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ABSTRACT 

LANDSCAPE ECOLOGICAL ANALYSIS OF PATTERNS INFLUENCING  

BAT HABITAT IN SOUTHEAST GLACIAL PLAINS REGION OF WISCONSIN 

 

by 

Angela L. Jackson 

 

The University of Wisconsin-Milwaukee, 2013 

Under the Supervision of Professor Glen Fredlund 

 

  

Nearly half of the world’s bat species are threatened by anthropogenic land use. 

To contribute to the conservation of these cryptic mammals, it is imperative to understand 

bat habitat selection in human-dominated landscapes. Bat activity was calculated using 

active acoustic surveys conducted June and July for three years along river and lake 

transects in an agricultural matrix. Using multiple logistic regression and ANOVA 

regression tree analyses, I examined the relationship between bat activity of four species 

and habitat structure at multiple scales.  

Aquatic features were determined to be the greatest predictor of bat activity with 

rivers supporting greater amount of bat activity than lake habitats. All analyzed species 

were shown to be negatively influenced by developed and agricultural land at riparian 

habitats, however similar patterns were not observed at lake habitats. Wooded land use 

was also important in describing habitats that supported higher bat activity when 

assessing general patterns across all surveyed sites. The observed patters are likely due to 

protection from wind and predators at riparian sites, and roosting habitat that forested 

lands provide. Sustaining a mixed-use landscape within an agricultural matrix may 

provide bats the diversity of habitat required to meet all life history needs.  
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CHAPTER 1 

 INTRODUCTION  

 

Habitat loss and the landscape fragmentation are two major threats to biodiversity 

(Farrow and Broders, 2011). In efforts to conserve biodiversity, there is a growing 

emphasis on understanding pattern-process feedbacks within altered landscapes and the 

impacts these have on species distributions (Kent 2009, 426; Farrow & Broders, 2011). 

Bats provide an opportunity to assess these impacts because they are regarded as 

bioindicators of ecosystem health and function, particularly in the context of habitat 

quality related to anthropogenic influences (Jones et al., 2009; Farrow & Broders, 2011). 

Currently, almost half of all bat species are threatened by anthropogenic land use 

intensification (Akasaka et al., 2012). Agricultural intensification, water quality 

degradation, and urbanization are just a few of the influences affecting bat populations 

worldwide. Because of their sensitivity to habitat alteration, research of these cryptic 

mammals in altered landscapes is especially important.  

Agricultural land presently composes nearly 40% of the earth’s surface and is 

likely to continue to rise (Akasaka et al., 2012). The increased patchiness of forested 

landscapes and isolated wetland habitats is a result of intensification of agricultural lands. 

Because nearly half of the world’s bat species are threatened by anthropogenic land use, 

it is imperative to understand foraging habitat selection in an agricultural context. Despite 

their ecological importance and conservation concern, most aspects of bat natural history, 

such as foraging habitat use in human-dominated landscapes, remain poorly understood.  
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Although bats are of the most abundant groups of mammals, many populations 

are on the decline. Presently, Wisconsin bats are threatened due to the impending spread 

of an invasive fungal disease, white nose syndrome (WNS), known to kill over 75% of 

colonies (see chapter 2, this work; Frick et al., 2010). As pressure from WNS and habitat 

alteration are expected to increase, it is of increasing importance to understand the 

patterns of habitat selection and to conserve Wisconsin bat populations. Current research 

is lacking in addressing habitat preferences at a variety of lake and riparian habitats 

within agricultural landscapes, particularly in the Midwest region of USA. This research 

aims to address habitat selection of 4 Wisconsin bat species by assessing landscape 

composition, connectivity and configuration.  

Landscape ecology, a holistic framework that considers ecological processes 

across multiple spatial and temporal scales within a landscape, provides the necessary 

tools to understand the relationship of agricultural landscape composition and foraging 

bat populations (Forman & Godron, 1986). Additionally, landscape ecology permits the 

identification of relationships of individual species with landscape elements at 

ecologically significant that are context-specific and relevant to the species of interest 

(Kent, 2009). Currently, there is a need for more landscape-level research to meet 

conservation goals. Addressing bat populations from a landscape perspective will further 

contribute to the understanding of their habitat requirements and benefit the effort to 

more effectively conserve local populations.  

The landscape mosaic model used in this analysis provides the context to assess 

bat foraging habitats in an ecologically significant landscape composed of complex and 

heterogeneous patches. Under this model, neighboring patches are identified by their 
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ability to impede or facilitate movement of a species across the landscape and 

connectivity is addressed as a function of the neighboring habitat types (Estrada-Villegas 

et al., 2010; Threlfall, Law, & Banks, 2012). Other models consider the landscape as a 

binary matrix by considering characteristics of just the focal patch type. As argued by 

McGarigal et al. (2012), this is an oversimplification of real world patterns of landscape 

perception and selection by organisms. The consideration of all neighboring habitat types 

is a more realistic approach to perception of landscape elements by the species of interest.  

Despite the growing body of research on bat ecology, there is still a paucity of 

studies addressing the influence of landscape structure on bat activity in an agricultural 

region (but see: Lundy & Montgomery, 2010; Boughey et al., 2011; Wolcott & Vulinec, 

2012; Frey-Ehrenbold et al., 2013). The development of acoustic recording technology 

has provided a cost-effective method to surveying relative bat activity in diverse range of 

habitats. Active (manual) acoustic surveys were conducted for three summer seasons to 

determine relative bat activity at aquatic habitats in an agricultural landscape of 

Wisconsin. It was assumed that these surveys provided acoustic recordings of foraging 

bats in the landscape due to the high reliance of insectivorous bats on aquatic sites for 

prey (Lacki, Amelon, & Baker, 2007). I have developed a set of species-specific 

hypotheses based on morphological characteristics and a review of existing bat ecology 

literature (see chapter 2) to determine habitat-specific relationships of bats in the SEGP.  

Chapters 3 and 4 of this thesis will describe the methodology and analyses to test these 

hypotheses.  
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Research Goals & Objectives 

 

My goal was to assess the effect of landscape-level variables on bat activity in 

water (lake and river) habitats. This study aimed to quantify the relationship of relative 

bat activity (defined as the total echolocation calls of a specific species recorded at an 

individual survey divided by the total survey length in minutes) between survey sites in a 

predominately agricultural landscape, the SEGP of Wisconsin. For this study, I first 

identified a set of landscape metrics that best described habitat suitability through the use 

of digital spatial data, acoustic survey data, and spatial analysis. Second, I investigated 

the effects of landscape characteristics on species richness at varying scales, and amongst 

and between river and lake survey segments. Finally, I aimed to identify the habitat 

requirements and conservation needs of Wisconsin’s bats across the SEGP to aid in 

achieving the overarching goals of the Wisconsin Department of Natural Resources 

(WDNR) to conserve bats within the state.  

Questions I aimed to address were (1) what is the relationship between landscape 

composition, configuration and connectivity and relative bat activity?; (2) do patterns of 

selection for each species differ between and amongst lake and river habitats?; (3) what 

role does scale play in patterns observed in habitat use?; and finally (4) which habitats 

support the greatest species richness and relative activity of bats in the Southeast Glacial 

Plains of Wisconsin?  

This study will contribute to the knowledge of bat ecology and assist in future bat 

conservation practices in the state of Wisconsin. In addition, information on habitat 

selection of bat species can potentially assist in the possible need for reintroduction of 
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bats due to the impending spread of white-nose syndrome. My overall objectives were to 

determine if there are significant dissimilarities in habitat selection between species, to 

assess how alterations in landscape characteristics affect presence of bats and species 

richness, and, finally to inform policy development for future ecological management.  

Study Area 

 

The SEGP region expands across approximately 20,008 square kilometers and 19 

counties (Figure 1). This non-coastal region encompasses nearly 14 percent of the land 

area and 38 percent of residents of Wisconsin. The mean annual temperature of the SEGP 

is 7.72 ° Celsius (45.9 ° F), but a latitudinal variation in temperature is observed in this 

region. Maximum August temperatures in SEGP average 27.33 ° C (81.2 ° F) and 

minimum average January temperatures are -14.61 ° C (5.7 ° F). Precipitation and 

snowfall also exhibit latitudinal variation with an average of 85.34 centimeters and 100.1 

centimeters per year respectively (WDNR, 2013a draft). Elevation in this region ranges 

from 209 to 404 meters above sea level (WDNR, 2013a draft). 

Anthropogenic land use intensification in SEGP drastically changed the native 

land cover and hydrology, with urban development composing approximately 5% of the 

total area. The current vegetation cover is dominated by agricultural cropland which 

makes up nearly 60% of this landscape, followed by grassland and forest, composing 

approximately 11% and 10% of the region respectively. This is a drastic change from 

historic proportions of vegetation cover where forested areas covered nearly 50% of the 

region (WDNR, 2013a draft). Primary types of agriculture include cash-cropping of 

grains and vegetables. Historically, prairie, savanna, oak forest and patches of maple-
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basswood forest covered much of the landscape. Today, little of the original prairie or 

savanna habitat remains, and fragmentation of native habitats is severe. Current forested 

vegetation is composed primarily of American beech (Fagus grandifolia), sugar maple 

(Acer saccharum), basswood (Tilia Americana) and white ash (Fraxinus nigra).  

Wetlands are also extensive in this region composing approximately 12% of the 

landscape, with most having experienced direct human modifications such as removal of 

natural vegetation, ditching, diking, and indirect impacts from cropland runoff and 

infestation of invasive species (Pohlman et al., 2006). Nine significant river systems 

(Wolf, Sheboygan, Milwukee, Rock, Sugar, Mukwanago, Bark, Illinois Fox and Green 

Bay Fox) are present in the SEGP, most of which are influenced by intensive agriculture 

and urban-industrial development (WDNR, 2013a draft).   

Analyzing bat activity in this study region provides control for environmental 

variability by using predefined ecoregions developed by the WDNR. The US Forest 

Service developed a classification system, the National Hierarchical Framework of 

Ecological Units, which systematically divides the landscape into ecological regions to 

facilitate consistent resource and ecological management across various scales (Cleland 

et al., 1997). The WDNR adopted this system to organize Wisconsin into sixteen 

ecological landscapes, each varying in physical and biological characteristics such as 

vegetation, soils, climate, water bodies, and geologic features (WDNR, 2005, p. 2-5). The 

intense fragmentation and modification of the SEGP provides an opportunity to assess bat 

habitat use in the context of human-dominated landscapes in this unique region of the 

state.  
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Chapter 2 

  

GEOGRAPHIC RANGE, FORAING HABITAT AND BEHAVIOR, & LANDSCAPE 

FACTORS INFLUENCING HABITAT SELECTION 

 

Worldwide there are more than 1,000 species of bats (Order Chiroptera; Kunz & 

Racey, 1998; Broders et al., 2004). Seven species (Eptesicus fuscus, Lasionycteris 

noctivagans, Lasiurus borealis, Lasiurus cinereus, Myotis lucifugus, M. septentrionalis, 

Perimyotis subflavus) occur in Wisconsin but many aspects of their natural history, such 

as foraging habitat, are poorly understood. This is due to their mobility, nocturnal nature, 

ability to produce sounds above human hearing, and inconspicuous roosting locations. 

Despite the need for research to mitigate negative impacts of human influence on bat 

populations, studies regarding bat behavior are minimal and bats remain among the most 

misunderstood of all species (Pierson, 1998; BCI, 2011).  

Habitat loss due to urbanization is the greatest cause of species endangerment in 

the United States (Czech et al., 2000). The economic and cultural factors of urban sprawl 

contribute to the changing composition and configuration of landscape patches. 

Currently, agricultural and urban/suburban conversion is responsible for the majority of 

lost roosting and foraging habitat crucial to the survival of bat species (Pierson, 1998). 

Bats have been documented returning to roosting and foraging sites on an annual basis 

and are directly impacted by land cover conversion due to the potential loss of habitat 

(Pierson, 1998). In addition, habitat structure preference is species specific and is known 

to influence community composition (Hein et al., 2009; Estrada-Villegas et al., 2010; 
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Fukui et al., 2011). As a result, land cover change at a local landscape level can 

negatively impact foraging availability and ultimately bat populations. 

Yates and Muzika (2006) proclaim a lack of landscape-level analysis in bat 

ecology, particularly in the Midwest, USA. With this research, I aim to address this gap 

by identifying landscape features that provide suitable foraging habitat for Wisconsin 

bats. Habitat use studied in this analysis is assumed to be foraging habitat, as bats are 

known to travel from roosting locations to nearby aquatic sites to opportunistically feed 

on higher insect densities (Fukui et al., 2006). In addition, identifying foraging habitat at 

the landscape scale may also provide insight to other habitat needs, such roost 

preferences. The growing need for spatial analysis of landscapes for practical resource 

management application provides an avenue for geographers to contribute to 

conservation and landscape ecology literature.  

Status & Geographic Range of Wisconsin Bats 

 

 All seven species of bats native to Wisconsin are widely distributed throughout 

North America and are currently listed as a “species of least concern” on the International 

Union for Conservation of Nature Red List of Threatened Species (Arroyo-Cabrales et 

al., 2008a, 2008b). Wisconsin is home to four cave species (Eptesicus fuscus, Myotis 

lucifugus, M. septentrionalis, Perimyotis subflavus) and 3 migratory, or tree, species 

(Lasionycteris noctivagans, Lasiurus borealis, L. cinereus), all of which are found in 

Wisconsin in summer months, with cave species also occupying various hibernacula 

within the state throughout winter months.  
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Of the indigenous bat species, the migratory hoary bat (Lasiurus cinereus) is the 

most widely dispersed of all North American bats, extending to the northern range of 

Canadian forests, south into parts of South American into Brazil, Argentina and Chile 

(Shump & Shump, 1982b). The hoary bat is also found in Hawaii, making it one of two 

native mammals found on the islands (although the US Fish & Wildlife Service lists the 

Hawaiian hoary bat as a distinct species: Lasiurus cinereus semotus). Despite the 

pervasive range of the hoary bat, the WDNR suggests this species is more commonly 

found in northern parts of the state (WDNR, 2013b). Currently, research regarding hoary 

distribution within the state is lacking.  

Eastern red bats (Lasiurus borealis) are located in eastern United States, primarily 

east of the Continental Divide, with portions of their range extending into the northern tip 

of Mexico and southern portions of Canada (Shump and Shump, 1982a). Eastern red bats 

(Lasiurus borealis) are found throughout Wisconsin from April to October, but migrate 

south like most migratory bats to overwinter. Silver-haired bats (Lasionycteris 

noctivagans) also experience seasonal range due to its migratory nature. Silver-haired 

bats can be found in parts of southern Canada and into Alaska, and throughout most of 

the contiguous United States (Arroyo-Cabrales et al., 2008b). Tree species migrate along 

southern latitudinal gradients to aid in thermoregulation but also use torpor to limit 

energy expenditure over shorter time periods (Cryan & Veelleux, 2007). It is uncommon 

for a tree species to leave the continent during migration, however the lasiurines and 

silver-haired bats in this region have been documented to travel up to 2,000 kilometers to 

wintering sites (Carter & Menzel, 2007; Cryan & Veilleux, 2007; McGuire et al., 2012).  
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The four Wisconsin cave bats (Eptesicus fuscus, Myotis lucifugus, M. 

septentrionalis, Perimyotis subflavus) are reliant on access to hibernacula, particularly 

caves and abandoned mines, which is a limiting factor to their distribution (Furlonger, 

Dewar & Fenton, 1987; Kunz and Reichard, 2010). Wintering sites are selected based on 

cool temperatures to limit metabolic processes and conserve fat storages (Cryan & 

Veilleux, 2007). Largest populations of little brown bats (M. lucifugus) occur in 

Northeast United States and in the Midwest. Kunz and Reichard (2010) suggest the larger 

concentration of little brown bats in these regions can be attributed to the higher density 

of caves and mines available for hibernacula. 

Wisconsin’s largest bat hibernaculum, Neda Mine, is located within the SEGP in 

Dodge County, and is considered one of the largest remaining hibernacula in North 

America (Redell, 2005). In 1995, it was estimated that a hibernating little brown bat 

colony of nearly 300,000 individuals inhabited the mine (Tuttle, 1996). More 

conservative estimates from 2001 determined approximately 120,000 individuals from 

multispecies colonies (Eptesicus fuscus, Myotis lucifugus, M. septentrionalis, and 

Perimyotis subflavus) hibernated in the Neda Mine (Redell, 2005). Based on these 

estimates, I predicted greater little brown bat activity at all survey sites relative to other 

Wisconsin bats due to large hibernating populations within the study region.  

The little brown bat (Myotis lucifugus) inhabits a wide range in North America 

which includes Alaska-Canada boreal forest in the northern range and continues through 

the majority of the contiguous United States and into central Mexico (Kunz and Reichard, 

2010; NatureServe, 2013). Big brown bats (Eptesicus fuscus) can be found throughout 

North and South America, from the northern most Canadian provinces and as far south as 
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northern Brazil (Kurta & Baker, 1990). Of the cave bats, northern long-earned bats 

(Myotis septentrionalis) and eastern pipistrelles (Perimyotis subflavus) are more 

restricted in distribution with both species commonly encountered in the eastern United 

States and Canada (Fujita & Kunz, 1984; Caceres & Barclay, 2000; Arroyo-Cabrales et 

al., 2008c). Eastern pipistrelles are also native to parts of South America including 

Mexico, Belize, Guatemala and Honduras (Arroyo-Cabrales et al., 2008c). Northern 

long-eared bats are distributed as far south as Florida, United States.  

White-nose Syndrome in North America 

 

 Hibernating bat colonies are currently facing widespread extirpation and potential 

regional extinctions due to the emerging threat of white-nose syndrome (WNS), a fungal 

disease named for the visible white growth on muzzles and exposed skin of infected bats 

(Lorch et al., 2011). WNS was first documented in 2006 in Albany, New York and has 

killed up to 99% of infected populations (Frick et al., 2010). As of 2011, it is estimated 

that more than 5.5 million bats have died as a result of WNS (Hayes, 2012). White-nose 

syndrome is associated with the spread of an invasive fungus, Pseudogymnoascus 

destructans (formerly known as Geomyces destructans) and is suspected to cause early 

arousal from hibernation and inevitable starvation due to premature loss of winter fat 

reserves (Frick et al., 2010). Species vulnerability makes habitat selection a much-needed 

research priority to aid in conservation of these critical animals.   

White-nose syndrome has affected populations in portions of the Northeast United 

States and is spreading as far south as South Carolina, and west to Oklahoma as of winter 

2012 (Cohn, 2008; Frick et al., 2010; Cohn, 2012). White-nose syndrome has also been 
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documented in five Canadian provinces since its discovery in 2006 (Cohn, 2012). Kunz 

and Reichard (2010), in their status review of the little brown bat, suggest a federal listing 

of Myotis lucifugus as endangered under the Endangered Species Act as local and 

regional extinctions become a reality. Some scientists predict regional extinctions of 

Northeastern US’s most common bat in as little as a decade (Cohn, 2012). In response to 

documented cases of the fungus within a small geographic distance to Wisconsin’s 

borders, all 4 cave bats are currently listed as a threatened species within the state and are 

protected under the Wisconsin Endangered and Threatened Species Law (State Statute 

29.604 & Administrative Rule NR27).  

 Government agencies, including the US Fish & Wildlife Service and state’s 

Department of Natural Resources, have taken precautions to help slow the spread of 

WNS by closing caves and educating the general public to clean and disinfect gear upon 

entering caves. In addition to these precautions, increasing knowledge of bat behavioral 

ecology is of critical importance to allow for potential reintroduction efforts as local 

populations of Wisconsin are faced with the threat of WNS. 

Foraging Behavior & Diet 

 

When addressing species exploitation of their surrounding environments, it is 

imperative to consider physiological and morphological constraints and their influences 

on foraging ecology. Ecomorphology theory suggests that an individual’s morphology 

influences aspects of their natural history and behavioral performance (Brigham et al., 

1997; Swartz et al., 2003).  Bat foraging ecology is constrained by wing morphology 

which, in turn, influences maneuverability and habitat selection (Aldridge & Rautenbach, 
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1987). Additionally, foraging site selection is interdependent with echolocation call 

structures of individual species (Aldridge & Rautenbach, 1987; Neuweiler, 1989; 

Schnitzler & Kalko, 2001). Understanding species-specific wing morphology and 

echolocation call variation and the influence these have on habitat selection can provide 

insight into where, and why, bats forage in the SEGP, Wisconsin.  

Suborder Microchiroptera, which includes all seven species of bats in Wisconsin, 

utilize echolocation, an adaptation that allows bats to emit ultrasonic signals to aid in 

orientation relative to surrounding environment, and the detection, localization and 

classification of surrounding objects in space (Schnitzler & Kalko, 1998; Broders, 

Findlay, & Zheng, 2004). All Wisconsin bats are insectivorous and rely on echolocation 

to search and locate prey. Echolocation and foraging behavior are species-specific and 

vary according to foraging mode (e.g., aerial vs. gleaning), diet, and habitat structure 

(Schnitzler & Kalko, 1998; Broders et al., 2004). Echolocation signals also vary 

intraspecifically in structure, length, and frequency based on the specific behavioral task 

performed (e.g. searching for prey vs. capturing prey; Schnitzler & Kalso, 1998). Some 

suggest plasticity of call structure among individuals allows for greater efficiency in 

orientation and target perception in various habitats (Broders et al., 2004).  

