voltage collapse since it is only a relative measure of the system to instability. This 

technique can only be starting point or a supporting method to the conventional PV/QV 

analysis to determine the actual stability margin.  

2.3. Reduced Jacobian Modal Analysis Method 

In this method, an eigenvalue decomposition of a reduced Jacobian matrix, JR is 

performed to determine both the proximity index and the cause or mechanisms of voltage 

instability.
[6]

  Since the voltage variation is affected the most by reactive power and in a 

stable operating point, it is assumed that the real power P is constant. The equations 

below represent the conventional load flow equation as a function of real and reactive 

power.  
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By applying Taylor series expansion to the above equations, the Jacobian matrix 

equation is derived as,  
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In the above equation, when P = 0, then the reduced Jacobian matrix, JR is derived 

as,  
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From the reduced Jacobian matrix expression, the modes of the power system can be 

determined from its eigenvalues and eigenvectors.  

                        RJ ΦΛΓ   

If all eigenvalues of the reduced Jacobian matrix are positive, the system is voltage 

stable. A zero eigenvalue means that the system is on the border of voltage collapse 

and the smallest magnitude of eigenvalue of the reduced Jacobian matrix determines 

the critical bus or weakest bus in a power system. 

By inverting  JR matrix to JR
-1

 , we get 

                    
1 1

RJ ΦΛ Γ   
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If Φi  and Γi  represent the right- and left- hand eigenvectors respectively for the 

eigenvalue i of the matrix J R , the participation factor measuring the participation of 

the 
thk bus in 

thi mode is defined as : 

                          P Φ Γki ki ik  

The left and right eigenvectors corresponding to the critical modes are used to 

identify the buses participating in the critical modes. Thus, the nodes or elements with 

large participation factors are identified as weak areas of the power grid from the 

perspective of voltage stability.  

3. SYMMETRIC EIGENVALUE ANALYSIS – PROPOSED 

METHOD 

3.1. Breakdown into Symmetric and Asymmetric Jacobian Matrices 

It is a known fact that the power system Jacobian matrix is a real quasi-symmetric 

matrix. If the ordinary Jacobian matrix were to be substituted by its symmetric part, then 

various distinctive properties of a real symmetric matrix can be utilized to further study 

the voltage instability problem.
[7]

  To facilitate this study, the existing Jacobian matrix is 

decomposed into two parts viz., symmetric and asymmetric. From the expression of 

Jacobian matrix equation, the symmetric (JS) and asymmetric (JAS) parts can be derived 

as,  

ASSQVQ
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Thus the two parts of Jacobian, JS and JAS are used for further linear analysis 

treatment. Before jumping into the proposed method, for better understanding of these 

two matrices, few voltage stability indices are calculated based on this technical paper.
[6]

 

3.2. Formulation of Voltage Stability Indices from JS and JAS  

Using the Singular Value Decomposition (SVD) technique, the singular value matrix 

can be obtained which is represented as the diagonal matrix of singular values. This 

singular value matrix is used to calculate the 2-norm and F-norm for calculating indices. 

The importance of singular values is that it can be used to assess the closeness of a matrix 

approaching a singular matrix. The SVD of Jacobian matrix can be expressed as: 

 J= W*∑*V. 

The singular value decomposition and the eigen decomposition are closely related.  

 The left-singular vectors of J are eigen vectors of JJ
T
. 

 The right-singular vectors of J are eigenvectors of J
T
J. 

 The non-zero-singular values of J(found on the diagonal entries of Σ) are the  

square roots of the non-zero eigen values of both J
T
J and JJ

T
. 

Our particular interest is to find the singular values found on the diagonal entries of 

the singular matrix with descending order in value. Analysis of norms and weighted 

singular values is considered as it relates to the error in order to analyze the singularity of 

the Jacobian. 
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Index 1: This is defined as the ratio of weighted sum of singular values of JAS  to the 

weighted sum of singular values of JS .  

Index 2: This is defined as the ratio of 2-norm of JAS  to the 2-norm of JS . 

Index 3: This is defined as the ratio of F-norm of JAS  to the F-norm of JS . 

Index 4: This is defined as the ratio of weighted sum of the difference of singular  

values J and JS to the weighted sum of the difference of singular values J and JAS.  

Table 1 below shows the expression for all four indices. 

Table 1. List of Indices and their expressions 

Index Expression Description 

Index 1 
  (   )

  (  )
 

Weighted sum of singular 

values 

Index 2 
    (     )

    (    )
 2 norm 

Index 3 
    (    

     )

    (        )
 Frobenius Norm 

Index 4 
 ( ( )   (  ))

 ( ( )   (   ))
 

Weighted sum of difference 

between singular values 

     

a. Significance of Indices 

The indices represent ratios of various norms, ratios of weighted singular values. 

Norms represent the size of the vector and it is a tool to measure the error difference. In 

power flow analysis, the jacobian matrix becomes singular when the demand cannot meet 
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the required load and as a result when this happens, the matrix blows up and becomes 

singular and results in faults, short circuit, etc. Thus the indices presents a way to 

measure the error from the Jacobian form before it tends to become singular along a scale 

of loading factor.  

b. Need for Indices 

The main objective is to obtain JAS which should tend to zero so that J= JS. Hence that 

is the sufficient and necessary condition. As loading factor increases, the indices show 

that that J can be approximately replaced by JS. In the index 1 it is sufficient for weighted 

sum of JAS is zero. In the index 2 it is sufficient that 2-norm of JAS is zero. In the index it 

is sufficient that F-norm of JAS is zero. In the index four it is sufficient that the difference 

of weighted sum of J and JS is zero, as this represents the error. Indices are a measure of 

when the jacobian becomes more symmetric as JAS approaches zero when the load is 

increased. 

c. Results from IEEE test systems 

A MATLAB program was written to generate these indices by iteratively solving 

the load flow program at a constant load increment by keeping the same power factor. 

The program was run on three popular IEEE transmission level  test systems and the 

figures 2,3, and 4 show the outputs on 14-bus, 30-bus and 118-bus systems 

respectively. 
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Figure 2. . Jacobian Indices on IEEE 14-bus 

 

Figure 3. Jacobian Indices on IEEE 30-bus 
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Figure 4. Jacobian Indices on IEEE 118-bus 

3.3. GERSHGORIN CIRCLE THEOREMS 

When dealing with eigenvalue decomposition of symmetric matrices, Gershgorin 

circle theorems emanates as a great tool for visual interpretation of the eigenvalues and 

the dominancy of the diagonal elements. 
[8]

 There three important theorems concerning 

the eigenvalue decomposition of symmetric or strictly diagonally dominant matrices, 

Theorem 1: Every eigenvalue of matrix Ann satisfies: 

|      |  ∑|   |

   

 

In analyzing this theorem we see that every eigenvalue of the matrix A must be 

within a distance d of Aii for some i. Since in general, eigenvalues are elements of C, we 

can visualize an eigenvalue as a point in the complex plane, where that point has to be 

within distance d of Aii for some i. 
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Theorem 2: Every eigenvalue of a matrix A must lie in a Gershgorin disc 

corresponding to the columns of A. 

From this theorem, we have the set of eigenvalues that are in both A and A
T
. Because 

the rows of A
T
 correspond to the columns of A, the eigenvalues fall inside Gershgorin 

discs corresponding to the the columns of A due to A
T
 obeying Theorem 1. 

Theorem 3: A Subset G of the Gershgorin discs is called a disjoint group of discs if 

no disc in the group G intersects a disc which is not in G. If a disjoint group G contains 

(r) nonconcentric discs, then there are (r) eigenvalues. 

Theorem 1 says that an eigenvalue always has to be within a disc, and due to the 

continuity of the eigenvalue’s path there is no way that an eigenvalue can move from one 

isolated group to another isolated group without being found in a region outside of any 

disc. Being outside of a disc violates Theorem 1 and therefore, for every disjoint group G 

that has n discs in it must have n eigenvalues in it. 

3.3.1. Application of Gershgorin circle theorem to IEEE test systems 

By applying the above-mentioned theorems to the power system Jacobian matrix, 

Gerschgorin circles were plotted with the center as diagonal element Jii and the radii as 

the sum of off-diagonal elements, Jij. The eigenvalues from the symmetric and 

asymmetric parts of the same Jacobian matrix were embedded as a scatter plots in the 

circle to illustrate the theorems. Figure 6,7 and 8 show the Gershgorin circle plots for 

IEEE 14-bus, 30-bus and 118-bus system respectively. The green dots indicate 

eigenvalues of symmetric Jacobian matrix, JS and the red dots indicate eigenvalues of 

asymmetric Jacobian matrix, JAS. 
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Figure 5. . Gershgorin circle plot for IEEE 14-bus system 
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Figure 6. Gershgorin circle plot for IEEE 30-bus system

 

Figure 7. Gershgorin circle plot for IEEE 118-bus system 
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 3.4. Modal Analysis of Symmetric Jacobian Matrix  

As explained in the previous chapters, the significance of symmetric Jacobian matrix 

is now obvious. By using this approximate expression of ordinary power system 

Jacobian, the system is seen as a network of lossless transmission lines and hence the 

matrix is stronger and non-singular even in the nose-region of the PV curve. This 

facilitates robust calculation of eigenvalues and thereby better prediction of critical 

modes of the power system from the perspective of voltage stability. It is to be noted that 

modal analysis techniques are reliable only when the system is stressed and operated 

close to the nose-region. So, load-levels for each IEEE test systems viz. 14-bus,30-bus 

and 118-bus have been carefully chosen after several trials. This method has been 

rigorously tested in all these systems and comparative analysis of results have been 

shown in the coming chapters.  

