
Dissertations and Theses 

5-2019 

Preliminary Test Predictions for Scale Ram-Air Parachute Testing Preliminary Test Predictions for Scale Ram-Air Parachute Testing 

Christian A. Guzman Zurita 

Follow this and additional works at: https://commons.erau.edu/edt 

 Part of the Aerodynamics and Fluid Mechanics Commons 

Scholarly Commons Citation Scholarly Commons Citation 
Zurita, Christian A. Guzman, "Preliminary Test Predictions for Scale Ram-Air Parachute Testing" (2019). 
Dissertations and Theses. 446. 
https://commons.erau.edu/edt/446 

This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted 
for inclusion in Dissertations and Theses by an authorized administrator of Scholarly Commons. For more 
information, please contact commons@erau.edu. 

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/edt
https://commons.erau.edu/edt?utm_source=commons.erau.edu%2Fedt%2F446&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/222?utm_source=commons.erau.edu%2Fedt%2F446&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/edt/446?utm_source=commons.erau.edu%2Fedt%2F446&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu


  

   
 

  

PRELIMINARY TEST PREDICTIONS FOR SCALE  

RAM-AIR PARACHUTE TESTING 

 

A Thesis  

Submitted to the Faculty  

of  

Embry-Riddle Aeronautical University  

by  

Christian A. Guzman Zurita  

 

In Partial Fulfillment of the  

Requirements for the Degree  

of  

Master of Science in Aerospace Engineering  

 

May 2019  

Embry-Riddle Aeronautical University  

Daytona Beach, Florida 

  





iii  

   
 

ACKNOWLEDGMENTS 

 
It is an honor for me to gratefully acknowledge the people who have been with me on 

this journey as I have worked on this thesis. First, I owe my highest gratitude to my father 

Carlos, my mother Nancy, and my brothers Paul and Steven for the unconditional love, 

motivation, and support to pursue and achieve my dreams at places far away from my 

family and home, Ecuador.  

Second, I would like to thank my supervisor, Dr. Ricklick, for his guidance, patience 

and support throughout these three years of investigation. Third, special thanks to my 

committee members, Dr. Leishman and Dr. Gnanamanickam, who encouraged and 

challenged me to develop technical skills. Additionally, special thanks to John Leblanc 

and the Performance Designs team for sharing their experience and knowledge on the 

design of ram-air parachutes. 

Finally, I would like to thank my friends who I had the opportunity to share 

memorable moments along my university career. I share this thesis with my friend and 

work partner, Angelo Fonseca, who provided me invaluable knowledge, support and 

advice. Moreover, special thanks to all my closest friends Juan Granizo, Cristian 

Angarita, Vanessa Onyullo, May Chong Chan, Nathalie Quintero, Silvana Ureña, Andrea 

Cevallos, Wenyu Li, Amay Desai, Anish Prasad, Yogesh Pai, Gasper Hrescak, and my 

friends from groups “Los Cinco del Altiplano”, “The Fireballers” and “Gas Turbine 

Lab”, who I shared uncountable times of laughs, dinners, drinks, workout trainings, trips, 

concerts, and long overnights studies. 

“Hope the voyage is a long one, full of adventure, full of discovery.” 

C. P. Cavafy  



iv  

   
 

TABLE OF CONTENTS 

LIST OF TABLES ............................................................................................................. vi 

LIST OF FIGURES .......................................................................................................... vii 

SYMBOLS ......................................................................................................................... xi 

ABBREVIATIONS ......................................................................................................... xiii 

NOMENCLATURE ........................................................................................................ xiv 

ABSTRACT ...................................................................................................................... xv 

1. Introduction .......................................................................................................... 1 

1.1. Introduction to Ram-Air Parachutes ......................................................................... 1 

1.2. Motivation for this Study ........................................................................................... 6 
1.3. Thesis Objectives ........................................................................................................ 7 

1.4. Thesis Outline ............................................................................................................. 8 

2. Literature Review ............................................................................................... 10 

2.1. Introduction ............................................................................................................... 10 

2.2. Design Parameters .................................................................................................... 10 
2.3. Aerodynamic Characteristics ................................................................................... 12 
2.3.1. Distortions on the Canopy Structure ................................................................... 16 

2.4. Experimental Studies................................................................................................ 20 
2.5. Computational Studies ............................................................................................. 34 

3. CAD Methodology and CFD Approach............................................................. 49 

3.1. Parafoil Geometry Development ............................................................................. 49 

3.1.1. Introduction to CATIA V5 .................................................................................. 49 
3.1.2. Programming Interface Approach ....................................................................... 50 
3.1.3. CAD Design Methodology .................................................................................. 51 

3.1.4. Benchmark Geometry Models ............................................................................. 55 
3.2. Computational Modeling Approach ........................................................................ 58 

3.2.1. COMSOL 5.3 Multiphysics Introduction ........................................................... 59 
3.2.2. Governing Equations, Turbulence Modeling and Wall Treatment ................... 59 
3.2.3. General Model Setup ............................................................................................ 61 
3.2.4. Boundary Conditions ........................................................................................... 62 
3.2.5. Mesh Independence Study ................................................................................... 63 

3.2.6. Computational Time ............................................................................................. 68 

3.2.7. Test Cases  and Flow Parameters ........................................................................ 70 

3.2.8. Test Matrix ............................................................................................................ 75 

4. Results and Discussion ................................................................................. 76 

4.1. Introduction ............................................................................................................... 76 
4.2. Geometry Creation ................................................................................................... 76 
4.3. Computational Analysis ........................................................................................... 81 

4.3.1. Validation of Numerical Results ......................................................................... 82 



v  

   
 

4.3.2. Reynolds Number Sensitivity .............................................................................. 86 

4.3.3. Domain Size Sensitivity ....................................................................................... 92 

5. Conclusion, Recommendations and Future Work............................................ 103 

5.1. Conclusions ............................................................................................................. 103 
5.2. Recommendations and Future Work .................................................................... 104 

REFERENCES ............................................................................................................... 106 

Appendices ...................................................................................................................... 109 

A. Airfoil Coordinates of Ware & Hassell Canopy Model ................................... 109 

B. Experimental Data Points Digitalization .......................................................... 110 

C. Blockage Area Estimation ................................................................................ 112 

D. CFD Results Summary ..................................................................................... 114 

E. 2D Force Balance Development ...................................................................... 117 

E.1. Introduction ............................................................................................................. 117 
E.2. Force Measurement Approach .............................................................................. 117 

E.3. Equipment and Experimental Setup ...................................................................... 121 
E.4. Data Reduction ....................................................................................................... 125 
E.4.1. Single Load Cell Calibration ............................................................................. 125 

E.4.2. Load Cell Arrangement Calibration .................................................................. 127 
E.5. Results and Discussion ........................................................................................... 131 

 

 

  



vi  

   
 

LIST OF TABLES 

 

Table 3.1 Geometry characteristics of the scaled kite model. .......................................... 56 

Table 3.2  Geometry characteristics of the canopy model from Ware & Hassell. ........... 57 

Table 3.3  Run parameters for mesh independence study. ............................................... 66 

Table 3.4  Run parameters for computational time study in the cluster Vega. ................. 69 

Table 3.5 Fluid flow conditions and run parameters for the analysis of Case 1. .............. 70 

Table 3.6 Fluid flow conditions and run parameters for the analysis of Case 2. .............. 71 

Table 3.7 Canopy geometry dimensions, fluid flow conditions and run parameters for 

                the analysis of Case 3. ....................................................................................... 72 

Table 3.8 Fluid flow conditions and run parameters for the analysis of Case 3 

                Compressible..................................................................................................... 73 

Table 3.9 CFD test matrix. ................................................................................................ 75 

Table 4.1 Values of lift curve slope (a), percentage of change in lift slope and offset 

                at α = 0° for Case 3, Case 3 Compressible and Case 4 as compared with 

                Case 1. ............................................................................................................... 95 

Table 4.2 Values of L/Dmax  for Case 3, Case 3 Compressible and Case 4 and 

                percentage of change as compared with Case 1. ............................................. 101 

 

  



vii  

   
 

LIST OF FIGURES 

 

Figure 1.1   Ram-air parachute. Adapted from (Ortega, Flores, & Pons-Prats, 2017). ...... 2 

Figure 1.2   Airflow around a canopy cross section. Adapted from (Sobieski, 1994). ....... 4 

Figure 1.3   Schematic of maneuverability and stability of the canopy. Adapted from 

                   (McConnel, 2017). ........................................................................................... 5 

Figure 2.1   Underside view of an inflated ram-air parachute (Adapted from Tactical 

                   Parachute Delivery Systems Inc., retrieved from 

                   http://tpdsairborne.com/products/ parachutes/hlt-r/)...................................... 18 

Figure 2.2   Rear view of an inflated ram-air parachute (Adapted from Air Freshener, 

                   retrieved from https://airfreshener.club/quotes/ram-air-parachute- 

                   dimensions.html) ............................................................................................ 18 

Figure 2.3   Rib displacement and opening section of a ram-air parachute (Adapted 

                   from Tactical Parachute Delivery Systems Inc., retrieved from 

                   http://tpdsairborne.com/products/ parachutes/hlt-r/)...................................... 19 

Figure 2.4   Notre Dame experimental set-up. Adapted from (Nicolaides, 1971). ........... 21 

Figure 2.5   NASA Langley wind tunnel schematic (Adapted from National 

                   Aeronautics and Space Administration, retrieved from 

                   https://www.nasa.gov/centers/langley/news/ factsheets/30X60.html) .......... 22 

Figure 2.6   Tether test schematic set-up. Adapted from (Ware & Hassell, 1969). .......... 23 

Figure 2.7   CL, CD and CL/CD versus α for a rectangular canopy with AR of 2. Adapted 

                   from (Nicolaides, 1971). ................................................................................ 24 

Figure 2.8   CL versus α and drag polar for a rectangular canopy with AR of 2. Adapted 

                   from (Ware & Hassell, 1969)......................................................................... 26 

Figure 2.9   Rigid arched wing experimental set-up. Adapted from (Belloc, 2015). ....... 27 

Figure 2.10 CL and CL vs CD for experimental tests of a rigid arched wing. Adapted 

                   from (Belloc, 2015). ....................................................................................... 28 

Figure 2.11 Schematic of an experimental set-up for a pseudo 2D test. Adapted from 

                   (Uddin & Mashud, 2010). .............................................................................. 29 

Figure 2.12 Variation of internal pressure with angle of attack of a pseudo 2D 

                   experimental test. Adapted from (Uddin & Mashud, 2010). ......................... 29 

Figure 2.13 Internal and external pressure distribution of a pseudo 2D experimental 

                   test. Adapted from (Uddin & Mashud, 2010). ............................................... 30 

Figure 2.14 Experimental set-up for laser scanning of an inflated canopy model. 

                   Adapted from (Lee & Li, 2007). .................................................................... 32 

Figure 2.15 3D Scan views of the canopy inflated. Adapted from (Lee & Li, 2007). ..... 33 

Figure 2.16 Pressure field and velocity magnitude around the baseline airfoil model 

                   for 7° angle of attack. Adapted from (Mohammadi & Johari, 2010). ........... 36 



viii  

   
 

Figure 2.17 Pressure field and velocity magnitude around the cross section airfoil 

                   model for 7° angle of attack. Adapted from (Mohammadi & Johari, 2010). 37 

Figure 2.18 Vorticity contours for the baseline and cross section airfoil models for 7° 

                   angle of attack. Adapted from (Mohammadi & Johari, 2010). ...................... 37 

Figure 2.19 Structure mesh for 2D CFD analysis of an opened and closed NSRDEC 

                   airfoil shape. Adapted from (Ghoreyshi, et al., 2016). .................................. 39 

Figure 2.20 Lift and Drag coefficients versus angle of attack curves for different CFD 

                   analysis and experiments for a straight wing. Adapted from 

                   (Ghoreyshi, et al., 2016). ............................................................................... 40 

Figure 2.21 2D and 3D geometries with distortions. Adapted from (Fonseca, 2018). ..... 41 

Figure 2.22 Internal surface pressure for the seven-cell canopy at 0° angle of attack, 

                   top view. Adapted from (Fonseca, 2018). ...................................................... 42 

Figure 2.23 Non-deformed and deformation on the canopy structure by different 

                   external surface pressures. Adapted from (Peralta & Johari, 2015). ............. 43 

Figure 2.24 Cross section of the 3D CFD domain and boundary conditions applied to 

                   the walls. Adapted from (Fogell, 2014). ........................................................ 44 

Figure 2.25 3D streamlines around the bottom surface of an inflated single cell canopy 

                   geometry. Adapted from (Fogell, 2014). ....................................................... 45 

Figure 2.26 Truncated cone CFD domain schematic representation. Adapted from 

                   (Burnett, 2016). .............................................................................................. 46 

Figure 2.27 Experimental test of a single cell canopy. Adapted from (Burnett, 2016). ... 47 

Figure 3.1   Schematic for the CAD generation process................................................... 50 

Figure 3.2   2D airfoil shape of a scaled kite model. ........................................................ 52 

Figure 3.3   Full number of canopy ribs generated with a MATLAB script. ................... 52 

Figure 3.4   Rib coordinate points imported into CATIA for a half kite canopy model. .. 53 

Figure 3.5   General structure of the scaled canopy kite. .................................................. 53 

Figure 3.6   Location of the opening inlet in a 2D airfoil shape. ...................................... 54 

Figure 3.7   Canopy surfaces for the kite model simulating a structure inflation. ............ 55 

Figure 3.8   Top view of the flexible scaled kite model. .................................................. 56 

Figure 3.9   CAD model representation of the kite. .......................................................... 56 

Figure 3.10 CAD model representation of the canopy from Ware & Hassell. ................. 58 

Figure 3.11 Rectangular cuboid, CFD fluid flow domain. ............................................... 61 

Figure 3.12 CFD analysis boundary conditions. ............................................................... 62 

Figure 3.13 Domain mesh. ................................................................................................ 64 

Figure 3.14 Boundary layer mesh along the edges of a chamber cross section view. ...... 65 

Figure 3.15 Convergence plots for the independence mesh study.................................... 67 



ix  

   
 

Figure 3.16 Non-dimensional distance to cell center for the coarse mesh. ...................... 68 

Figure 3.17 Computational time required in the cluster Vega for two different meshes. . 69 

Figure 3.18 Rectangular cuboid, CFD fluid flow domain with dimensions of the wind 

                    tunnel test section. ......................................................................................... 74 

Figure 4.1   Canopy model 1, Ware & Hassell with multiple deformations..................... 77 

Figure 4.2   Canopy model 2 (Coe & LeBlanc, 2016). ..................................................... 78 

Figure 4.3   Canopy model 3 (Coe & LeBlanc, 2016). ..................................................... 79 

Figure 4.4   Canopy model 4 (Coe & LeBlanc, 2016). ..................................................... 80 

Figure 4.5   Non-dimensional distance to cell center for the canopy surfaces of Case 1 

                    at 4° angle of attack. ..................................................................................... 82 

Figure 4.6   CL versus α of the numerical simulations of Case 1 in comparison with 

                   experimental data available from literature. .................................................. 84 

Figure 4.7   CD versus α of the numerical simulations of Case 1 in comparison with 

                   experimental data. .......................................................................................... 85 

Figure 4.8   CL versus CD of the numerical simulations of Case 1 in comparison with 

                   experimental data. .......................................................................................... 86 

Figure 4.9   CL versus α of the numerical simulations of Case 2 in comparison with 

                   Case 1 and the experimental data................................................................... 88 

Figure 4.10 CD versus α of the numerical simulations of Case 2 in comparison with 

                   the Case 1 and the experimental data. ............................................................ 89 

Figure 4.11 CL versus CD of the numerical simulations of Case 2 in comparison with 

                   the Case 1 and the experimental data. ............................................................ 90 

Figure 4.12 Internal surface pressure on the canopy normalized with the free-stream 

                  dynamic pressure for the Case 1 and Case 2 at 4° angle of attack.................. 91 

Figure 4.13 CL versus α of the numerical simulations of Case 3, Case 3 Compressible 

                   and Case 4 in comparison with Case 1 and the experimental data. ............... 93 

Figure 4.14 Contour pressure plots in a cross section plane at the center rib of the 

                   canopies along the flow direction for Case 1 and Case 4 at an angle of 

                   attack of 4°, normalized by the dynamic pressure. ........................................ 95 

Figure 4.15 CD versus α for the numerical simulations of Case 3, Case 3 

                   Compressible and Case 4 in comparison with the Case 1 and the 

                   experimental data. .......................................................................................... 96 

Figure 4.16 Velocity vectors normalized with respect to the free-stream airspeed in a 

                   plane located one chord length downstream from the TE of the canopies 

                   for Case 1 and Case 4 at an angle of attack of 4°. ......................................... 98 

Figure 4.17 Velocity vectors normalized with respect to the free-stream dynamic 

                   pressure in a plane located one chord length downstream from the TE of 

                   the canopies for Case 1 and Case 4 at an angle of attack of 4°.................... 100 



x  

   
 

Figure 4.18 CL versus CD of the numerical simulations of Case 3, Case 3 

                    Compressible and Case 4 in comparison with the Case 1 and the 

                    experimental data. ....................................................................................... 101 

 

 

  



xi  

   
 

SYMBOLS 

 

Symbols 

  

𝑎 3D Lift Curve Slope 

𝑎𝑜 2D Lift Curve Slope 

𝑎𝑜
′ 2D Lift Curve Slope Corrected for Low 𝐴𝑅 

𝐴 Human Body Frontal Area 

𝐴𝐷𝑢 Human Body Surface Area, DuBois Area 

𝐴𝑡𝑠 Cross-Section Area of the Test Section 

𝑏 Canopy Span Length 

𝑐 Rib Chord Length 

𝐶𝐷 3D Drag Coefficient 

𝐶𝐷𝑐𝑜𝑟 Corrected 3D Drag Coefficient 

𝐶𝐷𝑙 Suspension Line Drag Coefficient 

𝐶𝐷𝑂 Profile Drag Coefficient 

𝐶𝐷,𝑖 Induced Drag Coefficient 

𝐶𝐷𝑠 Payload Drag Coefficient 

𝐶𝐹 Conversion Factor for the Force and Balance Design 

𝐶𝑙 2D Lift Coefficient 

𝐶𝐿 3D Lift Coefficient 

𝐶𝐿𝑚𝑎𝑥 Maximum 3D Lift Coefficient 

𝑑 Mean Diameter of the Suspension Lines 

𝐷 3D Drag Force 

𝐷𝑎𝑣𝑒 Average 3D Drag Force of Different Tests of a Single Trial 

𝐷𝑠𝑐  3D Drag Force for a Scaled Canopy Model 

𝐹1 Vertical Load Cell Force in the Cell Arrangement 

𝐹2 Horizontal Load Cell Force in the Cell Arrangement 

𝐻 Human Being Height 

𝑘 Correction Factor for Low 𝐴𝑅 

𝑘1 Correction Factor for Non-Linear Effects 

𝐿 3D Lift Force 

𝐿𝑠𝑐  3D Lift Force for a Scaled Canopy Model 

𝐿/𝐷 Lift to Drag Ratio 

𝐿/𝐷𝑚𝑎𝑥  Maximum Lift to Drag Ratio 

𝑀 Mach Number 

𝑛 Number of Suspension Lines 

𝑃 Static Pressure 

𝑃𝑎𝑡𝑚 Atmospheric Pressure 

𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 Corrected Measurement for a Single Load Cell 

𝑃𝑔𝑎𝑢𝑔𝑒 Gauge Pressure 

𝑃𝑙𝑜𝑎𝑑_𝑐𝑒𝑙𝑙 Load Measurement of a Single Load Cell 

𝑃𝑂 Total Pressure 

𝑃𝑜𝑓𝑓𝑠𝑒𝑡 Offset for a Single Load Cell 



xii  

   
 

𝑃𝑅 Resultant Force for the Force and Balance Design 

𝑞∞ Free Stream Dynamic Pressure 

𝑞𝑐𝑜𝑟 Corrected Dynamic Pressure 

𝑅 Mean Length of the Suspension Lines 

𝑅𝑔𝑎𝑠 Specific Gas Constant for Dry Air 

𝑅𝑒 Reynolds Number 

𝑆 Canopy Planform Area 

𝑆𝑝 Canopy Projected Area in the Cross-Section of the Test Section 

𝑇 Ambient Temperature 

𝑉 Total Velocity Magnitude 

𝑉𝑜𝑢𝑡 Output Voltage from a Single Load Cell 

𝑢 Velocity Component in the x Direction 

𝑣 Velocity Component in the y Direction 

𝑤 Velocity Component in the z Direction 

𝑊 Exit Weight 

𝑊𝐵 Human Body Weight 

𝑊/𝑆 Canopy Wing Loading 

𝑥 Direction aligned to the x axis 

𝑦 Direction aligned to the y axis 

𝑧 Direction aligned to the z axis 

  

Greek Symbols 

  

𝛼 Angle of Attack 

𝛼1 Upper Limit for the Opening Inlet 

𝛼2 Lower Limit for the Opening Inlet 

𝛼𝑐𝑜𝑟 Angle of Attack Corrected 

𝛼𝑍𝐿 Zero Lift Angle of Attack 

𝛽 Anhedral Angle 

𝜃 Inclination Angle of the Resultant Force 

𝑘 − 𝜖 K-Epsilon Turbulence Model 

𝑘 − 𝜔 K-Omega Turbulence Model 

𝛾 Glide Angle 

𝛾𝑎𝑖𝑟 Ratio of Specific Heats for Dry Air 

𝜌 Air Density 

𝜏 Oswald Efficiency Factor 

𝜇 Air Dynamic Viscosity  

  



xiii  

   
 

ABBREVIATIONS 

 

2D Two-Dimensional 

3D Three-Dimensional 

AoA Angle of Attack 

AR Aspect Ratio 

CPU Central Processing Unit 

CFD Computational Fluid Dynamics 

CAD Computer-Aided Design 

CG Center of Gravity 

DAQ Data Acquisition System 

DNS Direct Numerical Simulation 

FEA Finite Element Analysis 

FSI Fluid-Structure Interaction 

LE Leading Edge 

LES Large Eddy Simulation 

Ni National Instruments 

PADS Precision Aerial Delivery System 

PC Personal Computer 

RAM Random-Access Memory 

RANS Reynolds-Averaged Navier-Stokes 

SA Spalart-Allmaras Turbulence Model 

SST Shear-Stress Transport Turbulence Model 

TE Trailing Edge 

W&H Ware & Hassell 

  

  

  

  

  

  

  

  

  

  

  



xiv  

   
 

NOMENCLATURE 

 

Chordwise Direction Direction aligned with the canopy chord line 

Spanwise Direction Direction aligned with the canopy span line 

Longitudinal Direction Direction aligned with the chordwise direction 

Lateral Direction Direction aligned with the spanwise direction 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  



xv  

   
 

ABSTRACT 

 

Christian A. Guzman Zurita MSAE, Embry-Riddle Aeronautical University, May 2019. 

