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ABSTRACT 

 

Panahandehgar, Sattar MSAE, Embry-Riddle Aeronautical University, May 2019. CFD 

Study of Taylor-Like Vortices in Swirling Flows. 

 
Swirling flows are complex fluid motions that appear in various natural phenomena and 

man-made devices. Numerous engineering applications such as turbomachinery, jet engine 

combustion chambers, mixing tanks and industrial burners involve swirling flows. This 

wide range of applications is due to unique characteristics offered by swirling flows such 

as increase in mixing rate, heat transfer rate and wall shear stress. In this study the 

axisymmetric swirling flow behavior in the context of a hybrid rocket engine have been 

analyzed. While modeling the flow inside a cylindrical chamber using CFD, a similarity 

with the Taylor vortices instability has been observed. Similar to the classic Taylor-Couette 

flow system, a secondary flow field in the form of wavy toroidal vortices spaced regularly 

along the axial direction appear under certain critical conditions. The dimensionless control 

parameter governing the formation of the Taylor-like vortices is expressed as the ratio of 

the tangential to axial velocity components. 
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1. Introduction 

Swirling and vortex flows are complex fluid motions that appear in various natural 

phenomena and industrial fluid mechanics. Although these phenomena have been studied 

over the past few decades in different contexts, there are still numerous unanswered and 

unsolved problems related to swirling and vortex flows. This study mainly concentrates 

on the numerical (CFD) investigation of the swirling flow in the context of hybrid rocket 

engines; focusing on the existence of Taylor-like vortices under certain circumstances.   

 The Importance of Swirling Flows 

In nature, swirling and vortex flows are predominately caused by density, velocity, 

and temperature differences between various layers of environmental fluid systems. The 

tornado (Figure1.1) is a good example of a natural swirling flow seen in nature. The wind 

shear and instabilities in lower atmosphere layers generate tornados.  

 

Natural vortex flows such as Von Kármán vortex (Figure1.2) and Kelvin-Helmholtz 

Instability (Figure1.3) are other famous examples of this interesting fluid dynamics.  

Figure 1.1 Tornado (photograph courtesy Goddard B.) 
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The importance of studying swirling and vortex flows is more significant when 

analyzing other catastrophic natural phenomena such as hurricanes. A deep knowledge 

and understanding of this type of fluid motion may result in saving millions of lives and 

prevent enormous financial losses. Besides all these natural phenomena, the concept of 

swirling flow is widely used in various industrial processes and man-made devices. In the 

following section, some insight in regards to the swirling flow within industry is given. 

  Industry Applications 

Swirls and vortices are the main components of turbulence flow. Turbulence mixing 

Figure 1.2 Von Kármán vortex (asknature.org) (David K.) 

Figure 1.3 Kelvin-Helmholtz Instability 
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exists in many industrial fluid mechanic devices and it is one of the essential ingredients 

of numerous industrial processes. Besides mixing, increase in momentum and heat 

transfer are other results of swirling motion of the fluid. Swirling flows are very useful 

and essential in the industrial processes involving mixing, liquid-particle or liquid-liquid 

separation, and combustion stabilization. 

For instance, swirling flow is the main operation principal of the Vortex tubes. Figure 

1.4 represents a schematic of a vortex tube. As shown in the schematic, high-pressure gas 

is tangentially injected into the swirl chamber while accelerated and it is forced to swirl at 

a high rate. The presence of the conical nozzle at the aft-end of the tube allows only the 

escape of the outer layer of the compressed gas. The part of the gas that is not able to exit 

is forced to return within the outer flow creating a swirl flow. The inner flow loses 

energy, cools down, and at the same time, outer flow gains this energy. This device is 

very useful in cooling of cutting tools in machining shops.      

 

 

Other applications of swirling flows are found in gas turbine combustors, industrial 

swirl burners, hydrocyclones, etc. In the first two, swirling flows are essential for flame 

and combustion stabilization and increase in mixing and heat exchange rate. 

Hydrocyclones are utilized for separation of the particles suspended in liquids. They can 

Figure 1.4 Schematic of a vortex tube (Jeevahan et al., 2016) 
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also separate two liquids of different densities. A schematic of each of these examples is 

found in the Appendix A. 

 Vortex Injection in Hybrid Rocket Engines 

Hybrid rockets are known for two major benefits: safety and simplicity compared to 

other types of rockets. Its separate storage of the fuel and the oxidizer increases the 

overall safety and reliability of the system. In addition, hybrids are chemically simpler 

than solid rockets and mechanically simpler than liquid rockets. However, three principal 

deficiencies have been observed in Hybrid Rocket Engines which keep them unpopular 

compared to solid rocket motors. These deficiencies include poor regression rate, low 

combustion efficiency and low volumetric loading, resulting in slow diffusion flames 

along the boundary between the gaseous oxidizer and solid fuel surface. All these factors 

combined result in a lower applicability of hybrid rockets in industries. 

Increasing the regression rate three to four times is a possible solution to overcome 

this problem (Chiaverini & Kuo, 2007). The Vortex Injection in Hybrid Rocket Engines 

(VIHRE) grants up to seven times an increase in the regression rate compared to the 

classical injection systems in hybrids. Figure 1.5 shows a schematic of a VIHRE. 
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 A vortex injector has been placed at the aft edge of the engine just before the nozzle, 

which generates a pair of coaxial and counter-flowing swirls. As a result, high turbulence 

flow of the oxidizer aids in mixing and increases notably the surface erosion. Figure 1.6 

represents the vortex injector itself where the ports are aligned tangentially with the inner 

circumference, forcing the flow to produce a vortex. The generated strong vortex moves 

helically from the aft-end toward the head over the fuel surface. The fuel-oxidizer 

mixture is compelled to spiral around the axis of the chamber and crossing the chamber 

length twice before exiting. Consequently, regression rate and over all combustion 

efficiency are improved due to the increased residence time and intense mixing of the 

fuel and oxidizer. 

Figure 1.5 Bidirectional VIHRE (Chiaverini & Kuo, 2007). 



6  

   
 

 

 

Another important feature of VIHRE is the use of hollow cylindrical cartridges, 

which results in a reduction of overall volumetric loading and case housing costs.  

After analyzing the actual concept of VIHRE, the theoretical mathematical model can 

be applied on the core flow. This gives a better understanding of the mean flow motion 

and behavior inside the engine. 

1.3.1.  Mathematical Model 

The geometry of the cylindrical chamber of a VIHRE in presence of the bidirectional 

vortex is represented in Figure 1.7. In this schematic 𝐿0 is the porous length and 𝑎 is the 

radius of the cylinder, and downstream is partially open and attached to the nozzle with 

the radius of b. The radial and axial coordinates are donated by r and z respectively. 

