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ABSTRACT 
 
 
 

A CROWDSOURCED HAIL DATASET: POTENTIAL, 
BIASES, AND INACCURACIES 

 
by 
 

Joseph R. Pehoski 
 

The University of Wisconsin-Milwaukee, 2013 
Under the Supervision of Dr. Kyle Swanson 

 
 Hail is a substantial severe weather hazard in the USA, with significant 

damage to property and crops occurring annually. Traditional methods of 

forecasting hail size have limited accuracy, and despite improvements in remote 

sensing of precipitation, the fall characteristics of hail make quantification of hail 

imprecise. Research into hail is ongoing, but traditional hail datasets have known 

biases and low spatiotemporal resolution. The increased usage of smartphones 

creates the opportunity to use a crowdsourced dataset provided by the 

Precipitation Identification Near the Ground (PING) program, a program 

developed by the National Severe Storms Laboratory. PING data is compared to 

approximate ground truth in the form of preliminary Severe Prediction Center 

(SPC) hail reports, and National Weather Service (NWS) issued severe warning 

polygons. Biases and inaccuracies in the dataset are also explored through 

exploratory data analysis. 

 While PING reports did not suffer from biases based on time of day or day 

of week, the location of PING reports was found to have a heavy bias towards 

high population density areas compared to SPC reports. Skill scores of PING 
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reports, compared to SPC reports, were low, with a remarkably high False Alarm 

Rate (FAR), indicating false reports being a problem in the PING dataset. 

Comparing PING reports to severe polygons did not substantially improve the 

skill scores. The low number of severe PING reports prevented any meaningful 

analysis of size accuracy. While the number of SPC reports were mostly 

correlated with the number of warning polygons issued by each Weather 

Forecast Office, the PING reports were not well correlated, with an anomalously 

high number of reports in the Oklahoma City region. The inaccuracy of PING 

reports and strong population bias suggest that the PING hail database may not 

have high utility, and should only be used in conjunction with other databases in 

order to ensure quality. 
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1. Introduction 

Hail is a significant severe weather phenomenon affecting people, crops, 

and property throughout North America and the world. Hail storms occurring in 

the US during the 1990s caused an average of $2.4 billion a year in damage to 

property and crops (Changnon 1999). Strong and Lozowski (1977) found that 

crop damage increases logarithmically with kinetic energy, and kinetic energy of 

a hailstone is exponentially related to its diameter (Brimelow and Reuter, 2002). 

Thus, determination of maximum hail size (defined as the diameter of the major 

axis) is important when considering severe weather risk. More accurate forecasts 

of hail size are of interest in climatologically high risk areas. Hail research 

necessitates a high quality hail dataset to use as “ground truth”. Specifically, a 

country-wide, high resolution ground truth dataset is desirable, due to the highly 

variable spatiotemporal nature of hail, and the difference in hail climatology in the 

U.S (Cintineo et al. 2012; Witt et al. 1998b). Such a dataset is practically difficult 

to construct due to the highly variable spatiotemporal distribution of hail, and the 

current inability to accurately remotely sense hail. With the rise of social media 

and smartphone ownership, new methods of data collection have become 

possible. This thesis explores the accuracy of one particular crowdsourced 

dataset, Precipitation Identification Near the Ground (PING), and the potential for 

current or future use of this data in subsequent hail studies. 

Hail studies use a variety of different datasets as ground truth, but one 

that is accurate over a large domain is unavailable. Studies relying on high 
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quality hail data generally have to choose between a spatially large domain and 

low resolution data, or a spatially small domain and high resolution data (Witt et 

al. 1998b). Field projects are the traditional source of highly accurate, high 

resolution data. The development of Hailcast, a popular numerical hail model, 

used observations from the Alberta Hail Project, which took place in the plains of 

southern Alberta. The study area comprised 33,700km2, and used telephone 

surveys, requests for hail reports sent through the mail, and hailpads for an 

approximate observer density of one per three square kilometers (Brimelow and 

Reuter 2002). The National Center for Atmospheric Research’s Real-time 

Analysis and Prediction of Storms (RAPS) project used two chase vehicles in the 

central Colorado plains (Kessinger and Brandes 1995). The scope of field 

projects is usually limited, due to the expense involved. The Alberta Hail Project 

lasted from 1957 to 1985, while the RAPS covered June and July of 1992 and 

1993 (Brimelow and Reuter 2002; Kessinger and Brandes 1995). As social 

media has become more popular, hail surveys using video and photo sharing 

websites have proved useful (Blair and Leighton 2012). There is an ongoing 

effort to collect high resolution severe data using telephone surveys over the 

entire CONUS through the Severe Hazards Analysis and Verification Experiment 

(SHAVE) (Ortega et al. 2009). Results from SHAVE have already been used to 

determine the skill of a multi radar multi sensor algorithm, and to find the optimal 

threshold for severe hail in “An Objective High Resolution Hail Climatology of the 

Contiguous United States” (Cintenio et al. 2012). These methods of collecting a 
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reports based dataset are promising, but expensive, and not typically 

comprehensive over the entire USA. 

Hail studies often utilize the Storm Data severe storm database as 

verification of ground truth (Witt et al. 1998a; Witt et al. 1998b; Blair and Leighton 

2012). Storm Data is a database maintained by the National Climate Data 

Center, and includes hail reports dating back to 1955 (Hales 1993). Storm Data 

is collected from the various local NWS offices, which have over time used 

various criteria for collecting reports (Doswell et al. 2005). Verification of observer 

reports began in 1980, but different local NWS offices have different criteria for 

recording reports, and different rates of storm spotter deployment. (Hales 1993, 

Doswell et al. 2005). Different NWS districts show a marked dissimilarity in report 

density (Hales 1993). Reports collected by National Weather Service offices are 

used primarily for warning verification, so report density is too low for useful hail 

research purposes (Blair and Leighton 2012). SPC recommends that non-

tornadic severe weather reports be separated by at least 10 miles and 15 

minutes, but this recommendation is not typically followed (Doswell et al. 2005). 

