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Abstract 

Researcher: Marco Alan Schoener 

Title:  GLOBAL ESTIMATION METHODOLOGY FOR WAVE ADAPTIVE MODULAR  
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Determining parameters for a system model for marine vessels becomes more difficult as the 

model is made more complex. Work has been done to determine the equations of motion, but not 

to fully define how to estimate all of the system parameters. This work utilizes a global 

optimization methodology for estimating the system parameters using a genetic algorithm. The 

optimizer uses training data sets created from a set of ship maneuvering standards to minimize the 

error in the 3 degree-of-freedom equations of motion. The model has been optimized using a “No 

Surge-Yaw” model (minimal surge coupling) and a “Full” model (all states have coupling effects 

to each other) to determine how well each model can be estimated. The “No Surge-Yaw” model 

had the best results with making a working marine vessel model. The “Full” model was difficult 

to optimize due to the additional parameters that had unknown, nonlinear constraints. The “No 

Surge-Yaw” model was compared to linearized, no coupling version of the model that is 

commonly used. The linearized model vastly overestimated the results in sway and yaw rate 

motion while the “No Surge-Yaw” captured the expected coupling dynamics that do exist. Overall, 

the results of this methodology did generate a set of working marine vessel parameters for an 

unknown, coupled-state dynamic model. 
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Chapter I 

Introduction 

1.1. Problem 

 Modeling marine vessels has been a topic of interest since the 1960s with many different 

techniques and standards set in place to generate simulations and control laws. The works of 

Fossen were based on mostly large, monohulled vessels with rudder-based turning. With the 

increasing need for surveying and autonomy, the need for more adaptive types of marine vessels 

has increased. The vessel studied in this work is the WAMV-16, which is a platform that is 

designed to hold generally steady deck motion with independently, articulated pontoons. This 

vessel has been designed to handle sea-state conditions where other boats would have issues [1]. 

The WAMV-16 is the platform of choice for development and research in this thesis. It has been 

used exclusively in the AUVSI RobotX Maritime Challenge, where international collegiate teams 

compete using augmented WAMV USV16s to perform a broad array of boating and autonomy 

tasks. 

 A problem in modeling the WAMV is in part, that this vessel is more flexible than other 

most boats. No model exists for simulation and controls that captures its coupled-state dynamics. 

The coupled-state dynamics of a marine vessel is dependent on all the states, meaning that motion 

in one DOF is going to change the motion in another DOF. The coupling effects are not always 

intuitively determined with the standardized marine tests used in characterizing dynamic 

operation. A methodology needs to be created to estimate these parameters. 

 There have been works with [2] [3] [4] that made methodologies for generating system 

models for marine vessels. The latter two have done work on and for WAMV platforms. The 

models tend to be defined as rigid bodies with either linearized or highly coupled-state dynamics 

to accomplish desired motions and controlled states. The work with linearized dynamics [4] uses 

a WAMV-16 for model estimation and the highly coupled work [3] creates methodology for local 
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optimization estimations based on pre-existing, simulated Fossen models. The first work does not 

cover the coupled-state dynamics and the other does not describe how to get the initial parameters 

of a system model that needs to be further optimized.  

1.2. Focus of Work 

 The focus of this thesis looks to approximate the coupled-state dynamics of a WAMV16 

using a method to estimate the nonlinear dynamics. The ideal case is to have a model that can be 

used for simulation and controls work but needs a coupled-state estimation of the equations of 

motion to minimize expected error between simulated response and actual response of the WAMV. 

1.3. Thesis Contributions 

 This work explored the following areas to present how the nonlinear dynamics of the 

WAMV can be determined and expressed: 

• Developed a test methodology using a global optimizer for parameter identification to 

include capturing coupled-state dynamic terms. 

• Generated a set of dimensional, coupled-state dynamic parameters for a WAMV16.  
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Chapter II 

Literature Review 

2.1. System Model 

 Frames of Motion 

For modeling reference, there are two coordinates frames that are important: a body-fixed 

and global frame. The body-fixed frame is a right-handed Cartesian frame in ℝ3 is aligned with 

the principal axes of inertia that results in the positive x-axis (forward/bow), the positive y-axis 

(right/starboard), and the positive z-axis (downward/towards the water). This is also known as the 

Front-Right-Down (FRD) frame. Velocities, forces, and moments are usually represented using 

this body-fixed frame (Figure 1). The forces and moments act on the vessel’s center of gravity 

(C.G.), but a user-defined spot can be reference for the kinematic and dynamic states of the vessel 

for a constant, convenient reference known as the center of origin (C.O.). 

 

Figure 1: Diagram of FRD frame on a marine vessel [2]. 

The second frame is the inertial frame, which uses the NED frame representation. The NED 

frame is a transformation of the Earth Centered Earth Fixed (ECEF) frame, so the origin is on the 

surface of the earth and located nearby. NED is also a Cartesian frame in ℝ3 with the x-axis 

positive toward north, the y-axis positive towards the east and the z-axis positive down. The NED 
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frame creates a 2-D plane on the curvature of the earth from a reference global position that is the 

origin of the frame. NED only approximates an inertial frame and the approximation gets worse 

the further from the origin you travel. The relatively small operating area of the vessel makes this 

approximation accurate. The NED frame is used to represent the positions and velocities of a 

system [2]. 

In a full six degree of freedom (6-DOF) model, a complete rotation matrix or quaternion 

would need to be used to transform between the vessel FRD and NED frames. However, because 

the model will be simplified to a three degree of freedom (3-DOF) planar representation, only a 

single rotation along the z-axis needs to be applied, Eqn. (3) and (4) [5]. The body-frame is denoted 

by the letter 𝑏 and the inertial frame is denoted by the letter 𝑛. An unlabeled vector, �⃗�, will be 

defaulted to �⃗�𝑏. 

    �⃗⃗⃗�𝑏 = (𝑢, 𝑣, 𝑟) (1) 

    �⃗⃗⃗�𝑛 = (𝑣𝑁 , 𝑣𝐸 , 𝑣𝛹) (2) 

    
𝑅𝑏

𝑛 =  [
cos(𝛹) − sin(𝛹) 0
sin(𝛹) cos(𝛹) 0

0 0 1

] (3) 

    �⃗⃗⃗�𝑛 = 𝑅𝑏
𝑛 �⃗⃗⃗�𝑏 (4) 

In this rotation, 𝑢 and 𝑣 are surge (forward) and sway (sideways) velocities respectively; 

𝑣𝑁 and 𝑣𝐸  are velocity in the northing and easting directions respectively; and 𝜓 is the yaw 

(heading) angle of the vehicle, measured off true north. 
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Figure 2: Top view of the Minion USV16 with C.O. (yellow circle) and azimuth angle (𝛿) ranges for port and 

starboard displayed. 

 Modeling Theories 

 In naval architecture, there are two classic model theories used to describe the motion of 

marine vessels as described by Fossen: Maneuvering Theory and Seakeeping Theory [2]. 

Maneuvering theory is used for vessels that operate in calm, restricting waters. The model is 

derived through moving at a positive forward speed with constant hydrodynamic parameters to 

define the added mass and damping on the vessel. Seakeeping theory studies the motion of vessels 

given wave excitation to determine operability in more sea-states than the maneuvering theory. 

This model is defined by maintaining its constant speed and heading and determines overall vessel 

state due to perturbations from the fixed equilibrium states, such as its speed and heading. 

 This thesis work will focus on the maneuvering vessel model due to its simplistic 

representation of the motion of the marine vessel. Other reference works use the same model to 

achieve the same goal of having an operable model simulation and controls work [3] [4] [6] [7]. 
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 Equations of Motion 

 The dynamic system model is setup between rigid-body kinetics and the hydrodynamics of 

each DOF with a control input to move the USV along. The general equation of motion (EOM) is 

defined as: 

 𝑴𝒗̇+𝑪(𝒗)𝒗+𝑫(𝒗)𝒗=𝝉+𝝉𝒘 (5) 

 
 The system model in Eqn. (5) is depicted on the left side of the equation with the all the 

remaining control forces on the right side of the equation. The control forces encompass the forces 

and moments provided by the thrusters and the disturbances due to external effects such as wind 

and current. 

 The general equations of motion are given in [2]. Using this general form, the following 

subsections break the model into four components: rigid-body motion, hydrodynamic motion, 

disturbances, and actuator forces. Each section describes that aspect of the model’s construction 

in detail and can be combined into a complete parameterized model of the vessel. 

 Rigid-Body Motion 

 The rigid-body representation defines the vessel’s motion due to the inertia and kinetics. A 

6-DOF model as given by [2] is shown in Eqn. (6)-(11). 

   
𝑋 =  𝑚(�̇� − 𝑣𝑟 + 𝑤𝑞 − 𝑥𝐶𝐺(𝑞2 + 𝑟2) +  𝑦𝐶𝐺(𝑝𝑞 − �̇�) + 𝑧𝐶𝐺(𝑝𝑟 + �̇�)) (6) 

   
𝑌 =  𝑚(�̇� − 𝑤𝑝 + 𝑢𝑟 − 𝑦𝐶𝐺(𝑟2 + 𝑝2) +  𝑧𝐶𝐺(𝑞𝑟 − �̇�) + 𝑥𝐶𝐺(𝑞𝑝 + �̇�)) (7) 

   
𝑊 = 𝑚(�̇� − 𝑢𝑞 + 𝑣𝑝 − 𝑧𝐶𝐺(𝑝2 + 𝑞2) +  𝑥𝐶𝐺(𝑟𝑝 − �̇�) + 𝑦𝐶𝐺(𝑟𝑞 + �̇�)) (8) 

   
𝐾 = 𝐼𝑥𝑥�̇� + (𝐼𝑧𝑧 − 𝐼𝑦𝑦)𝑞𝑟 + (�̇� + 𝑝𝑞)𝐼𝑥𝑧 + (𝑟2 − 𝑞2)𝐼𝑦𝑧 + (𝑝𝑟 − �̇�)𝐼𝑥𝑦

+ 𝑚(𝑦𝐶𝐺(�̇� − 𝑢𝑞 + 𝑣𝑝) − 𝑧𝐶𝐺(�̇� − 𝑤𝑝 + 𝑢𝑟)) 
(9) 

   𝑀 = 𝐼𝑦𝑦�̇� + (𝐼𝑥𝑥 − 𝐼𝑧𝑧)𝑟𝑝 − (𝑝 + 𝑞𝑟)𝐼𝑥𝑦 + (𝑝2 − 𝑟2)𝐼𝑥𝑧 + (𝑞𝑝 − �̇�)𝐼𝑦𝑧

+          𝑚(𝑧𝐶𝐺(�̇� − 𝑣𝑟 + 𝑤𝑞) − 𝑥𝐶𝐺(�̇� − 𝑢𝑞 + 𝑣𝑝)) 
(10) 
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𝑁 = 𝐼𝑧𝑧�̇� + (𝐼𝑦𝑦 − 𝐼𝑥𝑥)𝑝𝑞 − (�̇� + 𝑟𝑝)𝐼𝑦𝑧 − (𝑞2 − 𝑝2)𝐼𝑥𝑦 + (𝑟𝑞 − �̇�)𝐼𝑥𝑧

+          𝑚(𝑥𝐶𝐺(�̇� − 𝑤𝑝 + 𝑢𝑟) − 𝑦𝐶𝐺(�̇� − 𝑣𝑟 + 𝑤𝑞)) 
(11) 

𝑤ℎ𝑒𝑟𝑒: 

𝑚 – Mass of the Vessel [𝑘𝑔] 

𝐼𝑧𝑧 – Mass of the Vessel [𝑘𝑔𝑚2] 

X, Y, W – Surge, Sway, and Heave Forces [𝑁] 

K, M, N – Roll, Pitch, and Yaw Moments [𝑁𝑚] 

𝑢, 𝑣, 𝑤– Surge, Sway, and Heave Speeds [𝑚/𝑠] 

𝑝, 𝑞, 𝑚– Roll, Pitch, Yaw Rates [𝑟𝑎𝑑/𝑠 ] 

 

 As noted by Fossen [2], this can be represented in a vector form in Eqn. (12), where 𝑀 is 

the mass matrix, 𝐶 is the Coriolis matrix, 𝜏 is the actuator/disturbance forces and moments, and 𝜈 

is the state vector in the FRD frame. 

    𝑀𝑅𝐵 �̇⃗� + 𝐶𝑅𝐵(�⃗�)�⃗� = 𝜏𝑅𝐵  (12) 

To simplify this initial set of equations, the following assumptions were applied: 

• The roll, pitch, and heave states are neglected; this results in a horizontal-plane, 3-DOF 

model. Wave motion is not captured with this assumption. 

• The x and y C.G. are reference at the vessel’s denoted center of origin (C.O.) 

• Coupling effects between the surge and yaw states exists. 

Applying these assumptions leads to the following form of the model: 

    �⃗� ≔ {𝑢, 𝑣, 𝑟}𝑇 (13) 

    𝜏 = {𝑋, 𝑌, 𝑁}𝑇 (14) 

    

𝑀𝑅𝐵 = [

𝑚 0 −𝑚𝑦𝐶𝐺

0 𝑚 𝑚𝑥𝐶𝐺

−𝑚𝑦𝐶𝐺 𝑚𝑥𝐶𝐺 𝐼𝑧𝑧
] (15) 
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𝐶𝑅𝐵 =  [

0 0 −𝑚(𝑥𝐶𝐺𝑟 + 𝑣)

0 0 −𝑚(𝑦𝐶𝐺𝑟 − 𝑢)

𝑚(𝑥𝐶𝐺𝑟 + 𝑣) 𝑚(𝑦𝐶𝐺𝑟 − 𝑢) 0

] (16) 

 Hydrodynamic Motion 

The hydrodynamic terms show the effects of moving the rigid-body through the water. All 

hydrodynamic coefficients used in the following models utilize the SNAME nomenclature that 

relates the force based on the related states denoted in its subscript. When dealing with nonlinear 

models, there are two methods for handling them: first principles and truncated-Taylor series 

expansions [2]. The first principles model uses well known, established physical properties of the 

vessel to make the model. This is significantly easier due to the number of parameters being 

smaller that the Taylor series. On the other hand, the truncated-Taylor series in Eqn. (17) defines 

a vessel that can be more easily determined experimentally through third-order odd functions to 

describe the vessel’s damping [8]. The forces are related to all possible combinations of states to 

generate the Taylor-series function in the general form (Eqn. (19)). The terms can be difficult to 

experimentally fit, which is why a second-order modulus form [9] in Eqn. (18) is given that is 

motivated by the square law of damping for hydrodynamics and aerodynamics. The model will be 

defined by the second-order functions. 

𝑋 =  𝑋�̇��̇� +  𝑋𝑢𝑢 + 𝑋𝑢𝑢𝑢𝑢3 + 𝑋𝑢𝑢𝑣𝑢2𝑣 + 𝑋𝑢𝑟𝑟𝑢𝑟2 + ⋯ (17) 

𝑋 =  𝑋�̇��̇� +  𝑋𝑢𝑢 + 𝑋𝑢|𝑢|𝑢|𝑢| + 𝑋�̇��̇� +  𝑋𝑣𝑣 + 𝑋𝑣|𝑣|𝑣|𝑣| + ⋯ (18) 

𝐹(𝑠) = ∑ …

∞

𝑛1=0

∑
(𝑠1 − 𝑠1̅)𝑛1 … (𝑠𝑑 − 𝑠𝑑̅̅̅)𝑛𝑑

𝑛1! … 𝑛𝑑!