It is hypothesized, that echolocation call design (shape, frequency, duration) has 

evolved to favor specific habitat types and has the potential to influence the availability 

of prey (Barclay, 1985; Brigham et al., 1997). That is, smaller prey is less likely to be 

pursued by vespertilionids bats due to weaker echoes produced compared to larger prey 

and difficulty to detect using echolocation at longer distances (Schnitzler & Kalko, 1998). 

Interspecific variations in echolocation foraging tactics is expected to influence 
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sensitivity to spatial configuration of ecological features (Ciechanowski et al., 2007). 

Although this hypothesis is not directly tested in this research, considerations of species-

specific echolocation characteristics can provide insight to expected habitat selection of 

bats in this region. In general, narrow-band echolocation calls of low frequency and long 

duration, as emitted by Lasiurus borealis and L. cinereus, are optimized for catching prey 

at a distance in open spaces (Barclay, 1985; Schnitzler & Kalko, 2001). In comparison, 

species emitting signals with mixed components, as exhibited by Eptesicus fuscus, Myotis 

lucifugus and M. septentrionalis, allow for detection of prey and identification of 

background clutter along forest edges and gaps (Schnitzler & Kalko, 2001). Some 

species, such as the big brown bat, alter echolocation characteristics to best suit spatial 

arrangement of habitat encountered (Schnitzler & Kalko, 2001).  

Morphological characteristics and echolocation call structure must be considered 

simultaneously in assessing habitat selection. Broders and others (2004) compared 

echolocation call parameters (e.g. minimum call frequency) from a capture-release study 

and observed varying distance perception between two Myotis species. This difference in 

distance perception of echolocation calls presents spatial limitations (Schnitzler & Kalko, 

2001) reflected in the habitat selection of foraging M. lucifugus and M. septentrionalis. 

Broders et al. (2004) suggested the shorter distance perception and morphological 

adaptations of M. septentrionalis, such as lower wing loading (weight of bat divided by 

wing area) compared to M. lucifugus, provides this species with adaptations to navigate 

and forage in cluttered habitats. In contrast, Ratcliffe and Dawson (2003), suggests 

dissimilarities in function of echolocation calls of two morphologically similar, sympatric 
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species remains to be understood. More research is needed on the evolution of 

echolocation abilities in relation to habitat and prey availability.  

Likewise, resource partitioning of bats is influenced by wing morphology (Yates 

& Muzika, 2006). The small body size, low aspect ratio and moderate wing loadings of 

Myotis lucifugus allow this species to take advantage of relatively cluttered habitat such 

as forested areas due to slow and maneuverable flight patterns (Avila-Flores & Fenton, 

2005; Brooks & Ford, 2005; Yates & Muzika, 2006). In contrast, the hoary bat is the only 

bat in this study region with both high aspect ratio (length of wingspan squared divided 

by surface area of wing) and high wing loading which limits this species to clear-cut 

habitats and forest gaps (Lacki et al., 2007). Eastern red bats also possess high wing 

loadings and are less maneuverable than other species in Wisconsin. Despite 

morphological classifications of Wisconsin bat species, more knowledge regarding 

foraging behavior is needed. This is evident in the observed flexibility of big brown bats 

in habitat use and foraging strategies despite the ideal morphological characteristics of an 

aerial hawking bat (Fenton & Bogdanowicz, 2002).   

Currently, all seven species in this study are classified as aerial insectivores, 

catching prey on the wing or tail membranes (Barclay, 1985; Barclay, 1986; de la Cueva 

Salcedo et al., 1995). Little brown bats are opportunistic, aerial hawking foragers that 

forage in a variety of habitats (Clare et al., 2011) for a multitude of prey types (Anthony 

& Kunz, 1977; Broders et al., 2004), although they are known to forage heavily on 

aquatic emergent insects (Frick, Reynolds, & Kunz, 2010). Despite their labeling as aerial 

hawkers, Ratcliffe and Dawson (2003) have observed Myotis lucifugus gleaning prey 

from surfaces which suggests a reassessment of foraging strategies for this species as 
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more is learned about these cryptic animals. The sympatric M. septentrionalis also 

capture prey by gleaning terrestrial insects from vegetation. This species’ high 

maneuverability allows navigation through high cluttered habitat such as dense forested 

areas (Ratcliffe & Dawson, 2003; Broders et al., 2004). It is unclear whether the 

alternating between gleaning and aerial hawking is due to prey availability or 

evolutionary behavioral traits (Fenton & Bogdanowicz, 2002). 

Wisconsin bats rely on multiple orders of insects for their diets. Silver-haired bats 

(Lasionycteris noctivagans) are the most taxonomically diverse foragers with evidence of 

consumption of 11 insect orders in North America (Lacki et al., 2007). However, dietary 

specialization of some species in this region is also observed. For example, big brown 

bats have been identified as a highly selective species (Lacki et al., 2007), selecting small 

Coleoptera as their most common prey type (Kurta & Baker, 1990; Agosta & Morton, 

2003). Despite this, Brigham and Fenton (1991) found greater than 50% of sampled big 

brown bats’ diets consisted of Tricopterans emerging from riverine habitats, indicating 

flexibility in this species dietary selection. Variability in diet has also been observed 

based on bat reproductive status (Belwood & Fenton, 1976; Anthony & Kunz, 1977) and 

seasonal influences (Agosta & Morton, 2003; Clare et al., 2011). These dissimilarities of 

prey selection between and within studies suggest intraspecific variation in dietary 

specialization based on spatial and temporal heterogeneity in prey availability (Brigham, 

1990; Lacki et al., 2007; Clare et al., 2011). For this reason, identifying and conserving 

habitats that maintain the greatest diversity of insect prey may best meet the dietary needs 

of bat species in the Southeast Glacial Plains.  
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Diurnal Roosting Habitat 

 

The selection of foraging sites is dependent on the proximity and accessibility to 

suitable roosting locations (O’Keefe et al., 2009). Bats in this study region use a variety 

of diurnal roosts including manmade structures (Brigham, 1991) such as attics and 

bridges, caves (Fenton & Barclay, 1980), rock crevices (Ormsbee, Kiser, & Perlmeter, 

2007), tree foliage (Shump & Shump, 1982a; Perry, Thill & Carter, 2007), tree cavities 

(Barclay & Kurta, 2007; Perry, Thill, & Leslie, Jr., 2008), hollows (Vonhof & Gwilliam, 

2007), and clumps of lichen (Farrow & Broders, 2011). Cavity- and foliage-roosting bats 

are vulnerable to land use disturbances due to the direct loss of forested roosting habitat 

(Henderson, Farrow, & Broders, 2008; Farrow & Broders, 2011). Northern long-eared 

bats (Myotis septentrionalis) are forest-roosting species and rely primarily on roosting 

cavities under bark or snags in hardwood tree species (Johnson et al., 2009). Eastern 

pipistrelles (Perimyotis subflavus) roost in the foliage of mature hardwood stands in close 

proximity to riparian habitats (O’Keefe et al., 2009) but have also been observed roosting 

under bridges (Ormsbee et al., 2007). Land use fragmentation, specifically from 

urbanization and deforestation, can alter day-roost availability to these species and other 

cavity- and foliage-roosting bats by reducing the number of old growth trees and 

increasing the distances between roosting and foraging sites (Lacki et al., 2007; Johnson, 

Gates, & Ford, 2008; Farrow & Broders, 2011).  

Bats should select roosts that maximize fitness by reducing energetic costs of 

flight, thermoregulation, predation avoidance and rearing young (Barclay & Kurta, 2007). 

The interspersion of roosting and foraging habitats within a landscape can reduce 

energetic costs and better meet the needs of bats (Lacki et al., 2007). Landscape-level 
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elements have been determined to largely influence the resource selection of roosting 

sites for multiple species (Limpert et al., 2007; Henderson, Farrow, & Broders, 2008; 

Farrow & Broders, 2011). Specifically, studies have found greater affinity for roosting 

locations adjacent to aquatic habitats by forest-roosting bats (Perry, Thill, & Leslie, Jr., 

2008; O’Keefe et al., 2009). However, few species in this region, such as the big brown 

and little brown bats, exhibit flexible roost site selection by inhabiting manmade 

structures (Fenton & Barclay, 1980; Burnett & August, 1981; Kurta & Baker, 1990). 

These species may be less sensitive to removal of mature forest stands for agricultural 

and residential purposes.  

Identifying foraging habitat selection of species at aquatic habitats in the SEGP 

may provide insight to suitable roosting locations in the surrounding landscape. This 

information can aid wildlife managers in the conservation of landscapes that meet all life-

history needs of bats in this region. The theory and concepts of landscape ecology, a 

holistic framework that evaluates dynamics between human and nonhuman elements 

across multiple scales, is a practical approach in relating landscape structure to relative 

bat activity.  

Landscape Ecology Application: Utility in Bat Conservation Research 

 

Landscape ecology is recognized across multiple disciplines as a valuable 

framework to understand the distribution of energy and materials, and alteration of 

structure and function among heterogeneous ecosystems (Risser, 1987). This framework 

also provides a useful set of tools to analyze the dynamic relationship between human 

influences and ecological processes in a landscape. Despite the practical applications, a 
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gap in the literature exists regarding the influence of landscape composition, 

configuration and connectivity on bat activity in Wisconsin, particularly in agricultural 

landscapes. By assessing the relationship of bat ecology to habitat structure in a human 

dominated landscape, a more holistic approach to bat conservation can be developed to 

benefit all actors. 

Landscape & scale in bat ecology research 

  

North American studies of bat habitat selection have largely been scale-dependent 

with significance of landscape features alternating at different scales of analysis (for 

example: Avila-Flores & Fenton, 2005; Vonhof & Gwilliam, 2007; Lookingbill et al., 

2010). For this reason, scale of analysis should be determined based on species of interest 

and their response to landscape structure (McGarigal, Cushman, & Ene, 2012). The 

association of bat activity with landscape elements at varying spatial scales is influenced 

by morphological, behavioral and ecological differences and should be assessed on a 

species-by-species basis (Barclay and Kurta, 2007; Gannon et al., 2003). Until recently, 

the varying scales of ecological processes for bat species has rarely been addressed (but 

see: Ford et al., 2006; Watrous et al., 2006; Lookingbill et al., 2010; Lundy & 

Montgomery, 2010; Hale et al., 2012).  

Assessing habitat selection using a landscape ecology approach provides the 

opportunity to address ecological processes at varying scales. Landscape is an important 

concept to geographic research and provides a key foundation to assess ecological 

patterns and processes. Landscapes as a unit of analysis are more flexible and take a less 

reductionist approach than other units of analysis (e.g., ecosystems, watersheds, political 
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boundaries). In the context of a watershed, the unit of analysis is restricted to a particular 

spatial scale bounded by streams and related tributaries. This may present limitations if 

ecological processes, such as habitat fragmentation, interact across multiple watersheds, 

as they often do. Landscapes are not confined by watershed boundaries and often 

intersect multiple basins. In addition, landscapes provide the ability to assess phenomena 

at relevant, context-specific scales. Attributing habitat characteristics outside the context 

of an ecological relevant landscape is at risk of proposing conservation practices of vital 

habitat preferences that are at an inappropriate scale relevant to the patterns and processes 

being analyzed. 

In a study relating habitat features to bat presence, Ford et al. (2005) implemented 

a park boundary as the scale of analysis for seven species in the study region. Although 

this approach is commonly used because of logistic constraints, the national park 

boundary analyzed in the study could be mistakenly identified as adequate habitat to 

support life cycles of bat species due to the presence of specific habitat types, such as 

riparian corridors and old growth forest. However, assessing the size of the national park 

at relevant scales to species being analyzed, the structural patterns relating the old growth 

forest and riparian habitat, and the foraging distance travelled, would more appropriately 

signify acceptable foraging habitat. In other words, multiple structures of landscapes and 

scales outside of the park boundary can influence the processes and interactions that 

contribute to ecosystem composition within the park (McGarigal et al., 2012). Most 

importantly, analysis of specific spatial scales (e.g., 1 km
2
 landscape) allows the 

opportunity to assess habitat selection at a scale relative to the species of interest, and to 

compare studies in diverse geographies to aid conservation efforts. 
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Analyzing bat habitat distribution at multiple scales may also help determine true 

patterns of habitat selection, as opposed to generalization resulting from inadequate scale 

of analysis (Watrous et al., 2006). The hierarchical selection of resources begins “…with 

the geographic range of a species, and extending to individual home ranges within the 

geographic range, use of general features within the home range, and selection of 

particular elements within the general features.” (Limpert et al., 2007, p. 478) To 

adequately evaluate habitat selection of ecologically important behavior such as foraging, 

multiple buffer scales of landscape composition, configuration, and connectivity will be 

analyzed for individual bat species and overall activity to determine selection of general 

landscape features. This method, as used by Lookingbill et al. (2010), provides the 

distance resulting in the highest correlation for each species. From this, a foraging 

threshold distance for each bat species can be determined. Understanding the processes 

occurring at smaller scales, such as the use of patches of forest stands based on 

echolocation characteristics, and the differences occurring at large scale processes, such 

as roost selection and proximity to foraging habitat, will allow natural resources 

managers to recognize linkages to landscape variables supporting health of these species.  

Landscape matrix & influence on habitat selection 

 

Land-use change and the restructuring of the landscape mosaic are two major 

contributors to the decline in bat populations. Bats require a mixed landscape for their 

roosting and foraging needs (Yates & Muzika, 2006; Lookingbill et al, 2010). The 

reshaping of landscape mosaics, and alteration of the landscape matrix, negatively 

impacts the availability of resources by limiting or removing vital habitat and impeding 

movement throughout the landscape (Lacki et al., 2007; Estrada-Villegas et al., 2010). 
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The matrix within a landscape, as presented in landscape ecology, is the element that 

dominantly influences the landscape dynamics. Characterizing, quantitatively (e.g., total 

area) and qualitatively (e.g. unique descriptors), the type of matrix in a landscape and 

how it is perceived by bat species is essential to interpreting the relationship of foraging 

habitat selection in the specific environment.  

For example, in the context of the Southeast Glacial Plains of Wisconsin, the 

dominant land type and the element exhibiting the overriding influence on landscape 

dynamics is agriculture. Conventional farming practices of row crops is the dominant use 

currently in the region, however the vegetation has experienced drastic changes before 

becoming dominantly agricultural. Prior to European settlement, the greatest influence to 

Wisconsin vegetation was the use of fire. Manmade fires are speculated to have 

influenced the development of many prairies, meadows and pine forests (Curtis, 1959). 

As described previously, today little of these vegetation communities remain.  

Historically, the Southeast Glacial Plains region has had among the most 

productive farms in the state of Wisconsin (WDNR, 2013a draft). Today agriculture still 

remains an important aspect to the SEGP economy with net cash farm income in 2002 

totaling to $430 million. Since EuroAmerican settlement, cereals composed nearly 60% 

of this region’s agricultural crops. Upon the establishment of the dairy industry in the 

state, the agriculture in this region shifted to hay and forage crops by the 1940s. Despite 

the gradual decrease of total farmland since the 1970s, overall farm size has seen a 

gradual increase signifying a consolidating trend throughout the region. This 

consolidation can result in the removal of important linear habitats to bats such as 

hedgerows and treelines and an overall homogenization of the landscape (Boughey et al., 
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2011). In addition to farm consolidation, this region has one of the highest agriculture 

land diversion rates in the state with majority of farmland being converted to suburban 

developments (WDNR, 2013a, draft). Such conversion is known to cause an increase in 

landscape fragmentation (Hale et al., 2012) and may influence the movement of bats 

throughout a landscape. Understanding the economic and cultural patterns that influence 

the landscape matrix such as these occurring in the SEGP can provide useful insight to 

ecological patterns observed. 

Dixon (2011) investigated echolocation activity of multiple bat species in an 

urban/agricultural/"natural" mosaic. As predicted, the preference of landscape 

characteristics (e.g., impervious surface, open area, distance to water) varied by bat 

species. A limitation to this study is the lack of matrix identification, which hampers the 

results of this study to contribute to greater bat conservation efforts. More specifically, 

little comparison can be made between Minneapolis (in this case) and other landscapes if 

the dominant landscape element is not explicitly identified and described. Despite this 

fallback, Dixon (2011) addressed the perception of bats in urban landscapes by human 

actors and the implications this may have on conserving bats in a human-dominated 

landscape. The integration of social and cultural factors in their research that are molding 

this urban landscape highlights the necessity to unify human and nonhuman needs and 

meets a fundamental goal of landscape ecology.  

The qualitative description of economic and cultural influences in a landscape 

analysis allows the comparison of distant landscapes experiencing similar anthropogenic 

influences. Further evaluation of such patterns may lead to insight regarding human 

impacts on populations. Human alteration of a landscape, particularly in the agricultural 
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matrix of the SEGP, is unlikely to be reversed. A more appropriate approach to 

identifying conservation needs is to assess the relationship of ecological function 

integrated with social patterns. The framework of landscape ecology and the goals of this 

framework are nested in the relationships of human and nonhuman processes. The matrix 

as a tool for analysis provides the opportunity to assess the link between bat species and a 

dominating land type within anthropogenic landscapes.  

Landscape pattern & the influence on bat populations 

 

Despite the utility of classifying the landscape matrix, solely identifying the 

matrix within a landscape may not sufficiently tell the story of impacts on bat 

populations. The composition, configuration and connectivity of all landscape elements 

are also important landscape characteristics when assessing suitable foraging habitat for 

animals with varying home and foraging ranges. In spite of the importance of quantifying 

spatial patterns to understand pattern-process relationships (Gustafson & Parker, 1992), 

the configuration and connectivity of suitable foraging habitats has seldom been 

addressed in bat ecology literature.  

The seven bat species documented in Wisconsin are known to travel multiple 

kilometers in search of appropriate foraging habitat (Pierson, 1998; Ford et al., 2005). In 

addition, multiple Wisconsin species (Eptesicus fuscus, Myotis lucifugus, Perimyotis 

subflavus) roost in anthropogenic structures such as buildings and bridges (Ford et al., 

2005). Thus, landscape alteration by loss of suitable land cover may have greater 

negative impacts on foraging behaviors reliant on forest and waterways than impacts 

observed on roosting behavior. Land use composition, configuration and connectivity, 

quantified using landscape metrics, and their relationship to bat presence and foraging 
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preference has shown to be highly complex and context dependent (Haines-Young, 2009; 

Hale et al., 2012). Within the field of landscape ecology, a number of concepts and 

quantifiable metrics have been identified to characterize landscape pattern and are useful 

tools in identifying pattern-processes feedback loops such as bat foraging behavior and 

anthropogenic land use change.  

Composition is the simplest component of landscape pattern to quantify. 

Landscape composition simply refers to the abundance and variety of patch types within 

a landscape. For the purpose of this analysis, a patch refers to a connected area of a 

specific land cover type that differs from surrounding landscape elements. Across the 

surveyed aquatic landscapes, proportional abundance of each land cover type, and the 

richness of varying patch types will be determined for each landscape. Quantifying 

composition will help determine minimum habitat availability (e.g. forested or wetland 

land cover) required for bat activity in the SEGP. Despite the utility of landscape 

composition, bat foraging preference cannot be analyzed on composition metrics alone 

(Hale et al., 2012). Unlike landscape configuration and connectivity, landscape 

composition is not a spatially-explicit component to landscape pattern.  

Landscape configuration provides the opportunity to assess the landscape 

elements in a spatial-explicit context.  The configuration of a landscape refers to the 

spatial arrangement, orientation and shape complexity of patches (McGarginal et al, 

2012). A number of metrics have been employed to assess landscape configuration 

including edge density, similarity index, proportion of core area, and radius of gyration, 

all of which will be employed in this analysis. A metric calculating total edge of forested 

patches will test the set of hypotheses aimed to address the forested edge effect on bat 
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activity proposed in the “Hypotheses of Species-Habitat Associations with Landscape 

Characteristics” section of this chapter. Additionally, radius of gyration, or average 

distance traveled in a patch type before encountering a boundary, will be analyzed to 

assess sensitivity of bat species to overall edge effect and patch isolation. The degree of 

contrast of landscape elements is dependent on the species being analyzed. For forest-

obligate species such as Myotis septentrionalis a forested patch bordering an urban patch 

will have a higher level of contrast than for generalist species such as Eptesicus fuscus. In 

this case, the urban patch may function as a barrier to Myotis septentrionalis. Of 

landscape configuration metrics available, a number of metrics, including patch isolation 

and largest patch index, are linked to connectivity of the landscape.  

Landscape connectivity is the most difficult component of landscape pattern to 

quantify. It is likely for this reason that little attention has been devoted to landscape 

connectivity in bat ecology research. For the remainder of this chapter, I will focus on 

existing literature aimed at addressing the influence of landscape connectivity on bat 

habitat selection. Connectivity as a broad concept refers to the joining of species 

communities, habitats, and processes in the disjointed landscape mosaic (Noss, 1991). 

Landscape connectivity is commonly assessed in the context of linear features in the 

landscape, but also refers to any linkage of land that allows movement of individuals. 