Preliminary Test Predictions for Scale Ram-Air Parachute Testing 

 

The present thesis proposes a preliminary analysis to predict the aerodynamic 

performance for experimental tests of ram-air parachutes in a wind tunnel. A scaled 

experimental test setup is developed for determining the aerodynamic coefficients of lift 

(𝐶𝐿) and drag (𝐶𝐷) conducted in a wind tunnel. Additionally, a CFD approach where a 

steady-state parachute shape defined based on experiments, photographs, and literature, is 

presented. The accuracy of the simulation depends considerably on the ability to resolve 

the canopy geometry. Therefore, a CAD geometry generation is implemented for flexible 

control of the canopy structure by implementing design parameters, e.g., chord, span and 

planform shape. Distortions caused by inflation and suspension line tensions on the canopy 

structure are simulated by the manipulation of the surfaces in the CAD design. The 

numerical results compared with experimental data from the literature under similar flow 

conditions showed good agreement for the values of 𝐶𝐿 and a relative constant offset for 

the values of 𝐶𝐷 for the range of angles of attack analyzed. The difference for the values of 

𝐶𝐷 was attributed mainly to effects of the geometry deformation and suspension lines drag 

during the experimental tests. Additionally, simulations with a domain size equal to the 

dimensions of a wind tunnel test section showed an increase of 26% in the lift curve slope 

and strong wing tip vortices compared to the baseline model because of wall interaction 

effects. Finally, experimental tests using correction factors to compensate lift and drag 

measurements are recommended to directly validate the numerical results.  
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1. Introduction 

1.1. Introduction to Ram-Air Parachutes 

Parachutes have a wide variety of applications from sky sports to military payload 

airdrops. Investigations on parachutes during the past decades have led to a ram-air type 

shape with certain aerodynamic characteristics. This ram-air parachute type is capable of 

producing higher glide ratios and directional control as compared with traditional airdrop 

systems, e.g., hemispherical shell type parachutes (Ghoreyshi, et al., 2016). These 

characteristics make ram-air parachutes feasible for precision aerial delivery and payload 

recovery (Uddin & Mashud, 2010). 

In 1958, Pierre Lemoigne designed one of the first kite-type parachutes with several 

aerodynamic features and exhaust slots producing a glide ratio close to one (Ghoreyshi, et 

al., 2016). In 1964, Damina Jalbert’s design based on cell divided, triangulated canopy 

shape, bottom air inlet, and rear outlet slots, was the first parachute that achieved a glide 

ratio over one (U.S. Washington, DC Patent No. US3131894A, 1964). Contemporary 

ram-air parachutes follow Jalbert’s concept with improvements on the cell dividing 

canopy structure, air inlets, suspension line arrangement, and payload position. These 

changes provide larger airdrop altitude ranges, better controlled descend and safe landing. 

A generic ram-air parachute with suspension lines and payload is shown in Figure 1.1. 
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Figure 1.1 Ram-air parachute. Adapted from (Ortega, Flores, & Pons-Prats, 2017). 

 

Ram-air parachutes are made of nonporous nylon fabric to avoid internal pressure 

losses as well as to provide a smooth-rigid structure when inflated (Lingard, 1995). 

Similar to an airplane wing, the canopy has ribs along the spanwise direction with an 

airfoil shape. The ribs divide the structure into several chambers and two consecutive 

chambers form a cell. Each chamber has an opening cut at the leading edge (LE), letting 

ram-air inflate the canopy. In addition, the opening cut divides the canopy structure into 

upper and lower surfaces, which join at the trailing edge (TE) (Fonseca, 2018). 

The airfoil shape formed between two ribs is considered as a longitudinal cross section 

of a canopy and the opening inlet at the LE differentiates the cross-section from a rib. 

Typical rib designs are based on low speed airfoils with high aerodynamic performance, 

e.g., CLARK-Y and NASA LS1-0417 (Lingard, 1995). In addition, ribs may have several 

small hole cuts in the chordwise direction. The purpose of the holes is to maintain a 

homogenous internal pressure distribution on every cell when the canopy is inflated.  

Braided nylon suspension lines connect the canopy and the payload. The bottom 
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portion of the lines, or primary lines, merge into a single point where the payload is 

attached. The top portion of each line divides into two or more branches called secondary 

lines. The group of branches forms a “cascade” of lines, which are sewed to ribs at the 

bottom surface of the canopy (Lingard, 1995). Additionally, steering lines are placed at 

the sides to provide maneuverability. 

The canopy ribs are classified into loaded and non-loaded, depending if there are lines 

attached to the rib. On one hand, loaded ribs have the lines sewed to the bottom edge of 

the rib at different locations along the chordwise direction. Tension forces at these 

locations keep the rib stretched, ensuring the canopy inflation. Additionally, 

maneuverability and directional control of the canopy are achieved by applying different 

tension forces to the lines. On the other hand, the non-loaded ribs do not have lines 

sewed; hence, the ribs experience a small translation and rotation. As a result of pressure 

force at the LE of the canopy, the non-loaded ribs tend to translate in the upward 

direction, perpendicular to the longitudinal axis. Moreover, the non-loaded ribs rotate 

nose-up between the chord line and longitudinal axis, which creates an angle known as 

the incidence angle (Fonseca, 2018). 

Airflow around a longitudinal cross section and a rib of an inflated canopy behaves 

similar to an airfoil. Figure 1.2 shows a schematic of the airflow around a cross section of 

a canopy. Point A represents airflow in the upstream approaching to the LE of the 

canopy. A stagnation region is formed at point B, close to the LE, as the airflow slows 

down. Once the canopy is fully inflated, this region behaves as a wall for the opening 

sections, allowing the canopy pressurization. Additionally, at point B the airflow is 

redirected towards the upper and lower surfaces of the canopy. Points C and D represent 
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the upper and lower surfaces of the canopy, respectively. Pressures on both sides of these 

surfaces, internal and external pressures, maintain the inflated canopy structure. The 

internal pressures at points C and D are approximately the same because the fluid has 

negligible motion inside each cell. Moreover, the internal pressures are considerably 

higher as compared with the external pressures, maintaining the inflation of the canopy. 

The external pressures at points C and D follow the same behavior as a conventional 

airfoil, low pressure at the upper surface and high pressure at the lower surface (Sobieski, 

1994). 

 

Figure 1.2 Airflow around a canopy cross section. Adapted from (Sobieski, 1994). 

 

Maneuverability, longitudinal and lateral stability of the canopy is highly dependent 

on the payload position with respect to the canopy center of gravity (CG) (Uddin & 

Mashud, 2010). Figure 1.3 shows the influence of different positions of the payload on 

maneuverability and stability of the canopy. Left and right turns are achieved by pulling 

asymmetrically steering lines and placing the payload at the opposite turning side with 

respect to the vertical axis. Moreover, the payload tends to move to the left side when the 
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canopy is turning to the right as shown in Figure 1.3a. Similarly, fore and aft 

displacements of the payload with respect of the canopy CG modify the angle of attack 

(AoA). For instance, Figure 1.3b shows the payload location aft the canopy CG inducing 

a low angle of attack (nose-down).  

 

a) Payload position in a right turn. 

 

b) Payload position with respect to the canopy CG. 

Figure 1.3 Schematic of maneuverability and stability of the canopy. Adapted from 

(McConnel, 2017). 

 

Finally, complex structure designs may include features to increase the canopy 

performance. For example, pennants or “flares,” stabilizer panels, cross-bracers, and 

spoilers provide additional support for load distribution and partially channel the flow 

into a 2D pattern along the chordwise direction of the canopy (Lingard, 1995). 
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1.2. Motivation for this Study 

Aerodynamic performance of ram-air parachutes has been subject of extensive studies 

during past decades, mainly because of the strong interaction of the airflow with the 

canopy structure. Starting in the early 60s, prediction of the canopy performance was 

limited to only experimental and flight tests. Wind tunnel experiments of scaled and full-

scaled canopy models have contributed to aerodynamic data under simulated flight 

conditions. In fact, wind tunnel experiments have been the main source to corroborate 

tests under similar conditions. However, wall effects and limited range of motion are 

concerns during the experiments. Expensive and time-consuming flight tests have also 

provided data, leading mostly to an empirical canopy design approach (Ghoreyshi, et al., 

2016). 

The accelerated technology growth in the past years has led to numerical approaches 

of the canopy performance by using different computational tools. Advantages of 

numerical analysis are the ability to predict fluid parameters, provide flow field 

visualization, and determine structure displacement and deformation. Although 

drawbacks of this approach are the high computational time and computer resources 

needed, numerical analysis provide a full range of outcomes for design criteria, which are 

very limited with experimental tests. Therefore, the implementation of computational 

tools provides the parachute industry with a powerful design tool (Fonseca, 2018). 

The need to predict the fluid and the structure behavior of canopies has led to the 

implementation of different types of numerical analysis. For instance, Computational 

Fluid Dynamics (CFD) analyzes the fluid flow behavior around a rigid body by solving 

the Reynolds-Averaged Navier-Stokes equations (RANS) in a domain. Similarly, Finite 
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Element Analysis (FEA) preforms a structured analysis by predicting stresses and 

deformations of a body. Fluid and Structure Interaction (FSI) is a combination of CFD 

and FEA, which analyzes the interdependence between the fluid flow and the structure of 

a body (Burnett, 2016). These numerical approaches provide an approximate solution of 

the canopy performance by providing an understanding of the airflow and structure 

behavior under simulated flight conditions. 

The accuracy of the simulation depends on the ability to resolve the canopy geometry. 

Computer-Aided Design (CAD) is a computational tool capable of modeling any 

geometry accurately (Fonseca, 2018). For instance, a canopy can be modeled in a CAD 

software by using points, lines and surfaces connected to each other by using different 

constraints. The geometry is later analyzed under fluid flow conditions by CFD software 

to determine the aerodynamic characteristics. 

Although experimental results are used to corroborate numerical solutions under 

similar conditions, wind tunnel experiments and CFD analysis have been developed 

independently to study the interaction between the flow field and the canopy. Therefore, 

implementation of a methodology with a combination of both approaches will determine 

more accurately the performance of ram-air parachutes. 

1.3. Thesis Objectives 

The present thesis is a preliminary analysis in advance of wind tunnel experiments by 

performing CFD analysis of scaled and full-scaled canopy models under similar flight 

conditions. Based on a full-scaled canopy geometry from the literature, several numerical 

simulations are assessed and validated to determine the feasibility and accuracy of the 

results. Additionally, the accuracy of the simulations depends on the ability to resolve the 
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canopy geometry. Therefore, the thesis has the following objectives: 

 Implement a semi-automatic canopy CAD generation tool with interface to CFD 

using design parameters based from the literature, and to allow inclusion of 

canopy deformations. 

 Evaluate the aerodynamic performance (𝐶𝐿, 𝐶𝐷 and 𝐶𝐿 𝐶𝐷⁄ ) of the canopy at 

various conditions, as well as flow and pressure fields. 

 Validate the numerical results with experimental studies, where possible, and 

determine sources of discrepancy. 

 Perform CFD simulations at different Reynolds numbers, domain sizes and angles 

of attack to determine the feasibility of experiments in a low speed wind tunnel. 

 Design, build and calibrate a 2D force balance to determine the components of a 

resultant load applied at a specific angle. 

1.4. Thesis Outline 

The present thesis is divided into the following chapters: 

 Chapter 2 Literature Review: This chapter provides an overall view of the 

different design parameters and their influence on the performance of the 

canopies during flight. Additionally, previous results from experimental and 

numerical analysis as well as different testing methodologies are presented. 

 Chapter 3 CAD Methodology and CFD Approach: This chapter describes the 

design parameters and the methodology followed to develop a semi-automatic 

CAD generation of a canopy and the CFD approach and setup. The chapter begins 

with an overview of the CAD software used and its capabilities. Additionally, the 

interface that models different deformations on the canopy when in flight at a 
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steady state is presented. Finally, the benchmark geometry is defined for the 

numerical simulations. This chapter also presents an overview of the CFD 

software used and its capabilities for the numerical analysis. Furthermore, 

boundary conditions, flow parameters and mesh independence analysis are 

presented along with the simulation setup. Finally, the test matrix with different 

scenarios of Reynolds number and domain size is presented.  

 Chapter 4 Results and Analysis: This chapter starts with the CAD generation 

interface along with its limitations. Additionally, various canopy models are 

presented created using the CAD generation methodology. Finally, this chapter 

presents the computational results, comparison with experimental data from the 

literature, and a discussion of possible sources of error. 

 Chapter 5 Conclusions and Recommendations:  This chapter summarizes the 

main outcomes. Additionally, recommendations for future work are provided. 
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2. Literature Review 

2.1. Introduction 

Approaches to predict the aerodynamic characteristics of ram-air parachutes are 

limited because of the high interaction of the fluid flow with the canopy structure. 

However, the canopy performance can be approximated similar to an airplane wing by 

using wing theory because of the airfoil shape formed in a cross-section of the canopy 

when inflated (Uddin & Mashud, 2010). Consequently, geometry characteristics, e.g., 

airfoil shape, chord (𝑐) and span (𝑏) length have similar effects on the parameters used to 

determine the parachute design. 

2.2. Design Parameters 

Designers focus on three main parameters to determine the canopy performance 

namely planform shape, canopy trim and wing loading (Burke, 1997). These design 

parameters are closely related to the geometric characteristics and the canopy payload 

interaction. 

Planform shape is defined by the airfoil thickness and aspect ratio (𝐴𝑅) (Burke, 1997). 

The airfoil thickness is the ratio between the maximum airfoil high and chord length. 

Parachute industries commonly use a CLARK-Y airfoil shape with a range of 15–18% 

thickness (Lingard, 1995). Although thick airfoils can provide of large amount of lift, 

these airfoils have more profile drag coefficient (𝐶𝐷𝑂). Therefore, early canopy designs 

tend to implement a low-speed airfoil section as a NASA LS1-0417 with a thickness to 

chord ratio of approximately of 10% (Burke, 1997). 

Similar to a finite wing, the aspect ratio (𝐴𝑅) is the ratio between the square of the 

canopy span and planform area (𝑆), expressed as 𝐴𝑅 = 𝑏2/𝑆. In particular, for a 
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rectangular planform shape, the aspect ratio is given by 𝐴𝑅 = 𝑏/𝑐. Canopies create tip 

vortices caused by differences of pressure between the upper and lower surfaces, 

producing induced drag (𝐶𝐷,𝑖). This type of drag is inversely proportional to 𝐴𝑅, as given 

in Equation (2.1) for an elliptical planform shape.  

𝐶𝐷,𝑖 =
𝐶𝐿

2

𝜋𝐴𝑅
     (2.1) 

Therefore, the higher the canopy 𝐴𝑅, the less induced drag is produced (Anderson, 

2010). Although high wing performance is achieved by increasing the 𝐴𝑅, the flexible 

canopy structure presents several problems. For instance, the higher the canopy 𝐴𝑅 the 

less homogenous is the internal pressure within the end cells. Moreover, additional ribs 

and lines are necessary to maintain a smooth canopy shape, increasing considerably the 

drag. Therefore, an 𝐴𝑅 limit of 3 to 1 is commonly found in parachute designs (Burke, 

1997). 

Longitudinal stability is related with the canopy trim and interaction with the payload. 

A trimmed canopy locates the payload at the CG of the system to maintain the canopy in 

equilibrium at a certain angle of attack (Lingard, 1995). For instance, a negative trim 

angle (nose-down) increases the descent rate and stability. Whereas a positive trim angle 

(nose-up) increases glide range but the possibilities of canopy collapse (Burke, 1997).    

In the same manner, the design trim angle is affected by the length and manipulation 

of the steering lines. For instance, long or short steering lines limit the ability of the 

parachutist to maneuver (Burke, 1997). Therefore, parachute designs include lines with 

very low elasticity (Lingard, 1995). 

The design parameter of wing loading (𝑊 𝑆⁄ ) emphasizes the relation between the 

payload and the canopy. This parameter is the ratio between the total amount of weight of 
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the system, also known as exit weight (𝑊), with the planform area of the canopy (Burke, 

1997). Therefore, the wing loading has the units of pounds per square foot (lb ft2⁄ ) or 

kilograms per meter square (kg m2⁄ ) for USCS and SI units, respectively.  

The wing loading has a strong influence on the design because of the canopy 

performance and maneuverability. Variations of exit weight are reflected with changes of 

air speed around the canopy. For instance, a decrease of the exit weight leads to a slower 

landing and low maneuverability response. An increase of the exit weight gives a higher 

descent and turning rate (Burke, 1997). Therefore, the higher the exit weight, i.e., wing 

loading, for a particular canopy design, the higher the performance and maneuverability 

(Sobieski, 1994).  

Although increasing the wing loading is reflected with a higher canopy performance, 

excessive increment of wing loading leads to possible flow separation and loss of glide 

air speed. Therefore, parachute industries have determined ranges of wing loadings 

depending on the canopy applications and exit weight. For instance, canopies designed 

for parachutists have typically wing loadings from 0.7 to 1.6 lb/ft2 (Burke, 1997), while 

for Precision Aerial Delivery System (PADS) a common range is between 3 to 4 lb/ft2 

(Lingard, 1995). 

Planform shape, canopy trim and wing loading provide with an overall layout for the 

design of the structure and different features of the canopy. Multiple studies have 

provided empirical or semi-empirical approaches to approximate the influence of the 

structure on the canopy performance. 

2.3. Aerodynamic Characteristics 

 Lingard provided a compilation of approximations for individual geometry 
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features to determine the canopy performance. Although lifting line theory provides an 

approximation for planar wings with an 𝐴𝑅 higher than 5, various researches have 

adapted the lifting line theory for wings with an 𝐴𝑅 lower than 5 (Lingard, 1995).   

Starting with the analysis of lifting line theory, the total lift and drag coefficients (𝐶𝐿 

and 𝐶𝐷, respectively) for a finite planar wing and general planform shape can be 

expressed by the Equations (2.2) and (2.3) (Anderson, 2010), i.e.,  

𝐶𝐿 =
𝑑𝐶𝐿

𝑑𝛼
(𝛼 − 𝛼𝑍𝐿)    (2.2) 

        𝐶𝐷 = 𝐶𝐷𝑂 +
𝐶𝐿

2

𝜋𝐴𝑅𝑒
      (2.3) 

Where 𝛼 is the angle of attack, 𝛼𝑍𝐿 is the angle of attack of zero lift, 𝐶𝐷𝑂 is the profile 

drag, 𝑒 =
1

(1+𝜏)
 is the Oswald efficiency factor and 𝑎 =

𝑑𝐶𝐿

𝑑𝛼
  is the lift curve slope per 

radian (1/rad) for a finite wing given by Equation (2.4), i.e., 

      𝑎 =
𝜋𝐴𝑅𝑎𝑜

𝜋𝐴𝑅+𝑎𝑜𝑒
     (2.4) 

Where 𝑎𝑜 is the lift curve slope of a 2D airfoil shape. 

 In Equation (2.3), the first term is the profile drag of the airfoil shape, which 

represents the combination of skin friction and pressure drag of a 2D airfoil (Anderson, 

2010). In case of the canopy, the profile drag is produced by the airfoil thickness, 

irregularities and smoothness of the fabric (Ware & Hassell, 1969). The second term in 

Equation (2.3) is the induce drag, which represents the 3D effects at the wingtips on a 

finite wing with a generic planform shape.  

An investigation conducted by Hoerner and Borst (1985) provided with a correction 

factor 𝑘 for the lift curve slop (𝑎𝑜) expressed as 𝑎𝑜
′ = 𝑘𝑎𝑜 . The investigation proposed 

that for a low aspect ratio finite wing, the 2D lift curve slope decreases by a factor of 𝑘 
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(Hoerner & Borst, 1985). The value of 𝑘 is determined with Equation (2.5). 

𝑘 =
2𝜋𝐴𝑅

𝑎𝑜
tanh (

𝑎𝑜

2𝜋𝐴𝑅
)     (2.5) 

Therefore, implementing the correction factor 𝑘 into Equation (2.4), the lift curve slope 

for a low aspect ratio wing is given by Equation (2.6). 

𝑎 =
𝜋𝐴𝑅𝑎𝑜

′

𝜋𝐴𝑅+𝑎𝑜
′(1+𝜏)

     (2.6) 

Furthermore, the arched shape of the canopy when inflated, also known as anhedral, 

reduces the lift term from Equation (2.2). The main reason of this decrement is because 

the lift produced towards the end cells have a component in the lateral direction of the 

canopy (Fonseca, 2018). The greater the anhedral of the canopy, the higher the lateral 

component of the lift. Therefore, Hoerner and Borst provide with an approximation of the 

lift coefficient accounting the anhedral effect as presented in Equation (2.7), i.e., 

𝐶𝐿 = 𝑎(𝛼 − 𝛼𝑍𝐿)cos
2𝛽    (2.7) 

Where 𝛽 is the anhedral angle of the canopy. 

Additionally, Hoerner and Borst suggested a term for lift and drag to compensate the 

non-linear effects caused by low aspect ratio, end cells shape, and components of the 

velocity normal to the wing near the end cells, which are given in Equations (2.8) and 

(2.9) (Hoerner & Borst, 1985), i.e., 

∆𝐶𝐿 = 𝑘1sin
2(𝛼 − 𝛼𝑍𝐿)cos(𝛼 − 𝛼𝑍𝐿)   (2.8) 

∆𝐶𝐷 = 𝑘1𝑠in
3(𝛼 − 𝛼𝑍𝐿)    (2.9) 

Where 𝑘1 is a correction factor from experimental data presented as follows: 

𝑘1 = 3.33 − 1.33𝐴𝑅   1 < 𝐴𝑅 < 2.5 

𝑘1 = 0     𝐴𝑅 > 2.5 

The influence of suspension lines and payload on the overall drag is significantly. 
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Thus, different semi-empirical approaches provide approximations for the contribution of 

these features (Lingard, 1995). For instance, Lingard presents an approximation to the 

drag coefficient because of the suspension lines, expressed in Equation (2.10), assuming 

a constant line length and inclination angle with respect to the airflow velocity, i.e., 

        𝐶𝐷𝑙 =
𝑛𝑅𝑑cos3𝛼

𝑆
    (2.10) 

Where 𝑅 is the average line length, 𝑑 is the diameter, and 𝑛 is the total number of lines. 

