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In the vehicle design life cycle, validation tests consume a significant portion of the 

available development time. With a short, one-year design cycle, the Embry-Riddle Baja 

Team leverages computer-aided engineering (CAE) tools to simulate critical test cases 

whose loading conditions can be accurately represented by a series of static loads and 

constraints. Using these conditions, a Finite Element Model (FEM) can be employed to 

accurately predict the effects of the loading conditions in the components. During the 

initial design of the front suspension, one major load case was determined to be the main 

failure load. However, after validation testing the suspension exhibited a failure 

indicative of a load path not predicted. To obtain a more complete understanding of the 

dynamic loading conditions on the affected component, instrumentation was 

implemented to measure strain in the critical member. A dynamic vehicle test case was 

performed to measure a high-frequency, high-load case representative of an event during 

the vehicle service life. The measurement was then utilized to validate a Finite Element 

Model, in turn used to re-design the member. This component withstands the loading 

condition for infinite fatigue life without increasing the overall weight of the design, 

although the failure was not reproduced during testing. 
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Chapter I 

Introduction 

In the vehicle design life cycle, validation tests consume a significant portion of 

the available development time [1]. Traditionally, endurance tests are performed to verify 

the fatigue life and structural strength of a vehicle and/or component. These tests are time 

intensive and require a full vehicle or physical parts; requiring testing to take place at a 

late stage of design. With a short, one-year design cycle, the Embry-Riddle Aeronautical 

University (ERAU) Women’s Baja Team leverages CAE tools to simulate critical 

fatigue-life and structural strength related test cases. Using these conditions, an FEM can 

be employed to accurately predict the fatigue in the part. 

Baja is a competition organized by the Society of Automotive Engineers (SAE) in 

which engineering students design and build an all-terrain single-seat sport utility vehicle. 

The vehicle must be designed to survive the server off-road terrain of the competition 

including specifically designed events to test different aspects of the vehicle’s 

performance; acceleration, sled pull, land maneuverability, and suspension and traction 

courses [2]. 

During the initial design of the front suspension, one major load case was 

determined to be the main fatigue load case; however, after validation testing, the 

component exhibited a failure indicative of a load path not predicted. To obtain a more 

complete understanding of the dynamic loading conditions on the affected component, 

instrumentation was implemented to measure strain in the form of three strain gauges on 

the critical member. Two strain gauges were used to measure bending about the SAE 

coordinate system, as seen in Figure 1, in the x (Mbx) and z (Mbz) directions and a third 
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to measure axial strain. These three measurement devices allowed the loads in each 

primary direction to be understood, thus resolving the strain in the member [3]. 

 

Figure 1: SAE J670 Standard Axis Orientation [4]. 
 
 
 

A dynamic vehicle test case was performed to measure a high-frequency, high-

load case representative of what would be experienced during the vehicle life cycle. After 

statistical data analysis is performed, the repeatedly measured load case is utilized in the 

FEM to simulate the fatigue life of the component and the part is re-designed 

accordingly. 

In addition to the load case studied here, the installation of the defined data 

acquisition system enables the ERAU Women’s Baja team to collect strain data in this 

component during competition, gathering a strain-life history in the member. The strain-

life history can then be utilized for the development of component and vehicle specific 

fatigue life calculation, the final major input to accelerated test development [1]. If 

expanded to more components, the strain-life history from competition could be utilized 

to perform an initial fatigue validation, through CAE, of the whole vehicle once the 

design phase is completed. This measured load history is an extensive undertaking and is 

saved for future work. In this thesis, only the defined load case was covered.  
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A validated FEM will aid redesign for an unexpected failure in the front 

suspension lower control arm. These tasks are accomplished by defining the test 

condition, measuring the load case under this condition, and re-designing the component 

to withstand the measured loading condition with in the space and weight constraints 

currently sustained. 

 

Definitions of Variables 

𝐴  Cross-Sectional Area 

𝑎  Outer Width of a Square Tube 

𝑏  Inner Width of a Square Tube 

E  Modulus of Elasticity 

Fy  Force in the y-direction 

Fx  Force in the x-direction 

Fz  Force in the z-direction 

f  Frequency 

𝑔𝑎𝑖𝑛_𝑎𝑟𝑑 Analog Gain of Arduino Analog to Digital Converter 

𝑔𝑎𝑖𝑛_𝑎𝑚𝑝 Gain of Amplifier  

𝐼  Second Area Moment of Inertia 

𝐽   Polar Moment of Inertia 

k  Gauge Factor 

𝐿   Length of Beam 

M  Moment 

𝑛   Number of Samples in a Population 
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𝑃  Axial Load 

 R2  Coefficient of Determination 

r  Radius 

𝑟   Inner Radius of a Tube 

𝑟   Outer Radius of a Tube 

s  Sample Standard Deviation 

s2  Sample Variance 

𝑇  Torque Applied 

𝑡  Time 

𝑉   Nominal Arduino Supply Voltage 

𝑉   Voltage Measured 

𝑉   Voltage Supplied 

𝑣  Velocity 

𝑣    Maximum Vehicle Velocity 

𝑊   Maximum Driver Weight 

X  Independent Variable 

𝑋                     Sample Mean 

𝑥  Distance 

𝑥    Sample i of Population 

𝑥   Distance from SG1 to the Spherical Bearing Pin Location 

𝑥   Distance from SG3 to the Spherical Bearing Pin Location 

Y  Dependent Variable 

𝑦  Distance from Center of Axis to Applied Moment or Torque 
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𝜀   Strain Due to Bending about the x-axis 