Observations also demonstrate a very problematic population bias, particularly at 

the lower end of the severe scale. The effect is not as apparent when considering 

larger hail sizes (Hales 1993; Cintenio et al. 2012). 

Various methods have been attempted to deal with the problems in Storm 

Data. While generally accepted that population bias is a problem in severe 

weather report datasets, there are some studies indicating the opposite (Doswell 

et al. 2005; King 1997. Davis and LaDue 2004). This may indicate that population 
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bias itself is not a factor of only population, but of other (possibly sociological) 

factors. Cintineo et al. (2012) attempts to tune a multiradar multisensor algorithm 

in order to develop a remotely sensed dataset of any-hail and severe-hail over 

the entire Nexrad period. Elsner et al. (2013) describes a method which weights 

tornado reports by their distance from population centers. Doswell et al. 2005, 

which discusses the climatology of nontornadic severe weather, smooths the 

data temporally and spatially in order to wash out any details. Such methods, 

while acceptable for climatological studies, are not appropriate for hail studies in 

which higher resolution data is required.  

Remote sensing of hail size has low accuracy, and research into 

improving hail size estimation is ongoing (Straka et al. 2000; Edwards and 

Thompson 1998). Indeed, the promise of remote sensing of hail, and the current 

low skill, is the impetus behind many high resolution observation datasets. A 

variety of radar algorithms for detecting hail exist, usually placing it into two 

categories: any hail, and severe hail. Severe hail is defined as hail greater than 1 

inch in diameter (quarter sized), although it was formerly defined as hail with a 

diameter greater than .75 inches (penny sized), before 2010.  More basic hail 

detection techniques rely only on radar reflectivity, and not on any polarimetric or 

derived products. One technique uses the height of the 50 dBz level above the 

freezing level, which is analogous to the amount of supercooled water in the 

updraft. (Richter and Deslandes 2007; Donavon and Jungbluth, 2006). Hail can 

be inferred from the presence of a three-body scatter spike (TBSS), although this 

is not necessary for the presence of large hail. High reflectivities resulting in the 
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Mie scattering which cause a TBSS can be due to wet, non-severe hail (Richter 

and Deslandes 2007). Similarly, a bounded weak echo region (BWER) is 

operationally used as an indicator of large hail, but it is caused by presence of a 

mesocyclone, not by hail, and indicates only high updraft velocities. 

More quantitative radar derived estimates of hail size are calculated from 

a number of different algorithms. Vertically Integrated Liquid (VIL) based 

algorithms have been used since the early 1970s (Greene and Clark 1972). VIL, 

by itself, has proven to have no skill as an indicator of hail size. By examining 

temperatures aloft or other meteorological parameters, efforts to produce a “VIL 

of the day” which results in better warning verification, have been attempted 

(Amburn and Wolf 1997; Donavon and Jungbluth 2006). VIL of the day considers 

the current atmospheric temperature profile, and attempts to determine a 

minimum VIL for the conditions that will result in hail. This method is fraught with 

problematic assumptions, and has, in practice, proved a poor indicator of hail 

size (Amburn and Wolf 1997). More recent non-VIL based methods take 

advantage of advances in computing power. The Probability of Severe Hail 

(POSH), Severe Hail Index (SHI), and Maximum Expected Size of Hail (MESH) 

are commonly used algorithms, and adopted by the National Weather Service 

(Kessinger and Brandes 1995; Witt et al. 1998a). Parameters for these 

algorithms are by necessity tuned using observer based datasets. A review of 

these algorithms show that the variance in observed hail size for a given 

algorithm estimated hail size is quite large, and they thus cannot be used as a 

one-to-one hail size indicator (Wilson et al. 2009; Cintenio et al. 2012). While 
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beneficial for producing climatologies, where the error due to nonmeteorological 

factors may outweigh the error in the radar algorithm used, greater accuracy is 

desired for many research applications (Doswell et al. 2005, Cintenio et al. 

2012). 

Polarimetric radar has the potential to improve upon the hail size 

prediction skill of single pole radar, but research in the area is ongoing. The 

nationwide upgrade of the Next Generation Radar (NEXRAD) network to 

polarimetric radar has necessitated development of hydrometeor type algorithms, 

requiring tuning of the parameters. Unfortunately, while polarimetric radar is 

useful in differentiating most hydrometeor types and drop size distribution, the 

irregular shape of hail makes quantification of hail size a difficult problem (Zrnic 

et al. 1993; Straka et al. 2000). Hail tends to tumble as it falls through a storm, 

allowing it to be assumed to be spherical, and identified using the coincidence of 

high reflectivity and low Differential Reflectivity (ZDR). However, the dual-pol hail 

signals change based on the wetness of hail, isotropy, and surface 

characteristics, making accurate size detection problematic (Zrnic et al. 1993). 

Additionally, the fall characteristics of hail are in reality more complicated than 

other hydrometeors. Evidence exists both for hail falling oriented along its minor 

axis, as well as falling oriented along its major axis, not tumbling as is normally 

assumed (Straka et al. 2000). Hail size estimation by any remote sensing method 

remains crude at best, and thus cannot be used for research purposes where an 

accurate size of hail, and not just its presence, is a consideration.  