∞

𝑛𝑑=0

  (
𝜕𝑛1+..+𝑛𝑑�⃗�

𝜕𝑠1
𝑛1 … 𝜕𝑠𝑑

𝑛𝑑
) (𝑠1̅, … , 𝑠𝑑̅̅̅) (19) 

𝑤ℎ𝑒𝑟𝑒: 

𝐹 − 𝐹𝑜𝑟𝑐𝑖𝑛𝑔 𝑡𝑒𝑟𝑚𝑠 

d – Number of States (v) 
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𝑠𝑖 – State elements (from 0 ≤ i ≤ d) 

𝑠�̅� −  𝑆𝑡𝑒𝑎𝑑𝑦 − 𝑠𝑡𝑎𝑡𝑒 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑜𝑢𝑛𝑑 𝑇𝑎𝑦𝑙𝑜𝑟 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 

The terms that change this behavior are the added mass (AM) due to the Mass and Coriolis 

matrices and the hydrodynamic drag matrix, D. Eqn. (20) is the new 3-DOF vectorized equations 

of motion. The additional parameters are the added mass coefficients and the drag coefficients. 

The parameters are constant, and the equations are nonlinear. 

    𝑀�̇⃗� + 𝐶(�⃗�)�⃗� + 𝐷(�⃗�)�⃗� = 𝜏  (20) 

The mass matrix (𝑀), is an inertia tensor that includes both the rigid-body, 𝑀𝑅𝐵, and added 

mass matrix, 𝑀𝐴𝑀. 

    𝑀 = 𝑀𝑅𝐵 + 𝑀𝐴𝑀  (21) 

    

𝑀𝐴𝑀 = [
𝑋�̇� 𝑋�̇� 𝑋�̇�

𝑌�̇� 𝑌�̇� 𝑌�̇�

𝑁�̇� 𝑁�̇� 𝑁�̇�

] (22) 

The Coriolis matrix is a tensor that describes the Coriolis effects in the EOM. 

    𝐶(�⃗�) = 𝐶𝑅𝐵 + 𝐶𝐴𝑀 (23) 

   

𝐶𝐴𝑀(�⃗�) =   [

0 0  𝑌�̇�𝑢 + 𝑌�̇�𝑣 + 𝑌�̇�𝑟
0 0 −𝑋�̇�𝑢 − 𝑋�̇�𝑣 − 𝑋�̇�𝑟

−𝑌�̇�𝑢 − 𝑌�̇�𝑣 − 𝑌�̇�𝑟 𝑋�̇�𝑢 + 𝑋�̇�𝑣 + 𝑋�̇�𝑟 0
] (24) 

 (25) 

 

The drag matrix, 𝐷(�⃗�) (Eqn. (26)), approximates the hydrodynamic drag the vessel 

experiences. The drag model is constructed of a set of linear terms, 𝐷𝐿, and nonlinear terms, 𝐷𝑁𝐿. 

This results in a second order drag model cross-coupling surge to yaw and sway to yaw. The other 

off-terms, such as 𝑌𝑢𝑢 or 𝑋𝑟𝑟, are included to add more coupling effects to help correct weaker, 

but still important, coupling. 

    𝐷(�⃗�) = 𝐷𝐿 + 𝐷𝑁𝐿(�⃗�) (26) 
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𝐷𝐿 =  [
𝑋𝑢 𝑋𝑣 𝑋𝑟

𝑌𝑢 𝑌𝑣 𝑌𝑟

𝑁𝑢 𝑁𝑣 𝑁𝑟

] (27) 

    

𝐷𝑁𝐿(�⃗�) = [

𝑋𝑢𝑢|𝑢| 𝑋𝑣𝑣|𝑣| 𝑋𝑟𝑟|𝑟|

𝑌𝑢𝑢|𝑢| 𝑌𝑣𝑣|𝑣| + 𝑌𝑣𝑟|𝑟| 𝑌𝑟𝑟|𝑟| + 𝑌𝑟𝑣|𝑣|

𝑁𝑢𝑢|𝑢| 𝑁𝑣𝑣|𝑣| + 𝑁𝑣𝑟|𝑟| 𝑁𝑟𝑟|𝑟| + 𝑁𝑟𝑣|𝑣|
] (28) 

 

2.2. Disturbances 

Disturbances affect the vessel’s motion through water and ultimately its simulation for uses 

in controls and effects. There are two disturbances that are of potential concern: current and wind. 

The full 3-DOF equation of motion, including disturbances, is given by: 

    𝑀�̇⃗� + 𝐶(�⃗�)�⃗� + 𝐷(�⃗�)�⃗� = 𝜏 + 𝜏𝑑  (29) 

 Current 

Current can create extra drag on the vessel that either hinders its motion (against the 

current) or increases it (with the current). The current �⃗�𝑐 can be considered both uniform and 

irrotational during operation (Eqn. (30)); meaning that the current effects on the body-fixed speeds 

change with respect to the angle of the current and the yaw angle of the vessel in the NED frame. 

If the rigid-body Coriolis and Mass matrices are parameterized independently of the linear velocity 

�⃗� (vessel speed including current speed), then the rigid-body matrices equal its relative velocity �⃗�𝑟 

in Eqn. (31) [2]. This means that subtracting the effects of the current speed from the vessel 

velocity shows the motion of the vessel as if there was no current (Eqn. (32)), leading to the effects 

of the hydrodynamic terms modeled as seen in Eqn. (33). 

    �⃗�𝑐 = {𝑢𝑐, 𝑣𝑐 , 0}𝑇 (30) 

 �⃗�𝑟 = �⃗� − �⃗�𝑐𝑢𝑟𝑟𝑒𝑛𝑡  (31) 

 𝑀𝑅𝐵 �̇⃗� + 𝐶𝑅𝐵(�⃗�)�⃗� ≡  𝑀𝑅𝐵�⃗��̇� + 𝐶𝑅𝐵(�⃗�𝑟)�⃗�𝑟 (32) 

(𝑀𝑅𝐵 + 𝑀𝐴𝑀)�⃗��̇� + (𝐶𝐴𝑀(�⃗�𝑟) + 𝐶𝑅𝐵(�⃗�𝑟))�⃗�𝑟 + 𝐷(�⃗�𝑟)�⃗�𝑟 = 𝜏 + 𝜏𝑑  (33) 
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 Wind 

Wind disturbances affect vessels with surface areas above water by adding a drag term [2] 

[10]. This can be estimated by calculating the relative velocity of the wind with respect to the 

vehicle and using the resulting velocity to calculate aerodynamic drag. The terms for the wind 

forces are the relative wind velocity (𝑉𝑟𝑤
 ), the apparent angle of attack (𝛾𝑟𝑤), approximate air 

density (𝜌𝑎𝑖𝑟), general surface area of front and side (𝐴𝐹𝑤, 𝐴𝐿𝑤) and the length overall (𝐿𝑂𝐴).  This 

drag can be added as a term in 𝜏𝑑 in Eqns. (34)-(36). 

𝜏𝑑 =
1

2
𝜌𝑎𝑖𝑟𝑉𝑟𝑤

2 [

𝐶𝑋(𝛾𝑟𝑤)𝐴𝐹𝑊

𝐶𝑌(𝛾𝑟𝑤)𝐴𝐿𝑊

𝐶𝑍(𝛾𝑟𝑤)𝐴𝐹𝑊𝐿𝑎𝑎

]  (34) 

𝑉𝑟𝑤
 =  √𝑢𝑟𝑤

2 + 𝑣𝑟𝑤
2  (35) 

𝛾𝑟𝑤 =  −𝑎𝑡𝑎𝑛2(𝑣𝑟𝑤, 𝑢𝑟𝑤) (36) 

 If the boat is symmetrical about the xz-plane [4] [11], the wind coefficients are defined by 

Eqns. (37)-(39). The coefficients are experimentally determined and are non-dimensional. 

𝐶𝑋(𝛾𝑟𝑤) = −𝑐𝑥cos (𝛾𝑟𝑤)  (37) 

𝐶𝑌(𝛾𝑟𝑤) = 𝑐𝑦sin (𝛾𝑟𝑤) (38) 

𝐶𝑍(𝛾𝑟𝑤) = 𝑐𝑧sin (2𝛾𝑟𝑤) (39) 

2.3. Thruster Model  

The quality of the thruster model shapes how well the boat model is expected to respond. 

The more accurate the thruster model in determining its thrust, the more accurate the motion and 

estimation results can become. Making a fully identified thruster model requires knowing the 

effects of the propeller’s inertia and the water flow effect through the propeller which needs its 

own model identification and estimation. Simple thruster models are favored for simplicity and 

ease of estimation for steady maneuvers in calm waters to test the expected motion and limits of 

the vessel. Several papers take simple approaches more often in surface vehicles with Mask [3] 
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and more complex models used in more underwater or thruster identification testing with Häusler 

Häusler [12]. 

To get body forces (Eqn. (40)), the individual thrusters need to sum their forces and 

moments about the C.G. point. The C.G. is the x- and y-axis distance from the user-set Center of 

Origin (C.O.). The C.O. is a point on the vessel to reference all distances and dynamics from.  

Having any offset from the C.G. with a differentially thrusted boat will lead to a yaw moment 

generated due to surge motion. The  𝑇𝑥 and 𝑇𝑦 forces are simply summed with the moments being 

generated by their position from the C.G. The thruster’s forces for the port (𝑝) and starboard (𝑠) 

sides can have an x- and y-direction. 

 𝜏 = {𝑇𝑋 𝑇𝑌 𝑀𝑍}𝑇 (40) 

 

𝑟 =  [

1
0

−𝑦𝑝

     

0
1

𝑥𝑝

     
1
0

−𝑦𝑠

     
0
1
𝑥𝑠

] (41) 

 𝜏𝑇⃗⃗⃗⃗⃗ = {𝑇𝑥𝑝, 𝑇𝑦𝑝, 𝑇𝑥𝑠, 𝑇𝑦𝑠}
𝑇
 (42) 

 𝜏 = 𝑟 × 𝜏𝑇⃗⃗⃗⃗⃗ (43) 

 Throttle Mapping 

The simplest method of motor modeling is to have a known relationship of input to output. 

A commonly used method is a linear regression between the input throttle and the output 

forces/speeds. 

The force is either based on datasheets from the manufacturer’s specifications or related to 

command versus force measured from different throttle values. The relationship can be determined 

by a bollard test where the throttle command is related to the force measured by a force gauge that 

prevents motion. This model operates with the assumption of negligible change in waterflow such 

as no current effects and steady motion [13] [4]. Equations (44)-(45) define the relationship of 
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thrust based on the current thruster RPM percentage multiplied by the maximum attainable thrust 

from the manufacturer’s specification. 

 𝑇𝑝 =  𝑇𝑚𝑎𝑥 (
𝜔𝑝

𝜔𝑚𝑎𝑥
) (44) 

                   𝑇𝑠 =  𝑇𝑚𝑎𝑥 (
𝜔𝑠

𝜔𝑚𝑎𝑥
) (45) 

where: 

𝜔 −  𝑅𝑃𝑀 𝑜𝑓 𝑡ℎ𝑒 𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 (
𝑟𝑒𝑣

𝑠
) 

 

 

 Open-Water Motor Model 

A commonly used model for marine vessels is the open-water motor model. This model 

generates the thrust and torque of a thruster using a coefficient known as the advance ratio (𝐽0). 

This model is used for keeping a minimum speed to the water with respect to control surfaces [12] 

and encompasses the regions of motion where the thrust is related to its direction of travel (Eqn. 

(46)-(48)). 

 𝐽0 =
𝑣𝑎

𝜔𝑑
 (46) 

 𝑇 = 𝜌𝑑4𝑘𝑇(𝐽0)𝜔2
 (47) 

 𝑄 = 𝜌𝑑5𝑘𝑄(𝐽0)𝜔2
 (48) 

where: 

𝑣𝑎 −  𝑣𝑒𝑠𝑠𝑒𝑙′𝑠 𝑎𝑑𝑣𝑎𝑛𝑐𝑒 𝑠𝑝𝑒𝑒𝑑 [𝑚/𝑠] 

𝜔 −  𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑠𝑝𝑒𝑒𝑑 [𝑟𝑎𝑑/𝑠] 

𝑑 −  𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 [𝑚] 

𝑘𝑇 𝑘𝑄⁄ −  𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑜𝑓 𝑡ℎ𝑟𝑢𝑠𝑡/𝑡𝑜𝑟𝑞𝑢𝑒 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 

𝜌 −  𝑤𝑎𝑡𝑒𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 [𝑘𝑔/𝑚3] 

𝑇 −  𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑡ℎ𝑟𝑢𝑠𝑡 [𝑁] 

𝑄 −  𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑡𝑜𝑟𝑞𝑢𝑒 [𝑁𝑚] 

𝐽0 −  𝑎𝑑𝑣𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑖𝑜 
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The issue with this model is that it is not suited for operations that require fast turns or 

sudden changes in direction. The forces modeled only consider the thrust effects acting with the 

speed of the vessel. This method does not capture reversing thrust in motion like “braking” or 

station-keeping accurately. To gather data that accounts for the changes in motion and more water 

effects in the system identification data, a more complex model needs to be used. 

2.4. System Identification 

 Modeling Techniques 

 There are a few primary techniques used for modeling. The most common one is the white 

box model where the dynamics are explicitly related to the physics of the physical object [2] [14]. 

This method carries mathematical and physical assumptions that bring about a more predictable 

and valid solution. The downside of this technique is that the simulated system being modelled 

will not completely match the real system due to unknown physical effects that occur. 

Mathematical white box models were generated in Simulink by Benedict [15]. His models were 

focused on the drag equation of a surface moving through water based on commonly-used 

parameters. The overall model will provide insight into the motions, but it cannot capture all the 

expected coupling effects of the vessel that tend to occur between states such as surge and yaw 

rate coupling. 

 The black box model uses the empirical data collected from the real system to generate the 

model. The model presented by Fossen on the truncated-Taylor series is a form of fitting a 

multiple-in-multiple-out (MIMO) system model to a vessel. The model follows no direct physical 

representation, but it can still represent the vessel that is being tested. 

 The grey-box model takes part of both white- and black-box models to create a more 

specialized physical model of the system being used. The model becomes more descriptive of the 

actual vessel, in this case, while being defined by its white-box model form. The model follows 
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some form of white box modeling such as the rigid-body and second-order drag terms in the 

second-order model. The second-order model has terms that still need to be fit because no direct 

correlation exists to physical aspects of the model. For example, the cross term 𝑌𝑟𝑣 is related to the 

sway force due to yaw rate but is fitted rather than using a direct, physically-related equation. In 

equation (49), the parameter is summed in the 3rd column to another quadratic term. This shows 

the effects the term can have on the sway force but is hard to directly measure since this drag term 

is in relation to the current sway speed and yaw rate.  