3.4.1. IEEE 14-bus test system 

The IEEE 14 Bus Test Case represents a portion of the American Electric Power 

System (in the Midwestern US) as of February, 1962. It consists of 20 branches and the 

stable operating point at which the simulation was performed has a total system loading 

of 5.18 MW and reactive power injection of 1.626 MVAR. Figure 10 shows the mode 

shape of the system with the pink line denoting the symmetric Jacbobian matrix while the 

blue line denoting the original Jacobian matrix. Figure 11 shows participation factors 

from both the proposed method (brown bar) and the conventional method (blue bar). It 

can be seen that both points to the bus 14 as the weakest bus in the sense that it is most 
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voltage sensitive to any reactive power injected into that bus. This is confirmed by the 

results from PV analysis in Figure 12 which shows bus 14 having the maximum voltage 

drop with increasing load.   

 

 

Figure 8. One line diagram - IEEE 14-bus test system 

Table 2. Load and generation profile for IEEE 14-bus system 

B.No Type 
Generation Load 

Real 
(MW) 

Reactive 
(MW) 

Real 
(MW) 

Reactive 
(MW) 

1 3 5.089735 27.2449 0 0 

2 1 0.4 -13.9423 0.434 0.254 

3 1 0.2 -7.64262 0.224 0.15 

4 1 0 -39.1799 1.884 0.38 

5 1 0 8.331325 0 0 

6 2 0 0 0 0 

7 2 0 0 0.59 0.332 

8 2 0 0 0.152 0.032 
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9 2 0 0 0.956 0.078 

10 2 0 0 0.18 0.116 

11 2 0 0 0.07 0.036 

12 2 0 0 0.122 0.032 

13 2 0 0 0.27 0.116 

14 2 0 0 0.298 0.1 

      
Total 

 
5.689735 -25.1886 5.18 1.626 

   

 

Figure 9. Mode Shape – IEEE 14-Bus system
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Figure 10. Participation factors – IEEE 14-Bus system 

 

 

Figure 11. PV curves – IEEE 14-bus system 

3.4.2. IEEE 30-bus test system 

The IEEE 30 Bus Test Case represents a portion of the American Electric Power 

System (in the Midwestern US) as of December, 1961. It consists of 45 branches and the 

stable operating point at which the simulation was performed has a total system loading 

of 238 MW and reactive power injection of 160.8 MVAR. Figure 10 shows the mode 

shape of the system with the pink line denoting the symmetric Jacbobian matrix while the 

blue line denoting the original Jacobian matrix. Figure 15 shows participation factors 
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from both the proposed method (brown bar) and the conventional method (blue bar). It 

can be seen that both points to the bus 26 as the weakest bus in the sense that it is most 

voltage sensitive to any reactive power injected into that bus. In this case, it more 

conspicuous that the magnitude of the participation factor from the proposed method is 

greatly larger than the conventional method. A scaled up version of the same plot is 

showed in Figure 16 to illustrate the participation factor from the conventional method. In 

this case, it can be established that proposed method suppresses the participation factors 

of non-participating buses (stronger buses) and magnifies the participation factors of 

weaker buses, thus, providing better prediction of weaker buses than the conventional 

method of modal analysis. This is confirmed by the results from PV analysis in Figure 17 

which shows bus 26 having the maximum voltage drop with increasing load. 

 

 

Figure 12. One line diagram - IEEE 30 Bus system 
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Table 3. Load and generation profile for IEEE 30-bus system 

B.No Type 
Generation Load 

Real Reactive Real Reactive 

1 3 127.3345324 -22.73626374 0 0 

2 1 60.97 70.94202899 32.55 19.05 

3 2 0 0 3.6 1.8 

4 2 0 0 11.4 2.4 

5 2 0 0 0 0 

6 2 0 0 0 0 

7 2 0 0 34.2 16.35 

8 2 0 0 45 45 

9 2 0 0 0 0 

10 2 0 0 8.7 3 

11 2 0 0 0 0 

12 2 0 0 16.8 11.25 

13 1 37 17.22247706 0 0 

14 2 0 0 9.3 2.4 

15 2 0 0 12.3 3.75 

16 2 0 0 5.25 2.7 

17 2 0 0 13.5 8.7 

18 2 0 0 4.8 1.35 

19 2 0 0 14.25 5.1 

20 2 0 0 3.3 1.05 

21 2 0 0 26.25 16.8 

22 1 21.58974359 62.0044843 0 0 

23 1 19.2 17.29113924 4.8 2.4 

24 2 0 0 13.05 10.05 

25 2 0 0 0 0 

26 2 0 0 5.25 3.45 

27 1 26.91 18.75789474 0 0 

28 2 0 0 0 0 

29 2 0 0 3.6 1.35 

30 2 0 0 15.9 2.85 

      
Total 

 
293.0045299 163.4816528 283.8 160.8 
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Figure 13. Mode Shape - IEEE 30 Bus system

 

Figure 14. Bus Participation Factors - IEEE 30 Bus system 
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Figure 15. Bus Participation factors zoomed in by a factor of 1000 - IEEE 30 Bus 

system 

 

Figure 16. PV Curves - IEEE 30 Bus system 
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3.4.3. IEEE 118-bus test system 

The 118-bus test system can be regarded as a realistic transmission level power 

network in terms of number of nodes and branches. It consists of 186 branches and 

represents a portion of the American Electric Power System (in the Midwestern US) as of 

December, 1962. The stable operating point at which the simulation was performed has a 

total system loading of 4369.26 MW and reactive power injection of 1481.14 MVAR. 

Figure 19 shows the mode shape of the system with the pink line denoting the symmetric 

Jacbobian matrix while the blue line denoting the original Jacobian matrix. Figure 20 

shows participation factors from both the proposed method (brown bar) and the 

conventional method (blue bar). It can be seen that proposed method points to the bus 21 

as the weakest bus in the sense that it is most voltage sensitive to any reactive power 

injected into that bus, while the conventional method points to bus 71 as the weakest bus. 

This is confirmed by the results from PV analysis in Figure 21 which shows bus 21 

having the maximum voltage drop with increasing load while bus 71 does not have a 

quick voltage drop to load growth. In addition to bus 21, the proposed method also shows 

considerable participation factors for bus 20 and 22 which indicates next weaker buses to 

bus 21. This is evident in the PV curves which also show higher voltage drops for the 

buses 20 and 22. Thus the proposed method performs well in the case of larger bus 

numbers as it less prone to numerical errors in the vicinity of nose region unlike the 

conventional modal analysis method.   
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Figure 17. One-line diagram of IEEE 118-Bus system 

Table 4. Load and generation profile for IEEE 118-bus system 

B.No Type 
Generation Load 

Real Reactive Real Reactive 

1 3 819.975 -311.6666667 0 0 

2 2 0 0 20.6 9.27027 

3 2 0 0 40.16666667 10.3 

4 1 0 -43.05 40.16666667 12.36 

5 2 0 0 0 0 

6 1 0 27.7173913 53.56 22.66 

7 2 0 0 19.57142857 2.058824 

8 1 0 -160.7179487 28.84 0 

9 2 0 0 0 0 

10 1 450 -216.8709677 0 0 

11 2 0 0 72.1 23.68966 

12 1 85 38.5 48.40909091 10.3 

13 2 0 0 35.02 16.48 

14 2 0 0 14.42105263 1.030303 
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B.No Type 
Generation Load 

Real Reactive Real Reactive 

15 1 0 11.9 92.7 30.9 

16 2 0 0 25.75 10.3 

17 2 0 0 11.33333333 3.090909 

18 1 0 18.41176471 61.8 35.02 

19 1 0 34.1875 46.35 25.75 

20 2 0 0 18.53846154 3.090909 

21 2 0 0 14.42105263 8.24 

22 2 0 0 10.3 5.15 

23 2 0 0 7.210526316 3.090909 

24 1 0 -23.42857143 13.38888889 0 

25 1 220 -166.4444444 0 0 

26 1 314 20.72 0 0 

27 1 0 31.3 73.13043478 13.38889 

28 2 0 0 17.51020408 7.210526 

29 2 0 0 24.72 4.12 

30 2 0 0 0 0 

31 1 7 31.69230769 44.28571429 27.80952 

32 1 0 30.2 60.76923077 23.68966 

33 2 0 0 23.69230769 9.27027 

34 1 0 -96.85714286 60.76923077 26.78 

35 2 0 0 33.99 9.27027 

36 1 0 18.63333333 31.92857143 17.5102 

37 2 0 0 0 0 

38 2 0 0 0 0 

39 2 0 0 27.80952381 11.33 

40 1 0 46.76923077 67.98 23.68966 

41 2 0 0 38.11111111 10.3 

42 1 0 38.55 98.88 23.68966 

43 2 0 0 18.53846154 7.210526 

44 2 0 0 16.48 8.24 

45 2 0 0 54.59090909 22.66 

46 1 19 33.25806452 28.84 10.3 

47 2 0 0 35.02 0 

48 2 0 0 20.6 11.33 

49 1 204 26.83333333 89.61111111 30.9 

50 2 0 0 17.51020408 4.12 

51 2 0 0 17.51020408 8.24 

52 2 0 0 18.53846154 5.15 

53 2 0 0 23.69230769 11.33 
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B.No Type 
Generation Load 