7 
 

 

The upgrade of the NEXRAD system to polarimetric radar led to the 

creation of the PING program by the National Severe Storms Laboratory, in order 

to collect precipitation type data. As the penetration of smartphones into rural 

markets increases, apps like PING have the potential to greatly decrease the 

difficulty of reporting, thus increasing the number of hail reports. There remain 

questions on how accurate the reports are, and how much the PING dataset 

could enhance more traditional datasets. This thesis is a first attempt at 

addressing those questions, in an attempt to reveal how useful projects like PING 

may prove. 

The outline of the thesis is as follows: A description of the data, hail 

climatology, and methodology used is discussed in section 2. Section 3 will 

explore the data in further detail and discuss the results of the experiments 

performed. Section 4 provides a conclusion. 

 

2. Methods and Data 

2.1 Hail Climatology 

Hail forms in the updraft of a strong thunderstorm in the presence of 

supercooled liquid water (Rogers and Yau 1989). It has long been established 

that the vertical temperature profile and updraft strength are directly related to 

hail size. Highly unstable atmospheres are usually required for a strong updraft, 

which can support a large hailstone with a high terminal velocity for longer before 

it falls out of the storm. In practice, the height of high radar reflectivities is a good 

indicator of updraft strength in a storm. The height of the melting layer, and the 
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regime in which supercooled water can exist, is also important, with this data 

acquired traditionally through a numerical model or radiosonde. Several detection 

methods rely on the height of high reflectivities; For example, “Evaluation of a 

Technique for Radar Identification of Large Hail across the Upper Midwest and 

Central Plains of the United States” describes several methods relying on the 

height of high radar reflectivities above the freezing level (Donavon and 

Jungbluth 2007).  

Hail in the USA falls mostly east of the Rocky Mountains (Cintenio et al. 

2012). The maximum hail threat is in the southern Great Plains, with a lower 

threat along the entire lee of the Rockies.  In general, changes in the vertical 

temperature profile in different regions of the US can explain differences in hail 

prevalence. In the Great Plains, near the Rockies, higher midlevel lapse rates are 

likely responsible for the increase in prevalence. The high number of hail reports 

extends into the plains of Western Canada, where the Calgary-Edmonton 

corridor sees a very high number of hail days per year. Because hail growth is a 

function of both supercooled liquid water accretion and sublimation, and because 

of this dependence on the environment’s temperature and humidity (Rogers and 

Yau 1989), hail growth regimes in tropical locations cannot be expected to be 

similar to that in mountainous regions. In more tropical regimes (warmer and 

more humid), hailstones can melt faster, due to less evaporative cooling in humid 

air (Cintineo et al. 2012). Thus, a VIL of the day equation for one region cannot 

be expected to be accurate for other regions (Paxton and Shepherd 1993; 

Donavon and Jungbluth 2006). A national, rather than a local dataset, is 
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important to account for climatological variations in the USA. (Edwards and 

Thompson 1998).  In “An Objective High-Resolution Hail Climatology of the 

Contiguous United States”, different Heideke Skill Scores were achieved using 

the same methodology for the entire United States, with a significantly low score 

in the Northeast. Although climatology may have been the cause, a lack of 

reports in the Northeast was also identified as a potential contributor. Because of 

different airmass characteristics in different temporal and regional regimes in the 

US, it is reasonable to expect hail growth to work differently. 

 

2.2 Description of the Data 

PING is a crowdsourced dataset that is intended to improve the 

Hydrometeor Classification Algorithm (Park et al. 2008). Crowdsourcing, in 

general, can be described as the allocation of tasks to a large group of 

individuals with unknown expertise. PING is a crowdsourced dataset in that the 

task of collecting weather reports, traditionally performed by professional 

meteorologists, is instead performed by anyone with a smartphone. The PING 

program was initially launched in 2006, and allowed anyone with an internet 

connection to input a latitude, longitude, time, and precipitation type. The 

program changed in February of 2013 with the public release of the mPING 

mobile application. Anyone with access to an Android or iOS smartphone can 

easily input a precipitation type, with the application automatically submitting 

time, and GPS determined latitude and longitude. The interface is shown in figure 

1. When the option for hail is chosen, the user is asked to input the size, from a 
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default size of .25 inches, increasing in increments of .25 up to 10.0 inches. 

Standard object sizes are also named at appropriate diameters. Users must have 

an active internet connection, either through Wi-Fi or wireless broadband, to use 

the app. The app is not able to cache an observation and submit it later, when an 

internet connection is available. Thus, an observer has to both be able to 

observe an event, and also be in an area with an internet connection. In terms of 

hail, this means they must be located in the location where the hail fell. The PING 

database records the latitude and longitude to one one-hundredth of a decimal 

degree, which is equivalent to about 1 kilometer in the midlatitudes (Cintenio et 

al. 2012). Observations can only be submitted once every 30 seconds. This was 

formerly limited to an observation every 5 minutes in order to dismiss microscale 

characteristics of storms. After the app was expanded on May 2, 2013 to allow 

observations of meteorological phenomena aside from hydrometeor type, the 

submission delay was reduced. Report times are rounded to the nearest minute. 

As described earlier, there is no single best national reports based hail 

dataset. For this analysis, SPC preliminary hail reports are used as the ground 

truth dataset. Reports are considered preliminary because they have not yet 

been reviewed by the NCDC, which typically takes between 60 and 90 days to 

occur (NCDC website). Because of the temporal domain of the PING reports 

being analyzed, and in the interest of consistency in the dataset, the SPC 

preliminary reports will be used. SPC reports are collected from a number of 

different sources that are either professionally confirmed or come from 

professional sources. Methods of collection include storm spotters, media, 
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pictures on social networking sites, county, state and federal emergency 

management officials, local law enforcement officials, skywarn spotters, NWS 

damage surveys, newspaper clipping services, and the insurance industry 

(National Climatic Data Center 2013). The reports contain a latitude and 

longitude to one one-hundredth of a degree, a size to the nearest quarter inch, 

and a UTC time to the nearest minute. 