Figure 1.6 Injector Port Configuration (Roy & Frederick, 2016). 
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A cold-flow model is considered in order to characterize the mean gas motion. The 

flow is assumed steady, inviscid, incompressible, rotational, and axisymmetric. In 

absence of friction between the flow and the walls and based on these assumptions, 

Euler’s equation are given as follow (Majdalani & Vyas, 2004): 

 

1

𝑟

𝜕(𝑟𝑢𝑟)

𝜕𝑟
+

𝜕𝑢𝑧

𝜕𝑧
= 0 

𝑢𝑟

𝜕𝑢𝑟

𝜕𝑟
+ 𝑢𝑧

𝜕𝑢𝑟

𝜕𝑧
−

𝑢𝜃
2

𝑟
= −

1

𝜌

𝜕𝑝

𝜕𝑟
 

𝑢𝑟

𝜕𝑢𝜃

𝜕𝑟
+

𝑢𝜃  𝑢𝑟

𝜕𝑧
= 0     

𝑢𝑟

𝜕𝑢𝑧

𝜕𝑟
+ 𝑢𝑧

𝜕𝑢𝑧

𝜕𝑧
= −

1

𝜌

𝜕𝑝

𝜕𝑧
 

 

(1.1) 

(1.2) 

(1.4) 

(1.3) 

Figure 1.7 VIHRE chamber Geometry (Halpenny & Majdalani, 2008). 
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Further details regarding the required boundary conditions and the Euler-type solution 

can be found in chapter 6 of the book by Chiaverini & Kuo (2007). Correspondingly, the 

viscous corrections can be solved in both axial and radial direction. 

1.3.2. Literature Review  

The improvement in regression rate and combustion efficiencies in VIHRE have been 

demonstrated by several experiments and ground or flight tests. In fact, many studies are 

limited to analyzing the effect of swirling injection of the gaseous oxidizer on the 

rocket’s performances. Generally, researches and studies on the topic of the VIHRE can 

be divided into the following four main groups: 

First, publications that focus on the theoretical aspect of the mean flow motion in the 

VIHRE. Mainly, an approximate solution of the governing equations is provided and 

fundamental flow characteristics are illustrated. However, neglecting important factors 

such as effects of heat transfer and compressibility make the solutions nonrealistic 

(Chiaverini & Kuo, 2007), (Majdalani et al., 2004), and (Yoshimura & Sawada, 2010). 

Second, works that compare the pure axial oxidizer injection with vortex oxidizer 

injection hybrid rocket. Based on results of these types of studies, fuel surface regression 

rate in the VIHRE can increase up to 50% compared to the non-swirling injection 

method. Additionally, overall efficiencies of the hybrid rocket can improve up to 20% by 

using vortex injection method (Bellomo et al., 2011) and (Jones et al., 2009). 

Third, the studies that include the comparison between analytical and experimental 

data. Experimental data are extracted from a ground test. By comparing the data, some 

inconsistencies have been observed, which could be due to assumptions made while 

obtaining the analytical results (Myre et al, 2010),(Wongyai & Greatrix, 2015), and 
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(Arena et al., 2011).  

Fourth, investigations on the configuration of the vortex generators. As mentioned 

before the advantages of vortex injection have been demonstrated experimentally. 

However, the mechanism of the injectors has not been completely clarified. 

Correspondingly, numerous researches are conducted in order to establish the most 

efficient way of this type of injection. For instance, different configuration of the injector 

ports have been examined (Motoe & Shimada, 2009), (Marquart et al., 2015), 

(Paccagnella & Karabeyoglu et al., 2015), (Ohyama et al., 2012), and (Tada et al.2002). 

The simplifying physical assumptions limit the applicability of the results obtained in 

previous research. Most of the past and current research assumes the bulk gas motion in 

the chamber to be incompressible, no heat transfer, steady and inviscid (however, some 

viscous corrections were added to the results). 

  Thesis Layout 

This thesis is organized in 6 chapters and 2 Appendices. The second chapter includes 

the problem statement. In chapter 3 the solution methodology is introduced. This chapter 

also includes the governing equations and an adapted strategy to solve the problem. At 

the end of chapter 3 a detailed description of the CFD program set up is outlined. Chapter 

4 and 5 provide the obtained results and discussion for each individual computed case. 

Finally, in chapter 6 a summary of the findings is presented followed by an overall 

conclusion and future research avenues.  
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2. Problem Statement 

The initial objective of this thesis was to model and analyze the effects of swirling 

injection of the oxidizer on the combustion process of a hybrid rocket. In order to 

accomplish this objective a simple model of the combustion chamber has been designed. 

Figure 2.1 represents a simple CAD model of a cylindrical chamber. In this geometry, the 

swirling flow is generated by tangentially injecting the oxidizer trough a single inlet. It is 

worth noting, various other inlet configurations can be designed as the swirl generator. 

For instance, instead of using just one inlet as shown in figure 2.1, 4 symmetric inlets can 

be used.  

 

 

      The swirling flow can be obtained through boundary conditions at one end of the 

main cylinder. A detailed discussion on the boundary conditions and swirl production is 

provided in the following chapters.   

The numerical model is based on sizing of a hybrid rocket for Space Ship One. The 

geometry and dimensions are obtained based on estimated data from the preliminary 

Figure 2.1 Simple 3D cylindrical chamber geometry including a tangential inlet. 
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design and the mission of the vehicle. Dimensions of one port out of 7 total ports of the 

hybrid rocket are found as the port initial diameter 𝐷𝑝𝑜
= 0.1 𝑚 and the port length 𝐿𝑝 =

1.4 𝑚 (aspect ratio of 14). These dimensions are mainly used in the mesh generating for 

the CFD analysis. However, the effect of aspect ratio on the results is analyze by 

changing the length size.  

Considering the operating conditions of the hybrid rocket for Space Ship One, the 

flow speed is approximated as 𝑉 = 134 𝑚/𝑠. It is assumed that an oxidizer gas such as 

𝑁2𝑂4 is injected into the cylindrical port with a swirling motion. During the combustion 

process, a solid fuel (𝐻𝑇𝑃𝐵) is reacting with the oxidizer at an 𝑂/𝐹 = 3.12. The mass 

flow rate for one port is given �̇� = 3.4  𝑘𝑔/𝑠 .The specific heat ratio is  𝛾 = 1.235 . The 

pressure and temperature of the chamber are given as 𝑃𝑐 =  3.7 𝑀𝑃𝑎  and 

𝑇𝑐 =  3350 𝐾 respectively. The density of the mixture is estimated as 𝜌 =  3.25 𝑘𝑔/

𝑚3 and the viscosity as 𝜇 =  8.17 𝑘𝑔/𝑚𝑠.The given data have been used to estimate the 

bulk flow’s Reynolds number as 𝑅𝑒 ≈ 5 × 105.  

   The actual analysis of the sizing of a hybrid rocket is found in the literature (Larson 

et al., 1995).  
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3. Solution Method 

This chapter provides the equations governing the swirling flow in a cylinder and the 

simplifying assumptions. Section 3.3 describes turbulence modeling as an important 

aspect of solving swirling flows. Finally, the CFD software set-up is provided.   

  Governing Equations 

The governing equations are the Navier-Stokes equation in cylindrical coordinates: 

 𝑟 -momentum: 

 

𝜌 [
𝜕𝑢𝑟

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝑟

𝜕𝑟
+

𝑢𝜃

𝑟

𝜕𝑢𝑟

𝜕𝜃
+ 𝑢𝑧

𝜕𝑢𝑟

𝜕𝑧
−

𝑢𝜃𝑢𝜃

𝑟
]   

=  −
𝜕𝑝

𝜕𝑟
− (

1

𝑟

𝜕

𝜕𝑟
(𝑟τ𝑟𝑟) +

1

𝑟

𝜕𝜏𝑟𝜃

𝜕𝜃
−

𝜏𝜃𝜃

𝑟
+ 

𝜕𝜏𝑟𝑧

𝜕𝑧
) + 𝐹𝑟 

 

𝜃-momentum: 

 

𝜌 [
𝜕𝑢𝜃

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝜃

𝜕𝑟
+

𝑢𝜃

𝑟

𝜕𝑢𝜃

𝜕𝜃
+ 𝑢𝑧

𝜕𝑢𝜃

𝜕𝜃
+

𝑢𝜃𝑢𝑟

𝑟
]