The greatest influence on connectivity is seen in anthropogenic alterations and 

homogenization of the structure of a landscape (Noss, 1991). In the SEGP of Wisconsin, 

for example, the predominant land cover type is agriculture, composing nearly sixty 

percent of the landscape. An important step in understanding pattern-process 

relationships of bat foraging in this agriculturally dominated landscape is to quantify the 
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structure of a landscape by describing the size, shape, number, spatial arrangement and 

functional connection of elements, or forest, wetland, developed and agricultural patches 

(Forman and Godron, 1986). Despite the worth of landscape metrics within landscape 

ecology, little focus is aimed at understanding the sensitivity of bat populations to 

connectivity (but see Lookingbill et al., 2010, Hale et al., 2012; Frey-Ehrenbold et al., 

2013).  

The movement between habitat patches and the use of corridors is often a 

function of the value of intervening patches. A landscape corridor is of little use if 

adjacent landscape elements are resisted by bat species. For this reason, a spatial 

approach to quantify the ability of a species to move within a landscape is necessary. 

Characterizing connectivity, in addition to composition and configuration of a landscape, 

avoids the reduction of the landscape within patches to a neutral matrix (McGarigal et al., 

2012). A limitation of simply addressing landscape composition without the 

quantification of landscape connectivity can be seen in Hein et al.’s (2009) study of bat 

use of habitat corridors.    

Hein et al. (2009) conducted a study aimed describing the use of linear forested 

corridors by multiple bat species in a Southeastern United States landscape based on 

surrounding habitat type, edge, presence of roads, and distance to water. They observed 

bat presence along forested corridors to be positively associated with corridor edge, and 

counter to expectations, presence of roads adjacent to forested corridors also positively 

affected corridor use for all species in the study. The main disadvantage of applying their 

results to conservation efforts is the lack of attention in addressing how adjacent patches 

may intervene with functional connectedness of the landscape. Rather, binary habitat 
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descriptions (1 = corridor interior, 0 = otherwise) and Euclidean distance measures from 

corridors to known favored landscape elements (e.g. water sources) were modeled to 

describe corridors and assess connectivity. This binary classification of landscape 

elements does not account for potential influence of adjacent habitat on the perception of 

corridors by bats. Hein’s approach runs the risk of over-simplifying the interactions of 

individuals with the spatial patterns and their ability to facilitate movement within the 

landscape. In actuality, the compositional pattern (which is not spatially explicit and 

refers to number and abundance of patches) is the landscape component being quantified 

in their research.  

Ignoring the connectivity of a landscape can result in incorrectly describing the 

process of bat foraging in a landscape as a function of the pattern of spatial arrangement, 

or landscape configuration. The ability of an individual to move from one suitable habitat 

patch to another will have greatest influence on the survival of the population and its 

ability to avoid predation, reduce energy costs and locate adequate prey. In landscape 

ecology, a functional connection depends on the process being analyzed.  In the case of 

bat activity, the movement and use of connections in a landscape depends on the 

functional traits of the bat species such as size, wing morphology and echolocation 

characteristics (Fukui et al., 2011). Taylor et al. (1993) argued the distance of a resource 

patch from another is not the only factor in determining an individual’s ability to move 

throughout a landscape. They asserted that another important, and often ignored, factor is 

the ability of individuals to reach the resource patches based on biophysical and 

behavioral characteristics (Taylor et al., 1993). For example, the connectivity of patches 
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may be hindered by large open areas that are typically avoided by silver-haired bats 

(Lasionycteris noctivagans).  

Despite Taylor et al.’s (1993) claim, connectivity of habitat patches and the 

influence on bat activity is still primarily being assessed as a function of distance of 

patches (Lookingbill et al., 2010). Recent work by Lookingbill et al. (2010) assessed the 

influence of wetland networks in national parks on bat activity by developing a distance 

metric for wetland network. Similar to the study conducted by Hein et al. (2009), a 

Euclidean distance metric was used to describe the relationship of connected wetlands. 

As Lookingbill et al. (2010) discussed, a factor not addressed in this analysis was the 

heterogeneity of the patches surrounding “connected” wetlands. Integrating the landscape 

matrix into landscape connectivity assessments provides the opportunity to determine the 

influence of a more heterogeneous landscape mosaic by characterizing the surrounding 

land types and their ability to facilitate movement between resource patches. Landscape 

ecology provides the framework to adequately address these questions of landscape 

connectivity and resource availability.  

Given the volant nature of bats, functional connectivity in my analysis will be 

assessed at a maximum dispersal threshold distance. This distance varies as foraging 

distance traveled by bats is species- and context-specific (Lacki et al., 2007). Despite the 

physical ability to traverse large areas, bats may avoid crossing specific landscape 

elements due to unsuitable characteristics (Frey-Ehrenbold et al., 2013). A connectance 

index at the land cover class level will be determined based on significant land cover 

types from the composition analysis per species. Connectivity will be determined at the 

threshold distance 100 meters for each survey location similar to methods used by Frey-
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Ehrenbold et al., 2013. To mitigate the landscape boundary effect, connectivity will also 

be addressed at 100 m distance in the background landscape. The connectivity index will 

aid in determining the ability of bats to move throughout the landscape.  

Behavioral and morphological characteristics of bats in this region and landscape 

ecology concepts were integrated to provide a useable set of hypotheses to assess habitat 

selection in the SEGP. In the following section, species-specific hypotheses are described 

using the landscape metrics defined above. The methodology and results of assessing the 

influence of landscape patterns on bat foraging activity can be found in subsequent 

chapters. 

Hypotheses of Species-Habitat Associations with Landscape Characteristics 

 

Optimal foraging theory, a theory that asserts the evolution of behaviors that 

increase fitness by maximizing the efficacy at which individuals forage, explains the 

great diversity of behavior and diet of bat species and the ability to adjust behavior based 

on available resources (Lacki et al., 2007).  As articulated in prior sections, foraging 

habitat selection is influenced by landscape characteristics such as spatial clutter, 

proximity to roosting location and prey abundance, which are influenced by 

characteristics of individual species such as wing morphology and echolocation calls 

(Pierson, 1998; Avila-Flores & Fenton, 2005). Hypotheses integrating landscape ecology 

concepts were developed based on species-specific morphological and physiological 

characteristics from existing literature and ecological theory (Table 1, 2). The hypotheses 

were designed to predict bat habitat selection in the SEGP. 

A landscape-level analysis of bat foraging habitat allows for the quantification of 

correlation between activity for individual species and land cover types. Threlfall, Law, 
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and Banks (2012) observed species-specific variation in tolerance to anthropogenic 

modification at the landscape scale. Within the urban gradient of Sydney, Australia, the 

authors classified groups of bats based on similar morphological traits that were expected 

to exhibit variation in species-habitat relationships. The most tolerant group of bats to 

urbanization and landscape modification had relatively high wing loading and aspect 

ratio and low frequency echolocation calls (Threlfall et al., 2012). Bats exhibiting similar 

morphological characteristics as these are often categorized by low maneuverability in 

the literature (Lacki et al., 2007). I expect similar groupings of tolerant and sensitive 

species to anthropogenic intensification based on morphological traits and land cover in 

the agricultural landscape of SEGP.  

Activity of large-bodied species in this study should correlate to habitat structure 

(Brooks, 2009). In a study conducted by Francl (2008), similar activity levels were 

observed between eastern red, hoary, and big brown bats at seasonal pools in the northern 

Great Lakes region. These large-bodied species were more active at larger pools which 

were often characterized by low canopy cover compared to relatively small and medium 

sized pools in the study region. This supports the hypothesis that morphology and habitat 

structure influence recorded activity of these large-body species.  

Hoary bats (Lasiurus cinereus), for example, have relatively low maneuverability 

and should utilize more open habitats (Barclay, 1985). I expect hoary bats to be more 

prevalent at lake aquatic habitats versus riparian in the study region due to less clutter 

encountered at these locations. Similarly, agriculture fields should provide more 

navigable habitat for this species. Eastern red bats (Lasiurus borealis) are moderately 

sized lasurines with similar morphological characteristics to the hoary bat. The high wing 
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loading and moderate aspect ratio of this species provides the ability to forage in forest 

gaps and riparian forests (Lacki et al., 2007).  

Additionally, hoary and eastern red bats have shown the ability to benefit from 

manmade structures in foraging habitat selection (Shump & Shump, 1982a). Hickey 

(1990) observed individuals of hoary and eastern red bats concentrating around 

streetlights at a park in Canada. I expect minimal influence of proportion of developed 

land on bat activity based on the tolerant nature of hoary and eastern red bats to 

anthropogenic structures. Finally, larger areas of forested patches should negatively 

influence hoary bat activity due to the low maneuverability of this species. Similar to 

hoary bats, I expect activity of eastern red bats to be negatively influenced by large areas 

of cluttered habitat, such as forested and woody wetland patches.  A landscape with 

greatest diversity of patch types to meet the foraging and foliage-roosting needs should 

contribute to greater activity of hoary and eastern red bats in the SEGP.  

A presence-absence study conducted by Ford and others (2006) determined big 

brown bat (Eptesicus fuscus) presence to be negatively associated with canopy cover. In 

this study, big brown bats preferred open habitat structure to closed or forested habitats. 

Brooks (2009) found similar results using active and passive acoustic surveys in 

Northeastern, USA. These results are consistent with morphological expectations of big 

brown bats, which specialize in foraging in open habitats (Kalko & Schnitzler, 1998). 

However, Duff and Morrell (2007) found the prediction of big brown bat absence to be 

challenging due to the habitat generalist and widespread nature of this species. I expect 

relative activity of this species to be higher than other large-bodied species due to 

flexibility in roosting selection and ability to alter echolocation signals to suit foraging 
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habitat. Landscapes with greatest diversity of habitat types should provide resources for 

all life-history needs and should increase big brown bat activity. 

Ober and Hayes (2008) observed an increase in likelihood of big brown, hoary, 

and silver-haired bats as percent of canopy cover decreased and open area above riparian 

habitats increased. Unlike the larger hoary and big brown bats, silver-haired bats are slow 

in flight and are considered highly maneuverable (Barclay, 1985). Despite minimal 

research conducted, the morphology of this species is designed for foraging in small 

clearings of forested areas.  However, this species relies primarily on coniferous or mixed 

coniferous/deciduous forests to forage (Kunz, 1982). I expect overall activity of this 

species to be minimal because of minute amount of coniferous forest stands in the SEGP. 

I hypothesize activity of the silver-haired bat to be greatest in areas with greatest forested 

and wetland cover, and minimal urban land cover. 

Bats rely on forest edges when foraging for navigational features and shelter from 

predators (Verboom & Spoelstra, 1999). Edge habitats are expected to support higher 

levels of insect prey (Brigham et al., 1997). I expect an overall increase in bat activity as 

forest edge in the landscape increases. Forest interiors are also regarded as highly 

productive insect habitats. In general, I expect bat activity to be lowest in landscapes with 

minimal forest cover. Although forested landscapes provide clutter for larger bats, forest 

interiors and forest edges are important for roosting and other life cycle requirements. 

Varying bat activity has been observed between riparian habitats based on stream order. 

Rivers with fast-flowing water are known to interfere with foraging activity by producing 

noises that disrupt echolocation calls (Grindal et al., 1999). For this reason, I expect bat 

activity to increase as stream order increases.  



34 

 

 

 

Despite the general relation to edge habitat, Broders and others (2006) found 

activity levels of M. lucifugus to be lowest at clear-cut forest edges. This may be due to 

avoidance of open areas for protection from predators. Multiple studies suggest that M. 

lucifugus show a great affinity for water sites due to their opportunistic selection of prey 

(Broders et al., 2004; Broders et al., 2006). I suspect the differences of activity levels 

between lake and riparian survey sites to be minimal because both support higher levels 

of prey the overall high attraction to water (Broders et al., 2006; Fukui et al., 2006;). 

Although minimal research has been conducted on bats in this region, I predicted the 

overall activity of little brown bat to be highest of all species because of flexible roosting 

selection, generalist foraging patterns documented in other areas (Clare et al., 2011) and 

the reliance on aquatic emergent insects for prey (Brooks & Ford, 2005; Dixon, 2012; 

Frick, Reynolds, & Kunz, 2010).  

  M. septentrionalis is a forest-interior specialist (Broders et al., 2006). The small 

body size of M. septentrionalis provides this species the ability to utilize forest canopy 

gaps that are unavailable to larger species (Owen et al., 2003). I expect the overall 

activity of this species to be relatively low because of preferences for foraging in forest 

interiors. Yates and Muzika (2006) observed a decrease in occupancy by this species as 

patch shape increased in complexity. An increase in patch shape complexity can be 

regarded as an increase in habitat fragmentation. Wickramasinghe et al., (2003) 

determined species that were adversely influenced by habitat fragmentation experienced 

similar negative influences from agricultural intensification. Of the landscapes where this 

species is recorded, I expect a negative correlation between relative activity and patch 

shape complexity. Similarly, I expect relative activity of this species to decrease as 
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agricultural land use increases. Because M. septentrionalis is commonly seen foraging at 

forested and wetland landscapes (Lookingbill et al, 2010), I hypothesize a positive 

correlation between largest forested patches and forested wetland patches.  

Species such as eastern pipistrelle (Perimyotis subflavus) have been shown to be 

negatively influenced by greater areas of non-forested land cover in Nova Scotia, Canada 

(Farrow and Broders, 2011). Patchy distribution of this species at the regional scale is 

related to the loss of forested land cover due to anthropogenic change and the negative 

influence this has at the landscape level (Farrow and Broders, 2011). However, in 

acoustic surveys conducted by Brooks (2009) in central Massachusetts, USA, eastern 

pipistrelles were solely recorded in open habitats. As evidenced here, species-habitat 

relationships are context specific; individual bat species present in Wisconsin may be 

influenced differently by landscape composition at varying scales. In addition, bats may 

select suboptimal habitats if preferred habitat is unavailable.  

Eastern pipistrelles have commonly been found roosting in manmade structures in 

addition to the foliage of deciduous forests or clusters of dead pine needles (Perry & 

Thill, 2007). Additionally, forest-edge, riparian forests, and waterways, specifically 

rivers, are important foraging habitats to this species (Fujita & Kunz, 1984; Broders et al., 

2003). I hypothesize an increase in eastern pipistrelle activity with an increase in forest 

edge, wetland, and forested land cover. Despite limited knowledge on eastern pipistrelle 

behavior in this region, I expect the greatest diversity of habitat patches to support the 

greatest activity of this species based on its ability to utilize a range of roosting and 

foraging habitat.  



36 

 

 

 

Avila-Flores and Fenton (2005) suggest avoidance of urbanized areas by smaller 

vespertilionids due to vulnerabilities of low flying (below 12 m) flight habits. I expect 

landscapes with largest urban patches to support the least amount of relative bat activity. 

Despite the ability to coexist in human-dominated landscapes, I expect bats in this region 

to prefer habitats with a mix of vegetation and urban development. Additionally, 

increased anthropogenic pressure and modification of waterways in the SEGP requires an 

assessment of how changes across these landscapes affect bat distribution and richness. 

Identifying habitat selection over numerous scales is imperative to successful 

management of bat populations in Wisconsin. By assessing the influences of landscape 

composition, as well as the spatial configuration and connectivity of landscape elements, 

it is possible to determine the major landscape factors that influence habitat choice of 

insectivorous bats. Understanding echolocation structure of bat species and linking 

species-specific characteristics to landscape structure can provide insight to patterns 

observed in foraging ecology. The hypotheses developed for this analysis were based on 

existing published research conducted in other regions. Due to the limited research 

conducted in the SEGP, a large part of this analysis is exploratory in hopes to expose and 

highlight relationships that may arise out of examining this unique landscape. 
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CHAPTER 3 

ACOUSTIC SURVEY METHODOLOGY 

 

Acoustic bat surveys were conducted in the SEGP as part of the state-wide 

Wisconsin Bat Monitoring Program implemented by the WDNR. The Wisconsin Bat 

Monitoring Program, developed by Wisconsin’s first bat ecologist Dave Redell, created a 

means to estimate bat activity across the state and guide the response to white-nose 

syndrome. This program employs the Wisconsin citizen-based monitoring network to aid 

in the collection of acoustic bat data on land (walking), water, and driving transects. All 

surveyed transects and acoustic methodologies used for this analysis were developed by 

Dave Redell and colleagues at the WDNR, and were employed in efforts to contribute to 

the greater goal of statewide bat conservation. 

Acoustic surveys are beneficial to surveying large areas of land and are critical to 

the field of bat conservation because they contribute expansive information regarding 

taxa that are otherwise challenging to track (Hughes et al., 2010). Acoustic methodology 

has contributed to the understanding of bat ecology by providing a means to measure 

relative bat activity, habitat use and composition of bat communities (Brooks, 2009). 

Acoustic monitoring has expansive applicability in surveying Microchiropteran bats in 

contrast to conventional capture methods, such as mist-net surveys, due to the capacity to 

store large amounts of data (Armitag & Ober, 2010), the flexibility in survey site 

selection, and ability to sample large spatial and temporal extents (Rodhouse et al., 2011). 

Additionally, the ability to record echolocation calls of species that routinely fly outside 
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of the small area sampled by mist-nets allows for a more complete sample (O’Farrell & 

Gannon, 1999).  

For this study, active acoustic surveys along water routes were conducted in the 

months of June and July 2010-2012 to detect summer residents and deter false collection 

of bat migration from wintering sites (Ford et al., 2005; Adam et al., 1994). Assessing 

survey sites over three years accounts for temporal variability in recording probability, as 

bat activity varies between nights and seasons. Lake and river transects were selected 

randomly throughout the SEGP landscape by WDNR biologists using a GIS and the 

WDNR hydrology geodatabase. Surveyed lakes were limited to lakes 0.4 square 

kilometers (100 acres) or larger in size and streams were limited to 4
th

 order and above. 

Site visits of the random survey transects were conducted to assess suitability and access. 

Inaccessible transects were removed from the site selection. This resulted in thirty-six 

accessible, 8-kilometer river and lake survey transects throughout the SEGP.   

Environmental conditions and logistical constraints, such as low water levels, 

prevented the completion of select surveys. Additionally, surveys that were below the 1 

hour minimum, due to faulty equipment or inclement weather, were removed from the 

analysis. Each transect was surveyed once per survey season unless otherwise noted 

resulting in 107 acoustic surveys total for this study: Lake Mendota was surveyed twice 

in 2012 resulting in 4 total survey transects of this lake, Milwaukee River transect was 

not surveyed in 2012 due to lower water levels resulting in 2 surveys for this transect, 

Partridge Lake 2011 survey was removed from analysis, Powers Lake was surveyed 

twice in 2012 giving 4 total surveys, and White Lake 2011 survey was removed from the 

analysis giving 2 surveyed transects total for this lake. 
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Active water surveys were conducted using the Anabat SD2 ® (Titley 

Electronics, Ballina, NSW, Australia) broadband frequency-division ultrasound detecting 

system. Frequency-division detectors allow for the continuous recording of echolocation 

calls of all frequencies while simultaneously synthesizing an audible pulse based on the 

call waveform (Armitage & Ober, 2010). The Anabat detector was connected to a 

personal digital assistant (PDA) during surveys to allow storage of bat calls for future 

processing and to provide real-time view of recordings. This method ensured the proper 

functioning of equipment while in the field. The hand-held Anabat detector and PDA 

were connected to a GlobalSat global positioning system (GPS) receiver that 

automatically recorded the latitude and longitude, date and time of each bat call during 

each survey which was used in subsequent analysis.  

Water surveys were conducted in a boat powered with a trolling motor (if 

possible) for a minimum of one hour while continuously moving at light walking speed 

(mean survey length = 108 minutes). Active acoustic surveys began at civil twilight 

(approximately half hour after sunset) to account for varying emerging times of species 

from roosts (Berthinussen & Altringham, 2012). Acoustic surveys were limited to nights 

with wind speed less than 48 kilometers per hour (30 miles per hour), zero precipitation, 

and when minimum daytime temperature exceeded 10° Celsius (50° Fahrenheit) to 

increase likelihood of detectability. The Anabat detector was held at a 45 degree angle 

above the water surface to reduce obstruction of bat calls from forest edge or faulty 

recordings from reflection of sound off of the water’s surface. The boat was positioned 

approximately 8-23 meters (25-75 feet) from the shore for routes conducted along lake 

shorelines. The boat was positioned in the approximate middle of the river for surveys 
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conducted along river transects. For each survey, start and end weather conditions were 

recorded, including temperature (in degrees Fahrenheit), percent humidity and wind 

speed in miles per hour.  

Three seasons of acoustic survey data (2010-2012) within the Southeast Glacial 

Plains were assessed to determine habitat selection of bats in an agricultural landscape. 

Bat calls, defined as an individual sound pulse emitted by a bat, were recorded using 

acoustic technology and were further identified by 3 WDNR ecologists in the lab. For the 

purpose of this study, a bat pass is a sequence of ≥ 2 search-phase calls emitted by a bat 

separated by < 1 second. Bat calls were examined using Anabat ™ and Analook ™ 

software, and identified using reference calls and voucher calls collected from individuals 

captured in the study region and recorded upon release. Bat passes were analyzed based 

on qualitative characteristics such as call slope and frequency (minimum and maximum) 

for species identification. Recorded calls were categorically assigned to a priori 

groupings, including species, species group, and total bat passes. Additionally, High 

Frequency and Low Frequency groups, separated with a cutoff value of 35 kHz, were 

used if too few calls were recorded, calls were of poor quality, calls did not contain 

search-phase calls, or in cases of general uncertainty. All identifiable bat passes for 

species within this region were saved to determine total relative activity of the region. 

