
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

August 2013

Efficient Computation of K-Nearest Neighbor
Graphs for Large High-Dimensional Data Sets on
GPU Clusters
Ali Dashti
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Biomedical Engineering and Bioengineering Commons, and the Computer Sciences

Commons

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Dashti, Ali, "Efficient Computation of K-Nearest Neighbor Graphs for Large High-Dimensional Data Sets on GPU Clusters" (2013).
Theses and Dissertations. 280.
https://dc.uwm.edu/etd/280

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F280&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F280&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F280&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/229?utm_source=dc.uwm.edu%2Fetd%2F280&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=dc.uwm.edu%2Fetd%2F280&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=dc.uwm.edu%2Fetd%2F280&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/280?utm_source=dc.uwm.edu%2Fetd%2F280&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu

EFFICIENT COMPUTATION OF K-NEAREST NEIGHBOR GRAPHS FOR LARGE

HIGH-DIMENSIONAL DATA SETS ON GPU CLUSTERS

by

Ali Dashti

A Thesis Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Master of Science

in Engineering

at

The University of Wisconsin-Milwaukee

August 2013

ii

ABSTRACT

EFFICIENT COMPUTATION OF K-NEAREST NEIGHBOR GRAPHS FOR LARGE

HIGH-DIMENSIONAL DATA SETS ON GPU CLUSTERS

by

Ali Dashti

The University of Wisconsin-Milwaukee, 2013

Under the Supervision of Professor Roshan M. D'Souza

 The k-Nearest Neighbor Graph (k-NNG) and the related k-Nearest Neighbor (k-

NN) methods have a wide variety of applications in areas such as bioinformatics,

machine learning, data mining, clustering analysis, and pattern recognition. Our

application of interest is manifold embedding. Due to the large dimensionality of the

input data (< 15k), spatial subdivision based techniques such OBBs, k-d tree, BSP etc.,

are not viable. The only alternative is the brute-force search, which has two distinct parts.

The first finds distances between individual vectors in the corpus based on a pre-defined

metric. Given the distance matrix, the second step selects k nearest neighbors for each

member of the query data set.

This thesis presents the development and implementation of a distributed exact k-

Nearest

Neighbor Graph (k-NNG) construction method. The proposed method uses

Graphics Processing Units (GPUs) and exploits multiple levels of parallelism for

distributed computational systems using GPUs. It is scalable for different cluster sizes,

with each compute node in the cluster containing multiple GPUs. The distance

iii

computation is formulated as a basic matrix multiplication and reduction operation. The

optimized CUBLAS matrix multiplication library is used for this purpose. Various

distance metrics such as Euclidian, cosine, and Pearson are supported. For k-NNG

construction, two different methods are presented. The first is based

on an approach called batch index sorting to build the k-NNG with three sorting

operations. This method uses the optimized radix sort implementation in the Thrust

library for GPU. The second is an efficient implementation using the latest GPU

functionalities of a variant of the quick select algorithm. Overall, the batch index sorting

based k-NNG method is approximately 13x faster than a distributed MATLAB

implementation. The quick select algorithm itself has a 5x speedup over state-of-the art

GPU methods. This has enabled the processing of k-NNG construction on a data set

containing 20 million image vectors, each with dimension 15,000, as part of a manifold

embedding technique for analyzing the conformations of biomolecules.

iv

TABLE OF CONTENTS

ABSTRACT .. ii

LIST OF FIGURES vi

1 Introduction . 1

 1.1 Overview 1

 1.2 Contributions . 3

 1.3 Manifold Embedding 3

 1.4 Distributed parallel computing with GPU accelerators 7

 1.4.1 Message Passing Interface (MPI) . 7

 1.4.2 Open Multiprocessing (OpenMP) . 8

 1.4.3 Graphics processing units (GPUs) .9

 1.4.4 Programming Model . 10

2 Literature Review 13

 2.1 Exact k-NN/k-NNG algorithms . .13

 2.2 Approximate algorithms .14

 2.3 Brute force k-NN search .15

 2.3.1 Brute force implementation of k-NNG on GPU 16

3 Methods . 20

 3.1 Problem scale . 21

 3.2 Distributed k-NNG generation on GPU clusters . 21

 3.2.1 Distance calculation .22

 3.2.2 Distribution of data and tasks between computing nodes 24

 3.2.3 Distribution of tasks and data within nodes28

 3.2.4 Distribution of tasks and data within GPUs29

v

 3.3 Finding k-NN using batch index sorting .32

 3.4 Quick select algorithm . 34

4 Results . 39

 4.1 k-NNG construction with Batch Index Sorting . 39

 4.1.1 Performance benchmarks of k-NNG algorithms in single GPU. . . .40

 4.1.2 Performance analysis of Multi GPU k-NNG. 44

 4.2 Benchmarks of k-NN selection with Quick-Select 45

 4.2.1 Performance analysis of single GPU Quick-Select. 46

 4.3 k-NNG and manifold embedding49

5 Conclusions . 53

 5.1 Contributions . 53

 5.2 Discussions . 54

 5.3 Future work . 55

References 57

vi

LIST OF FIGURES

1.1 Schematic view of a manifold. Correlations in high dimensional space reveal

themselves as a low-dimensional hypersurface (manifold) in data space. [5] 5

1.2 Flowchart of diffusion map embedding of manifold . 6

1.3 GPU Fermi architecture. 16 multiprocessors are positioned around a common L2

cache. Each orange portion is scheduler and dispatch, green portions are execution units

and light blue portions are memory for register file and L1 cache [30]10

1.4 CUDA Model. Threads, blocks, and grids, with corresponding memory spaces for

private per-threads, shared per-block, and global per-applications.[27] 12

2.1 Schematic view of locality sensitive hashing methods. Two level hashing from

dimensional data space to peer identifier space. [17] .14

3.1 Data partitioning .24

3.2 Load balancing . 26

3.3 Computing k-NN . 27

3.4 Task distribution within the nodes . 29

3.5 Vector norms .31

3.6 Addition kernel to find distance martix S .32

3.7 Batch index sort for finding k-NN . 33

3.8 Read in process. Read in of the array is done incrementally in sets of 32 elements. As

illustrated, the memory access is coalesced. The value is stored in a register.

Simultaneously, the invocation of the warp voting function fills the bit array B based on

the evaluation of the predicate that indicates if value in the register is greater than, equal

to or less than the pivot .35

vii

3.9 Pivot process. The pivot process is accomplished in shared memory. Each thread

determines where in the shared memory the value has to be written Since all threads write

to different locations, there are no bank conflicts. .37

3.10 Write-out process: The thread id indicates (based on the computation popc(B)

whether a given thread is writing out an element less than the pivot or greater than or

equal to the pivot. The values g< piv and g_ piv that are maintained in shared memory

and updated incrementally indicate the location in the global array the location of the last

element that is less than the pivot and greater than or equal to the pivot. This operation

involves at most two coalesced memory writes. .38

4.1 Performance analysis of k-NNG with batch index sorting. benchmark results for

varying k in comparison with [16] and [2]. In this test our input data has the dimension d

= 4096 and the number of input objects/vectors n = 16384. (a) shows the performance vs.

[16]. (b) shows the performance vs. [2] . 42

4.2 Performance analysis of k-NNG with batch index sorting. (a) shows the performance

vs. [16]. (b) shows the performance vs. [2] 43

4.3 Benchmarks for varying n. In this test our input data have the dimension k = 1024 and

the number of input objects/vectors d = 4192. (a) shows the performance vs. [16]. (b)

shows the performance vs. [2]. .44

4.4 Performance analysis of Multi GPU k-NNG construction with batch index sorting.

Benchmarks in comparison with [2]. In this test we used 2 GPUs. For the implementation

of [2] algorithm, the 2 GPUs (Tesla 2050) were mounted on a single desktop machine.

For our implementation, we use 2 nodes in our GPU cluster and opted to use only one

viii

GPU per node. The input data had dimension d = 16384, and the number of closest

neighbors k = 512. . . 45

1

Chapter 1

Introduction

1.1 Overview

The k-Nearest Neigbhor (k-NN) and the related k-Nearest Neighbor Graph (k-NNG) are

important techniques used in a variety of fields such as path planning, bioinformatics, data

mining, and geographic information systems. The k-NN search problem is rooted in the post-

office problem first mentioned by Donald Knuth in The Art of Computer Programming [22].

The post-office problem is the task of finding the nearest post office(s) for each resident from

a set of post offices in the area.