=  −
1

𝑟

𝜕𝑝

𝜕𝜃
− (

1

𝑟2

𝜕

𝜕𝑟
(𝑟2τ𝑟𝜃) +

1

𝑟

𝜕𝜏𝜃𝜃

𝜕𝜃
+ 

𝜕𝜏𝜃𝑧

𝜕𝑧
) + 𝐹𝜃 

 

𝑧-momentum: 

 

𝜌 [
𝜕𝑢𝑧

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝑧

𝜕𝑟
+

𝑢𝜃

𝑟

𝜕𝑢𝑧

𝜕𝜃
+ 𝑢𝑧

𝜕𝑢𝑧

𝜕𝑧
]        

=   −
𝜕𝑝

𝜕𝑧
− (

1

𝑟

𝜕

𝜕𝑟
(𝑟τ𝑟𝑧) +

1

𝑟

𝜕𝜏𝜃𝑧

𝜕𝜃
+ 

𝜕𝜏𝑧𝑧

𝜕𝑧
) + 𝐹𝑧 

(3.1) 

(3.2) 

(3.3) 
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In these equations, the shear stress constitutive equations are given as follow: 

 

τ𝑟𝑟  =  −𝜇 [2
𝜕𝑢𝑟

𝜕𝑟
−

2

3
(∇. �⃗� )] 

τ𝜃𝜃  =  −𝜇 [2(
1

𝑟

𝜕𝑢𝜃

𝜕𝜃
+

𝑢𝑟

𝑟
) −

2

3
(∇. �⃗� )] 

τ𝑧𝑧  =  −𝜇 [2
𝜕𝑢𝑧

𝜕𝑧
−

2

3
(∇. �⃗� )] 

τ𝑟𝜃  =  τ𝜃𝑟  =  −𝜇 [𝑟
𝜕

𝜕𝑟
(
𝑢𝜃

𝑟
) +

1

𝑟

𝜕𝑢𝑟

𝜕𝜃
] 

τ𝑟𝑧  =  τ𝑧𝑟 = −𝜇 [2
𝜕𝑢𝑧

𝜕𝑟
+

𝜕𝑢𝑟

𝜕𝑧
] 

τ𝜃𝑧  =  τ𝑧𝜃  =  −𝜇 [
𝜕𝑢𝜃

𝜕𝑧
+

1

𝑟

𝜕𝑢𝑧

𝜕𝜃
] 

Where, 

∇. �⃗�  =  
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝑟) +

1

𝑟

𝜕𝑢𝜃

𝜕𝜃
+

𝜕𝑢𝑧

𝜕𝑧
 

 

In addition to the Navier-Stokes equations, the general fluid continuity equation in 

cylindrical coordinates is written as the following:  

 

𝜕𝜌

𝜕𝑡
+

1

𝑟

𝜕

𝜕𝑟
(𝜌𝑟𝑢𝑟 ) +

1

𝑟

𝜕

𝜕𝜃
(𝜌𝑢𝜃) +

𝜕

𝜕𝑧
(𝜌𝑢𝑧) = 0 

 

The complete energy equation without any simplifying assumptions in cylindrical 

coordinates is given as follow:  

(3.11) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 
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𝜌 𝑐𝑝  [
𝜕𝑇

𝜕𝑡
+ 𝑢𝑟

𝜕𝑇

𝜕𝑟
+

𝑢𝜃

𝑟

𝜕𝑇

𝜕𝜃
+ 𝑢𝑧

𝜕𝑇

𝜕𝑧
]   

=  𝜌�̇� +
1

𝑟

𝜕

𝜕𝑟
(𝑘𝑟

𝜕𝑇

𝜕𝑟
) +

1

𝑟

𝜕

𝜕𝜃
(
𝑘

𝑟

𝜕𝑇

𝜕𝜃
) + 

𝜕

𝜕𝑧
(𝑘

𝜕𝑇

𝜕𝑧
)

+ 𝛽𝑇 (
𝜕𝑝

𝜕𝑡
+ 𝑢𝑟

𝜕𝑝

𝜕𝑟
+

𝑢𝜃

𝑟

𝜕𝑝

𝜕𝜃
+ 𝑢𝑧

𝜕𝑝

𝜕𝑧
) + Φ 

 

Where Φ the viscous dissipation rate is:  

 

Φ =  2𝜇 [(
𝜕𝑢𝑟

𝜕𝑡
)
2

+ (
1

𝑟

𝜕𝑢𝜃

𝜕𝜃

𝑢𝑟

𝑟
)
2

+ (
𝜕𝑢𝑧

𝜕𝑧
)
2

]

+  𝜇 [(
1

𝑟

𝜕𝑢𝑟

𝜕𝜃
+

𝜕𝑢𝜃

𝜕𝑟
−

𝑢𝜃

𝑟
)
2

+ (
𝜕𝑢𝜃

𝜕𝑧
+

1

𝑟

𝜕𝑢𝑧

𝜕𝜃
)
2

+ (
𝜕𝑢𝑧

𝜕𝑟
+

𝜕𝑢𝑟

𝜕𝑧
)
2

]

−
2

3
𝜇 (

1

𝑟

𝜕(𝑟𝑢𝑟)

𝜕𝑟
+

1

𝑟

𝜕𝑢𝜃

𝜕𝜃
+

𝜕𝑢𝑧

𝜕𝑧
)
2

 

 

The details on the derivation of these equations can be found in any standard 

compressible flow book (Anderson, 1982).  

      All previously mentioned equations do not include any simplifying assumptions. 

These equations describe the general behavior of a fluid motion inside a cylindrical 

container.    In the following section, the simplified equations are obtained applying the 

axisymmetric assumption. 

 Axisymmetric Swirling Flow 

According to the model geometry and flow conditions, the problem is considered 

axisymmetric.  The axisymmetric assumption allows the modeling of the flow in two 

dimensions (2D). This assumption implies that there is no tangential gradients in the 

(3.12) 

(3.13) 
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flow. In other words, all the derivatives with respect to the tangential coordinates are zero 

(
𝜕

𝜕𝜃
= 0). On the other hand, it must be noted that this assumption does not mean that 

tangential velocities are zero. Swirl velocities may or may not be zero (𝑢𝜃 ≠ 0).  

Based on this assumption the tangential momentum conservation equation for a 2D 

swirling flow is given as the following: 

 

𝜕

𝜕𝑡
(𝜌𝑢𝜃) +

1

𝑟

𝜕

𝜕𝑧
(𝑟𝜌𝑢𝑧𝑢𝜃) +

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜌𝑢𝑟𝑢𝜃)

=
1

𝑟

𝜕

𝜕𝑧
[𝑟𝜇

𝜕𝑢𝜃

𝜕𝑧
] +

1

𝑟2

𝜕

𝜕𝑟
[𝑟3𝜇

𝜕

𝜕𝑟
(
𝑢𝜃

𝑟
)]  − 𝜌

𝑢𝑟𝑢𝜃

𝑟
 

 

As seen in this equation all three components of velocity are appearing but only axial 

and radial spatial coordinates are present. This assumption ( 
𝜕

𝜕𝜃
= 0) simplifies all the 

other governing equations as well. 