 
𝐷𝑁𝐿,   𝑌(�⃗�) = [

… … …
𝑌𝑢𝑢|𝑢| 𝑌𝑣𝑣|𝑣| + 𝑌𝑣𝑟|𝑟| 𝑌𝑟𝑟|𝑟| + 𝒀𝒓𝒗|𝑣|

… … …
] (49) 

 �⃗� = {𝑢, 𝑣, 𝑟} (50) 

The grey-box is the preferred method to perform the system identification with work being 

attempted in by Mask where a Taylor-series model was fit based on parameters previously 

determined by a Fossen boat model [3]. The research by Mask was only done with Fossen’s 

simulated boat model with guidelines on how to adapt their identification on their WAMV12 

platform. This current research moves towards continuing this approach using the WAMV16 for 

identification based on Mask’s initial work. 

 Optimization Techniques 

 Optimization is the process of finding the values of independent parameters that minimizes 

or maximizes a function [16]. There are two different classifications of optimizers: local and 

global. Local optimizers search for local minimum(s) in a function that fit the parameters for 

certain cases, but do not capture the overall minimum of the function. A global minimum is where 

the function value is smaller than or equal to all other feasible points. A local minimum in this 

case can get stuck in cases where a function converges on the first or more easily accepted 

minimum it finds. 
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 Local optimization is beneficial for models that have an established function that needs a 

better fit. In [3], Mask uses the nonlinear grey-box model function in MATLAB to estimate and 

validate a Fossen boat model. The work develops a methodology for estimating parameters for 

vessels by scaling the known parameters by a ratio and then simulating them to obtain training and 

validation data sets. The optimizer optimizes the original model parameters and attempts to fit to 

the different scaled models. The nonlinear grey-box model by MathWorks is designed to search 

for a more optimal solution using sets of local optimization techniques such as nonlinear least 

squares and Quasi-Newton methods. 

 Global optimization is beneficial to searching a space that may have little to no initial 

parameters estimates for the search to reference. In this work, MATLAB is utilized to train data, 

thus the methods being explored are restricted to what algorithms MATLAB has implemented due 

to having robust algorithms and options to verify works. The optimizers work similarly to the local 

variants in terms that the algorithm search for the local minimum near it. The change is how the 

iterations of the optimizer change at each step. 

 One global optimizer is the genetic algorithm (GA) [17] [18], which searches functions 

using natural selection ideologies. The GA takes a population of individual solutions (i.e. 

parameters) and randomly assigns them as parents to produce new solutions for the next generation 

of the population. There are 3 main rules for the algorithm to expand this way. The selection rule 

selects the parents to contribute the children for the next generation. The crossover rule (Figure 3) 

combines 2 parents to form the next generation children. The mutation rule (Figure 4) applies 

random changes to the parent to form the next children. This evolves the population over time 

towards a global solution. The function that is being optimized is known as a fitness function. The 

fitness function describes how well the function fits and how the population can continue to evolve. 
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The function in this work is the error score calculated from the actual data versus the simulated 

results. 

 

Figure 3: Example of using the Crossover Operator [19]. 

 

Figure 4: Example of using the Mutation operator [19]. 

 Another type of global optimizer is the particle swarm (PS), which uses an animal swarm 

approach of moving in relation to the swarm by sharing its knowledge with each other. Every 

individual in the swarm is known as a particle. The particle moves along the search space given 

its own position and velocity and its goal represented by the swarm’s overall position and its 

current search direction. This approach is also a pseudo-random search like the GA, but maintains 

its solutions based on the best of the swarm. 

 The GA and PS methods both require some sort of insight into the problem for some initial 

states to get a better set of parameters. The fitness of the function will only approach a solution 

when working with semi-unknown physical systems that may be over- or under-constrained but 

work with the current set of data sets. This is known as overfitting [20] where systems are over-

parameterized to fixate on certain cases rather than being more flexible in other valid cases. Using 

a wide set of useful data sets for training the parameters, then using untouched data sets to validate 

their fit in similar and different conditions. The training and validation sets should cover the 
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expected motion in all cases that should be considered. Performing cross-validation is helpful to 

reduce overtraining by reducing the amount of data set collection by reusing some training as 

validation and those validation as training. A secondary check for determining the model’s 

potential motion is to simulate basic motion cases like steady-state motion cases at fixed inputs. 

 System Identification Boat Maneuvers 

 There are sets of standards for identifying maneuvering capabilities and parameters for 

marine crafts. The standards have been commonly used in helping determine the unknown 

parameters for different identification techniques since the approaches have certain goals to them 

[21]. The required tests presented in the standards are the turning, zig-zag, and stopping tests. 

The vessels presented in the standard are typically large ships to cargo ships. The general setup 

is some thruster configuration that is mostly concerned with solely forward thrust and a rudder-

based turn. The WAMV16 used relies on differential thrust via aft mounted thrusters on the port 

and starboard sides. To make a comparison to other typical rudder-based ships, the USV will 

operate in 2 different states. First, any required forward motion will require both thrusters to 

operate at the same throttle level. Secondly, any rudder-deflections will be based on one of the 

thrusters having more power. For example, a zig-zag maneuver will have the WAMV drive 

forward to speed on both thrusters, then when turning, the thrust will alternate which thruster is 

active while the other will be idle. This motion is only considered for the sake of the standards and 

any other test is subject to additional thrust configurations as needed. The last note on the setup is 

that all of the motions performed are done through open-loop commands with the exception of any 

test checkpoints detected (i.e. reaching a target heading while zig-zagging to trigger the change in 

thrust to turn) will just command the WAMV to another open-loop command. 
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 The stopping test (Figure 5) is known for determining the vessel’s ability to stop from an 

initial velocity. In the literature [21], this required the ship to reach steady-state speed, then 

command a full-astern until the ship is sitting dead in the water. 

 

Figure 5: A diagram of the standard stopping maneuver [22]. 

 The turning test [21] is designed to determine the ship’s tactical diameter at different rudder 

angles given some cruise speed. This test begins to speed forward with no rudder action until a 

steady speed is achieved. Once the speed has been achieved, the rudder is set to a direction and 

held for at least 2 revolutions.  
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Figure 6: A diagram of the standard stopping maneuver [22]. 

 The zigzag test [13] [21] (Figure 7) is designed to test vessel course-keeping and heading 

overshoot. The vessel starts moving forward at a constant heading, then the rudder is diverted to 

an angle and remains there until the vessel crosses that angle difference. Once the vessel changes 

heading, the rudder is commanded to the same heading change on the opposite side of the initial 

heading. Repeating this maneuver with different delta angles and speeds help determine the 

hydrodynamic coupling between the surge and yaw motions. 
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Figure 7: A diagram of the standard zig-zag maneuver [22]. 

 With these tests giving expected, constant motion, the measured position drift can help 

isolate a factor of the average relative velocity of disturbances [21]. Using the turning test can 

determine that drift as shown in Figure 8. 

  

Figure 8: Determine the relative velocity of the water due to global disturbance [21]. The current vector defines the 

{x,y,t} points to differentiate the average disturbance over time. 
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Chapter III 

Methodology 

3.1. Introduction 

 To generate the parameters for the WAMV, a set of standard maneuvers are used to train 

the dynamic model for use in simulation and controls using a GA optimizer. The process will 

require 3 phases: generating maneuvering data sets for training and validation, optimizing a system 

model using training sets of data, and analyzing results using validation data sets. These steps will 

be used to determine the coupled-state dynamics of a WAMV16 as defined by a Fossen model for 

marine vessels (Eqn. (51)). The maneuvers used for fitting will search for two variations of the 

Fossen model: sway-yaw coupling only, and full dynamic-state coupling. The differences between 

these model attempts are that the former has no significant coupling parameters to surge besides 

the Coriolis effect, and the latter will have more parameters to estimate. 

(𝑀𝑅𝐵 + 𝑀𝐴𝑀)�⃗��̇� + (𝐶𝐴𝑀(�⃗�𝑟) + 𝐶𝑅𝐵(�⃗�𝑟))�⃗�𝑟 + 𝐷(�⃗�𝑟)�⃗�𝑟 = 𝜏 + 𝜏𝑑  (51) 

3.2. Limitations and Assumptions 

 This work will model a WAMV16 using a 2nd order maneuvering model as defined by 

Fossen. The model is limited to defining a 3-DOF motion of surge velocity, sway velocity, and 

yaw rate neglecting any motion due to waves and any other rigid-body motions, such as heave 

velocity and roll and pitch rates. The rigid-body motions are defined at the C.O. of the vessel which 

is placed at the C.G. of the vessel. Due to the model being nonlinear with 2nd order traits, the model 

operates best with positive forward speeds and the state ranges based on the parabolic drag limits.  

The limitations of the model can be suppressed by the maximum inputs forces that are used for 

training.  

 The control inputs of the model are linearized thrust and wind speeds. The thruster model 

assumes that the thrust estimated is linearly proportional to the thruster’s RPM. The thrusters will 



23 

 

 

ignore the effects of water flow and torque for thrust estimation due to lack of equipment to fully 

identify the effects. 

 The wind model is a basic quadratic drag equation based on the angle of attack of the 

exposed surface area to the wind. The measured wind velocities at each time step are used as a 

direct model input. This model also assumes the surface area of the vessel is symmetrical. 

3.3. Initial Parameter Estimation 

 This section will determine the methods used to obtain the basic physical insight of the 

WAMV’s dynamics. Physical insight is where the dynamic parameters can be referenced to its 

direct input and motion relation. An example of physical insight is the surge drag characteristics 

of the WAMV because the simplified drag of water is a quadratic term and two of the surge 

parameters are a quadratic equation pair. The initial parameters that can be collected are the rigid-

body terms and a few hydrodynamic drag terms. All the available parameters for the model are 

presented and given dimensional units in Table 1 for physical reference. 
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Table 1: Parameters set to be estimated and their units of the 2nd-order Fossen model. 

Rigid-Body X (Surge) Y (Sway) N (Yaw) 

𝑚𝑎𝑠𝑠 𝑘𝑔 𝑋�̇� 𝑘𝑔 𝑌�̇�
 𝑘𝑔 𝑁�̇� 𝑘𝑔𝑚 

𝐼𝑧𝑧 𝑘𝑔𝑚2 𝑋𝑢 
𝑘𝑔

𝑠
 𝑌𝑢 

𝑘𝑔

𝑠
 𝑁𝑢 

𝑘𝑔𝑚

𝑠
 

𝑥𝐶𝐺  𝑚 𝑋𝑢𝑢 
𝑘𝑔

𝑚
 𝑌𝑢𝑢

 𝑘𝑔

𝑚
 𝑁𝑢𝑢 𝑘𝑔 

𝑦𝐶𝐺 𝑚       

  𝑋�̇� 𝑘𝑔 𝑌�̇� 𝑘𝑔 𝑁�̇� 𝑘𝑔𝑚 

Wind 𝑋𝑣 
𝑘𝑔

𝑠
 𝑌𝑣 

𝑘𝑔

𝑠
 𝑁𝑣 

𝑘𝑔𝑚

𝑠
 

𝐴𝐹𝑊 𝑚2 𝑋𝑣𝑣 
𝑘𝑔

𝑚
 𝑌𝑣𝑣 𝑘𝑔𝑚 𝑁𝑣𝑣 𝑘𝑔 

𝐴𝐿𝑊 𝑚2   𝑌𝑣𝑟 𝑘𝑔 𝑁𝑣𝑟 𝑘𝑔𝑚 

𝐿𝑎𝑎 𝑚 𝑋�̇� 𝑘𝑔𝑚 𝑌�̇� 𝑘𝑔𝑚 𝑁�̇� 𝑘𝑔𝑚2 

𝑐𝑥 N.D. 𝑋𝑟 
𝑘𝑔𝑚

𝑠
 𝑌𝑟 

𝑘𝑔𝑚

𝑠
 𝑁𝑟 

𝑘𝑔𝑚2

𝑠
 

𝑐𝑦 N.D. 𝑋𝑟𝑟 𝑘𝑔𝑚 𝑌𝑟𝑟 𝑘𝑔𝑚 𝑁𝑟𝑟 𝑘𝑔𝑚2 

𝑐𝑧 N.D.   𝑌𝑟𝑣 𝑘𝑔 𝑁𝑟𝑣 𝑘𝑔𝑚 

 Rigid-Body 

 The initial rigid-body parameters were determined through the Solidworks CAD model of 

the WAMV (Figure 9). The model parameters required are the mass, 𝐼𝑧𝑧, and the C.G. location 

from the WAMVs C.O., which will be displayed in Table 2. The C.O. (Figure 9) is an arbitrary 

point on the vessel to reference inputs and dynamic motions from. The variables 
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𝑚𝑎𝑠𝑠, 𝐼𝑧𝑧 , 𝑥𝐶𝐺 , and 𝑦𝐶𝐺 , were estimated from the CAD model and shown in Table 2. With these 

parameters, the rigid-body Mass and Coriolis terms are expressed in Eqns. (52)-(53). 

 

Figure 9: Top view of the Minion WAMV16 with C.O. (yellow circle) and azimuth angle (𝛿) ranges for port and 

starboard displayed. 

Table 2: The initial rigid-body parameters used in the estimation. 

Rigid-Body 

𝑚𝑎𝑠𝑠 348.39 

𝐼𝑧𝑧 525.39 

𝑥𝐶𝐺  0 

𝑦𝐶𝐺 0 

 

 

𝑀𝑅𝐵 = [

𝑚 0 −𝑚𝑦𝐶𝐺

0 𝑚 𝑚𝑥𝐶𝐺

−𝑚𝑦𝐶𝐺 𝑚𝑥𝐶𝐺 𝐼𝑧𝑧
] (52) 

 

𝐶𝑅𝐵 =  [

0 0 −𝑚(𝑥𝐶𝐺𝑟 + 𝑣)

0 0 −𝑚(𝑦𝐶𝐺𝑟 − 𝑢)

𝑚(𝑥𝐶𝐺𝑟 + 𝑣) 𝑚(𝑦𝐶𝐺𝑟 − 𝑢) 0

] (53) 

 Hydrodynamic 

The hydrodynamic parameters are defined by the effects of the WAMV in the water due to 

drag and damping. To determine the basic, initial parameters, the sets of tests needed are steady-

state drag tests for the controllable motions available: surge and yaw rate. From the full set of 
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Coriolis (Eqn. (54)) and drag terms defined in Eqns. (55)-(56), the primarily determined 

parameters will be 𝑋𝑢, 𝑋𝑢𝑢, 𝑁𝑟, and 𝑁𝑟𝑟. These terms are the linear-quadratic pair of coefficients 

for drag motion of surge and yaw respectively. All test data sets will be presented graphically in 

Appendix 1.  