Among 7 bat species known to occur in the SEGP, only Hoary bat and Big Brown 

bat were recorded with sufficient regularity with Anabat detectors to analyze spatio-

temporal variation in activity at an individual species level. Minimal silver-haired bats 

were recorded in this region likely due to their preference for roosting in mature forests 

stands and northern boreal forests, both of which are rare or nonexistent in the SEGP 
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(Cryan & Veilleux, 2007; P. White, personal communication, September 13, 2013). 

Although the range of Eastern pipistrelles and Eastern red bats extends across the state of 

Wisconsin, both are rare occurrences in the SEGP (P. White, personal communication, 

September 13, 2013). Similar species, such as Myotis lucifugus and Myotis 

septentrionalis can be difficult to differentiate confidently on some recordings and are 

often identified at the genus level and assigned to species groups in the literature 

(Armitage & Ober, 2010; Berthinussen & Altringham, 2012). To avoid misidentification, 

these two Myotis species were combined to form a Myotis spp. group for the purpose of 

this analysis. The Hoary bat and Big Brown bat relative activity were analyzed on the 

individual species level. All identified bat passes at the species, species group and 

frequency group levels were totaled to develop an overall relative bat activity at each 

survey site.  

A relative activity index for the Myotis spp. group, Big Brown Bat, Hoary bat, and 

total bat activity were calculated for each survey. The number of “bat passes” 

standardized by the length of the survey in minutes was used as a relative measure of bat 

activity between survey sites and years. No assumptions were made of total bat 

abundance measurements, rather the relative activity index provides a means to compare 

foraging activity between transects of varying lengths to determine desirable habitat 

characteristics.  

LANDSCAPE & ENVIRONMENTAL VARIABLES 

 

Landscape composition, configuration and connectivity variables were derived to 

describe habitat using a land cover dataset at the landscape level for each survey site. The 
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land cover data source for this study was the National Land Cover Dataset (NLCD) 2006 

(Fry et al., 2011). This dataset is a publicly available, hierarchical, 16-class raster derived 

from Landsat Enhanced Thematic Mapper+ 2006 satellite imagery at 30 meter resolution.  

The raster data layer was resampled to the Level I classification for all land cover types, 

except wetlands, which were resampled to Level II resulting in nine land classes: open 

water, developed, barren, forest, shrubland, grassland, agriculture, woody wetlands, and 

emergent herbaceous wetlands.  

The appropriate scale of analysis in determining the relationship of bat activity 

with landscape elements is species-dependent based on morphology, behavior and 

ecological differences (Gannon et al., 2003; Avila-Flores and Fenton, 2005; Barclay and 

Kurta 2007; Dixon, 2012). The distance traveled to forage and size of home ranges of 

Wisconsin bat species is unknown due to the plasticity of bat behavior. Of the seven bat 

species documented in Wisconsin, foraging distance observed in other regions for 

individual species ranges nearly four kilometers. The documented minimum foraging 

distance based on radiotelemetry studies of 16 M. lucifugus individuals is one kilometer 

(Broders et al., 2006).  Brigham (1991) determined the mean foraging distance for big 

brown bats (Eptesicus fuscus) in British Columbia to be 1.8 kilometers based on 163 

radio-tracked individuals. The majority of individuals from this study commuted at 

distances ranging 1.0 – 1.5 kilometers. However, this same study determined the mean 

commuting distance of big brown bats in a different geographic location (Ontario, 

Canada) to be less than 1 km (Brigham, 1991). It is clear that known foraging distances 

vary based on species and geographic location. For this reason, landscapes at multiple 

scales were assessed in efforts to adequately correlate relative bat activity with landscape 
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and environmental variables. Buffers at 500 m and 1 km scale were defined using 

ArcGIS 10.0 (ESRI, Redlands, USA) and used to extract the NLCD 2006 land cover data 

around each survey site.  

The proportional abundance of the nine land cover types for each survey site was 

calculated using FRAGSTATS v. 4 computer software (McGarigal et al., 2012) to allow 

comparison between survey sites of different areas. Additional composition, 

configuration and connectivity variables (Table 3) were calculated to gain a better 

reflection of the landscape and address the hypotheses. All ecologically relevant 

landscape metrics, including largest patch index (LPI) of wetlands, patch richness density 

and forest edge density (ED), were calculated for each survey site based the NLCD 2006 

dataset of the landscape using FRAGSTATS v.4.  

STATISTICAL ANALYSIS 

 

Initially, an independent sample group t-test was conducted in IBM SPSS 

Statistics for Windows (IBM Corp., 2012) to determine if patterns of selection differ for 

each analysis group between lake and river habitats. To test the null hypothesis of equal 

relative bat activity between lake and river survey transects, an independent group t-test 

was conducted to determine whether there was statistically significant variation in total, 

hoary, big brown, and Myotis spp. activity between transects conducted at lake habitats in 

the SEGP and transects conducted at river habitats for all 3 years.  

A multiple linear regression (MLR) model was built to investigate the relationship 

between relative bat activity and landscape composition, configuration and connectivity, 

and the effect of other environmental variables (e.g., temperature, elevation). First, the 
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linear relationship between Myotis spp., Big Brown, Hoary, and total bat activity and 

landscape variables were assessed using curve estimation in SPSS. All variables 

exhibited a linear relationship with bat activity and were determined appropriate for MLR 

analysis. A correlation matrix was calculated in SPSS to determine which landscape 

variables were significantly correlated with bat activity at the 0.05 α-level (Appendix B; 

Appendix C). Insignificant variables were excluded from the MLR analysis.  

A MLR analysis using only significant explanatory variables was conducted in 

SPSS using the stepwise method which re-checks the significance of variables after 

entering new independent variables. Transect routes were assumed to be independent. All 

explanatory variables included in the MLR models were tested for assumption of 

multicollinearity using variance inflation factor (VIF). A VIF less than 5 was deemed 

acceptable for this analysis, indicating minimal inflation in the standard errors associated 

with coefficient weights. Significance of the model slopes were assessed using Analysis 

of Variance (ANOVA) f test. The H0 : i = 0 was tested to determine if at least one of the 

MLR model coefficients does not equal zero. All ANOVA f tests were significant 

allowing me to reject the null hypothesis, indicating a true relationship between 

explanatory variables and bat activity, HA: i  ≠ 0. Goodness-of-fit of the multiple 

regression models were assessed using coefficient of determination, or r
2
. 

 Some of the resulting relationships in the MLR models, although significant, were 

weak and indicative of non-linear associations. Therefore, for all analysis groups, 

ANOVA Regression Tree analyses were conducted to expose these non-linear 

relationships. This was performed using the rpart package (Therneau et al., 2013) in the 

R statistical environment (R Core Team, 2013). Regression Trees are particularly useful 
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for revealing non-linear relationships, such as threshold effects, and are often called upon 

in the literature to increase model fitness (Lloyd et al., 2006; Threlfall et al., 2012). 

Regression Tree model results display data as a dendogram, illustrating the thresholds, or 

binary splits, in the data structure.  

Finally, a hot spot analysis, or Getis-Ord Gi*, was conducted in ArcMap 10.0 to 

test whether particular survey transects and surrounding areas have higher than average 

relative species richness. The Getis-Ord Gi* analysis was selected because of the ability 

to determine statistically significant clusters of high and/or relative bat activity between 

survey sites. The results of the Getis-Ord Gi* analysis were mapped and spatial locations 

of hotspots of bat activity within the study region were assessed.  
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CHAPTER 4 

BAT ACTIVITY RESULTS 

 

Acoustic surveys were conducted along lake and river transects for three 

consecutive summers in the SEGP. Recorded bat calls were used to calculate bat activity 

for 4 analysis groups to test species-specific hypotheses relating activity to landscape 

structure. Bat activity was calculated for four analysis groups/species: Total bat activity, 

Myotis spp., Hoary bat, and Big Brown bat. Recorded Myotis spp., Hoary and Big Brown 

activity were not equally proportioned throughout the SEGP. Myotis spp. and Big Brown 

bat activity composed the majority of passes analyzed in this research, supporting my 

hypotheses of greater activity of generalist species (Figure 2).  

Bat activity was monitored 107 nights during June 1 – July 31 of 2010-2012. Bat 

calls were recorded for a total of 193 hours resulting in 28,148 recorded bat passes, of 

which 72.9% were classified into the three species groups studied in this analysis. 

Lasiurus borealis (Eastern red bat), Lasionycteris noctivagans (Silver-haired bat), and 

Perimyotis subflavus (Eastern pipistrelle) were also recorded but were not analyzed due 

to limited identifiable passes. Hoary bats accounted for only 4.6% percent of total calls 

identified to species group, Big Brown comprised 23.5% percent, and Myotis spp. 71.9% 

percent. There were twenty-six nights in which the Hoary bat was not recorded. The 

Myotis spp. group was recorded during 106 of the 107 surveys, and Big Brown bat calls 

were absent on just 3 nights (Table 4).  
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Comparison of Total Bat Activity between Lake & River Transects 

 

To test my 2
nd

 hypothesis contrasting activity between lakes and rivers, I 

compared recorded bat activity between surveyed aquatic transects. The mean total bat 

activity between lake and river survey segments varied greatly in this study region (lake 

 = 1.42, river  = 3.77; Figure 3). An independent group t-test was selected to test 

whether this difference in mean activity was statistically significant between lake and 

river survey transects in the SEGP. This test strongly supports my hypothesis by 

indicating significantly higher bat activity at surveyed river habitats than lake habitats 

(Table 5). As expected, mean relative Hoary, Big Brown and Myotis spp. activity at river 

survey segments was also significantly higher than recorded activity at lake habitats 

(Figure 4).  

Patterns of Landscape Composition, Configuration & Connectivity in SEGP 

 

Landscape composition metrics are the simplest landscape metrics to calculate 

and refer to the number and proportion of land cover patch types in a landscape. The 

agricultural matrix dominant over the SEGP region as a whole is also dominant at the 

smaller, 1 km landscape scale (Table 6). Agricultural lands at 1 km landscapes compose 

nearly 27% of land area on average, with riverine habitats having the greatest proportion 

of agriculture at approximately 38% (Figure 5). Lake landscapes, in addition to riparian 

habitats, in the SEGP are also heavily modified by human uses. The landscape 

surrounding lakes at 1 km scale are dominated by urban lands (  = 19.54%), followed 

closely by agricultural land use (  = 18.39%). Forests, woody and emergent wetlands are 

minimal surrounding lakes in this region as most were converted to residential and 
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recreational uses. Wetlands are proportionally more prevalent at riparian habitats than 

lakes within the SEGP. Emergent herbaceous wetlands and woody wetlands each 

comprise an average of 14.6% of the riparian landscape at a 1 km scale. Forest and 

wetlands cover types are represented equally (approximately 10% of landscape each) 

throughout the SEGP when considering total survey sites in the analysis. These 

nonhuman land uses composes an average of 30% of the landscapes surrounding aquatic 

survey sites at the 1 km scale, which may potentially indicate a large influence of 

anthropogenic use on bats in this region.  

A LPI was calculated for forest, agriculture, developed, woody and emergent 

wetland land classes. LPI describes the percentage of the landscape that is composed of 

the largest patch of the class of interest. This index is particularly useful because it 

provides a simple measure of dominance in the landscape and allows comparison 

between landscapes of different sizes. Additionally, LPI provides a means to compare 

fragmentation between landscapes of similar land class proportion. For example, 

developed lands are equally abundant (~9%) at surveyed Lake Beulah and Partridge Lake 

transects. The largest developed patch at Lake Beulah composes 4% of the landscape, 

whereas at Partridge Lake, the largest developed patch composes 9% of the landscape 

(Figure 6). Thus, developed patches in the Lake Beulah landscape are more fragmented 

than at Lake Partridge despite equal abundance.  

Fragmentation of developed lands is variable between lake and river habitats in 

the SEGP. Lake habitats have larger continuous patches of developed land on average 

than riverine habitats or survey sites as a whole (Figure 7). The largest dominant 

developed patch of all survey sites composes 56.6% of the landscape at 1 km scale. This 
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occurs at Little Lake Butte des Morts in Winnebago County, a lake that is dissected east 

to west by four-lane U.S. Highway 10, with Menasha and Neenah cities bordering the 

eastern and southern banks. The lake is connected by the Fox River to the largest 

freshwater lake completely within Wisconsin’s boundaries, Lake Winnebago, from which 

it receives its inflow as a part of the Fox-Wisconsin Waterway. Despite the connectivity 

within a network of lakes, Little Lake Butte des Morts is bordered by a continuous patch 

of developed lands. The dominance of development within this landscape likely 

contributes to the lake’s highly degraded state (WDNR, 2013a, draft). The degraded use 

and continuity of urban uses may make this landscape unsuitable to bats.  

In contrast, the survey location with minimal dominance of developed land cover 

at 1 km scale is a Fox River segment south of Little Lake Butte des Morts in Green Lake 

County. This segment of the Fox River has a developed LPI of 0.97%, meaning the 

largest urban patch composes less than one percent of the landscape. The Fox is the 2
nd

 

largest river in area in the SEGP, and also connects Lake Butte des Morts and Lake 

Winnebago, two of the largest lakes in the region. As evidenced at Little Lake Butte des 

Morts, the Fox River becomes progressively more developed as it flows northeast 

connecting these waterways (developed LPI Lake Butte des Morts = 6.3%; Lake 

Winnebago = 9.9%).  

The majority of riverine sites within the SEGP are dominated by agricultural 

lands with an average LPI of approximately 18% (Figure 7). At its maximum, agriculture 

land dominates riverine habitat at 1 km scale by composing 71.1% of the landscape with 

a single patch. This intense agriculture use occurs along a Crawfish River segment 

surveyed in 2011 in Dodge County. As of 2002, Dodge County had the 3
rd

 highest 
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percentage of agricultural land in the region (WDNR, 2013a, draft). In comparison, lake 

habitats have a maximum agriculture LPI of 27.2%, which suggests rivers have a much 

greater connection to agricultural lands. Similar patterns are seen when comparing 

agriculture edge between surveyed lake and river habitats at 1 km scale in the study 

region. The mean agriculture edge density (ED) at river segments was 53.2 

meters/hectare while lake habitats had a mean agriculture ED of 33.8 m/ha.  

There is nominal difference in forested land dominance between lake and river 

habitats despite dissimilarities in agriculture and developed landscape structure. Similar 

forest LPI and forest edge between lakes and river may provide the opportunity to assess 

effects of adjacent developed and agriculture lands to these habitats, which are the 

dominant classes at lakes and rivers respectively. The mean forest LPI at all surveyed 

transects is 2.52%, signifying a much weaker dominance relative to agriculture and 

developed lands. A surveyed transect along Rock River had the largest dominant forested 

patch with an LPI of 14.16%. The Rock River is characterized as a warm water stream, 

owing to pond and dam construction, and is classified as impaired within the state due to 

point source pollution. Despite this, the Rock supports prominent invertebrate diversity 

and flows through significant forested lowlands relative to the rest of the region, 

potentially providing prime habitat to bats (WDNR, 2013a, draft). Forest ED at lake 

habitat is comparable to the amounts of agricultural edge in this landscape (forest ED  = 

34.7 m/ha; agriculture ED  = 33.8 m/ha). A high amount of forest edge relative to the 

low proportion and LPI in the landscape signifies multiple small, irregular forested 

patches as opposed to larger, compact (maximally square) and continuous forested 

patches.  
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Landscape continuity is a numerical measurement of the traversability of a 

landscape to the organism of interest. In other words, landscape continuity provides an 

average distance (in meters) that an organism can travel within the landscape while 

staying in a single patch type. Landscapes with larger, less compact patches will provide 

a greater landscape continuity distance. Average landscape continuity for all survey sites 

is 755.8 meters at 1 km scale (Table 6). In the SEGP, lake landscapes are more 

continuous than riverine habitats, with Lake Mendota in Dane County and Lake 

Koshkonong in Jefferson County having the greatest traversability at 1 km buffer. Lake 

Mendota is primarily a residential lake, surrounding by a heavily developed matrix at 1 

km scale. Despite the high continuity of the landscape, the developed matrix may not 

provide suitable foraging habitat for bats.  

To address the issue of generalized landscape continuity, a connectance index was 

calculated for emergent herbaceous and woody wetlands. At 1 km scale, connectivity of 

wetlands is minimal, with an average of 2.7% of woody wetlands having functional 

joinings, and 3.4% of emergent wetlands at all surveyed sites. A similarity index was also 

calculated for the wetland classes and forested land cover. The similarity index takes a 

less binary approach at assessing the fragmentation of a landscape than the connectance 

index by analyzing all surrounding land types. The similarity index increases as the 

landscape is increasingly similar to the focal patch and less fragmented in distribution. At 

the 1 km scale, riverine habitats have a greater average similarity index of forested 

landscapes; in contrast, landscapes surrounding lakes are more similar to wetland 

features. Exploring landscape structure at survey sites has provided some insight as to 

why variability in total bat activity is evidenced between lake and river habitats. 
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Additional hypotheses were explored as a result of these dissimilarities in subsequent 

sections.  

MLR Results of Landscape Characteristics on Total Bat Activity 

 

Total relative bat activity at all surveys sites from 2010-2012 were correlated with 

the explanatory variables (Table 3) to determine linear relationships of foraging activity 

and habitat characteristics. Significant linear relationships at the α-level of 0.05 were 

observed for composition, configuration and connectivity explanatory variables at a 1 km 

scale with total relative bat activity (Appendix B). None of the Environmental Variables 

had significant linear relationships with total bat activity. Variables that were 

significantly correlated with total bat activity at a 1 km scale were entered into a MLR 

model to determine habitat associations. The VIF indicated that no assumptions of 

multicollinearity were broken for this and all subsequent MLR models. ANOVA F test 

showed that all MLR model slopes included in this analysis were significant.  

The results of the MLR model indicated landscape composition, specifically 

proportion of land cover, as having the greatest influence on predicting total bat activity 

at all surveyed sites with an overall model fitness of r
2
 = 0.584.  At the 1 km landscape 

scale for 2010-2012, total relative bat activity is influenced greatest by nonhuman land 

classes – forest, woody and emergent wetlands – indicating an increase in bat activity as 

proportion of forests and wetlands increase (Table 7; Appendix H). Landscape continuity 

and proportion of agriculture have a weaker, although still positive, influence on total bat 

activity. Despite initial predictions, emergent herbaceous wetland similarity index 

negatively influences total bat activity at this scale with a coefficient of -0.321. This 



53 

 

 

 

linear regression model determined that while bat activity increases as proportion of 

emergent wetlands in the landscape increase, an increase in neighborhood similarity to 

emergent wetlands negatively influences total activity.  

The relationship of activity and assumed foraging habitat was also assessed at a 

500 m scale by conducting a correlation analysis between explanatory variables and total 

bat activity (Appendix C). Similar to the correlation results at a 1 km scale, none of the 

Environmental Variables were significant at the 0.05 α-level for total relative bat activity. 

The relationship of patch richness density (number of patches/100 hectares) is 

significantly correlated at a 500 m scale although a relationship is not observed at a 1 km 

scale with total relative activity. All significantly correlated explanatory variables were 

entered into a MLR model to determine habitat associations of total bat activity at a 500 

m landscape scale.  

The coefficient of determination, indicating the percentage of variation that is 

explained by the linear model, showed that greater than 60% (r
2 

= 0.605, 21.696, 

p<0.001) of variability in total bat activity was explained by the 500 m MLR results. This 

improvement of model fitness at the 500 m scale suggests that landscape structure better 

explains overall bat activity across the landscape at smaller scales. Proportion of woody 

wetlands had the highest significant positive regression weights under this model, 

indicating landscapes with higher proportion of woody wetlands at a 500 m scale are 

expected to support higher levels of relative total bat activity. Proportion of agricultural 

lands, forested lands, emergent herbaceous wetlands, and patch area variability 

significantly positively influenced total bat activity while controlling for other variables 

in this model (Table 8). Despite the strong positive association of total bat activity with 
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proportion of woody wetlands, the model indicates activity will decrease as the largest 

patch index of woody wetlands increases after accounting for landscape proportion. This 

suggests that large, continuous areas of woody wetlands restrict bat activity while 

smaller, dispersed areas of wooded wetlands increase presence of bats in the landscape.  

Species-Specific MLR Results with Landscape & Environmental Variables 

 

Myotis spp., Hoary, and Big Brown relative activity recorded during acoustic 

surveys conducted 2010-2012 were correlated with explanatory variables at a 1 km and 

500 m landscape scale. Multiple regression models predicted significant explanatory 

variables between the relationships of relative bat activity to landscape structure. 

Regression model results prompted secondary hypotheses and further analyses, including 

alternative model approaches, exploration and spatial analyses.  

Myotis spp. Relative Bat Activity 

 

The correlation analysis determined landscape composition, configuration and 

connectivity explanatory variables to be significantly correlated with Myotis spp. activity. 

Similar to total bat activity correlation results, none of the environmental variables were 

statistically correlated with Myotis spp. activity. The results of the step-wise MLR model 

explained 44% of the variability of Myotis spp. activity across the study region (F = 

27.020, p <0.001; Table 7), and indicated significant model effect of proportion of woody 

and emergent herbaceous wetlands, and developed LPI on Myotis spp. bat activity 

(Appendix I).  Proportion of woody wetlands had the highest coefficient ( = 0.429. 

p<0.001) under this model, indicating an increase in Myotis spp. activity as proportion of 

woody wetlands increase. Interestingly, proportion of emergent herbaceous wetlands at a 
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1 km scale negatively influences Myotis activity in this same model, as does an increase 

in largest developed patch size (LPI). The remaining explanatory variables were not 

strong predictors and were not included in the final regression model to explain the effect 

of landscape-level habitat structure on relative Myotis spp. bat activity at 1 km scale.  