Real Reactive Real Reactive 

54 1 48 46.10526316 116.3888889 32.96 

55 1 0 32.90909091 64.88888889 22.66 

56 1 0 48.98412698 86.52 18.54 

57 2 0 0 12.35714286 3.090909 

58 2 0 0 12.35714286 3.090909 

59 1 0 72.67391304 285.3076923 116.3889 

60 2 0 0 80.34 3.090909 

61 1 160 -44.8 0 0 

62 1 0 32.14814815 79.30769231 14.42105 

63 2 0 0 0 0 

64 2 0 0 0 0 

65 1 391 69.63636364 0 0 

66 1 392 -231.7419355 40.16666667 18.54 

67 2 0 0 28.84 7.210526 

68 2 0 0 0 0 

69 1 0 49.65 52.52941176 27.80952 

70 1 0 24.125 67.98 20.6 

71 2 0 0 0 0 

72 1 0 -6.222222222 12.35714286 0 

73 1 0 -2.15 6.181818182 0 

74 1 0 60.97368421 70.04 27.80952 

75 2 0 0 48.40909091 11.33 

76 1 0 73.56818182 70.04 37.08 

77 1 0 123.5238095 62.83333333 28.84 

78 2 0 0 73.13043478 26.78 

79 2 0 0 40.16666667 32.96 

80 1 477 -154.1219512 133.9 26.78 

81 2 0 0 0 0 

82 2 0 0 55.62068966 27.80952 

83 2 0 0 20.6 10.3 

84 2 0 0 11.33333333 7.210526 

85 1 0 36.34782609 24.72 15.45 

86 2 0 0 21.62962963 10.3 

87 1 4 -1.625 0 0 

88 2 0 0 49.44 10.3 

89 1 607 -114.6666667 0 0 

90 1 0 78.17391304 167.8888889 43.25926 

91 1 0 -2.193548387 10.3 0 

92 1 0 40.6875 66.95 10.3 
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B.No Type 
Generation Load 

Real Reactive Real Reactive 

93 2 0 0 12.35714286 7.210526 

94 2 0 0 30.9 16.48 

95 2 0 0 43.25925926 31.92857 

96 2 0 0 39.14285714 15.45 

97 2 0 0 15.45 9.27027 

98 2 0 0 35.02 8.24 

99 1 0 2.785714286 43.25925926 0 

100 1 252 -17.64285714 38.11111111 18.54 

101 2 0 0 22.66 15.45 

102 2 0 0 5.15 3.090909 

103 1 40 9.714285714 23.69230769 16.48 

104 1 0 29.66666667 39.14285714 25.75 

105 1 0 40.07692308 31.92857143 26.78 

106 2 0 0 44.28571429 16.48 

107 1 0 23.46153846 51.5 12.36 

108 2 0 0 2.058823529 1.030303 

109 2 0 0 8.24 3.090909 

110 1 0 25.97727273 40.16666667 30.9 

111 1 36 -11.91666667 0 0 

112 1 0 36.33707865 70.04 13.38889 

113 1 0 -56.47826087 6.181818182 0 

114 2 0 0 8.24 3.090909 

115 2 0 0 22.66 7.210526 

116 1 0 73.13333333 189.52 0 

117 2 0 0 20.6 8.24 

118 2 0 0 33.99 15.45 

      
Total 

 
4525.975291 -223.2599631 4369.26 1481.14 
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Figure 18. Mode Shape – IEEE 118 Bus system 

 

Figure 19. Bus Participation Factors – IEEE 118 Bus system 
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Figure 20. Bus Participation Factors scaled by a factor of 10000 – IEEE 118 Bus 

system 

 

Figure 21. PV Curves of critical buses – IEEE 118 Bus system 
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4. FUTURE WORK  

As discussed in the beginning of this thesis work, angle stability and voltage stability 

are closely associated when the system operates in the vicinity of nose region. So, it is 

important to consider the dynamics of the power system when studying about voltage 

instability. Also, in a realistic transmission network, there are thousands of nodes, 

branches and generators. It is necessary to breakdown the system into small areas and 

then conducts study on voltage stability. A method based on Principal Component 

Analysis has been proposed in these literatures 
[9] [10]

 which can be used to identify 

coherent generation groups and coherent buses from the time-stamped angular data and 

voltage data respectively. Three most significant principal components are chosen and 

their corresponding generator data or voltage data are plotted as coordinates in a three-

dimensional plot. The coherent generator groups are then, visually formed by optimal 

rotation of the x, y and z-axes. After the buses are grouped together, modal analysis of 

symmetric Jacobian matrix can be performed on individual groups and weakest buses 

among each area can be effectively determined. 

4.1. Simulation on the entire eastern interconnection 

The simulation was performed on a 2013 Summer light load case consisting of 65440 

buses, 61990 branches and 7947 generators representing the entire Eastern 

interconnection. All the generators, exciters, governors and loads have dynamic models 

present. A time-domain simulation was performed using Siemens PSS/E software 

following a 15 cycle fault at a BPS station The time-stamped data of 21 generators were 

fed into a python program to perform the principal component analysis (PCA). Three 

most significant PCs were identified and plotted in three-dimensional plot. The plot was 
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rotated optimally for the best possible viewing of coherent groups. Table 5 and Table 6 

show the correlation matrix of angle plots from 21 generators and three significant 

principal components respectively. Figure 23 shows the three dimensional plot 

illustrating the coherent groups formed by the coordinates generated from the principal 

component analysis. Figure 24,25 and 26 show the angular plots of generators belonging 

to each group confirming the results from principal component analysis. The large system 

can thus be divided into smaller groups and further modal analysis can be performed as 

per the proposed method.  
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Table 5. Correlation Matrix – From time-stamped angle data 

Variables 21                                         

Sample 285                                         

                                            

  V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 

Mean 47.6586 25.2374 

-

24.8619 27.6793 24.6474 

-

27.4412 21.5888 19.6962 22.4188 46.5191 28.2399 27.2569 10.0616 -1.1756 19.8958 19.0959 1.0202 68.7419 21.8039 2.3428 1.1446 

St. Dev. 24.7674 17.5642 15.9844 14.3980 16.2842 13.0644 15.4291 16.6702 15.3420 14.2848 14.1985 17.1254 16.6475 15.6194 9.6614 19.6269 13.8692 25.4257 7.8705 8.9943 7.7166 

                                            

Correlation V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 

V1 1.0000 0.9089 0.8625 0.8332 0.7830 0.8250 0.8031 0.8423 0.7999 0.7401 0.7621 0.5809 0.5745 0.5527 0.6201 0.3773 0.5939 0.9663 0.7903 0.8005 0.8011 

V2 0.9089 1.0000 0.9847 0.9735 0.9478 0.9659 0.9548 0.9846 0.9580 0.9119 0.9295 0.7484 0.7366 0.7021 0.7688 0.4980 0.7433 0.8197 0.8799 0.9259 0.9109 

V3 0.8625 0.9847 1.0000 0.9860 0.9766 0.9884 0.9813 0.9967 0.9835 0.9440 0.9633 0.7810 0.7747 0.7307 0.8056 0.5550 0.7876 0.7779 0.8930 0.9487 0.9309 

V4 0.8332 0.9735 0.9860 1.0000 0.9857 0.9831 0.9813 0.9899 0.9921 0.9566 0.9831 0.8608 0.8380 0.8084 0.8757 0.6208 0.8517 0.7392 0.8528 0.9315 0.9136 

V5 0.7830 0.9478 0.9766 0.9857 1.0000 0.9669 0.9647 0.9807 0.9821 0.9335 0.9710 0.8360 0.8149 0.7757 0.8452 0.6258 0.8246 0.6733 0.8146 0.9042 0.8828 

V6 0.8250 0.9659 0.9884 0.9831 0.9669 1.0000 0.9971 0.9880 0.9873 0.9777 0.9833 0.8098 0.8057 0.7609 0.8473 0.6081 0.8326 0.7522 0.9260 0.9792 0.9658 

V7 0.8031 0.9548 0.9813 0.9813 0.9647 0.9971 1.0000 0.9826 0.9890 0.9870 0.9897 0.8285 0.8298 0.7868 0.8669 0.6199 0.8557 0.7304 0.9137 0.9723 0.9586 

V8 0.8423 0.9846 0.9967 0.9899 0.9807 0.9880 0.9826 1.0000 0.9891 0.9484 0.9684 0.7900 0.7811 0.7432 0.8165 0.5674 0.7919 0.7521 0.8820 0.9449 0.9266 