Applying the axisymmetric assumption to the continuity equation 3.4 gives: 

 

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑧
(𝜌𝑢𝑧) +

𝜕

𝜕𝑟
(𝜌𝑢𝑟) +

𝜌𝑢𝑟

𝑟
= 0 

 

The axial and radial momentum conservation equations respectively are found (Fluent, 

2011):  

 

(3.14) 

(3.15) 
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𝜕

𝜕𝑡
(𝜌𝑢𝑧) +

1

𝑟

𝜕

𝜕𝑧
(𝑟𝜌𝑢𝑧𝑢𝑧) +

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜌𝑢𝑟𝑢𝑧)

= −
𝜕𝑝

𝜕𝑧
+

1

𝑟

𝜕

𝜕𝑧
[𝑟𝜇(2

𝜕𝑢𝑧

𝜕𝑧
−

2

3
(
𝜕𝑢𝑧

𝜕𝑧
+

𝜕𝑢𝑟

𝜕𝑟
+

𝑢𝑟

𝑟
)]

+
1

𝑟

𝜕

𝜕𝑟
[𝑟𝜇 (

𝜕𝑢𝑧

𝜕𝑟
+

𝜕𝑢𝑟

𝜕𝑧
)] + 𝐹𝑧 

 

𝜕

𝜕𝑡
(𝜌𝑢𝑟) +

1

𝑟

𝜕

𝜕𝑧
(𝑟𝜌𝑢𝑧𝑢𝑟) +

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜌𝑢𝑟𝑢𝑟)

= −
𝜕𝑝

𝜕𝑟
+

1

𝑟

𝜕

𝜕𝑧
[𝑟𝜇 (

𝜕𝑢𝑟

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑟
)]

+
1

𝑟

𝜕

𝜕𝑟
[𝑟𝜇(2

𝜕𝑢𝑟

𝜕𝑟
−

2

3
(
𝜕𝑢𝑧

𝜕𝑧
+

𝜕𝑢𝑟

𝜕𝑟
+

𝑢𝑟

𝑟
)] − 2𝜇

𝑢𝑟

𝑟2

+
2

3

𝜇

𝑟
 (

𝜕𝑢𝑧

𝜕𝑧
+

𝜕𝑢𝑟

𝜕𝑟
+

𝑢𝑟

𝑟
) + 𝜌

𝑢𝜃
2

𝑟
+ 𝐹𝑟 

 

Applying the axisymmetric assumption to 3.12 and neglecting the viscous dissipation rate 

provides the energy equation in the following simplified form:  

 

𝜌 𝑐𝑝  [
𝜕𝑇

𝜕𝑡
+ 𝑢𝑟

𝜕𝑇

𝜕𝑟
+ 𝑢𝑧

𝜕𝑇

𝜕𝑧
]   

=  𝜌�̇� +
1

𝑟

𝜕

𝜕𝑟
(𝑘𝑟

𝜕𝑇

𝜕𝑟
) +

𝜕

𝜕𝑧
(𝑘

𝜕𝑇

𝜕𝑧
) + 𝛽𝑇 (

𝜕𝑝

𝜕𝑡
+ 𝑢𝑟

𝜕𝑝

𝜕𝑟
+ 𝑢𝑧

𝜕𝑝

𝜕𝑧
) 

 

These equations are adapted in the 2D Axisymmetric Swirl solver in the commercial 

CFD software Ansys Fluent. 

 

 

(3.16) 

(3.17) 

(3.18) 
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 Turbulence Modeling  

A simple definition of turbulence is the flow fluctuations in time and space. 

Turbulence is as an instability developing in laminar flow (Wilcox, 1998). High Reynolds 

number characterizes the turbulence as non-linear inertia terms interact with viscous 

terms. Various approaches can be used in order to include the effect of turbulence in the 

Navier-Stokes equations. For example, direct numerical simulation (DNS) can be used. 

However, currently DNS is not a practical approach due to the high cost of computations. 

Turbulence models are a practical method to predict turbulence with a reasonable cost. 

These models are mainly obtained by modifications in the unsteady Navier-Stokes 

equations involving fluctuating quantities and averages known as Reynolds Averaged 

Navier-Stokes (RANS) (Wilcox, 1998).  

Swirling flow inside a pipe is highly turbulent. Thus, an accurate turbulence model 

should be introduced to capture the essence of relevant physics. In this section, two 

turbulence models that can more accurately predict turbulence in the flows involving swirls 

are introduced.  

The first model is the RNG 𝑘 − 휀. This model belongs to the popular two equations  

𝑘 − 휀 family of turbulence models, where 𝑘 stands for turbulence kinetic energy and 휀 

for turbulence dissipation rate. This model is obtained using a renormalization group 

(RNG) theory, which is a statistical technique, from the instantaneous Navier-Stokes 

equations. The transport equations for the RNG 𝑘 − 휀 model are given as follow: 

 

𝜕

𝜕𝑡
(𝜌𝑘) +

𝜕

𝜕𝑥𝑖

(𝜌𝑘𝑢𝑖) =
𝜕

𝜕𝑥𝑗
(𝛼𝑘𝜇𝑒𝑓𝑓

𝜕𝑘

𝜕𝑥𝑗
) + 𝐺𝑘 + 𝐺𝑏 − 𝜌휀 − 𝑌𝑀 

 

(3.19) 
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𝜕

𝜕𝑡
(𝜌휀) +

𝜕

𝜕𝑥𝑖

(𝜌휀𝑢𝑖) =
𝜕

𝜕𝑥𝑗
(𝛼𝜀𝜇𝑒𝑓𝑓

𝜕휀

𝜕𝑥𝑗
) + 𝐶1𝜀

휀

𝑘
( 𝐺𝑘 + 𝐶3𝜀𝐺𝑏) − 𝐶2𝜀𝜌

휀2

𝑘
− 𝑅𝜀 

 

In these equations, 𝛼𝑘 and 𝛼𝜀 represent the inverse effective Prandtl numbers for 

turbulence kinetic energy and its dissipation rate respectively. These numbers are 

calculated analytically based on the previously mentioned RNG theory.  𝐺𝑘 and 𝐺𝑏 stand 

for turbulence kinetic energy generation caused by the mean velocity gradients and 

buoyancy respectively. The effect of the fluctuating dilatation in compressible turbulence 

on the overall dissipation rate is represented through 𝑌𝑀. For high Reynolds number the 

effective viscosity is given as  𝜇𝑒𝑓𝑓 = 𝜌𝐶𝜇 𝑘
2/휀 . The values for all the constants 

including 𝐶1𝜀, 𝐶1𝜀, 𝐶1𝜀, and 𝐶𝜇 are given in Ansys Fluent user guide. For a swirl-

dominated flow, Ansys Fluent modifies the turbulence viscosity as  𝜇𝑡 = 𝜇𝑒𝑓𝑓 𝑓(𝛼𝑠, 𝑆,
𝑘

𝜀
), 

where 𝑆 is the characteristic swirl number and 𝛼𝑠 is a swirl constant that depends on the 

swirl intensity.  

 The parameter 𝑅𝜀 in the  휀  equation is the main difference between the RNG 𝑘 − 휀 

model and the standard 𝑘 − 휀 model. This term is given by:  

 

𝑅𝜀 =
𝜌𝐶𝜇𝜂

3 (1 −
𝜂
𝜂0

)

1 + 𝛽𝜂3

휀2

𝑘
  

 

Here  , 𝜂0 , and 𝛽 are  constants obtained analytically. Because of 𝑅𝜀 term, the RNG 𝑘 −

휀 model reacts faster to the effects of rapid strain and streamline curvature.  