Formally, the (k-NN) problem is as follows: Given a set of reference data vectors S =

[v1 v2 ..vk.. vn], a distance metric d : RD × RD → R and a query vector q ∈ RD, the

k-Nearest Neighbors to q are defined as the set I(q) ⊂ S with

d(q, vi) < d(q, vj)|vi ∈ I(q), vj ∈ S − I(q)

2

As opposed to the k-NN search, in the k-NNG construction, every vector in the reference

data set is also a query vector. For data sets with small dimensions, there are several effi-

cient space partitioning- based techniques. These techniques use the reference data set to build

query data structures such as kd-trees [19], BBD-trees [3] , random-projection trees (rp-trees)

[10] or hashing based partitioning, such as locally sensitive hash [11]. These techniques are

optimized for searches, in the sense that, when a query vector is produced, the k-NN can be

quickly found. It is assumed that the reference data set is immutable. The k-NNG can be

constructed by repeatedly invoking the k-NN on each member of the data set. Direct k-NNG

construction has also been extensively investigated. All these methods have a computational

complexity that is exponentially dependent on the vector dimension. For data sets consisting of

high-dimensional vectors (D > 100), these techniques are computationally intractable. There

are several approximate algorithms that are efficient in the regime of high-dimensional data

sets. These typically reduce search space through recursive partitioning based on an accuracy

measure, and then employ a brute force technique on the reduced data sets. For applications

such as Manifold Embedding, accuracy is very important and therefore these approximate tech-

niques are not viable. Consequently, the only alternative available is the brute-force technique,

which has two important parts. The first consists of finding the distance matrix based on a

pre-defined distance metric. The second part consists of using the distance matrix to find the

nearest neighbors in the reference data set for each query. The computational cost of execut-

ing the brute-force search is substantial and cannot be handled by serial computing on single

3

desktop computers. In this thesis, the computational complexity is addressed through multi-

level parallel execution on computing clusters with nodes containing graphics processing unit

accelerators.

1.2 Contributions

In this thesis, a distributed multi-level parallel brute force k-NNG algorithm is presented.

Efficient data partitioning and communication schemes were developed to partition the large

input data set among individual nodes of a computing cluster for balanced execution. Brute

force k-NNG consists of two main tasks: distance matrix calculation and k-NNG construc-

tion. Various distance metrics were formulated in terms of matrix multiplication and reduction

operations. Efficient GPU libraries were used for computing distance matrices and two novel

algorithms have been developed for k-NNG construction. The first algorithm, called batch in-

dex sorting, uses three sorting steps to build the k-NNG. The second algorithm is an efficient

implementation of the Quick-Select algorithm and uses the latest GPU functionality to greatly

speed up k-NNG construction. Overall, this work achieved a 6x speed up over an existing

distributed multi-core parallel implementation of k-NNG implementation on a CPU cluster.

1.3 Manifold Embedding

Our target application of a k-NNG construction problem is manifold embedding. Mani-

fold embedding is used in structural biology to recover the structure and conformations of a

biomolecule from a large ensemble of noisy snapshots obtained from unknown orientations

and conformations of the molecule [31] [5]. There are different methods for three-dimensional

4

reconstruction of an object from its two-dimensional snapshots. In the simplest case, when the

object and orientations are known, standard tomographic methods [25] can be used to recon-

struct the 3D view of object. Tomographic methods can be used even for unknown orientations

and extremely noisy signals, and have been proposed for structure and recovery in heteroge-

neous datasets [31][14].

In addition to tomographic approaches, graph theoretic and differential geometric methods

can be used for image reconstruction from datasets of unknown objects [15][13]. Graph theo-

retic approaches attempt to reduce the dimensionality of the data space by projecting into some

low-dimensional manifold intrinsic to the geometric projection of the data, and hence are seen

as nonlinear dimensionality reduction kernels. This is in contrast to to linear methods, such as

principal component analysis (PCA)which essentially ignore the intrinsic geometry inherent to

the data. However, there are some disadvantages associated with graph theoretic methods,such

as computational costs and robustness against noise, to name a few.

The underlying assumption behind manifold embedding exploit the fact that the similarities

between high-dimensional data points in data space reveal themselves as a low-dimensional

hypersurface embedded in the high-dimensional data space. The embedded hyper surface,

called a manifold from here on, contains the information about the system giving rise to the

snapshots, for example, 3D structure of a biomolecule.

5

Figure 1.1 Schematic view of a manifold. Correlations in high dimensional space reveal
themselves as a low-dimensional hypersurface (manifold) in data space. [5]

Manifold embedding measures the similarities or nonlinear correlations between clouds of

snapshots by tracking their response to an operator and finding the orthonormal coordinates

needed to describe the manifold. In our target application, we used the diffusion map operator,

a technique inspired by hidden Markov models (HMM), for embedding. Another interesting

feature of manifolds is their dimensionality. Dimensionality of a manifold has a direct rela-

tionship with the degrees of freedom the object has in reality. For example, since rotation of

an object in space has three degrees of freedom and can be characterized by three values (for

example, Euler angles), the manifold of snapshots form an object which rotates about any axis

in a 3−dimensional space (Figure 1.1).

Diffusion map manifold embedding is based on the so-called diffusion characteristics of

the dataset. Specifically, it measures the distance between two points according to their Eu-

clidean distance, but the path taken by the diffusion of heat. An affinity graph is defined as

the exponential normalization of Euclidean distance between points with their neighbors in the

k-nearest neighbor graph. Probability of diffusion from one point to another on a path in a

6

manifold is then defined by applying Laplace-Beltrami normalization to the affinity graph. A

diffusion probability matrix contains all the probabilities of diffusion from one point to another

on the manifold. Finally, eigenvectors of the diffusion probability matrix provide a description

of the manifold in terms of a set of Euclidean coordinate (eigenvectors).

Figure 1.2 Flowchart of diffusion map embedding of manifold

Diffusion map embedding is a computationally efficient theoretical framework that con-

tains the required information to reconstruct a 3D model of a rotating object from its scattering

snapshots in random orientations on a 2D detector [31] [32]. The underlying information in a

manifold captured in its Riemannian metric contains an object independent term and an object

7

specific signature [5].

Figure 1.2 shows a flowchart of a diffusion map embedding method. The main computa-

tional part of diffusion map embedding is the construction of a k-NNG for a high-dimensional

data cloud that will be analyzed to generate a diffusion map in subsequent stages of the algo-

rithm. The input data to the manifold embedding application contains upwards of 107 images,

with each with 15k pixels. We require k > 200 for accurate results. The nature of high-

dimensional data, in addition to accuracy requirements, makes a brute-force algorithm the only

viable option for generating k-NNG.

1.4 Disrtributed parallel computing with GPU accelerators

The k-NNG implementation developed in this thesis uses multi-level parallel execution on

computing clusters with GPU accelerators. In this section the various tools, techniques and

programming models used in this implementation are described.

1.4.1 Message Passing Interface (MPI)

Message passing interface (MPI) is the most widely used application protocol interface

(API) for distributed memory parallel execution on computing clusters. It is a message-passing

application programmer interface, together with protocol and semantic specifications for how

its features must behave in any implementation [28]. It provides language binding for C, C++

and FORTRAN, and currently is the de facto standard interface for high performance and high

8

throughput computing applications on distributed memory architecture. In the MPI program-

ming model one node in the computing cluster is designated as the head node and controls the

overall execution. Other nodes are designated as worker nodes and are responsible for the dis-

tributed execution. MPI provides point-to-point message passing for user-specified groups of

exclusive processes. In programming with MPI, worker nodes access each others’ data through

the high-speed network connecting the cluster. In addition, there is an option for each node to

broadcast its data to all other worker nodes in the cluster.

1.4.2 Open Multiprocessing (OpenMP)

In contrast to MPI, OpenMP is a shared memory architecture API. OpenMP enables the

harnessing of multiple cores on modern CPUs through multi-threading. OpenMP follows a

fork-join programming model, where a parent task/process can spawn multiple tasks that can

execute in parallel. Parallel tasks can share data and synchronize. Tasks can execute entirely

different programs on different data types. In the OpenMP task execution model each task

can have independent access to memory and cache. OpenMP supports bindings for popular

programming languages such as C, C++ and FORTRAN. In a cluster setup, MPI can be used

for assigning the tasks to worker nodes and multithreaded task executions inside the nodes can

be achieved with the help of OpenMP.

9

1.4.3 Graphics processing units (GPUs)

Graphics Processing Units were initially developed to handle computations related to graph-

ics rendering. The need for specialized rendering routines led GPU vendors to provide user-

defined functionality through shader programming [24]. Subsequently, researchers used shaders

to essentially trick GPUs into performing scientific computations. This further led GPU ven-

dors to develop extensions of the C language in order to directly access the parallel processing

power for general purpose scientific computing. Examples of these APIs include CUDA [30],

OpenCL,[21] and OpenGL [36].

1.4.3.1 Hardware architecture

The processing elements in a GPU are organized around several multi-processors (MPs).

Each multi-processor, as the name suggests, has several serial processing units (SPUs). All

SPUs in an MP have access on-chip to a user-controlled cache called shared memory. In

addition, there is a register file that is distributed among all MPs. Shared memory is organized

into memory banks. The off−chip RAM on a GPU is called global memory. While previous

generation GPUs did not cache global memory, the latest generation GPUs have L1 and L2

caches. L1 cache is local to an MP while the L2 cache is shared among all MPs (Figure 1.3. A

small portion of the global memory is designated as read-only constant memory. This memory

that is automatically cached can be used to store constant values that are frequently accessed.

10

Figure 1.3 GPU Fermi architecture. 16 multiprocessors are positioned around a common L2
cache. Each orange portion is scheduler and dispatch, green portions are execution units and

light blue portions are memory for register file and L1 cache [30]

.