In the same manner, the payload is estimated by approximating size dimensions and 

the surface area of the body. Research by Mkrtchyan and Johari suggests a semi-

empirical relation to estimate the drag force for a standing human body. This is done by 

approximating the surface and frontal area, as presented in Equations (2.11) and (2.12), 

i.e., 

𝐴𝐷𝑢 = 0.0769𝑊𝐵
0.425𝐻0.725    (2.11) 

𝐴 ≈ 0.35𝐴𝐷𝑢     (2.12) 

Where 𝐴𝐷𝑢 is the DuBois or surface area, 𝑊𝐵 is the weight in Newtons, 𝐻 is the height in 

meters, and 𝐴 is the frontal area of a human body in squared meters. Additionally, the 

investigation provides from experimental tests the drag coefficient with respect to the 

front area of the human body as 𝐶𝐷 = 1.17 (Mkrtchyan & Johari, 2011). Therefore, the 

drag coefficient estimated for a human body with respect to the canopy area can be 

expressed in Equation (2.13), i.e., 

𝐴 𝐶𝐷 = 1.17 𝐴 

𝐴 𝐶𝐷 = 1.17 𝐴𝐷𝑢

𝐴

𝐴𝐷𝑢
 

𝐴 𝐶𝐷 = (0.35)(1.17) 𝐴𝐷𝑢 
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      𝐶𝐷𝑠 =
𝐴 𝐶𝐷

𝑆
= (0.35)(1.17)  

𝐴𝐷𝑢

𝑆
    (2.13) 

The aerodynamic characteristics of the system can be estimated by implementing the 

effects of different geometric features. Therefore, the overall lift and drag coefficients 

may be writing as Equations (2.14) and (2.15) (Lingard, 1995), i.e., 

𝐶𝐿 = 𝑎(𝛼 − 𝛼𝑍𝐿)cos
2𝛽 + 𝑘1sin

2(𝛼 − 𝛼𝑍𝐿)cos(𝛼 − 𝛼𝑍𝐿)  (2.14) 

𝐶𝐷 = 𝐶𝐷𝑂 + 𝐶𝐷𝑙 + 𝐶𝐷𝑠 +
𝐶𝐿

2

𝜋𝐴𝑅𝑒
+ 𝑘1sin

3(𝛼 − 𝛼𝑍𝐿)  (2.15) 

Where the 𝐶𝐿 for the induced drag in Equation (2.15) is given by Equation (2.2). 

The aerodynamic efficiency of the canopy is referred to the lift to drag ratio (𝐿/𝐷) 

produced as the canopy descends (Anderson, 2010). At steady level flight, the canopy 

descends at a constant rate, where the airspeed and 𝐿/𝐷 are given by Equations (2.16) 

and (2.17) (Lingard, 1995), i.e., 

𝑉 = (
2

𝜌

𝑊

𝑆

1

(𝐶𝐿
2+𝐶𝐷

2)
0.5)

0.5

    (2.16) 

       
𝐿

𝐷
=

𝐶𝐿

𝐶𝐷
=

1

tan (𝛾)
    (2.17) 

Where 𝜌 is the air density and 𝛾 is the glide angle. 

Finally, the horizontal and vertical components of the airspeed are given by the 

following equations (Lingard, 1995),i.e., 

𝑢 = 𝑉cos(𝛾)     (2.18) 

𝑣 = 𝑉sin(𝛾)     (2.19) 

2.3.1. Distortions on the Canopy Structure 

Although the canopy resembles an airplane wing when inflated, flexibility of the 

fabric leads structure distortions caused by the surrounding fluid pressure and tension 

forces from the suspension lines. Distortions on the structure produce effects such as 
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airflow channel, flow separation and fabric displacements, modifying the flow pattern 

over the surfaces of the canopy. Therefore, distortions have a strong influence in the 

aerodynamic performance of the canopy, which has been subject of extensive studies 

within the past decades. 

Figure 2.1 presents an underside view of a canopy when in flight. The canopy 

structure experiences an inflation effect caused by the air pressure inside each cell. For 

instance, the top and bottom surfaces tend to curve in between the ribs, as indicated with 

blue arrows in Figure 2.1, creating channels where the ribs are sewed along the chordwise 

direction. Moreover, the seams along the spanwise direction and the attachments of the 

suspension lines create multiple bulges at the top and bottom surfaces of the canopy, as 

indicated with red arrows in Figure 2.1. These irregularities are increased when the 

parachutist exerts tension on the steering lines.  

Additionally, the inflation of the canopy increases substantially the thickness of the 

canopy cross-section, i.e., the airfoil shape in between the ribs. The stretch of the fabric in 

the vertical direction decreases the canopy span length, causing a reduction of the total 

lift produced (Fonseca, 2018).  
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Figure 2.1 Underside view of an inflated ram-air parachute (Adapted from Tactical 

Parachute Delivery Systems Inc., retrieved from http://tpdsairborne.com/products/ 

parachutes/hlt-r/) 

 

Figure 2.2 shows rear view of a canopy when in flight, where the internal pressure of 

the cells stretches the fabric at the trailing edge, forming a round shape between the ribs 

where the seam joins the top and bottom surfaces of the canopy, as shown with the red 

circle. 

 

Figure 2.2 Rear view of an inflated ram-air parachute (Adapted from Air Freshener, 

retrieved from https://airfreshener.club/quotes/ram-air-parachute-dimensions.html) 
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Similar to a blunt body, the round shape at the TE produces flow separation causing 

pressure drag. Additionally, tension forces on the steering lines to maintain 

maneuverability and stability causes deflections near the TE, as shown with the blue 

circle in Figure 2.2. Finally, Figure 2.3 shows deformations at the opening inlet and the 

displacements of the canopy ribs. 

As explained in the previous chapter, the ribs can be classified as loaded and non-

leaded ribs, depending if there are lines sewed at the bottom edge of the rib. Therefore, 

tension forces on the suspension lines cause the loaded ribs to maintain their position, as 

shown by the red arrow in Figure 2.3. Whereas the non-loaded ribs would experience a 

displacement in the upward direction perpendicular to the longitudinal axis, as shown by 

the yellow arrow in Figure 2.3. Additionally, the internal pressure exerted over the upper 

and lower surfaces of the canopy stretches the ribs, causing the non-loaded ribs to move 

in the upward direction perpendicular to the longitudinal axis.  

 

Figure 2.3 Rib displacement and opening section of a ram-air parachute (Adapted from 

Tactical Parachute Delivery Systems Inc., retrieved from http://tpdsairborne.com/products/ 

parachutes/hlt-r/) 
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Finally, the ram air at the LE causes pressure force at the upper and lower lips of the 

opening sections, pushing aft the lips and forming a round shape at the LE, as shown in 

Figure 2.3. Additionally, the pressure forces on the upper lip of the opening section 

induce the non-loaded ribs to rotate nose-up between the chord line and longitudinal axis. 

Although the canopy resembles into a low 𝐴𝑅 wing when inflated, performance 

analysis using Prandtl lifting-line theory is limited in this case because of the arched 

shape of the canopy (Belloc, 2015). Research conducted by Iosilevskii (1996) showed an 

extension of the lifting line theory for arched wings, by applying Prandtl’s theory if the 

wing sweep angles were small enough. In his investigation, Iosilevskii demonstrated that 

the lift distribution is similar for an arched wing as compared with a planar wing with 

similar geometry characteristics, e.g., chord and span length (Iosilevskii, 1996). 

Additionally, Iosilevskii indicates that an arched wing will produce less lift towards the 

tips of the canopy as compared to planar wings. Therefore, extensive experimental 

studies have analyzed the canopy performance with the intention of validating analytical 

and computational approaches. 

2.4. Experimental Studies 

For decades, wind tunnel experiments have provided data under simulated flight, 

becoming a reliable source and cost-effective tool to predict the aerodynamic 

performance of ram-air parachutes (Barber & Johari, 2001). Investigations conducted by 

Nicolaides (1971), Ware & Hassell (1969), Belloc (2015), Uddin & Mashud (2010), 

Barber & Johari (2001), Lee & Li (2007) and Carney (2007) have concentrated their 

attention on predicting the in flight geometry and the aerodynamic performance of sub-

scaled and full-scaled canopy models. Furthermore, different experimental techniques 
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have led to a wide range of simulated flight conditions such as flow velocities, angles of 

attack and canopy aspect ratios. 

Early in 1964, Nicolaides conducted experimental tests of scaled and full-scaled 

canopy models under different conditions to determine the aerodynamic performance, 

longitudinal and lateral stability of ram-air parachutes. The tests included several rigid, 

semi-rigid and flexible rectangular canopies with aspect ratios ranging from 0.5 to 3.0. 

Additionally, test conditions consisted of airspeed range from 20 ft/s to 60 ft/s and angles 

of attack from 0° to 25° (Nicolaides, 1971). The tests were performed in two subsonic 

wind tunnels: University of Notre Dame and NASA Langley Full Scale wind tunnel. 

Several rigid and semi-rigid scaled canopy models were tested at the University Notre 

Dame wind tunnel, which has a rectangular test section of 2 ft x 2ft and 6 ft long. Figure 

2.4 shows a schematic of the experimental set-up for the rigid wings.  

During the tests, the models were suspended on a force and balance system in the yaw 

plane, i.e., vertically to avoid the influence of the gravity on the measurements, using two 

rods that allowed the change of angle of attack (Nicolaides, 1971). Additionally, two 

cameras were placed at the bottom and top of the test section to record the angular motion 

and the angle of attack, respectively, as shown in Figure 2.4. 

 

Figure 2.4 Notre Dame experimental set-up. Adapted from (Nicolaides, 1971). 
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The flexible models were tested at NASA Langley Full Scale wind tunnel, which had 

an elongated hole test section of 30 ft x 60 ft and 56 ft long. Figure 2.5 presents an 

overall view of the NASA Langley wind tunnel. 

 

Figure 2.5 NASA Langley wind tunnel schematic (Adapted from National Aeronautics 

and Space Administration, retrieved from https://www.nasa.gov/centers/langley/news/ 

factsheets/30X60.html) 

 

The canopy models were tested using two different methods, namely tether and center-

post, which provide with measurements of the aerodynamic characteristics, as well as the 

longitudinal and lateral stability. The tether method consisted on attaching the canopy 

model to a force balance using suspension lines. Figure 2.6 presents a schematic of the 

set-up for a tether test. Notice that testing equipment placed upstream, e.g., as the floor of 

the test section, covered a certain length of the lines, affecting the drag measurements. 

Therefore, Nicolaides presented an empirical correction factors to approximation the drag 

of the unexposed lines. Additionally, the canopy was placed in the centerline of the test 

section using “guide” lines, which were released once the canopy was inflated 

(Nicolaides, 1971). A photograph was taken from the side of the wind tunnel to 
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determine the angle of attack (Nicolaides, 1971). 

 

Figure 2.6 Tether test schematic set-up. Adapted from (Ware & Hassell, 1969). 

 

The center-post test, also known as strut test, consisted on connecting the suspension 

lines to a metal grid framework. Therefore, a portion of the lines was cut to maintain the 

canopy in the centerline of the test section. The grid was connected to a strut mounting 

system with various strain gages at the base of the mounting to measure the forces and 

moments. Finally, previous tests were performed with the grid and the mounting to 

calibrate the system (Nicolaides, 1971). 

Results of the investigation showed that the lift curve was approximately linear for a 

large range of angles of attack, from 7.5° to 15°, with maximum lift coefficients (𝐶L max) 

from 0.751 to 1.005. Moreover, the lift curve slope of a cross-section of the canopy was 

lower as compared with a 2D conventional airfoil section. Figure 2.7 shows the 𝐶𝐿, 𝐶𝐷 

and 𝐶𝐿/𝐶𝐷 versus 𝛼 for a rectangular flexible canopy with 𝐴𝑅 of 2 and 8.57 ft chord 

length. 
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a) 𝐶𝐿 versus 𝛼. 

 

b) 𝐶𝐷 versus 𝛼 . 

 

c) 𝐶𝐿/𝐶𝐷 versus 𝛼. 

Figure 2.7 𝐶𝐿, 𝐶𝐷 and 𝐶𝐿/𝐶𝐷 versus 𝛼 for a rectangular canopy with 𝐴𝑅 of 2. Adapted from 

(Nicolaides, 1971). 
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The maximum lift to drag ratio (𝐿/𝐷max) ranged from 1.83 to 6.40. The experiments 

also showed that the canopies did not maintain steadiness because of the downstream 

location of the tether mounting, leading flow disturbances at the rear part of the test 

section affect the canopy stability and performance (Nicolaides, 1971).  

A similar investigation conducted by Ware and Hassell (W&H) in 1969 determined 

the aerodynamic characteristics and stability of ram-air parachutes under simulated flight 

conditions. The experiments consisted of wind tunnel experiments of eleven flexible 

canopy models: five models with constant-wing area, five models with constant-wing 

chord and one full-scale canopy model. The aspect ratio for the canopies of constant-

wing area and constant-wing chord ranged from 1.0 to 3.0, whereas for the full-scale 

canopy the aspect ratio was 1.5. Additionally, the tests included different airspeeds 

between 30 ft/s to 60 ft/s along with different angles of attack. 

In the same manner, the experiments were tested at NASA Langley Full Scale wind 

tunnel using the tether and center-post methods. During the tests, photographs taken from 

the side of the test section were used to determine the angle of attack. Additionally, visual 

inspection determined that there was no twist angle towards the end cells of the canopy. 

Therefore, the angle of attack seen by the side rib was assumed for the overall canopy 

(Ware & Hassell, 1969).  

 Results of the experiments showed the significantly influence of the suspension lines 

on drag measurements, e.g., for a canopy with aspect ratio of 3 the drag presented a 

difference from 28% to 41% for the constant-chord and constant-area series, respectively. 

Additionally, the maximum lift to drag ratio of the canopy alone ranged from 2.7 to 4.4 

as the aspect ratio increased from 1.0 to 3.0. The experiments determined that the 
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maximum lift to drag ratio of the canopy was lower compared with a rigid wing with a 

conventional airfoil shape. The low lift to drag ratio is associated with multiple drag 

effects caused by the opening inlet and the suspension lines. Figure 2.8 shows the 𝐶𝐿 

versus 𝛼 and the drag polar for a rectangular canopy with 𝐴𝑅 of 2 and a chord length of 

8.57 ft. 

Finally, Ware and Hassell mentioned that the equipment used during the experiments 

had no interference effects with the testing model. Therefore, the data presented had no 

wind-tunnel jet-boundary corrections applied (Ware & Hassell, 1969). 

 

Figure 2.8 𝐶𝐿 versus 𝛼 and drag polar for a rectangular canopy with 𝐴𝑅 of 2. Adapted from 

(Ware & Hassell, 1969). 

 

Experiments conducted by Belloc in 2015 with a rigid arched wing demonstrated the 

effects of a spanwise arched shape in the longitudinal and lateral stability. The wing, 

which had a NACA 23015 airfoil shape in cross-section, was tested in an elliptical open 

test section of 9.8 ft x 6.6 ft (3 m x 2 m) at an airspeed of approximately 131 ft/s (40 m/s). 
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Additionally, the arched wing had a central chord length of 9.2 ft (2.8 m) and an 𝐴𝑅 of 

6.52. The wing was placed at the centerline of the test section on top of a dynamometer, 

leaving a distance of 1.6ft (0.5m) from the wingtips to the walls. Figure 2.9 shows the 

experimental set-up and the location of the rigid canopy in the wind tunnel.  

 

Figure 2.9 Rigid arched wing experimental set-up. Adapted from (Belloc, 2015). 

 

Belloc implemented correction factors to the angle of attack and coefficient of drag for 

a flat wing with the same projected area as to correct the effects of wind on the 

dynamometer measurements, given by Equations (2.20) and (2.21) (Belloc, 2015), i.e.,  

𝛼𝑐𝑜𝑟 = 𝛼 − 0.71𝐶𝐿 (deg)    (2.20) 

    𝐶𝐷𝑐𝑜𝑟 = 𝐶𝐷 − 0.012𝐶𝐿
2
    (2.21) 

Additionally, Belloc mentioned that the half-scale Reynolds number of 9.6𝑥105 

obtained for the tests was high enough to expect a similar boundary layer behavior, with 

spanwise lift and induce drag distributions as compared with the full-scaled model 

conditions. According to Belloc, effects of low Reynolds number affected measurements 

of the friction drag and 𝐶𝐿 max. 

Results of the investigation showed the presence of lateral force because of the lift 

generated at the arched sides of the wing. Additionally, the lift curve remained linear for 
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angles of attack up to 16° approximately with a 𝐶𝐿 max of 0.8 for a sideslip angle (𝛽) of 

0°. Figure 2.10 shows the 𝐶𝐿 and 𝐶𝐿 vs 𝐶𝐷 for the multiple angles of attack tested. 

Finally, the lateral forces and lift produced in the arched wing induce pitch down, yawing 

and rolling stable effects (Belloc, 2015). 

 

a) 𝐶𝐿 versus 𝛼 

 

b) 𝐶𝐿 vs 𝐶𝐷 

Figure 2.10 𝐶𝐿 and 𝐶𝐿 vs 𝐶𝐷 for experimental tests of a rigid arched wing. Adapted from 

(Belloc, 2015). 

 

Uddin and Mashud (2010) performed pseudo 2D experimental tests measuring the 

internal and external pressure of a single canopy chamber. The tests were conducted at 

various Reynolds numbers and angles of attack at the wind tunnel of Khulna University, 

which had a test section of 0.34 m x 0.40 m x 0.985 m. The model consisted of 0.002 m 

thick acrylic ribs, a simplified opening inlet geometry and different fabric materials for 

the upper and lower surfaces, allowing deformations along the chordwise direction. 

Figure 2.11 shows a schematic of the experimental set-up for the pseudo 2D canopy test. 
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Figure 2.11 Schematic of an experimental set-up for a pseudo 2D test. Adapted from 

(Uddin & Mashud, 2010). 

 

The pressure distribution was measured using a pressure port mounted on a 

mechanical transverse system. Additionally, the upper and lower data points were located 

at the center of the chamber along the chordwise direction to avoid 3D flow effects. 

Figure 2.12 shows the variation of the internal pressure of the chamber when increasing 

the angle of attack.  

The experimental results showed that the internal pressure was approximately constant 

for high angles of attack maintaining the chambers inflated, as shown for angles of attack 

higher than 10° in Figure 2.12. For low angles of attack the leading edge of the chamber 

tended to collapse preventing the ram-air enter to the chamber. The main reason of this 

effect was attributed to the location of the simplified opening inlet at the leading edge and 

the ram-air necessary to inflate the chamber. 

 

Figure 2.12 Variation of internal pressure with angle of attack of a pseudo 2D experimental 

test. Adapted from (Uddin & Mashud, 2010). 
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Figure 2.13 presents the external and internal pressure distribution for 6° and 20° 

angle of attack. Additionally, the investigation concluded that changes of Reynolds 

number did not have major effects on the external pressure distribution of the chamber as 

compared with the angle of attack effect, as shown in Figure 2.13.  

 

a) Pressure distribution for 6° angle of attack. 

 

b) Pressure distribution for 20° angle of attack. 

Figure 2.13 Internal and external pressure distribution of a pseudo 2D experimental test. 

Adapted from (Uddin & Mashud, 2010). 

 

In 2001, Barber and Johari conducted experimental tests on hemispherical shape 

parachutes to determine the influence of the fabric porosity and canopy geometry on the 

steady-state stability and drag generated. The experiments were performed at the 

Worcester Polytechnic Institute wind tunnel, whose test section had 2 ft x 2 ft and 8 ft 

long. The flow conditions varied with airspeeds from 6 m/s to 17 m/s, corresponding to 

Reynolds numbers from 200,000 to 500,000.  
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The authors emphasized the importance of proper scaling parameters such as Reynolds 

numbers and correction factor because of the porosity of the fabric. Additionally, the 

authors analyzed an increment of the dynamic pressure near the tested body inside the 

test section caused by wall effects. Therefore, the investigation implemented Maskell’s 

empirical correction equation for the dynamic pressure given by Equations (2.22) and 

(2.23), i.e., 

𝑞𝑐𝑜𝑟 = 𝑞∞ (1 + 1.85 [
𝐶𝐷𝑆𝑝

𝐴𝑡𝑠
])    (2.22) 

𝐶𝐷𝑆𝑝 =
𝐷𝑎𝑣𝑒

𝑞∞
     (2.23) 

Where 𝑞∞ is the free stream dynamic pressure with no correction, 𝐶𝐷 is the drag 

coefficient of the canopy, 𝐴𝑡𝑠 is the cross-section area of the wind tunnel, 𝑆𝑝 is the 

projected area of the canopy in the cross-section of the test section and 𝐷𝑎𝑣𝑒 is the 

average drag of all the tests of the same trial. 

Equations (2.22) and (2.23) are applicable mainly to bluff bodies, e.g., circular and 

conical canopies, for a blockage area up to 22%, where the wall effects start to influence 

on the canopy geometry (Macha & Buffington, 1990). 

An investigation conducted by Lee and Li presented a 3D scanning methodology to 

determine the geometry of different scaled model parachutes, including round, ring-slot 

and parafoil parachutes. The experiments were performed at the Tropic Climatic 

Chamber at the NSC, whose test section had 15 ft x 11 ft and 22 ft long (4.6 m x 3.3 m x 

6.7 m). Additionally, the flow conditions for all the experiments were: Reynolds number 

of 447,000 with an airspeed of 22 ft/s (6.7 m/s) at 70°F approximately. 

The experiments consisted on inflating the canopy vertically in a frame using 

suspensions lines. Additionally, for scanning purposes, the parachutes were maintained 
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stable using lines attached to the corners of the canopy. The scanning apparatus consisted 

on four scan heads placed diagonal to each other, which emitted a laser light, allowing 

the triangulation of the light on the canopy surface (Lee & Li, 2007). Figure 2.14 shows 

the experimental set-up for the geometry scanning of an inflated canopy model.  

 

Figure 2.14 Experimental set-up for laser scanning of an inflated canopy model. Adapted 

from (Lee & Li, 2007). 

 

Figure 2.15 shows 3D scan views of the canopy geometry when inflated, displaying 

the different distortion on the upper and lower surfaces along with trailing edge 

deflections. Notice the round shape and the multiple bulges created at the top surfaces 

along the spanwise direction of the canopy in Figure 2.15a. Moreover, the canopy 

presents an airfoil shape as a cross-section when inflated, as shown in Figure 2.15b. Lee 

and Li concluded on the feasibility of implementing a 3D scanning to determine the 

flexible geometries and deformation of canopy models when inflight.   
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a) Top view of the canopy inflated 

 

b) Bottom view of the canopy inflated 

Figure 2.15 3D Scan views of the canopy inflated. Adapted from (Lee & Li, 2007). 

 

In 2007, Carney conducted multiple structural tests on F1-11 nylon fabric, low 

porosity parachute material, to determine the strain and deformation under different load 

conditions. Additionally, a photogrammetry test was performed using a 3D image 

correlation system capable to determine a 3D shape and displacements, along with in-

plane and out of plane strains of a body (Carney, 2007). The experiments concluded that 

the 3D correlation system was capable to record shape and deformation measurements of 

a field of view (Carney, 2007). Finally, the experiments provided strain and deformation 

data to validate FEA and CFD analysis. 

Experimental investigations of a wide variety of canopy models have contributed with 

data to predict accurately the aerodynamic characteristics, stability and geometry of 
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inflight ram-air parachutes. However, the high cost, time consuming, interference effects 

and physical limitations to set-up the experiments have led to numerical approaches. For 

instance, numerical analysis such as CFD and FSI present new tools, e.g., fluid flow and 

pressure field plots for better understanding of the canopy performance. 

2.5. Computational Studies 

Numerical approaches have provided multiple analysis to determine the aerodynamic 

performance of parachutes under simulated flight conditions, complementing the 

different outcomes form experimental tests. For instance, analysis such as CFD, FEA and 

FSI have been conducted for the last two decades providing reliable approximations of 

the fluid flow and the canopy structure, starting from a 2D to a 3D approach analysis. 