 The SPC dataset used here only contains reports of severe hail, that is, 

hail of size .75 inches (penny sized) or greater. Because this dataset is used 

primarily to verify warnings, reports of nonsevere hail are not included in the set. 

Severe thunderstorm warnings verify when a single severe hail report occurs in 

the warning polygon. If hail occurs, but it is below the severe threshold, it is not 

counted, but such a report may be useful in later research. 

There exist entries in the PING dataset that are exact duplicates of one 

another (hail of the same size occurring at the exact same time and location), as 

well as hail of two different sizes at the same location and time. This is possible 

because if two users less than one kilometer apart report hail within the same 30 

second period, the reports are identical, given the resolution of the dataset (Kim 

Elmore, personal communication). For this analysis, exact duplicates have been 

removed. When two reports were identical except for hail size, the report with the 

smaller size was removed. This is in keeping with the typical hail report 

methodology of reporting the largest of all hail falling in the observation area. In 

all, 237 exact duplicates were found, and 3 duplicates with different sizes were 
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found. Because an SPC report date begins at 1200Z and continues until 1159Z 

the next UTC day, PING report dates were changed to this format. 

Population data was acquired from the United States Census Bureau. The 

data is based on the 2010 census, and gives the population density per census 

block. A census block is the smallest unit the U.S. Census subdivides, and is 

thus best representative of the population density where hail fell. The census 

data is joined to the hail reports using ArcGIS (ESRI, accessed September 30, 

2013. 

Hail is a unique weather variable, because an observer typically needs to 

be at the exact location where hail fell. Because of this, population density is a 

more serious problem in hail datasets (Doswell et al. 2005; Hales 1993). The 

number of hail reports submitted can be expressed as a function of whether hail 

fell, population density, interest of the observer, and ease of reporting (Schaefer 

et al. 2004; Elsner et al. 2013; Witt et al. 1998b; Davis and LaDue 2004; Hales 

1993). The mPING app greatly increases the ease of reporting, possibly 

increasing the number of hail reports. While the interest of an observer who takes 

an interest in the PING program can be expected to be higher than average, it 

may not be as high as the observers involved in SPC observation collection. The 

PING dataset provides a unique opportunity to interrogate some sociological 

factors involved in weather observations. Exploratory data analysis will be used 

to examine possible factors 

The interest variable encompasses a number of sociological concerns 

which an increase or decrease in hail reports can be attributed to. Population 
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density is not the only factor which can increase the number of reports. The 

engagement of an observer is also important. For example, if hail falls during the 

early morning, despite population density being high, fewer people are able to 

observe the hail. Daytime or nighttime differences in warning verifications were 

observed in Davis and LaDue 2004. A number of factors may change this 

interest variable, depending on the dataset. In terms of PING data, knowledge of 

the mPING app is a very important part of this variable. In the manner of Eisner 

et al. 2013, figure 2 shows the number of Google search results for “mPING” by 

month. After peaking at 100 hits in February, when the app was publicly 

released, the data shows a decline until 18 hits are registered by October. This is 

evidence for a decrease in interest as time goes on. The remarkableness of a 

storm can also be considered in here. It may be expected that people are more 

likely to be engaged in a severe storm if large hail is falling.  

Ease of reporting can be described as how difficult it is for an observer to 

get their observation into a database. In the case of the SPC dataset, this can be 

expected to be difficult, unless Weather Forecasting Offices are actively looking 

for verification. This has been alleviated somewhat with the rise of social media. 

It is fairly simple for an observer to take a picture and upload it to the social 

media page of the local severe weather office. In the case of PING, it is very 

easy for a user to input the hailsize using the mPING app, but only as long as the 

user has an internet connection at the time and place of observation. 

The number of reports received is important to make a hail dataset useful, 

but he accuracy of PING data is, of course, a concern. Accuracy of a hail report 
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is made up of three measures: Spatial accuracy, temporal accuracy, and size 

accuracy. A major difference, and major concern, of the PING dataset is the 

diversity of the attitudes in the observers. Outright incorrect reports, reported for 

no reason in particular, can be one source of incorrect reports. Less deliberate 

misuse of the mPING app, such as using it to submit a report at a time or place 

aside from where hail is observed, is also a concern. An observer reporting an 

incorrect size during a hail storm may also be expected (Doswell et al. 2005). 

Trapp et al. (2005) discusses the inaccuracy of observer based high wind 

reports. Hail size can more easily be measured or estimated than windspeed, but 

some error between categories is to be expected. The list of common size 

comparison objects in the mPING app may be expected to limit this type of error. 

Another error which may be demonstrated in the dataset is confusion of 

hail with sleet. Such weather phenomena are unlikely to be confused by an 

experienced weather observer, and would not normally make their way into the 

SPC observation database. However, the public’s unfamiliarity with hail, a rather 

rare event, results in sleet observations being included as small hail. By only 

using May through August hail reports in this study, these errors can be 

eliminated. 