1.4.4 Programming Model

GPUs generally follow the data-parallel programming model, where the same instruction

is applied to elements of a data array. For GPUs developed by NVIDIA, there is a native API

called Compute Unified Device Architecture (CUDA), which dramatically decreases the pro-

gramming overhead involved in accessing the parallel computing power of GPUs.

11

The basic execution unit is a thread. Every thread executes the same program called a ker-

nel. Threads are organized into logical partitions called thread blocks (TBs). During execution,

all threads in a TB are assigned to a single MP. Threads in a TB can communicate via shared

memory and can be synchronized. In a typical execution, the number of TBs far exceeds the

number of MPs (Figure 1.4).

At the hardware level, threads are organized into warps. All threads in a warp execute in

lock-step fashion. Warps are equivalent to threads in the symmetric multi-process context. It

is therefore advisable to avoid thread divergence with a warp. If two or more threads in a warp

access the same shared memory bank, this operation will cause bank conflicts and serializa-

tion. However, if all threads access a single shared memory location, then an efficient broadcast

mechanism is used. In accessing global memory, all threads in a warp must access memory

within a contiguous 128b segment. Non-compliant memory accesses are called un-coalesced

accesses and are serialized.

12

Figure 1.4 CUDA Model. Threads, blocks, and grids, with corresponding memory spaces for
private per-threads, shared per-block, and global per-applications.[27]

13

Chapter 2

Literature Review

In this chapter, we discuss previous work on algorithms for k-nearest neighbor graph con-

struction and k-nearest neighbor search. Broadly speaking, there are two categories of algo-

rithms. One set of algorithms provides the exact k-NNs while the second set of algorithms

sacrifices accuracy to a certain degree to gain on performance. For low dimensional data sets,

there are several efficient algorithms based on space partitioning data structures. For inter-

mediate dimensional data sets, there are approximate algorithms based on hashing[11]. For

large dimensional data sets where exact computation of k-NN is a must, the only alternative

is a brute force search that is computationally quite expensive. Recently, there has been much

research into addressing the computational complexity of a brute force search by using novel

architectures such as graphics processing units.

2.1 Exact k-NN/k-NNG algorithms

In very low dimensional spaces (2D or 3D) graph-based searching methods such as those

using Voronoi diagrams and proximity graphs are very efficient and achieve super-linear speedup.

For higher dimensions, space partitioning methods such as k-D Trees[19] , B-Trees [3], R-

Trees[10] and Metric-Trees are most efficient. For these methods, there is a pre-processing

14

step where the reference data set is used to build the search data structure. Once this data struc-

ture is built, the search for k-NN is quite cheap. However, building the search data structure

itself is quite expensive . Therefore these methods are most useful if the reference data set is

static. For large data dimensions and large values of k, the search process is no better than the

brute-force technique.

2.2 Approximate algorithms

In many applications, especially with large data dimensions, search accuracy constraints

are not very stringent. In such cases, methods have been developed based on hashing to bin

objects based on the object hash that is a function of its vector coordinates. Popular hashing

schemes include the Locality Sensitive Hashing (LSH)[11], Z-Morton Curve based hashing

[9], and Hilbert space filling curve hashing [4] . Essentially, hashing schemes convert a D di-

mensional problem to a 1-D problem through a hash function that preserves proximity of the

input data set. The most challenging part of this scheme is the definition of a good hashing

function. There are other approximate algorithms that use a hybrid approach. For example,

Figure 2.1 Schematic view of locality sensitive hashing methods. Two level hashing from d-
dimensional data space to peer identifier space. [17]

15

in [9], a disk−based quadtree data structure is initially used to partition the reference data set.

The k-NN search is conducted in two phases. A Z-order-based approximate proximity mea-

sure is used to find the approximate k-NN. Next, a recursive correction algorithm is used to

improve the accuracy. Another set of techniques is based on a hybrid of spatial subdivision

up to a threshold granularity and small scale brute force evaluation or heuristics for refinement

[8] [12] [35]. Some techniques take advantage of the intrinsic dimensionality of the data set to

project the data set into a low dimensional space that preserves proximity. These techniques

use the results of the Johnson-Lindenstrauss theorem that says for any n point subset of Eu-

clidean space can be embedded in k = O(log(n ε2) dimensions without distorting the distances

between any pair of points by more than a factor of 1 + ε for any 0 < ε < 1 . This reduces the

complexity of the search. Examples of such work include techniques using random projections

as in [29].

2.3 Brute force k-NN search

For practical purposes, when one insists on having linear or near linear space require-

ments, the best performance time per query for a random input point cloud is bounded to

min(2O(d), d × n), which is essentially equal to a brute force search. In other words, the

complexity of algorithms is linearly related to the dimension and data number, even for moder-

ate dimensions. Exponential dependence of time or space on the dimension in a k-NN search

is termed the curse of dimensionality and has been observed in practical experiments. Many

well known structures exhibit a linear time search with linear or near linear storage even with

16

moderate dimensions (10-20). The curse of dimensionality leads to a belief supported by many

researchers that the most efficient method for finding k-NNGs for high-dimensional data clouds

is in fact the brute force method [18].

The brute force algorithm breaks into two parts: distance calculation and comparison. In

the distance calculation part, all distances between all points for graph construction are com-

puted. That results in an M ×N distance matrix, where M is the number of query points and

N is the number of data-base points. Next, each row of the matrix is sorted to get the nearest

k neighbors to each of the query points. Fortunately, due to their simplicity, brute force meth-

ods are highly parallelizable and can be processed by computational clusters, clouds and high

throughput parallel processors such as Graphical Processing Units (GPU).

2.3.1 Brute force implementation of k-NNG on GPU

Recently, there have been several methods that accelerate brute force k-NN and k-NNGs

on graphics processing units. The complexity of the brute force algorithm brings the need

for the development of algorithms and implementation on massive parallel processors such

as GPUs. There are some GPU implementations of the brute force algorithm both for k-NN

search and k-NNG construction. Garcia et al. in [16] proposed an algorithm for a k-NN search

by devising two kernels for distance calculation based on cuBLAS, [34] an optimized matrix

multiplication library on the GPU, and a comparison kernel based on a parallel insertion sort,

and achieved a 100-fold increase in speed compared with the approximate nearest neighbor

17

(C++ ANN library) [16] . This method works on multiple queries simultaneously, with each

thread handling a single query. If k is small, then the data structure for an insertion sort can

be stored in a fast on-chip shared memory and this method can be quite efficient. For a large

k the insertion sort data structure spills into the main memory and causes a dramatic loss of

efficiency because of uncoalesced memory transactions. In fact, for a large k, the selection is

much slower than a simple sort operation.

In [20] a multi-GPU brute force k-NNG algorithm is described. Data are partitioned and

distributed among 3 GPUs on a single computing cluster node. They use symmetry of the

distance matrix to compute only half the entries. For each data partition called a grid. In the

second phase, a heap-based selection is employed. Each row of the distance matrix is processed

by a thread block. There is a per thread block heap that stores the k smallest/largest elements.

Each thread maintains a local buffer that stores the thread elements that are smaller/larger than

the smallest/largest element in the heap. There is a thread synchronization step where each

thread successively pushes elements in its buffer into the thread block heap. This last step is

completely serialized and has a significant amount of uncoalesced memory access patterns es-

pecially if k is large, which necessitates that the heap be stored in global memory. As a final

step all the heaps in all GPUs are sent to the CPU for merging to get the global k-NNG. This

gains a serial step with significant memory transfer from GPU to CPU memory.

Work presented in [20] uses a slightly different approach to finding k-NN given the distance

matrix. Here a single thread block handles each row of the distance matrix. Each thread stores

18

a heap of k elements that records the local k-NN. Each thread strides through the given row of

the distance matrix in a coalesced manner to find the local k-NN. At the end of this process,

all threads in the block have their own heaps. In the next step, a single warp is used to build 32

k-NN heaps, one for each thread. In the final step, the first thread of the first warp reduces the

32 k-NN heaps to get the final k-NN. The second and third steps of this algorithm lose a large

amount of parallelism and therefore underutilize GPU resources. Finally, this method works

well only if k is small such that the thread heaps can be stored in an on-chip shared memory.

Otherwise, just like the work in [16], the heap is stored in global memory that necessitates

un-coalesced global memory reads.

In [23] a radix sort-based approach is used to select the k nearest neighbors. The authors

claim that for large data sets, especially for a large number of queries, the selection process

dominates. A simple complexity analysis suggests that this is quite impossible (O(dmn) for

distance calculation vs. O(mn log n) for sorting) A closer examination shows that the approach

process each row of the distance matrix in a separate sort. For an n that fits into GPU memory,

this process underuses GPU resources.