The second suitable and highly accurate turbulence model for modeling swirling 

(3.20) 

(3.21) 
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flows is the Reynolds Stress Model (RSM). This highly elaborated model releases the 

isotropic eddy viscosity assumption in comparison to other models (ideal for anisotropic 

turbulence flow like swirling flows). The RSM closes RANS equations by solving 

Reynolds stresses transport equations, adding the equation 3.17 for the dissipation rate. 

The exact form of the Reynolds stresses are obtained by taking moments of the exact 

momentum equations. These exact equations include several unknown terms that require 

modeling assumptions. The complex transport equation for RSM model is given as 

follow:  

𝜕

𝜕𝑡
(𝜌𝑢′𝑖𝑢′𝑗) + 𝐶𝑖𝑗 = 𝐷𝑇,𝑖𝑗 + 𝐷𝐿,𝑖𝑗 + 𝑃𝑖𝑗 + 𝐺𝑖𝑗 + 𝜙𝑖𝑗 + 휀𝑖𝑗 + 𝐹𝑖𝑗 

Where,  

𝐶𝑖𝑗 =
𝜕

𝜕𝑥𝑘
(𝜌𝑢𝑘𝑢′𝑖𝑢′𝑗) ≡ 𝐶𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 

𝐷𝑇,𝑖𝑗 = −
𝜕

𝜕𝑥𝑘
[𝜌𝑢′

𝑖𝑢𝑗
′𝑢′

𝑘 + 𝑝 (𝛿𝑘𝑗𝑢′
𝑖
+ 𝛿𝑖𝑘𝑢𝑗

′)] ≡ 𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒 𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 

𝐷𝐿,𝑖𝑗 =
𝜕

𝜕𝑥𝑘
[𝜇

𝜕

𝜕𝑥𝑘
(𝑢′

𝑖𝑢𝑗
′)] ≡ 𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 

𝑃𝑖𝑗 = −𝜌(𝑢′
𝑖𝑢𝑘

′
𝜕𝑢𝑗

𝜕𝑥𝑘
+ 𝑢′

𝑗𝑢𝑘
′
𝜕𝑢𝑖

𝜕𝑥𝑘
) ≡ 𝑆𝑡𝑟𝑒𝑠𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 

𝐺𝑖𝑗 = −𝜌𝛽(𝑔𝑖𝑢′
𝑗𝜃 + 𝑔𝑗𝑢′

𝑖𝜃) ≡ 𝐵𝑢𝑜𝑦𝑎𝑛𝑐𝑦 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 

𝜙𝑖𝑗 = 𝑝(
𝜕𝑢′

𝑖

𝜕𝑥𝑗
+

𝜕𝑢′
𝑗

𝜕𝑥𝑖
)  ≡ 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑆𝑡𝑟𝑎𝑖𝑛 

휀𝑖𝑗 = 2𝜇
𝜕𝑢′

𝑖

𝜕𝑥𝑘

𝜕𝑢′
𝑗

𝜕𝑥𝑘
≡ 𝐷𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛 

𝐹𝑖𝑗 = −2𝜌Ω𝑘(𝑢′
𝑗𝑢𝑚

′ 휀𝑖𝑘𝑚 + 𝑢′
𝑖𝑢𝑚

′ 휀𝑗𝑘𝑚) ≡ 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑏𝑦 𝑆𝑦𝑠𝑡𝑒𝑚 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 

 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 
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In the RSM transport equation the terms in the equations of  𝐷𝑇,𝑖𝑗 ,𝐺𝑖𝑗 ,𝜙𝑖𝑗, and 휀𝑖𝑗 

require modeling assumptions (cannot be calculated directly). These modeling 

assumption are given in Ansys Fluent user guide. The rest of the terms are calculated 

directly. It is worth mentioning one of these models for the pressure-strain term useful in 

predicting swirling flows. Low-Re Stress-Omega model is a pressure-strain model based 

on the omega equations and Launder, Reece, and Rodi (LRR) model (Wilcox, 1998). In 

this model the wall reflections are excluded which makes this model ideal for flows over 

curved surfaces and flows involving swirls and vortices. This model have been used in 

this study for the cases solved with RSM turbulence model.  

To conclude this section, it has been found that both of the RNG 𝑘 − 휀 and RSM 

models are appropriate in modeling the turbulence in the swirling flows. Each of these 

models has some advantages over the other. RNG 𝑘 − 휀 requires lesser computation cost 

(converges faster) and it is appropriate for flows including moderate swirl. On the other 

hand, RSM provides accurate prediction of the flows with high swirl intensity but the 

computation cost is higher due to the presence of extra equations. Pope (2000) in his 

book and Ansys Fluent user manual provide complete derivations and discussion of these 

turbulence models. Appendix B provides an example of turbulence models effect on the 

solution of a highly swirling flow. 

 CFD Software Set-Up 

The purpose of this section is to describe the computation set-up. The commercial 

CFD solver Ansys Fluent has been used in order to obtain the solution of the swirling 

flow inside the cylindrical chamber.  

The general setup is a steady state pressure-based solver with an absolute velocity 
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formulation. For the 2D cases, the Axisymmetric Swirl option has been activated. Fluids 

such as air and water with modified properties based on the information provided in the 

problem statement chapter have been used. The solution method is viscous flow with an 

appropriate turbulence model. As mentioned in previous section the 𝑘 − 휀  RNG Swirl 

Dominated Flow with Standard Wall Functions and the Stress-Omega, Reynolds Stress 

Model with Low-Re and Shear Flow corrections are two suitable turbulence models.  

The swirling flow is obtained by a velocity-inlet boundary condition instead of using 

a swirl generator. The following boundary conditions are applied to both 2D and 3D 

models. 

• Inlet : velocity-Inlet  (velocity component specification 𝑢𝜃 𝑎𝑛𝑑 𝑢𝑧)  

• Wall : stationary wall with no slip condition 

• Outlet : pressure-outlet 

• Axis of symmetry: axis (only 2D models) 

The pressure discretization is another important factor in modeling of swirling flows. 

The PRESTO! (PREssure Staggering Option) scheme has been used. Discrete continuity 

balance is used in this scheme and it is available for all type of meshes. The PRESTO! 

scheme is strongly recommended for flows with high swirl intensity and strongly curved 

domains (Fluent, 2006).  

In order to obtain a faster convergence in the flows involving swirls, it is appropriate 

to start the calculation in absence of swirl (just axial flow). This will provide an initial 

guess for the solver. The swirl with low intensity can be introduced in the next step. This 

process can be continued with gradually increasing the swirl intensity to the desired 

intensity. This concludes the software settings section.  
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4. Results Analysis  

The following fluid models and software set-ups have been utilized: 2D 

incompressible gas, 2D incompressible liquid, 3D incompressible gas, and 2D 

compressible gas.  A discussion on each of these models is provided in the following 

sections. 

 2D Incompressible Gas 

The first and simplest case to be analyzed is the 2D incompressible case. A simple 

structured mesh is generated using Pointwise (CFD mesh generator software). Figure 4.1 

represents the axisymmetric structured mesh where the radius of the cylinder is  𝑟 =

0.05 𝑚  and the length is taken as 𝑙 = 1.4 𝑚 based on the dimensions provided in 

Chapter 2. Figure 4.2 shows the near wall treatment where the mesh is finer to include 

the boundary layer prediction.  

 

 

 

Figure 4.1 2D axisymmetric structured mesh generated in Pointwise. 
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In order to obtain a mesh independent analysis, two versions of 2D structured mesh 

are generated. A coarse mesh including  ~80𝐾 𝑐𝑒𝑙𝑙𝑠 and a fine version 

including ~240𝐾 𝑐𝑒𝑙𝑙𝑠. The maximum cell aspect ratio for both versions is ~ 7. In order 

to obtain consistent results, the same meshes for all the other 2D cases have been utilized.  