𝐶𝐴𝑀(�⃗�) =   [

0 0  𝑌�̇�𝑢 + 𝑌�̇�𝑣 + 𝑌�̇�𝑟
0 0 −𝑋�̇�𝑢 − 𝑋�̇�𝑣 − 𝑋�̇�𝑟

−𝑌�̇�𝑢 − 𝑌�̇�𝑣 − 𝑌�̇�𝑟 𝑋�̇�𝑢 + 𝑋�̇�𝑣 + 𝑋�̇�𝑟 0
] (54) 

 

𝐷𝐿 =  [
𝑋𝑢 𝑋𝑣 𝑋𝑟

𝑌𝑢 𝑌𝑣 𝑌𝑟

𝑁𝑢 𝑁𝑣 𝑁𝑟

] (55) 

 

𝐷𝑁𝐿(�⃗�) = [

𝑋𝑢𝑢|𝑢| 𝑋𝑣𝑣|𝑣| 𝑋𝑟𝑟|𝑟|

𝑌𝑢𝑢|𝑢| 𝑌𝑣𝑣|𝑣| + 𝑌𝑣𝑟|𝑟| 𝑌𝑟𝑟|𝑟| + 𝑌𝑟𝑣|𝑣|

𝑁𝑢𝑢|𝑢| 𝑁𝑣𝑣|𝑣| + 𝑁𝑣𝑟|𝑟| 𝑁𝑟𝑟|𝑟| + 𝑁𝑟𝑣|𝑣|
] (56) 

 Input Model Estimation 

3.3.3.1. Thruster Model Estimation 

 The input method used for the differential thruster setup is the throttle mapping method. The model maps 

the thrust of the thruster proportionally to its RPM (Eqns. (44)-(45)). This basic estimation of the motor model is 

used due to a lack of equipment to estimate an accurate model. This model assumes that the effects of water flow 

through the propeller and thruster torque estimates are ignored. The thrusters used in this work are asymmetrical, 

meaning when the thruster commands reverse, the linear scaling is based on 𝑇𝑚𝑖𝑛 in place of 𝑇𝑚𝑎𝑥 as shown in  

 

Table 3. The thrusters map is displayed in Figure 10 with the extreme thruster speeds are at -2300 

and 2300 RPM. 

 𝑇𝑝 =  𝑇𝑚𝑎𝑥 (
𝜔𝑝

𝜔𝑚𝑎𝑥
) (57) 

                   𝑇𝑠 =  𝑇𝑚𝑎𝑥 (
𝜔𝑠

𝜔𝑚𝑎𝑥
) (58) 

 

 

Table 3: The thruster ranges used to scale input forces/moment. 

Thruster Force @ 2300 RPM 

𝑇𝑚𝑎𝑥 600 

𝑇𝑚𝑖𝑛 400 
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𝑃𝑜𝑟𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑥, 𝑦)𝑎𝑡 𝐶. 𝐺. ( -1.71, -1) 

𝑆𝑡𝑎𝑟. 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑥, 𝑦) 𝑎𝑡 𝐶. 𝐺. ( -1.71, 1) 

 

Figure 10: Linear thrust curve for asymmetrical thrusters. 

3.3.3.2. Wind Model Estimation 

 The wind model used is to estimate air drag on the WAMV given a symmetrical 

assumption. The input measurement is the relative wind velocities (𝑢𝑟𝑤, 𝑣𝑟𝑤) that the WAMV 

experienced at each time step. The velocity and heading of the simulated model will be used to 

reference the relative velocity in Eqns. (60)-(61) to calculate the air drag in Eqn. (59). 

𝜏𝑑 =
1

2
𝜌𝑎𝑖𝑟𝑉𝑟𝑤

2 [

𝐶𝑋(𝛾𝑟𝑤)𝐴𝐹𝑊

𝐶𝑌(𝛾𝑟𝑤)𝐴𝐿𝑊

𝐶𝑍(𝛾𝑟𝑤)𝐴𝐹𝑊𝐿𝑎𝑎

]  (59) 

𝑉𝑟𝑤
 =  √𝑢𝑟𝑤

2 + 𝑣𝑟𝑤
2  (60) 

𝛾𝑟𝑤 =  −𝑎𝑡𝑎𝑛2(𝑣𝑟𝑤, 𝑢𝑟𝑤) (61) 
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 Maneuvering Testing 

 The maneuvering data sets discussed in this section will be used to create the training and 

validation data sets to be optimized. The maneuvers are divided into three sections: drift due to 

disturbance, steady-state, and the standard maneuvering data sets.  

3.3.4.1. Drift Test 

 The drift test captures the external disturbances that affect the system (Tests displayed in 

Appendix 1.1). The WAMV is set to move with the disturbances as the only input to the system. 

This location for the test is done in a lake where the dominant disturbance force is the wind. This 

test is done throughout the test day, usually every hour to check for average change in disturbances 

and to have multiple training sets for the disturbance models. All drift tests were done with the 

vessel facing aft towards the wind to characterize surge drag effects. 

 The coefficients determined from the drift test are set the rigid-body and wind-based coefficients. The rigid-

body coefficients are defined by the surface areas and length of the vessel. 𝐴𝐹𝑊, 𝐴𝐿𝑊, and 𝐿𝑎𝑎 are the surface areas 

of the front and side of the vessel and the length of the vessel respectively. These are estimated based on the sum of 

the rectangle and cylindrical areas that are exposed to the air. The force/moments coefficients (𝑐𝑥, 𝑐𝑦,and 𝑐𝑧), in 

Eqns. (62)-(64), are the parameters that correlate the relative wind speed dynamic effects that act on the vessel ( 

 

 

 

Table 4). 

𝐶𝑋(𝛾𝑟𝑤) = −𝑐𝑥𝑐𝑜𝑠 (𝛾𝑟𝑤)  (62) 

𝐶𝑌(𝛾𝑟𝑤) = 𝑐𝑦𝑠𝑖𝑛 (𝛾𝑟𝑤) (63) 

𝐶𝑍(𝛾𝑟𝑤) = 𝑐𝑧𝑠𝑖𝑛 (2𝛾𝑟𝑤) (64) 

 

 

 

 

Table 4: List of the wind parameters needed to estimate wind diforces and moments. 
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Wind Coefficients 

Rigid-Body Force 

𝐴𝐹𝑊 81.45 𝑐𝑥 estimated 

𝐴𝐿𝑊 702.90 𝑐𝑦 estimated 

𝐿𝑎𝑎 4.55 𝑐𝑧 estimated 

3.3.4.2. Steady-State Tests 

 The steady-state tests capture the quadratic drag dynamics of the system. The states being 

tested are the steady-state drag dynamics with respect to the surge and yaw rate states. The tests 

command sets of constant throttle commands to achieve a steady-state motion and then the state is 

captured and tabulated to generate a quadratic polynomial fit. Table 5 shows the throttle settings 

used to gather the drag data sets. The surge test was performed moving forward and the yaw drag 

was tested in both rotational directions. The WAMV will be rotating in both directions to account 

for drag fits that help capture the yaw drag’s symmetry. 

 

Table 5: Throttle settings used for the surge and yaw drag tests. 

Surge Drag Throttle Settings Yaw Drag Throttle Settings 

% Port % Starboard % Port % Starboard 

10 10 -10 10 

20 20 -20 20 

30 30 -30 30 

40 40 -40 40 

50 50 -50 50 

60 60 -60 60 

70 70 -70 70 

80 80 -80 80 

90 90 -90 90 

100 100 -100 100 

3.3.4.3. Stopping Test 

 The stopping test is altered from the standard stopping test in order designed to capture the 

natural hydrodynamic drag and damping (Eqns. (65)-(67)) from the surge state (Appendix 1.2). 
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The WAMV will move with the aft facing the wind for each test. The stopping test sets both 

thrusters to the same throttle command until a steady-state surge speed is achieved. Then after 5 

seconds of holding constant speed, the throttle settings are set to 0% and the WAMV drifts to 

either a stop or steady-state speed due to disturbance. The 50% throttle test inputs are displayed in 

Figure 11. 

 

𝑀𝐴𝑀 = [
𝑿�̇� 𝑋�̇� 𝑋�̇�

𝑌�̇� 𝑌�̇� 𝑌�̇�

𝑁�̇� 𝑁�̇� 𝑁�̇�

] (65) 

 

𝐷𝐿 =  [

𝑿𝒖 𝑋𝑣 𝑋𝑟

𝑌𝑢 𝑌𝑣 𝑌𝑟

𝑁𝑢 𝑁𝑣 𝑁𝑟

] (66) 

 

𝐷𝑁𝐿(�⃗�) = [

𝑿𝒖𝒖|𝒖| 𝑋𝑣𝑣|𝑣| 𝑋𝑟𝑟|𝑟|

𝑌𝑢𝑢|𝑢| 𝑌𝑣𝑣|𝑣| + 𝑌𝑣𝑟|𝑟| 𝑌𝑟𝑟|𝑟| + 𝑌𝑟𝑣|𝑣|

𝑁𝑢𝑢|𝑢| 𝑁𝑣𝑣|𝑣| + 𝑁𝑣𝑟|𝑟| 𝑁𝑟𝑟|𝑟| + 𝑁𝑟𝑣|𝑣|
] (67) 

   

Table 6: Throttle settings used for the stopping tests. 

% Port % Starboard 

10 10 

20 20 

30 30 

40 40 

50 50 

60 60 

70 70 

80 80 

90 90 

100 100 
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Figure 11: Input commands for a 50% stopping test. Both port and starboard are commanded simultaneously. 

3.3.4.4. Turning Test 

 The turning test (Appendix 1.4) determines the amount of basic drag coupling and damping between the 

sway-yaw states and potential surge states (Eqns. (68)-(70)). The WAMV drives with the disturbances until a steady 

state speed is reached, then one of the thrusters is set to remain active at the same throttle level used to hold speed 

while the other is stopped ( 

 

 

 

Table 7). The test lasts for at least two full revolutions to visually capture the direction of the 

disturbances overall. The 70% turning test inputs are displayed in Figure 12. 

𝐶𝐴𝑀(�⃗�) =   [

0 0  𝒀�̇�𝒖 + 𝒀�̇�𝒗 + 𝒀�̇�𝒓
0 0 −𝑿�̇�𝒖 − 𝑿�̇�𝒗 − 𝑿�̇�𝒓

−𝒀�̇�𝒖 − 𝒀�̇�𝒗 − 𝒀�̇�𝒓 𝑿�̇�𝒖 + 𝑿�̇�𝒗 + 𝑿�̇�𝒓 0
] (68) 

 

𝐷𝐿 =  [
𝑋𝑢 𝑋𝑣 𝑋𝑟

𝑌𝑢 𝒀𝒗 𝒀𝒓

𝑁𝑢 𝑵𝒗 𝑵𝒓

] (69) 

 

𝐷𝑁𝐿(�⃗�) = [

𝑋𝑢𝑢|𝑢| 𝑋𝑣𝑣|𝑣| 𝑋𝑟𝑟|𝑟|

𝑌𝑢𝑢|𝑢| 𝒀𝒗𝒗|𝒗| + 𝒀𝒗𝒓|𝒓| 𝒀𝒓𝒓|𝒓| + 𝒀𝒓𝒗|𝒗|

𝑁𝑢𝑢|𝑢| 𝑵𝒗𝒗|𝒗| + 𝑵𝒗𝒓|𝒓| 𝑵𝒓𝒓|𝒓| + 𝑵𝒓𝒗|𝒗|
] (70) 
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Table 7: Throttle settings used for the turning tests. 

Surge Drag Throttle Settings Yaw Drag Throttle Settings 

% Port % Starboard % Port % Starboard 

50 50 50 0 

60 60 60 0 

70 70 70 0 

80 80 80 0 

90 90 90 0 

100 100 100 0 

50 50 0 50 

60 60 0 60 

70 70 0 70 

80 80 0 80 

90 90 0 90 

100 100 0 100 

 

Figure 12: Input commands for a 70% turning test. The port thruster is commanded to stay on throughout the test. 

3.3.4.5. Zig-zag Test 

 The zig-zag test (Appendix 1.5) determines similar parameters to the turning test but show 

more of the dynamic change in yaw rate based on the input response. This test starts with the same 

throttle commands to get to a steady surge speed. When the WAMV is ready to turn, the current 

heading angle is retained and used to determine when delta angles have occurred. If the starting 

heading was 30 deg in a 10-10 zig-zag, then the WAMV would change commands at 20 deg and 

40 deg. This makes the heading the closed loop control and the throttle commands being open-
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loop. Table 1 shows the commands used for each zig-zag test with the angle deltas tested for. The 

100% 10-10 zig-zag inputs are displayed in Figure 13. 

Table 8: Throttle settings used for the zig-zag tests. 

% Motor Commands Angles Used 

50 0 10-10 

60 0 20-20 

70 0 35-35 

80 0  

90 0  

100 0  

 

Figure 13: Input commands for a 100% turning test. The thruster commands oppose each other every 10 deg change 

from the initial heading angle throughout the test. 

3.3.4.6. Figure-Eight Test 

 The figure-eight test (Appendix 1.6) validates the changes between the steady-state and 

dynamic sway-yaw relations. These tests are the turning tests that are set to change directions after 

every revolution. This set is used for validating the system model to handle how well the 

disturbance model pushes the WAMV including the drag from switching directions between the 

sway-yaw states. Table 9 shows the throttle tests used to generate a figure-eight resulting like 

Figure 14. 
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Table 9: Throttle settings used for the figure-eight tests. 

Surge Drag Throttle Settings 

% Port % Starboard 

75 0 

80 0 

 

Figure 14: A figure-eight test taken at Lake Ashby with noticeable drift due to wind. 

3.4. Genetic Algorithm Optimizer Setup 

 The optimizer being used is MATLAB’s implementation of a genetic algorithm which 

stochastically evolves the population of parameters per iteration. The setup of the optimizer is in 

three steps: data sets insertion, the GA settings for optimization, and the error function for the 

model. Once all three steps are done, the validation is used to check the estimation results. 
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 Genetic Algorithm Data Sets 

 The data sets used for training are set to be run in series through each optimization attempt. 

The logs are run with two phases: the disturbance data sets then the maneuver data sets. The 

disturbance data sets are run first through the optimizer in any order. The maneuvering tests are 

input in a random order to reduce the fitting towards one type of data set. Estimating the stopping 

test data sets may lead to strong surge drag results but may set bad yaw dynamics with the low 

fitness values. The optimizer may hit stopping limits, such as max generations and time limits, if 

poorly initialized that may not reach solutions that capture all he states visibly well. The first 

estimation will be initialized by the steady-state drag parameters for the surge and yaw rate states. 

 Genetic Algorithm Settings 

 The settings in Table 10 are for the GA optimizer function with the other settings not 

mentioned were left to the MATLAB 2018b defaults. The optimizer optimizes a population of 250 

sets of parameters per generation. The maximum generation is the total amount of evolutions of 

the population of parameters that occur until the evolution stalls does not improve past the default 

function tolerance between generations. 

Table 10: the GA settings used with MATLAB 2018b. 

GA Settings 

Time Limit 6 hrs. 

Max. Generations 500 

Stall Generations 75 

Population Size 250 

Function Tolerance 1.0E-6 

 Genetic Algorithm Error Function 

 The error function of the optimizer generates the error value that the GA will minimize. 

The function takes in a data set of time, states, and inputs to compare to the simulated model. The 

2nd-order Fossen model is simulated using MATLAB’s ode45 solver given the current estimation 
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of the optimizer’s system parameters. The error calculated is the sum of weighted squared errors 

of the six available states. The squared error is used to minimize the error function towards 0 and 

to increase the effect of error by scaling all the states in relation to one another. 