The MLR model of Myotis activity at a 500 m scale provided varying results with 

lower model fitness (r
2 

= 0.350, F = 28.048, p<0.001) than the 1 km model (Table 8). 

These results are in opposition with effect of scale observed for MLR results of total bat 

activity in the landscape. Proportion of woody wetlands and agricultural land positively 

influence Myotis activity at this scale, with proportion of woody wetlands having a 

stronger effect.  

Hoary Relative Activity 

 

 A correlation analysis determined eleven explanatory variables to have a 

statistically significant linear relationship with Hoary activity at both 1 km and 500 m 

scales (Appendix B, C). The linear regression model for relative hoary activity at 1 km 

scale determined the proportion of woody wetlands to have the strongest positive 

influence ( = 0.438, p<0.001; Table 7). This result is similar to Total and Myotis spp. 1- 

km linear regression results in which woody wetland proportion was the most influential 

explanatory variable in these MLR models. Distance to major roadway and proportion of 

emergent herbaceous wetlands also positively influence hoary bat activity, indicating an 

avoidance of landscapes dissected by highways. The 1 km linear regression model 

explains 44.2% of the variability in relative hoary bat activity (F=27.202, p<0.001).  



56 

 

 

 

Model fitness of linear regression results at the 500 m scale are comparable to the 

1 km results, with an r
2 

of 0.424 (F= 25.657, p<0.001). However, woody wetlands LPI ( 

= 0.372, P = 0.021) was determined to be the greatest influence of hoary bat activity at 

the 500 m scale as opposed to proportion of woody wetlands (Table 8), indicating a 

greater effect of fragmented patches in the landscape. Under this same model, agriculture 

edge density and landscape continuity negatively influence hoary bat activity, which is in 

contrast with the positive association of Total, Myotis, and Big Brown with agriculture 

proportion. 

Big Brown Bat Relative Activity 

 

 The MLR model assessing the relationship between relative Big Brown activity 

and habitat characteristics at 1 km scale explained minimal variability (r
2 

= 0.299, F= 

14.676, p<0.001); the model fitness of the regression model at 500 m explained 37% of 

the Big Brown activity variability (F= 14.960, p<0.001) within the SEGP. The Big 

Brown 1 km model results differed from the other three analysis groups in that woody 

wetland proportion did not contribute to the model. The emergent wetland similarity 

index had a significant negative weight, indicating a decrease in Big Brown activity as 

the neighboring patches of emergent wetlands increase in similarity. Under this same 

model, the proportion of emergent wetlands and forest core positively influences Big 

Brown activity. However, the model did not produce an acceptable goodness-of-fit to 

justify management practices based on the results.  

 At a 500 m scale, four explanatory variables were included in the model to best 

explain variability of Big Brown activity within the landscape. Forest core area, 
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proportion of woody wetlands, agriculture, and emergent wetland LPI all positively 

influence Big Brown relative activity. These results are similar to Total and Myotis 

results in that the increase of proportion of woody wetlands and agriculture in the 

landscape at a 500 m scale also positively influences Big Browns at the same scale. 

Despite the increase in r
2 

at 500 meter buffer, the model fit is still below an acceptable 

range, indicating the need to explore alternative modeling approaches.  

Species Richness at Surveyed Lakes & Rivers in SEGP 

 

Species richness varied greatly throughout the study region. The lowest recorded 

species count at a study site in any given year was two species which occurred during 14 

of the 107 surveys. Of these 14 sites, only 3 were at riverine habitats and the remaining 

were lakes surveys within the SEGP. Additionally, the two recorded species at 13 of 

these sites were Myotis spp. and Big Brown bats, which indicates a more generalist nature 

of these species compared to Hoary, Silver-haired, Eastern Red, and Eastern Pipistrelle 

bats in the region. During the surveys conducted from 2010-2012, only one survey 

recorded all seven bats known to Wisconsin. This survey transect was along the Rock 

River in Rock County, Wisconsin in 2012 with a total relative bat activity of 4.52 bat 

passes per minute.  

The species richness of a given survey only tells part of the story. The varying 

lengths in minutes of the acoustic surveys conducted require the standardization of 

number of species by survey time in order to compare between surveys. Species richness 

per hour was calculated based on the total hours each survey was conducted. When 

assessing species richness per hour, the Rock River survey conducted in 2012 has the 2
nd
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highest number of species recorded per hour of all three survey seasons. This suggests 

that the seven species recorded at Rock River 2012 is a true pattern of high species 

richness and not a result of survey length.  

Similar to total species richness, the survey sites with less than one species 

recorded per hour all occurred at lake habitats. Upon further investigation using an 

independent sample group t-test, riverine habitats (2.69 ± 0.87 species per hour) had 

significantly higher species richness per hour in 2010-2012 than lake habitats (1.97 ± 

0.74 species per hour) during the same time period in the SEGP (Figure 8). The 

significant variability between surveyed aquatic sites indicates the need to further explore 

the landscape structure and environmental conditions contributing to these patterns of 

relative activity between lake and river habitats in the SEGP.  

Locations of relative species richness outliers in the data are likely attributed to 

temporal variability and not true patterns of high species richness. July of 2011 saw 

greater species richness at Lac La Belle, Como, Partridge, and Big Cedar lakes. The 

higher species richness was likely due to warmer than average temperatures during July 

compared to historical averages. The mean species richness of these lakes for all years 

falls within the normal range. This supports the need to assess patterns over multiple 

seasons due to the between season variability.  

Spatial Analysis of Species Richness in SEGP 

 

A hot spot analysis was conducted (Getis-Ord Gi*) in ArcMap 10.1 to test 

whether particular survey transects and surrounding areas have higher than average 

relative species richness. The Getis-Ord Gi* analysis identified spatial patterns of 
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relatively high species richness within the study region, with the northern reach and the 

southern-most portion of SEGP having significantly higher relative species richness 

compared to the average of the entire region (Figure 13). This hotspot analysis identified 

a both Wolf River survey transects in Waupaca County and Sugar and Rock River survey 

transects in Rock County as supporting relative species richness between 1 and 2 

standard deviations above the mean. Survey sites with significantly lower relative species 

richness are more dispersed in the region. The Getis-Ord Gi* analysis indicated 4 survey 

locations to have an average relative species richness less than 2 standard deviations of 

the mean, all of which occur at lake habitats in the region. These results are consistent 

with my analyses of bat activity between lake and river habitats.  

MLR Analyses Results of Bat Activity between Lake & River Survey Sites 

  

Following the primary analyses, disparities were evidenced in between lake and 

river landscape composition, configuration and connectivity in the SEGP. Analyses 

suggest that the relationship between relative bat activity and habitat characteristics may 

differ between the two aquatic habitats. Additional correlations and multiple regression 

models were conducted to assess relative bat activity at lake and riverine habitats 

independently in efforts to further understand habitat-bat activity connections.  

MLR Results of Relationship between Bat Activity and Lake Habitat 

 

 Similar to the multiple regression models analyzing river and lake survey sites 

simultaneously, models assessing differences between the surveyed aquatic sites provides 

equivalent results for both total bat activity and Myotis spp. analysis groups. Proportion 
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of woody wetlands and mean elevation were determined to significantly influence total 

and Myotis relative activity at surveyed lake habitats at 1 km scale (Table 9a). Mean 

elevation of the landscape surrounding lake waterways is the greatest influence of bat 

activity in these models (total:  = 0.535, p<0.001; Myotis spp.:  = 0.545, p<0.001). 

Woody wetland proportion also positively influences total and Myotis activity at lake 

habitats with regression coefficients of 0.255 and 0.243, respectively. Model results 

assessing all survey sites indicated similar results of the relationship of woody wetland 

proportion to bat activity at both scales of analysis. 

Multiple scale analyses were also conducted when contrasting habitat selection 

between lake and river habitats. Comparatively, multiple regression model results 

differed minimally at the varying scales (1 km vs. 500 m) for total activity at surveyed 

lake sites. Total relative bat activity at lake habitats is also influenced by proportion of 

woody wetlands and mean elevation at 500 m scale (Table 10a). Despite the similar 

significant regression coefficients between 500 m and 1 km models, greater variability of 

total bat activity at lake habitats can be explained at 500 m scale with a model fitness of 

r
2
 = 0.495.  

Results for Myotis spp. 500 m regression models provided an increase of model 

fitness at lake habitats compared to the 1 km model (Table 10a), with r
2 

= 0.491. Under 

this model, Myotis spp. are positively influenced by the core area of woody wetlands, or 

proportion of wooded wetlands minus edge, at the 500 m scale, as opposed to total 

proportion woody wetlands in the landscape. Similar to the 1 km scale model, mean 

elevation is also the greatest indicator of Myotis spp. relative activity at 500 m scale. 
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Relative activity of Myotis spp. is expected to increase as the average elevation 

surrounding surveyed lakes increases in the SEGP.  

 Lake model results for both Hoary and Big Brown relative activity did not explain 

a great amount of variability at either 1 km or 500 m scales (Table 9a, 10a). None of the 

explanatory variables were included in the MLR models to significantly explain Big 

Brown activity variability at lake habitats. Additional model approaches may be 

necessary to better understand Big Brown activity at lakes in the SEGP. Models 

explaining the relationship of Hoary bat activity and habitat structure at 1 km and 500 m 

scales indicated a significant positive influence of maximum wind speed on relative 

Hoary activity surveyed at lake habitat sites. Based on these model results, hoary activity 

is expected to increase as the maximum recorded wind speed during an acoustic survey 

increases. However, it is important to note the low R-squared values for Hoary bat 

models, indicating the need to further investigate the habitat-bat activity relationship.  

MLR Results of Relationship between Bat Activity and River Landscape Structure 

 

 Relative bat activity was also assessed for each analysis group using survey 

results conducted at river habitats. Greater hoary relative bat activity can be explained 

using MLR models at riverine habitats as opposed to lake habitats. Under this model, 

agriculture edge density is the single significant influential variable on Hoary activity at 1 

km scale ( = -0.675, p<0.001; Table 9b). Woody wetland LPI was determined to have 

the greatest influence of Hoary activity at the 500 m scale, while agriculture edge exhorts 

slightly weaker influence on activity at this scale (Table 10b). The greatest amount of 

variability of relative Hoary activity at rivers within the SEGP can be explained at 1 km 
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scale (r
2 

= 0.455, F = 37.598, p<0.001), with Hoary bat activity increasing as agricultural 

edge decreases.  

 Model results explaining the relationship of Big Brown activity to habitat 

characteristics provided improved results when assessing riverine habitats. At the 500 m 

scale, Big Brown bat activity is expected to increase as proportion of developed lands 

decreases and core forest area increases (Table 10b). Under this model, percent of core 

forested lands has the greatest effect on relative Big Brown bat activity at river habitats 

with a model coefficient of 0.516 (p<0.001). The regression model predicting Big Brown 

activity at riverine sites 1 km scale accounts for 36.9% variability. The forest similarity 

index positively influences bat activity while developed LPI exhorts a negative effect at 

this scale. Under both models, derivatives of forested and developed lands are the 

greatest influential variables on Big Brown activity at riverine survey sites.  

 In contrast to MLR model results for total and Myotis spp. at lake habitats, bat 

activity for these analysis groups at riverine habitats proved to be more difficult to model 

based on R-squared values. At 1 km scale, total bat activity is negatively influenced by 

proportion of developed land use in the landscape and positively associated with forest 

similarity index (Table 9b). In this model, total bat activity is expected to decrease as 

rivers become more developed and less similar to forest habitat in structure and function. 

As the landscape size decreases, developed lands is the only explanatory variable that 

significantly explains total bat activity (table 10b), however greater activity variability is 

explained at the 1 km scale for total relative activity at riverine habitats.  
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 The MLR model analyzing the relationship of Myotis spp. relative activity at 

riverine habitats in 1 km landscapes best explained bat activity variability with an R-

squared value of 0.352 (Table 9b). Developed LPI and forest similarity index 

significantly influence Myotis spp. activity under this model, with  = -0.406, p=0.002 

and  = 0.353, p =0.007 respectively. Proportion of developed lands and landscape 

continuity were determined to significantly influence Myotis spp. activity at the 500 m 

scale (Table 10b). Under both 500 m and 1 km Myotis spp. models, developed lands 

negatively influence activity at riparian habitats. 

Regression Tree Analyses 

 

As discussed in Chapter 3, linear models, although significant, predicted weak 

relationships between habitat characteristics and relative bat activity. These findings 

suggest that nonlinear model approaches may be more appropriate to explain habitat-bat 

activity associations. Regression tree analyses were employed to determine potential 

threshold effects of landscape structure, and to achieve improved model fitness of the 

relationship between bat activity and habitat. A primary benefit of regression trees, 

specifically in ecological modeling, is there is no implicit assumption of linear 

relationships between explanatory and dependent variables. Results are displayed in a 

hierarchical manner, indicating binary splits of influential variables which highlight 

threshold effects within the data. Because the model results are in hierarchical form, 

explanatory variables at the top of the dendogram signify most influential variables in 

model. The binary splits are interpreted in a “true or false” manner. If condition is true, 

proceed to left branch of the node, otherwise proceed right. Values at the base of each 

node (vertical lines) represent mean bat activity for each threshold effect.  
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Regression Tree Analyses of Relative Bat Activity at All Surveyed Transects 

 

ANOVA Regression Tree analysis for Total relative activity at all sites 

determined developed LPI to be the greatest influential variable at 1 km scale (Figure 9). 

A developed LPI ≤ 5.1% is expected to contribute to a mean 3.795 bat passes per minute. 

In contrast, a developed LPI greater than 5% contributes to the decrease of total bat 

activity under this model. Elevation is the 2
nd

 greatest influential variable contributing to 

higher total bat activity at 1 km scale. Landscapes where largest patch of developed land 

makes up less than 5% and average elevation less than 235 meters support the highest 

level of total bat activity at all sites (5.763 bat passes/minute).  

The regression tree results are dissimilar from MLR results for total activity at all 

sites. Developed LPI was not considered a significant influencing factor of total activity 

in the MLR models, instead proportion of developed lands was determined to have a 

negative influence. Additionally, woody wetlands, the explanatory variable with greatest 

effect in MLR, were not included in the regression tree model. The R-squared of the 

regression tree model improved relative to MLR by explaining 66.23% of total bat 

activity variability at 1 km scale in the SEGP. This indicates potential threshold 

relationship of developed lands and elevation, as opposed to linear relationship assumed 

in MLR between bat activity and landscape structure.  

Regression Tree results for Myotis spp. are similar to the total activity regression 

tree model (Figure 10). This is likely due to the large proportion of Myotis spp. 

composing total activity in the study region. Under this model, Myotis spp. activity is 

highest in landscapes with a developed LPI ≤ 5.1% and elevation lower than 235.8 
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meters. Model performance also increased for Myotis spp. using the regression tree model 

with r
2
 = 0.625, as opposed to r

2
 = 0.440 with MLR model.  

The regression tree goodness-of-fit also increased when modeling Hoary bat 

activity, explaining 50.8% of variability of Hoary bat activity. Regression tree model 

results indicated the proportion of woody wetland as having the largest influence on 

hoary bat activity at 1 km scale (Figure 11). Landscapes that contain greater than 35.32% 

of woody wetland cover are expected to support greatest activity of hoary bats in SEGP. 

These results agree with the MLR model, which also determined woody wetland 

proportion to be most influential variable on hoary bat activity. Landscape continuity was 

identified as the 2
nd

 greatest predictor at all surveyed sites. Despite predictions, Hoary 

bats were determined to be negatively influenced by increasing distance of traversability, 

reflected in both MLR and regression tree models. It is likely that underlying processes 

not accounted for in this analysis are contributing to this pattern. Radio tracking may be 

necessary to further understand movement of Hoary bats within these landscapes.  

Multiple linear regression results for Big Brown activity at all survey sites at 1 km 

scale provided an r
2 

= 0.299, which signifies a low goodness-of-fit for predicting the 

relationship of activity to habitat structure. The ANOVA Regression Tree model 

approach successfully increased the amount of variability in Big Brown activity 

explained by the explanatory variables chosen for analysis, r
2 

= 0.475. Under this model, 

Big Brown activity is expected to be highest at sites with smaller patch sizes, greater than 

50 meters of agriculture edge per hectare, and dominant forested patches composing 

more than 2 % of the landscape (Figure 12). Proportion of emergent herbaceous wetlands 

is also expected to support greater relative Big Brown bat activity in landscapes with 
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greater than 15% emergent wetland cover. This model suggests that Big Brown activity 

will be lowest in sites with the least amount of agriculture edge at 1 km scale.  

Regression Tree Results assessing Relative Activity at Lake Habitats 

 

 To determine if threshold effects are evident at lake habitats, regression tree 

models were built for all analysis groups at both 500 m and 1 km scales. The model 

results improved marginally for total bat activity at lake habitats with an r
2
 of 0.503. 

MLR models better explained bat activity for Myotis spp. and Hoary bat activity at both 

scales, which suggests threshold effects have little impact on these bats at lake habitats. 

Big brown activity could not be modeled by MLR or regression tree approach. Of the 60 

lake transects assessed, mean elevation was determined to be the most influential factor 

predicting total bat activity at 500 m scale (Figure 14). Elevation is also the decision 

factor in describing sites with the lowest total bat activity. Lakes below 228 m in 

elevation support the least amount of activity.  

Regression Tree Results assessing Relative Activity at River Habitats 

 

 Anthropogenic land use had a large influence on activity of total, Myotis spp., and 

Hoary bats as developed was the first split for total and Myotis and agriculture ED was 

the first for Hoary bats at river habitats (Figure 15, 16, 17). Total and Myotis spp. activity 

was highest at sites where proportion of developed lands composed less than 20% of the 

riparian landscape at 500 m scale. The second greatest influential factor of activity for 

total and Myotis was mean elevation. Riparian sites occurring at elevations lower than 

237 m had a positive influence on total and Myotis spp. activity. Goodness-of-fit for both 
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of these models increased from MLR results, which suggests a nonlinear relationship and 

supports the need to assess ecological processes using different modeling approaches.  

 Hoary bat activity at riparian sites is negatively impacted by agriculture edge and 

is expected to be lowest in sites with greater than 42 meters of agricultural edge per 

hectare, high proportion of woody wetlands, and agriculture LPI greater than 6% (Figure 

17). Hoary Bat differs than other bats analyzed in that it is the only analysis group 

influenced by agriculture land cover using regression tree models. The regression tree 

model had an r
2 

= 0.760 which is a large improvement from the MLR goodness-of-fit 

(r
2
=0.455). Hoary bat was the only analysis group that regression tree models performed 

better at 1 km scale at riparian sites, which supports the need to use multiple scale 

analysis when assessing habitat selection of multiple species.  

 The regression tree results increased in model fitness compared to MLR results 

for Big Brown activity at riparian sites. The largest influence of Big Brown activity at 

river sites is proportion of forested lands followed by proportion of developed lands 

(Figure 18). A riparian landscape composed of more than 18% forest supports the 

greatest amount of Big Brown activity at 500 m scale. Proportion of developed lands and 

developed LPI are the 2
nd

 and 3
rd

 most influential variables included in this model, 

respectively. Big Brown bat activity is shown to be lowest at sites with less than 18% 

forest and greater than 13% developed lands.  

Goodness-of-fit (R-squared) increased for all four analysis groups using ANOVA 

Regression Tree analysis approach to model relative activity across all sites and riparian 

sites, though lake regression tree models only improved for total activity. These results 
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suggest a threshold effect across the SEGP and at riparian sites of landscape structure on 

relative bat activity. It appears that habitats at rivers become unsuitable for bats once the 

landscape is modified past a certain point. Similar relationships are not observed at lake 

habitats in this region. Conservation and restoration of aquatic sites should analyze 

species activity between specific habitat types using multiple model approaches in order 

to best identify patterns in the landscape.  
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CHAPTER 5 

DISCUSSION 

 

The primary objective of this study was to address the relationship of bat activity 

and species richness to habitat structure in an agricultural landscape. Analysis of an 

agricultural landscape can contribute to understanding the impacts of habitat modification 

and aide in the management of resources as anthropogenic use continues to intensify. 

Landscape ecology theory and spatial analysis approaches were used in this study to test 

relationships between relative bat activity and landscape characteristics. The goal of this 

research was to identify structural features of a heterogeneous, human-dominated 

landscape to which bat activity was hypothesized to be correlated. It was assumed that 

observed relationships between activity and landscape structure indicated suitable 

foraging habitat in the landscapes. However, the findings suggest that the most important 

factors influencing bat activity in landscapes are more complex than foraging processes. 

The remainder of this chapter will contrast the observed relationships of bat activity 

between lake and river transects for all analysis groups, and will conclude with general 

patterns of bat activity within the region.  