In another implementation of a brute force k-NN search algorithm, [33] proposed the trun-

cated bitonic sort (TBiS), a selection method based on the Biotonic sort. One of the main

characterizations of the proposed method is having a low synchronization cost achieved by us-

ing synchronous memory operations. The TBiSort uses recursion to break down input arrays

19

all the way to the base level and then goes upwards, merging the values. In the merging step,

minimum and maximum values of each element pairs of two lists are detected and assigned to

two minimum and maximum monotonic sublists. Having truncation, only the k elements of

the minimum sublist are gathered in each step and the maximum sublist is set free in each step

upwards. Truncation starts and continues from a minimum sublist with k elements. While this

method performs significantly faster than a plain sort and selects for small values of k and n,

it rapidly loses efficiency as k and n grow. While it is 16x faster than a plain radix sort and

selects for k = 2 and n = 217, for k = 28 and n = 220 it is no better than a plain radix sort and

select.

20

Chapter 3

Methods

In this chapter, an expandable method for the construction of nearest neighbor graphs for

very large high-dimensional data clouds is presented using the brute force method. The method

presented in this thesis relies on three levels of parallelism, is designed to execute on computing

clusters with GPU accelerators in the nodes, and addresses the computational complexity of

the brute force method. The three levels of parallelism are: distributed memory parallelism

between the nodes of the cluster; shared memory parallelism between the cores of the CPUs

in the node; and finally, data-parallelism within the GPU accelerators in each node. The main

contributions of this thesis are the following: (a) A novel scheme for data partitioning and

management for load balancing between the nodes of the cluster and efficient communication.

(b) Two algorithms for selecting k-NN on GPUs. The first is based on indexed sorting and

relies on the optimized radix sort algorithm available in the Thrust library [6]. The second is an

efficient implementation of the quick-select algorithm [6] by using latest GPU functionalities.

To our knowledge, the last algorithm is the fastest multi-query k-NN select algorithm to date.

21

3.1 Problem scale

The implementation performed as part of this thesis is a part of a manifold embedding

pipeline for recovering the structure and conformation of biomolecules using a large database

of high-noise images obtained through various imaging techniques. A typical data set consists

of n = 107 images with dimensions on the order of D = 104 . The process requires exact

k-NN results and therefore approximate methods cannot be used. Furthermore, the dimensions

of the input vectors render other techniques that are efficient for low-dimensional data (sub-

linear growth), essentially intractable. The only option is brute force. The sheer size of the data

means that the input data are on the order of 3.6TB in single precision. Furthermore, in the

brute force method, if one were to compute the entire distance matrix, it would require 36000

TB. This kind of memory capacity is beyond the capability of any kind of cluster computer.

The input data itself can only be stored in the head node of the average computing cluster.

Therefore, processing this massive data set requires clever partitioning and interleaving of

distance calculation and k-NN selection and merging of results.

3.2 Distributed k-NNG generation on GPU clusters

Brute force methods have two primary tasks, namely, generation of the distance matrix

between input vectors, and selection of k-NNs. Both these tasks are computationally expensive.

Due to the massive input data size and the even more massive intermediate results (distance

matrix), we use a distributed approach with interleaving of distance calculation and k-NN

selection along with merging of results. In this section, we begin by describing the distance

22

calculation. Next, we describe our data partitioning approach to handle the massive memory

footprint as well as to balance the computation. Finally, we describe the two new algorithms

for k-NN selection.

3.2.1 Distance calculation

In this thesis we focus on calculating the Euclidian distance. A similar approach can be

taken for other distance metrics such as Cosine or Pearson distance. Given two D dimensional

vectors vi, vj , the Euclidian distance is given by:

d(vi, vj) = sqrt‖vi − vj‖2 [3.1]

For k-NN selection, we may use the squared distance instead of the plain distance. The square

of the distance metric can be written as:

d2(vi, vj) = ‖vi − vj‖2 [3.2]

= (vi − vj)T (vi − vj) [3.3]

= vTi vi + vTj vj − 2vTi vj [3.4]

= ‖vi‖2 + ‖vj‖2 − 2vTi vj [3.5]

Now consider a set V = [v1 v2 vn]. Further consider a squared distance matrix that

contains the mutual distance between all vectors in V

S =

d2(v1, v1) d2(v1, v2) .. d(v1, vN)

d2(v2, v1) d2(v2, v2) .. d(v2, vN)

...

d2(vN , v1) d2(vN , v2) .. d(vN , vN)

[3.6]

23

Defining matrices AN×D, BN×N given by

A =

vT1

vT2

..

vTN

[3.7]

B =

‖v1‖2 ‖v1‖2 .. ‖v1‖2

‖v2‖2 ‖v2‖2 .. ‖v2‖2

..

‖vN‖2 ‖vN‖2 .. ‖vN‖2

[3.8]

We can now write the following equation

S = B +BT − 2
(
AAT

)
[3.9]

Therefore, the calculation of the squared distance matrix can be formulated in terms of vector

reductions, vector additions, and dense matrix multiplication. All of these are BLAS routines

and have very efficient libraries on GPUs. Note that the S is symmetric and therefore, it is

enough to compute only elements S(i,j) |i ≥ j. Finding the set of the k nearest neighbors for

vector vi involves sorting the ith row of S and picking the column indices corresponding to the

k smallest distances. To handle the large data size, our approach is to compute the k nearest

neighbors in parts. As illustrated in Figure 3.1, the computation of the squared distance matrix

S is split into P × P partitions. Consequently, each portion S(I,J) is computed as:

S(I,J) = BI +BT
J − 2

(
AIA

T
J

)

24

where AI , BI I = 1, 2...P are partitions of A,B respectively.

Figure 3.1 Data partitioning

3.2.2 Distribution of data and tasks between computing nodes

Computing clusters typically have several nodes connected by high-speed interconnects.

One of the nodes is designated as the head node, which typically co-ordinates the tasks between

different worker nodes. Each node has its own hard disk. In addition, there is a large shared disk

accessible by all nodes through parallel (I/O) that typically holds input data and results. The

worker nodes, with smaller local disk space, copy input data from the shared disk as required .

25

For load balancing, we distribute computing of the partitions of S in a block cyclic man-

ner. This means that node q computes all the partitions SI,J |J : J%Q = q. Now consider

the case where the I th block row of S is being processed. Any block SI,J requires inputs

AI , AJ , BI , BJ . Of these, AI , BI are used by all nodes that are processing the I th block row.

Each node q also requires BJ , AJ |J : J%Q = q. The disk space on the nodes restricts the

number of partitions of A that can be saved locally. Therefore, in our setup, the vector data

A is uploaded on the shared disk and divided into A1, A2....AP partitions. The partition AI is

read in parallel from the shared disk on the head node while partitions AJ |J : J%Q = q are

stored locally on node q. AI is then read in parallel by all nodes from the shared disk and then

the portions are shared by using an asynchronous ‘all gather’ operation to build an image of

AI in each node′s RAM. Figure 3.2 illustrates this process. We use message passing interface

(MPI) [28] to distribute the computational tasks as well as to communicate data between vari-

ous nodes in the cluster.

We do not actually build the matrixB. Instead, the vector B̂ = {‖v1‖2, ‖v2‖2,‖vN‖2}T

is computed in advance and stored in the RAM of each node. Even for N = 107 the size of B̂

(∼ 10MB) is quite small compared with the RAM in each node (48 GB). Each node q com-

putes the vector norms for all vectors in the partitions AJ |J%Q = q resident on its disk space

locally. It then broadcasts the results to all other nodes.

26

Figure 3.2 Load balancing

Once the partition S(I,J) is computed, the local k − NNs with respect to both the rows

(kR − NNs) and columns (kC − NNs) are computed. Since the matrix S is symmetric,

the local kC − NNs w.r.t. partition S(I,J) are identical to the local kR − NNs w.r.t. parti-

tion S(J,I). Therefore, each node q maintains one heap per column J |J%Q = q of S that

it processes. Each of these heaps contains the merged local kC − NNs w.r.t. partitions

S(I,J) |I = 1, 2, ..J, J%Q = q. For example, as shown in Figure 3.3, node 4 maintains one

heap for each of the columns 4, Q+ 4, ...(P −Q+ 4). The heap for column 4 will contain the

merged local kC −NNs for S(1,4), S(2,4), S(3,4), S(4,4). The heap for column Q+4 will contain

the merged local kC −NNs for partitions S(1,Q+4), S(2,Q+4),, S(Q+4,Q+4).

The node q is used to compute the global k − NNs for all vectors in AI |I%Q = q. The

global k −NNs for all the vectors in AI are generated by merging the local kR −NNs w.r.t.

partitions S(I,J) J = 1, 2,, P . However, the merged results of the local kR − NNs w.r.t all

27

partitions S(I,J) |J = 1, 2, ..., I are already available in node q from the local kR −NNs com-

puted previously. The local kR − NNs w.r.t. all partitions S(I,J) J = I + 1, I + 2,, P are

cooperatively computed by different nodes. Each node maintains a heap to merge the results of

finding the local kR−NNs of the partitions that it processes. At the end, the merged results are

communicated to the node processing the global k −NNs for the block row I for merging at

the global level. For example, as illustrated in Figure 3.3 for I = 4, node 3 will compute local

kR −NNs w.r.t. all partitions S(4,Q+3), S(4,2Q+3), ..S(4,Q−P+3). The results will be merged and

stored in a heap. At the end of the computation, the results in the heap will be communicated

to node 4 for computing the global k −NNs for all vectors in A4.