 The weights are set to correlate the errors between different dynamic values. The error of 

0.1 m/s in linear speed is different than a 0.1 rad/s error in rotational speed, especially when the 

WAMV is observed to move at speeds up to 3.5 m/s at full thrust and ~0.5 rad/s in a full zero-

radius turn. Table 11 has the list of weights assigned to each type of data set. The weights were 

experimentally determined through trial and error for how much each error should be scaled. The 

first three values are the surge speed, sway speed, and yaw rate. The last three pose states are the 

North position, East position, and Yaw angle. The pose states are there to act as another type of 

error bound that attempts to correct for integration errors in yaw angle most of the time. The drift 

test uses some error in the positions to help estimate disturbance inputs. 

Table 11: The weights used for the GA optimizer for each test’s data set. 

Weights 

Drift {1, 1, 3, 0.5, 0.5, 3} 

Steady-State {1, 1, 3, 0, 0, 3} 

Stopping {1, 1, 3, 0, 0, 1.5} 

Turning {1, 1, 3, 0, 0, 3} 

Zig-Zag {1, 1, 3, 0, 0, 2.5} 

Figure-Eight {1, 1, 3, 0, 0, 3} 

 Genetic Algorithm Validation 

 When the optimizer produces the final parameters, then validation simulations are 

performed by simulating the validation data sets with the new parameters. The validation states 

will show the visible fits of the states to show if the simulation looks appropriate and an error over 

the log will be calculated to determine the mean error of each individual state (Eqn. (71)). 

𝑒𝑟𝑟𝑜𝑟 = ∑ ((𝑠𝑡𝑎𝑡𝑒𝑙𝑜𝑔 −  𝑠𝑡𝑎𝑡𝑒𝑠𝑖𝑚)
2

∗ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠) (71) 
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 If the resulting states do not meet expectations in some or all states, the estimation can be 

rerun with a supervised set of manually-tuned parameters. If a state is underestimated, the drag is 

too strong for the input. The drag may be related to its respective state or a coupled-state term that 

may have a stronger effect in certain state cases. The parameters that are edited and rerun to fit a 

general set of validation logs can help the optimizer minimize the error better in the next fit. When 

the parameters are initialized, change the parameter’s upper and lower limits to allow the solution 

to search for more options or attempt to maintain certain state dynamics that appear favorable. 

3.5. Equipment Used 

 USV 

 The vessel used is the Minion Unmanned Surface Vessel (USV) which is a WAMV16. The 

WAMV is a twin-hulled vessel that is designed to have the pontoons articulate independently to 

produce a steady deck motion in the presence of waves. The overall parameters of the WAMV is 

shown in Table 2, 4, and 12. 

 

Figure 15: Picture of the Minion USV. 

 

�⃗�𝑒𝑟𝑟𝑜𝑟 = √
(𝑠𝑡𝑎𝑡𝑒𝑙𝑜𝑔 −  𝑠𝑡𝑎𝑡𝑒𝑠𝑖𝑚)

2

# 𝑡𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

(72) 
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Table 12: Minion rigid-body parameters. 

WAMV Parameters 

Length 4.8 

Length of Waterline 4.00 

Beam Width 2.4 

Beam Width (Centers) 2.0 

 Propulsion 

 The USV’s propulsion is equipped with a dual-thruster azimuthing propulsion system. The 

propulsion configuration comprises of 2 rim-driven propellers (Copenhagen Subsea VM 

Asymmetric thrusters, Figure 17) that are located at the rear end of the USV (one per side). The 

thrusters can produce approximately 600N of thrust forward in the Copenhagen static tests (Figure 

16). The thrusters produce asymmetrical thrust that has 60% of it forward thrust being the 

maximum thrust in reverse. A Piktroniks motor controller is used to command and receive 

feedback at 100 ± 2 Hz with feedback from our custom motor interface board coming in at a steady 

67 Hz. The feedback of the thruster primarily includes revolution per minute (RPM), the back 

electromotive force (emf), and motor current to log simultaneously with the localization system 

and generate the estimated forces and torques from each individual motor. The motor data will be 

kept constant per localization time step until the next motor update for logging purposes. 
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Figure 16: Performance Data for the Copenhagen VM from Copenhagen’s data set at a hydrostatic state. The 

curves of interest are the “Thrust – Asymmetric Forward and Reverse”. 

 

Figure 17: Copenhagen Subsea VM Asymmetric thrusters. 

 Localization 

 The localization suite consists of a TORC Pinpoint [23] and a WindSonic anemometer 

(Figure 18). The Pinpoint produces a fully-localized space in the NED frame using a dual-GPS 

antenna setup with a couple of 6-axis IMUs built-in. The Pinpoint was designed with the intention 
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and compatibility to use on automotive ground vehicles. That may lead to some errors in accurate 

sway data over very small speeds due to the assumption of predominantly moving in the x-axis. 

The Pinpoint generates body-frame velocities including surge, sway, and yaw-rate with errors of 

position within 10 cm, speed within 2 cm/s and roll, pitch, and yaw angles {0.0018, 0.0018, 

0.0027} rad ({0.1, 0.1, 0.17} deg) [23]. The data fitting is noted to fit around the mean of the state 

with error since the report of the Pinpoint utilizes a nonlinear Kalman Filter that has a zero-mean 

Gaussian noise. The data rate is 100 ± 2 Hz to capture the state of the USV with the offsets of the 

Pinpoint set to the location of the origin of the USV. The WindSonic anemometer is a wind sensor 

that captures wind speeds relative to its orientation using an array of 4 ultrasonic sensors. The 

sensor can measure wind speeds at 4 Hz at all yaw angles up to a maximum of 60 m/s with 0.25 

m/s accuracy error noted at 12 m/s in the user manual [24]. 

    

Figure 18: TORC Pinpoint GPS/INS (left) and WindSonic Anemometer (right). 

3.6. Testing Area 

 The data was collected from a lake to identify wind as the primary disturbance. The test 

area was Lake Ashby in New Smyrna, FL where the average wind speeds were around 9 knots 

(4.6 m/s) with peaks up to 18 knots (9.2 m/s). This location was used for identification to estimate 

the wind along with system model. Also, by testing in a lake, the current does not exist, making 

estimation more straightforward. 



41 

 

 

 

Figure 19: Google view of the test area, Lake Ashby. 
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Chapter IV 

Results 

4.1. Overview 

 The results presented will cover the tests for the optimization results. The data will be 

presented in the order of disturbances, steady-state curve fitting, the sway-yaw coupling, and the 

full-dynamic coupling. The sway-yaw coupling has gone through three optimization attempts and 

the results of the full coupling has undergone one optimization. An analysis for using a linearized 

version of the model will be compared to the best fit model in this estimation set. 

4.2. Disturbances 

 At the start of the test, the USV was left to drift with the disturbances. At Lake Ashby, the 

anemometer picked up an average wind speed around 4 m/s throughout the day and was used in 

determining the effects on the USV. The USV travelled around 0.5 m/s heading westward as show 

in Figure 20. These data sets are the first to run with the stead-state parameters to make estimates 

on the wind forces and attempt to make vessel parameter estimations. 

 

Figure 20: General wind disturbance at Lake Ashby. The overall USV speed was 0.5 m/s in 4 m/s winds. 
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4.3. Initial Parameter Estimation Results 

 Initial Surge Polynomial Fit 

 The surge-drag test was performed gathering the steady-state speeds from the stopping tests 

(Appendix 1.2). The speeds were collected before the throttle was commanded to 0%, and then 

tabulated into Excel. The resulting curve fit are shown in Figure 21 with the surge drag estimates 

shown in Table 13. The drag shows a linear fit, potentially due to using a linear motor model to 

estimate the thrust per data set. These estimates are set as part of the initial parameter population 

for the GA optimizer. 

Table 13: The surge-drag results used for initial estimation. 

Surge Parameters 

𝑋𝑢 490.5 

𝑋𝑢𝑢 -25.88 

 

 

Figure 21: Surge drag curve-fit from the steady-state test ranging from 0.75 to 2.5 m/s. 
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  Initial Yaw Rate Polynomial Fit 

 The yaw-drag test was collected through steady-state yaw rate rotations with the results 

shown in Figure 22. The state for the yaw rate did not show unique changes until around 30 seconds 

into the shown data set. The inputs before that time were set up to 30% with the yaw rate showing 

an average change around -0.06 rad/s which caused a separation in tabulated yaw rates. The points 

that were collected are still valid states and are used for an initial estimate for the yaw drag 

parameters. The values will change as the estimation progresses, especially with the estimation of 

the summed cross-correlated terms. The resulting yaw drag terms (Table 14) were used in the 

initial parameter population for the GA optimizer. 

 Table 14: The yaw-drag results used for initial estimation. 

Yaw Parameters 

𝑁𝑟 1745.1 

𝑁𝑟𝑟 17.6 

 

 

Figure 22: Yaw drag curve-fit from the steady-state test ranging from -0.55 to 0.38 rad/s. 
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Figure 23: An example of a spin test yaw-rate states (Appendix 1.2.1) 

4.4. Genetic Algorithm Fit (No Surge-Yaw Coupling) 

 The results from the steady-state tests are used to initialize the estimation for the sway-yaw 

coupled model (Table 15). The following estimations will follow three serialized fits using the 

same set of randomly assorted training data sets per optimization. The maneuvering training data 

sets used are the stopping test (Appendix 1.3.10), turning test (Appendix 1.4.1), and zig-zag test 

(Appendix 1.5.1). The results of the optimizations are displayed in state graphs that compares the 

data set (blue line) to the two simulations that have disturbances (black dashed line) and ignore 

disturbances (orange line). 
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Table 15: Initial population to use for GA fitting. 

Wind  Surge  Sway  Yaw  

𝑐𝑥 0 𝑋�̇� 0 𝑌�̇�
 0 𝑁�̇� 0 

𝑐𝑦 0 𝑋𝑢 490.5 𝑌𝑢 0 𝑁𝑢 0 

𝑐𝑧 0 𝑋𝑢𝑢 -25.88 𝑌𝑢𝑢
 0 𝑁𝑢𝑢 0 

  𝑋�̇� 0 𝑌�̇� 0 𝑁�̇� 0 

  𝑋𝑣 0 𝑌𝑣 0 𝑁𝑣 0 

  𝑋𝑣𝑣 0 𝑌𝑣𝑣 0 𝑁𝑣𝑣 0 

    𝑌𝑣𝑟 0 𝑁𝑣𝑟 0 

  𝑋�̇� 0 𝑌�̇� 0 𝑁�̇� 0 

  𝑋𝑟 0 𝑌𝑟 0 𝑁𝑟 1745.1 

  𝑋𝑟𝑟 0 𝑌𝑟𝑟 0 𝑁𝑟𝑟 17.6 

    𝑌𝑟𝑣 0 𝑁𝑟𝑣 0 

 GA “No Surge-Yaw” Fit #1 

 The first fit showed two notable details: the surge fitting and the offsets in sway and yaw 

states. The optimizer generated the parameters defined in Table 16 after the initial parameter set.  

Table 16: Parameters estimated from the Lake Ashby set of tests for Fit #1. 

Wind  Surge  Sway  Yaw  

𝑐𝑥 0.05 𝑋�̇� 516 𝑌�̇�
 0 𝑁�̇� 0 

𝑐𝑦 9E-4 𝑋𝑢 120 𝑌𝑢 0 𝑁𝑢 0 

𝑐𝑧 -4E-4 𝑋𝑢𝑢 85 𝑌𝑢𝑢
 0 𝑁𝑢𝑢 0 

  𝑋�̇� 0 𝑌�̇� 613 𝑁�̇� -2617 

  𝑋𝑣 0 𝑌𝑣 550 𝑁𝑣 1499 

  𝑋𝑣𝑣 0 𝑌𝑣𝑣 1713 𝑁𝑣𝑣 -3685 

    𝑌𝑣𝑟 -2734 𝑁𝑣𝑟 2663 

  𝑋�̇� 0 𝑌�̇� -1768 𝑁�̇� 4423 

  𝑋𝑟 0 𝑌𝑟 2761 𝑁𝑟 5893 

  𝑋𝑟𝑟 0 𝑌𝑟𝑟 1007 𝑁𝑟𝑟 -3262 

    𝑌𝑟𝑣 111.6 𝑁𝑟𝑣 -670 

 

 The surge fit showed a visible fit to the stopping test with an average surge error over the 

mentioned training data sets. The average surge error is 0.154 m/s over the data sets mentioned 

above. The error in  Figure 24 shows less estimated drag resistance of the model compared to the 

actual WAMV. The simulated wind disturbance starts to show promising results by following the 



47 

 

 

dips in surge speed as the WAMV rotates, even if the estimation is out of phase. The same 

parameters on the stopping test (Figure 25), the surge fits the steady-state speeds in both simulation 

sets, with the wind underestimating the drift speed. 

 

Figure 24: Surge result from a turning test validation set for Fit #1. 

 

 

Figure 25: Surge result from a stopping test validation set for Fit #1. 

 The model on the sway and yaw states show different results coupling results. The yaw 

rate moves in the same direction that the turning test provides. The wind moment does not change 

the rate much since the disturbance simulation follows the non-disturbance simulation, but it does 

show a bump around the 50 sec mark. The sway velocity is showing a constant offset with a 

constant moment and with almost no response due to wind disturbance. Given the same 

disturbance bump around the 50 sec mark, the wind force pushes with the sway velocity in the 
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same direction by about 15 N. Excluding the modelled disturbances, the drag due to sway effects 

is too small to allow a significant error of approximately 0.2 rad/s. 

 

Figure 26: Sway and Yaw Rate result from a turning test validation set for Fit #1. 

 The zig-zag test (Figure 27) displays the effects of the dynamic yaw rate effects. The sway 

state allows large changes in sway over low yaw rates that do not have time to steady out. The yaw 

states estimated too much required drag given the input moments. The parameters need to move 

towards more sway-drag and less yaw-drag. The average sway and yaw rate errors over the 

validation sets were 0.12 m/s and 0.08 rad/s. 
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Figure 27: Sway and Yaw Rate result from a zig-zag test validation set for Fit #1. 

 With consideration to  the yaw-sway states, the yaw-drag limits in the optimizer need to be increased to 

allow a better fit to the average states in the data set. Although the yaw states show heavy drag, that could be 

partially due to the sway coupling effects as well. Expanding the drag coupling and the added mass terms’ limits 

can allow the optimizer to change those parameters more freely. The surge state bounds were expanded a little to 

allow for some improvement if necessary but appeared to fit well currently. The magnitudes for the wind coefficients 

are expanded to allow more potential impact that may occur due to the wind in the data sets as well. The bounds to 

be expanded are shown in  

 

Table 17. 

 

 

 

 

Table 17: Parameter limits used for the optimization for Fit #2. 