After extracting the meshes from Pointwise and loading them in the Ansys Fluent the 

specific software set up given in section 3.4 is implemented. The operation conditions are 

based on the data provided in chapter 2. The Inlet velocity boundary condition as a 

combination of the tangential and axial velocity components satisfies Reynolds number 

of  ≈ 5 × 105.  

After considering various scenarios for inlet boundary condition and different 

turbulence models, significant results are obtained. In the following sections, some of 

these interesting results are presented.  

4.1.1. 2D Incompressible Gas with RNG 𝒌 − 𝜺 Turbulence Model 

In this section the results obtained from a 2D incompressible gas case using the RNG  

𝑘 − 휀  turbulence model are presented. The velocity profiles describing the flow behavior 

across the whole model are obtained. Figure 4.3 shows the tangential (swirl) velocity at a 

Figure 4.2 Zoom in to the left end of the mesh shown in Figure 4.1. 
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location (𝑥 𝑙⁄ = 0.4) in the model as a function of the cylinder radius 𝑟 . As it is expected 

the tangential velocity at the core is zero and reaches a maximum value near the wall and 

goes back to zero at the wall. It has been observed that this maximum value in some cases 

appears at a location close to the center. This observation is shown in the counter plots 

presented in the rest of this section. 

 

 

In Figure 4.4, the axial velocity profile is presented. Like the tangential velocity, the 

axial velocity riches a maximum near the wall and goes to zero at the wall as expected.  

 

Figure 4.3 Tangential velocity at  𝑥 𝑙⁄ = 0.4 (2D incompressible RNG k-ε). 
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The last velocity profile is that of the radial velocity shown in Figure 4.5. The radial 

velocity values are small compared to axial and tangential velocity. This is due to the 

boundary conditions implemented (𝑢𝑟 = 0).  

 

 

Based on the velocity-inlet boundary condition applied and the ratio of the tangential 

velocity over axial velocity ( 
𝑢𝜃

𝑢𝑧
 ) an unstable behavior of the flow has been observed. 

Figure 4.4 Axial velocity at   𝑥 𝑙⁄ = 0.4 (2D incompressible RNG k-ε). 

Figure 4.5 Radial velocity at   𝑥 𝑙⁄ = 0.4 (2D incompressible RNG k-ε). 
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This behavior is classified based on a critical value of  
𝑢𝜃

𝑢𝑧
= 2.5 .  This ratio is confirmed 

by all the other cases and scenarios analyzed in this study. In order to provide a better 

understanding of these observations the tangential velocity contour plots are presented in 

Figures 4.6-8. For all the scenarios in which   
𝑢𝜃

𝑢𝑧
 ≲ 2.5 , approximately a stable behavior 

has been predicted. A core region in which the velocity tends to be zero have been 

identified (Figure 4.6). The diameter of this region is approximately 10% of the whole 

diameter.  

 

 

 

 

Figure 4.6 Tangential velocity contour with a velocity-inlet of   
𝑢𝜃

𝑢𝑧
 ≲ 2.5. 

Figure 4.7 Tangential velocity contour with a velocity-inlet of   
𝑢𝜃

𝑢𝑧
 ≈ 2.5. 



27  

   
 

 

By increasing the velocity ratios and reaching the limiting case of 
 𝑢𝜃

𝑢𝑧
 ≈ 2.5, a periodic 

wavy behavior of swirl velocity has been observed (Figure 4.7). The core diameter in this 

case varies approximately from 10% up to 20% of the whole diameter.  By further 

increasing the 
𝑢𝜃

𝑢𝑧
 ratio, a different unstable pattern has been observed (Figure 4.8). An 

intense vortex behavior at the inlet appears which soon decays and the flow becomes 

stable. Another important observation in all of the contour plots is that the swirl intensity 

decays as the flow approaches the downstream outlet. A detail discussion on swirl decay 

is provided in section 4.4.  

In order to understand the secondary flow field observed in Figure 4.8, the velocity 

vectors have been plotted. Figure 4.9 represents the 2D velocity vector field (𝑢𝑧 and𝑢𝑟). 

This plot displays the counter-rotating axisymmetric toroidal vortices. The observed 

vortices are similar to the Taylor vortices in the classic Taylor-Couette flow in the gap 

between two concentric rotating cylinders. This similarity is furfure discussed in the 

following sections. 

Figure 4.8 Tangential velocity contour with a velocity-inlet of  
𝑢𝜃

𝑢𝑧
≳ 2.5. 
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4.1.2. 2D Incompressible Gas with RSM Turbulence Model 

This section presents the results obtained for the same 2D incompressible gas case 

presented in the previous section but with a stress-omega Reynolds stress turbulence 

model. The tangential velocity and axial velocity profiles are presented in Figure 4.10 

and Figure 4.11 respectively. The radial velocity component is negligible in comparison 

to other velocity components. 

The curves are in a good agreement with those found with RNG k-ε model. However, 

the RSM predicts the maximum values differently. This is due to the different near-wall 

treatment approach in this model. As it is described in turbulence modeling section (3.3), 

RSM resolves the high intensity swirling flows more accurately than the other models.   

(a) 

(b) (c) 

Figure 4.9 (a) Velocity vectors (𝑢𝑧 𝑎𝑛𝑑 𝑢𝑟)) colored by bulk velocity magnitude 

representing counter-rotating axisymmetric toroidal vortices. (b) Zoom in on the left-

end and (c) further zoom on vortices. 
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The tangential velocity counter plots obtained with RSM model are similar to the 

previously presented plots although minor differences have been observed.  To conclude 

this section the Taylor-like vortices obtained with this turbulence model are presented in 

Figure 4.12. 

Figure 4.10 Tangential velocity at   𝑥 𝑙⁄ = 0.4 (2D incompressible RSM). 

Figure 4.11 Axial velocity at   𝑥 𝑙⁄  = 0.4 (2D incompressible RSM). 
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 2D Incompressible Liquid 

      In order to validate the physical meaning of the results obtained with an 

incompressible gas assumption, a case using water as the fluid have been analyzed. In 

contrast to the previous case where the gas mixture is assumed incompressible, water as a 

purely incompressible fluid is chosen. This is to omit the effects of negligence of the 

compressible behavior of the gas on the solutions. In order to achieve comparable results 

with previously obtained solutions, the target Reynolds number (≈ 5 × 105) is 

implemented in the velocity-inlet boundary condition. The velocity profiles are presented 

in Figure 4.13-15. These results are obtained using a RNG k-ε turbulence model. As it is 

shown in the figures, the velocity profiles are in agreement with the 2D gas cases. 

 

(a) 

(b) (c) 

Figure 4.12 (a) Velocity vectors (𝑢𝑧 𝑎𝑛𝑑 𝑢𝑟)  colored by bulk velocity magnitude 

representing counter-rotating axisymmetric toroidal vortices (2D incompressible RSM). 

(b) Zoom in on the left-end and (c) further zoom on vortices. 
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Figure 4.13 Tangential velocity at   𝑥 𝑙⁄ = 0.4 (2D Water). 