Figure 3.3 Computing k-NN

28

3.2.3 Distribution of tasks and data within nodes

We assume that each node has M GPUs. In our current setup, M = 2. As mentioned

previously, each node is responsible for computing a partition S(I,J) of the squared distance

matrix. AIs are read from the head node through parallel I/O. AJs are read from the local disk.

Within the node, AI is divided into M equal partitions. AJ is divided into R partitions. R is

governed by the available GPU RAM. While readingAI is quite fast (it is parallelized), reading

AJ from the local disk is slow. We therefore hide this latency by reading the disk in parallel

with computation.

Each GPU is given a partition of AI denoted by AI(m) |m = 1, 2, ...,M . A partition of

the file AJ denoted by AJ(r)| r = 1, 2..., R is read by all GPUs. When the computation of

S(I,J)(1, r), S(I,J)(2, r),, S(I,J)(m, r) is being done by the M GPUs, the node simultane-

ously reads the file partition AJ(r + 1) into the RAM. The node also has the norm vectorB̂ in

its RAM. B̂ is partitioned in two ways: one hasM partitions with each of these partitions going

to the M different GPUs and the other has R partitions, with each partition being read sequen-

tially by all GPUs. When the computation of S(I,J)(m, r) is complete, the column k − NNs

as well as the row k −NNs are computed by using sorting. The column k −NNs are written

back to CPU memory while the row k −NNs are kept on global memory to be merged. Note

that S(I,J)(m, r) r = 1, 2.., R are being processed by the same GPU m; therefore, it makes

sense to merge row k − NNs in the GPU memory without writing back to the CPU RAM.

However, S(I,J)(m, r)m = 1, 2, ..M are being processed by different GPUs; therefore, the

29

column k − NNs are generated by different GPUs. The accumulated column k − NNs are

then merged by one GPU per column. The final result of this operation is the local row and

column k −NNs for the partition S(I,J). Figure 3.4 illustrates this process.

Figure 3.4 Task distribution within the nodes

We use OpenMP multi-threading [1]. Each node runs M + 1 CPU threads. M threads

control the M GPUs while one thread is in charge of I/O from the local disk as well as the

shared disk.

3.2.4 Distribution of tasks and data within GPUs

The tasks that are accomplished within each GPU include the following:

• Finding vector B̂ of input data norms

30

• Dense matrix multiplication to generate the result 2A(m)IA
T
J (r)

• Summation to find the result S(I,J)(m, r) = BI(m) +BT
J (r)− 2AI(m)AT

J (m)

• Finding local k −NNs based on S(I,J)(m, r)

Each of these tasks is coded as kernels. In our clusters we have Tesla C2050 compute GPUs

from NVIDIA. We use the CUDA programming environment [27] to code our kernels.

Finding vector B̂ of input data norms is done once in the beginning at the same time that

the input files AJ are communicated to each node. For example, if node q will receive all files

AJ |q = J%Q, when the file is received, it is partitioned into M partitions, one partition per

GPU. Although there is a library function to calculate vector norms in CUBLAS [26], using it

will be inefficient since the vectors are relatively large in number (N=106 − 107) with a much

smaller dimension D ≈ 15000. Finding the norm of vectors one at a time will not fully use

GPU resources. We have written our own kernel that overcomes the underuse of GPU resources

by computing multiple vector norms in one kernel invocation. Every vector in partition AJ(m)

is processed by one thread block. All threads in the thread block cooperatively compute the

vector norm. Each thread strides through the vector components, adding the square of the en-

tries with a stride length equal to the number of threads in the thread block. Finally, all threads

in the thread block write to a single global memory location by using atomic-add. Figure 3.5

illustrates this process.

31

Figure 3.5 Vector norms

For dense matrix multiplication AI(m)AT
J (m), we use the optimized library function from

CUBLAS [26]. The result of the dense matrix multiplication S̃(I,J)(m, r) is stored in global

memory. For summation, we have written a special kernel to take advantage of the particular

structure to minimize memory transactions. As mentioned previously, we do not build the ma-

trices BI(m) and BT
J (r) but simply use the portions of the vector of input data norms B̂I(m)

and B̂J(r). We process S(I,J)(m, r) one row at a time. Every thread reads one element of

B̂J(r) into its register. Next, the thread block reads a section of B̂I(m) into shared memory

(Figure 3.6 (a)). Finally, all threads simultaneously update the entire row of S(I,J)(m, r). Each

thread reads the corresponding element of row m of S̃(I,J)(m, r), adds to it the corresponding

element of B̂J(r) that is in its register, and an element B̂I(m) that is in shared memory (Figure

3.6(b)). In reading an element B̂I(m) by all threads in the thread block, we use the broadcast

mechanism in GPUs.

32

(a)

(b)

Figure 3.6 Addition kernel to find distance martix S

3.3 Finding k-NN using batch index sorting

We could obviously sort each column and each row separately. However, this is not efficient

because the resources on the GPU are not fully used. Also, for sorting according to columns,

we will need to execute an expensive operation to rearrange the data in the column major

format. Instead, we use a process we called Batch Index Sorting. Note that in GPU RAM,

33

S(I,J)(m, r) is laid out as a linear array in a row-major format. Each element of S(I,J)(m, r)

is also then associated with its row index and column index. We use the radix sort with the

elements of S(I,J)(m, r) as key. In the next two steps, we execute an order preserving the sort

results of the previous step with the column index as the key. Separately, we also execute an

order preserving the sort with the result of the first sort with the row index as the key. These two

sorting operations generate the nearest neighbors for each column and row. We then execute a

separate kernel to extract the k−NNs for each row and column w.r.t. S(I,J)(m, r). Figure 3.7

illustrates this process.

Figure 3.7 Batch index sort for finding k-NN

34

3.4 Quick select algorithm

The quick select algorithm is a variant of the quick sort algorithm. Given an array, just

as in the quick sort algorithm, a random element is selected as the pivot. Next, the array is

re-arranged with the elements less than the pivot being moved to the left of the pivot and the

elements greater than the pivot being moved to the right side. This process is recursive on

the right partition and the left partition until the partition size reaches two elements and these

elements can be swapped. In the quick select algorithm, as soon as the partition is finished,

the sizes of the left and right partitions, L and R respectively, are found. If L > k, then the

right partition is discarded and the left partition is further recursively processed. If L < k,

then the left partition is kept. Next we set k = k − L. Then the right partition is processed

recursively. This algorithm has complexity O(n) + k log(k) for a sorted k-NN list and O(n)

for the unsorted k-NN list.

Our approach operates on multiple arrays simultaneously. Each array is handled by a sin-

gle thread warp. Threads in a warp are executed simultaneously on a single multi-processor

and therefore are synchronized by default. Partitioning of an array is done incrementally in

32-element wide segments. We use shared memory to ensure coalesced memory writes of the

results of partitioning into the auxiliary array in global memory. Our approach uses the warp

voting function ballot(p) to partition the input without reading the input array twice and

without executing the parallel-prefix sum. The ballot function ballot(p) fills a 32-bit un-

signed integer, one bit per thread in the warp, based on the evaluation of the predicate p.

35

Each thread in the warp first reads in an element into its register from global memory. El-

ements are then written to a 32-element wide shared memory array with elements greater than

equal to the pivot being written from the right end and elements less than the pivot being writ-

ten from the left end. To do this, each thread needs to know where in shared memory to off load

its element. We execute the warp voting function based on a predicate that checks whether the

element in the register is greater than or equal to the pivot or smaller than the pivot. Threads

that have an element greater than or equal to the pivot set the corresponding bit to ’1’ and to

’0’ if the element is less than the pivot. This process is illustrated in Figure 3.8.

Figure 3.8 Read in process. Read in of the array is done incrementally in sets of 32 elements.
As illustrated, the memory access is coalesced. The value is stored in a register.

Simultaneously, the invocation of the warp voting function fills the bit array B based on the
evaluation of the predicate that indicates if value in the register is greater than, equal to or less

than the pivot.

If the element in the register is less than the pivot, then the thread needs to find how many

of threads before it have elements less than the pivot and vice-versa. We use a combination of

bit shift operations and the popc(x) function on the integer result of the warp voting to ac-

complish this. The popc(x) functions count the number of bits set to ’1’ in the input integer

36

’x’. For example, if the warp vote integer in binary is B = 0101...., then it is clear that threads

0,2 have elements less than the pivot and threads 1,3 have elements greater than or equal to the

pivot. Each thread i computes the result b = B >> (31 − i). When the popc(b) function is

applied to the result of this step, it will indicate the position in shared memory at which thread

i will off-load its element that happens to be less than the pivot. Similarly, [31 − popc(b̃)]

will indicate the position from the right side at which thread i will off-load its element that

happens to be greater than or equal to the pivot. In the example, thread 3 will bit shift B to

the right by 29 bits and the result will be b = 0101. Then popc(b)=2. Therefore, thread 3

will off-load its element at the second location from the left in shared memory (Figure 3.9).