Wind  Surge  Sway  Yaw  

𝑐𝑥 {0.01, 0.15} 𝑋�̇� {500, 600} 𝑌�̇�
 0 𝑁�̇� 0 

𝑐𝑦 {9E-4, 0.01} 𝑋𝑢 {0, 500} 𝑌𝑢 0 𝑁𝑢 0 
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𝑐𝑧 {-0.01 0.01} 𝑋𝑢𝑢 {-100, 100} 𝑌𝑢𝑢
 0 𝑁𝑢𝑢 0 

  𝑋�̇� 0 𝒀�̇� {-2500, 2500} 𝑵�̇� {-4500, 4500} 

  𝑋𝑣 0 𝒀𝒗 {0, 4500} 𝑵𝒗 {0, 4500} 

  𝑋𝑣𝑣 0 𝒀𝒗𝒗 {-6000, 6000} 𝑵𝒗𝒗 {-6500, 6500} 

    𝒀𝒗𝒓 {-6000, 6000} 𝑵𝒗𝒓 {-6500, 6500} 

  𝑋�̇� 0 𝒀�̇� {-3500, 3500} 𝑵�̇� {-4500, 4500} 

  𝑋𝑟 0 𝒀𝒓 {-4500, 4500} 𝑵𝒓 {0, 6500} 

  𝑋𝑟𝑟 0 𝒀𝒓𝒓 {-4500, 4500} 𝑵𝒓𝒓 {-6500, 6500} 

    𝒀𝒓𝒗 {-4500, 4500} 𝑵𝒓𝒗 {-6500, 6500} 

 GA “No Surge-Yaw” Fit #2 

 This optimizer run of Fit #2 has not changed the surge parameters but has changed the wind 

and sway-yaw parameters by significantly increasing the overall drag primarily from the following 

states: 𝑌𝑣, 𝑌𝑣𝑣, 𝑁𝑟, and 𝑁𝑟𝑟.  

Table 18: Parameters estimated from the Lake Ashby set of tests for Fit #2. 

Wind  Surge  Sway  Yaw  

𝑐𝑥 0.05 𝑋�̇� 516 𝑌�̇�
 0 𝑁�̇� 0 

𝑐𝑦 0.001 𝑋𝑢 120 𝑌𝑢 0 𝑁𝑢 0 

𝑐𝑧 -0.001 𝑋𝑢𝑢 85 𝑌𝑢𝑢
 0 𝑁𝑢𝑢 0 

  𝑋�̇� 0 𝑌�̇� -613 𝑁�̇� 617 

  𝑋𝑣 0 𝑌𝑣 3550 𝑁𝑣 1473 

  𝑋𝑣𝑣 0 𝑌𝑣𝑣 5715 𝑁𝑣𝑣 3690 

    𝑌𝑣𝑟 2732 𝑁𝑣𝑟 -3666 

  𝑋�̇� 0 𝑌�̇� -2774 𝑁�̇� 424 

  𝑋𝑟 0 𝑌𝑟 -762 𝑁𝑟 0 

  𝑋𝑟𝑟 0 𝑌𝑟𝑟 1005 𝑁𝑟𝑟 -6262 

    𝑌𝑟𝑣 1114 𝑁𝑟𝑣 -2663 

 

 The sway and yaw rate states are converging closer to the data sets. The average sway and 

yaw error between the data sets are 0.057 m/s and 0.025 rad/s for the turning data set. The sway 

state captures the average drag without the effects rotation and wind acting as a major effect. The 

simulated model matches closer to the mean motion of the yaw rate, including disturbances effects, 

as shown in the turning test (Figure 28). The drag in sway is too high to see any difference in the 

sway at steady-state yaw rates. 



51 

 

 

 

Figure 28: Sway and Yaw Rate result from a turning test validation set for Fit #2. 

 Looking at the zig-zag test, the sway is shown to fit closer to dynamic changes in yaw rates. 

Figure 29 shows the sway and yaw rate states for the zig-zag test where the simulated sway follows 

the direction of the data set. The initial jump of the expected sway speed is from the dynamic rate 

change to the steady-state drag before the input switches directions. This is from the amount of 

sway and yaw drag due to its primary states such as 𝑌𝑣, 𝑌𝑣𝑣, 𝑁𝑟, and 𝑁𝑟𝑟. The primary drag 

parameters limit the total amount of observed motion that the WAMV has. The spin test has shown 

a potential 0.5 rad/s due to the propulsion system; this estimation of the model maxes out around 

0.15 rad/s at the same inputs. The primary drag parameters need to be reduced to handle the loss 

in motion, and the rest of the terms, coupled and added mass, need to be adjusted by increasing 

the limits of the coupled states. 
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Figure 29: Sway and Yaw Rate result from a zig-zag test validation set for Fit #2. 

Table 19: Parameter limits used for the optimization for Fit #3. 

Wind  Surge  Sway  Yaw  

𝑐𝑥 {0.025, 0.075} 𝑋�̇� {516} 𝑌�̇�
 0 𝑁�̇� 0 

𝑐𝑦 {9E-4, 0.001} 𝑋𝑢 {120} 𝑌𝑢 0 𝑁𝑢 0 

𝑐𝑧 {-0.01, 0} 𝑋𝑢𝑢 {85} 𝑌𝑢𝑢
 0 𝑁𝑢𝑢 0 

  𝑋�̇� 0 𝑌�̇� {-2500, 2500} 𝑁�̇� {-4500, 4500} 

  𝑋𝑣 0 𝑌𝑣 {0, 4500} 𝑁𝑣 {0, 4500} 

  𝑋𝑣𝑣 0 𝑌𝑣𝑣 {-6000, 6000} 𝑵𝒗𝒗 {-5500, 5500} 

    𝒀𝒗𝒓 {-9000, 9000} 𝑵𝒗𝒓 {-5500, 5500} 

  𝑋�̇� 0 𝑌�̇� {-3500, 3500} 𝑁�̇� {-4500, 4500} 

  𝑋𝑟 0 𝑌𝑟 {-4500, 4500} 𝑁𝑟 {0, 6500} 

  𝑋𝑟𝑟 0 𝑌𝑟𝑟 {-4500, 4500} 𝑵𝒓𝒓 {-5500, 5500} 

    𝒀𝒓𝒗 {-9000, 9000} 𝑵𝒓𝒗 {-9000, 9000} 
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 GA “No Surge-Yaw” Fit #3 

 This model fit lowered its primary drag magnitudes with a greater focus on the coupling 

terms: 𝑌𝑣𝑟, 𝑌𝑟𝑣, 𝑁𝑣𝑟, and 𝑁𝑟𝑣 (Table 20). The coupled yaw drag for sway is shown to have a large 

magnitude. The previous models have given noticeably stable results in surge and yaw rate with 

offsets in certain states. The parameters were reduced to handle the individual primary drag terms 

(i.e. yaw moment with relation to yaw rate). 

Table 20: Parameters estimated from the Lake Ashby set of tests for Fit #3. 

Wind  Surge  Sway  Yaw  

𝑐𝑥 0.05 𝑋�̇� 516 𝑌�̇�
 0 𝑁�̇� 0 

𝑐𝑦 0.01 𝑋𝑢 120 𝑌𝑢 0 𝑁𝑢 0 

𝑐𝑧 -0.001 𝑋𝑢𝑢 85 𝑌𝑢𝑢
 0 𝑁𝑢𝑢 0 

  𝑋�̇� 0 𝑌�̇� 991 𝑁�̇� 288 

  𝑋𝑣 0 𝑌𝑣 884 𝑁𝑣 552 

  𝑋𝑣𝑣 0 𝑌𝑣𝑣 696 𝑁𝑣𝑣 -1516 

    𝒀𝒗𝒓 8361 𝑵𝒗𝒓 -425 

  𝑋�̇� 0 𝑌�̇� -1736 𝑁�̇� 4486 

  𝑋𝑟 0 𝑌𝑟 -202 𝑁𝑟 1258 

  𝑋𝑟𝑟 0 𝑌𝑟𝑟 814 𝑁𝑟𝑟 -2884 

    𝒀𝒓𝒗 307 𝑵𝒓𝒗 -202 

 

 The turning test (Figure 30) shows the disturbance simulation following the peaks of the 

validation set in both the sway and yaw rate. The average error over the data set is 0.05 m/s and 

0.028 rad/s with wind and the undisturbed simulation remaining at a visibly appropriate state 

throughout. The average sway velocity at steady-state appears to be around -0.05 m/s for a 

clockwise rotation, leaving the sway velocity estimating the wrong direction, only off by 0.065 

m/s over the steady-state maneuver. 
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Figure 30: Sway and Yaw Rate result from a turning test validation set for Fit #3. 

 The zig-zag test (Figure 31) follows the same trend during dynamic change by follow the 

motion of the data sets. The yaw rate is following the peaks very well with the 2nd-order modeling 

of drag. The sway speed lessened the ramp of the curves that Fit #2 contained and is taking more 

shape. The sway drag may still be too heavy since after each peak, the drop-off curve appears to 

underestimate the magnitude of the data set. If the turn held longer like the turning test, it would 

show a need to lessen the steady-state sway drag. The average errors of the sway and yaw rate 

were 0.041 m/s and 0.05 rad/s over the zig-ag data set. 
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Figure 31: Sway and Yaw Rate result from a zig-zag test validation set for Fit #3. 

 GA “No Surge-Yaw” Validation Results 

 The previous parameters were checked for how well they fit with a set of validation results. 

The validation runs took a stopping, turning, zag-zag, and figure eight data set to verify how well 

this model handles its deviation between the available states. Table 21 shows the mean error over 

the entire data set including disturbances. The surge state did not change much since the initial 

value showed good responses with no change over the estimations. The sway and yaw rates made 

most of the improvements to capture the coupling that occurs. The errors made steady 

improvement with yaw rate making the tightest fits visibly to the data sets. The sway needed more 

estimation to capture its steady state and dynamic motion, but appear negligible in the validation 

data sets since the sway due to yaw rate hardly moved past 0.1-0.2 m/s. For use in simulation, 
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sway can be improved, but should operate fine in a differentially-driven configuration. Further 

optimization for this state would benefit station-keeping simulations.  

Table 21: The mean error of the four different validation tests using the past three parameter sets. 

Sets Fit #1 Fit #2 Fit #3 

 X Y N X Y N X Y N 

Stop 0.17 0.017 8.7E-3 0.17 0.01 0.021 0.17 0.011 8.5E-3 

Turn 0.33 0.26 0.07 0.26 0.057 0.025 0.31 0.05 0.028 

Zig-Zag 0.07 0.12 0.08 0.068 0.036 0.054 0.069 0.041 0.05 

Figure-

Eight 
0.24 0.28 0.076 0.19 0.047 0.06 0.21 0.011 0.011 

 

 The figure-eight test was used for validation since it encompassed sections of all the tests 

and determined the disturbance drift over time. The figure-eight test shows steady improvement 

of data set error over the fits with the reference position and states shown in Figures 32 and 33. 

The position map is to show how close the simulation results performed visually with the drift due 

to wind showing up in the same direction as well. The simulation also drifted off from the real 

position due to round off errors and integration of small underestimation in the states. 

 With the wind disturbance, the inputs to the model were the actual relative wind velocities 

that the actual vessel experienced. These were used to help the optimizer’s fit by adding what the 

vessel experienced rather than what the model would expect to experience. This means that based 

on the heading to the wind, the angle of attack, can accrue error in the simulated model which 

leads to expected offsets in states, but similar patterns. In the case of surge, Figure 33 shows 

approximated offset motion around 120 to 140 seconds where the states appear out of phase along 

the y-axis of the graph. And the physical state offset is due to the wind inputs during the turns 

being out of sync since the headings were diverging like the latter half of the positions in Figure 

32. 



57 

 

 

 

Figure 32: A comparison of Fit #3 of the position validation figure-eight test. The green circle show initial position 

and the red circles show its ending positions for the real and simulated positions. 
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Figure 33: The figure-eight validation set using Fit #3's parameters. 

4.5. Genetic Algorithm Fit (Full Coupling) 

 GA “Full” Fit 

 The full coupling takes the Fit #1 set of “No Surge-Yaw” coupling parameters as its initial 

parameters. This model has an addition of 12 extra parameters that make the manual supervision 

more difficult due to even more coupled effects. Table 22 shows the parameters estimated for the 

full coupling case. 
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Table 22: Parameter set for the full coupling set model. 

Wind  Surge  Sway  Yaw  

𝑐𝑥 0.05 𝑋�̇� 592.6 𝑌�̇�
 0 𝑁�̇� 146 

𝑐𝑦 0.001 𝑋𝑢 39 𝑌𝑢 0 𝑁𝑢 238.5 

𝑐𝑧 -0.001 𝑋𝑢𝑢 112.6 𝑌𝑢𝑢
 0 𝑁𝑢𝑢 -134.5 

  𝑋�̇� 201 𝑌�̇� 1164 𝑁�̇� 1810.5 

  𝑋𝑣 100 𝑌𝑣 579.5 𝑁𝑣 3360 

  𝑋𝑣𝑣 -72.4 𝑌𝑣𝑣 1466.5 𝑁𝑣𝑣 -1926.1 

    𝑌𝑣𝑟 -175 𝑁𝑣𝑟 -2292 

  𝑋�̇� 195 𝑌�̇� 1892 𝑁�̇� 1349 

  𝑋𝑟 101 𝑌𝑟 2665 𝑁𝑟 44.5 

  𝑋𝑟𝑟 -89 𝑌𝑟𝑟 2068 𝑁𝑟𝑟 1277 

    𝑌𝑟𝑣 -1706 𝑁𝑟𝑣 -455.4 

 

 Compared to the “No Surge-Yaw” coupling, the surge still represents similar motion, but 

with the surge affecting the other states. This test considered the effects of the sway forces on the 

surge velocity to be negligible due to it being not directly driven. The surge during the figure-eight 

test (Figure 34) showed consistency with minimal changes in speed (~0.3 m/s) for mean simulated 

surge and larger dips due to wind. 

 

 

Figure 34: Surge result from a figure-eight test validation set for the Full fit. 
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Figure 35: Sway and Yaw Rate result from a zig-zag test validation set for the Full fit. 

 

Figure 36: Sway and Yaw Rate result from a turning test validation set for the Full fit. 
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 The two glaring data sets (Figures 35 and 36) that show issues in estimating the “Full” 

model is the lack of sway drag and the reversed direction of the yaw rate. In both the turning and 

zig-zag data sets the sway overshoots the state, but the wind compensates for the correct 

disturbance effects during steady state rotations. Any other jumps in dynamic effects are difficult 

to quantify due to the yaw rate opposing the data set. The yaw rate state shows both too much drag 

moment to approximately 40% of the magnitude of the data set. While both yaw rate problems can 

be fixed, the parameter(s) that need to be changed and the method to detect them are not straight-

forward. In the case of the drag magnitude, the added terms from the surge coupling means that 

more values depend on a single state changing and picking them out is difficult. Running the 

optimizer more should find a way to converge onto the solution, but the next problem is the 

opposing direction of the yaw rate state. The optimizer calculates a single, positive number that 

determines how the optimizer can randomly evolve per generation. This error is a sum squared 

error of all the weighted states. Which means the error magnitude may be larger, but it may not 

track down the parameter(s) that can be altered to fix the issue. 

 GA “Full” Validation Results 

 The coupling was run through the same validation sets as the “No Surge-Yaw” model to 

determine the average error. Due to the poor performance, the error is substantially higher in the 

yaw rate cases with sway not looking bad compared to the “No Surge-Yaw” fit. As stated earlier, 

the model will need more time to optimize and stochastically leave this case or another method 

needs to be implemented to handle error sign issues. 
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Table 23: The mean error of the four different validation tests between the “No Surge-Yaw” and “Full” coupling 

cases. 