Figure 4.14 Axial velocity at   𝑥 𝑙⁄ = 0.4 (2D Water). 
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 3D Incompressible Gas 

In order to validate the results obtained in 2D cases, a sample 3D model has been 

analyzed. In the 3D geometry the same dimensions as the 2D model has been used in 

order to obtain comparable results. Figure 4.16 shows the structured axisymmetric 3D 

mesh created in Pointwise. In generation of this mesh a butterfly topology has been used 

to avoid the pole (singularity) in the front and aft-end of the cylinder.  

  

 

The same conditions and software set up applied to the 2D incompressible gas case using 

Figure 4.15 Radial velocity at   𝑥 𝑙⁄ = 0.4 (2D Water). 

Figure 4.16 (a) The 3D structured axisymmetric grid generated in Pointwise and (b) zoom 

in view to one side of the cylinder. 

(a) (b) 
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the RNG  𝑘 − 휀 model have been applied to the 3D model. In the remaining parts of this 

section, some of relevant results are presented.  

Figure 4.17 shows an isometric view of the velocity streamlines generated using 

Tecplot. In this figure, the spiral flow pattern caused by combination of the tangential and 

axial velocities is clearly observed. 

 

In order to compare the 3D results with those in 2D cases, the results obtained at the 

critical case where   
𝑢𝜃

𝑢𝑧
 ≈  2.5 are presented here. Figure 4.18 represents the tangential 

velocity contour plot over a vertical cross-section of the cylinder. This plot is similar to 

the previously presented results in Figure 4.7.    

Figure 4.17 Velocity streamlines in the 3D case (Tecplot). 
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Figure 4.18 Tangential velocity contour over a vertical cross-section of the 3D model. 

 

All the other results obtained with the 3D model are also in good agreement with the 2D 

results. Figures 4.19-21 provide each velocity component contour plot over a horizontal 

cross-section of the 3D. These profiles are obtained at the critical condition of 
𝑢𝜃

𝑢𝑧
 ≈  2.5 

at a location of  𝑥 𝑙⁄ = 0.4.  

 

 

Figure 4.19 Tangential velocity contour over a horizontal cross-section 

at   𝑥 𝑙⁄ = 0.4 (3D case). 
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Figure 4.20 Axial velocity contour over a horizontal cross-section 

at   𝑥 𝑙⁄ = 0.4 (3D case). 

Figure 4.21 Radial velocity contour over a horizontal cross-section 

at   𝑥 𝑙⁄ = 0.4 (3D case). 
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 2D Compressible Gas 

The purpose of this section is to present the velocity profiles obtained from a case in 

which the flow is compressible. Although based on the data provided in chapter 2 the 

flow under examination can be assumed incompressible, a CFD software set-up solving 

the compressible flow has been carried out. For this case, a density-based solver using the 

ideal gas law for the density calculation has been implemented. In the following figures, 

the velocity profiles are presented.  

 

 

Figure 4.22 Tangential velocity at   𝑥 𝑙⁄ = 0.4 (2D compressible case). 

Figure 4.23 Axial velocity at   𝑥 𝑙⁄ = 0.4 (2D compressible case). 
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Figure 4.24 Radial velocity at   𝑥 𝑙⁄ = 0.4 (2D compressible case). 
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5. Discussion of Findings  

In this chapter, a detailed analysis of the previously presented results is provided. 

First a discussion of the swirl intensity decay is given. Second, the main observation of 

the results, which is the presence of the Taylor-Like vortices at certain critical conditions, 

is discussed.   

 Swirl Number and Swirl Decay 

Swirling flows are a combination of the axial and tangential motion of the fluid in a 

helical path. Swirl number 𝑆 is a standard non-dimensional number representing swirl 

intensity. Based on Gupta, Lilley, and Syred (1984) swirl number defines as the ratio of 

the angular momentum flux and the axial momentum flux of the fluid. 

 

𝑆 =  
𝐺𝜃

𝐺𝑥𝑅
 

 

Here 𝑅 is the hydraulic radius of the pipe. 

Based on angular and axial momentum flux the equation 5.1 can be written as: 

 

𝑆 =
∫ (𝜌𝑢𝑥𝑢𝜃 + 𝜌𝑢𝑥”𝑢𝜃”)𝑟

2𝑑𝑟
𝑅

0

𝑅 ∫ (𝜌𝑢𝑥
2 + 𝜌𝑢𝑥

′2̅̅ ̅̅ + (𝑝 − 𝑝∞))𝑟𝑑𝑟
𝑅

0

 

 

 

 

 

 

(5.1) 

(5.2) 
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Rocklage-Marliani, Schmidts, and Ram (2003) later give a simplified version of this 

equation: 

𝑆 =
∫ 𝑢𝑥𝑢𝜃𝑟

2𝑑𝑟
𝑅

0

𝑅 ∫ 𝑢𝑥
2𝑟𝑑𝑟

𝑅

0

 

    

 All the variables presented in equation 5.3 are extracted from the CFD software 

Ansys Fluent. These data are then uploaded in Matlab. By Trapezoidal numerical 

integration of the equation 5.3 Swirl number 𝑆 values are calculated at different locations 

of the cylinder.  𝑆 values are ranging from 0.45 to 1.24. These results are shown in 

Figure 5.1. These Results are in a good agreement with the experimental and numerical 

results found in the literature (Von Lavante & Yao, 2012).  

 

 

Due to the adverse pressure gradients and vortex breakdowns swirl components decay 

as approaching downstream. Parchen and Steenbergen (1998) demonstrate this 

(5.3) 

Figure 5.1 Relative Swirl number decay as a function of 𝑥/𝐷. 
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exponential decay.  

 

𝑆 =  𝑆0𝑒
−𝛽𝑥/𝐷 

 

In this relation, 𝑆0 is the initial swirl number at the inlet and  𝛽 represents the decay rate. 

The importance of the initial conditions are clear from this equation. It has been also 

shown that the rate of decay is a function of Reynolds number. Figure 5.2 represents the 

relative swirl number decay for different Reynolds numbers.  

 

 

In Figure 5.3, the relative swirl number decay for different cases is presented. Here, 

the plots for incompressible gas case using two different turbulence models and the case 

with water are presented. The Reynolds number for these cases is equal to 5 × 105. After 

(5.4) 

Figure 5.2 Relative Swirl number decay as a function of 𝑥/𝐷  for a range 

of Reynolds numbers (Von Lavante & Yao, 2012). 
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comparing these plots with the literature, the RSM turbulence model is in a better 

agreement.    

 

 

 Taylor-Like Vortices 

The results analysis ilustrates the existence and generation of the vortices in the flow 

field. After reviewing literature on the family of the rotating flows, similar results are 

identified in the classic Taylor-Couette flow and the free-surface vortex flows. A brief 

description and similarities to the obtained results in this study of each of these flow 

systems are presented in this section.  

5.2.1. Taylor-Couette Flow 

The classic Taylor-Couette flow refers to the rotating of an incompressible viscous 

flow in the gap between two coaxial rotating cylinders (with radii 𝑅1 & 𝑅2 and angular 

velocities of 𝛺1& 𝛺2 (Figure 5.3)). 

Figure 5.3 Relative Swirl number decay as a function of 𝑥/𝐷 (2D cases). 
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The exact steady solution of Taylor-Couette flow system are obtained from the equations 

3.1-3(Navier-stokes) and 3.10 (continuity) in the following form: 

 

𝑢𝑟 = 𝑢𝑧 = 0,      𝑢𝜃 = 𝑉(𝑟) = 𝐴𝑟 +
𝐵

𝑟
 

 

Where 𝐴 and B are two arbitrary constants determined by the boundary conditions of the 

system. 