Therefore, investigations from Mohammadi & Johari (2010), Ghoreyshi et al. (2016), 

Fonseca (2018), Fogell (2014), Burnett (2016), Peralta & Johari (2015), and Ortega et al. 

(2017) have focused on performance analysis and structure behavior for different flight 

scenarios. 

Mohammadi and Johari conducted a 2D CFD analysis of a rib and a cross-section of a 

canopy to determine the effect of the opening inlet on the aerodynamic characteristics. 

The computational analysis solved the RANS equations along with Spalart-Allmaras 

(SA) as turbulence model. Additionally, the analysis applied boundary conditions, such 

as no-slip condition for the airfoil edges, free-slip condition for the wall domains, 

uniform inlet velocity and no viscous stresses at the outlet. 

A mesh independence study was performed using a CLARK-Y at a Reynolds number 

of 500,000 to determine the domain size necessary to prevent differences on the results. 

The lift and drag coefficients were within the uncertainty of the experimental data, using 
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a domain with the following sizes: 5 chords lengths upstream, 11 chords length 

downstream and 10 chords length in the transverse direction (Mohammadi & Johari, 

2010). Additionally, the mesh for the airfoil consisted on a structure form with a thick 

boundary layer mesh. Whereas for the cross section airfoil, the mesh consisted on an 

unstructured form with a thin boundary layer mesh. 

The simulations were conducted using a baseline airfoil model for angles of attack 

ranging from -3.5° to 14.5° and three different freestream velocities: 31, 49 and 69 ft/s 

(9.4, 15 and 20.9 m/s). Moreover, the airfoils were assumed rigid, with smooth edges and 

no porosity (Mohammadi & Johari, 2010). Figure 2.16 shows the pressure field and the 

velocity magnitude around the baseline airfoil model for 7° angle of attack.  

The results showed that there was high pressure at the LE of the airfoil, denoted by the 

red region in Figure 2.16a, causing the flow to decelerate, as shown by the blue region in 

Figure 2.16b. Similarly, there was a low pressure at the top edge of the airfoil causing 

high flow velocity. 

  

a) Pressure field. 
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b) Velocity magnitude. 

Figure 2.16 Pressure field and velocity magnitude around the baseline airfoil model for 7° 

angle of attack. Adapted from (Mohammadi & Johari, 2010). 

 

Figure 2.17 shows the pressure field and the velocity magnitude around a cross section 

airfoil for 7° angle of attack. The results showed that there was high internal pressure, 

maintaining low flow velocity. Additionally, a stagnation wall was created at the opening 

inlet, redirecting the flow towards the upper and lower edges, causing pressurization and 

inflation of the cross section airfoil. Moreover, there was a low-pressure region at the top 

edge of the cross section airfoil causing high velocity magnitude.  

  

a) Pressure field.  
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b) Velocity magnitude. 

Figure 2.17 Pressure field and velocity magnitude around the cross section airfoil model 

for 7° angle of attack. Adapted from (Mohammadi & Johari, 2010). 

 

Figure 2.18 shows the vorticity contours of the baseline and the cross section airfoil 

models for 7° angle of attack. The results showed the boundary layer effects especially at 

the TE of the baseline airfoil model, as shown in Figure 2.18a. The cross section airfoil 

model presented more evident flow separation at the TE, as shown in Figure 2.18b. 

Additionally, the low velocity inside the cross section model caused several vortices, as 

shown near the LE. Finally, a flow separation bubble and flow reattachment was 

noticeable at the bottom lip of the opening inlet of the cross section model.   

 

a) Vorticity contour for baseline model 

 

b) Vorticity contour for cross section model 

Figure 2.18 Vorticity contours for the baseline and cross section airfoil models for 7° angle 

of attack. Adapted from (Mohammadi & Johari, 2010). 
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Although the lift coefficient showed a linear increment for the cross section model, the 

lift curve slope showed a decrement of 8% compared to the baseline model for the range 

of 2.5° to 8.5° angles of attack. This effect was attributed to the velocity and pressure 

variations because of the opening inlet. Additionally, the lift curve presented a stall angle 

of 8.5°. Finally, the opening inlet affected the drag significantly because of a bluff 

leading edge shape, producing twice the amount of drag as compared to the baseline 

model (Mohammadi & Johari, 2010). 

Ghoreyshi et al. (2016) conducted a 2D and 3D CFD analysis of various airfoil shapes 

and a straight rigid wing to determine the influence of the opening inlet and trailing edge 

deflection on the aerodynamic characteristics of ram-air parachutes. The analysis 

consisted on solving for steady and unsteady state with the RANS equations using 

Spalart-Allmaras turbulence model. 

Figure 2.19 presents the mesh structure of a low speed airfoil (NSRDEC) for the 2D 

analysis. The 2D analysis consisted on different airfoil shapes including a CLARK-Y 

M15 and a NASA LS(1)-0417 airfoil. The computational domains were circular with 50 

chords length size, structured meshes in the domain, and a boundary layer mesh. The 3D 

analysis consisted on multiple straight rigid wings with a CLARK-Y M15 airfoil shape, 

and the results were compared with 2D analysis and experimental data.  

 

a) Airfoil with closed leading edge. 
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b) Airfoil with opened leading edge. 

Figure 2.19 Structure mesh for 2D CFD analysis of an opened and closed NSRDEC airfoil 

shape. Adapted from (Ghoreyshi, et al., 2016). 

 

The 2D analysis showed that the drag created for the opened leading edge airfoil was 

significantly larger than the airfoil with closed leading edge. Additionally, the lift 

produced by the opened airfoil was smaller than the closed airfoil shape. A 

counterclockwise vortex near the LE inside the open airfoil was attributed to the 

decrement of the total lift (Ghoreyshi, et al., 2016). 

Figure 2.20 shows the lift and drag coefficient versus angle of attack for the 3D 

analysis of the straight wing. The 3D analysis presented a higher stall angle of attack for 

the wing as compared with the 2D airfoil (Figure 2.20a). Additionally, the significantly 

amount of drag created after stall was reflected in greater reduction of 𝐿/𝐷 values than 

the 2D airfoil (Figure 2.20b). Finally, the pressure inside the 2D airfoil reached the 

stagnation pressure, whereas for the wing the internal pressure was below the stagnation 

pressure value (Ghoreyshi, et al., 2016). 
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a) 𝐶𝐿 versus 𝛼. 

 

b) 𝐶𝐷 versus 𝛼. 

Figure 2.20 Lift and Drag coefficients versus angle of attack curves for different CFD 

analysis and experiments for a straight wing. Adapted from (Ghoreyshi, et al., 2016). 

 

In 2018, Fonseca performed a CFD research on 2D airfoils and 3D arched rigid wings 

to determine the influence of different geometry distortions on the aerodynamic 

performance. Moreover, the longitudinal stability was analyzed with the implementation 

of suspension lines and a payload. The simulations consisted of solving the steady state 

RANS equations using the shear-stress transport turbulence model (SST). The domain 

size had 16 x 10 chords length as suggested from the literature (Fonseca, 2018). In 

addition, the models were tested for different angles of attack and Reynolds numbers. 

Figure 2.21 shows a 2D airfoil and a seven-cell canopy geometry with various 

distortions. The models presented multiple geometry characteristics such as chord and 

span lengths, planform shapes, airfoil thickness and aspect ratios, as given in Figure 2.21. 

Additionally, the geometry distortions were included directly form the CAD software 

using different semi-empirical criteria and maintained rigid during the CFD simulations.  

 

a) 2D distorted airfoil shape 
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b) Seven-cell canopy geometry 

Figure 2.21 2D and 3D geometries with distortions. Adapted from (Fonseca, 2018). 

 

Results of the simulations showed 45% of 𝐿/𝐷 reduction for the 2D distorted opened 

airfoil, where 28% was caused by the opening inlet and the remaining by geometry 

distortions. Moreover, the incidence angle and translation of the non-loaded ribs 

increased the lift coefficient as compared with the 3D baseline model. The surfaces 

inflation and the span shrinkage presented a reduction on the lift coefficient. 

The drag polar presented a difference of 23% for all the angles of attack as compared 

with the experimental data available. This discrepancy was attributed to differences 

during the experiments from the literature, additional irregularities on the canopy surfaces 

and numerical model approaches.  

Figure 2.22 shows the internal surface pressure obtained for the numerical simulations 

of the seven-cell canopy at 0° angle of attack. The internal surface pressure obtained for 

the seven-cell canopy showed a homogeneous distribution with a maximum value 

approximately of 0.0214 psi, as shown in Figure 2.22. 
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Figure 2.22 Internal surface pressure for the seven-cell canopy at 0° angle of attack, top 

view. Adapted from (Fonseca, 2018).  

 

A robust finite element analysis performed by Peralta and Johari (2015) determined 

the fully inflight canopy geometry using LS-DYNA as FE software. The simulation 

consisted on simulating a MC-4 ram-air parachute, including suspension lines, with a 

rectangular planform shape, a chord and span lengths of 13 ft and 28.5 ft, respectively.  

Figure 2.23 presents the undeformed canopy structure and the deformations caused 

after applying multiple external surface pressure distributions. The FE analysis predicted 

deformations of the surfaces staring form an undeformed canopy shape, as shown in 

Figure 2.23a, by using material properties of a low permeability F111 ripstop nylon 

fabric. In addition, the simulations applied various boundary conditions including internal 

and external surface pressures from previous numerical analysis. For instance, a constant 

internal surface pressure of 0.0138 psi (90 Pa corresponding to an airflow velocity of 12.2 

m/s) was applied, assuming the internal pressure was approximately equal to the 

stagnation pressure (Peralta & Johari, 2015). Moreover, constant and variable surface 

pressures were applied to the external surfaces of the canopy along the chordwise and 

spanwise directions, as shown in Figure 2.23b and Figure 2.23c. 
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a) Non-deformed canopy structure. 

 

b) Deformations of the canopy structure caused by external surface pressure, variation 

along the chordwise direction. 

 

c) Deformations of the canopy structure caused by external surface pressure, variation 

along the chordwise and spanwise directions. 

Figure 2.23 Non-deformed and deformation on the canopy structure by different external 

surface pressures. Adapted from (Peralta & Johari, 2015). 

 

The authors concluded that for a general design of the canopy structure, the 

implementation of various external pressure distributions did not significantly affect the 

end geometry. Contrarily, length of the suspension lines and material properties of the 

fabric produced major effects on the canopy deformations. Finally, the authors mentioned 

that a relative accurate geometry structure could be generated for a steady flight regime. 
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Fogell (2014) developed a simplified FSI approach to determine the equilibrium state 

of a canopy geometry under the influence of the fluid flow. The investigation consisted 

on 3D analyzing the fluid flow over a single canopy cell by solving the steady RANS 

equations, using the 𝑘 − 𝜀 turbulence model. The simulations were performed at a 

Reynolds number of 2.1𝑥106 with a flow velocity of 108 ft/s (33 m/s). 

Figure 2.24 shows a schematic representation of a cross section of the CFD domain 

along with the boundary conditions applied at each wall. The domain was created with a 

half cylinder with a diameter of five chords length connected to a parallelepiped of 10 

chords length.  

 

Figure 2.24 Cross section of the 3D CFD domain and boundary conditions applied to the 

walls. Adapted from (Fogell, 2014). 

 

Additionally, boundary conditions were applied to the wall of the domain such as 

constant velocity at the side of the cylinder, free slip condition at the top and bottom 

walls of the parallelepiped, no-slip condition for the canopy surfaces and pressure outlet 

at the back face of the parallelepiped, as shown in Figure 2.24. 

Figure 2.25 shows 3D streamlines around the bottom surfaces of the inflated single 

cell, creating flow separation at the bottom lip of the opening inlet. The results showed 

that high internal pressure, i.e., stagnated air, provided rigidity to the canopy structure. 
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Although the stagnation region at the opening inlet led to cell pressurization, there was a 

small amount of flow circulating near the bottom lip of the opening inlet, creating areas 

of high flow separation at the bottom surfaces of the canopy.  

 

Figure 2.25 3D streamlines around the bottom surface of an inflated single cell canopy 

geometry. Adapted from (Fogell, 2014). 

 

Although the results showed a difference of lift and drag coefficients of 12% 

approximately, the author concluded the need for further research to determine a more 

reliable model to validate CFD and FSI simulations. One possible reason for the 

difference was prediction of flow separation by using the 𝑘 − 𝜀 turbulence model. 

Burnett (2016) determined a simplified FSI approach to solve for the aerodynamic 

characteristics and geometry shape of a single cell canopy structure. The CFD analysis 

consisted on solving the RANS equations along with the SST 𝑘 − 𝜔 turbulence model to 

solve for the flow around the single cell. Different ANSYS toolboxes were used for the 

investigation such as ANSYS Fluent and ICEM. Therefore, an interface, known as 

mapping zone, enabled the data exchange between the CFD and FEA analysis.  

Figure 2.26 shows the computational domain for the CFD analysis of the single 

canopy cell. A truncated cone domain shape was chosen for the CFD simulations with 

dimensions of 10 chords length upstream, 15 chords length downstream and a radio of 5 

chords length at the location of the cell canopy. 
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Additionally, experimental tests were conducted for a full-scaled single cell canopy in 

collaboration with the parachute company, Performance Designs, to validate the 

numerical results.  

 

Figure 2.26 Truncated cone CFD domain schematic representation. Adapted from 

(Burnett, 2016). 

 

Figure 2.27 shows the experimental tests of the single cell canopy in a wooden test 

section with dimensions of 2.35 ft x 4 ft and 8 ft long. Multiple measurements techniques 

were applied, including velocity and displacement by using flowmeters and photographs. 

Additionally, various deformations were simulated at the opening inlet, top and bottom 

surfaces and non-loaded rib. However, a limitation of the experiment of fixing the fabric 

ribs to the walls caused inconsistency with the simulation constraints.   
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Figure 2.27  Experimental test of a single cell canopy. Adapted from (Burnett, 2016). 

 

The investigation concluded that the geometry shape from the FSI analysis followed 

similar trends as compared to the experimental tests. However, Burnett mentioned a 

difference of 25% of the numerical analysis because of the limitations during the 

experiments and the different boundary conditions applied to the analysis.  

Ortega et al. (2017) implemented a low-cost and low-fidelity numerical approach to 

determine the steady descent characteristics of the parachute using panel method with 

low-order doublets and sources. A computer program called PARACHUTES was used 

for the analysis of two different scenarios of descending: free-flight with no deflection 

and symmetrical deflection of the steering lines while descending, which were compared 

with experimental data available. 

The numerical analysis showed a difference on the lift and drag coefficients as 

compared with experimental values, mainly because the software used potential flow 

solver, neglecting friction forces. Additionally, the authors emphasized on the possible 

implementation of semi-empirical models accounting for flow separation to improve the 

accuracy of the results at low cost (Ortega, Flores, & Pons-Prats, 2017). 
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Overall, computational studies have provided a better understanding of the 

aerodynamic performance and geometry behavior of ram-air parachutes under simulated 

flight conditions, leading to new design techniques. For instance, airflow visualization, 

deformation and displacement approximations could accurately predict the inflight 

behavior of a flexible parachute. Consequently, multiple investigations including 2D, 

pseudo 2D and 3D analysis have been performed for a wide range of flight conditions. 

However, most of the investigation aim to predict the free flight behavior of the 

parachute, i.e., in an opened environment, as compared to an enclosure domain such as 

the test section of a wind tunnel. Therefore, the implementation of preliminary test 

predictions to determine the aerodynamic performance of ram-air parachutes in wind 

tunnel test sections have not been subject of study to the author’s knowledge. 



49  

   
 

3. CAD Methodology and CFD Approach 

3.1. Parafoil Geometry Development 

Ram-air parachutes resemble low aspect ratio, arched wings when inflated because of 

the airflow interaction with the canopy structure. The flexible canopy shape is highly 

dependent on surface pressures and tension forces in the lines, increasing the complexity 

of the geometry. Therefore, modeling techniques concentrate their efforts on 

approximating the deformations of the canopy geometry by using scan heads, 

photographs and mathematical models. 

The ability to generate the canopy geometry implementing design parameters and 

deformations of the structure provides a more accurate prediction of the aerodynamic 

performance of the parachute. Additionally, the need of a canopy generation to create 

repeatedly different models allows a wide range of analysis in a short amount of time.  

Consequently, a semi-automatic geometry process is presented in this section, which is 

capable of generation the parachute surfaces using multiple design parameters and 

modeling deformations. 

3.1.1. Introduction to CATIA V5 

CATIA V5 is a software for 3D computer-designed used in multiple engineering fields 

such as automobile, mechanical, electric and especially aerospace (Daneshjo, Korba, & 

Eldojali, 2012). The available tools within the various CATIA workbenches facilitate the 

geometry modeling depending its complexity. For instance, part design workbench 

allows to model solid geometries, while the generative shape design workbench permits 

the modeling of surfaces and panels such as the fuselage and wing structure of an 

airplane. Additionally, this CAD software enables a parametric modeling option 
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improving the efficiency and time of the design (Daneshjo, Korba, & Eldojali, 2012). 

Consequently, the present investigation employed CATIA V5 as the CAD design 

software to model the canopy geometry using primarily the generative shape design 

workbench. 

3.1.2. Programming Interface Approach 

The CAD methodology started from a 2D airfoil shape and design characteristics such 

as chord length and thickness, which information was implicit in a cloud of points or raw 

data. The post processing of these data along with the implementation of other design 

parameters such as span length, number of ribs and opening inlet height, determined the 

general structure of the 3D canopy. Therefore, the CAD methodology employed different 

software, e.g., Excel and MATLAB, for data collection and organization before the 

geometry design in CATIA. Figure 3.1 gives a schematic of the different software used 

and the process for the canopy CAD generation. 

 

Figure 3.1 Schematic for the CAD generation process. 

 

The raw data of the 2D airfoil design was analyzed with two different methods, 

depending the number of ribs provided, as illustrated in Figure 3.1. On one hand, if the 

provided raw data contained one single airfoil shape, a MATLAB script was developed to 

process the cloud of points and generate the remaining canopy ribs, including design 
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parameters such as planform shape, number of ribs and anhedral angle. Later, the script 

imported the cloud of points into CATIA to generate the canopy surfaces. If the raw data 

contained the multiple canopy ribs, an Excel macros was developed to import directly 

into CATIA and generate the canopy surfaces. 

A macros script coded in Visual Basic generated the basic canopy structure in CATIA, 

implementing an incidence angle to the non-loaded ribs and inflation of the surfaces by 

using points and splines. The surfaces were created manually to prevent possible 

deformations and warnings messages on the CAD software. Finally, the canopy geometry 

was imported into the CFD software for numerical simulations. 

3.1.3. CAD Design Methodology 

The CAD generation methodology started with the digitalization of a well-known 2D 

airfoil by extracting the point coordinates of the upper and lower edges. During the post 

process in MATLAB, design parameters such as chord length, airfoil thickness and 

number of points were implemented. For instance, a scaling factor that modified the point 

coordinates determined the required chord length and airfoil thickness. Figure 3.2 

presents a fabric airfoil rib of a scaled kite model and the digitalized cloud of points. 

 

a) Fabric kite airfoil. 
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b) Digitalized cloud of points. 

Figure 3.2 2D airfoil shape of a scaled kite model. 

 

The multiple canopy ribs were created by reproducing the point coordinates at 

different span locations. At this stage, design parameters such as anhedral angle, number 

of ribs, span length and planform shape were implemented to design the general structure 

of the canopy. Figure 3.3 shows the canopy ribs for the scaled kite model. 

Although the MATLAB script was capable of reproducing the full number of ribs, the 

ribs of a half canopy were necessary for the geometry creation in CATIA. Additionally, 

noticed in Figure 3.3 that the end cell consisted on a single sewing connection between 

the upper and lower surfaces. 

 

Figure 3.3 Full number of canopy ribs generated with a MATLAB script. 
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The point coordinated of the ribs for a half side of the canopy were imported into 

CATIA using an Excel macros. Figure 3.4 shows the imported point coordinates in 

CATIA of the ribs for a half kite canopy model. 

In the case to be provided of a cloud of points with the multiple canopy ribs, the point 

coordinates had to reflect implicitly all design parameters previously mentioned. 

Therefore, the post-process in MATLAB was omitted and the points were imported 

directly into CATIA. 

 

Figure 3.4 Rib coordinate points imported into CATIA for a half kite canopy model. 

 

The general structure of the canopy, consisted of splines and additional points, was 

created using the macros in CATIA. These geometry features enabled the user to modify 

the surfaces of the canopy. For instance, an increment of a spline curvature would lead to 

a more pronounced surface curvature. Figure 3.5 shows the multiple points and splines 

generated by the macros for the kite model. 

 

Figure 3.5 General structure of the scaled canopy kite. 
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Additionally, multiple parameters were implemented within the code such as the 

translation and incidence angle of the non-loaded ribs, opening inlet height and curvature 

of the upper and lower surfaces of the canopy. Figure 3.6 shows a 2D airfoil shape with 

the location of the opening inlet.  

The opening inlet design was defined by the angles 𝛼1 and 𝛼2 according to the chord 

line and the point A, which was located one tenth of the chord length from the LE, shown 

in Figure 3.6. The macros performed an iterative process to determine the location of the 

points for the opening inlet corresponding to the required angles of 𝛼1 and 𝛼2. 

 

Figure 3.6 Location of the opening inlet in a 2D airfoil shape. 

 

The Multi-Section Surfaces and Fill tools available in the generative shape design 

workbench in CATIA created the canopy surfaces (Dassault Systèmes, 2006). In 

addition, the Mirror tool enabled to project the other half of the canopy model. Notice 

that the surfaces created had no thickness to represent the non-porous thin fabric and 

facilitate the mesh creation for the numerical simulations. Figure 3.7 shows the canopy 

with the surfaces for the kite model simulating the structure inflation by curving the 

upper and lower surfaces of the canopy. Moreover, different design features such as the 

crossports in the airfoil ribs, as illustrated in Figure 3.7, and the round shape at the TE are 

represented at this stage.  



55  

   
 

 

Figure 3.7 Canopy surfaces for the kite model simulating a structure inflation. 

 

3.1.4. Benchmark Geometry Models 

This investigation focused on the geometry of two canopy models, which were created 

using the methodology explained in the previous section. The first canopy model was a 

small flexible kite, as illustrated in Figure 3.7. The second canopy model was a scaled 

flexible parachute from Ware & Hassell (1969) and Nicolaides (1971), which was tested 

in the NASA Langley wind tunnel.  

Scaled Kite Model 

The scaled kite model was a canopy made of non-porous fabric with a trapezoid 

planform shape approximately. Additionally, the kite had five chambers and the end cells 

had a single sewing attachment between the upper and lower surfaces. The kite model 

was purchased considering the size dimensions of the wind tunnel test section at Embry-

Riddle. 

Figure 3.8 shows the top view of the kite model that was acquired. Notice the 

trapezoid planform shape with a curvature shape at the LE and TE of the canopy.  
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Figure 3.8 Top view of the flexible scaled kite model. 

 

The CAD geometry of the scaled kite was created as explained in the previous section. 

The various geometry parameters and dimensions are presented in Table 3.1 . 

Table 3.1 

Geometry characteristics of the scaled kite model. 