Sets Fit #3 Full 

 X Y N X Y N 

Stop 0.17 0.011 8.5E-3 0.162 0.053 0.021 

Turn 0.31 0.05 0.028 0.368 0.138 0.211 

Zig-Zag 0.069 0.041 0.05 0.074 0.093 0.149 

Figure-Eight 0.21 0.011 0.011 0.268 0.134 0.208 

 

Figure 37: The full coupling simulation of the figure-eight validation test. 
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4.6. Comparison: “No Surge-Yaw” vs. “No Coupling”  

 The results in fit #3 for the “No Surge-Yaw” gave good results compared to the validation 

data sets. The estimation of the parameters was not intuitive for every parameter but was necessary 

to capture coupled-state effects of the sway and yaw states. Simplifying the model to a linearized 

form will make the model work in a basic sense, but with inaccurate coupling effects. The 

following show the linearized equations and the parameters used: 

 

𝑀𝐴𝑀 = [
𝑋�̇� 0 0
0 𝑌�̇� 0
0 0 𝑁�̇�

] (73) 

             𝐶𝐴𝑀(�⃗�) =   [

0 0  𝑌�̇�𝑣 + 𝑌�̇�𝑟
0 0 −𝑋�̇�𝑢

−𝑌�̇�𝑣 − 𝑌�̇�𝑟 𝑋�̇�𝑢 0
] (74) 

 

𝐷𝐿 =  [
𝑋𝑢 0 0
0 𝑌𝑣 0
0 0 𝑁𝑟

] (75) 

 

𝐷𝑁𝐿(�⃗�) = [

𝑋𝑢𝑢|𝑢| 0 0

0 𝑌𝑣𝑣|𝑣| 0

0 0 𝑁𝑟𝑟|𝑟|
] (76) 

Table 24: Best set of parameters that fit the training and validation set of data. 

Wind  Surge  Sway  Yaw  

𝑐𝑥 0.05 𝑋�̇� 516 𝑌�̇�
 0 𝑁�̇� 0 

𝑐𝑦 0.01 𝑋𝑢 120 𝑌𝑢 0 𝑁𝑢 0 

𝑐𝑧 -0.001 𝑋𝑢𝑢 85 𝑌𝑢𝑢
 0 𝑁𝑢𝑢 0 

  𝑋�̇� 0 𝑌�̇� 991 𝑁�̇� 0 

  𝑋𝑣 0 𝑌𝑣 884 𝑁𝑣 0 

  𝑋𝑣𝑣 0 𝑌𝑣𝑣 696 𝑁𝑣𝑣 0 

    𝑌𝑣𝑟 0 𝑁𝑣𝑟 0 

  𝑋�̇� 0 𝑌�̇� 0 𝑁�̇� 4486 

  𝑋𝑟 0 𝑌𝑟 0 𝑁𝑟 1258 

  𝑋𝑟𝑟 0 𝑌𝑟𝑟 0 𝑁𝑟𝑟 -2884 

    𝑌𝑟𝑣 0 𝑁𝑟𝑣 0 

  

 The parameters are based on the “No Surge-Yaw” fit that relies on the cross-terms, such as  

𝑌𝑟𝑣 and 𝑁𝑟𝑣, to control parts of the dynamic drag. The linearized model removes the cross-terms, 
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so the result will not work for every input force and initialized state in a data set. Figure 38 shows 

how the model responded to a zig-zag data set (Appendix 1.5.14). This data set was shown because 

turning and some zig-zag data sets failed to simulate due to the parameters in this model and the 

respective inputs applied. 

 

Figure 38:Results of a zig-zag data set using the linearized EOMs and compared to the “No Surge-Yaw” #3 fit. 

 The linearized model tries to fit the data primarily due to the second order drag with less 

effect available from Coriolis. The mean errors for the model are shown in Table 25. The surge 

simulation does not change much since the surge had minimal effects from Coriolis originally. The 

sway and yaw rate show low drag effects due to the linear simulation state moving linearly without 

signs of settling to a constant state before a change in input moment. The sway state is only affected 

by the surge speed in the Coriolis matrix. There is a phase delay shown due to the damping effects 

of the linearized added mass being too high as well. Overall, the drag could be estimated more to 
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estimate the linearized effects, but when the states are moving in tandem, all of the states can have 

higher speeds due to no coupling drags to fit the coupling effects that the “No Surge-Yaw” states 

could find. This method is useful for basic motions of vessels with a need for simple motion 

without accurate results in complex maneuvers. 

Table 25: Mean error linearized coupling results. 

Linearized Model 

Error X Y N 

Zig-Zag 0.52 0.06 0.17 

 

4.7. Down-Sampling Data Sets for Future Estimation 

 The results shown in the previous were done with the localization sampling rate of 100 ± 

2 Hz. The amount of time was substantial for the total number of samples per data set to simulate, 

especially with the larger logs like the figure-eight tests. Looking back to the dynamics presented 

in the data sets, the motion of the WAMV does not change quickly over time with smooth 

transitions that follow quadratic curves mostly. The logs were later down-sampled to determine if 

any information is lost in capturing these motion curves. The sample was taken from specified 

time steps and not filtered beforehand; the filtering is performed on the Pinpoint system natively. 

 The two examples are a 10 Hz and 1 Hz down-sampling of a zig-zag test (Appendix 1.5.14: 

Zig-Zag Set 14). The 10 Hz (Figure 39) sampling was chosen to see if there would be a noticeable 

difference by moving down by an order of magnitude. The data looks similar overall with small 

deviations in sway and yaw rate as shown in Figure 41. The 1 Hz (Figure 40) sampling was taken 

down by another order of magnitude to see any change. The noise is more visible in sway and yaw 

rate with the yaw rate missing some key dynamic points. The curves around the 15 and 16 second 

mark are not estimated at the 1 second time step, so the down sampling has been taken too far and 

is showing aliasing effects.  



66 

 

 

 

Figure 39: Comparison of a zig-zag test of the 100Hz vs. the 10 Hz data set. 

 

Figure 40: Comparison of a zig-zag test of the 100Hz vs. the 1 Hz data set. 
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Figure 41: Zoomed in differences in the 100Hz data set with 10 Hz and 1 Hz.  
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Chapter V 

Conclusions & Future Work 

5.1. Conclusion 

 The methodology for estimating a marine vessel model produced parameters useful for 

future simulation work with careful supervision. The model that worked best was the “No Surge-

Yaw” model that required minimal effects of coupling-states on surge speed with the sway speed 

and yaw rate requiring coupling to handle steady-state and dynamically changing turns. 

 The optimizer worked for searching the space for the full sets of parameters. As each fit 

was completed, the optimizer would find better estimates of the parameters that would fit each 

data set. The fits were better because some parameters were not as explored or continually 

expanded during the optimization time. After each fit, manual tuning of parameters was performed 

to approximate expected motion and those values were run through the optimizer for the next fit. 

The reason for needing to tune the parameters stemmed from the single-valued error that was 

calculated to determine if the solution was converging to a minimum. The error did not consider 

each individual state, nor their signs, so the optimizer would need to run longer to eventually catch 

these errors randomly. 

 With the models used, the “No Surge-Yaw” case was better than both the “Full” and “No 

Coupling” models. The “No Surge-Yaw” model had fewer nonlinearities than the “Full” model to 

consider for estimation and was easier to determine the physical insight of where some drag and 

damping effects were occurring. The “Full” model did not benefit from this optimization due to 

estimations reversing the states after an estimation fit. The parameters were not as intuitive to 

change with 12 extra parameters included. This model requires another methodology to capture 

that error in a multi-objective format. The “No Coupling” model was tested based on how other 

papers release their coefficients for the 2nd-order Fossen model. This model is only used for basic 
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control law estimations and basic movements for a marine vessel but does not capture any expected 

coupling effects. 

 The results of the “No Surge-Yaw” model did converge or steady out per optimization. The 

differences from Fit #1 to Fit #2 showed an overall convergence with all states. The fits lowered 

errors with the steady-state and dynamic sway velocities and yaw rates. The surge results remained 

steady with small improvements. The differences from Fit #2 to Fit #3 made some improvements 

to sway and yaw-rate, but error steadied out overall. The validation from the figure-eight revealed 

a good fit that nearly overlapped with that data set with small underestimations in the dynamic 

states. 

 Overall, the optimizer used did generate a set of parameters for a working system model. 

The methodology determined the parameters for a coupled-state dynamic model from nearly no 

initialization besides four initial values to help it along. The parameters from Fit #3 are the results 

that are being used for the WAMV16’s final model in this thesis work.  

5.2. Future Work 

 The methodology helped move the estimation of the vessel along, but the reversed error 

was not captured appropriately. A method to be looked at in the future is a form of multi-objective 

optimization. Quantifying the different state errors as a vector may be beneficial to searching for 

a minimization solution to estimate or find intermittent issues in parameter between optimization 

runs. 

 Given a previously existing model, another set of optimizers can be more effective to 

improve a model. A nonlinear, grey-box modelling method can be used to search the space as a 

local optimizer with to find a local parameter solution. There is a work that Mask, in [3], developed 

a grey-box estimator in MATLAB using Fossen’s 3rd-order, truncated Taylor series model using a 

nonlinear grey-box method. 
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 The input model was simplified due to a lack of actual equipment to estimate the thruster 

model. The thruster model needs to consider the torque and inertia of the propeller, and the water 

flow effects that affect the thrust in general. One method to use for the future is a four-quadrant 

motor model [12], where the thrust and torque are estimated based on the water flow speed and 

the torque acting on the propeller. This model handles cases of station-keeping and “braking” 

effects like attempting to reverse while moving forward. This model is characterized based on 

different inlet water speeds, up to the maximum speed that is needed to estimate, and the speed of 

the propeller. 
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Appendix 

Data Test Sets 

1.1. Wind Disturbance Data Sets 

 Wind Set 1 
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 Wind Set 2 
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 Wind Set 3 
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1.2. Spin Test Data Sets 

 Spin Set 1 
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 Spin Set 2 
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1.3. Stopping Test Data Sets 

 Stopping Set 1 
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 Stopping Set 2 
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 Stopping Set 3 
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 Stopping Set 4 
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 Stopping Set 5 
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 Stopping Set 6 
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 Stopping Set 7 
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 Stopping Set 8 
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 Stopping Set 9 
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 Stopping Set 10 
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 Stopping Set 11 
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1.4. Turning Test Data Sets 

 Turning Set 1 
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 Turning Set 2 
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 Turning Set 3 
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 Turning Set 4 
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 Turning Set 5 
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 Turning Set 6 
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 Turning Set 7 
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1.5. Zig-Zag Data Sets 

 Zig-Zag Set 1 
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 Zig-Zag Set 2 
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 Zig-Zag Set 3 
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 Zig-Zag Set 4 
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 Zig-Zag Set 5 
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 Zig-Zag Set 6 
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 Zig-Zag Set 7 
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 Zig-Zag Set 8 
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 Zig-Zag Set 9 
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 Zig-Zag Set 10 
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 Zig-Zag Set 11 
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 Zig-Zag Set 12 
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 Zig-Zag Set 13 
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 Zig-Zag Set 14 
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 Zig-Zag Set 15 
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 Zig-Zag Set 16 
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 Zig-Zag Set 17 
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 Zig-Zag Set 18 
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1.6. Figure Eight Data Sets 

 Figure Eight Set 1 
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 Figure Eight Set 2 
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Genetic Algorithm Code 

2.1. GA Optimizer 

 This is the optimizer code that takes in multiple “.mat” logs and optimizes them serially. 

The GA settings are set in advance and the population and fitness scores carry over to initialize 

the next log. 

clc 
clear 
rng default; 
warning('off','all') 
distcomp.feature( 'LocalUseMpiexec', false); % Allows parallel in 2015b 
format shortG 

  
pause(1) 

  
wind_dir        = dir('Logs\Optimize Wind\*.mat'); 
opt_dir         = dir('Logs\Optimize\*.mat'); 
parallel        = false; 
validate        = false; 
eval_hrs        = 6; 

  
max_gen         = 500; 
max_stall_gen   = 75; 
pop_size        = 50; 

  
start_opt_time  = now; 
start_tot_time  = tic; 
log_time_str    = datestr(start_opt_time,'mm_dd_yy__HH_MM_SS'); 

  
if parallel 
    try 
        myCluster = parcluster('local'); 
        parpool(myCluster.NumWorkers); 
    catch 

         
    end 
else 
    poolobj     = gcp('nocreate'); 
    delete(poolobj); 
end 

  
stop_weight = [1, 1, 3,   0,   0, 1.5]'; 
zz_weights  = [1, 1, 3,   0,   0,   2]'; 
turn_weight = [1, 1, 3,   0,   0,   3]'; 
fe_weight   = [1, 1, 3,   0,   0,   3]'; 
wind_weight = [1, 1, 3, 0.5, 0.5,   3]'; 
spin_weight = [1, 1, 3,   0,   0,   3]'; 

  
% Search for general keywords in log names 
log_type_names  = {'stop'; 'zig'; 'turn'; 'figure'; 'wind'; 'spin'}; 
log_type_weights= {stop_weight; zz_weights; turn_weight; fe_weight;... 
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    wind_weight; spin_weight}; 

  
log_data        = cell(size(wind_dir)+size(opt_dir)); 
t               = cell(size(wind_dir)+size(opt_dir)); 
weights         = cell(size(wind_dir)+size(opt_dir)); 
w_s = length(wind_dir); 

  
for i = 1:length(wind_dir) 
    load(fullfile('Logs\Optimize Wind\', wind_dir(i).name)) 
    log_data{i} = [state current input wind]; 
    t{i}        = time; 
    for j = 1:length(log_type_names) 
        if(~isempty(strfind(wind_dir(i).name, log_type_names(j)))) 
            weights{i}  = log_type_weights{j}; 
            break; 
        end 
    end 
end 

  
for i = 1:length(opt_dir) 
    load(fullfile('Logs\Optimize\', opt_dir(i).name)) 
    log_data{i+w_s} = [state current input wind]; 
    t{i+w_s}        = time; 
    for j = 1:length(log_type_names) 
        if(~isempty(strfind(opt_dir(i).name, log_type_names(j)))) 
            weights{i+w_s}  = log_type_weights{j}; 
            break; 
        end 
    end 
end 

  
% Randomizes order of logs 
rand_logs = randperm(length(opt_dir)); 

  
log_names = [wind_dir; opt_dir(rand_logs)]; 
log_data  = [log_data(1:length(wind_dir)) 

log_data(length(wind_dir)+rand_logs)]; 
t         = [t(1:length(wind_dir)) t(length(wind_dir)+rand_logs)]; 
weights   = [weights(1:length(wind_dir)) 

weights(length(wind_dir)+rand_logs)]; 
eval_hrs  = eval_hrs * ones(length(log_data), 1); 

  
fprintf('Logs being optimized in order:\n') 
fprintf('******************************\n\n') 
for i = 1:length(opt_dir)+length(wind_dir) 
    fprintf('%s\n', log_names(i).name) 
end 
fprintf('\n******************************\n\n') 
%% Model Settings 