Contrast of Bat Activity Between Lake & Riparian Habitats 

 

Difference in bat activity between lakes and rivers emerged as the single strongest 

predictive variable. Riparian sites supported significantly higher species richness and 

activity in the SEGP. This difference is due both on how bats take advantage of these 

features as well as landscape composition, configuration, and connectivity. While both 

lake and river landscapes are intricately linked to greater influences of the agricultural 
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matrix, lakes in the SEGP are characteristically more developed and fragmented, 

indicating greater subdivision and less connectivity than riparian habitats. Agriculture, 

which makes up nearly 40% of riparian landscapes, exhorts a greater influence on rivers 

in the SEGP. High quality wetland and forested habitat is more commonly found in 

riparian sites than lake habitats, and composed an additional 40% of all landscapes 

analyzed. Bat activity, and the response to these dissimilarities in landscape patterns 

between lake and river habitats, is species- and scale-specific. I discuss the influences of 

habitat structure, the difference between lakes and rivers for each analysis group, and the 

patterns observed in the landscape as a whole.  

Observed Relationships of Myotis spp. Activity between Lake & River Habitats 

 

I predicted Myotis spp. activity to decrease as human-dominated elements, such as 

developed and agricultural lands, increased. In the context of riparian habitats, it is 

apparent that Myotis spp. are found less often in landscapes that are dominated by urban 

development, while preferring landscapes that are more similar in function and structure 

to forested lands (Figure 16; Table 9a). An example is the Rock River 10 segment (Figure 

19), which supports the lowest Myotis spp. activity of all surveyed rivers in the region. At 

the 1 km scale, the Rock River landscape was composed of 40% of developed land cover, 

while the dominant developed patch also composed nearly 40%. The equivalency in 

proportion to LPI, describing the town of Beloit, WI, is indicative as one large, 

continuous developed patch. Gleaning foraging behavior is expected to deter bats from 

loud background noise in efforts to reduce echolocation interception and increase 

foraging success (Schaub et al., 2008).  Myotis bats are known to glean to capture prey, a 

method that relies on rustling noises of vegetation to detect insects. Therefore, gleaning 
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bats such as Myotis spp., may be negatively influenced by potential ambient noise from 

residential and commercial land uses in Beloit surrounding Rock River. Additionally, 

large expanses of developed lands may be difficult to traverse for the relatively small, 

gleaning Myotis spp. (Swift & Racey, 2002; Avila-Flores & Fenton, 2005).  

 These results conflict with patterns observed by Gehrt and Chelsvig (2004) in the 

nearby metropolitan area of Chicago, Illinois. In their study, Myotis species were more 

frequently recorded in urban lands than surrounding rural land. These patterns lead the 

authors to hypothesize a negative influence of surrounding agriculture and open areas on 

Myotis species. The differences in findings between this analysis and the Chicago study 

may be a result of microhabitat characteristics. The urban heat island effect is known to 

contribute to warm urban centers and may potentially reduce costs of thermoregulation in 

Chicago, IL (Coleman & Barclay, 2011). Additionally, Little Brown bats take advantage 

of manmade structures for roosting needs. It is possible that Myotis spp. in urban centers, 

such as Chicago, travel from roosting structures in developed areas to nearby rural or 

aquatic sites for food and water sources and other ecological needs. Additionally, higher 

abundance of bats in an urban landscape, as in Gerht and Chelsvig (2004), does not 

necessarily correlate to healthier populations and caution should be used when drawing 

conclusions based on abundance (Coleman & Barclay, 2011). Gerht and Chelsvig (2004) 

analyzed habitat selection at a single 2 km scale. It is possible that patterns of selection 

may differ at smaller scales, such as those used in this analysis.   

 The difference of influence from proportion of developed lands versus LPI of 

developed lands provides interesting insight as to how residential, commercial and 

industrial lots influence Myotis bat activity.  The data indicate the total area of developed 
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land in a landscape has less of an effect than the large connected expanses of developed 

lands when foraging or commuting through riparian habitats. I hypothesize that Myotis 

bats are able to tolerate landscapes if developed lands are intersected by a diversity of 

habitat types, such as forested or wetland habitats, instead of one dominant developed 

patch. 

 Indirect relationships between Myotis activity and riparian sites were suggested by 

the strong correlation with mean elevation as an explanatory variable in the regression 

tree model. This nonlinear response of Myotis activity is expected to be highest at sites 

lower 237 m elevation, if the prior condition (developed<20%) is met (Figure 16). 

Although this environmental variable was determined to significantly influence activity at 

riparian sites, low elevation is representative of streams in the upper watershed that drain 

south in the SEGP, such as Wolf and Fox rivers. This relationship is likely correlated 

with the higher quality habitat that is characteristic of these riparian sites in the upper 

SEGP. Further analysis of activity at riparian sites is necessary to test this hypothesis.  

 Forest similarity, an index quantifying the similarity of the structure and function 

of the landscape mosaic to forest habitat, was determined to influence increased Myotis 

activity at riparian sites in linear models (Table 9). Myotis septentrionalis are forest 

obligates that are able to navigate cluttered vegetated landscapes and roost in tree cavities 

and under bark (Barclay & Kurta, 2007), and likely prefer habitats that most closely 

mimic forested lands.  Evidence of forest selection by Myotis lucifugus has also been 

observed, in which bats more often selected roost locations in forested watersheds that 

have confined, adjacent river channels (Hagen & Sabo, 2011).  A high forest similarity 

index likely identifies riparian landscapes that reflect these preferred forested watersheds. 
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The similarity to forest as an activity indicator, as opposed to simply forest proportion, 

suggests a loyalty to habitat structure and the benefits provided, instead of specific 

vegetation types.  

Analysis of riparian habitats in the SEGP may benefit from classification along an 

urban-rural gradient. This may provide greater insight into how landscapes transitioning 

from agriculture to residential development influence bat activity in riparian habitats. In 

this analysis, the MLR and regression tree models did not determine Myotis spp. to be 

negatively impacted by agriculture at riparian sites at either 500 m or 1 km scales. 

Although not directly tested here, the lack of expected agricultural influence at riparian 

sites may be due to the intermediate landscape composition along the rural-urban gradient 

that is seen throughout the SEGP where the transition to urban development is gradual. 

This gradual transition, as opposed to a stark difference, may provide the variety of 

habitat required to meet all life history needs (Coleman & Barclay, 2011). Further 

analysis is needed to test this hypothesis in the SEGP.  

Floodplain forests have been identified as important roosting habitats for Myotis 

species found in southeastern United States (Fleming et al., 2013). I hypothesized a 

higher activity of Myotis spp. in woody wetland habitats due to the forest-obligate 

species, such as Myotis septentrionalis. Myotis spp. activity is positively related to woody 

wetlands and average elevation at lake habitats in the SEGP.  It is likely that bats rely on 

the shelter provided by wooded wetlands while foraging or commuting adjacent to open 

lakes in this region. It is important to consider the intermediate wetland habitats between 

lakes and development, and the benefits they provide, when assessing restoration and 

conservation needs in a modified landscape.  
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 The unexpected relationship resulting from the MLR model is the effect of mean 

elevation of surveyed lakes. The Kettle Moraine State Forest, characterized as having 

kettles, or shallow sediment-filled bodies of water formed by glaciation, is located within 

the SEGP. This State Forest is considered the highest quality upland habitat in the region, 

and is composed of ash swamps, ephemeral ponds, extensive upland forests, and lakes. 

The kettle lakes, characteristic of this region, can provide drinking sources and higher 

prey density within a dense network of protected State Forest. The highest elevated lakes 

in the SEGP occur within, or in close proximity to, the Kettle Moraine State Forest, 

which is regarded as an important breeding site for forest interior specialists such as 

Myotis septentrionalis (WDNR, 2013a, draft). 

Regression tree models did not improve model results for Myotis at lake habitats, 

indicating a more linear relationship of habitat structure around lake habitats than any 

overriding threshold effects. This results contrasts with the riparian results, which 

determined threshold effects to better explain bat activity at river habitats. The regression 

tree model assessing all surveyed sites predicted Myotis spp. activity to increase as 

agricultural edge composes more than 54 m/ha, in a landscape with less than 5% 

developed LPI and elevation less than 235 m. MLR results at all sites indicated 

influences of woody and emergent wetlands, and developed LPI. The varying results 

between MLR and regression tree models at all sites indicate a more complex 

relationship of Mytois spp. to landscape elements in SEGP than simply “linear 

relationships” or “threshold effects.” Habitat selection varies depending on ecological 

needs and reproduction states, and it is likely that intricate mix of ecological 
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characteristics contribute to Myotis spp. activity in aquatic habitats. Ecological modeling 

can provide just a glimpse at pattern-process relationships these dynamic open systems.  

Observed Relationships of Hoary Activity between Lake & River Habitats 

 

 The landscape patterns that were quantified in the agricultural matrix of the SEGP 

are shown to influence Hoary activity at riparian sites. Edge of agricultural lands is the 

greatest influential factor of relative Hoary activity at riverine habitats. Landscapes with 

less than 42 meters of edge per hectare are expected to support the greatest activity based 

on regression tree results. Commercial farming methods are known to reduce species 

richness and evenness of insects due to chemical applications and homogenization of the 

landscape. This results in an unhealthy food web structure (Crowder et al., 2010) upon 

which the Hoary bat depends for prey. The selective diet, relative to other species in this 

analysis, may limit the habitats in which Hoary bats can forage for insects, specifically in 

agricultural landscapes. This hypothesis in the agricultural context of the SEGP, albeit 

logical, is dependent on the assumption that Hoary bats were foraging when recorded 

during survey transects in the SEGP.  It is necessary to consider that Hoary bats may 

have also been using riparian sites as connectivity corridors within the landscape when 

interpreting these results. This relationship provides an original identification of Hoary 

bat activity to agricultural lands, but additional research in this region is necessary to 

further understand the negative impacts of croplands. 

No significant relationships were observed between landscape characteristics and 

Hoary bat activity at lake habitats using regression tree analysis, but the MLR determined 

weak relationships between lake habitat and bat activity. A weak r
2
 indicated a low 
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goodness-of-fit of MLR results and therefore are not explored in this study. Stronger 

relationships likely could not be identified because minimal Hoary bats were recorded at 

lake habitats assessed in this analysis of the SEGP. Average hoary activity observed at 

surveyed lake transects was 0.05 calls/min, which is equal to 3 calls per hour. The 

maximum Hoary activity of 2010-2012 surveys was 0.36 calls/hour, compared a mean of 

0.73 and maximum of 5.44 calls/min for Myotis spp.   

It is unclear if the relatively low recorded Hoary bat activity at all lake and river 

sites is a result of landscape factors, a consequence of temporal scale, or bias in the time 

of acoustic surveys. Greatest success at recording Hoary bats in other regions was noted 

to be 3-4 hours after sunset (Shump, Jr. & Shump, 1982b), while surveys used for this 

analysis were typically completed approximately 2 hours after sunset. The interspecific 

variability in night emerging behavior may explain the relatively low activity observed at 

lake habitats in the SEGP.  

The MLR model for all survey sites suggests Hoary bat activity will increase as 

the distance of survey site from the nearest highway increased. The negative influence of 

major roads conflicts with my hypotheses and observed relationships in other regions, in 

which motorways are expected to have less effect on bats that forage in open spaces 

(Kerth & Melber, 2009). Despite this, Hoary bat is the only species negatively 

influenced. The lack of effect of highways on Myotis spp. in this region was unexpected 

due to the flight behaviors of these small, low-flying species.  

Of all sites surveyed in SEGP, landscapes with the greatest proportion of woody 

wetlands were determined to be the greatest contributing factor to Hoary bat activity in 

both regression tree and MLR results; however the model fitness for Hoary bat activity 



77 

 

 

 

at all sites significantly increased using the regression tree approach. Hoary bats appear 

to be more sensitive to landscapes lacking woody wetlands by avoiding landscapes at a 

“tipping point.” The threshold effect indicates a higher dependence of Hoary bats on 

benefits of forested floodplains surrounding lake and river habitats, in contrast to the 

linear correlations observed for Total, Myotis and Big Brown in this analysis. These 

patterns observed in the SEGP may be due to the limited connectivity and availability of 

mature forested patches seen in the more developed areas of this region due to the 

increase in conversion of lands to residential and commercial lots.  

Observed Relationships of Big Brown bat activity between Lake & River Habitats 

 

 Ecomophology theory suggests larger bats, such as Big Browns, should use less 

cluttered landscapes (Francl, 2008) such as open water and fields however opposite 

results were observed in the SEGP. Riparian models predicting Big Brown bat activity 

determined a positive influence of proportion of forest and forest core areas. The MLR 

and regression tree results both indicated the relationship of Big Brown to forest core area 

to be stronger at 500 meter scale. This scale-specific interaction with forested lands may 

identify underlying ecological needs, such as shelter surrounding more open foraging 

sites, proximity to maternity colony roosts, or nocturnal roosts needed for resting while 

foraging (Agosta, 2002; Hagen & Sabo, 2011). Additionally, the core area metric has 

been regarded as a metric that predicts overall habitat quality because it is a compound 

measure of patch shape, area and edge (McGarigal et al., 2012).  Therefore, a larger 

amount of core forested area should indicate high quality habitats. This unexpected 

relationship of high quality forested landscapes to Big Brown bat activity highlights the 
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need to integrate the context of surrounding landscape matrix when assessing habitat 

selection.  

Big Brown bat activity was found to be positively correlated with proportion of 

agricultural land across all survey sites. These results differ from patterns observed in the 

United Kingdom, in which foraging bats avoided arable lands despite high proportion of 

agriculture in the landscape (Razgour, Hanmer, & Jones, 2011). An additional study in 

the UK observed higher bat activity at organic farms versus conventional farms, 

suggesting greater habitat quality in sites using less intensive farming methods 

(Wickramasinghe et al., 2003). Linear features, such as hedgerows and treelines, are 

expected to increase bat activity in European agricultural landscapes (Walsh & Harris, 

1996; Boughey et al., 2011), but little is known about North American bat foraging 

behavior in agricultural landscapes. 

Large numbers of waterways in the SEGP are bordered by linear vegetation 

(Anecdotal), and could possibly provide navigational features contributing to observed 

relationships. However, the NLCD 2006 dataset used in this analysis is at too course of a 

scale to identify these features and test this hypothesis. A further assessment of farm 

characteristics and hedgerows in the context of the SEGP is necessary to understand the 

processes of habitat selection and relationships of agricultural features. Nevertheless, this 

study provides an original investigation of North American bats in an agricultural 

landscape.   

Regression tree results predicts Big Brown bats to be most active in sites with less 

variability in patch size, higher agricultural edge density, and a dominant forested patch 

composing greater than 2% of landscape at all surveyed sites in SEGP. Similarly, forest 
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core, wetland composition and agriculture were significant explanatory factors 

determined by MLR model. Significance of edge habitat, as observed at agriculture edge, 

has been detected previously in the literature, where more Big Brown activity occurred at 

edges between gaps and forests (Menzel et al., 2002). The significance of both woody 

wetland and emergent wetland structure at all survey sites in the SEGP is not surprising. 

Francl (2008) determined seasonal wetland pools to be important sites for foraging and 

water resources and observed larger bats consistently selecting larger wetland sites. The 

MLR and regression tree models results for all survey sites were most explanatory at the 

500 meter scale. Landscape features observed in this study may highlight important 

resources for Big Brown bats within the home range of this species.   

Overall Patterns of Bat Activity in the SEGP 

 

 The correlation and multiple linear regression analyses produced results that 

mostly agreed with hypothesized relationships of landscape structure. For all 4 analysis 

groups, landscape composition, specifically land cover proportion, exhibited the greatest 

influence on relative bat activity in this region. However, a species- and scale-specific 

assessment of landscape influence paints a unique picture of the relationship between 

individual species and their habitat. As I dove deeper, it became clear habitat structure 

and bat activity differed between lake and river transects in the SEGP, and therefore 

necessitated additional exploration to decipher this added layer of complexity to bat 

habitat selection.  

Dissimilarities in access to prey between lake and river habitats may be one 

contributing factor to the significant difference in relative bat activity and species 
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richness at these habitats. The linear features characteristic of riparian corridors in the 

SEGP may provide navigational features and predator avoidance (Verboom & Spoelstra, 

1999), and have been found to support significantly higher insect biomass than open 

habitat (Holloway & Barclay, 2000; Broders et al., 2006). Wolf River survey segments in 

the northern portion of the study region, and select river segments in the south, were 

identified as hotspots of relative species richness. The Wolf River flows through remote 

habitat and contains a greater concentrated network of mature forest stands than the 

central, heavily developed portion of the landscape. These forested habitats have been 

identified as significantly influencing bat activity in this analysis and in the literature. 

However, it is important to note that the greater activity over riparian habitats may also 

be attributed to commuting individuals throughout the landscape, and not solely the 

assumed foraging preferences. 

Human land use, developed and agriculture, exhorts a negative impact on bat 

activity for all analysis groups, but the effect of human-dominated landscapes appear to 

be context-specific. The most influential habitat characteristics impacting total activity at 

riparian sites is size of the dominant developed patch and overall proportion of developed 

lands. These effects are consistent with Myotis and Big Brown MLR and regression tree 

models predicting bat activity at riparian sites. Similar relationships of Myotis spp. to 

developed habitat predicted in this analysis have not been observed in nearby urban areas. 

For example, Dixon’s (2012) study between percent impervious land cover or other open 

habitats (agriculture, rural landscape) and bat activity in Minneapolis, Minnesota 

observed contrasting results for generalist species, such as Mytois and Big Brown bats. 

Dixon did not detect a significant negative influence of urban lands on Myotis spp. 
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activity, but Big Brown activity was determined to be negatively correlated with 

impervious surfaces. I was not surprised by the negative influence of urban lands on 

Myotis spp. activity in the SEGP, despite Dixon’s (2012) results, due to the low flying 

characteristics of these smaller bats, and the forest-obligate nature of Northern Long-

Eared (M. septentrionalis) bats. On the contrary, the negative association of 

anthropogenic land use with Big Brown and Hoary bats in the SEGP was not expected 

due to the tolerant nature of these species observed in other regions (Williams & 

Brittingham, 1997).  

 Proportion of woody wetlands and forested habitats were also important 

predictors of total relative bat activity MLR results at all sites and lake habitats. The 

NLCD 2006 dataset used in this analysis describes woody wetlands as having forest or 

shrubland composing more than 20% of the vegetative cover. Floodplain forests, a type 

of wooded wetland in this region dominated by a mix of swamp white oak (Quercus 

bicolor), red maple (Acer rubrum), and ash (Fraxinus spp.) that commonly occur along 

rivers, are often used as migration corridors because they provide some of the only 

contiguous stands of forest in this heavily modified landscape (Eggers & Reed, 1997). 

Maintaining forested vegetation, such as woody wetlands, surrounding lake habitats may 

provide bats with protection from elements when opportunistically foraging for prey in 

exposed, open spaces.  

 The models that best indicated woody wetlands and forest influences on bat 

activity at all sites differed among species. The 500 meter MLR models produced the best 

fitting results, and included woody wetlands and forested habitat as key indicators, for 

total and Big Brown activity. However, the 1 kilometer models better performed for 
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Myotis spp. and Hoary bats. This indicates that bats navigate landscape structure, and 

therefore suitable habitat, at varying scales. This finding agrees with the ecologic 

differences between species of this region, and has been observed previously in the 

literature (See: Ober & Hayes, 2008; Lookingbill et al., 2010; Lundy & Montgomery; 

2010; Dixon, 2012).    

Emergent herbaceous wetland proportion influenced bat activity both positively 

and negatively at the individual species level. Total, Big Brown and Hoary bat activity 

are expected to increase, as emergent wetlands in the landscape increase. Conversely, 

Myotis spp. are negatively impacted by proportion of emergent wetlands.  This pattern of 

habitat selection may be a result of niche partitioning within this densely modified 

landscape. Emergent herbaceous wetlands, such as marshes, sedge meadows, fens and 

open bogs, are considered structurally open habitats. As discussed in Chapter 2, larger 

bats such as Big Brown and Hoary bats are likely to use more open habitats due to larger 

wing loading and aspect ratios, and lower maneuverability. In the SEGP, emergent 

wetland habitats may be a preferred foraging habitat for larger species due to the minimal 

clutter encountered. As a result, small Myotis bats may take advantage of more 

structurally complex foraging habitat such as woody wetlands. Similar patterns were 

observed by Leighton, Lee and Francl (2009) when assessing bat habitat associations at 

palustrine habitats in the Northern Great Lakes region. In their study, Big Brown and 

Hoary preferred open water habitats and were negatively impacted by closed canopy.  

The apparent positive influence of some cluttered habitats, such as wooded lands, 

on larger bats in the SEGP suggests plasticity in habitat selection. The plasticity of larger 

bat species in the use of closed habitat suggests the need to further investigate their 
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tolerance to cluttered environments. For example, the relationship of Big Brown and 

Hoary bats to closed habitats may be less of a linear relationship and exhibit more of a 

threshold effect once the habitat becomes too cluttered. Additionally, bat habitat selection 

is not only influenced by habitat structure, but also varies based on gender, reproductive 

status, distance to roosting habitat and season (Papadatou et al., 2009). However, these 

post-hoc hypotheses regarding niche partitioning and habitat selection plasticity are an 

extension of the explorative nature of bat activity research in this region. As our 

understanding of these cryptic species improves, relationships to wetland habitats and 

habitat clutter may be better understood.  

As evidenced in the initial MLR results, the influence of habitat structure on bat 

activity is unique to the species and varies based on scale of analysis. Within the SEGP, 

total relative bat activity at all sites is correlated with a multitude of landscape metrics, 

including landscape similarity, proportion, and continuity for a variety of cover types. 