DESCRIPTION PARAMETER VALUE 

CHORD LENGTH c 1.48 ft 
 MEAN SPAN LENGTH b 1.44 ft 

PLANFORM AREA S 2.12 ft2 

ASPECT RATIO 𝐴𝑅 0.97 

 

The isometric and top views of the CAD model of the kite are shown in Figure 3.9. 

Notice that the upper and lower surfaces are simulating inflation. However, for the 

numerical analysis, the surfaces of the canopy were modeled as completely flat, i.e., no 

inflation to neglect any effect of the deformation in the analysis. 

 

a) Isometric view 

 

b) Top view 

Figure 3.9 CAD model representation of the kite. 
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Ware & Hassell Parachute Model 

The scaled canopy tested by Ware and Hassell in 1969, referred as the canopy from 

W&H, was made of a non-porous acrylic-coated nylon fabric with a rectangular planform 

shape. The canopy has 16 chambers and the end cells had a rib attaching the upper and 

lower surfaces. The canopy model was attached to various suspension lines at the bottom 

edge of the loaded ribs during the tests to maintain a homogenous shape and rigidity of 

the fabric (Ware & Hassell, 1969).  

Geometric characteristics and coordinate points of the airfoil shape were provided 

from the published investigation. Therefore, the CAD model of the parachute was created 

following the methodology presented in the previous section. 

The various geometry characteristics and dimensions are presented in Table 3.2. 

Coordinates of the airfoil shape for this canopy are provided in Table A.1 in Appendix A. 

Table 3.2  

Geometry characteristics of the canopy model from Ware & Hassell. 

DESCRIPTION PARAMETER VALUE 

CHORD LENGTH c 8.57 ft 
 SPAN LENGTH b 17.15 ft 

PLANFORM AREA S 147 ft2 

ASPECT RATIO 𝐴𝑅 2 

 

The isometric and top views of the CAD model of the canopy from Ware & Hassell 

are presented in Figure 3.10. Notice that the upper and lower surfaces of the canopy were 

maintained flat during the CAD generation. The main purpose of the geometry with flat 

surfaces was to isolate the effects caused by the different deformations presented in the 

fabric, which were out of scope for the present investigation. 
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a) Isometric view 

 

b) Top view 

Figure 3.10 CAD model representation of the canopy from Ware & Hassell. 

 

The numerical analysis to determine the performance of the canopies were conducted 

using the kite model and the canopy of Ware & Hassell. Analysis set-up and results are 

presented in Chapters 5 and 6, respectively. 

3.2. Computational Modeling Approach 

The technology growth during the past years has facilitated the implementation of 

numerical approaches to determine the aerodynamic performance of ram-air parachutes. 

For example, strong advantages of CFD analysis are the multiple results obtained for 

flow visualization, vorticity, pressure and velocity fields along with calculation of flow 

characteristics around a rigid body under simulated conditions. Therefore, CFD 

simulations are able to provide a wide range of outcomes and determine the flow 

behavior with no geometry limitations essentially (Ghoreyshi, et al., 2016).  

However, majority of the numerical investigations aim to predict the free flight 

behavior of the parachute, i.e., in an opened environment, as compared to an enclosure 

domain such as the test section of a wind tunnel. Consequently, preliminary test 

predictions to determine the aerodynamic performance of ram-air parachutes in a wind 

tunnel test section are presented in this chapter.  
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The canopy tested by Ware & Hassell, presented in the previous chapter, was 

investigated for multiple cases under similar flow conditions to determine the feasibility 

of experimental tests in the low speed subsonic wind tunnel test section at Embry-Riddle. 

3.2.1. COMSOL 5.3 Multiphysics Introduction 

Numerous computer software offer CFD modules to perform simulations such as 

ANSYS Fluent, STAR CCM+ and COMSOL Multiphysics. The CFD software used in 

this investigation was COMSOL 5.3 Multiphysics because of low cost industry software 

(Fonseca, 2018). In addition, the ability of this software to implement different physic 

analysis, e.g., thermal and fluid flow analysis, predicts accurately real world aspects and 

facilitate further numerical studies including FSI. 

Furthermore, the present investigation required two modules to perform the analysis 

using COMSOL: CAD Import and the Fluid Flow CFD modules. The canopy geometry 

created in CATIA was imported into COMSOL as .stp or .igs file type using the CAD 

Import module. Later, the CFD module enable the fluid flow analysis for different 

regimes such as laminar or turbulent flow (COMSOL, 2017). 

The simulation setup, run parameters and mesh independence study are described in 

the following sections. Additionally, the optimum time for cluster computations and 

different cases of the test matrix are also presented in this chapter. 

3.2.2. Governing Equations, Turbulence Modeling and Wall Treatment 

The fluid flow behavior is described by the momentum equations, also known as 

Navier-Stokes equations, given by Equations (3.1), (3.2) and (3.3) for unsteady state, 

incompressible, three dimensional, Newtonian flow with no external forces (Anderson, 

2010). Additionally, the continuity equation describing the mass conservation is 
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presented in Equation (3.4). 

𝜌 (𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣
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𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝑑𝑧
= 0     (3.4) 

Where 𝜌 is the air density, 𝜇 is the air dynamic viscosity, 𝑃 is the static pressure and 

𝑢, 𝑣 and 𝑤 are the velocity components in the x, y and z directions, respectively. 

The unsteadiness and the effects of the turbulence on the fluid flow increase the 

complexity while solving the Navier-Stokes equations. Therefore, multiple approaches 

were developed to solve the aforementioned equations depending on the computational 

resources and time available. For instance, Direct Numerical Simulation (DNS) provides 

solution for the equations with high fidelity by solving the full range of the turbulent 

eddy scales. Large Eddy Simulation (LES) provides a great approximation of the solution 

for the equations by solving medium to large turbulence eddy scales (Fogell, 2014). 

Although DNS and LES solve accurately the Navier-Stokes equations, the CPU time 

and resources required for the computation are the primarily limitations. Therefore, a 

more feasible solution is provided by the Reynolds-Averaged Navier-Stokes (RANS) 

approach, which approximates the full range of turbulence eddy scales by implementing a 

statistical model (Fogell, 2014). Consequently, the present investigation solves the RANS 

equations to determine the fluid flow behavior in an enclosed domain. 

The present investigation employed the Shear Stress Transport (SST) turbulence 

model to solve for the fluid flow at the boundary layer and the free stream. This 
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turbulence model is a combination of the 𝑘 − 𝜖 model in the free stream and boundary 

layer wake region, and the 𝑘 − 𝜔 model near the walls in the buffer and log layers 

(Fonseca, 2018).  

Additionally, a strong advantage of the SST turbulence model is its effectiveness to 

solve for flow separation because of adverse pressure gradient (Burnett, 2016). Therefore, 

researches performed by Burnett and Fonseca used the SST model to approximate the 

turbulence behavior of the flow. 

Finally, the turbulence effects on the boundary layer near the wall, also known as 

viscous sublayer region, were considered into account by implementing a low Reynolds 

number wall treatment. 

3.2.3. General Model Setup 

The 3D canopy was placed in an enclosed domain of a rectangular cuboid shape with 

the following dimensions: 10 chords length upstream from the canopy TE, 20 chords 

length from the canopy TE and 10 chords length to each side from the center canopy rib. 

Similar domain shape and size were used for the numerical analysis conducted by 

Fonseca for the 3D canopy simulations. Figure 3.11 presents the CFD fluid flow domain 

along with its dimensions.   

 

Figure 3.11 Rectangular cuboid, CFD fluid flow domain. 
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Moreover, a scaled rectangular cuboid was created containing the canopy, as 

illustrated in Figure 3.11, to provide more flexibility during the mesh generation process. 

3.2.4. Boundary Conditions 

Figure 3.12 presents the boundary conditions applied, which are described as follow: 

 Upstream boundary domain wall. Inlet velocity field 𝑓(𝑥, 𝑦, 𝑧) as function of 

the angle of attack 𝛼. 

𝑥 = 𝑉cos(𝛼) 

𝑦 = 𝑉sin(𝛼) 

𝑧 = 0 

Where 𝑉 is the free-stream velocity. 

 Downstream boundary domain wall. Open boundary with normal stress 𝑓0 = 0. 

 Top and Bottom boundaries domain walls. Wall free-slip boundary condition 

with �⃗� ∙ �⃗� = 0. Where �⃗�  is the velocity vector and �⃗�  is the normal unit vector 

to the domain walls. 

 Side boundaries domain walls. Open boundary with normal stress 𝑓0 = 0. 

 Canopy surfaces. Interior wall no-slip condition with �⃗� = 0. Impermeable, 

rigid walls and no thickness. 

 

Figure 3.12 CFD analysis boundary conditions. 
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3.2.5. Mesh Independence Study 

The Ware & Hassell canopy model was employed to perform the mesh analysis. The 

mesh grid for all simulation cases consisted on an unstructured tetrahedral mesh elements 

within all the domains and triangular mesh elements on the canopy surfaces. For 

locations near the canopy surfaces, the element size was small and increased gradually as 

the elements were located far in the stream flow. A mesh independence study was 

conducted to determine the optimum number of elements and size for the CFD 

simulations. The succeeding mesh was employed for the  numerical analysis in this 

investigation.  

Figure 3.13a shows the isometric view of the mesh created for the entire domain. 

Additionally, a cross section of the domain along the mid canopy, as presented in Figure 

3.13b, rib illustrates the mesh in a 2D view. Notice the concentration of the mesh 

elements located near the canopy, as shown with the blue rectangle in Figure 3.13b. 

 

a) Isometric view of domain with mesh 
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b) Cross section of the domain mesh. 

Figure 3.13 Domain mesh. 

 

The boundary layer effects were captured by creating prism layers, i.e., structured 

boundary layer mesh, adjacent to the canopy surfaces. A total number of 12 layers were 

necessary to solve for the boundary layer thickness, which was approximated based on 

turbulent flow on a flat-plate theory (Fonseca, 2018). 

The need of the appropriate height for the prism layers to solve accurately for the 

boundary layer effects ensures the non-dimensional distance to cell center to be close to 

1. This parameter is similar to the 𝑦 + value in other CFD software. Therefore, the closer 

the value of this parameter to 1, the more accurately the boundary layer is solved 

(COMSOL, 2017). Consequently, the height of the first layer was estimated to be 

7𝑥10−5ft, the consecutive layers increased in height with a stretching factor of 1.2. 

Figure 3.14a presents a view of the cross section of a chamber, where the boundary 

layer mesh is visualized around all the edges, as shown with the blue rectangle. 

Additionally, Figure 3.14b presents a view of the top lip of the opening inlet, where the 

prism layers grow from the canopy surface, as shown with the blue rectangle. Multiple 
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challenges were faced creating the mesh at the sharp corners such as the TE and at the 

lips of the opening inlet.  

 

a) Chamber cross section view. 

 

b) Top lip of the opening inlet. 

Figure 3.14 Boundary layer mesh along the edges of a chamber cross section view.  

 

The presented mesh, denominated as baseline mesh in this investigation, had a total 

number of elements of 5.1 million approximately, including tetrahedral, triangular and 

prism elements. The size of the baseline mesh was increased twice using scale factors of 

1.4 (medium mesh) and 1.2 (coarse mesh) to reduce the computational time. 

Consequently, the medium and the coarse mesh had a total number of elements 

approximately of 2.6 million and 1.8 million, respectively. 

Various criteria determine the quality of the elements in the mesh such as the 
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skewness and growth rate. For this investigation, the element quality was calculated using 

the skewness measurement, which is commonly employed to evaluate the mesh. The 

closer of the quality value is to 1, the more accurate the mesh solves the physics 

(COMSOL, 2017). 

The independence mesh study was conducted comparing the baseline, the medium and 

coarse meshes. The optimum mesh was determined using the following criteria: highest 

element quality, lowest number of elements, distance to cell center and residual errors 

during the simulations.  

The study was conducted with the same run parameters for the three cases. Table 3.3 

presents the run parameters for the simulations to determine the optimum mesh. 

Table 3.3  

Run parameters for mesh independence study. 

DESCRIPTION PARAMETER VALUE 

FLOW VELOCITY V 50 ft/s 

AIR DENSITY 𝜌 0.002378 slug/ft3 

REYNOLDS NUMBER Re 2.727𝑥106 

AIR DYNAMIC VISCOSITY 𝜇 3.737𝑥10−7 slug/(s ft) 
ANGLE OF ATTACK 𝛼 4° 

MESH SIZE ----- VARIABLE 

NUMBER OF ITERATIONS ----- 100 

 

Figure 3.15 shows the residual errors of the velocity, pressure along with the 

turbulence variables for the three cases. Notice that for all the cases, convergence was 

achieved after 80 iterations. However, the numerical results presented an offset because 

the aforementioned variables did not decrease below 10−3 as expected. A detailed 

discussion is presented in Chapter 6 about the possible sources of different in the results. 

Although convergence of the results are achieved for the three different cases, the coarse 

mesh presented the lowest residual errors, as presented in Figure 3.15c. 
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a) Baseline mesh 

 

b) Medium mesh 

 

c) Coarse mesh 

Figure 3.15 Convergence plots for the independence mesh study. 

 

Figure 3.16 presents the non-dimensional distance to cell center, i.e., similar to the 

𝑦 + value, over the canopy surfaces for the coarse mesh. The canopy surfaces had an 

overall distance to cell center less than two. Notice the highest values were presented at 

the sharp corners such as the TE and LE at the end cells and top surfaces adjacent to the 

LE, as presented with the blue rectangles in Figure 3.16.  
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Figure 3.16 Non-dimensional distance to cell center for the coarse mesh. 

 

Finally, the coarse mesh presented an overall element quality of 0.617, while for the 

prism layers the local element quality was 0.802 approximately. The study concluded that 

the coarse mesh presented better results compared with the other mesh sizes. 

Consequently, further simulations for the multiple cases employed meshes with similar 

characteristics as the coarse mesh presented. 

3.2.6. Computational Time 

The multiple simulations were conducted using the high performance supercomputer 

Vega from Cray Inc. Vega is composed of four-cabinet Cray CS400 with 3024 cores, i.e., 

processors, distributed in 84 nodes. The cluster is capable to solve complex 

computational problems such as weather and atmospheric dynamics, subsonic and 

supersonic aerodynamics among other numerical simulations (Pinholster, 2017).  

The required time for the supercomputer to solve the numerical simulations was 

determined using the coarse and medium meshes presented in the previous section solved 

using different amount of processors. 

The study was conducted with the same run parameters for the two cases. Table 3.4 

presents the run parameters for the simulations to determine the optimum computational 
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time in the cluster. 

Table 3.4  

Run parameters for computational time study in the cluster Vega. 

DESCRIPTION PARAMETER VALUE 

FLOW VELOCITY V 50 ft/s 

AIR DENSITY 𝜌 0.002378 slug/ft3 

REYNOLDS NUMBER Re 2.727𝑥106 

AIR DYNAMIC VISCOSITY 𝜇 3.737𝑥10−7 slug/(s ft) 
ANGLE OF ATTACK 𝛼 4° 

MESH SIZE ----- VARIABLE 

NUMBER OF PROCESSORS ----- VARIABLE 

NUMBER OF ITERATIONS ----- 50 

 

Figure 3.17 shows the computational time required to solve the numerical problem for 

the two meshes at different combinations of nodes in the cluster. 

 

Figure 3.17 Computational time required in the cluster Vega for two different meshes. 

 

Results of the study showed that the lowest computational time was achieved using 

one full node with 36 processors. This configuration reduces the amount of time between 

processors and avoids communication bottlenecks between multiple nodes. Additionally, 

the time increased drastically when using multiple nodes for the same amount of 

elements in the mesh. Finally, although the increase of mesh elements would demand 

multiple nodes, the best performance was achieved when the simulation was running 



70  

   
 

approximately from 50,000 to 75,000 elements per processor in one single node. 

Consequently, further simulations for the multiple cases employed one single node with 

36 processors.  

3.2.7. Test Cases  and Flow Parameters  

The numerical analysis consisted on five different scenarios using the canopy of Ware 

& Hassell to validate the feasibility of experimental tests in a low speed subsonic wind 

tunnel. The first case consisted on the analysis of the canopy tested by Ware & Hassell 

with the same geometry characteristics and flow conditions from literature to validate the 

numerical with the experimental results from the literature. 

The geometry characteristics for the canopy were previous presented in Table 3.2. 

Additionally, the domain size selected had the same dimensions as presented in Figure 

3.11 to simulate the fluid flow behavior with no wall effects. Finally, the flow conditions 

for this case, corresponding to standard sea level conditions, are presented in Table 3.5.  

Table 3.5 

Fluid flow conditions and run parameters for the analysis of Case 1. 

DESCRIPTION PARAMETER VALUE 

FLOW VELOCITY 𝑉 50 ft/s 

AIR DENSITY 𝜌 0.002378 slug/ft3 

REYNOLDS NUMBER 𝑅𝑒 2.727𝑥106 

AIR DYNAMIC VISCOSITY 𝜇 3.737𝑥10−7 slug/(s ft) 
ANGLE OF ATTACK 𝛼 0° ≤ 𝛼 ≤ 12°  
TOTAL PRESSURE 𝑃𝑂 1 atm 

AMBIENT TEMPERATURE 𝑇 293.15 K 

MACH NUMBER 𝑀 0.044 

 

Notice the total pressure (𝑃𝑂) was the sum of the atmospheric pressure (𝑃𝑎𝑡𝑚) and the 

gauge pressure (𝑃𝑔𝑎𝑢𝑔𝑒). 

The second case consisted on the analysis of the canopy by Ware & Hassell with the 
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same geometry characteristics. However, the canopy was simulated at a lower fluid flow 

velocity, thus the Reynolds number decreased.  

The main objective of this case was to determine the effects on the canopy 

performance caused by low Reynolds number. Therefore, the velocity was selected 

considering an average airflow velocity that the kit would experience in an opened 

environment, 10 ft/s. In addition, this case determined the feasibility of experimental 

tests in the low speed wind tunnel from Lehman Building at Embry-Riddle. 

As a recall from Chapter 4, the geometry characteristics for the canopy were presented 

in Table 3.2. Additionally, the domain size selected had the same dimensions as 

presented in Figure 3.11 to simulate the fluid flow behavior with no wall effects. Finally, 

the flow conditions for this case, corresponding to standard sea level conditions, are 

presented in Table 3.6. 

Table 3.6 

Fluid flow conditions and run parameters for the analysis of Case 2. 

DESCRIPTION PARAMETER VALUE 

FLOW VELOCITY 𝑉 10 ft/s 

AIR DENSITY 𝜌 0.002378 slug/ft3 

REYNOLDS NUMBER 𝑅𝑒 5.46𝑥105 

AIR DYNAMIC VISCOSITY 𝜇 3.737𝑥10−7 slug/(s ft) 
ANGLE OF ATTACK 𝛼 0° ≤ 𝛼 ≤ 12°  
TOTAL PRESSURE 𝑃𝑂 1 atm 

AMBIENT TEMPERATURE 𝑇 293.15 K 

MACH NUMBER 𝑀 0.009 

 

The third case consisted on the analysis of the canopy by Ware & Hassell with the 

same chord length as the kite model. Therefore, the chord length of the canopy was 

reduced by a factor of 5.82, approximately. The Reynolds number was maintained as the 

first case by increasing the airflow velocity to 290 ft/s. 

The main objective of this case was to determine the effects caused by scaling the 
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canopy model. Additionally, notice that the increment of the velocity from 50 ft/s to 290 

ft/s was reflected in an increment of the Mach number from 0.04 to 0.26, approximately. 

This effect was subject for the analysis of the next case. 

The domain size selected had the same dimensions as presented in Figure 3.11 to 

simulate the fluid flow behavior with no wall effects. Finally, the canopy geometry 

dimensions along with the flow conditions for this case, corresponding to standard sea 

level conditions, are presented in Table 3.7. 

Table 3.7 

Canopy geometry dimensions, fluid flow conditions and run parameters for the analysis 

of Case 3. 

CANOPY GEOMETRY 

DESCRIPTION PARAMETER VALUE 

CHORD LENGTH c 1.48 ft 
 SPAN LENGTH b 2.95 ft 

PLANFORM AREA S 4.37 ft2 

ASPECT RATIO 𝐴𝑅 2 

 

FLOW CONDITIONS 

DESCRIPTION PARAMETER VALUE 

FLOW VELOCITY 𝑉 290 ft/s 

AIR DENSITY 𝜌 0.002378 slug/ft3 

REYNOLDS NUMBER 𝑅𝑒 2.727𝑥106 

AIR DYNAMIC VISCOSITY 𝜇 3.737𝑥10−7 slug/(s ft) 
ANGLE OF ATTACK 𝛼 0° ≤ 𝛼 ≤ 12°  
TOTAL PRESSURE 𝑃𝑂 1 atm 

AMBIENT TEMPERATURE 𝑇 293.15 K 

MACH NUMBER 𝑀 0.258 

 

The fourth case, denominated in this investigation as Case 3 Compressible, was a 

variation of the third case presented. The main objective of this case was to determine the 

effects of the Mach number, i.e., compressibility effects, of the third case on the canopy.  

The canopy of Ware & Hassell with the same geometric characteristics as the third 

case was employed for this analysis, the geometry dimensions were presented in Table 
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3.7. However, for this analysis the Reynolds and Mach number were maintained similar 

as the first case by changing the air density and dynamic viscosity. Consequently, a total 

pressure of approximately 𝑃𝑂 = 4.763 atm (70 psi) and an ambient temperature of 𝑇 =

294.26 𝐾 (70 °F) were determined to change the fluid properties of the air.  

From literature, dry air has a critical pressure of 37.36 atm (549 psi) (Air - 

Thermophysical Properties, 2019). Therefore, differences of the air density using the 

Ideal Gas Law, presented in Equation (E.3), were neglected.  

According with a technical report by Crane, the Sutherland's formula determines the 

air dynamic viscosity with a difference less than 10% for pressure changes up to 35 atm 

(514 psi), approximately (Crane, 1982). Therefore, the air dynamic viscosity was 

calculated using Sutherland's formula, presented in Equation (E.5). Table 3.8 presents the 

flow conditions for this case. 

Table 3.8 

Fluid flow conditions and run parameters for the analysis of Case 3 Compressible. 

DESCRIPTION PARAMETER VALUE 

FLOW VELOCITY 𝑉 53 ft/s 

AIR DENSITY 𝜌 0.01343 slug/ft3 

REYNOLDS NUMBER 𝑅𝑒 2.730𝑥106 

AIR DYNAMIC VISCOSITY 𝜇 3.848𝑥10−7 slug/(s ft) 
ANGLE OF ATTACK 𝛼 0° ≤ 𝛼 ≤ 12°  
TOTAL PRESSURE 𝑃𝑂 4.763 atm 

AMBIENT TEMPERATURE 𝑇 294.26 K 

MACH NUMBER 𝑀 0.047 

 

The fifth case consisted on the analysis of the canopy with the same geometry 

dimensions and flow parameters as the third case. However, for this case the domain size 

was adjusted to the dimensions as the wind tunnel test section. The main objective of this 

case was to determine the effects caused by the walls of the test section. Figure 3.18 

shows the domain size for this case. 
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Figure 3.18 Rectangular cuboid, CFD fluid flow domain with dimensions of the wind 

tunnel test section. 