The spatial domain of the PING program encompasses the entire 

continental United States. In this thesis, the entire spatial domain will be used, 

but only PING reports from May through August of 2013 are used, because it is 

the only complete season after the introduction of the mPING app. 
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Figure 1. The mPING mobile app interface. 
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Figure 2: Google Trend results for “mping” from the public release of the app in 
February 2013, to October 2013. 
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2.3 Methodology 

The number of factors affecting the accuracy of the data is large, and it is 

difficult to isolate any one of them. Ultimately, the question being asked is 

whether the PING dataset represents a subset of ground truth, and if that ground 

truth is able to augment a traditional dataset. The only way to definitively 

determine this is to compare the PING dataset and the SPC dataset to a 

completely accurate, high definition hail dataset. A perfect hail dataset would 

consist of the size and strike time of every piece of hail that falls to the ground 

within the given domain and resolution. Such a dataset is purely theoretical. For 

this study, SPC observations will be used as ground truth. 

In this study, temporal variation will be mostly neglected. All severe 

reports in an entire day (1200Z to 1159Z the next day) will be compared. Both 

location and size accuracy will be determined using a contingency table, in the 

manner of Davis and LaDue, 2004. The False Alarm Rate (FAR), Probability of 

Detection (POD), and Critical Success Index (CSI) will be computed using 

multiple different search radii. The correspondence of hail reports with warning 

polygons will be determined, from which information on the accuracy of PING 

reports will be derived.  

The skill scores are defined here as in Davis and Ladue (2004): 
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where A is the number of correct positives, B is the number of false nulls, and C 

is the number of false positives. 

The standard search radius used will be 10km. Points will thus said to be 

concurrent if they are separated by 10km or less, and if they occurred on the 

same day. This distance is used because it falls in the middle of the meso-

gamma scale. However, hail does not typically fall out of an entire thunderstorm, 

making the chosen radius larger than what might realistically be expected. A 

radius closer to 1km is more desirable, as this is approximately the resolution of 

both datasets (due to Latitude and Longitude being rounded to the nearest 

hundredth degree). However, due to the sparsity of reports in all databases used 

in the analyses, the number of concurrent points becomes too low to be useful if 

the search radius is set to a more reasonable value of 1km. The response of the 

skill scores to different search radii will be discussed. 

Because of the problems with the methodology of using points as ground 

truth, a method based on Severe Thunderstorm Warning polygons will also be 

used. Such warnings are issued by Weather Forecasting Offices when hail is 

expected to reach one inch or greater, or high winds or a tornado are expected.  

It is assumed that inside a warning polygon, small hail at least can be expected. 

Maps of number of severe warning polygons (National Weather Service, 

accessed October 28, 2013) by county warning area (National Weather Service, 

accessed September 6, 2013) are examined. 

Tornado warning polygons, while also expected to contain large hail, are 

not used in this analysis. This is primarily because tornado warnings have unique 
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biases not found in severe warnings. With public perception of tornado warned 

storms as much more dangerous than severe warned storms, countering against 

the increase in storm chasing in recent years, it is difficult to say how interest in 

gathering hail reports might change. Issuance of tornado warnings is a more 

critical problem, with more dire consequences for mistakes in timing and shape 

of the polygon. A lead time that is too long will result in increased risk to human 

life, while a short lead time will do the same (Simmons and Sutter 2007). 

Tornado warnings, because of these biases, must be considered separately from 

severe polynomials, and using this method is beyond the scope of this thesis. 

 

Section 3: Results and Discussion 

3.1 A closer look at the data 

A map displaying all SPC and PING hail reports is given in figures 3 and 4 

respectively. The report density is noticeably higher in the SPC dataset, as 

evinced in figures 5 and 6, with a different spatial distribution than the PING 

dataset. The location of hail reports in the SPC reports follows what may be 

expected based on climatology; the highest report density is between the Rocky 

Mountains and the western Great Plains. Even at this zoom level, population 

effects on observer density are obvious. Several large metropolitan areas are 

clear, as are some major highways. High density is also obvious in the 

Appalachians, and Northeast Ohio into upstate New York, which cannot be 

instantly explained by a population bias. These locally high values were also 

noted in Cintenio et al. 2012, when they found that the number of hail 
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observations in these locations significantly exceeded what would be expected 

from their objective hail climatology. Other factors must be used to explain this. 

While the distribution of these points seem to indicate a possible lake effect 

cause, another likely explanation is the effort with which weather forecast offices 

attempt to verify warnings (Hales 1993).  

The map of all PING observations (figure 4) clearly shows population 

centers, and in fact looks very much like a population density map. The low 

number of reports in the PING dataset compared to SPC is partially responsible 

for this, allowing the population bias to be clearer. Figures 7 and 8 display 

cumulative distributions of reports based on population density. 94.9% of all SPC 

reports occur in areas with a population density below 3300 people per square 

mile, while 81.1% of all PING reports occur within that population density range.  

The fraction of PING reports by location stays somewhat constant, with 

SPC observations becoming more dominant at higher latitudes and farther East 

(Figures 9 and 10). This is evidence of an increase in Weather Forecast Office 

warning verification efforts in the Northeast, along with a decrease in usage of 

the mPING app. Areas west of the Rocky Mountains have few hail reports in 

either dataset, so little insight can be gained in those regions. An outlier is clear 

at latitude 35N and longitude 97W, where the PING fraction increases greatly. 

This is the location of Oklahoma City, where the mPING program was developed 

at NSSL and University of Oklahoma, thus interest in the mPING program can be 

expected to be high. 
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The total number of observations for every day of the study period, 

overlayed with the fraction that are PING observations, are given in figures 11 

through 14. PING fraction remains consistently low through the entire study 

period, aside from days when very few hail observations occurred. This could 

indicate that PING observations are subject to false positives, but this may also 

be the result of PING reports being submitted in unremarkable storms that are 

either unwarned, or for which a Weather Forecast Office does not put effort into 

collecting hail reports. Examining figure 15, it appears the usage of PING 

gradually declined as time progressed, which may be expected as interest in the 

program declined after the initial launch of the mPING app. 