These results provide valuable insights to the successful management and conservation of 

bats. Specifically, multiple cover types including wetlands, forest, and agriculture, 

support the greatest activity while landscapes with greater homogeneity are expected to 

negatively influence bats in this region. Analogous results have been found in other 

regions, in which the greatest diversity of cover provides the greatest benefit (Bernard, 

2001; Leighton, Lee, & Francl, 2009). Restoring wetlands and forested patches to 

increase the diversity of habitat structure surrounding aquatic sites is likely to benefit the 

greatest number of species.   
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CHAPTER 6 

SUMMARY & CONCLUSIONS 

 

Human-modification of landscapes is altering the way in which species interact 

with their environment and is having a negative effect on native species diversity (Rogers 

et al., 2008). The landscapes of SEGP are no exception. Currently, there is a region-wide 

decrease of highly specialized species and overall habitat quality as generalist species 

flourish in response to anthropogenic land use intensification (WDNR, 2013a, draft). 

Understanding landscape-level influences of human-controlled habitats may allow 

resource managers to steward habitats in a way that humans and nonhumans can better 

coexist.  

 Bats provide a prime opportunity to assess the implications of increasing 

monotonous features in an anthropogenic landscape for multiple reasons: (1) 

insectivorous bats are bioindicators due to their role as secondary consumers and 

sensitivity to landscape modifications (Frey-Ehrenbold et al., 2013); (2) mammals, and 

bats specifically, are poorly understood relative to avian taxa in regards to habitat 

modifications (Coleman & Barclay, 2011); and (3) species with broad geographic ranges, 

such as bats, tend to be overlooked in the assessment of North American conservation 

priorities despite the potential of isolated populations in expansive anthropogenic 

landscapes (Pierson 1998). Statistical analyses were employed to determine potential 

impacts of anthropogenic modifications on relative bat activity in the Southeast Glacial 
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Plains region of Wisconsin, a region in which the overriding influence on landscape 

dynamics is cultivated croplands.  

This thesis has examined the influence of landscape structure on relative bat 

activity of four species in an agricultural landscape of Wisconsin. Patterns of bat activity 

at aquatic habitats in the SEGP were expected to be closely correlated to landscape 

metrics, such as proportion of urban, agricultural, and forested lands, landscape 

connectivity and similarity. Statistical analyses of landscape metrics showed more subtle 

correlations between habitat structure and relative bat activity than hypothesized. The 

significant, although weak, relationships determined in these analyses are suggestive of 

complex species-habitat interactions that could not be fully explained through this 

research. A study exploring multiple survey methodologies (e.g., mist nest, radio 

transmitters) may lead to refined conclusions about bat interactions with landscapes. 

However, this research highlights key relationships that can further bat conservation in 

Wisconsin.  

The majority of hydrologic features in the SEGP have experienced modifications 

and negative impacts from human development. Invasive species, such as common carp 

(Cyprinus carpio), dammed outlets, lakeshore development, recreation pressure from 

metropolitan areas, and agricultural runoff have contributed to the impaired state of the 

lakes and rivers in the region (WDNR, 2013a, draft).  Despite the similar anthropogenic 

effects at the larger, regional scale within the agricultural matrix of SEGP, the landscape 

patterns at the landscape-level between lake and river habitats are dissimilar and appear 

to influence bat activity in different ways. In contrast to my expectations, relative bat 

activity and species richness were significantly higher at riparian survey sites compared 
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to lake habitats from 2010-2012. A possible explanation is the benefits provided by linear 

characteristics of riparian habitats, such as connectivity corridors and higher insect 

availability (Hagen & Sabo, 2011). Additionally, lake habitats are more dominated by 

urban development as agricultural lands are converted to residential developments.  

Effects of human-dominated landscapes are manifested at riparian habitats in the 

SEGP, where total, Myotis spp., Hoary and Big Brown were determined to be 

significantly negatively impacted by developed and agricultural lands in all models at all 

scales. Similar influences of anthropogenic land use at lake habitats were not observed. 

Large, dominant patches of developed lands, commonly seen in towns dissected by 

rivers, are the greatest deterrent of bat activity. High quality riparian corridors are 

scattered throughout the SEGP, and it is likely that bats are discriminating against the 

higher developed riparian sites and selecting the highly vegetated rivers for resources. 

The observed anthropogenic-sensitivity by all species at riparian sites highlights the 

importance of maintaining vegetated buffers surrounding rivers to foster connectivity 

within the landscape.   

Within the SEGP, total relative bat activity at all sites is impacted by a multitude 

of landscape metrics, including emergent wetland landscape similarity, continuity, and 

proportion of forest, wooded wetlands, and agricultural lands. The conservation of 

riparian corridors, and forested and wetland patches surrounding aquatic habitats within 

an agricultural landscape can sustain a mixed landscape mosaic on which bats depend for 

roosting and foraging sites. Forested patches can increase prey abundance within an 

agricultural landscape and provide protection from wind and predators while traversing 

the landscape. As developed areas within this landscape, and regions throughout the 
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country, continue to intensify, the significance of maintaining intact forested and aquatic 

habitats cannot be underestimated. The results at all survey sites suggest that the most 

efficient conservation of suitable bat habitat, or the “bigger bang for the buck,” would be 

in heterogeneous landscapes containing wetlands and forest that provide habitat for 

multiple species’ needs.  

The natural world is dynamic and chaotic, and uncertainty is inherent in all 

models attempting to predict ecological processes. As with most ecological research, this 

thesis is not without caveats. It is important to note that bat activity has been known to 

respond differently to types of forest, which may be of significance when assessing 

habitat selection and conservation needs in more heterogeneous regions. Broders et al. 

(2006) showed a positive relationship between M. lucifugus and coniferous forest 

locations, and a negative association with deciduous forest patches at a 1 kilometer scale. 

Similarly, Perry and Thill (2008) determined Big Brown bats to strictly select snags of 

one species of pine in Arkansas. Despite the minimal conifers in the SEGP, these studies 

signify the importance of specificity when making conservation management decisions. 

In landscapes with varying woodland communities, it may be necessary to address 

specific forested types to avoid misidentifying suitable habitat based on general forest 

classifications. This study did not distinguish between types of forests in the landscape 

because of the relative homogeneity of forest communities in the SEGP.  

While acoustic data may provide insight into activity of bats in specific 

landscapes, the methodology presents some limitations to interpretation. Currently, our 

knowledge is limited on how conspecifics alter their echolocation calls and the influences 

this has on foraging and social interactions (Schnitzler & Kalko, 1998), and thus, not 
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disregard of extreme caution used in species identification, there is inherent error in 

echolocation call processing. In addition, acoustic methods do not allow sex or 

reproductive status of species to be distinguished. Broders et al. (2004) and Broders et al. 

(2006) found foraging and roost habitat selection to differ between males and maternity 

colonies of Little Brown and Northern long-eared bats within the same landscape. Based 

on this, caution should be used when inferring relationships that are not sex-specific. 

Moreover, care should be used in applying Myotis spp. results from this analysis 

to conservation of Northern Long-Eared bats. In spite of known occurrences of Northern 

Long-Eared bats in the SEGP, anecdotal observations suggest that majority of Myotis 

species recorded within the SEGP were Little Brown bats. Because of this, the Myotis 

spp. group, resulting from similarities and difficulty in distinguishing between 

echolocation calls of these species, may indicate a potential bias in acoustic recordings 

and findings. Even with the unequal proportions of Myotis spp. recorded, Northern Long-

eared bats were recorded in the SEGP and patterns found in this analysis may provide 

valuable insight into critical habitat for the rapidly declining populations of this species 

due to WNS (UWFWS, 2013).  

As is the case with numerous studies, it is likely that majority of the total bat 

activity analyzing was comprised of Myotis spp. group and Big Brown bats due to the 

close spatial proximity to a major Midwest hibernaculum, Neda Mine (Redell, 2005; 

Johnson, Gates, & Ford, 2008), and the generalist foraging nature of big brown 

(Furlonger et al., 1987) and little brown bats (Anthony & Kunz, 1977).  However, total 

bat activity also included detections of Silver-haired, Eastern Pipistrelle, Eastern Red and 

Hoary bats in the region. Finally, activity indexes are an assessment of echolocation 
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activity and it is important to not interpret relative activity as a count of individuals. 

Notwithstanding these conditions, this study furthers current understanding of spatial 

relationship of bat activity and habitat selection and provides a first look into bat-habitat 

interactions in the SEGP, which can aid in management efforts and conservation of bats 

in this region.  

The assumption for this thesis was that recorded bat activity at aquatic sites 

indicated foraging preferences due to high density of prey. However, this assumption 

cannot be confirmed. Bats use search-phase calls for detecting objects in space - both 

food and obstacles. It is likely that recorded calls used in this analysis were bats 

commuting and foraging in the landscape. This is suggested by the increased activity over 

riparian sites which may be used as connectivity corridors in the landscape. Despite this, 

these results are indicative of habitat needs surrounding lakes and rivers within an 

anthropogenic matrix.  

A decline in bat populations in the United States is just part of the story. North 

America has also been experiencing a widespread trend in decreasing avian aerial 

insectivore populations since the 1990s (Nebel et al., 2010). Decline in insect populations 

due to agricultural practices and overall habitat alteration are two causes that have been 

hypothesized to cause these declines. A clear association was observed in this data 

between insect supporting habitats, such as aquatic features, and bat activity. This 

research presents valuable knowledge of interactions between landscapes and 

insectivorous species in a highly modified landscape, which may not only support bat 

population health, but the health of additional compromised populations relying on insect 

for prey in human-dominated landscapes. Restoration and conservation of these 
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landscapes can potentially rebound declining populations due to suspected unavailability 

of food.  

Currently, it is debated whether agricultural land use has an influence on 

decreasing arthropod density. In the face of this debate, Benton et al. (2002) observed a 

decline in insect abundance and bird populations over 27 years as agriculture use 

heightened in Scotland. Based on these findings, one could assume similar negative 

impacts would be seen on other aerial insectivorous species such as bats in these 

landscapes. However, this analysis has shown a positive influence of agriculture 

proportion on total, Myotis spp., and Big Brown bat activity in a dense agricultural 

matrix. A possible hypothesis may be the opportunistic foraging of bats due to the 

declined competition from farmland birds. Future studies in this region may benefit from 

comparing effects of croplands on birds and bats simultaneously. Nevertheless, this 

analysis provides an original look into the relationship of agriculture and bats in the 

region.  

Factors that were shown to influence bat activity between species and within 

species include patch size, presence of edge, dominant landscape elements and landscape 

connectivity (Yates and Muzika, 2006). The data show that bats require a mix of habitats 

to meet ecological requirements, such as foraging sites and roosting locations 

(Lookingbill et al., 2010), and are expected to use linear features to forage and move 

throughout a landscape (Lundy and Montgomery, 2010). For this reason, wildlife 

management decisions should not be made based on one bat species or landscape 

characteristic alone, but should elucidate species-habitat relationships by considering 

diurnal and nocturnal roosting, and foraging requirements at multiple scales. Although 
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the relationships found in this analysis are slightly weak and are indicative of more 

complex processes, the results provide some conclusions to how bats interact within and 

between habitat types. It is important for landscape managers to go beyond landscape 

composition when addressing suitable habitat for species of interest. This study strongly 

suggests that bats would benefit from conservation of riparian corridors and the 

improvement of forested lands. 
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FIGURES 
 

Figure 1: Location of Southeast Glacial Plains in Wisconsin and 1 km buffers surrounding 38 lake and river 

acoustic survey sites. 
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Figure 2: Proportion of Relative Activity for Myotis spp., Hoary and Big Brown bat in SEGP (2010). 
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Figure 3: Total Relative Bat Activity (passes/minute) summarized using boxplots by year for Lake and 

River habitats in SEGP, WI. 
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Figure 4: a) Mean Relative Activity (bat passes/total survey minutes) of Myotis, Big Brown and Hoary bat between Lake and River habitats in SEGP, and b) 

standardized relative activity.  

 
 
 

 

a) b) 
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Figure 5: Comparison of average land cover proportion between lake and river habitats at 1 km scale.  
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Figure 6: Land cover surrounding Lake Beulah and Partridge Lake at 1 km scale. The lakes have equivalent developed 

proportion but Partridge Lake has higher Developed LPI, indicating less fragmented developed patches. 
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Figure 7: Comparison of mean LPI between lake and river habitats for each land class. 
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Figure 8: Relative Species Richness (species/hour) at surveyed lake and river habitats in the SEGP, 2010-

2012.  
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Figure 9: ANOVA Regression Tree Analysis Results for Total Relative Bat Activity at 1 km scale for all 

Survey Sites in SEGP, 2010-2012. Values at base of nodes represent mean bat activity.  

 

 

 

 

  



101 

 

 
 

`Figure 10: ANOVA Regression Tree results for Myotis spp. activity at all survey sites in the SEGP at 1 km 

scale. Values at base of nodes represent mean bat activity.  
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Figure 11: ANOVA Regression Tree Results for Hoary Relative Bat Activity for all sites at 1 km scale in 

SEGP. Values at base of nodes represent mean bat activity.  
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Figure 12: ANOVA Regression Tree Model Results for relative Big Brown bat activity at 500 m for all survey sites, SEGP. Values at base of nodes represent mean bat 

activity.  
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Figure 13: Getis-Ord Gi* Analysis of Relative Species Richness in SEGP. 
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Figure 14: ANOVA Regression Tree Model Results for relative Total bat activity at Lake survey sites, 500 m in SEGP. 

Values at base of nodes represent mean bat activity.  

 

 

 

 



106 

 

 
 

1
0

3
 

Figure 15: ANOVA Regression Tree Model Results for relative Total bat activity at River survey sites, 500 m in SEGP. 

Values at base of nodes represent mean bat activity.  
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Figure 16: ANOVA Regression Tree Model Results for relative Myotis bat activity at River survey sites, 500 m in 

SEGP. Values at base of nodes represent mean bat activity.  
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Figure 17: ANOVA Regression Tree Model Results for relative Hoary bat activity at River survey sites, 1 km in SEGP. 

Values at base of nodes represent mean bat activity.  
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Figure 18: ANOVA Regression Tree Model Results for relative Big Brown bat activity at River survey sites, 500 m in 

SEGP. Values at base of nodes represent mean bat activity.  
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Figure 19: 2011 Rock River 10 survey transect in Beloit, Rock County, WI, with recorded Myotis spp. calls and NLCD 

2006 land cover at 1 km landscape buffers. 
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TABLES 
 

Table 1: Species-specific hypotheses developed based on bat ecology literature. References for hypotheses 

in body of the text and “References” section, this volume. 

 

Analysis Group Hypothesis 

Total Bat Activity Overall preference of mixed habitat (vegetation and developed 

cover) 

 Positive correlation to forest proportion and edge due to high 

insect productivity 

Myotis spp. Activity High overall activity due to flexible roosting, generalist 

foraging, preference of emergent aquatic insects of M. lucifugus 

 Minimal difference in activity between lake and river transects 

due to high attraction to water and prevalence of preferred 

aquatic insects at both sites 

 Positively correlated to all forest metrics because of M. 

septentrionalis preference 

Big Brown Activity High overall activity due to large hibernating populations and 

generalist nature 

 Increase in activity as forest cover decreases 

Hoary Activity Utilize open habitats (agriculture) due to low maneuverability 

flight characteristics 

 Higher activity at lakes vs. rivers because less clutter at lakes 

 Increase in activity as forest cover decreases 

 Minimal influence of developed lands due to tolerant nature of 

bat 
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Table 2: Hypotheses developed based on bat ecology literature and landscape ecology theory organized by 

landscape metric used in the analysis. References for hypotheses in body of the text and “References” 

section, this volume. 

 

Landscape Characteristic Hypothesis 

Developed Proportion Negatively correlated to Myotis spp. based low flying 

behavior of bats 

Agriculture proportion Decrease of Myotis spp. due to forest-interior specialist of 

M. septentrionalis 

Forest proportion Increase in bat activity as edge increases due to high insect 

productivity 

 Negative influence on Hoary bat activity (low 

maneuverability) 

Forest Core Positive correlation with Myotis spp. because reliance on 

forest interiors 

Forest Edge Increase in bat activity as edge increases due to high insect 

productivity 

Forest LPI Increase in Myotis spp. activity as forest LPI increases 

Woody Wetland LPI Increase in Myotis spp. activity as woody wetland LPI 

increases 

Forest Similarity Index Negative correlation to big brown activity due to big brown 

preference of diversity of habitats 

 Decrease of hoary bat activity with increase due to hoary 

preference of diversity of habitats 

Connectance Index Positively correlated to all analysis groups because 

necessity of connected landscapes 

Stream Order Higher activity at higher stream order, fast-flowing waters 

(low stream order) disrupt echolocation calls 

Distance to Roadways Activity increase as distance increase. Highways predicted 

to hinder landscape connectivity. 
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Table 3: Explanatory variables used to explore relationships of relative bat activity and SEGP landscapes. Insignificant variables at the 0.05 α-level were not 

included in MLR or regression tree analysis. 

 

Variable Description 

Composition  

Land Cover Proportion Relative abundance of developed, forest, agriculture, woody and emergent herbaceous wetland classes (%) 

Patch Richness Density Number of patches per 100 hectares at landscape-level (patches/ha) 

Largest Patch Index Percent of landscape comprised by largest patch of developed, forest, agriculture, wetland classes (%) 

Patch Area Relative variability about the mean of patch size in landscape 

Configuration  

Edge Density  Length of edge in meters per hectare of forest and agriculture classes (m/ha) 

Landscape continuity Average distance traveled in patch type before encountering boundary (meters) 

Proportion of Core Area Relative abundance of core area of forest and wetland classes when edge is eliminated (%) 

Similarity Index Index considers size and proximity of patches within neighborhood (100 m) of focal patch and determines 

similarity at forest and wetland class level based on similarity weights 

Connectivity  

Connectance Index Proportion of joinings (at 100 m distance) within woody and emergent herbaceous wetlands (%) 

Distance to Major Roadways Distance in meters to Wisconsin State, U.S., and Interstate highways from survey routes 

Environmental  

Elevation Mean elevation of landscape in meters 

Temperature Mean, minimum, and maximum survey temperature (Celsius) 

Wind Speed Mean, minimum, and maximum survey wind speed in meters per second 

Lake Area Area (km
2
) of lakes in study region  

Stream Order Relative size of streams (medium streams to rivers) 
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Table 4: The relative bat activity (number of passes during survey divided by survey length in minutes) and 

percent occurrence of all survey sites for four species analysis groups. 

 

Species Group 
Relative Activity 

Mean (SD) 
% of sites (n=107) 

Total 2.45 (2.00) 100 

Hoary 0.091 (0.149) 24 

Big Brown 0.420 (0.451) 97 

Myotis spp.  1.27 (1.25) 99 
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Table 5: Independent Sample t-test* of difference of mean relative activity between lake and river habitats 

in SEGP, 2010-2012. 

*Equal variances not assumed based on Levene’s test for Equality of Variances. 

 

 t Degrees of 

Freedom 

Sig.  

(2-tailed) 

Mean 

Difference 

Standard 

Error 

Total Activity 6.99 70.381 <0.001 2.36 0.337 

Myotis spp. Activity 5.46 73.926 <0.001 1.23 0.224 

Big Brown Activity 5.29 81.088 <0.001 0.428 0.081 

Hoary bat Activity 2.75 54.641 0.008 0.085 0.031 
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Table 6: Descriptive Statistics of Explanatory Variables at Lake, River, and All sites at 1 km scale. 