 

In addition, the following boundary conditions were changed for the analysis: 

 Upstream boundary domain wall. Inlet velocity field 𝑓(𝑥, 𝑦, 𝑧) as function of 

the angle of attack 𝛼. 

𝑥 = 𝑉 

𝑦 = 0 

𝑧 = 0 

Where 𝑉 is the freestream velocity. 

 Top, Bottom and Side domain walls. Walls with no-slip condition, �⃗� = 0. 

To simulate the change of angle of attack in the velocity, the canopy geometry was 

rotated for each angle of attack. Finally, the canopy geometry dimensions along with the 

flow conditions for this case, corresponding to standard sea level conditions, are 

presented in Table 3.7. 
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3.2.8. Test Matrix 

A summary of the test cases for the CFD analysis is presented in Table 3.9. 

Table 3.9 

CFD test matrix. 

ANALYSIS 

TYPE 

SIMULATION 

CASE 

CANOPY MODEL REYNOLDS NUMBER DOMAIN SIZE 

OBJECTIVE WARE 

& 

HASSELL 

WARE & 

HASSELL 

WITH KITE 

CHORD 

LENGTH 

HIGH LOW 

10 

CHORDS 

LENGTH 

WIND 

TUNNEL 

TEST 

SECTION 𝟐. 𝟕𝟑𝒙𝟏𝟎𝟔 𝟓. 𝟒𝟔𝒙𝟏𝟎𝟓 

REYNOLDS 

NUMBER 

SENSITIVITY 

1 🗸  🗸  🗸  VALIDATION 

2 🗸   🗸 🗸  COMPARISON 

DOMAIN 

SIZE 

SENSITIVITY 

3  🗸 🗸  🗸  COMPARISON 

3 

COMPRESSIBLE 
 🗸 🗸  🗸  COMPARISON 

4  🗸 🗸   🗸 COMPARISON 

 

The multiple simulation cases were compared as follow: 

 Case 1 with experimental data from literature for validation. 

 Case 2 with Case 1 to determine the effects caused by low Reynolds number. 

 Case 3 with Case 1 to determine the effects caused by scaling the canopy 

geometry. 

 Case 3 Compressible with Case 3 to determine the effects of fluid flow 

compressibility. 

 Case 4 with Case 1 to determine the effects caused by the walls of the wind 

tunnel. 

Finally, each one of the cases was compared with experimental data from the 

investigation of (Nicolaides, 1971), who tested a canopy with similar geometry 

characteristics and fluid flow conditions as compared with (Ware & Hassell, 1969). 
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4. Results and Discussion 

4.1. Introduction 

The present chapter summarizes the main outcomes obtained for the different studies 

performed in this investigation. The chapter starts with various canopy models presented 

as result of the CAD geometry development, including different design features, structure 

deformations and CAD development limitations. Additionally, results of the CFD 

analysis for the different cases of the test matrix in Table 3.9 are presented, including a 

comparison with experimental data from the literature and possible sources of 

differences. 

4.2. Geometry Creation 

The CAD generation methodology presented in Chapter 4 was employed to develop 

multiple canopies with different structures implementing design parameters and surface 

deformations. Figure 4.1 presents the canopy of Ware & Hassell with multiple 

deformations on the structure. As a reminder, this canopy presented a rectangular 

planform shape, 16 chambers and the end cells had a rib connecting the upper and lower 

surfaces. Moreover, the canopy had a chord length of 8.57 ft and an 𝐴𝑅 of 2. 
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a) Isometric, front, top and side view of the canopy. 

                       

b) Opening Inlet and curved surfaces. 

           

                c) Canopy TE. 

Figure 4.1 Canopy model 1, Ware & Hassell with multiple deformations. 

 

The CAD generation enabled the modeling of different distortions in the canopy 

structure. For instance, the circular curvature of the canopy, i.e., the anhedral arc, as 

presented in the front view of the canopy in Figure 4.1a.  

Manipulation of the splines created in between the ribs enabled the curvature of the 

surfaces to simulate inflation, as presented in Figure 4.1b. Additionally, the splines 

defined the opening inlet high along with the round shape at the LE of each chamber, as 

presented in Figure 4.1b. Finally, the round shape at the canopy TE was also simulated 

using the splines, as presented in Figure 4.1c. 

A similar canopy was created using the same process, presented in Figure 4.2. This 

canopy had an incidence angle for the non-loaded ribs, simulating the suspension lines 

effects on the loaded ribs, as shown with the arrows in Figure 4.2a. Additionally, the end 

cells of the canopy had an airfoil rib, as presented in Figure 4.2b, similar to canopy of 
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Ware & Hassell from Figure 4.1a. Moreover, this canopy presented an elliptical planform 

shape, which was simulated by changes of the chord length of the ribs near the canopy 

tips, as presented Figure 4.2c. Finally, the canopy presented in Figure 4.2 had an 𝐴𝑅 

approximately of 2.6. 

 

a) Isometric, front, top and side view of the canopy. 

                 

                        b) Canopy end cell rib. 

           

              c) Canopy TE. 

Figure 4.2 Canopy model 2 (Coe & LeBlanc, 2016). 

 

A more complex canopy geometry is presented in Figure 4.3. This canopy consisted 

on a higher number of chambers, thus number of ribs, as presented in Figure 4.3a. 

Furthermore, the curvature of the canopy, as shown in Figure 4.3c, was simulated as an 

elliptical shape by importing the coordinate points of the ribs which implicitly contained 

this geometry characteristic, as compared with the circular curvature of the canopy form 

Figure 4.1a.  
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a) Isometric, front, top and side view of the canopy. 

                           

                        b) Canopy end cell rib. 

         

              c) Front view. 

Figure 4.3 Canopy model 3 (Coe & LeBlanc, 2016).  

 

 Additionally, the end cells had a single sewing connection between the upper and the 

lower surfaces, which was imported from a cloud of points, as presented in Figure 4.3b. 

Modeling of this connection presented multiple challenges using the Multi-Section 

Surfaces tool because of the sharp corner at the LE. Additionally, the round shape at the 

TE of each chamber was partially modeled using the Fill tool because of the short 

clearance available to create tangency constraints between the surfaces. This canopy had 

an 𝐴𝑅 approximately of 2.6. 

In the same manner, Figure 4.4 presents a canopy with a more complex structure. The 

end cells presented a smoother single sewing connection, as presented in Figure 4.4b, 

compared as the end cell from Figure 4.3b. Additionally, variation of the input angles 𝛼1 

and 𝛼2 defined the high of the opening inlet, as shown with the arrows in Figure 4.4c. 

This canopy had an 𝐴𝑅 approximately of 2.8. 



80  

   
 

 

a) Isometric, front, top and side view of the canopy. 

                          

                       b) Canopy end cell rib. 

             

                c) Canopy LE. 

Figure 4.4 Canopy model 4 (Coe & LeBlanc, 2016). 

 

The methodology for the CAD generation to model the canopy structure presented in 

this investigation was able to implement multiple design parameters such as chord and 

span length, airfoil and planform shape, size of opening inlet and number of chambers 

and ribs. Additionally, this methodology included various distortions such as surface 

inflation, anhedral arc, and incidence and translation of non-loaded ribs. However, 

various limitations with sharp corners and smooth surface transitions were presented with 

the CAD tools employed. Depending on the complexity of the canopy geometry, the 

CAD generation of a single canopy may take from a few days up to a week for 

completion. 

The CAD generation methodology provided a more realistic 3D shape of ram-air 

parachutes for further studies of the aerodynamic performance, stresses and deformations 

on the structure, e.g., CFD, FE and FSI analysis. 
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4.3. Computational Analysis 

The multiple simulation cases of the CFD test matrix, presented in Table 3.9, along 

with results and discussion of possible sources of error are presented in this section.  

In addition, the numerical results were compared with experimental data from 

investigations of (Nicolaides, 1971) and (Ware & Hassell, 1969). These investigations 

provided the aerodynamic characteristics under similar flow conditions for a rectangular 

canopy with a chord length of 8.57 ft, planform area of 147 ft2 and an 𝐴𝑅 of 2. 

The values of 𝐶𝐿, 𝐶𝐷 and 𝐿/𝐷 for various angles of attack, presented in Figure 2.7 and 

Figure 2.8. Curves to approximate the scattered data points were determined for 

comparison purposes of the trends with the numerical results. Figure B.1 in Appendix B 

presents the approximation curves and the experimental data points digitalized of the 𝐶𝐿, 

𝐶𝐷 and 𝐿/𝐷 values for the investigations conducted by Nicolaides and Ware & Hassell. 

Additionally, notice that the experimental data points digitalized correspond to the tests 

performed with a flow velocity of 50 ft/s and the tether method employed in the 

investigations. These authors applied a correction for the drag to obtain the values of just 

the canopy because of the unexposed lines effects during the experimental tests. This 

correction was implemented by subtracting an empirical value determined by the authors. 

Consequently, Figure B.1.b presents the 𝐶𝐷 of the canopy only, i.e., corrected for the 

suspension lines effects. 

Finally, Figure D.1 in Appendix D presents a summary of 𝐶𝐿, 𝐶𝐷 and 𝐶𝐿/𝐶𝐷 for the 

entire range of angles of attack simulated. Additionally, Table D.1 presents a summary of 

the calculated values of lift curve slope (𝑎) along with the offset at 𝛼 = 0° and the 

percentage of change of 𝑎 for all the simulation cases compared with Case 1. 
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4.3.1. Validation of Numerical Results  

The first case, Case 1, corresponds to the analysis of the canopy tested by Ware & 

Hassell under similar flow conditions to validate the CFD methodology presented in 

chapter 5 and corroborate numerical results. As a reminder, the canopy geometry and the 

flow conditions are presented in Table 3.2 and Table 3.5, respectively. 

Figure 4.5 presents the non-dimensional distance to cell center around the canopy 

surfaces for an angle of attack of 4°. The non-dimensional distance to cell center is a 

parameter that determines the accuracy of the results by solving the boundary layer mesh, 

similar to the 𝑦 + value in other CFD software. The closer or lower to a value of 1, the 

more reliable are the boundary layer effects on the results. 

 

Figure 4.5 Non-dimensional distance to cell center for the canopy surfaces of Case 1 at 

4° angle of attack. 

 

The non-dimensional distance to cell center ranged approximately between 3 and 4 for 

locations near the LE at the top surfaces of the canopy, as shown by the rectangle at the 

right side in Figure 4.5. The reason of these values can be attributed to locations near the 

stagnation region, higher velocity gradients presented in the upper surfaces and sudden 

transition between the upper surface and the rib.  
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In addition, the highest values were found at the TE of the canopy. The reason for this 

can be expected because of the difficulty to create prims layers in small areas, e.g., TE 

corners as shown by the rectangle at the left side in Figure 4.5. 

Although small areas of the canopy presented values much higher than 2 for non-

dimensional distance to cell center, the canopy surfaces showed an overall value 

approximately from 0 to 2. Therefore, differences caused by these small areas were 

neglected, confirming the mesh resolution necessary to solve for the fluid flow around a 

3D canopy. 

Figure 4.6 shows the numerical results of 𝐶𝐿 for various angles of attack in 

comparison with the experimental data available from literature. The lift curve was in 

good agreement with the trend of the experimental data for angles of attack up to 8° 

approximately. For angles of attack higher than 8°, the lift cure remained linear and did 

not show a stall as compared with the experimental data. The main reason for this 

difference in the curves was attributed to the flat surfaces at the top and bottom of the 

canopy for the CFD simulations. Compared to the flexible canopy structure used during 

the experimental tests, the numerical simulations considered the arched canopy a rigid 

structure with no deformation effects. Similar to the investigation conducted by 

Ghoreyshi et al., the 𝐶𝐿 curve for a straight rigid canopy remained linear for angles of 

attack up to 15° approximately, as shown in Figure 2.20a, compared with the 

experimental results. Finally, parallel to the investigation conducted by Belloc for a rigid 

arched wing, the 𝐶𝐿 curve increased linearly for angles of attack up to 16° with a 𝐶𝐿𝑚𝑎𝑥  

of 0.8 approximately, as presented in Figure 2.10a.   

Furthermore, the lift curve also showed an offset at 0° angle of attack compared with 
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experimental data. This offset in the curves was attributed to slightly differences of the 

flow conditions between the experimental tests. In addition, the authors mentioned 

possible differences on the data while measuring the canopy angle of attack by capturing 

photographs of the ribs at the end cells, especially at low angles of attack. Finally, the lift 

curve slope was calculated, giving a result of 0.0420 1 deg⁄  approximately. 

 

Figure 4.6 𝐶𝐿 versus 𝛼 of the numerical simulations of Case 1 in comparison with 

experimental data available from literature. 

 

Figure 4.7 presents the numerical results of 𝐶𝐷 for various angles of attack in 

comparison with the experimental data available. The drag curve shown a similar trend 

compared with the experimental data for the entire range of angles of attack simulated. 

However, the numerical results showed a relatively constant offset in the 𝐶𝐷 values as 

compared with the approximation curve of the experimental data. This offset in the 𝐶𝐷 

values was attributed to effects of multiple factors during the experimental tests and the 

numerical simulations. The implementation of an empirical approximation was used to 
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correct the drag values for the unexposed lines effects during the measurements. 

Moreover, the effects of multiple distortions and roughness in the fabric causes an 

increment of the pressure and profile drag of the canopy structure for the measurements 

during the experimental tests. Additionally, possible differences added by the equipment 

employed such as the guide lines to maintain the canopy stable in the test section during 

the measurements. Finally, differences caused by the prism layers resolution and the 

turbulent model selected to solve for the viscous stresses within the boundary layer 

around the canopy surfaces. 

 

Figure 4.7 𝐶𝐷 versus 𝛼 of the numerical simulations of Case 1 in comparison with 

experimental data. 

 

Figure 4.8 CL versus 𝐶𝐷 of the numerical simulations of Case 1 in comparison with 

experimental data. The drag polar showed a similar trend compared to the experimental 

data. However, the numerical results showed an offset with the 𝐶𝐷 values. The 

aforementioned possible sources of error in the drag values were reflected in the drag 
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polar with a displacement of the curve to the left side. Finally, the maximum lift to drag 

ratio, 𝐿/𝐷max, was obtained at 8° angle of attack, giving a result of 4.89 approximately. 

According to the experimental data from the literature, for this particular canopy 

geometry the 𝐿/𝐷 ranged approximately between 3 and 3.5 for angles of attack tested up 

to 10°, as presented in Figure 2.7 and Figure 2.8. The numerical analysis showed similar 

values of 𝐿/𝐷 as compared with the available data. 

 

Figure 4.8 𝐶𝐿 versus 𝐶𝐷 of the numerical simulations of Case 1 in comparison with 

experimental data. 

 

4.3.2. Reynolds Number Sensitivity 

The second case, Case 2, corresponds to the analysis of the canopy tested by Ware & 

Hassell for a low Reynolds number. Therefore, the flow velocity was decreased to 

simulate an average airflow that the kite might experience in a free environment. 

Additionally, the purpose of this case was to determine the feasibility of experimental 

tests in a low speed wind tunnel. The canopy geometry and the flow conditions are 
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presented in Table 3.2 and Table 3.6, respectively. 

Figure 4.9 presents the numerical results of 𝐶𝐿 for various angles of attack in 

comparison with Case 1 and the experimental data. The lift curve for Case 2 presented a 

similar trend with the experimental data for angles of attack up to 9° approximately. In 

the same manner, the lift curve increased linearly for angles of attack higher than 9° as 

compared with the experimental data. Compared to the numerical results from Case 1, the 

lift curve for Case 2 presented an offset of 2% at 0° angle of attack, displacing the curve 

downwards. Additionally, the lift curve slope was 0.0407  1/deg approximately, 3% less 

compared with the lift curve slope of Case 1.   

Even though the analysis of this case consisted on the flow simulation at a low 

Reynolds number, 5.45𝑥105, the results obtained for the lift curve slope showed a small 

difference compared to Case 1, which was conducted at a higher Reynolds number of 

2.73𝑥106. According to the investigation conducted by Belloc, a Reynolds number of 

9.2𝑥105 was considered high enough to predict similar boundary layer behavior without 

the risk of laminar flow separation at the upper surfaces of the parachute (Belloc, 2015).  

Consequently, the order of magnitude of the Reynolds number for the experimental 

tests conducted by Belloc was approximately the same as for Case 2, providing similar 

results for the lift curve at both low and high Reynolds numbers. 
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Figure 4.9 𝐶𝐿 versus 𝛼 of the numerical simulations of Case 2 in comparison with Case 1 

and the experimental data. 

 

Figure 4.10 shows the numerical results of 𝐶𝐷 for various angles of attack in 

comparison with the Case 1 and the experimental data. The drag curve presented a 

similar trend as compared with Case 1 and the experimental data. Similar to Case 1, the 

drag curve had a relative offset compared with the approximation curve of the 

experimental data. Additionally, the drag curve had an offset of 6.9% approximately with 

respect to Case 1 calculated at 0° angle of attack, shifting the curve upwards. A possible 

reason for this differences was attributed to the accuracy of the turbulence model and 

wall treatment to solve for the boundary layer effects at low Reynolds number. Finally, 

the effects of low Reynolds number, reflected on the friction drag around the canopy 

surfaces, were considered as another source of the observed differences (Belloc, 2015). 
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Figure 4.10 𝐶𝐷 versus 𝛼 of the numerical simulations of Case 2 in comparison with the 

Case 1 and the experimental data. 

 

Figure 4.11 shows 𝐶𝐿 versus 𝐶𝐷 of the numerical simulations of Case 2 in comparison 

with Case 1 and the experimental data. The drag polar presented a similar trend compared 

to Case 1 and the experimental data provided. However, the multiple variations on the lift 

and drag curves as compared with the Case 1 were reflected in a displacement of the lift 

to drag curve to the right, closer to the experimental data. Finally, the maximum lift to 

drag ratio, 𝐿/𝐷max, for this case was obtained at 8° angle of attack, giving a result of 

4.57, approximately 6.47% less as compared with Case 1. 

 

 



90  

   
 

 

Figure 4.11 𝐶𝐿 versus 𝐶𝐷 of the numerical simulations of Case 2 in comparison with the 

Case 1 and the experimental data. 

 

Figure 4.12 shows the internal surface pressure on the canopy normalized with respect 

to the free-stream dynamic pressure for Case 1 and Case 2 at 4° angle of attack. There 

was a constant distribution of the internal pressure within the chambers of the canopy. 

According to Fogell, this internal pressure is close to the stagnation pressure, providing 

with rigidity to the flexible canopy structure. However, the end cells for both cases had a 

lower surface pressure, as shown by the rectangles in Figure 4.12a and Figure 4.12b. 

Therefore, parachute designs implement multiple crossports in the ribs, i.e., fabric 

cutoffs, for better pressure distribution along the spanwise direction. These cutoffs are 

primarily located in the ribs near the end cells to increase the pressure and prevent the 

structure from collapse. 

Even though the lift and drag curves for Case 2 resembled the numerical results of 

Case 1, the normalized values of the internal pressure surface acting on the canopies were 
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different. For instance, the highest normalized pressure value for Case 1 was 

approximately of 1.03, close to numerical results from studies using similar canopy 

geometries and flow conditions, e.g., investigations by Fonseca, Eslambolchi et al. and 

Peralta et al. 

Although the numerical simulations for Case 2 considered a rigid structure, the 

normalized pressure value was approximately of 0.991. Consequently, the low internal 

pressure obtained may lead to a structure collapse of this particular canopy geometry 

during experimental tests under the simulated flow conditions. 

  

a) Canopy for Case 1. 

  

b) Canopy for Case 2. 

Figure 4.12 Internal surface pressure on the canopy normalized with the free-stream 

dynamic pressure for the Case 1 and Case 2 at 4° angle of attack. 
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4.3.3. Domain Size Sensitivity 

The remaining numerical analysis: Case 3, Case 3 Compressible and Case 4, were 

performed using the canopy tested by Ware & Hassell scaled to match the same chord 

length of the kite model. Additionally, Case 4 consisted on changing the computational 

domain with the same dimensions of a wind tunnel test section. The main purpose of 

these simulations was to determine the feasibility of experimental tests in a low speed 

subsonic wind tunnel. As a remainder, the geometry characteristics and flow conditions 

for the various cases are given in Table 3.7 and Table 3.8. Finally, dimensions of the two 

computational domains are given in Figure 3.11 and Figure 3.18. 

Figure 4.13 shows the numerical results of 𝐶𝐿 for Case 3, Case 3 Compressible and 

Case 4 for various angles of attack in comparison with Case 1 and the experimental data 

available from literature. The lift curves for the three cases resembled as the lift curve 

obtained for Case 1 and the numerical data. Additionally, the values of lift increased 

linearly for angles of attack up to approximately 8° for all three cases. However, the 

curves showed differences of both the lift curve slope and an offset value as compared to 

the numerical results of Case 1. Moreover, the lift curves for the Case 3 and Case 3 

Compressible showed a slower increment rate for angles of attack higher than 8°. 

Case 3 considered only Reynolds number similarity to compare the performance of the 

scaled canopy model directly with the results of Case 1 by increasing the flow velocity. 

However, the numerical results of Case 3 showed a decrease of the lift curve slope by 

17.4% as compared with Case 1. Therefore, Case 3 Compressible considered Reynolds 

and Mach number similarities to model the compressibility effects because of scaling the 

canopy dimensions. 



93  

   
 

Results of the lift curve slope for Case 3 Compressible did not show a major change 

compared with Case 3, as expected. Consequently, the aforementioned behavior of the 

lift curve may be attributed to multiple geometry scaling and non-linear effects of the 

flow around the canopy structure. For instance, the presence of effects caused by the low 

𝐴𝑅 of the canopy and components of the velocity normal to the wing near the end cells, 

as explained in investigations by (Lingard, 1995), (Iosilevskii, 1996) and (Hoerner & 

Borst, 1985). Finally, further investigations of these non-linear effects may corroborate 

the presented results between Case 3 and Case 3 Compressible. 

 

Figure 4.13 𝐶𝐿 versus 𝛼 of the numerical simulations of Case 3, Case 3 Compressible and 

Case 4 in comparison with Case 1 and the experimental data. 

 

The modification of the computational domain with the dimensions of the wind tunnel 

test section influenced on the results obtained for Case 4. For instance, the numerical 

results for Case 4 presented an increment of the lift curve slope approximately of 26% as 

compared to Case 1, as shown by the red line in Figure 4.13. 
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Figure 4.14 shows the contour pressure plots in a cross-section plane at the center rib 

of the canopies along the flow direction normalized with respect to the dynamic pressure 

for Case 1 and Case 4 at an angle of attack of 4°,. Notice that for better comparison, the 

plots were equally scaled. A similar behavior was presented around the canopy surfaces 

for the contour pressure plots. For instance, flow acceleration over the upper surfaces 

generated a low-pressure region near the LE of the canopy, shown in blue color indicated 

by the arrows A. Additionally, a stagnation region near the LE, at the front of the opening 

inlet, was created because of flow deceleration, shown in red color indicated by the 

arrows B. However, the pressure ranges showed that Case 1 had smaller pressure 

variations around the canopy surfaces as compared to Case 4. The clearance between the 

canopy surfaces and the test section walls was the primary reason because the pressure 

did not fully expanded in the domain size of the test section. 