 The dependence of reports on time of day is given in figures 16 and 17. 

The distribution of reports in both datasets follow what may be expected from 

climatology. The greatest number of reports occur in the late afternoon into the 

evening, with a lull overnight to noon. It may have been expected that the fraction 

of PING reports would decrease overnight, however, that is not the case. 

Day of week should have no climatological difference in hail producing 

storms, so given a long enough period of time, the number of hail producing 

storms occurring each day of the week should be the same. However, changing 

behavior of people based on day of the week may affect the number of hail 

events submitted. Figure 18 shows the percentage of hail reports within the 

respective datasets that fell on every day of the week. There are no great 

outliers, with the PING fraction on Saturday farthest away from the expected 

value of .14, at .19. 
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Figure 3: All SPC hail reports from May 1, 2013 through August 31, 2013 
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Figure 4: All PING hail reports from May 1, 2013 through August 31, 2013 
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Figure 5: SPC report density. 
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Figure 6: PING report density. 
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Figure 7: Population distribution of SPC hail reports, in people per square mile, 
shown for 95% of hail reports. 
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Figure 8: Population distribution of PING hail reports, in people per square mile, 
shown for 95% of hail reports. 
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Figure 9: Number of hail observations by latitude for both PING and SPC, with 
the PING fraction of total hail reports for that latitude overlayed. 
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Figure 15: Number of PING and SPC observations by month, overlayed with 

fraction of PING observations by month.  



35 
 

 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 16: Fraction of reports in both the SPC and PING datasets that occurred 
at the corresponding times. 
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Figure 17: Number of observations in both the SPC and PING datasets that 
occurred at the corresponding times. 
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Figure 18: Fraction of reports in both the SPC and PING datasets that occurred 
on the corresponding days of the week. 
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3.2 Contingency Tables 

 Contingency tables are a common method of determining skill of 

forecasts. Davis and Ladue 2004 used the approach to analyze factors that bias 

warning confirmation, and a similar approach will be used here. In this section, 

spatial distribution of PING reports will be compared to the ground truth, SPC 

reports. A correct positive is defined as a PING report occurring within 10km of 

an SPC report, a false positive is defined as a PING report falling more than 

10km from any SPC reports, and a false null is defined as an SPC report which 

does not have a PING report within 10km of it. The responses of the scores to 

different distances are also evaluated. From this data, we can compute the 

Probability of Detection, False Alarm Ratio, and Critical Success Index of PING 

hail observations in confirming SPC reports. 

Because the number of SPC reports is much greater than the number of 

PING reports, a few conjectures about the scores can be made before they are 

computed. The number of false nulls can be expected to be very high, lowering 

the Critical Success Index and False Alarm Ratio. In the case where a theoretical 

perfect hail dataset is used, the Critical Success Index would be expected to 

approach zero, and the False Alarm Ratio can be expected to approach one, due 

to the large number of observations. The probability of detection can be expected 

to be low due to the demonstrated population bias in the PING dataset. If 

participation in the PING program were much greater, there would be more 

duplicate observations in the dataset (that is, multiple observations the same 

day, within 10km of one another). Two PING observations very close to each 
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other give more confidence that the observations are correct. Thus, clusters of 

observations are also compared to each other. The standard 10km distance is 

used, but a 5km, 15km, and 20km clustering distance is also examined. An 

increase in distance may be undesirable due to the decrease in resolution, and 

the approach of the limits of the meso-gamma scale. A decrease in clustering 

distance can be expected to result in fewer clusters, and thus fewer matches 

between points.  

The results of the different runs are shown in figures 19-21. Skill scores do 

improve with increasing search radius, but remain low. One exception is the CSI 

and POD score for the severe clustered case. This decreases when the search 

radius goes from 10km to 15km, which is an artifact of the small number of 

severe PING clusters.  From these results, it is clear that it is most accurate to 

compare individual PING points to the SPC dataset. While a cluster of PING 

reports may be expected to be more indicative of an accurate observation, 

considering only clusters comes at the cost of reducing the POD and CSI. The 

false alarm rate actually increases when considering only clusters. In the most 

basic way, this can be described as “Areas where several people report PING 

observations are not very likely to have several SPC observations in them”. It is 

possible that this is due to the quality control on SPC reports. Areas that receive 

many PING reports, that is, near population centers, may not receive nearly as 

many SPC reports due to removal of duplicates. The false alarm rate, high for the 

sets that contain non-severe reports, is remarkably low in the severe-only 
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clustered and non-clustered cases. This is due to the large number of SPC 

reports and clusters compared to the PING reports.  

While the skill scores appear low, a few problems exist when viewing them 

without comparison. Because the number of PING reports is less than the 

number of SPC reports, PING cannot achieve a perfect POD or CSI. Also, it is 

not known what constitutes a “good” skill score. By taking random permutations 

of the SPC dataset, the same size as the PING dataset, and comparing it to the 

remaining SPC points, we can attempt to come to some kind of benchmark. 

Table 1 shows the results for 10 random selections of SPC points, compared to 

the remaining SPC points. Only the point-to-point, 10km search radius case is 

presented, because it was previously found to have a better score than the 

clustering method. The average POD of the random perturbations is .16, the FAR 

.63, and CSI .13. However, even if there were no false nulls, the POD and CSI 

would rise to only .43. Thus, the random subset of the SPC set attains a POD 

and CSI of 37% and 30% of optimal. Considering again the PING reports, the 

POD and CSI of .102 and .085 are 24% and 20% of optimal. While skill is lower 

in the PING point to point comparison, it still has sufficiently high value to have 

merit, compared to the SPC results. 