  Lake (n=60) River (n=47) All (n=107) 

Variable Mean Std. Dev Min-Max Mean Std. Dev Min-Max Mean Std. Dev. Min-Max 

Developed (%) 19.54 14.47 4.06-62.43 13.48 11.41 2.53-39.94 16.88 13.5 2.53-62.43 

Forest (%) 9.89 7.21 0.63-28.02 10.9 9.78 1.1-38.76 10.33 8.41 0.63-38.76 

Agriculture (%) 18.39 8.42 0.82-33.32 37.94 18.59 2.9-80.33 26.98 16.87 0.82-80.33 

Woody Wetland 7.57 5.16 1.55-21.23 14.69 13.3 1.28-44.85 10.7 10.21 1.28-44.85 

Emergent Herbaceous Wetland (%) 6.01 6.69 0.42-31.56 14.69 11.25 0.26-35.58 9.82 9.93 0.26-35.58 

Patch Richness Density (Patches/ha) 0.62 0.15 0.31-0.96 0.583 0.142 0.4-1.26 0.6 0.15 0.31-1.26 

LPI Developed (%) 16.99 13.82 1.48-56.57 10.92 11.07 0.97-37.61 14.33 12.99 0.97-56.57 

LPI Forest (%) 2.37 1.91 0.16-7.98 2.73 3.21 0.15-14.16 2.52 2.56 0.15-14.16 

LPI Agriculture (%) 8.14 6.29 0.2-27.21 17.99 18.86 0.37-71.11 12.47 14.16 0.2-71.11 

LPI Woody Wetland (%) 2.27 2.25 0.25-10.79 5.15 7.074 0.15-30.6 3.53 5.16 0.15-30.6 

LPI Emergent Herb. Wetland (%) 2.79 4.03 0.17-23.57 4.93 6.04 0.08-21.23 3.73 5.1 0.08-23.57 

Forest Edge Density (ED) 34.74 21.8 3.57-82.1 36.41 23.51 6.38-86.89 35.47 22.47 3.57-86.89 

Agriculture ED 33.76 11.54 3.72-50.31 53.24 16.12 12.87-74.37 42.32 16.77 3.72-74.37 

Forest Core Area 1.6 1.6 0-7.32 2.43 3.05 0-11.86 1.96 2.37 0-11.86 

Woody Wetland Core Area 7.57 5.16 1.55-21.23 14.69 13.3 1.28-44.85 10.7 10.21 1.28-44.85 

Emergent Wetland Core Area 6.01 6.69 0.42-31.56 14.69 11.25 0.26-35.58 9.82 9.93 0.26-35.58 

Landscape Continuity 849.18 259.04 418.42-1464.85 636.5 243.25 376.68-1241.81 755.78 272.52 376.68-1464.85 

Patch Area 475.33 86.78 292.59-703.45 410.77 142.44 229.84-809.71 446.98 118.46 229.84-809.71 

Woody Wetlands Similarity Index 1839.76 1322.74 290.2-7453.19 746.53 646.44 22.61-2159.74 1359.55 1205.14 22.61-7453.19 

Emergent Wetland Similarity Index 2762.52 1917.37 92.17-7977 811.74 844.61 20.9-3284.75 1905.63 1817.14 20.9-7977 

Forest Similarity Index 48.87 58.39 0.3-250.85 120.15 205.94 0.35-1180.93 80.18 146.86 0.3-1180.93 

Temperature mean (degrees C) 21.26 2.6 14.4-30.0 21.35 2.5 15.69-31.0 21.28 2.8 14.4-31.0 
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Temperature min. (degrees C) 20.32 3.72 13.9-29.4 20.5 2.45 15.3-30.0 20.4 2.7 13.9-30.0 

Temperature max. (degrees C) 21.18 2.76 14.5-31.1 22.1 2.65 16.1-32.0 21.14 2.77 14.5-32.0 

Elevation mean (m) 257.98 24.69 224.08-327.24 242.84 15.14 227.22-287.92 251.33 22.27 224.08-327.24 

Wind mean 2.28 3.46 0-25.5 2.067 1.94 0-7 2.18 2.88 0-25.5 

Wind min. 1.29 1.48 0-5.1 1.65 1.89 0-6.9 1.45 1.67 0-6.9 

Wind max. 3.26 6.46 0-50 2.49 2.09 0-8.2 2.92 5.03 0-50 

Distance to Major Roadway (m) 571.56 636.49 0-5820.84 816.99 1481.22 0-5820.84 679.36 1092.05 0-5820.84 

Woody Wetlands Connectance Index 2.75 1.96 0-10.61 2.71 1.27 1.1-6.06 2.73 1.68 0-10.61 

Emergent Herbaceous Wetland Connectance 

Index 
4.24 3.3 0-16.67 2.24 1.48 0-6.88 3.36 2.83 0-16.67 
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Table 7: Results of MLR model examining the relationship between relative bat activity and habitat 

characteristics for all survey sites at a 1 km landscape scale. 

Variable  SE p r
2
 F (p) 

Total Activity 
   

0.584 23.354 (<0.001) 

Woody Wetland 0.516 0.015 < 0.001 
  

Agriculture 0.204 0.011 0.034 
  

Emergent Herbaceous Wetland 0.476 0.019 < 0.001 
  

Emergent Wetland Similarity -0.321 0.145 0.002 
  

Landscape Continuity 0.277 0.001 0.004 
  

Forest 0.408 0.020 < 0.001 
  

Myotis spp. Activity 
   

0.440 27.020 (<0.001) 

Woody Wetland 0.429 0.010 < 0.001 
  

Emergent Herbaceous Wetland -0.419 0.067 < 0.001 
  

Developed LPI -0.289 0.008 < 0.001 
  

Hoary Activity 
   

0.442 27.202 (<0.001) 

Woody Wetland 0.438 0.001 <0.001 
  

Distance to Major Roadway 0.244 <0.001 0.003 
  

Emergent Herbaceous Wetland 0.162 0.001 0.049 
  

Big Brown Activity 
   

0.299 14.676 (<0.001) 

Forest Core Area 0.371 0.017 <0.001 
  

Emergent Herbaceous Wetland 0.337 0.004 <0.001 
  

 Emergent Wetland Similarity -0.385 0.000 0.001 
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Table 8: Results of MLR model examining the relationship between relative bat activity and habitat 

characteristics for all survey sites at a 500 m landscape scale. 

Variable  SE p r
2
 F (p) 

Total Activity    0.605 21.696 (<0.001) 

Woody Wetland 1.026 0.036 < 0.001     

Agriculture 0.216 0.009 0.003   

Forest 0.474 0.016 < 0.001     

Emergent Herbaceous Wetland 0.357 0.013 < 0.001   

Patch Area Variability 0.346 0.002 < 0.001     

Emergent Wetland Similarity -0.172 0.000 0.021   

Woody Wetland LPI -0.474 0.057 0.027     

Myotis spp. Activity    0.350 28.048 (<0.001) 

Woody Wetland 0.485 0.008 < 0.001     

Agriculture 0.361 0.006 < 0.001     

Hoary Activity       0.425 25.657 (<0.001) 

Woody Wetland LPI 0.372 0.003 0.021   

Agriculture Edge Density -0.340 0.002 0.004     

Landscape Continuity -0.156 <0.001 0.050   

Big Brown Activity       0.370 14.960 (0.001) 

Forest Core Area 0.451 0.013 <0.001   

Woody Wetland 0.334 0.003 <0.001     

Agriculture 0.204 0.002 0.015   

Emergent Wetland LPI 0.197 0.005 0.012     
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Table 9: Results of  MLR models examining the relationship between relative bat activity and (a) surveyed lake habitat characteristics for all analysis groups at a 

1 km landscape scale, and (b) surveyed river habitat characteristics at a 1 km scale for all analysis groups.  

 

a) Lake 1 km b) River 1 km 

Variable  SE p r
2
 F (p) Variable  SE p r

2
 F (p) 

Total Activity    0.481 26.424 (<0.001) Total Activity    0.361 12.429 

(<0.001) 

Elevation Mean 0.535 0.005 < 0.001   Developed -0.480 0.022 < 0.001   

Woody Wetland 0.255 0.025 0.023   Forest Similarity 

Index 

0.272 0.001 0.033   

Myotis spp.    0.484 26.698 (<0.001) Myotis spp.    0.352 11.942 

(<0.001) 

Elevation Mean 0.545 0.004 < 0.001   Developed LPI -0.406 0.015 0.002   

Woody Wetland 0.243 0.018 0.029   Forest Similarity 

Index 

0.353 0.001 0.007   

Hoary    0.274 10.746 (<0.001) Hoary    0.455 37.598 

(<0.001) 

Wind Speed 

(Max) 

0.441 0.001 <0.001   Agriculture ED -0.675 0.001 <0.001   

Emergent 

Wetland 

0.326 0.001 0.006         

Big Brown      Big Brown     0.369 12.851 

(<0.001) 

None      Forest Similarity 

Index 

0.515 0.019 <0.001   

      Developed LPI -0.461 0.005 0.001   
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Table 10: MLR model results examining relative bat activity and (a) surveyed lake habitat characteristics at 500 m scale and (b) surveyed river habitat 

characteristics for all analysis groups at a 500 m landscape scale. 

 

a) Lake 500 m b) River 500 m 

Variable  SE p r
2
 F (p) Variable  SE p r

2
 F (p) 

Total Activity 
   

0.495 
27.962 

(<0.001) 
Total Activity       0.273 

16.927 

(<0.001) 

Elevation Mean 0.544 0.005 < 0.001     Developed -0.523 0.024 < 0.001   

Woody Wetland 0.265 0.030 0.014 
  

         

Myotis spp.       0.491 
27.508 

(<0.001) 
Myotis spp.    0.327 

10.670 

(0.001) 

Elevation Mean 0.549 0.003 < 0.001   Developed -0.412 0.016 0.002   

Woody Wet Core 0.256 0.021 0.019   
 

Landscape 

Continuity 
0.345 0.001 0.008     

Hoary       0.223 
8.194 

(0.001) 
Hoary       0.425 

16.289 

(<0.001) 

Wind Speed (Max) 0.371 0.001 0.003     
Woody Wet 

LPI 
0.372 0.003 0.021     

Survey Temp. 

(Minimum) 
0.238 0.001 0.050     Agriculture ED -0.340 0.002 0.034   

Big Brown           Big Brown       0.392 
14.174 

(<0.001) 

None           
Forest Core 

Area 
0.516 0.014 <0.001   

      Developed -0.447 0.005 0.001     
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APPENDICES 

Appendix A: A listing of all sites surveyed in 2010, 2011, and 2012 and their distance, given in kilometers, and length, given in minutes. 

2010   2011   2012   

Route Distance 

(km) 

Length 

(min) 

Route Distance 

(km) 

Length 

(min) 

Route Distance 

(km) 

Length 

(min) 

Bark River 1 8.70 141.00 Bark River 8.59 102.00 Bark River 8.32 102.00 
Big Cedar Lake 7.91 173.00 Big Cedar Lake 7.99 86.00 Big Cedar Lake 7.80 135.00 
Como Lake 7.20 116.00 Como Lake 7.02 70.00 Como Lake 7.69 106.00 
Crawfish River 2 9.14 142.00 Crawfish River 2 8.19 103.00 Crawfish River 2 9.68 196.00 
Crawfish River 5 8.49 117.00 Crawfish River 5 7.73 84.00 Crawfish River 5 8.05 87.00 
East Branch Rock 

River 
7.14 102.00 East Branch Rock 

River 
7.50 139.00 East Branch Rock 

River 
5.75 80.00 

Fox River 1 8.04 108.00 Fox River 1 7.91 80.00 Fox River 1 7.33 74.00 
Fox Lake 7.88 115.00 Fox Lake 7.88 83.00 Fox Lake 8.39 130.00 
Illinois/Fox River 4 8.25 93.00 Illinois/Fox River 4 8.41 95.00 Illinois/Fox River 4 8.91 101.00 
Illinois/Fox River 7 8.06 83.00 Illinois/Fox River 7 8.37 95.00 Illinois/Fox River 7 8.37 88.00 
Lake Koshkonong 8.91 120.00 Lake Koshkonong 12.08 165.00 Lake Koshkonong 7.19 125.00 
Lac La Belle 8.06 120.00 Lac La Belle 7.29 85.00 Lac La Belle 7.64 129.00 
Lake Beulah 7.00 113.00 Lake Beulah 6.52 85.00 Lake Beulah 7.36 112.00 
Lake Buttes Des 

Morts 
7.90 110.00 Lake Butte des Morts 7.76 75.00 Lake Butte Des Morts 7.59 130.00 

Lake Kegonsa 9.54 127.00 Lake Kegonsa 9.07 103.00 Lake Kegonsa 7.70 84.00 
Lake Mendota 8.34 143.00 Lake Mendota 7.58 97.00 Lake Mendota 7.27 187.00 
 -  -  -  -  -  - Lake Mendota 7.29 102.00 
Lake Waubesa 7.29 118.00 Lake Waubesa 7.89 88.00 Lake Waubesa 10.17 154.00 
Lake Winnebago 7.61 122.00 Lake Winnebago 5.21 60.00 Lake Winnebago 6.78 131.00 
Little Lake Butte des 

Morts 
9.29 135.00 Little Lake Butte des 

Morts 
8.62 108.00 Little Lake Butte des 

Morts 
8.40 158.00 

Long Lake (Fon Du 

Lac Co) 
7.87 125.00 Long Lake (Fon Du 

Lac Co) 
7.46 109.00 Long Lake (Fon Du 

Lac Co) 
6.03 125.00 
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Milwaukee River 3 8.36 163.00 Milwaukee River 3 8.61 133.00 Milwaukee River 3 Not 

Surveyed 

Not 

Surveyed 

Partridge Lake 7.39 115.00 Partridge Lake Not 

Surveyed 

Not 

Surveyed 

Partridge Lake 6.09 92.00 

Pewaukee Lake 8.22 131.00 Pewaukee Lake  7.39 71.00 Pewaukee Lake 8.22 171.00 
Powers Lake 7.69 118.00 Powers Lake 6.91 84.00 Powers Lake 7.34 104.00 
 -  -  -  -  -  - Powers Lake 6.95 81.00 
Rock Lake 8.00 137.00 Rock Lake 7.91 87.00 Rock Lake 8.14 111.00 
Rock River 03 8.27 92.00 Rock River 03 5.60 72.00 Rock River 03 9.07 105.00 
Rock River 10 6.28 62.00 Rock River 10 8.61 122.00 Rock River 10 3.12 98.00 
Rock River 06 8.21 103.00 Rock River 06 8.22 96.00 Rock River 06 8.20 109.00 
Rock River 08 8.70 80.00 Rock River 08 9.04 90.00 Rock River 08 7.50 93.00 
Sinissippi Lake 7.12 125.00 Sinissippi Lake 7.84 75.00 Sinissippi Lake 7.76 150.00 
Sugar River 3 9.44 100.00 Sugar River 3 9.07 101.00 Sugar River 3 9.02 78.00 
Unnamed Lake 7.12 117.00 Unnamed Lake 7.52 98.00 Unnamed Lake 6.59 76.00 
White Lake 4.57 111.00 White Lake Not 

Surveyed 

Not 

Surveyed 

White Lake 8.26 120.00 

Wolf River 1 (Waupaca 

Co) 
8.26 85.00 Wolf River 1 (Waupaca 

Co) 
7.65 84.00 Wolf River 1 (Waupaca 

Co) 
8.00 95.00 

Wolf River 2 8.20 86.00 Wolf River 2 8.22 70.00 Wolf River 2 8.21 115.00 
Yahara River 1 7.95 105.00 Yahara River 1 8.80 102.00 Yahara River 1 7.22 72.00 
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Appendix B 
Correlation Matrix between Bat Activity and Landscape Metrics at all survey transects, 1 km.  

Species Total Myotis spp. Hoary Big Brown 

Variable 
Pearson 

Correlation 
Sig. 

Pearson 

Correlation 
Sig. 

Pearson 

Correlation 
Sig. 

Pearson 

Correlation 
Sig. 

Developed -.371
**

 .000 -.372
**

 .000 -.251
**

 .009 -.170 .079 

Forest .205
*
 .035 .143 .141 .049 .619 .306

**
 .001 

Agriculture .342
**

 .000 .335
**

 .000 -.179 .065 .280
**

 .003 

Woody 

Wetland 
.484

**
 .000 .468

**
 .000 .602

**
 .000 .221

*
 .022 

Emergent 

Wetland 
.366

**
 .000 .288

**
 .003 .404

**
 .000 .193

*
 .046 

Patch 

Richness Dens. 
-.151 .121 -.145 .137 -.076 .439 -.073 .454 

LPI Developed -.382
**

 .000 -.379
**

 .000 -.246
*
 .011 -.189 .051 

Forest LPI .228
*
 .018 .166 .088 .144 .140 .303

**
 .001 

Agriculture 

LPI 
.212

*
 .028 .255

**
 .008 -.106 .278 .068 .489 

Woody Wet 

LPI 
.323

**
 .001 .346

**
 .000 .504

**
 .000 .108 .266 

Emergent Wet 

LPI 
.197

*
 .042 .129 .184 .166 .087 .132 .175 

Forest ED .200
*
 .038 .149 .126 .022 .826 .289

**
 .003 
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Forest Core 

Area 
.238

*
 .013 .159 .101 .061 .533 .363

**
 .000 

Woody 

Wetland Core 

Area 

.484
**

 .000 .468
**

 .000 .602
**

 .000 .221
*
 .022 

Emergent 

Wetland Core 

Area 

.366
**

 .000 .288
**

 .003 .404
**

 .000 .193
*
 .046 

Landscape 

Continuity 
-.354

**
 .000 -.281

**
 .003 -.257

**
 .008 -.320

**
 .001 

Patch Area -.237
*
 .014 -.135 .166 -.171 .078 -.322

**
 .001 

Woody Wet. 

Simi. Index 
-.251

**
 .009 -.217

*
 .025 .087 .374 -.270

**
 .005 

Emergent Wet 

Simi. Index 
-.337

**
 .000 -.284

**
 .003 .019 .848 -.349

**
 .000 

Temp. Mean .036 .710 -.036 .715 .147 .130 .055 .573 

Temp. Min, .040 .679 -.034 .727 .142 .146 .060 .537 

Temp. Max. .028 .778 -.043 .661 .148 .129 .049 .620 

Elevation 

Mean 
-.028 .774 .040 .684 -.216

*
 .025 -.085 .386 

Wind Mean .007 .941 .004 .963 .038 .698 -.012 .901 

Wind Max .051 .599 .053 .585 -.086 .380 .035 .720 

Wind Max -.009 .929 -.013 .898 .072 .462 -.026 .794 

Dist. To 

Highway 
.209

*
 .031 .158 .104 .462

**
 .000 .086 .380 

**Correlation is significant at the 0.01 level (2-tailed); *Correlation is significant at the 0.05 level (2-tailed). 



 
 

 
 

1
4
2

 

Correlation Matrix between Bat Activity and Landscape Metrics at all survey transects, 500 m. 

Species Total Myotis spp. Hoary Big Brown 

Variables 
Pearson 

Correlation 
Sig. 

Pearson 

Correlation 
Sig. 

Pearson 

Correlation 
Sig. 

Pearson 

Correlation 
Sig. 

Developed -.403
**

 .000 -.391
**

 .000 -.277
**

 .004 -.216
*
 .026 

Forest .223
*
 .021 .159 .103 -.025 .802 .354

**
 .000 

Agriculture .336
**

 .000 .339
**

 .000 -.143 .143 .242
*
 .012 

Woody Wetland .499
**

 .000 .469
**

 .000 .555
**

 .000 .278
**

 .004 

Emergent Wetland .371
**

 .000 .276
**

 .004 .335
**

 .000 .229
*
 .018 

Patch Richness Density -.193
*
 .047 -.176 .069 -.071 .470 -.121 .216 

Developed LPI -.383
**

 .000 -.367
**

 .000 -.252
**

 .009 -.238
*
 .014 

Forest LPI .133 .171 .075 .444 -.022 .825 .275
**

 .004 

Agriculture LPI .255
**

 .008 .318
**

 .001 -.082 .401 .073 .453 

Woody Wet LPI .422
**

 .000 .392
**

 .000 .595
**

 .000 .213
*
 .027 

Emergent Wet LPI .274
**

 .004 .169 .082 .128 .187 .216
*
 .025 

Forest ED .212
*
 .029 .156 .108 -.070 .472 .331

**
 .001 

Agriculture ED .254
**

 .008 .218
*
 .024 -.193

*
 .046 .264

**
 .006 

Forest Core Area .256
**

 .008 .178 .066 -.007 .941 .410
**

 .000 

Woody Wet Core Area .499
**

 .000 .469
**

 .000 .555
**

 .000 .278
**

 .004 

Emergent Wet Core Area .371
**

 .000 .276
**

 .004 .335
**

 .000 .229
*
 .018 

Landscape Cont. -.341
**

 .000 -.227
*
 .019 -.236

*
 .014 -.370

**
 .000 

Patch Area -.199
*
 .040 -.061 .531 -.150 .122 -.349

**
 .000 
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Woody Wet Simi Index -.234
*
 .015 -.182 .060 .016 .868 -.179 .065 

Emergent Wet Simi Index -.299
**

 .002 -.228
*
 .018 -.026 .793 -.246

*
 .011 

Forest Simi Index .146 .133 .159 .102 -.039 .688 .222
*
 .021 

Temp. Mean. .036 .710 -.036 .715 .147 .130 .055 .573 

Temp. Min. .040 .679 -.034 .727 .142 .146 .060 .537 

Temp. Max. .028 .778 -.043 .661 .148 .129 .049 .620 

Elev. Mean -.025 .796 .035 .721 -.209
*
 .031 -.058 .550 

Wind Mean .007 .941 .004 .963 .038 .698 -.012 .901 

Wind Min. .051 .599 .053 .585 -.086 .380 .035 .720 

Wind Max. -.009 .929 -.013 .898 .072 .462 -.026 .794 

Distance to Hwy .209
*
 .031 .158 .104 .462

**
 .000 .086 .380 

**Correlation is significant at the 0.01 level (2-tailed); *Correlation is significant at the 0.05 level (2-tailed).
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Appendix C 
Residual plots for 1 km MLR models at all SEGP survey sites, a) Total Bat Activity b) Myotis spp. Activity c) Hoary Activity, d) 

Big Brown Activity.  
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Appendix D 

 

Residual Plots at Lake Habitats in the SEGP for a) Total bat activity at 500 m scale, b) Myotis spp. activity at 500 m scale, and c) 

Hoary bat activity at 1 km scale. 
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Appendix E 

 

Residual Plots at Riparian Habitats in the SEGP for a) Total bat activity at 1 km scale, b) Myotis spp. activity at 1 km scale, c) 

Hoary bat activity at 1 km scale, and d) Big Brown bat activity at 1 km scale. 
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Appendix F 

 

Scatter plot matrix of Bat Activity and Land Cover Proportion at all sites in the SEGP sites for a) Total bat activity at 1 km, b) 

Myotis spp. at 1 km, c) Hoary bat at 1 km, d) Big Brown at 500 m. Histogram included for each variable. 
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d)  
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Scatter plot matrix of Bat Activity and Patch Richness Density & LPI at all sites in the SEGP sites for a) Total bat activity at 1 

km, b) Myotis spp. at 1 km, c) Hoary bat at 1 km, d) Big Brown at 500 m. Histogram included for each variable. 
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