Finally, the increment on lift may be attributed to changes of the dynamic pressure 

along the test section because of the blockage area (Barber & Johari, 2001). Barber and 

Johari emphasized the implementation of a correction in the dynamic pressure and drag 

because of walls effects for hemispherical parachutes with a blockage area up to 22%. 

 

a) Contour pressure plot for Case 1. 
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b) Contour pressure plot for Case 4. 

Figure 4.14 Contour pressure plots in a cross section plane at the center rib of the canopies 

along the flow direction for Case 1 and Case 4 at an angle of attack of 4°, normalized by 

the dynamic pressure. 

 

Table 4.1 gives a summary of the calculated values of the lift curve slope (𝑎), the 

percentage of change of the lift curve slope and offset at 𝛼 = 0° for the three cases as 

compared to Case 1. Notice the sign for the percentage of change for the lift curve slope 

and offset value. A positive sign denotes an increment value, while a negative denotes a 

decrement value with respect to Case 1. Finally, notice that the location of the low-

pressure region in the upper surface affected mainly the lift value compared with the drag 

generated by the canopy, as explained later in this section. 

Table 4.1 

Values of lift curve slope (𝑎), percentage of change in lift slope and offset at 𝛼 = 0° for 

Case 3, Case 3 Compressible and Case 4 as compared with Case 1. 

SIMULATION 

CASE 
𝒂  (𝟏/𝐝𝐞𝐠) 

CHANGE OF 

 𝒂   (%) 

OFFSET AT 

𝜶 = 𝟎°  (%) 

CASE 3 0.0347 -17.4 -4.7 

CASE 3 

COMPRESSIBLE 
0.0354 -15.7 -4.7 

CASE 4 0.0529 +26 +1.4 
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Figure 4.15 shows the numerical results of 𝐶𝐷 versus 𝛼 for Case 3, Case 3 

Compressible and Case 4, respectively, in comparison with Case 1 and the available 

experimental data. 

The numerical results of drag obtained for the three cases presented the same trend as 

compared with Case 1. Additionally, the three curves showed a similar constant offset for 

all the angles of attack simulated when compared with the experimental data available. 

Even though Case 3 considered only Reynolds number similarity for the simulations, 

the scaled dimensions of the canopy did not affect the drag values. Case 3 presented an 

offset of approximately 8.5% calculated at 0° angle of attack, shifting the curve upwards 

as compared with Case 1.  

 

Figure 4.15 𝐶𝐷 versus 𝛼 for the numerical simulations of Case 3, Case 3 Compressible 

and Case 4 in comparison with the Case 1 and the experimental data. 

 

In the same manner, results for Case 3 Compressible did not show major changes in 

the values of drag coefficient. Although this case considered Reynolds and Mach number 
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to simulate the scaling and compressibility effects, this case gave an offset of 

approximately 10.3% at 0° angle of attack, shifting the curve upwards as compared to 

Case 1. 

The results for Case 4 showed a similar trend as compared with Case 1. An offset was 

determined at 0° angle of attack of approximately 3% as compared to Case 1. However, 

the drag increased at a higher rate than the other cases. A possible reason for this increase 

was attributed to changes in the dynamic pressure and have the drag coefficient in the test 

section because of blockage effects (Barber & Johari, 2001). Therefore, the percentage of 

blockage area was estimated using the projected area of the canopy model and the cross-

section of the test section for both cases. Refer to Appendix C for more detail for the 

calculation of the blockage area of the canopies in the wind tunnel test sections. 

The blockage area estimated for Case 1 ranged from 2% to 3% approximately when 

the angle of attack increased from 0° up to 12°. In the same manner, the blockage area for 

Case 4 ranged from 4% to 7% approximately when the angle of attack increased from 0° 

up to 12°.Therefore, wall effects caused by blockage area were expected higher on the 

numerical results for Case 4.  

Figure 4.16 shows velocity vectors normalized with respect to the free-stream airspeed 

in a plane located one chord length downstream from the TE of the canopies for Case 1 

and Case 4 at an angle of attack of 4°. Notice that the length of the arrows denotes the 

magnitude of the velocity in the y-z plane, whereas the color of the arrows denotes the 

velocity magnitude in the x, y and z directions.  
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a) Flow field velocity for Case 1.  

 

b) Flow field velocity for Case 4. 

 

c) Views A and B for Case 4. 

Figure 4.16 Velocity vectors normalized with respect to the free-stream airspeed in a plane 

located one chord length downstream from the TE of the canopies for Case 1 and Case 4 

at an angle of attack of 4°. 
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The flow pattern showed the vortices created because of the difference of pressure 

between the upper and lower surfaces of the canopy. Notice that the velocity in the y-z 

plane was minimum as the flow moved downwards, as shown by the rectangle A in 

Figure 4.16a. Additionally, the strength of the vortices decreases as the flow was far 

away from the canopy surfaces, so decreasing the induced drag.  

In the same manner, the velocity vectors for Case 4 differently from Case 1; the 

velocities in the y-z plane of the flow moving downwards were considerable, as shown 

with the rectangle A in Figure 4.16b. Additionally, the vortices magnitude did not 

disappear completely because of the small clearance between the canopy surfaces and the 

test section walls, as shown with the rectangle B in Figure 4.16b. 

An alternative method to visualize the wall effects on the canopy performance is by 

normalizing the velocity vectors with respect to the dynamic pressure. Figure 4.17 shows 

velocity vectors normalized with respect to the free-stream airspeed in a plane located 

one chord length downstream from the TE of the canopies for Case 1 and Case 4 at an 

angle of attack of 4°. Notice that the length of the arrows denotes the magnitude of the 

velocity in the y-z plane. The velocity decreases rapidly in magnitude as moving 

downwards for Case 4 compared to Case 1, as shown by the rectangles A from both cases 

in Figure 4.17. Additionally, the velocity magnitude is tangent and forced to decrease 

near the wind tunnel walls for Case 4 compared with Case 1, as shown by the rectangles 

B from both cases in Figure 4.17. 
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a) Flow field velocity for Case 1. 

 

b) Flow field velocity for Case 4. 

Figure 4.17 Velocity vectors normalized with respect to the free-stream dynamic pressure 

in a plane located one chord length downstream from the TE of the canopies for Case 1 

and Case 4 at an angle of attack of 4°. 

 

Figure 4.18 presents 𝐶𝐿 versus 𝐶𝐷 of the numerical simulations of Case 3, Case 3 

Compressible and Case 4 in comparison with the Case 1 and the experimental data. The 

lift-to-drag curves showed a similar trend compared to Case 1 and the experimental data. 
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However, the differences on the lift and drag were reflected as displacements of the lift to 

drag curves for the different cases. For instance, Case 3 and Case 3 Compressible showed 

a decrease of the lift values for angles of attack higher than 8°.  

 

Figure 4.18 𝐶𝐿 versus 𝐶𝐷 of the numerical simulations of Case 3, Case 3 Compressible and 

Case 4 in comparison with the Case 1 and the experimental data. 

 

Finally, the values of 𝐿/𝐷max were calculated for the three cases at 0° angle of attack 

and compared with Case 1, as presented in Table 4.2. Notice the negative sign in the 

percentage of change in 𝐿/𝐷𝑚𝑎𝑥 meaning a decrease with respect Case 1. 

Table 4.2 

Values of 𝐿/𝐷𝑚𝑎𝑥  for Case 3, Case 3 Compressible and Case 4 and percentage of 

change as compared with Case 1. 

SIMULATION 

CASE 
𝑳/𝑫𝒎𝒂𝒙    

CHANGE OF 

 𝑳/𝑫𝒎𝒂𝒙   (%) 

CASE 3 4.25 -13.19 

CASE 3 

COMPRESSIBLE 
4.15 -15.2 

CASE 4 5.40 +10.45 
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Results for the numerical analysis presented in this section demonstrated that 

experimental tests are feasible in a low speed wind tunnel to determine the aerodynamic 

performance of a scaled canopy model. Multiple simulations under similar flow 

conditions predicted the flow behavior around the canopy surfaces. The aerodynamic 

characteristics of 𝐶𝐿, 𝐶𝐷 and 𝐶𝐿/𝐶𝐷 for angles of attack ranging from 0° to 12° followed 

the patterns as compared with numerical data from the literature. Additionally, values of 

the lift curve slope (𝑎), 𝐿/𝐷𝑚𝑎𝑥 and precentages of difference were determined by 

comparing with the baseline simulation. 

However, the numerical results showed differences on the values of 𝐶𝐿, 𝐶𝐷 and 𝐶𝐿/𝐶𝐷, 

which are because of non-linear effects caused by the low 𝐴𝑅 of the canopy design, 

distortions because of the structure flexibility and wind tunnel wall effects. Consequently, 

experimental tests as well as numerical simulations may require the implementation of 

correction factors for the lift and drag measurements and scaling effects to predict 

accurately the aerodynamic performance of ram-air parachutes.    
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5. Conclusion, Recommendations and Future Work 

5.1. Conclusions 

The following conclusions have been drawn from the present investigation: 

A semi-automatic CAD generation methodology was presented, that was capable of 

implementing multiple design parameters such as chord and span, airfoil and planform 

shape, size of opening inlet and number of chambers and ribs. Additionally, this 

methodology modeled various surface distortions such as surface inflation, anhedral arc, 

and incidence and translation of non-loaded ribs. 

The aerodynamic characteristics of 𝐶𝐿, 𝐶𝐷 and 𝐶𝐿/𝐶𝐷 for angles of attack within a 

range of 0 to 12⁰ were determined for a rigid canopy model from the literature, by 

performing CFD simulations under multiple flow conditions. Additionally, numerical 

outcomes were validated with experimental data and direct comparison of the lift curve 

slopes (𝑎), surface pressure and velocity arrows plots. 

Validation of the results showed agreement of the 𝐶𝐿, 𝐶𝐷 and 𝐶𝐿/𝐶𝐷 curves with the 

experimental data from literature. Results of the 𝐶𝐿 matched the experimental data for 

angles of attack up to approximately 8°. Additionally, results of the 𝐶𝐷 followed the same 

trend, corresponding the experimental data with a constant offset for the entire range of 

angles of attack simulated. Differences were attributed primarily to simplification of the 

canopy deformations for CFD simulations, effects caused by additional geometry features 

such as the lines drag during tests and experimental measurement techniques. 

Results of Reynolds number sensitivity determined the aerodynamic characteristics of 

the canopy for a low Reynolds number with a difference less than 6.9%. However, results 

showed that low flow velocities caused deficiency of internal pressure in the canopy 
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surfaces, leading to a possible structure collapse considering the dimensions of the 

canopy. 

Results of domain size sensitivity concluded that experimental tests in a low speed 

wind tunnel are feasible to measure the aerodynamic performance of scaled ram-air 

parachutes. However, the lift curve slope presented an increase approximately of 26% 

compared with free air domain analysis. Consequently, implementation of correction 

factors is recommended to compensate the high interaction of the test section wall effects 

on the canopy performance. 

5.2. Recommendations and Future Work 

The present investigation has obtained numerical results of the aerodynamic 

performance of a scaled ram-air parachute. The results were validated with available data 

from the literature. Recommendations for future work are as follows: 

The present investigation has provided results of the aerodynamic performance of a 

rigid canopy model. The results were partially validated with experimental data from the 

literature because of the simplifications for the CFD simulations and measurement 

techniques during the tests. Consequently, the first recommendation would be to perform 

experimental tests with a similar canopy geometry and flow conditions to directly 

validate the CFD methodology. 

The design of a 2D force and balance to measure the aerodynamic forces of a canopy 

model in the test section was discovered. The implementation of this force and balance 

design inside the wind tunnel test section allows measurement of the resultant forces of a 

flexible canopy by using suspension lines. However, the design presented limitations to 

measure large forces because of stability of the system. Therefore, the second 
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recommendation would be to rebuild the basis of the 2D force and balance by 

implementing a more solid structure capable to withstand the application of larger forces 

using the same concept of load measurement. 

A CAD generation methodology was developed in this investigation that was capable 

of creating complex canopy geometries using a wide range of design parameters and 

implementing surface distortions. However, limitations are in modeling sharp edges and 

smooth surface transitions. In addition, the time required to fully complete a geometry 

depends directly on the geometry complexity. Consequently, a third recommendation 

would be to modify the scripts to optimize process using other design tools available in 

the software. Additionally, the implementation of different design tools or other software 

using the same design concept could lead the development of a full automatic CAD 

generation process. 

Finally, the multiple numerical simulations consisted on solving the steady state 

RANS equations to predict the flow behavior around the canopy structure. Additionally, 

the turbulence model chosen in this investigation was SST (low Reynolds number) to 

solve for the boundary layer effects. Therefore, the fourth recommendation would be to 

validate the present numerical results by performing time dependent simulations with a 

different turbulent model, e.g., Spalart-Allmaras, to solve for the same flow conditions of 

the simulations in this thesis. 
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Appendices 

A. Airfoil Coordinates of Ware & Hassell Canopy Model 

Table A.1 presents the airfoil coordinates of the center rib normalized by the chord 

length for the canopy tested in the literature (Ware & Hassell, 1969). Additional points 

were approximated by interpolating the provided data presented from literature. 

Table A.1 

Airfoil coordinates. 

X Y Z  X Y Z  X Y Z 

0.0000 0.0000 0.0000  0.9696 0.0528 0.0000  0.7970 0.1783 0.0000 

0.5579 0.0000 0.0000  0.9763 0.0576 0.0000  0.7903 0.1783 0.0000 

0.5778 0.0000 0.0000  0.9829 0.0624 0.0000  0.7837 0.1783 0.0000 

0.5977 0.0000 0.0000  0.9896 0.0671 0.0000  0.7770 0.1783 0.0000 

0.6176 0.0000 0.0000  0.9962 0.0719 0.0000  0.7704 0.1776 0.0000 

0.6376 0.0000 0.0000  0.9962 0.0774 0.0000  0.7638 0.1769 0.0000 

0.6575 0.0000 0.0000  0.9961 0.0828 0.0000  0.7571 0.1761 0.0000 

0.6774 0.0000 0.0000  0.9961 0.0883 0.0000  0.7505 0.1756 0.0000 

0.6973 0.0000 0.0000  0.9895 0.0989 0.0000  0.7438 0.1751 0.0000 

0.7173 0.0000 0.0000  0.9829 0.1095 0.0000  0.7372 0.1745 0.0000 

0.7372 0.0000 0.0000  0.9763 0.1201 0.0000  0.7305 0.1738 0.0000 

0.7571 0.0000 0.0000  0.9696 0.1263 0.0000  0.7239 0.1731 0.0000 

0.7770 0.0000 0.0000  0.9630 0.1325 0.0000  0.7173 0.1723 0.0000 

0.7970 0.0000 0.0000  0.9563 0.1387 0.0000  0.7106 0.1716 0.0000 

0.8169 0.0000 0.0000  0.9497 0.1429 0.0000  0.7040 0.1709 0.0000 

0.8235 0.0000 0.0000  0.9431 0.1470 0.0000  0.6973 0.1702 0.0000 

0.8302 0.0000 0.0000  0.9364 0.1512 0.0000  0.6907 0.1691 0.0000 

0.8368 0.0000 0.0000  0.9298 0.1545 0.0000  0.6841 0.1680 0.0000 

0.8434 0.0000 0.0000  0.9231 0.1577 0.0000  0.6774 0.1670 0.0000 

0.8501 0.0000 0.0000  0.9165 0.1610 0.0000  0.6708 0.1660 0.0000 

0.8567 0.0000 0.0000  0.9099 0.1634 0.0000  0.6641 0.1650 0.0000 

0.8634 0.0000 0.0000  0.9032 0.1658 0.0000  0.6575 0.1640 0.0000 

0.8700 0.0000 0.0000  0.8966 0.1682 0.0000  0.6508 0.1626 0.0000 

0.8767 0.0000 0.0000  0.8947 0.1686 0.0000  0.6442 0.1613 0.0000 

0.8814 0.0000 0.0000  0.8929 0.1691 0.0000  0.6376 0.1600 0.0000 

0.8862 0.0000 0.0000  0.8910 0.1696 0.0000  0.6309 0.1585 0.0000 

0.8910 0.0000 0.0000  0.8862 0.1705 0.0000  0.6243 0.1571 0.0000 

0.8929 0.0000 0.0000  0.8814 0.1714 0.0000  0.6176 0.1556 0.0000 

0.8947 0.0000 0.0000  0.8767 0.1723 0.0000  0.6110 0.1543 0.0000 

0.8966 0.0000 0.0000  0.8700 0.1732 0.0000  0.6044 0.1531 0.0000 

0.9032 0.0048 0.0000  0.8634 0.1741 0.0000  0.5977 0.1518 0.0000 

0.9099 0.0096 0.0000  0.8567 0.1749 0.0000  0.5911 0.1502 0.0000 

0.9165 0.0144 0.0000  0.8501 0.1757 0.0000  0.5844 0.1486 0.0000 

0.9231 0.0193 0.0000  0.8434 0.1765 0.0000  0.5778 0.1470 0.0000 

0.9298 0.0241 0.0000  0.8368 0.1773 0.0000  0.5712 0.1454 0.0000 

0.9364 0.0289 0.0000  0.8302 0.1775 0.0000  0.5645 0.1437 0.0000 

0.9431 0.0337 0.0000  0.8235 0.1776 0.0000  0.5579 0.1421 0.0000 

0.9497 0.0385 0.0000  0.8169 0.1777 0.0000  0.3719 0.0947 0.0000 

0.9563 0.0432 0.0000  0.8102 0.1779 0.0000  0.1860 0.0474 0.0000 

0.9630 0.0480 0.0000  0.8036 0.1781 0.0000  
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B. Experimental Data Points Digitalization  

Figure B.1 presents the approximation curves and the experimental data points 

digitalized of the 𝐶𝐿, 𝐶𝐷 and 𝐿/𝐷 values, from Figure 2.7 and Figure 2.8, for the 

investigations conducted by Nicolaides and Ware & Hassell. 

Notice that the experimental data points digitalized correspond to the tests performed 

with a flow velocity of 50 ft/s and the tether method employed in the investigations. 

Additionally, the data digitalized correspond to experimental values for angles of attack 

up to 14° approximately. 

Finally, the authors applied a correction for the drag to obtain the values of just the 

canopy because of the unexposed lines effects during the experimental tests. This 

correction was implemented by subtracting a semi-empirical value determined by the 

authors. Consequently, Figure B.1 presents the 𝐶𝐷 of the canopy only, i.e., corrected for 

the suspension lines effects. 

 

a) 𝐶𝐿 versus 𝛼 of the experimental data available from literature. 
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b) 𝐶𝐷 versus 𝛼 of the experimental data available from literature.

c) 𝐶𝐿 versus 𝐶𝐷 of the experimental data available from literature. 

Figure B.1 Approximation curves and experimental data points digitalized from literature 

of 𝐶𝐿, 𝐶𝐷 and 𝐿/𝐷 values for various angles of attack.



112  

   
 

C. Blockage Area Estimation 

The percentage of blockage area was estimated using a projected area of the canopy 

model and the cross section of the test section for Case 1 and Case 4. 

Figure C.1 and Figure C.2 presents the test blockage areas corresponding to Case 1 

and Case 4, respectively. Notice that calculation of the blockage area considered the 

canopy only, i.e., no suspension lines, with flat surfaces. Additionally, the blockage area 

for Case 1 was calculated assuming the test section of the NASA Langley Full Scale 

wind tunnel, which had an elongated hole test section of 30 ft x 60 ft and 56 ft long. 

Therefore, the cross section area of the test section was estimated to be 1606.86 ft2. 

  

a) Isometric and front view of the system at 0° angle of attack. 

  

a) Isometric and front view of the system at 12° angle of attack. 

Figure C.1 Blockage area calculation for Case 1. 
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Consequently, the blockage area estimated for Case 1 ranged from 2% to 3% 

approximately when the angle of attack increased from 0° up to 12°. 

In the same manner, the blockage area for Case 4 ranged from 4% to 7% 

approximately when the angle of attack increased from 0° up to 12°, which corresponded 

to the test section of the subsonic low speed wind tunnel from Embry-Riddle at 

MICAPLEX, which has a rectangle test section of 6 ft x 4 ft and 12 ft long. 

  

a) Isometric and front view of the system at 0° angle of attack. 

  

b) Isometric and front view of the system at 12° angle of attack. 

Figure C.2 Blockage area calculation for Case 4. 
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D. CFD Results Summary 

Table D.1 presents a summary of the calculated values of lift curve slope (𝑎) along 

with the offset at 𝛼 = 0° and percentage of change of the lift curve slope for all the 

simulation cases as compared with Case 1. Notice the sign for the different values. A 

positive sign denotes an increment value, while a negative denotes a decrement value 

with respect to Case 1. 

Table D.1  

Summary of the calculated values of lift curve slope (𝑎) along with the offset at 𝛼 = 0° 
and percentage of change of the lift curve slope for all the simulation cases as compared 

with Case 1. 

SIMULATION 

CASE 

𝒂  
(𝟏/𝒅𝒆𝒈) 

CHANGE OF 

𝒂   (%) 

𝑪𝑳 OFFSET 

AT 𝜶 = 𝟎°  (%) 

𝑪𝑫 OFFSET 

AT 𝜶 = 𝟎°  (%) 
𝑳/𝑫𝒎𝒂𝒙 

CHANGE OF 

𝑳/𝑫𝒎𝒂𝒙   (%) 

CASE 1 0.0420 ----- ----- ----- 4.89 ----- 

CASE 2 0.0407 -3 -2 +6.9 4.57 -6.47 

CASE 3 0.0347 -17.4 -4.7 +8.5 4.25 -13.19 

CASE 3 

COMPRESSIBLE 
0.0354 -15.7 -4.7 +10.3 4.15 -15.2 

CASE 4 0.0529 +26 +1.4 +3 5.40 +10.45 

 

Figure D.1 presents a summary of the 𝐶𝐿, 𝐶𝐷 and 𝐶𝐿/𝐶𝐷 curves for various angles of 

attack of the numerical simulations and the experimental data available from Ware & 

Hassell and Nicolaides. 
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a) 𝐶𝐿 curves of the numerical simulations and the experimental data available from the 

literature. 

 

b) 𝐶𝐷 curves of the numerical simulations and the experimental data available from the 

literature. 
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c) 𝐶𝐿 versus 𝐶𝐷 curves of the numerical simulations and the experimental data available 

from the literature. 

Figure D.1 Summary of the 𝐶𝐿, 𝐶𝐷 and 𝐶𝐿/𝐶𝐷 curves for various angles of attack of the 

numerical simulations and the experimental data. 
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E. 2D Force Balance Development 

E.1. Introduction 

Experimental tests on wind tunnels commonly employ force balance systems to 

measure the aerodynamic forces of scaled models. This measurement system is generally 

located at the bottom wall, near the center of the test section. Therefore, the scaled model 

is placed where flow is homogeneous with minimum disturbances. 