In order to investigate the stability of the Taylor-Couette flow system, the 

perturbation (disturbance) equations are developed. For example, a general disturbance 

on the basic solution given in 5.5 is superimposed as follow: 

 

𝑢𝜃 = 𝑉(𝑟) + 𝑣′(𝑟, 𝜃, 𝑧, 𝑡) 

 

(5.5) 

(5.6) 

Figure 5.4 Taylor-Couette flow system. 
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Substituting these disturbances in equations 3.1-3 and 3.10, a system of four non-

linear partial differential equations is obtained (these equations and a detailed discussion 

on instability analysis are found in the books by Chandrasekhar (1961) and Koschmieder 

(1993)). These equations are linearized assuming perturbations are axisymmetric (more 

details in section 3.2). The nondimensionalization of these linear equations leads to a 

very important non-dimensional parameter called Taylor number given as: 

 

𝑇 =
𝑅1𝛺1

2(𝑅2 − 𝑅1)
3

𝜈2
 

 

Taylor number has the same physical meaning of Reynolds number. Both of these 

numbers are a ratio of the inertial forces over viscous forces. Taylor number is the non-

dimensional control parameter for the Taylor-Couette flow system. This system is 

unstable for the Taylor numbers greater than a critical value 𝑇𝑐 (depends on 𝛺). For 𝑇 

slightly greater than 𝑇𝑐, this instability leads to generation of toroidal vortices spaced 

regularly in the axial direction (Figure 5.4). By further increasing 𝑇 a secondary 

instability develops that causes a wavy vortex motion.  

 

(5.7) 



44  

   
 

 

 

The critical Taylor number for laminar flow is  𝑇𝑐 = 1708, but this number for 

turbulent flow is different. At 𝑇 ≈ 1.6 × 105 the flow can be considered turbulent. Smith 

& Townsend (1982) experimental work over a wide range of Taylor numbers find the 

critical number to be approximately  𝑇𝑐 ≈ 5.8 × 108 . The Taylor number for the critical 

2D incompressible case (
𝑢𝜃

𝑢𝑧
 ≈  2.5 ) has been calculated as  𝑇𝑐′ ≈ 1.6 × 108 which is 

consistent with the experimental results.  

5.2.2. Free-surface vortex flow 

In general, free-surface vortices are the result of natural or artificial strong field 

circulation (𝛤 = 𝑢𝜃2𝜋𝑟 ). This phenomenon is characterized by turbulence through the 

vortex Reynolds number  Re𝛤 = 𝛤/𝜈 . Similar to Taylor-Couette flow the instabilities in 

free-surface vortex system result in generation of Taylor-like vortices. Mulligan shows 

that the air core in this flow system acts like the rotating inner cylinder in Taylor-Couette 

system (Figure 5.5). In order to be consistent with Taylor-Couette flow system Mulligan 

formulated a dimensionless driving control parameter given as: 

Figure 5.5 Taylor vortices visualization (Moser et al., 2002). 
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𝑀 =  
𝑣𝑎

2

𝑟𝑎

(𝑟𝑜 − 𝑟𝑎)
3

𝜈2
 

 

Where 𝑟𝑎 represents the radius of the air core and the 𝑟𝑜 is the outer boundary and 𝑣𝑎 

is the tangential velocity of the air core characterized by circulation ( 𝑣𝑎 = 𝛤/𝑟𝑎 ). This 

number (M) is exactly Taylor number adapted for free-surface vortex flow system. 

 

 

Taylor-like vortices are observed in Mulligan’s study at a Reynolds number of 

approximately  Re𝛤 = 1.7 × 105 and  𝑀 =  6.4 × 105 . Considering the critical 2D 

incompressible case (
𝑢𝜃

𝑢𝑧
 ≈  2.5 ) these numbers are estimated as  Re𝛤′ = 3.5 × 105 

and  𝑀′ =  4 × 105 . It should be noted that this is just a crude approximation and is 

brought here for comparison purposes.   

(5.8) 

Figure 5.6 Free-surface vortex flow system with full virtual air core (Mulligan, 2015). 
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6. Summary and Conclusion  

In this thesis the swirling flow behavior in the context of hybrid rocket engines has 

been studied. The operation conditions of this type of rocket is used as the main structure 

of the problem formulation. Computational fluid dynamics (CFD) has been chosen as the 

main methodology of approaching this problem. The axisymmetric swirling flow inside a 

cylindrical chamber with the RNG k-ε and the RSM turbulence models has been modeled 

in Ansys Fluent CFD solver. In order to ensure the physical meanings of the results 

various 2D and 3D models involving different boundary conditions have been examined.  

After running and analyzing various cases, it is found that defining the inlet boundary 

condition with a tangential to axial velocity ratio of  
𝑢𝜃

𝑢𝑧
 ≈ 2.5  is a critical condition. 

This critical value results in formation of a secondary flow field composed of wavy 

toroidal vortices spaced regularly in axial direction. The core diameter of the 

axisymmetric swirl flow inside a cylinder in presence of these instabilities is estimated 

10-20% of the cylinder diameter. In order to verify the work done on this study, future 

experimental studies are required.  

The results obtained in this study provide a basic insight to the behavior of turbulent 

swirling flow inside a cylindrical container. In order to improve this study for a hybrid 

rocket application, further considerations are required. The future study of this topic 

could potentially involve the heat addition (or combustion) to the flow.  
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A. Industrial Applications Examples 

The propose of appendix A is to provide more examples of the swirling flow 

applications in the industry. Swirling flow finds applications in combustion and heat 

exchanger. A good example is the gas turbine engines. Figure A.1 shows a schematic of a 

lab-scale gas turbine combustor where a conical swirl generator with four symmetric slots 

injects the premixed flow into the burner. The swirling flow inside a combustion chamber 

results in combustion stability.    

 

Another example is the industrial burners where swirling flows are widely used to 

increase the mixing and heat transfer rate. A schematic of an industrial swirl burner is 

presented in Figure A.2. 

 

 

 

 

Figure A. 1 Lab-scale Gas turbine combustor (Hummel, 2016). 
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The swirling flow is heavily involved in design and operation of cyclones and 

hydrocyclones (Figure A.3). These valuable devices are widely used in various industries 

such as mining and petroleum. Cyclones are mainly used to remove fine solid particles 

suspended in liquids or separating two liquids with different densities.  

 

 

Figure A.4 shows a schematic of a hydrocyclone where the mixture is fed under 

Figure A. 2 Industrial Swirl Burner (vbt.ebi.kit.edu). 

Figure A. 3 Heavy-duty Cavex hydrocyclones (Weir Minerals). 
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pressure and rotates around the perimeter. This swirling motion generates a low-pressure 

area along the axis. As a result of this low-pressure area the lighter material moves 

upwards and recycles to the overflow stream. Heavier material or particles on the other 

hand, move downward and join the underflow. 

 

 

 

 

 

 

 

 

 

 

 

Figure A. 4 Schematic of a Hydrocyclone (Ozgen & Yildiz, 2010). 
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B. Example of Highly Swirling Flow Turbulence Modeling  

The purpose of this appendix is to show the effect of the turbulence modeling in 

accurately solving a swirl-dominated flow through an example. Figure B.1 shows the 

tangential velocity profile in some location in a cyclone. The highly swirling flow field in 

the cyclone has been solved using different turbulence models. As it can see in the plot, 

the RSM predicts the flow more accurately in comparison to the other turbulence models. 

 

 

 

Figure B. 1 Tangential velocity profile at a location below the vortex finder 

(Ansys, Inc. 2013). 
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