Note that the total number of elements in shared memory that are less than the pivot is given

by popc(B). Two global counters, g< and g≥, keep track of the total number of elements less

than the pivot and the total number of elements greater than or equal to the pivot, respectively,

are also maintained. These two counters indicate the location in the auxiliary array at which the

warp writes the incremental results of pivoting from shared memory. Next, the threads write

the contents of the shared memory into the global auxiliary array with threads whose id is less

than popc(B) writing from the left side and other threads writing from the right side. This

write process requires two coalesced writes, one for elements smaller than the pivot and one

for elements greater than or equal to the pivot, into the auxiliary array (Figure 3.10).

Once a partition is complete, the output array (auxiliary array) has a left side of length L

elements, each of whom is less than the pivot. The right side is of length R elements, each of

37

Figure 3.9 Pivot process. The pivot process is accomplished in shared memory. Each thread
determines where in the shared memory the value has to be written. Values less than the pivot

are accumulated on the left hand side and values greater than or equal to the pivot are
accumulated on the right hand side. Since all threads write to different locations, there are no

bank conflicts.

whom is greater than equal to the pivot. Suppose we need k nearest neighbors, and k < L; then

we need to process only the left hand side. Suppose k > L; then we keep the left hand side as

is, and partition the right hand side to find k−L elements. Since the input and auxiliary arrays

are swapped at the end of the partition process, in the second case (k > L), we would have

to copy the left hand side from the auxiliary array to the input array. We can avoid copying

the data by storing a stack of references that indicate the start and end indices and the arrays

(auxiliary or input) where the partitions that form the k nearest neighbors are to be found. This

significantly reduces the memory transactions needed for the operations.

38

Figure 3.10 Write-out process: The thread id indicates (based on the computation popc(B)

whether a given thread is writing out an element less than the pivot or greater than or equal to
the pivot. The values g

< piv and g≥ piv that are maintained in shared memory and updated
incrementally indicate the location in the global array the location of the last element that is
less than the pivot and greater than or equal to the pivot. This operation involves at most two

coalesced memory writes.

39

Chapter 4

Results

In this section we present the results of our benchmarks. Our implementation of task dis-

tribution and data partitioning is unique to the problem at hand; i.e., calculating one half of

the distance matrix and generating k-NNG. While there are optimized algorithms for dense

matrix multiplication on distributed computing systems, these methods are not suitable for our

application. However, there are several comparable exact brute force k-NN implementations

on GPUs [16, 20, 2, 4]. We chose to benchmark against [16] and [2], since the code is readily

available. All implementations were compiled using C++ with appropriate compiler optimiza-

tion flags. The implementations were run on a NVIDIA Tesla C2050. We used synthetic data

sets for performance analysis. We provide benchmark results for distance computation, k-NN

selection, and total calculation time.

4.1 k-NNG construction with Batch Index Sorting

This section presents performance analysis of kNNG with the batch-index sorting algo-

rithm. First the results of single GPU benchmarks are presented. Performance analysis was

40

performed for varying different parameters, which showcase the behavior of our implementa-

tion for different scales. Benchmarks were obtained with various k (number of wanted nearest

neighbors), n (number of data points) andD (dimension of each data vector). Our performance

benchmarks show that our algorithm performance is superior to those of [16] and [2], even in

single GPU execution. In addition, we benchmarked multi GPU performance analysis vs. that

of [2], reaching better performance due to proper task distribution with a symmetric k-NNG

structure.

4.1.1 Performance benchmarks of k-NNG construction algorithms in sin-
gle GPU

Figure 4.1 compares the performance of our first k-NNG algorithm with that of [16] with

varying k. In this test two constant parameters, data dimension and the number of samples,

were set to d = 4096 and n = 16384, respectively. Figure 4.1 (a) shows the distance calculation,

selection and the total k-NNG speedup versus [16]. The distance computation time is almost

the same for both algorithms, because both formulate distance computation as a matrix-matrix

multiplication and use the optimized CUBLAS library. Our version of the k-NN selection

breaks even with the work of [16] at about k = 128 and outperforms it by 15× for k = 1024.

Overall, our implementation has a performance advantage of 7.87×.

41

Figure 4.1(b) shows the speedup versus [2]. For this test we re-formulated the Pearson

distance computation to enable the use of optimized matrix-matrix multiplication. Conse-

quently, our distance implementation has a roughly 9× performance advantage. The k-NN

implementation is a per-thread linear insertion sort with each thread handling one row of the

distance matrix. Our implementation breaks even at k = 128 and ends up with a 42× perfor-

mance advantage when k = 1024. Overall, our implementation has a 24× performance gain at

k = 1024.

The degradation of performance of the k-NN selection algorithms in [16] and [2] occurs

at large values of k, because the temporary list of k elements maintained for each thread does

not fit into the fast shared memory on GPUs and is therefore maintained in global memory.

Because of the nature of the insertion sort and the heap sort, this causes thread divergence and

un-coalesced memory transaction that results in a huge drop in performance.

In order to show the performance of k-NNG with batch index sorting for different data

dimensionalities, we performed a second set of benchmarks in which n = 16384 and k = 512

and d waqs varied. Figure 4.2(a) shows the comparison with [16]. As the complexity of dis-

tance calculation is linearly related to the number of data dimensions and the complexity of the

selection part of k-NNG is not related to the data dimensionality, the speedup with respect to

both distance and k-NN selection remains constant at ≈ 1× and ≈ 6×, respectively. However,

42

Figure 4.1 Performance analysis of k-NNG with batch index sorting. benchmark results for
varying k in comparison with [16] and [2]. In this test our input data has the dimension d =

4096 and the number of input objects/vectors n = 16384. (a) shows the performance vs. [16].
(b) shows the performance vs. [2]

as the proportion of time for the distance computation increases linearly with d, the perfor-

mance gain for the total time decreases from 5.7× to 3.5×.

Figure 4.2(b) shows the speedup with respect to [2] . Once again, the speedup with respect

to distance and with respect to k-NN selection remains constant at≈ 9.5× and≈ 10×, respec-

tively. As d increases, the proportion of time for the distance computation increases linearly

with d. For the large d, the graph shows the stabilization of the overall speed up at 10.25×.

43

Figure 4.2 Performance analysis of k-NNG with batch index sorting. Benchmarks for varying
d. In this test our input data has the number of closest neighbors k = 512 and the number of

input objects/vectors n = 16384. (a) shows the performance vs. [16]. (b) shows the
performance vs. [2]

Next we benchmarked the performance for different values of n. Specifically, we kept

d = 1024 and k = 512 and varied n. Figure 4.3 shows the comparison with [16]. For a

small n, the speedup with respect to selection is ≈ 200×. As n increases, the performance

gains taper off to ≈ 12×. Overall speedup starts off at ≈ 100× and falls to ≈ 11×. Figure

4.3(b) shows the comparison with [2]. Once again, for a small n, the speedup with respect to

selection is ≈ 37×. As n increases, the speedup tapers off to ≈ 5.6×. Overall speedup starts

off at ≈ 20× and tapers off to ≈ 4.7×. Finally, for the tests with varying d and n, while our

implementation was able to handle a model size up to n = 32, 767, the implementations by

[16] could only handle a model size up to n = 16, 384. Note that our k-NN method grows

44

proportional to n2 log(n) as opposed to n2 log(k). However, for data with the ranges of n that

fit into GPU memory, our k-NN method is still much faster.

Figure 4.3 Benchmarks for varying n. In this test our input data have the dimension k = 1024
and the number of input objects/vectors d = 4192. (a) shows the performance vs. [16]. (b)

shows the performance vs. [2].

4.1.2 Performance analysis of Multi GPU k-NNG construction with batch
index sorting

In order to show our algorithm’s ability to exploit the symmetry of a k-NNG structure due to

a proper task distribution, we tested our implementation vs. [2] for multi-GPU configuration.

While the implementation in [2] requires all GPUs to be on a single computer (connected

through a PCI Express bus with OpenMP multi-threading), our implementation is designed

for execution on GPU clusters, i.e., the scalability is much larger. In the tests, we ran the

45

implementation by [2] on two GPUs on a single desktop, while our implementation was run

on two nodes of a cluster, with each node containing a single GPU. We used a combination of

MPI and OpenMP for multi-GPU execution. Figure 4.4 shows the result. Here d = 16384 and

k = 512. We achieve up to 15× overall speedup. However, for data with a small dimension

(d < 500) and a small k, (k < 64), the implementation in [2] can be faster. In fact, for

n = 1507328, d = 294 and k = 20, our implementation is roughly 2.2× slower. This is mainly

because our batch index sorting k-NN algorithm is not as efficient for small ks.

Figure 4.4 Performance analysis of Multi GPU k-NNG construction with batch index sorting.
Benchmarks in comparison with [2]. In this test we used 2 GPUs. For the implementation of
[2] algorithm, the 2 GPUs (Tesla 2050) were mounted on a single desktop machine. For our

implementation, we use 2 nodes in our GPU cluster and opted to use only one GPU per node.
The input data had dimension d = 16384, and the number of closest neighbors k = 512.

4.2 Benchmarks of k-NN selection with Quick-Select

In this section, we analyze the performance of the k-NNG construction with Quick-Select.