A physical limitation with experimental tests of flexible canopy models is that the 

suspension lines are attached to the forces and balance, e.g., tether test techniques, 

placing the scaled models near the outlet of the test section. Consequently, the 

aerodynamic forces and stability of the model are affected by flow disturbances at the 

outlet (Nicolaides, 1971).  

A simplified design of a 2D force and balance is presented in this chapter, with the 

purpose to be placed at the inlet of the test section, positioning the scaled canopy model 

near the center of the test section.  

E.2. Force Measurement Approach 

The force and balance design started by considering the lift and drag generated by a 

canopy from literature, to determine the range of forces expected for a scaled model 

tested in a wind tunnel. Therefore, one of the flexible canopies tested by Ware & Hassell 

was considered for the force and balance design. 

Similar aerodynamic characteristics between the scaled and full canopy models are 

achieved when the non-dimensional parameters of Reynolds and Mach numbers, given 

by Equation (E.1) and (E.2), are approximately the same for the tests (Anderson, 2010), 

i.e., 
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𝑅𝑒 =
𝜌∞𝑉∞𝑐

𝜇
     (E.1) 

    𝑀 =
𝑉∞

𝑎
     (E.2) 

Where 𝑉∞ is the flow velocity magnitude, 𝑎 is the speed of sound, 𝜌∞ is the air density 

and 𝜇 is the air dynamic viscosity. 

The air density was calculate using the ideal gas law, given by Equation (E.3). 

Additionally, the speed of sound was calculated with Equation (E.4), while the dynamic 

viscosity was determined using Sutherland’s Law, given by Equation (E.5). 

𝑃 = 𝜌∞ 𝑅𝑔𝑎𝑠 𝑇    (E.3) 

           𝑎 = √𝛾𝑎𝑖𝑟  𝑅𝑔𝑎𝑠 𝑇    (E.4) 

      𝜇 = 𝜇𝑂 (
𝑇

𝑇𝑂
)
3

2⁄

  
𝑇𝑂+110

𝑇+110
    (E.5)  

Where 𝑃 is the barometric pressure, 𝑇 is the temperature in Kelvin, 𝑅𝑔𝑎𝑠 is the specific 

gas constant for dry air (𝑅𝑔𝑎𝑠 = 287.05 J/(kg K)), 𝛾𝑎𝑖𝑟  is the ratio of specific heats for 

dry air (𝛾𝑎𝑖𝑟  = 1.4), 𝜇𝑂 and 𝑇𝑂 are the air dynamic viscosity and temperature at standard 

sea level conditions, respectively (𝜇𝑂 = 1.7894𝑥10−5 kg/(m s) and 𝑇𝑂 = 288.16 K). 

For incompressible and subsonic flow, effects of Reynolds number are more 

significant as compared effects caused by the Mach number (Anderson, 2010). 

Consequently, the Reynolds number for the canopy models was maintained by changing 

the chord length and flow velocity for the scaled canopy model. 

Additionally, the lift and drag coefficients, expressed by Equations (E.6) and (E.7), 

respectively, relate the aerodynamic forces of the different canopies under similar 

Reynolds number (Anderson, 2010), i.e., 

𝐶𝐿 =
𝐿

1

2
𝑞∞ 𝑉∞

2 𝑆
     (E.6) 
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𝐶𝐷 =
𝐷

1

2
 𝑞∞ 𝑉∞

2 𝑆
    (E.7) 

Where 𝐿 is the lift force and 𝐷 is the drag force of the canopy model. Table E.1 presents 

the canopy geometry characteristics and flow conditions for one specific angle of attack 

tested by Ware & Hassell. 

Table E.1 

Geometry characteristics and flow conditions for a canopy model tested by Ware & 

Hassell. 

CANOPY GEOMETRY 

DESCRIPTION PARAMETER VALUE 

CHORD LENGTH c 8.57 ft 
SPAN LENGTH b 17.14 ft 

PLANFORM AREA S 146.89 ft2 

ASPECT RATIO 𝐴𝑅 2 

ANGLE OF ATTACK α APPROX.     4.1 ° 

  

FLOW CONDITIONS 

DESCRIPTION PARAMETER VALUE 

FLOW VELOCITY V 50 ft/s 

AIR DENSITY 𝜌 0.002378 slug/ft3 

REYNOLDS NUMBER Re 2.727𝑥106 

AIR DYNAMIC VISCOSITY 𝜇 3.737𝑥10−7 slug/(s ft) 

 

Results of the experiment conducted by Ware & Hassell determined the values of the 

lift and drag coefficients of the canopy to be approximately  𝐶𝐿 = 0.4229 and 𝐶𝐷 =

0.1288, respectively. 

The dimensions of the wind tunnel test section determined the scale factor for the 

chord length reduction of the scaled canopy model. Additionally, the dimensions of small 

kites available in the market were also considered to determine the scale factor. 

Therefore, the scaled canopy model considered for the design of the force and balance 

had a chord length approximately five times smaller compared with the canopy from 

Ware & Hassell. 
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Table E.2 shows the scaled canopy geometry characteristics and the flow conditions to 

meet the same Reynolds number as the experiment of Ware & Hassell. 

Table E.2 

Geometry characteristics and flow conditions for the scaled canopy model for the force 

and balance design. 

CANOPY GEOMETRY 

DESCRIPTION PARAMETER VALUE 

CHORD LENGTH c 1.71 ft 
SPAN LENGTH b 3.43 ft 

PLANFORM AREA S 5.88 ft2 

ASPECT RATIO 𝐴𝑅 2 

ANGLE OF ATTACK α 4 ° 

   

FLOW CONDITIONS 

DESCRIPTION PARAMETER VALUE 

FLOW VELOCITY V 250 ft/s 

AIR DENSITY 𝜌 0.002378 slug/ft3 

REYNOLDS NUMBER Re 2.720𝑥106 

AIR DYNAMIC VISCOSITY 𝜇 3.737𝑥10−7 slug/(s ft) 

 

 Figure E.1 presents the aerodynamic forces of lift, drag and the resultant presented in 

a ram-air parachute model. 

The force and balance design was capable to determine lift and drag forces by 

measuring the resultant force 𝑷𝑹 and the inclination angle 𝜽 exerted by the canopy tested, 

as shown in Figure E.1. Additionally, notice that the resultant load 𝑷𝑹 and the inclination 

angle 𝜽 depend on the angle of attack of the canopy. 

  

Figure E.1 Lift, drag and resultant aerodynamic forces on a ram-air parachute. 
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The resultant force expected for the scaled canopy model was calculated from 

Equations (E.6) and (E.7), solving for the lift and drag forces, i.e., 

𝐿𝑠𝑐 =
1

2
𝐶𝐿  𝑞∞ 𝑉∞

2 𝑆     (E.8) 

𝐷𝑠𝑐 =
1

2
 𝐶𝐷  𝑞∞ 𝑉∞

2 𝑆     (E.9) 

Where 𝐿𝑠𝑐 is the lift force and 𝐷𝑠𝑐 is the drag force of the scaled canopy model. Table E.3 

gives the lift and drag forces along with the resultant force of the canopy of Ware & 

Hassell and the scaled canopy model. 

Table E.3 

Lift, drag and resultant forces of the Ware & Hassel canopy and the scaled canopy model 

FORCE 
CANOPY MODEL 

WARE & HASSELL SCALED MODEL 
LIFT 184.65 lb 184.80 lb 

DRAG 56.24 lb 56.28 lb 
RESULTANT 193.03 lb 193.18 lb 

 

The resultant force expected for a wind tunnel test of the scaled canopy model was 

193 lb (859 N) approximately. The different equipment and experimental set-up for the 

design of the force and balance are presented in the following section, along with the 

various physical limitations that were addressed. 

E.3. Equipment and Experimental Setup 

Selection of the equipment for the force and balance design started with an adequate 

force sensor to be placed at the inlet of the wind tunnel test section. Although, the 

expected resultant load determined for the scaled canopy model was the main criteria to 

select the sensor, other constraints included low cost, physical dimensions and simplicity 

of the design. Therefore, a sensor capable to measure a maximum of 77 lb (343 N) was 

selected for the purposes of this investigation. 
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Figure E.2 presents the weight sensor and the different equipment necessary for the 

design of the force and balance. 

The sensor selected consisted on a combination of strain gages in a beam type load 

cell. Figure E.2a shows the beam load cell. The mechanism to measure the force was by 

applying a load at one end of the beam while maintaining the other end fixed to the 

ground. Additionally, the load cell had a rated output of 1.996 mV/V, necessary for the 

calculation of the applied load. 

The load cell required an excitation or input constant voltage of +10 Volts, which was 

provided by a voltage supply, as shown in Figure E.2b. The data were collected using a 

National Instruments data acquisition system (Ni DAQ) of ± 0.5 Volts input voltage, as 

shown in Figure E.2c. 

Various set of weights, set 1 in Figure E.2d ranging from 0 to 80 N and set 2 in Figure 

E.2e ranging from 0 to 55 N, were utilized to calibrate the load cell. Finally, multiple 

miscellaneous equipment such as wires, screws, metal brackets, wood sheet and a weight 

mount were used for the assembly and set-up of the force balance system, as shown in 

Figure E.2f. 

 

a) Weight sensor, beam load cell  

 

b) Constant voltage supply 
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c) National Instruments DAQ 

 

d) Set of weights, set #1 

 

e) Set of weights, set #2 

 

f) Miscellaneous equipment 

Figure E.2 Beam load cell and multiple equipment employed for the force and balance 

development and calibration. 

 

Experimental tests with a single load cell provided with data to calibrate the force 

sensor, i.e., the offset from manufacture. The assembly and experimental set-up of the 

system required multiple wiring connections along with the various machined holes for 

the screws in the wood sheet and the brackets. Figure E.3 shows a schematic 

representation of the different wiring connections for the experimental tests with a single 

load cell. 

The load cell was connected to the power supply with the black and red wires, i.e., 

ground and positive voltage, respectively, as shown in Figure E.3. Additionally, the 

output signal from the load cell was connected to the Ni DAQ, as shown with the green 
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wire in Figure E.3. The DAQ transferred the data collected to a personal computer (PC) 

for the post processing. 

 

Figure E.3 Schematic of the experimental set-up for the single load cell system. 

 

Similar to the single load cell system, a combination of two load cells provided data to 

calibrate the weight sensors when assembled together. Figure E.4 shows a schematic of 

the two load cells in the assembly along with the wiring connections for the experiments. 

 

Figure E.4 Schematic of the experimental set-up for the load cell arrangement. 

 

This combination of load cells, referred as load cell arrangement in this investigation, 

enabled the force measurements in the vertical and horizontal directions. Therefore, the 

resultant load 𝑃𝑅 and the inclination angle 𝜃 were determined using the measurements 

from the two load cells. Finally, similar wiring connections as the single load cell system 

were employed for the cell arrangement, as shown in Figure E.4. The data collected by 

the Ni DAQ was stored up for the post processing using a PC. 
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E.4. Data Reduction 

An interface, developed in MATLAB R2016b, allowed the user to communicate the 

Ni DAQ with the PC for the data collection. Multiple experiments were conducted using 

the single and two load cells provided, with raw data stored for later post process using 

MATLAB scripts. 

All the experiments were conducted with a sample rate of 10,000 samples per second 

and a sampling time of 10 seconds. The average of the sampling data was converted from 

Volts to N using a conversion factor, which was determined using the maximum weight, 

the rated output and the excitation voltage for the load cells provided by the manufacture. 

The conversion factor (𝐶𝐹) is expressed as: 

𝐶𝐹 = 
maximum weight

rated output ∙ excitation voltage
   (E.10) 

𝐶𝐹 =
343

0.001996 ∙ 10
 

  𝐶𝐹 ≈ 17,184  (N / Volt)    

E.4.1. Single Load Cell Calibration 

The purpose of the single load cell calibration was to tare the load measurements. For 

this calibration, various tests were conducted using the set 1 of weights as shown in 

Figure E.2d. The weights were previously measured parallel using a scale to determine 

the value of the loads, denominated in this investigation as actual loads. 

The multiple weights were applied to the system to determine the forces measured by 

the single load cell, designated in this investigation as load cell measurement (𝑃𝑙𝑜𝑎𝑑_𝑐𝑒𝑙𝑙). 

Figure E.5 shows a calibration test for the single load cell system with a tested weight of 

7.34 N. 
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Figure E.5 Single load cell system calibration test with a weight of 7.34 N. 

 

Results of different tests, the load cell measurements had a difference of 3.8% 

compared to the actual loads for weights higher than 0.5 N. Therefore, a correlation was 

determined between the difference of the actual loads and the load cell measurements, 

defined by Equation (E.11), i.e., 

𝑃𝑜𝑓𝑓𝑠𝑒𝑡 = 2.2799𝑥103 𝑉𝑜𝑢𝑡
2 − 409.5515 𝑉𝑜𝑢𝑡 − 0.0992 (Newton) (E.11) 

Where 𝑃𝑜𝑓𝑓𝑠𝑒𝑡 is the offset load in N and 𝑉𝑜𝑢𝑡 is the output signal from the load cell in 

Volts. This second order polynomial correlation was obtained using the MATLAB 

function polyfit (The MathWorks, Inc, 2018). Consequently, the corrected measurements 

are given by Equation (E.12), i.e., 

𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑃𝑙𝑜𝑎𝑑_𝑐𝑒𝑙𝑙 + 𝑃𝑜𝑓𝑓𝑠𝑒𝑡    (E.12) 

Where 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 is the load cell measurement with offset correction. The single load cell 

system was tested repeatedly with the same loads, including the offset given by Equation 

(E.11). 

Figure E.6 shows the loads measured by the single load cell before and after 

implementing the correction from Equation (E.11). The corrected measurements, shown 
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by green diamonds, were closer to the actual loads especially at high-applied loads.  

 

Figure E.6 Corrected load measurements for a single load cell. 

 

For weights higher than 0.5 N applied to the single load cell, the corrected 

measurements had a difference less than 0.5% compared to the actual loads. 

Consequently, further tests with the load cells included the offset correction, as presented 

for the load cell arrangement in the following subsection. 

E.4.2. Load Cell Arrangement Calibration 

Similarly to the single load cell system, the main objective of the cell arrangement was 

to determine the calibration curves of each load cell, which determined an approximation 

of the resultant applied load 𝑃𝑅 and inclination angle 𝜃, as shown in Figure E.4. The 

calibration of the cell arrangement were performed using the set 2 of weights, as shown 

in Figure E.2e. In the same manner, the weights were previously measured apart using a 

scale to determine the value of the loads.  

Multiple tests were conducted by applying the weights at different inclination angles 

to the cell arrangement system. Figure E.7 shows a calibration test for the cell 
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arrangement system with a tested weight of 7.34 N. 

 

Figure E.7 Calibration test for the cell arrangement system with a weight of 7.34 N and an 

inclination angle of 90° approximately. 

 

During the experiments, each load cell measured individually a force. Therefore, the 

forces measure by the vertical load cell were called 𝐹1 forces, while for the horizontal 

load cell were called 𝐹2 forces.  

The post processing of the data consisted on creating two 3D matrices with the 

experimental values of the weights, inclination angles and forces measured by each load 

cell. For instance, the 3D matrix for the vertical load cell consisted on [applied weights X 

inclination angles X forces 𝐹1]. In the same manner, the 3D matrix for the horizontal load 

cell consisted on [applied weights X inclination angles X forces 𝐹2]. 

These matrices were utilized to calculate the calibration curves for the cell 

arrangement by using the MATLAB function fit, with method poly23 (The MathWorks, 

Inc, 2018). Equations (E.13) and (E.14) show the corresponding calibration curves for 

each load cell, i.e., 
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𝐹1 =  𝒂𝟎 + 𝒂𝟏𝜃 + 𝒂𝟐𝑃𝑅 + 𝒂𝟑𝜃
2 + 𝒂𝟒𝜃𝑃𝑅 + 𝒂𝟓𝑃𝑅

2 + 𝒂𝟔𝜃
2𝑃𝑅 + 𝒂𝟕𝜃𝑃𝑅

2 + 𝒂𝟖𝑃𝑅
3  (E.13) 

𝐹2 = 𝒃𝟎 + 𝒃𝟏𝜃 + 𝒃𝟐𝑃𝑅 + 𝒃𝟑𝜃
2 + 𝒃𝟒𝜃𝑃𝑅 + 𝒃𝟓𝑃𝑅

2 + 𝒃𝟔𝜃
2𝑃𝑅 + 𝒃𝟕𝜃𝑃𝑅

2 + 𝒃𝟖𝑃𝑅
3 (E.14) 

Where 𝐹1 and 𝐹2 are given in N, 𝑃𝑅  is in Newton, 𝜃 is in radians and the curve fit values 

𝒂𝒊 and 𝒃𝒊 given in Table E.4. 

Table E.4 

Values of coefficients 𝒂𝒊 and 𝒃𝒊 for equation of the cell arrangement calibration curves. 

𝑎0 = 1.59  𝑏0 = −1.291 

𝑎1 = −0.8791  𝑏1 = 1.339 

𝑎2 = 0.9229  𝑏2 = 0.01178 

𝑎3 = −0.1328  𝑏3 = −0.314 

𝑎4 = −0.07005  𝑏4 = 1.139 

𝑎5 = 0.003283  𝑏5 = −7.552 𝑥10−5 

𝑎6 = −0.3338  𝑏6 = −0.3249 

𝑎7 = −0.001984  𝑏7 = −0.000131 

𝑎8 = −3.457 𝑥10−5  𝑏8 = 5.335 𝑥10−6 

 

Difference of the calibration curves with respect to the tests was determined by the 

value of 𝑅2, the curves had a 𝑅2 of 0.9994 and 0.9991 for the vertical and horizontal load 

cells, respectively.  

Figure E.8 shows the calibration curves for the vertical and horizontal load cells. 

Additionally, Figure E.8 includes the experimental data from the multiple tests at 

different inclination angles utilized to determine the curves, designated as calibration 

test. 

The methodology to approximate the resultant load and the inclination angle using the 

calibration curves, starts by measuring the forces in the vertical and horizontal load cells 

(𝐹1 and 𝐹2 forces, respectively) during a test. The intercept point of the contour plots 

from the calibration curves at 𝐹1 and 𝐹2, determine the magnitude of the resultant load 

and the inclination angle. 
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a) Calibration curve for the vertical load cell (𝐹1 force). 

 

b) Calibration curve for the horizontal load cell (𝐹2 force). 

Figure E.8 Calibrations curves for the cell arrangement and experimental data. 
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Multiple tests to validate the calibration curves, limitations of the cell arrangement 

design and discussion of the results using the procedure to determine 𝑃𝑅 and 𝜃 are 

presented more in detail as followed.  

E.5. Results and Discussion 

The present chapter summarizes the main outcomes obtained for the different studies 

performed in this investigation. The chapter starts with the 2D force and balance results, 

including validation under different load conditions along with limitations of the design 

for future reference. 

The load cell arrangement was tested with various load at different angles to validate 

the calibration curves and determine the resultant load 𝑷𝑹 and inclination angle 𝜽 using 

the methodology explained previously. The validation tests employed the set 2 of 

weights, as presented in Figure E.2e. 

Figure E.9 presents the calibrations curves determined previously along with multiple 

validations tests, denoted in this investigation as Validation Test, shown with the green 

stars. Additionally, notice that the applied loads for the various tests ranged between 0 ≤

𝑃𝑅 ≤ 55 N, while for the inclination angle the tests ranged between 0° ≤ 𝜃 ≤ 90°, 

approximately. 

Although each load cell was capable to measure up to 77 lb (343 N), the load cell 

arrangement was tested with a maximum resultant force of 55 N. The main reason of this 

range was the steadiness of the load cell arrangement and the limitation of the equipment 

employed to withstand the moment produced by high loads in the mount. 
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a) Vertical load cell. 

 

b) Horizontal load cell. 

Figure E.9 Calibration curves for the load cell arrangement along with experimental tests 

for validation. 

 

As a reminder from chapter 3, the resultant load  𝑷𝑹 and inclination angle 𝜽 were 

calculated by intercepting the contour plots, presented in Figure E.9, at the measured 
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forces 𝐹1 and 𝐹2 by the load cells for a specific test. 

For example, Figure E.10 presents the contour plots of the vertical and horizontal 

curves when the load cell arrangement was tested with a resultant load of 30.2 N at an 

inclination angle of 51°, approximately. The forces measured by the load cells were: 

vertical load cell 𝐹1 = 18.33 N and horizontal load cell 𝐹2 = 23.18 N, illustrated as the 

red and blue lines, respectively.  

 

Figure E.10 Contour plots of the forces measured by the load cells in the cell arrangement 

for an applied load of 30.2 N at an inclination angle of 51°, approximately. 

 

The intercepting point, as shown with the green diamond in Figure E.10, approximated 

the resultant load 𝑷𝑹 in the vertical axis and inclination angle 𝜽 in the horizontal axis. 

For this particular case, the load cell arrangement estimated a resultant load of 𝑃𝑅 = 30 N 

and an inclination angle of 𝜃 = 52.7°. Additionally, differences for the resultant load 𝑷𝑹 

and inclination angle 𝜽 for this case were 0.66% and 3.33%, respectively. 

Figure E.11 presents the percentage of difference of the resultant load 𝑷𝑹 and 

inclination angle 𝜽 for the multiple tests to validate the calibration curves. The highest 
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differences were approximately of 2.29% and 3.33% for resultant load 𝑷𝑹 and inclination 

angle 𝜽, respectively. These differences were attributed to several reasons:  

 Measurements of the inclination angle during the tests were performed using a 

digital level with an error of ±0.35°. 

 The weights were measured in a separate scale to determine the actual load. 

The scale provided measurements with an error less than ±0.02 N 

approximately (±0.002 Kg). 

 Oscillations of the applied load while hanging in the weight mount during the 

experiments. 

 Vibrations and oscillations of the load cell arrangement system caused by the 

momentum produced with high loads in the weight mount. 

 Differences caused by deflection of the brackets in the assembly of the load 

cell system. 

 Approximations of the results during the post process of the raw data. 

Additionally, for inclination angles 𝜽 near 0° or 90°, or for applied resultant loads 𝑷𝑹 

below 5 N, the difference increased drastically up to 50%. Therefore, Figure E.11 

presents 32 of the 34 tests performed for the validation of the curves. 
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Figure E.11 Percentage of difference of the resultant load 𝑷𝑹 and inclination angle 𝜽 for 

the validation tests. 

 

Finally, the cell arrangement was able to predict a resultant load 𝑷𝑹 and inclination 

angle 𝜽 with an error less than 3.5% under the following conditions: 

 A minimum required load 𝑷𝑹 applied to the load cell arrangement of 5 N 

(1.12 lb approximately). 

A range for the inclination angle 𝜽 of 5° ≤ 𝜽 ≤ 85° (considering 0° parallel to the 

horizontal axis, as presented in Figure E.4). 

 Figure E.12 presents the isometric, top, front and side views for the assembly of the 

2D force balance and canopy model inside the test section of the wind tunnel. Notice that 

the lines were drawn for reference only. 
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Figure E.12 Isometric, top, front and side view for future the experimental tests in the wind 

tunnel at Embry-Riddle. 
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