 The assumptions necessary for this kind of analysis limit the usefulness of 

these contingency tables. It is assumed that hail producing storms will always be 

well resolved by SPC reports. Due to the high spatial variability of hail reports, 

other hail may have fallen nearby, but not near places where the SPC hail was 

observed. While a nearby report of large hail by SPC would indicate a PING 
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report is valid, the high number of reports below .75 inches in the PING database 

means most PING reports were observed in areas where non-severe hail was 

falling (assuming the PING report was accurate). Given that SPC reports are 

mainly collected to confirm severe warnings, it is possible that areas away from 

SPC reports could contain smaller hail reports. An analysis that deals with the 

possibility of using warning polygons to confirm accuracy of PING reports is 

discussed in the next section. 
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Figure 19: Probability of Detection for the four different verification methods, for 
all four search radii.  From top to bottom: All PING reports compared to all SPC 

reports; clusters of PING reports compared to clusters of SPC reports; only 
severe PING reports compared to SPC reports, and only severe PING clusters 

compared to SPC clusters. 
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Figure 20: As in figure 18, but for the False Alarm Rate 
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Figure 21: As in figure 17, but for the Critical Success Index. 
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3.3 Comparison to Severe Warnings 

As stated in Doswell 2005, Point reports of hail represent only a small part 

of the area affected, limiting the effectiveness of using points for verification. 

False positives detected above may not all be false positives. In order to 

determine whether PING points that do not align with SPC points may be 

spatially accurate, an analysis of the isolated points that fall within warning 

polygons is presented. While a PING point may not be near an SPC point, if the 

PING point is not severe, and falls within a warning polygon, it is reasonable that 

non-severe hail could have fallen in that area. Likewise, PING points that have 

neither a matching SPC report, and that fall outside of a warning polygon, can 

reasonably expected to be false.  

A correct positive is defined as a PING report that occurs within a severe 

polygon, a false positive is defined as a PING report that falls outside of a severe 

polygon, and a false null is defined as a severe polygon not containing a PING 

report. Only 81 PING reports without a corresponding SPC report fell inside of a 

warning polygon. Of the 959 total false positives from the point to point analysis, 

878 can reasonably be expected to be truly inaccurate reports, giving a more 

reasonable estimate of the POD of .08, FAR of .61, and CSI of .07 

 In order to put those scores into perspective, benchmark skill scores must 

be determined for the polygon method of confirmation as well, in much the same 

manner as with point reports. Ten different random selections of the SPC point 

dataset, all the same size as the PING dataset, are compared to the polygons in 

order to determine the polygons’ skill. SPC reports are primarily used to confirm 
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severe warnings, so a join of the SPC reports to the severe polygons can be 

expected to have high skill. However, by downsampling the SPC reports to only 

1449 reports, it is obvious that not every one of the 7256 severe polygons can be 

confirmed. Even the size of the SPC hail dataset, at 4815 observations, cannot 

confirm every polygon, resulting in many false nulls.  

A false null in the warning polygon test is a somewhat specious concept. It 

is defined here as an event where a severe polygon exists with no hail reports 

inside it. Because hail is not expected in every severe polygon, but only a certain 

fraction of severe polygons, a false null total of zero cannot be expected to be 

obtained, even if every storm in the polygons was closely observed on the 

ground. This is a limitation of the methodology used, but false nulls, when 

working with any incomplete hail datasets, are problematic. Comparing any hail 

dataset to a perfect theoretical dataset, the number of false nulls would be 

extremely high. Thus, the number of false nulls taken by itself cannot be 

considered very useful. However, if one assumes that a constant fraction of 

severe polygons are expected to contain hailfall, the false null numbers are 

useful in comparison to one another.  

Table 2 shows the permutation tests performed on the polygons. Because 

SPC reports are primarily collected to confirm severe warnings, high skill can be 

expected to be demonstrated. Optimal values of POD and CSI are .20, and the 

average of the permutations show a POD and CSI .02 below that score. The 

false alarm rate is also low, at .09 compared to an optimal score of 0. This results 

in a POD and CSI of 90% of optimal for the average of the perturbations. 
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Returning to the PING dataset, the POD score is 39% of optimal, and CSI 35% of 

optimal, with an FAR of .91. These scores are better than those achieved using 

the point to point analysis, but much lower than the SPC scores. Such a result 

indicates that there may be high spatial inaccuracy in the PING dataset. 

Figure 22 shows the total number of warning polygons issued for all 

Weather Forecast Offices. The highest values occur in the Rapid City, SD and 

Norman, OK forecast regions. The number of warning polygons per office are 

generally correlated with the number of SPC reports per office (Figure 23) in the 

central region, aside from an anomalous small number of issuances in the Sioux 

Falls, SD district. Such an anomaly may be expected to be caused by the 

warning issuing style of that particular office, and indeed, the number of SPC hail 

reports in that district is similar to those surrounding it. The high number of 

warnings issued in the Rapid City and North Platte warning areas are generally in 

line with the expected climatologies for those areas as described in Cintenio et 

al. 2012, and have a high number of confirmed SPC reports there. 

The corresponding figures of PING reports (Figure 24) display the 

population bias of this report dataset. Anomalously high numbers of reports exist 

in the Minneapolis and Denver forecast areas. Figures 25a and 25b show the 

number of severe polygons that did not contain an SPC report, but did contain a 

PING report of any size. The Rapid City and Norman warning areas have a high 

number of reports confirmed in this manner. Not only are the Black Hills and 

Oklahoma climatologically high risk hail areas, these regions also have high 

population densities. Thus, these areas can be expected to have a high number 
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of reports. Other County Warning Areas contain similar rates of PING reports, 

excepting the Chicago and Cleveland areas. It was considered earlier that the 

large number of reports on the south side of Lake Erie was possibly due to 

aggressive report collecting on the part of the WFO. However, because the PING 

reports also show an anomalously high number of reports here, it is likely that the 

2013 season had a genuinely high rate of hail producing storms in this area.  