Different tests were designed in order to showcase the performance of our algorithm with

varying parameters, against k-NN algorithms presented in [33] and [16]. The work in [33]

46

uses a truncated bitonic sort for a k-NN search on GPUs. Finally, we benchmarked our code

kth element selection algorithm [7]. The kth element algorithm selects the kth largest/smallest

values in a vector, and therefore is slightly different from the k-NN problem.

4.2.1 Performance analysis of single GPU Quick-Select against truncated
bitonic sort and insertion sort

In this section we present performance benchmarks of our k-NNG construction with the

quick select against those of [33] and [16]. In Figure 4.5 the comparison of quick select k-NN

search algorithm is shown with that of [16]. A three-dimensional graph is chosen to represent

the performance analysis of k-NN search algorithms with varying k and n. The data dimension

is set to a constant value of d = 128 for all tests. The number of objects varies from n = 1024

to n = 131072, and the number of extracted nearest neighbors is varied from k = 8 to k = 512.

As the figure shows, the speedup grows exponentially with increasing n. For small k and n,

the speedup is≈ 3×. For small n values, increasing k leads to≈ 250× speedup. This speedup

grows to up to ≈ 450× for large values of n with increasing k.

Figure 4.6 shows the performance advantage of our algorithm when benchmarked against

truncated bitonic sort by Sismanis. Our speedup ranges from 1.5x for k = 23, n = 217 to 5.3x

for k = 29, n = 217. We could not go above k = 29 since the Sismanis implementation would

crash. It is obvious that the speedup saturates for large n. This saturation point is further away

as the size of k grows. This clearly shows that for k > 29, the speedup would grow even more.

In Figure 4.7, we show the performance advantage when both the distance calculation and the

47

Figure 4.5 Quick-Select benchmarks against insertion sort [16]. In this set of tests the data
dimension is set to be constant at d = 128 and k is doubled from k = 8 to k = 512. For each
k, the performance graph is representing the timings for different n starting from n = 1024 to

n = 131072.

Figure 4.6 Performance analysis of a single GPU selection with Quick-Select. Benchmark
results in comparison with that of TBiS is presented. In this set of tests the data dimension is

set to be constant at d= 128 and k is doubled from k = 8 to k = 512. For each k, the
performance graph is representing the timings for different n starting from n = 1024 to n =

131072.

48

k-NN search are included. The same general trend is observed. Since both algorithms use a

similar method for distance calculation, the only advantage is due to our superior k-NN search

method.

Figure 4.7 Performance analysis of quick select. Benchmark results in comparison with TBiS
is presented. In this set of tests k is doubled from k = 8 to k = 512. For each k, the

performance graph is representing the timings for different n starting from n = 1024 to n =
131072.

Our benchmarks against the MGPU Select was for the selection algorithm alone. Note that

the MGPU Select works for one query at time. Moreover, the MGPU Select algorithm only

selects the kth largest/smallest element. We conducted multiple queries by first loading the

distance matrix in global memory on the GPU and then running the MGPU Select in succes-

sive rows, one row at a time. Furthermore, while our algorithm finds the k smallest elements

with indices, the MGPU Select algorithm only finds the kth smallest element. For finding the

k smallest elements with indices, the MGPU Select algorithm is no better than a plain sort and

49

selection [7]. Figure 4.8 shows the results. For small n, our algorithm has dramatic perfor-

mance advantages (≈ 100×). This is because the GPU is not saturated by the MGPU Select.

With increasing n, we see a significant drop off and possible saturation of the performance gain

at around 8x. We are not able to explore a larger n because the distance matrix does not fit into

GPU memory.

Figure 4.8 Performance analysis of quick select. Benchmark results in comparison with
MGPU select is presented. In this set of tests k is doubled from k = 8 to k = 512. For each k,
the performance graph is representing the timings for different n starting from n = 1024 to n

= 131072.

4.3 k-NNG and manifold embedding

Our application of interest for the k-NN graph construction is manifold embedding. The

basic idea behind manifold embedding is that a cloud of correlated high-dimensional data can

be characterized with a low-dimensional hyper-surface that is embedded in the original high

dimensional space. The manifold contains information about the individual objects and the

50

Figure 4.9 Timing benchmarks of quick select and MGPU select algorithms. In this set of
tests k is doubled from k = 8 to k = 512. For each k, the performance graph is representing the

timings for different n starting from n = 1024 to n = 131072.

system that generated the data. The main execution part of the manifold embedding is the gen-

eration of a neighborhood graph for an input data set. The k-NN graph can then be normalized

and embedded in order to give the governing eigenfunctions of the low-dimensional manifold.

To evaluate and apply our algorithms in manifold embedding, we executed k-NNG with

batch index sorting for two data sets. The first data set contained two million images of sim-

ulated diffraction patterns of a randomly oriented adenylate kinase (ADK) molecule. Each

image has 126 × 126 = 15876 pixels; i.e., high dimensionality. The second dataset consisted

of twenty million images of simulated diffraction patterns of denaturing ADK in ten different

molecular conformations. (For more information about the structure of data sets, please refer to

[32]). We evaluated the k-NNG algorithm with a previous implementation of a neighborhood

51

graph construction by using MATLAB technical computing language. The MATLAB imple-

mentation took 56 hours on an exclusive CPU cluster with 32 nodes for two million diffraction

patterns with the use of a highly optimized ATLAS-BLAS library for multi-threaded Matrix-

Matrix Multiplication in double precision. The cluster had one Xeon E5420 quad-core CPU

per node with 16kB of L1 cache, 6144kB or L2 cache and 40GFLOPS of double precision

computing power. Since the parallel MATLAB implementation did not take advantage of the

symmetry of the distance matrix, one can assume that such an implementation would take

about 28 hours. Our GPU cluster had 16 nodes with each node equipped with two NVIDIA

Tesla C2050 GPUs. Each Tesla C2050 GPU has a RAM of 3GB with 506GFLOPS of double

precision computing power. There are 14 multi-processors sharing 720kB of L2 cache and

each multi-processor having 48kB of user-configurable L1 cache/shared memory. In addition,

each of the GPU nodes had two quad-core Xeon E5620s. Note that in our GPU cluster, the

CPUs are used mostly for managing the GPUs and moving data between nodes and not for

computation. Our GPU cluster implementation took 4.23 hours, giving a roughly 6.6× gain in

performance.

To investigate the efficiency of our implementation we also benchmarked the most expen-

sive part of the computation, i.e., matrix matrix multiplication. We tested both double and

single precision matrix-matrix multiplication on a single GPU (Tesla C2050) vs. a single core

of an Xeon E5420 and concluded that if all four cores of the CPU were active, we could achieve

a roughly 7.7× speedup using GPUs just for matrix multiplication alone. As shown earlier, our

52

complete implementation is slightly worse at a 6.6× gain in performance.

Based on the complexity of the manifold embedding, the estimated execution time for a

second dataset with twenty million snapshots on the CPU cluster was more than eight months.

With the use of RME implementation on our GPU cluster, the execution time for twenty million

snapshots was achieved in less than two weeks. Figure 4.10 shows the computational resources

configuration and execution time of manifold embedding for each data ensemble.

Figure 4.10 Clusters configuration and total timings for construction of neighborhood graph.
number of GPU in each node m =2 and p3 = 8

53

Chapter 5

Conclusions

In this thesis, we presented a distributed GPU-accelerated implementation of the brute force

k nearest neighbor graph construction method. Our implementation runs on an exclusive ac-

cess GPU cluster. It forms a central core of a software pipeline for data and compute inten-

sive Manifold Embedding being used for structure and conformation recovery of biomolecules

from a large data set of high noise images. The pipeline and individual algorithms have been

benchmarked against a similar state-of-the-art system. Significant gains in overall performance

demonstrated. As a result of this work, it is now possible to process an image data set with

over 2×107 image vectors with dimensions exceeding 1.54 in a time span of 14 days compared

with an estimated 180 days on a comparable CPU cluster.

5.1 Contributions

The contributions of this work are the following:

• A scheme for data partitioning and task assignment for efficient load-balanced execu-

tion of the brute force k-NNG method on a homogeneous cluster with GPU accelerated

54

nodes. This implementation uses multiple levels of parallelism (between nodes, between

multiple cores in nodes, and on GPUs) along with parallel I/O.

• Two new GPU algorithms for finding k-NNG from a given distance matrix

– The first called batch index sorting uses three sort operations to directly find the

k-NNG without further manipulation of the distance matrix.

– The second is an efficient GPU implementation of the quick select algorithm and

requires the computation of the transpose of the distance matrix for k-NNG con-

struction. This implementation is the fastest method in its class with a nearly 4x

gain over the state-of-the art.

Overall, the implementation developed as part of this thesis has achieved a 6x performance

gain over a comparable implementation running on a cluster of CPUs.

5.2 Discussions

There is room for further enhancements in our implementation, as evidenced from com-

paring the raw float point processing power of the processors. The most expensive part of the

brute force k-NNG is matrix multiplication. With the best tuned GPU libraries, we see that

there is only 50 percent use of GPU resources as opposed to 90 percent use by finely tuned

CPU libraries. A better GPU matrix multiplication library would further enhance the perfor-

mance of our approach.