  
% Rigid-Body Parameters 
mass =  348.390; 
Izz  =  525.390; 

  
A_fw =  81.451; 
A_lw =  702.89; 
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L_aa =  4.55; 

  
% Hydrodynamic Lower Limits 
%            Xudot    Xu   Xuu Xvdot    Xv   Xvv Xrdot    Xr   Xrr 
X_LB      = [  450     0    50     0     0  -100     0     0  -130]; 
%            Yudot    Yu   Yuu Yvdot    Yv   Yvv Yrdot    Yr   Yrr 
Y_LB      = [    0     0     0  1000   175   500     0     0 -2500]; 
%            Nudot    Nu   Nuu Nvdot    Nv   Nvv Nrdot    Nr   Nrr 
N_LB      = [    0     0  -700     0     0 -2000   600     0  1000]; 
%                                            Yvr               Yrv 
Y_C_LB    = [                              -2000             -2000]; 
%                                            Nvr               Nrv 
N_C_LB    = [                              -3000             -3000]; 
%             X CG  Y CG 
R_LB      = [-0.15  0.23                                          ]; 
%               vc    ac 
C_LB      = [    0     0                                          ]; 
%               Cx    Cy    Cz 
W_LB      = [0.001 0.001 0.0001                                    ]; 

  
% Hydrodynamic Lower Limits 
%            Xudot    Xu   Xuu Xvdot    Xv   Xvv Xrdot    Xr   Xrr 
X_UB      = [  550   100   175   500   100   100   200   130   130]; 
%            Yudot    Yu   Yuu Yvdot    Yv   Yvv Yrdot    Yr   Yrr 
Y_UB      = [    0     0     0  2500  1800  2000  2000  3000  2500]; 
%            Nudot    Nu   Nuu Nvdot    Nv   Nvv Nrdot    Nr   Nrr 
N_UB      = [  500   700   700  3000  5000  2000  3500  1500  3000]; 
%                                            Yvr               Yrv 
Y_C_UB    = [                                  0              1000]; 
%                                            Nvr               Nrv 
N_C_UB    = [                               1000                 0]; 
%             X CG  Y CG 
R_UB      = [ -0.1  0.28                                          ]; 
%               vc    ac 
C_UB      = [    0     0                                          ]; 
%               Cx    Cy    Cz 
W_UB      = [  0.15   0.15  0.01                                    ]; 

  
%% Optimizer Settings 

  
% weights   = [u_w; v_w; r_w; N_w; E_w; Y_w]; 
rb_coeffs = [mass, Izz, A_fw, A_lw, L_aa]; 

  
LB        = [X_LB, Y_LB, Y_C_LB, N_LB, N_C_LB, R_LB, C_LB, W_LB]; 
UB        = [X_UB, Y_UB, Y_C_UB, N_UB, N_C_UB, R_UB, C_UB, W_UB]; 

  
pop       = []; 
scores    = []; 

  
%% Optimizer 
save_folder = ['Results\' log_time_str ' - Boat Optimizer Results\']; 
mkdir(save_folder) 

  
pause(3) 
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diary_log = [save_folder 'Optimization Evaluation Log - ' log_time_str 

'.txt']; 
diary(diary_log) 

  
curr_log  = cell(1,1); 
curr_time = cell(1,1); 
curr_weight = cell(1,1); 

  
fprintf('Optimization Start! at %s\n', log_time_str) 
fprintf('\n') 

  
for InProgress = 1:length(opt_dir) 
    curr_log   = log_data(InProgress); 
    curr_time  = t(InProgress); 
    curr_weight= weights{InProgress}; 

     
    f = @(coeffs)boat_error_parallel(coeffs, curr_time, curr_time, curr_log, 

rb_coeffs, curr_weight, true); 

     
    eval_time = eval_hrs(InProgress) * 3600; % Time to search space in 

seconds 

     
    options = optimoptions('ga', 'Display', 'iter',... 
        'MaxTime', eval_time,... 
        'MaxGenerations', max_gen,... 
        'MaxStallGenerations', max_stall_gen,... 
        'InitialPopulation', pop,... 
        'InitialScores', scores,... 
        'PopulationSize', pop_size,... 
        'PlotFcn', {@gaplotbestf, @gaplotbestindiv, @gaplotrange},... 
        'UseParallel', parallel, 'UseVectorized', false); 

     
    log_start_time = now; 

     
    fprintf('Optimization Start for %s at %s\n', 

opt_dir(InProgress).name(1:end-4), datestr(log_start_time,'mmmm dd, yyyy 

HH:MM:SS.FFF AM')) 
    start_time = tic; 

     
    % Genetic Algorithm Search 
    try 
        [coeffs, fval, exitflag, output, pop, scores] = 

ga(f,length(LB),[],[],[],[],LB,UB,[],options); 
        fval 
        exitflag 
        output 
    catch e 
        fprintf('GA Optimizer failed:\n\n') 
        disp(e) 
        fprintf('\n') 
    end 

     
    total_time = toc(start_time); 
    end_time = now; 
    fprintf('Optimization Ended for %s at %s\n', datestr(end_time,'mmmm dd, 

yyyy HH:MM:SS.FFF AM')) 
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    fprintf('\n') 

     
    hrs = floor(total_time / 3600); 
    total_time_c = total_time - hrs * 3600; 
    min = floor(total_time_c / 60); 
    sec = total_time_c - min * 60; 

     
    LB        = [X_LB, Y_LB, Y_C_LB, N_LB, N_C_LB, R_LB, C_LB, W_LB]; 

     
    x_l = length([X_LB]); 
    y_l = length([Y_LB Y_C_LB]); 
    n_l = length([N_LB N_C_LB]); 
    r_l = length([R_LB]); 
    c_l = length([C_LB]); 
    w_l = length([W_LB]); 

     
    rb_coeffs 

     
    if ~isempty(coeffs) 

         
        X_coeffs = coeffs(1:x_l) 
        Y_coeffs = coeffs(1+x_l:x_l+y_l) 
        N_coeffs = coeffs(1+x_l+y_l:x_l+y_l+n_l) 
        R_coeffs = coeffs(1+x_l+y_l+n_l:x_l+y_l+n_l+r_l) 
        C_coeffs = coeffs(1+x_l+y_l+n_l+r_l:x_l+y_l+n_l+r_l+c_l) 
        W_coeffs = coeffs(1+x_l+y_l+n_l+r_l+c_l:x_l+y_l+n_l+r_l+c_l+w_l) 

         
    else 
        fprintf('\nNo coefficients we generated! >:(\n\n') 
    end 

     
    coeffs 

     
    fprintf('Optimization Time for %s: %d hrs %d min %0.3f sec\n', 

opt_dir(InProgress).name(1:end-4), hrs, min, sec) 
    fprintf('\n') 
    fprintf('********************************************************\n\n') 
    save_filename = [save_folder num2str(InProgress) '___' log_time_str, '- ' 

opt_dir(InProgress).name(1:end-4) ' - Boat Optimizer Results']; 
    save(save_filename) 

     
    saveas(gcf, [save_filename, ' GA Plot']) 
    close all 
end 

  
%% Results 

  
total_opt_time = toc(start_tot_time); 

  
hrs_tot        = floor(total_opt_time / 3600); 
total_opt_time = total_opt_time - hrs_tot * 3600; 
min_tot        = floor(total_opt_time / 60); 
sec_tot        = total_opt_time - min_tot * 60; 

  
fprintf('\n') 
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fprintf('Total Optimization Time: %d hrs %d min %0.3f sec\n', hrs_tot, 

min_tot, sec_tot) 

  
save_filename  = [save_folder log_time_str, ' - Boat Optimizer Results']; 
save(save_filename) 

  
diary off 
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2.2. Genetic Algorithm Error Function 

 The GA error function that reports the weighted mean squared error of all the states of the 

dynamic system. 

function error = boat_error_parallel(coeffs, t, time, log_data, rb_coeffs, 

weights, global_dist) 

  
warning('off','all') 
states_out = cell(length(time), 1); 
prev_err = 0; 
valid_case = zeros(1, length(states_out)); 

  
for i = 1:length(states_out) 

     

    input = log_data{i}(:, 9:12); 
    state = log_data{i}(:, 1:6); 
    current = log_data{i}(:, 7:8); 
    wind = log_data{i}(:, 13:14); 
    t_p = t{i}; 
    time_p = time{i}; 

     
    f = @(t,s) MinionBoatModel(t, time_p, s, current, wind, input, rb_coeffs, 

coeffs, global_dist); 

     
    [~, states_out{i}] = ode45(f, t_p, state(1,:)); 

     
end 

  
for j = 1:length(states_out) 
    if (size(log_data{j}(:, 1:6)) == size(states_out{j})) 

  
        curr_err = sum( ((log_data{j}(:, 1:5) - states_out{j}(:, 1:5)).^2) , 

1) * weights(1:5); 
        curr_err = curr_err + sum( (wrapToPi(log_data{j}(:, 6) - 

states_out{j}(:, 6)).^2) .* weights(6) , 1); 

         
        prev_err = prev_err + curr_err; 

         
        valid_case(j) = 1; 
    else 
        valid_case(j) = 0; 
    end 
end 

  
if sum(valid_case) > 0 
    error = (prev_err / sum(valid_case)); 
else 
    error = 100000001; 
end 
if (isnan(error)) 
    error=100000002; 
end 
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2.3. Minion Boat Model 

 The system model function used in this thesis work. This model is based on the 2nd-order 

maneuvering Fossen model. 

function ds = MinionBoatModel(t, time, state,... 
                              current, wind, input,... 
                              rb_coeffs, coeffs, global_dist) 
%% Settings 
%-------------------------------------------------------------------------- 
% Set Coeficients 
%-------------------------------------------------------------------------- 
% Surge Force 
Xud   = coeffs(1); 
Xu    = coeffs(2); 
Xuu   = coeffs(3); 
Xvd   = coeffs(4); 
Xv    = coeffs(5); 
Xvv   = coeffs(6); 
Xrd   = coeffs(7); 
Xr    = coeffs(8); 
Xrr   = coeffs(9); 
% Sway Force 
Yud   = coeffs(10); 
Yu    = coeffs(11); 
Yuu   = coeffs(12); 
Yvd   = coeffs(13); 
Yv    = coeffs(14); 
Yvv   = coeffs(15); 
Yrd   = coeffs(16); 
Yr    = coeffs(17); 
Yrr   = coeffs(18); 
Yvr   = coeffs(19); 
Yrv   = coeffs(20); 
% Yaw Moments 
Nud   = coeffs(21); 
Nu    = coeffs(22); 
Nuu   = coeffs(23); 
Nvd   = coeffs(24); 
Nv    = coeffs(25); 
Nvv   = coeffs(26); 
Nrd   = coeffs(27); 
Nr    = coeffs(28); 
Nrr   = coeffs(29); 
Nvr   = coeffs(30); 
Nrv   = coeffs(31); 
% Rigid-Body 
m     = rb_coeffs(1); 
Izz   = rb_coeffs(2); 
A_fw  = rb_coeffs(3); 
A_lw  = rb_coeffs(4); 
L_aa  = rb_coeffs(5); 

  
x_cg  = coeffs(32); 
y_cg  = coeffs(33); 
% Current 
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c_vel = coeffs(34); 
c_ang = wrapToPi(coeffs(35)); 
% Wind 
cx_w  = coeffs(36); 
cy_w  = coeffs(37); 
cz_w  = coeffs(38); 

  
%-------------------------------------------------------------------------- 
% Set States 
%-------------------------------------------------------------------------- 
u     = state(1); 
v     = state(2); 
r     = state(3); 
N     = state(4); 
E     = state(5); 
Y     = wrapToPi(state(6)); 

  
%-------------------------------------------------------------------------- 
% Model Inputs 
%-------------------------------------------------------------------------- 
% Disturbances 
nu    = [u ; v ; r]; 

  
% Current 
if global_dist 

  
    cN = c_vel*cos(c_ang); 
    cE = c_vel*sin(c_ang); 

     
    cN = interp1(time, current(:, 1), t); 
    cE = interp1(time, current(:, 2), t); 

     

    cx =  cN*cos(Y) - cE*sin(Y); 
    cy =  cN*sin(Y) + cE*cos(Y); 
else 
    cx = interp1(time, current(:, 1), t); 
    cy = interp1(time, current(:, 2), t); 
end 

  
ur    = u - cx; 
vr    = v - cy; 
nur   = [ur; vr; r]; 

  
% Wind 
u_rw = interp1(time, wind(:, 1), t); 
v_rw = interp1(time, wind(:, 2), t); 

  
T_w = Wind_Model(u_rw, v_rw, cx_w, cy_w, cz_w, A_fw, A_lw, L_aa); 

  
% Motor 
T_tf  = [1 0 1 0; 0 1 0 1; 1-y_cg -1.71-x_cg -1-y_cg -1.71-x_cg]; 
T     = (T_tf*interp1(time, input, t)'); 

  
%% Model Dynamics 
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%-------------------------------------------------------------------------- 
% Mass Matrix 
%-------------------------------------------------------------------------- 
M_RB = [      m,       0, -m*y_cg;... 
              0,       m,  m*x_cg;... 
        -m*y_cg,  m*x_cg,     Izz]; 

      
M_AM = [    Xud,     Xvd,     Xrd;... 
            Yud,     Yvd,     Yrd;... 
            Nud,     Nvd,     Nrd]; 

  
M    = M_RB + M_AM; 

  
%-------------------------------------------------------------------------- 
% Coriolis Effect 
%-------------------------------------------------------------------------- 
C_RB = [                  0,                   0,       -m*(x_cg*r + v);... 
                          0,                   0,       -m*(y_cg*r - u);... 
             m*(x_cg*r + v),      m*(y_cg*r - u),                    0]; 

  
C_AM = [                   0,                   0,  Yud*ur+Yvd*vr+Yrd*r;... 
                           0,                   0, -Xud*ur-Xvd*vr-Xrd*r;... 
        -Yud*ur-Yvd*vr-Yrd*r, Xud*ur+Xvd*vr+Xrd*r,                    0]; 

  
%-------------------------------------------------------------------------- 
% Drag Terms 
%-------------------------------------------------------------------------- 
D_L  = [         Xu,                       Xv,                       Xr;... 
                 Yu,                       Yv,                       Yr;... 
                 Nu,                       Nv,                       Nr]; 

  
D_NL = [Xuu*abs(ur),              Xvv*abs(vr),               Xrr*abs(r);... 
        Yuu*abs(ur), Yvv*abs(vr) + Yrv*abs(r), Yrr*abs(r) + Yvr*abs(vr);... 
        Nuu*abs(ur), Nvv*abs(vr) + Nrv*abs(r), Nrr*abs(r) + Nvr*abs(vr)]; 

              
D    = D_L + D_NL; 

  
%-------------------------------------------------------------------------- 
% Accelerations 
%-------------------------------------------------------------------------- 

  
ds    = [M\((T + T_w) - C_RB*nu - C_AM*nur - D*nur);... 
         u*cos(Y) - v*sin(Y)                       ;... 
         u*sin(Y) + v*cos(Y)                       ;... 
         r                                         ]; 

  
end 
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