V9 0.7999 0.9580 0.9835 0.9921 0.9821 0.9873 0.9890 0.9891 1.0000 0.9697 0.9895 0.8435 0.8388 0.8111 0.8795 0.6400 0.8542 0.7177 0.8612 0.9410 0.9237 

V10 0.7401 0.9119 0.9440 0.9566 0.9335 0.9777 0.9870 0.9484 0.9697 1.0000 0.9836 0.8509 0.8513 0.8122 0.8901 0.6587 0.8839 0.6696 0.9001 0.9630 0.9571 

V11 0.7621 0.9295 0.9633 0.9831 0.9710 0.9833 0.9897 0.9684 0.9895 0.9836 1.0000 0.8872 0.8664 0.8339 0.9138 0.6765 0.8964 0.6861 0.8644 0.9450 0.9305 

V12 0.5809 0.7484 0.7810 0.8608 0.8360 0.8098 0.8285 0.7900 0.8435 0.8509 0.8872 1.0000 0.9259 0.9215 0.9495 0.6760 0.9467 0.4970 0.6313 0.7456 0.7302 

V13 0.5745 0.7366 0.7747 0.8380 0.8149 0.8057 0.8298 0.7811 0.8388 0.8513 0.8664 0.9259 1.0000 0.9703 0.9354 0.6617 0.9743 0.4968 0.6551 0.7552 0.7329 

V14 0.5527 0.7021 0.7307 0.8084 0.7757 0.7609 0.7868 0.7432 0.8111 0.8122 0.8339 0.9215 0.9703 1.0000 0.9359 0.6747 0.9482 0.4870 0.5881 0.7023 0.6832 

V15 0.6201 0.7688 0.8056 0.8757 0.8452 0.8473 0.8669 0.8165 0.8795 0.8901 0.9138 0.9495 0.9354 0.9359 1.0000 0.7670 0.9788 0.5688 0.6908 0.8016 0.7901 

V16 0.3773 0.4980 0.5550 0.6208 0.6258 0.6081 0.6199 0.5674 0.6400 0.6587 0.6765 0.6760 0.6617 0.6747 0.7670 1.0000 0.7272 0.3190 0.4410 0.5741 0.5815 

V17 0.5939 0.7433 0.7876 0.8517 0.8246 0.8326 0.8557 0.7919 0.8542 0.8839 0.8964 0.9467 0.9743 0.9482 0.9788 0.7272 1.0000 0.5359 0.6981 0.7954 0.7817 

V18 0.9663 0.8197 0.7779 0.7392 0.6733 0.7522 0.7304 0.7521 0.7177 0.6696 0.6861 0.4970 0.4968 0.4870 0.5688 0.3190 0.5359 1.0000 0.7705 0.7566 0.7652 

V19 0.7903 0.8799 0.8930 0.8528 0.8146 0.9260 0.9137 0.8820 0.8612 0.9001 0.8644 0.6313 0.6551 0.5881 0.6908 0.4410 0.6981 0.7705 1.0000 0.9783 0.9773 

V20 0.8005 0.9259 0.9487 0.9315 0.9042 0.9792 0.9723 0.9449 0.9410 0.9630 0.9450 0.7456 0.7552 0.7023 0.8016 0.5741 0.7954 0.7566 0.9783 1.0000 0.9949 

V21 0.8011 0.9109 0.9309 0.9136 0.8828 0.9658 0.9586 0.9266 0.9237 0.9571 0.9305 0.7302 0.7329 0.6832 0.7901 0.5815 0.7817 0.7652 0.9773 0.9949 1.0000 

                                            

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

Eigenvalues 17.7282 1.7168 0.5329 0.4384 0.3369 0.0956 0.0454 0.0384 0.0227 0.0200 0.0101 0.0061 0.0034 0.0020 0.0012 0.0007 0.0005 0.0003 0.0001 0.0000 0.0001 
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Table 6. Most Significant Principal Components 

  

 

 

 

 

 

 

 

PCA PCA1 PCA2 PCA3 

V1 0.1953 -0.3270 0.4494 

V2 0.2262 -0.1874 0.0709 

V3 0.2311 -0.1334 -0.0434 

V4 0.2346 -0.0315 0.0125 

V5 0.2290 -0.0167 -0.0862 

V6 0.2347 -0.0852 -0.1325 

V7 0.2352 -0.0488 -0.1310 

V8 0.2314 -0.1116 -0.0713 

V9 0.2346 -0.0189 -0.0718 

V10 0.2326 0.0202 -0.1955 

V11 0.2354 0.0381 -0.1049 

V12 0.2076 0.2986 0.1742 

V13 0.2073 0.3082 0.2023 

V14 0.1997 0.3430 0.2964 

V15 0.2161 0.2781 0.1231 

V16 0.1572 0.3488 -0.2572 

V17 0.2131 0.2986 0.1321 

V18 0.1785 -0.3614 0.5161 

V19 0.2109 -0.2374 -0.2431 

V20 0.2274 -0.1324 -0.2275 

V21 0.2246 -0.1418 -0.2329 
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Figure 22. Three-dimensional plot with coherent groups forming distinct areas 

 

Figure 23. Angular Plot of Group 1 
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Figure 24. Angular Plot of Group 2 Angular Plot of Group 2 

 

Figure 25. Angular Plot of Group 3 

 

Figure 26. Angular Plot of Group 4 
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5. CONCLUSION 

The main aim of this thesis work was to investigate the power system operating near 

the voltage collapse region and to provide a resilient method based on linear algebraic 

tool that is devoid of numerical insecurities. The proposed modal analysis of Symmetric 

Jacobian matrix has thus been proven efficient over the convention modal analysis in 

large power transmission network data. As shown by the results from simulations of three 

popular and well-accepted benchmark test systems namely, IEEE 14-bus, 30-bus and 

118-bus system, it is clear that the proposed method is successful in identifying weaker 

with better accuracy than the conventional method.  

Although, it is able to find the weakest nodes in the power grid, this method should be 

used in conjunction with PV curves for further details and mechanisms of voltage 

collapse of a particular node. This method can be used to narrow down the search for 

weaker buses but cannot be used as the only tool for voltage stability analysis. Future 

work indicates promising results for partitioning a larger power system into smaller 

groups and thus by combining both dynamic and steady-state analysis, more robust 

results are obtained. Further research in this method should also involve testing of real-

life present-day power network to identify challenges that needs to be addressed. 
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APPENDICES: MATLAB PROGRAMS 

Appendix A. Admittance matrix calculation: 

function Ymat = ybus(num,line) 
%ieee_bus=5; 
ieee_line=line; 
switch num 
    case 5 
        data='IEEE5.xlsx'; 
    case 14 
        data='IEEE14.xlsx'; 
    case 30 
        data='IEEE30.xlsx'; 
    case 118 
        data='IEEE118.xlsx'; 
end 
sb=xlsread(data,1,sprintf( 'A2:A%d', (1+ieee_line))); 
eb=xlsread(data,1,sprintf( 'B2:B%d', (1+ieee_line))); 
R=xlsread(data,1,sprintf( 'C2:C%d', (1+ieee_line))); 
X=xlsread(data,1,sprintf( 'D2:D%d', (1+ieee_line))); 
Ys=xlsread(data,1,sprintf( 'E2:E%d', (1+ieee_line))); 
Tap=xlsread(data,1,sprintf( 'F2:F%d', (1+ieee_line))'); 
Z=R+1i*X; 
Y=1./Z; 
Ys=1i*Ys; 

  
n_bus=max(max(sb),max(eb)); 
n_branch=length(sb); 
Ymat=zeros(n_bus,n_bus); 

  
for k = 1:n_branch 
     Ymat(sb(k),eb(k)) = Ymat(sb(k),eb(k)) - Y(k)/Tap(k); 
     Ymat(eb(k),sb(k)) = Ymat(sb(k),eb(k)); 
 end 

  
 for m = 1:n_bus 
     for n = 1:n_branch 
         if sb(n) == m 
             Ymat(m,m) = Ymat(m,m) + Y(n)/(Tap(n)^2) + Ys(n); 
         elseif eb(n) == m 
             Ymat(m,m) = Ymat(m,m) + Y(n) + Ys(n); 
         end 
     end 
 end 
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Appendix B. Custom Load flow program – Individual Bus Investigation  