55

The brute force implementation requires O(n2) distance calculations. This dominates the

computational expense for a large n. One way of reducing this complexity will be to use a

hybrid algorithm that approximately subdivides the data sets into overlapping sets to reduce

the computations (distance computation and selection) for each input vector based on the set

membership. While such methods exist, to our knowledge there are no parallel cluster imple-

mentations with GPU acceleration.

Finally, performance of the algorithms is significantly impacted by the nature of the data

(data dimension as well as size) and the execution configuration parameters. For example, cur-

rently we manually select the number of data partitions P of the input matrix A and the size

of sub-partitions of AI within the nodes. The GPU quick select algorithm in particular is very

sensitive to the number of simultaneous queries and the arrangement of execution resources

(the number of warps per thread block). Currently, these execution parameters are manually

set and adjusted through trial and error. This can be automated is the future.

5.3 Future work

Our future work will continues in three different areas. The first is the development of a

stand-alone k-NN search library on GPU that outperforms all state of the art algorithms and

that can be easily accessible and applicable to huge applications of k-NN search and k- NN

graph construction. In order to achieve this goal, we are planning to create a user friendly

56

environment and a parameter space for different range of applications. The second possible

target of future work in this area is to release a user friendly version of a k-NNG construction

library for GPU distributed systems. The proposed library would use the expandability and

flexibility of proposed algorithm with regards to computational system configurations and data

characteristics respectively. The third area lies on the application side, especially manifold

embedding. In this work, we achieved the computational capability to deal with data ensembles

at least one order of magnitude larger than current datasets. However, with the growing pace

of expansion in input data sizes (both in number of dimensions and reference data points)

alongside technological advances in GPU hardware and software configurations, new strategies

for data management, partitioning and algorithm development will be needed in the foreseeable

future.

57

References

[1] Laksono Adhianto and Barbara Chapman. Performance modeling of communication and
computation in hybrid mpi and openmp applications. Simulation Modelling Practice and
Theory, 15(4):481–491, 2007.

[2] Ahmed Shamsul Arefin, Carlos Riveros, Regina Berretta, and Pablo Moscato. Gpu-
fs-knn: A software tool for fast and scalable knn computation using gpus. PloS one,
7(8):e44000, 2012.

[3] Sunil Arya, David M Mount, Nathan S Netanyahu, Ruth Silverman, and Angela Wu. An
optimal algorithm for approximate nearest neighbor searching. In Proceedings of the
fifth annual ACM-SIAM symposium on Discrete algorithms, pages 573–582. Society for
Industrial and Applied Mathematics, 1994.

[4] Ricardo J Barrientos, José I Gómez, Christian Tenllado, Manuel Prieto Matias, and
Mauricio Marin. knn query processing in metric spaces using gpus. In Euro-Par 2011
Parallel Processing, pages 380–392. Springer, 2011.

[5] Mikhail Belkin and Partha Niyogi. Convergence of laplacian eigenmaps. Advances in
Neural Information Processing Systems, 19:129, 2007.

[6] Nathan Bell and Jared Hoberock. Thrust: A productivity-oriented library for cuda. GPU
Computing Gems: Jade Edition, pages 359–372, 2011.

[7] Sean Bexter. Mgpu select, 2012.

[8] Jie Chen, Haw-ren Fang, and Yousef Saad. Fast approximate k nn graph construction for
high dimensional data via recursive lanczos bisection. The Journal of Machine Learning
Research, 10:1989–2012, 2009.

[9] Michael Connor and Piyush Kumar. Fast construction of k-nearest neighbor graphs for
point clouds. Visualization and Computer Graphics, IEEE Transactions on, 16(4):599–
608, 2010.

[10] Sanjoy Dasgupta and Yoav Freund. Random projection trees and low dimensional mani-
folds. In Proceedings of the 40th annual ACM symposium on Theory of computing, pages
537–546. ACM, 2008.

58

[11] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive
hashing scheme based on p-stable distributions. In Proceedings of the twentieth annual
symposium on Computational geometry, pages 253–262. ACM, 2004.

[12] Wei Dong, Charikar Moses, and Kai Li. Efficient k-nearest neighbor graph construction
for generic similarity measures. In Proceedings of the 20th international conference on
World wide web, pages 577–586. ACM, 2011.

[13] Veit Elser et al. Reconstruction algorithm for single-particle diffraction imaging experi-
ments. Physical Review E, 80(2):026705, 2009.

[14] Joachim Frank. Single-particle imaging of macromolecules by cryo-electron microscopy.
Annual review of biophysics and biomolecular structure, 31(1):303–319, 2002.

[15] Russell Fung, Valentin Shneerson, Dilano K Saldin, and Abbas Ourmazd. Structure from
fleeting illumination of faint spinning objects in flight. Nature Physics, 5(1):64–67, 2008.

[16] Vincent Garcia, Eric Debreuve, Frank Nielsen, and Michel Barlaud. K-nearest neigh-
bor search: Fast gpu-based implementations and application to high-dimensional feature
matching. In Image Processing (ICIP), 2010 17th IEEE International Conference on,
pages 3757–3760. IEEE, 2010.

[17] Parisa Haghani, Sebastian Michel, Philippe Cudré-Mauroux, and Karl Aberer. Lsh at
largedistributed knn search in high dimensions. In International Workshop on Web and
Databases (WebDB), 2008.

[18] Piotr Indyk. Nearest neighbors in high-dimensional spaces. 2004.

[19] Peter Wilcox Jones, Andrei Osipov, and Vladimir Rokhlin. Randomized approxi-
mate nearest neighbors algorithm. Proceedings of the National Academy of Sciences,
108(38):15679–15686, 2011.

[20] Kimikazu Kato and Tikara Hosino. Solving k-nearest neighbor problem on multiple
graphics processors. In Proceedings of the 2010 10th IEEE/ACM International Con-
ference on Cluster, Cloud and Grid Computing, pages 769–773. IEEE Computer Society,
2010.

[21] Khronos Group. The OpenCL Specification, September 2010.

[22] Donald E. Knuth. The art of computer programming. Addison–Wesley Pub. Co., 2006.

[23] Quansheng Kuang and Lei Zhao. A practical gpu based knn algorithm. In International
Symposium on Computer Science and Computational Technology (ISCSCT), pages 151–
155, 2009.

59

[24] David Luebke, Mark Harris, Naga Govindaraju, Aaron Lefohn, Mike Houston, John
Owens, Mark Segal, Matthew Papakipos, and Ian Buck. Gpgpu: general-purpose com-
putation on graphics hardware. In Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, page 208. ACM, 2006.

[25] Frank Natterer and Ge Wang. The mathematics of computerized tomography. Medical
Physics, 29:107, 2002.

[26] nVidia. CUBLAS Library User Guide. nVidia, v5.0 edition, October 2012.

[27] CUDA Nvidia. Programming guide, 2008.

[28] Peter S. Pacheco. Parallel programming with MPI. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1996.

[29] Rodrigo Paredes, Edgar Chávez, Karina Figueroa, and Gonzalo Navarro. Practical con-
struction of k-nearest neighbor graphs in metric spaces. In Experimental Algorithms,
pages 85–97. Springer, 2006.

[30] Jason Sanders and Edward Kandrot. CUDA by Example: An Introduction to General-
Purpose GPU Programming. Addison-Wesley Professional, 1st edition, 2010.

[31] P Schwander, R Fung, GN Phillips Jr, and A Ourmazd. Mapping the conformations of
biological assemblies. New Journal of Physics, 12(3):035007, 2010.

[32] Peter Schwander, Dimitrios Giannakis, Chun Hong Yoon, and Abbas Ourmazd. The sym-
metries of image formation by scattering. ii. applications. Optics Express, 20(12):12827–
12849, 2012.

[33] Nikos Sismanis, Nikos Pitsianis, and Xiaobai Sun. Parallel search of k-nearest neighbors
with synchronous operations. In High Performance Extreme Computing (HPEC), 2012
IEEE Conference on, pages 1–6. IEEE, 2012.

[34] Vasily Volkov and James W Demmel. Benchmarking gpus to tune dense linear algebra.
In Proceedings of the 2008 ACM/IEEE conference on Supercomputing, page 31. IEEE
Press, 2008.

[35] Jing Wang, Jingdong Wang, Gang Zeng, Zhuowen Tu, Rui Gan, and Shipeng Li. Scalable
k-nn graph construction for visual descriptors. In Computer Vision and Pattern Recogni-
tion (CVPR), 2012 IEEE Conference on, pages 1106–1113. IEEE, 2012.

[36] Mason Woo, Jackie Neider, Tom Davis, and Dave Shreiner. OpenGL Programming
Guide: The Official Guide to Learning OpenGL, Version 1.2. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 3rd edition, 1999.

	University of Wisconsin Milwaukee
	UWM Digital Commons
	August 2013

	Efficient Computation of K-Nearest Neighbor Graphs for Large High-Dimensional Data Sets on GPU Clusters
	Ali Dashti
	Recommended Citation

	Preface24_6.pdf
	Dashti_MSThesis_24_6.pdf