A clear population bias is less apparent when the County Warning Areas 

are examined. Figure 26 is a chart similar to figure 6, but contains only PING 

points which confirmed Severe Polygons that were unconfirmed by SPC reports. 

The population distribution of PING reports that confirm severe polygons is very 

similar to the population distribution of all PING reports. The similarity in results 

indicates that the population bias is no different when considering all PING 

reports or a subset of PING reports that are not near SPC reports. This indicates 

the correlation between the placements of SPC reports confirming polygons at 

the same time as PING reports is low. Thus, in polygons that do not contain a 

standard SPC hail report, PING reports can be used to confirm the polygon, but 

the population bias still remains high. The hail size distribution is also remarkably 

similar to the entire PING dataset, which means reported sizes are biased 

heavily towards the non-severe end. 

Considering only severe PING reports that fall in polygons without an SPC 

report is the most practical use of the PING dataset. However, the number of 

such reports is very low, at only 42. With the very heavy bias of the PING reports 
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towards nonsevere, the use of the dataset is best for when non-severe sized hail 

is important.  
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Figure 22: Number of warning polygons issued by each Weather Forecast Office 
from May 1 through August 31, 2013. 
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Figure 23: Number of SPC reports by Weather Forecast Office. 



52 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 24: Number of PING reports by Weather Forecast Office. 
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Figures 25: a. Number of warning polygons confirmed by a PING report and not 
by an SPC report by Weather Forecast Office, and b. Percent of all warning 
polygons by office confirmed by a PING report and not by an SPC report. 

a) 

b) 
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Figure 26: Population density of PING reports which confirmed a warning 
polygon without a corresponding SPC report, expressed in people per square 

mile. 
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4. Conclusion 

 While the number of PING reports by WFO is proportional to the number 

of SPC reports, this does not hold for every office, due to the strong population 

bias of PING reports. The number of warning polygons confirmed by severe 

PING reports, which would otherwise remain unconfirmed, is too low to be useful 

in most situations. Even if this number were high, the risk of using an incorrectly 

submitted PING report is great without another method to confirm the 

observation. A consensus of PING reports may be used if the density of PING 

reports is high enough, but the number of clusters found in this analysis is low.  

 As the National Weather Service continues to publicize the mPING app, 

and with increasing smartphone use, the rate of PING reporting will likely 

increase. With more data, more work can be done using the dataset. In 

particular, more severe PING reports must be collected in order for reasonable 

analysis of significant hail to be done. An analysis of the number and accuracy of 

PING reports in discrete population density areas, compared to another dataset, 

would help to isolate non-population density and non-meteorological factors. 

Large amounts of data would enable different regions to be analyzed separately 

(as in Cintineo et al. 2012), and allow the domain to be constrained for more 

thorough analysis. 

 In its current form, the PING dataset could be used to create a high 

resolution hail dataset in some heavily populated areas. The greatest utility may 

still lie in the unique method of data collection this dataset utilizes, which allows 
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examination of sociological factors affecting other datasets. However, a rigorous 

quality control method must be developed to eliminate false PING reports. 
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Appendix 
 

Permutation 
number 

Number 
of 
correct 
positives 

False 
Positives 

False 
Nulls POD FAR CSI 

1 540 909 2826 0.160 0.627 0.126 
2 580 869 2786 0.172 0.600 0.137 
3 540 909 2826 0.160 0.627 0.126 
4 544 905 2822 0.162 0.625 0.127 
5 568 881 2798 0.169 0.608 0.134 
6 533 916 2833 0.158 0.632 0.124 
7 512 937 2854 0.152 0.647 0.119 
8 542 907 2824 0.161 0.626 0.127 
9 550 899 2816 0.163 0.620 0.129 

10 522 927 2844 0.155 0.640 0.122 
Average 543.1 905.9 2822.9 0.161 0.625 0.127 
Max 580 937 2854 0.172 0.647 0.137 
Min 512 869 2786 0.152 0.600 0.119 

Best 
theoretically 
possible 1449 0 1917 0.430 0.000 0.430 

 
 
 
 
 
 
 
 
 
 
 

  
 
 
 

  
Table 1: Skill scores for 10 downsamplings of the SPC observations to 1449 

observations, compared to the rest of the SPC dataset. 
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 Table 2: Skill scores for 10 downsamplings of the SPC observations to 1449 
observations, compared to the 7256 warning polygons. 

Permutation 
number

Number 
of correct 
positives

False 
Positives

False 
Nulls POD FAR CSI

1 540 909 2826 0.160 0.627 0.126
2 580 869 2786 0.172 0.600 0.137
3 540 909 2826 0.160 0.627 0.126
4 544 905 2822 0.162 0.625 0.127
5 568 881 2798 0.169 0.608 0.134
6 533 916 2833 0.158 0.632 0.124
7 512 937 2854 0.152 0.647 0.119
8 542 907 2824 0.161 0.626 0.127
9 550 899 2816 0.163 0.620 0.129

10 522 927 2844 0.155 0.640 0.122
Average 543.1 905.9 2822.9 0.161 0.625 0.127
Max 580 937 2854 0.172 0.647 0.137
Min 512 869 2786 0.152 0.600 0.119
Best 
theoretically 
possible 1449 0 1917 0.430 0.000 0.430
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