function[] = custom_load_flow(busno,line,base,lbn) 
ieee_bus=busno; 
Ymatrix=ybus(ieee_bus,line); 
switch busno 
    case 5 
        data='IEEE5.xlsx'; 
    case 14 
        data='IEEE14.xlsx'; 
    case 30 
        data='IEEE30.xlsx'; 
    case 118 
        data='IEEE118.xlsx'; 
end 
base_MVA=base; 
Type=xlsread(data,2,sprintf( 'B3:B%d', (2+ieee_bus))); 
Pg=xlsread(data,2,sprintf( 'C3:C%d', (2+ieee_bus))); 
Qg=xlsread(data,2,sprintf( 'D3:D%d', (2+ieee_bus))); 
Pl=xlsread(data,2,sprintf( 'E3:E%d', (2+ieee_bus))); 
Ql=xlsread(data,2,sprintf( 'F3:F%d', (2+ieee_bus))); 
Vol=xlsread(data,2,sprintf( 'G3:G%d', (2+ieee_bus))); 
Qmin=xlsread(data,2,sprintf( 'H3:H%d', (2+ieee_bus))); 
Qmax=xlsread(data,2,sprintf( 'I3:I%d', (2+ieee_bus))); 
Delta=xlsread(data,2,sprintf( 'J3:J%d', (2+ieee_bus))); 
Pg=Pg/base_MVA; 
Qg=Qg/base_MVA; 
Pl=Pl/base_MVA; 
Ql=Ql/base_MVA; 
lf=0.25; 
q=1; 
%l=1; 
lf_max = 20; 
while(lf<=lf_max) 
    Pl(lbn,1)=lf*Pl(lbn,1); 
    %Ql=l*Ql; 
Qmin=Qmin/base_MVA; 
Qmax=Qmax/base_MVA; 
P=Pg-Pl; 
Q=Qg-Ql; 
Pspec=P; 
Qspec=Q; 
G=real(Ymatrix); 
B=imag(Ymatrix); 
PV=find(Type==1 | Type==3); %PV 
PQ=find(Type==2); %PQ 
n_PV=length(PV); 
n_PQ=length(PQ); 
n_bus=length(Vol); 
Tolerance=10000000; 
Iteration=1; 
tic;    
while(Tolerance>0.0001) 
    P = zeros(n_bus,1); 
    Q = zeros(n_bus,1); 
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    for i = 1:n_bus 
        for k = 1:n_bus 
            P(i) = P(i) + Vol(i)* Vol(k)*(G(i,k)*cos(Delta(i)-Delta(k)) 

+ B(i,k)*sin(Delta(i)-Delta(k))); 
            Q(i) = Q(i) + Vol(i)* Vol(k)*(G(i,k)*sin(Delta(i)-Delta(k)) 

- B(i,k)*cos(Delta(i)-Delta(k))); 
        end 
    end 

     
    dPa = Pspec-P; 
    dQa = Qspec-Q; 
    k = 1; 
    dQ = zeros(n_PQ,1); 
    for i = 1:n_bus 
        if Type(i) == 2 
            dQ(k,1) = dQa(i); 
            k = k+1; 
        end 
    end 
    dP = dPa(2:n_bus); 
    Del_PQ = [dP; dQ];        

     

     
    J1 = zeros(n_bus-1,n_bus-1); 
    for i = 1:(n_bus-1) 
        k = i+1; 
        for j = 1:(n_bus-1) 
            m = j+1; 
            if m == k 
                for m = 1:n_bus 
                    J1(i,j) = J1(i,j) + Vol(k)* Vol(m)*(-

G(k,m)*sin(Delta(k)-Delta(m)) + B(k,m)*cos(Delta(k)-Delta(m))); 
                end 
                J1(i,j) = J1(i,j) - Vol(k)^2*B(k,k); 
            else 
                J1(i,j) = Vol(k)* Vol(m)*(G(k,m)*sin(Delta(k)-Delta(m)) 

- B(k,m)*cos(Delta(k)-Delta(m))); 
            end 
        end 
    end 
        J2 = zeros(n_bus-1,n_PQ); 
    for i = 1:(n_bus-1) 
        k = i+1; 
        for j = 1:n_PQ 
            m = PQ(j); 
            if m == k 
                for m = 1:n_bus 
                    J2(i,j) = J2(i,j) + Vol(m)*(G(k,m)*cos(Delta(k)-

Delta(m)) + B(k,m)*sin(Delta(k)-Delta(m))); 
                end 
                J2(i,j) = J2(i,j) + Vol(k)*G(k,k); 
            else 
                J2(i,j) = Vol(k)*(G(k,m)*cos(Delta(k)-Delta(m)) + 

B(k,m)*sin(Delta(k)-Delta(m))); 
            end 
        end 
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    end 
    J3 = zeros(n_PQ,n_bus-1); 
    for i = 1:(n_PQ) 
        k = PQ(i); 
        for j = 1:(n_bus-1) 
            m = j+1; 
            if m == k 
                for m = 1:n_bus 
                    J3(i,j) = J3(i,j) + Vol(k)* 

Vol(m)*(G(k,m)*cos(Delta(k)-Delta(m)) + B(k,m)*sin(Delta(k)-Delta(m))); 
                end 
                J3(i,j) = J3(i,j) - Vol(k)^2*G(k,k); 
            else 
                J3(i,j) = Vol(k)* Vol(m)*(-G(k,m)*cos(Delta(k)-

Delta(m)) - B(k,m)*sin(Delta(k)-Delta(m))); 
            end 
        end 
    end 
    J4 = zeros(n_PQ,n_PQ); 
    for i = 1:(n_PQ) 
        k = PQ(i); 
        for j = 1:n_PQ 
            m = PQ(j); 
            if m == k 
                for m = 1:n_bus 
                    J4(i,j) = J4(i,j) + Vol(m)*(G(k,m)*sin(Delta(k)-

Delta(m)) - B(k,m)*cos(Delta(k)-Delta(m))); 
                end 
                J4(i,j) = J4(i,j) - Vol(k)*B(k,k); 
            else 
                J4(i,j) = Vol(k)*(G(k,m)*sin(Delta(k)-Delta(m)) - 

B(k,m)*cos(Delta(k)-Delta(m))); 
            end 
        end 
    end 
    J=[J1 J2; J3 J4]; 
    Del_x=J\Del_PQ; 
    Del_A=Del_x(1:n_bus-1); 
    Del_V=Del_x(n_bus:end);     
    Delta(2:n_bus) = Del_A + Delta(2:n_bus);     
    x = 1; 
    for y = 2:n_bus 
        if Type(y) == 2 
            Vol(y) = Del_V(x) + Vol(y);        
            x = x+1; 
        end 
    end 

     
    Iteration = Iteration + 1; 
    lf=lf+0.25; 
    Tolerance_old = Tolerance; 
    Tolerance = max(abs(Del_PQ)); 
    if(Tolerance > Tolerance_old) 
        disp('Singular Point reached!!') 
        lf=lf_max+1; 
        break; 
    end     
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end 

  
Jr_QV = J4-J3*inv(J1)*J2; 
Jr_PA = J1-J2*inv(J4)*J3; 
[rev_QV, ev_QV] = eig(Jr_QV); 
[lev_QV, ~] = eig(Jr_QV.'); 
lev_QV = conj(lev_QV); 
[rev_PA, ev_PA] = eig(Jr_PA); 
[lev_PA, ~] = eig(Jr_PA.'); 
lev_PA = conj(lev_PA); 
Jn1 = ((J1+J1')/2); 
Jn2 = ((J2+J3')/2); 
Jn3 = ((J3+J2')/2); 
Jn4 = ((J4+J4')/2); 
Jr_nQV = Jn4-Jn3*inv(Jn1)*Jn2; 
Jr_nPA = Jn1-Jn2*inv(Jn4)*Jn3; 
[rev_nQV, ev_nQV] = eig(Jr_nQV); 
[lev_nQV, ~] = eig(Jr_nQV'); 
lev_nQV = lev_nQV'; 
[rev_nPA, ev_nPA] = eig(Jr_nPA); 
[lev_nPA, ~] = eig(Jr_nPA'); 
lev_nPA = lev_nPA'; 
e_QV=diag(ev_QV); 
e_nQV=diag(ev_nQV); 
e_PA=diag(ev_PA); 
e_nPA=diag(ev_nPA); 
sub_QV=e_QV-e_nQV; 
sub_PA=e_PA-e_nPA; 

  
%{ 
%Reactive Power Demand - Graphs 
figure;                                                         %1 
scatter(X1,sub_QV,'r'); 
hold on  
plot(e_nQV,'m'); 
hold on  
plot(e_QV); 
hold on  
hline(0,'r') 
grid on; 
title('Critical Modes - Reactive Power Demand'); 
legend('Comparision','Symmetric Component','Ordinary Jacobian'); 
xlabel('System Mode'); 
ylabel('Eigen Values'); 
%} 

  
%{ 
%Active Power Demand - Graphs 
figure;                                                         %2 
scatter(X2,sub_PA,'r'); 
hold on  
plot(e_nPA,'m'); 
hold on 
plot(abs(e_PA)); 
hold on 
hline(0,'g'); 
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grid on; 
title('Critical Modes - Active Power Demand'); 
legend('Comparision','Symmetric Component','Ordinary Jacobian'); 
xlabel('System Mode'); 
ylabel('Eigen Values'); 
%} 

  
%Reactive Power Demand - Critical mode 
%{ 
cm1_QV = cm; 
cm2_QV = cm; 
cm1_PA = cm; 
cm2_PA = cm; 
%} 
[cm1_QV,~] = find(e_QV==min(e_QV)); 
%sub_QV(sub_QV==min(sub_QV)) = inf; 
[cm2_QV,~] = find(e_nQV==min(e_nQV)); 
%Active Power Demand - Critical mode 
[cm1_PA,~] = find(e_PA==min(e_PA)); 
%sub_PA(sub_PA==min(sub_PA)) = inf; 
[cm2_PA,~] = find(e_nPA==min(e_nPA)); 

  
%Reactive Power Demand - Bus Participation Factors 
bpf_rp1 = zeros(1,length(e_QV)); 
bpf_rp2 = zeros(1,length(e_QV)); 
bpf_rp3 = zeros(1,length(e_QV)); 
bpf_rp4 = zeros(1,length(e_QV)); 
for i=1:length(e_QV) 
    bpf_rp1(1,i) = rev_QV(i,cm1_QV)*lev_QV(cm1_QV,i); 
    bpf_rp2(1,i) = rev_nQV(i,cm1_QV)*lev_nQV(cm1_QV,i); 
    bpf_rp3(1,i) = rev_QV(i,cm2_QV)*lev_QV(cm2_QV,i); 
    bpf_rp4(1,i) = rev_nQV(i,cm2_QV)*lev_nQV(cm2_QV,i); 
end 

  
%{ 
figure;                                                                

%3 
bpf_rp = [abs(bpf_rp1); abs(bpf_rp2); abs(bpf_rp3); abs(bpf_rp4)]; 
bar(bpf_rp','grouped'); 
title('Bus Participation Factor - Reactive Power Demand'); 
legend('Jo-Eo','Jo-Es','Js-Eo','Js-Es'); 
xlabel('Bus Number'); 
ylabel('Participation factor'); 
%} 

  
%Active Power Demand - Bus Participation Factors 
bpf_ap1 = zeros(1,length(e_PA)); 
bpf_ap2 = zeros(1,length(e_PA)); 
bpf_ap3 = zeros(1,length(e_PA)); 
bpf_ap4 = zeros(1,length(e_PA)); 
for i=1:length(e_PA) 
    bpf_ap1(1,i) = rev_PA(i,cm1_PA)*lev_PA(cm1_PA,i); 
    bpf_ap2(1,i) = rev_nPA(i,cm1_PA)*lev_nPA(cm1_PA,i); 
    bpf_ap3(1,i) = rev_PA(i,cm2_PA)*lev_PA(cm2_PA,i); 
    bpf_ap4(1,i) = rev_nPA(i,cm2_PA)*lev_nPA(cm2_PA,i); 
end 
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%{ 
figure;                                                                  

%4 
bpf_ap = [abs(bpf_ap1); abs(bpf_ap2); abs(bpf_ap3); abs(bpf_ap4)]; 
bar(bpf_ap','grouped'); 
title('Bus Participation Factor - Active Power Demand'); 
legend('Jo-Eo','Jo-Es','Js-Eo','Js-Es'); 
xlabel('Bus Number'); 
ylabel('Participation factor'); 
%} 
Vol_lf(1,q) = Vol(lbn,1); 
Vol_lf1(1,q) = Vol(26,1); 
apf1(1,q)= abs(bpf_ap1(1,lbn-1)); 
apf2(1,q)= abs(bpf_ap2(1,lbn-1)); 
apf3(1,q)= abs(bpf_ap3(1,lbn-1)); 
apf4(1,q)= abs(bpf_ap4(1,lbn-1)); 

  
apf11(1,q)= abs(bpf_ap1(1,25)); 
apf12(1,q)= abs(bpf_ap2(1,25)); 
apf13(1,q)= abs(bpf_ap3(1,25)); 
apf14(1,q)= abs(bpf_ap4(1,25)); 
q=q+1; 
end 
Vol_grad = gradient(Vol_lf(1:(length(Vol_lf)-1))); 
str_vg = sprintf('Voltage Gradient at Bus %d: ',lbn); 
disp (str_vg); disp(abs(sum(100*Vol_grad))); 
figure; 
subplot(2,2,1); 
plot(apf1,'r'); 
hold on; 
plot(apf4,'g'); 
str1 = sprintf('Bus %d response to Active Power Demand',lbn); 
title(str1); 
legend('Jo-Eo','Js-Es'); 
xlabel('Loading factor'); 
ylabel('Participation factor'); 
subplot(2,2,2); 
plot(apf11,'r'); 
hold on; 
plot(apf14,'g'); 
title('Bus 26 response to Active Power Demand'); 
legend('Jo-Eo','Js-Es'); 
xlabel('Loading factor'); 
ylabel('Participation factor'); 
subplot(2,2,3); 
plot(Vol_lf(1:(length(Vol_lf)-1))) 
str3 = sprintf('Voltage variation at bus %d', lbn); 
title(str3); 
xlabel('Loading Factor'); 
ylabel('Voltage'); 
subplot(2,2,4); 
plot(Vol_lf1(1:(length(Vol_lf1)-1))); 
title('Voltage Variation at Bus 26') 
xlabel('Loading Factor'); 
ylabel('Voltage'); 
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%{ 
figure; 
subplot(1,2,1); 
plot(apf2,'b'); 
hold on; 
plot(apf3,'m'); 
str2 = sprintf('Alternate: Bus %d response to Active Power 

Demand',lbn); 
title(str2); 
legend('Jo-Es','Js-Eo'); 
xlabel('Loading factor'); 
ylabel('Participation factor'); 
subplot(1,2,2); 
plot(apf12,'b'); 
hold on; 
plot(apf13,'m'); 
title('Alternate: Bus 26 response to Active Power Demand'); 
legend('Jo-Es','Js-Eo'); 
xlabel('Loading factor'); 
ylabel('Participation factor'); 
%} 
%Solution(n_bus,Vol,Delta,line,lf,l); 

  
end 

 

Appendix C. Custom Load flow program – Critical Mode Identification  

 
function[] = custom_load_flow_cm(busno,line,base) 
ieee_bus=busno; 
Ymatrix=ybus(ieee_bus,line); 
switch busno 
    case 4 
    case 5 
        data='IEEE5.xlsx'; 
    case 14 
        data='IEEE14.xlsx'; 
    case 30 
        data='IEEE30.xlsx'; 
    case 118 
        data='IEEE118.xlsx'; 
end 
base_MVA=base; 
Type=xlsread(data,2,sprintf( 'B3:B%d', (2+ieee_bus))); 
Pg=xlsread(data,2,sprintf( 'C3:C%d', (2+ieee_bus))); 
Qg=xlsread(data,2,sprintf( 'D3:D%d', (2+ieee_bus))); 
Pl=xlsread(data,2,sprintf( 'E3:E%d', (2+ieee_bus))); 
Ql=xlsread(data,2,sprintf( 'F3:F%d', (2+ieee_bus))); 
Vol=xlsread(data,2,sprintf( 'G3:G%d', (2+ieee_bus))); 
Qmin=xlsread(data,2,sprintf( 'H3:H%d', (2+ieee_bus))); 
Qmax=xlsread(data,2,sprintf( 'I3:I%d', (2+ieee_bus))); 
Delta=xlsread(data,2,sprintf( 'J3:J%d', (2+ieee_bus))); 
Pg=Pg/base_MVA; 
Qg=Qg/base_MVA; 
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Pl=Pl/base_MVA; 
Ql=Ql/base_MVA; 
lf=1; 
l=1; 
Pl=lf*Pl; 
Ql=l*Ql; 
Qmin=Qmin/base_MVA; 
Qmax=Qmax/base_MVA; 
P=Pg-Pl; 
Q=Qg-Ql; 
Pspec=P; 
Qspec=Q; 
G=real(Ymatrix); 
B=imag(Ymatrix); 
PV=find(Type==1 | Type==3); %PV 
PQ=find(Type==2); %PQ 
n_PV=length(PV); 
n_PQ=length(PQ); 
n_bus=length(Vol); 
Tolerance=10000000; 
Iteration=1; 
tic;    
while(Tolerance>0.0001) 
    P = zeros(n_bus,1); 
    Q = zeros(n_bus,1); 

  
    for i = 1:n_bus 
        for k = 1:n_bus 
            P(i) = P(i) + Vol(i)* Vol(k)*(G(i,k)*cos(Delta(i)-Delta(k)) 

+ B(i,k)*sin(Delta(i)-Delta(k))); 
            Q(i) = Q(i) + Vol(i)* Vol(k)*(G(i,k)*sin(Delta(i)-Delta(k)) 

- B(i,k)*cos(Delta(i)-Delta(k))); 
        end 
    end 

     
    dPa = Pspec-P; 
    dQa = Qspec-Q; 
    k = 1; 
    dQ = zeros(n_PQ,1); 
    for i = 1:n_bus 
        if Type(i) == 2 
            dQ(k,1) = dQa(i); 
            k = k+1; 
        end 
    end 
    dP = dPa(2:n_bus); 
    Del_PQ = [dP; dQ];        

     

     
    J1 = zeros(n_bus-1,n_bus-1); 
    for i = 1:(n_bus-1) 
        k = i+1; 
        for j = 1:(n_bus-1) 
            m = j+1; 
            if m == k 
                for m = 1:n_bus 
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                    J1(i,j) = J1(i,j) + Vol(k)* Vol(m)*(-

G(k,m)*sin(Delta(k)-Delta(m)) + B(k,m)*cos(Delta(k)-Delta(m))); 
                end 
                J1(i,j) = J1(i,j) - Vol(k)^2*B(k,k); 
            else 
                J1(i,j) = Vol(k)* Vol(m)*(G(k,m)*sin(Delta(k)-Delta(m)) 

- B(k,m)*cos(Delta(k)-Delta(m))); 
            end 
        end 
    end 
        J2 = zeros(n_bus-1,n_PQ); 
    for i = 1:(n_bus-1) 
        k = i+1; 
        for j = 1:n_PQ 
            m = PQ(j); 
            if m == k 
                for m = 1:n_bus 
                    J2(i,j) = J2(i,j) + Vol(m)*(G(k,m)*cos(Delta(k)-

Delta(m)) + B(k,m)*sin(Delta(k)-Delta(m))); 
                end 
                J2(i,j) = J2(i,j) + Vol(k)*G(k,k); 
            else 
                J2(i,j) = Vol(k)*(G(k,m)*cos(Delta(k)-Delta(m)) + 

B(k,m)*sin(Delta(k)-Delta(m))); 
            end 
        end 
    end 
    J3 = zeros(n_PQ,n_bus-1); 
    for i = 1:(n_PQ) 
        k = PQ(i); 
        for j = 1:(n_bus-1) 
            m = j+1; 
            if m == k 
                for m = 1:n_bus 
                    J3(i,j) = J3(i,j) + Vol(k)* 

Vol(m)*(G(k,m)*cos(Delta(k)-Delta(m)) + B(k,m)*sin(Delta(k)-Delta(m))); 
                end 
                J3(i,j) = J3(i,j) - Vol(k)^2*G(k,k); 
            else 
                J3(i,j) = Vol(k)* Vol(m)*(-G(k,m)*cos(Delta(k)-

Delta(m)) - B(k,m)*sin(Delta(k)-Delta(m))); 
            end 
        end 
    end 
    J4 = zeros(n_PQ,n_PQ); 
    for i = 1:(n_PQ) 
        k = PQ(i); 
        for j = 1:n_PQ 
            m = PQ(j); 
            if m == k 
                for m = 1:n_bus 
                    J4(i,j) = J4(i,j) + Vol(m)*(G(k,m)*sin(Delta(k)-

Delta(m)) - B(k,m)*cos(Delta(k)-Delta(m))); 
                end 
                J4(i,j) = J4(i,j) - Vol(k)*B(k,k); 
            else 
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                J4(i,j) = Vol(k)*(G(k,m)*sin(Delta(k)-Delta(m)) - 

B(k,m)*cos(Delta(k)-Delta(m))); 
            end 
        end 
    end 
    J=[J1 J2; J3 J4]; 
    Del_x=J\Del_PQ; 
    Del_A=Del_x(1:n_bus-1); 
    Del_V=Del_x(n_bus:end);     
    Delta(2:n_bus) = Del_A + Delta(2:n_bus);     
    x = 1; 
    for y = 2:n_bus 
        if Type(y) == 2 
            Vol(y) = Del_V(x) + Vol(y);        
            x = x+1; 
        end 
    end 

     
    Iteration = Iteration + 1; 
%     lf=lf+0.25; 
    Tolerance_old = Tolerance; 
    Tolerance = max(abs(Del_PQ)); 
    if(Tolerance > Tolerance_old) 
        disp('Singular Point reached!!'); 
        break; 
    end     
end 

  
Jr_QV = J4-J3*inv(J1)*J2; 
Jr_PA = J1-J2*inv(J4)*J3; 
[rev_QV, ev_QV] = eig(Jr_QV); 
[lev_QV, ~] = eig(Jr_QV.'); 
lev_QV = conj(lev_QV); 
[rev_PA, ev_PA] = eig(Jr_PA); 
[lev_PA, ~] = eig(Jr_PA.'); 
lev_PA = conj(lev_PA); 
Jn1 = ((J1+J1')/2); 
Jn2 = ((J2+J3')/2); 
Jn3 = ((J3+J2')/2); 
Jn4 = ((J4+J4')/2); 
Jr_nQV = Jn4-Jn3*inv(Jn1)*Jn2; 
Jr_nPA = Jn1-Jn2*inv(Jn4)*Jn3; 
[rev_nQV, ev_nQV] = eig(Jr_nQV); 
[lev_nQV, ~] = eig(Jr_nQV'); 
lev_nQV = lev_nQV'; 
[rev_nPA, ev_nPA] = eig(Jr_nPA); 
[lev_nPA, ~] = eig(Jr_nPA'); 
lev_nPA = lev_nPA'; 
e_QV=diag(ev_QV); 
e_nQV=diag(ev_nQV); 
e_PA=diag(ev_PA); 
e_nPA=diag(ev_nPA); 
sub_QV=e_QV-e_nQV; 
sub_PA=e_PA-e_nPA; 
X1 = [1:length(sub_QV)]; 
X2 = [1:length(sub_PA)]; 
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%Reactive Power Demand - Graphs 
figure;                                                         %1 
scatter(X1,sub_QV,'r'); 
hold on  
plot(e_nQV,'m'); 
hold on  
plot(e_QV); 
hold on  
hline(0,'r') 
grid on; 
title('Critical Modes - Reactive Power Demand'); 
legend('Comparision','Symmetric Component','Ordinary Jacobian'); 
xlabel('System Mode'); 
ylabel('Eigen Values'); 

  

  

  
%Active Power Demand - Graphs 
figure;                                                         %2 
scatter(X2,sub_PA,'r'); 
hold on  
plot(e_nPA,'m'); 
hold on 
plot(abs(e_PA)); 
hold on 
hline(0,'g'); 
grid on; 
title('Critical Modes - Active Power Demand'); 
legend('Comparision','Symmetric Component','Ordinary Jacobian'); 
xlabel('System Mode'); 
ylabel('Eigen Values'); 

  
%Reactive Power Demand - Critical mode 
%{ 
cm1_QV = cm; 
cm2_QV = cm; 
cm1_PA = cm; 
cm2_PA = cm; 
%} 
[cm1_QV,~] = find(e_QV==min(e_QV)); 
%sub_QV(sub_QV==min(sub_QV)) = inf; 
[cm2_QV,~] = find(e_nQV==min(e_nQV)); 
%Active Power Demand - Critical mode 
[cm1_PA,~] = find(e_PA==min(e_PA)); 
%sub_PA(sub_PA==min(sub_PA)) = inf; 
[cm2_PA,~] = find(e_nPA==min(e_nPA)); 

  
%Reactive Power Demand - Bus Participation Factors 
bpf_rp1 = zeros(1,length(e_QV)); 
bpf_rp2 = zeros(1,length(e_QV)); 
bpf_rp3 = zeros(1,length(e_QV)); 
bpf_rp4 = zeros(1,length(e_QV)); 
for i=1:length(e_QV) 
    bpf_rp1(1,i) = rev_QV(i,cm1_QV)*lev_QV(cm1_QV,i); 
    bpf_rp2(1,i) = rev_nQV(i,cm1_QV)*lev_nQV(cm1_QV,i); 
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    bpf_rp3(1,i) = rev_QV(i,cm2_QV)*lev_QV(cm2_QV,i); 
    bpf_rp4(1,i) = rev_nQV(i,cm2_QV)*lev_nQV(cm2_QV,i); 
end 

  

  
figure;                                                                

%3 
bpf_rp = [abs(bpf_rp1); abs(bpf_rp2); abs(bpf_rp3); abs(bpf_rp4)]; 
bar(bpf_rp','grouped'); 
title('Bus Participation Factor - Reactive Power Demand'); 
legend('Jo-Eo','Jo-Es','Js-Eo','Js-Es'); 
xlabel('Bus Number'); 
ylabel('Participation factor'); 

  

  
%Active Power Demand - Bus Participation Factors 
bpf_ap1 = zeros(1,length(e_PA)); 
bpf_ap2 = zeros(1,length(e_PA)); 
bpf_ap3 = zeros(1,length(e_PA)); 
bpf_ap4 = zeros(1,length(e_PA)); 
for i=1:length(e_PA) 
    bpf_ap1(1,i) = rev_PA(i,cm1_PA)*lev_PA(cm1_PA,i); 
    bpf_ap2(1,i) = rev_nPA(i,cm1_PA)*lev_nPA(cm1_PA,i); 
    bpf_ap3(1,i) = rev_PA(i,cm2_PA)*lev_PA(cm2_PA,i); 
    bpf_ap4(1,i) = rev_nPA(i,cm2_PA)*lev_nPA(cm2_PA,i); 
end 

  
figure;                                                                  

%4 
bpf_ap = [abs(bpf_ap1); abs(bpf_ap2); abs(bpf_ap3); abs(bpf_ap4)]; 
bar(bpf_ap','grouped'); 
title('Bus Participation Factor - Active Power Demand'); 
legend('Jo-Eo','Jo-Es','Js-Eo','Js-Es'); 
xlabel('Bus Number'); 
ylabel('Participation factor'); 

  
Solution(n_bus,Vol,Delta,line,lf,l); 

  
end 

  

 Appendix D. Solution and Results Program 

  
function[] = Solution(n_bus,Vol,Delta,line,lf,l) 

  
ieee_bus=n_bus; 
ieee_line=line; 
Y = ybus(ieee_bus,line);  
Vm = Vol.*cos(Delta) + 1i*Vol.*sin(Delta); 
Del = 180/pi*Delta;    
switch n_bus 
    case 5 
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        data='IEEE5.xlsx'; 
    case 14 
        data='IEEE14.xlsx'; 
    case 30 
        data='IEEE30.xlsx'; 
    case 118 
        data='IEEE118.xlsx'; 
end 
Type=xlsread(data,2,sprintf( 'B3:B%d', (2+ieee_bus))); 
Pl=xlsread(data,2,sprintf( 'E3:E%d', (2+ieee_bus))); 
Ql=xlsread(data,2,sprintf( 'F3:F%d', (2+ieee_bus))); 
Pl=lf*Pl; 
Ql=l*Ql; 
sb=xlsread(data,1,sprintf( 'A2:A%d', (1+ieee_line))); 
eb=xlsread(data,1,sprintf( 'B2:B%d', (1+ieee_line))); 
nl = length(sb); 
Iij = zeros(n_bus,n_bus); 
Sij = zeros(n_bus,n_bus); 
Si = zeros(n_bus,1); 
base_MVA=100; 

  
 I = Y*Vm; 
 Im = abs(I); 
 Ia = angle(I); 

  
for m = 1:nl 
    p = sb(m); q = eb(m); 
    Iij(p,q) = -(Vm(p) - Vm(q))*Y(p,q);  
    Iij(q,p) = -Iij(p,q); 
end 
Iij = sparse(Iij); 
Iijm = abs(Iij); 
Iija = angle(Iij); 

  

  
for m = 1:n_bus 
    for n = 1:n_bus 
        if m ~= n 
            Sij(m,n) = Vm(m)*conj(Iij(m,n))*base_MVA; 
        end 
    end 
end 
Sij = sparse(Sij); 
Pij = real(Sij); 
Qij = imag(Sij); 

  
Lij = zeros(nl,1); 
for m = 1:nl 
    p = sb(m); q = eb(m); 
    Lij(m) = Sij(p,q) + Sij(q,p); 
end 
Lpij = real(Lij); 
Lqij = imag(Lij); 
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for i = 1:n_bus 
    for k = 1:n_bus 
        Si(i) = Si(i) + conj(Vm(i))* Vm(k)*Y(i,k)*base_MVA; 
    end 
end 
Pi = real(Si); 
Qi = -imag(Si); 
Pg = Pi+Pl; 
Qg = Qi+Ql; 
n=[1:n_bus]'; 
xlswrite(data, n, 3, sprintf( 'A3:A%d', (2+n_bus)));  
Total = [sum(Pi+Pl) sum(Qi+Ql) sum(Pl) sum(Ql)]; 
label = {'Total' ''}; 
soln = [Type RoundByRatCommand(Pg) RoundByRatCommand(Qg) 

RoundByRatCommand(Pl) RoundByRatCommand(Ql) RoundByRatCommand(Vol) 

RoundByRatCommand(Del)]; 
xlswrite(data, soln, 3, 'B3'); 
xlswrite(data, label, 3, sprintf( 'A%d', (4+n_bus))); 
xlswrite(data, Total, 3, sprintf( 'C%d', (4+n_bus))); 
    Pse = zeros(nl,1); 
    Qse = zeros(nl,1); 
    Pes = zeros(nl,1); 
    Qes = zeros(nl,1); 
for z=1:nl 
    s=sb(z); e=eb(z); 
    Pse(z,1) = Pij(s,e); 
    Qse(z,1) = Qij(s,e); 
    Pes(z,1) = Pij(e,s); 
    Qes(z,1) = Qij(e,s); 
end 
lineflow = [sb eb Pse Qse eb sb Pes Qes Lpij Lqij]; 
xlswrite(data, lineflow, 4, 'A3'); 
winopen(data); 

  

Appendix E. Jacobian Indices and Gerschgorin Circles  

 
function[index1,index2,index3,index4] = Jacobian_Indices(J1,J2,J3,J4) 
J=[J1 J2; J3 J4]; 
Js = 0.5*[J1+J1' J2+J3'; J3+J2' J4+J4']; 
Jas = 0.5*[J1-J1' J2-J3'; J3-J2' J4-J4']; 
[~,si_J,~]=svd(J); 
[~,si_Js,~]=svd(Js); 
[~,si_Jas,~]=svd(Jas); 
J_SIN = diag(si_J); 
Js_SIN = diag(si_Js); 
Jas_SIN = diag(si_Jas); 
Js_w = zeros(length(Js_SIN),1); 
Jas_w = zeros(length(Jas_SIN),1); 
Jn_w = zeros(length(J_SIN),1); 
Jd_w = zeros(length(J_SIN),1); 
Msig_Js = 0; 
Msig_Jas = 0; 
Msig_Jn = 0; 
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Msig_Jd = 0; 
for i = 1:length(Js_SIN) 
    Js_w(i)=Js_SIN(i)/sum(Js_SIN); 
end 
for i = 1:length(Jas_SIN) 
    Jas_w(i)=Jas_SIN(i)/sum(Jas_SIN); 
end 
for i = 1:length(J_SIN) 
    Jn_w(i)=(J_SIN(i)-Js_SIN(i))/sum(J_SIN-Js_SIN); 
end 
for i = 1:length(J_SIN) 
    Jd_w(i)=(J_SIN(i)-Jas_SIN(i))/sum(J_SIN-Jas_SIN); 
end 
for i = 1:length(Js_SIN) 
    Msig_Jn = Msig_Jn + Jn_w(i)*(J_SIN(i)-Js_SIN(i)); 
end 
for i = 1:length(Js_SIN) 
    Msig_Jd = Msig_Jd + Jd_w(i)*(J_SIN(i)-Jas_SIN(i)); 
end 
for i = 1:length(Js_SIN) 
    Msig_Js = Msig_Js + Js_w(i)*Js_SIN(i); 
end 
for i = 1:length(Jas_SIN) 
    Msig_Jas = Msig_Jas + Jas_w(i)*Jas_SIN(i); 
end 

  
index1 = Msig_Jas/Msig_Js; 
index2 = norm(Jas_SIN,2)/norm(Js_SIN,2); 
index3 = norm(Jas_SIN,'fro')/norm(Js_SIN,'fro'); 
index4 = 3*(Msig_Jn/Msig_Jd); 

  
[r_J1,c_J1] = size(J1); 
radii_J1=zeros(r_J1,1); 
for i = 1:r_J1 
    for j = 1:c_J1 
        if i~=j 
            radii_J1(i,1)= radii_J1(i,1)+norm(((J1(i,j)+J1(j,i))/2),2); 
        end 
    end 
end 
centre_J1 = diag(J1); 
[~, eigv_J1s] = eig((J1+J1')/2); 
nnz(radii_J1); 
nnz(eigv_J1s); 
[~, eigv_J1d] = eig((J1-J1')/2); 
figure; 
for c = 1:r_J1 
    circle(centre_J1(c,1),0,radii_J1(c,1)); 
    hold on; 
end 
[~,~,eigv_J1s] = find(sparse(eigv_J1s)); 
[~,~,eigv_J1d] = find(sparse(eigv_J1d)); 
scatter(eigv_J1s,zeros(c_J1,1)) 
hold on; 
scatter(zeros(length(imag(eigv_J1d)),1),imag(eigv_J1d)) 
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[r_J4,c_J4] = size(J4); 
radii_J4=zeros(r_J4,1); 
for i = 1:r_J4 
    for j = 1:c_J4 
        if i~=j 
            radii_J4(i,1)= radii_J4(i,1)+norm(((J4(i,j)+J4(j,i))/2),2); 
        end 
    end 
end 
centre_J4 = diag(J4); 
[~, eigv_J4s] = eig((J4+J4')/2); 
nnz(radii_J4); 
nnz(eigv_J4s); 
[~, eigv_J4d] = eig((J4-J4')/2); 
figure; 
for c = 1:r_J4 
    circle(centre_J4(c,1),0,radii_J4(c,1)); 
    hold on; 
end 
[~,~,eigv_J4s] = find(sparse(eigv_J4s)); 
[~,~,eigv_J4d] = find(sparse(eigv_J4d)); 
scatter(eigv_J4s,zeros(c_J4,1)) 
hold on; 
scatter(zeros(length(imag(eigv_J4d)),1),imag(eigv_J4d)) 

  
[r_J,c_J] = size(J); 
radii_J=zeros(r_J,1); 
for i = 1:r_J 
    for j = 1:c_J 
        if i~=j 
            radii_J(i,1)= radii_J(i,1)+norm(((J(i,j)+J(j,i))/2),2); 
        end 
    end 
end 
centre_J = diag(J); 
[~, eigv_Js] = eig((J+J')/2); 
nnz(radii_J); 
nnz(eigv_Js); 
[~, eigv_Jd] = eig((J-J')/2); 
figure; 
for c = 1:r_J 
    circle(centre_J(c,1),0,radii_J(c,1)); 
    hold on; 
end 
[~,~,eigv_Js] = find(sparse(eigv_Js)); 
[~,~,eigv_Jd] = find(sparse(eigv_Jd)); 
scatter(eigv_Js,zeros(c_J,1)) 
hold on; 
scatter(zeros(length(imag(eigv_Jd)),1),imag(eigv_Jd)) 
end 
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