𝜀   Strain Due to Bending about the z-axis 

𝜀   Strain Due to Axial Deformation 

  Strain 

𝜎   Yield Stress 

  Normal Stress 

2  Population Variance 

  Shear Stress 

  Poisson’s Ratio 

List of Acronyms 

ADC   Analog to Digital Conversion 

AE  Aerospace Engineering 

ARD  Arduino 

CAD  Computer Aided Design 

CAE  Computer Aided Engineering 

CPU  Central Processing Unit 

csv  Comma Separated Variables 

DAQ   Data Acquisition 

DOE  Design of Experiments 

DOF  Degrees of Freedom 

DOT   Department of Transportation 

ERAU  Embry-Riddle Aeronautical University 

FE  Finite Element 
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FEA  Finite Element Analysis 

FEM  Finite Element Method 

FFT  Fast Fourier Transform 

FOS  Factor of Safety 

GPS  Global Positioning System 

MSE   Mean Squared Error 

OEM  Original Equipment Manufacturer 

RMSE   Root Mean Squared Error 

SAE  Society of Automotive Engineers 

SG1  Strain Gauge Set One 

SG2  Strain Gauge Set Two 

SG3  Strain Gauge Set Three 

SSE   Sum of Squares of Errors 

SST   Sum of Squares Total 

TTI   Texas Transportation Institute 
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Chapter II 

Review of the Relevant Literature 

With a short, one-year design cycle, the Embry-Riddle Baja Team leverages CAE 

tools to simulate critical structural loading conditions and fatigue-life related test cases. 

With respect to fatigue, traditionally, endurance tests are performed to verify the fatigue 

life of a vehicle and/or component. These tests are time intensive and require a full 

vehicle or physical parts, requiring testing to take place at a late stage of design. To 

reduce this time, tests are performed under worst case conditions. Due to the load 

severity, the loading cycles can be reduced to achieve the same damage. Even this 

method takes far too long to be solely relied upon. The design engineer needs to know 

immediately whether the design has fatigue life problems and how to solve them. 

However, due to the nature of loads and mechanical behavior in a structure being 

complex, neither of these criteria are easily predicted [1]. 

However, some loading conditions can be described by representative static loads 

and boundary condition in a linear FEM [1]. The first phase in CAE analysis for fatigue 

life is a FEM where loads and constraints are applied to a CAD part to predict material 

stresses. For this model, loads are derived from previous measurements or calculated 

based on highest expected loading condition, while constraints and material properties are 

known. Often, test engineers will collect strain measurements under pre-defined loading 

conditions, loading spectrum. These results are utilized for validation of the created 

model. This model output, stress distribution over the component, is utilized to identify 

critical locations in the design and defining alternative designs. This approach is shown in 

Figure 2. 
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Figure 2: Stress Calculation using Simple Loads (Huizinga, 2002). 
 
 
 

An initial design, CAD model, material properties, and constraints, is analyzed 

with estimated loading conditions to obtain critical stress locations in the component. 

These critical locations are then instrumented to obtain actual strain displacement 

measurements, under the specified loading spectra. The measured data is then utilized to 

validate the FEM, assuming constraints, CAD, and the material properties are modeled 

correctly the loads can be adjusted to validate the model. This validated model can then 

be utilized to iterate re-designs of the component. 

 This process is also demonstrated in Putra [5] where a static linear FEM of a 

coil spring with static loads and constraints was utilized to find the critical areas to locate 

strain gauges for the purpose of strain history data collection. First an initial FEM is 

conducted to locate the critical stress regions. Second the part is instrumented as close to 

the critical locations as possible. Finally, the vehicle underwent a defined testing case for 

which the strain readings were recorded and utilized to validate a CAE model of the 

vehicle loading conditions and boundary conditions. 
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 Utilizing this methodology, knowledge of the loading spectrum for the 

component it is of critical importance [6]. The load spectrum parameters, Figure 3, 

depend on each other and must be critically considered to determine a representative 

design spectrum [7]. If usage and operating conditions are known, only the determination 

of vehicle related loads related are necessary for determining load spectrum.  

 

Figure 3: Parameters of load spectrum [6]. 
 
 
 

 Utilizing this load spectrum Sener [7] verified the computer analysis results 

on a leaf spring by physically testing the part in the laboratory. First by calibrating the 

strain readings from the physical part in the laboratory to the FEM. The setup of FEM 

and laboratory test rig are illustrated in Figures Figure 4 and Figure 5 respectively.  
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Figure 4: FEM of Leaf Spring (left) and Free Body Diagram Representation of 
Boundary Conditions in FEM (right) [7]. 

 
 
 

 

Figure 5: Test Rig Calibration of Leaf Spring [7]. 
 
 
 

 Static and fatigue analysis was performed using the linear FEM. The basic 

parameters of fatigue analysis according to finite element theory were utilized in the 

analysis; linear analysis results, dynamic load data, and material specification, illustrated 
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in Figure 6 [7]. The most critical load acquired during road testing was utilized to execute 

the linear static analysis. The results of CAE analysis were similar to the laboratory tests. 

 

Figure 6: Static and Fatigue Analysis Based on FEM [7]. 
 
 
 

 In industry, most load spectrum are already known, as many automotive 

manufacturers have conducted vehicle usage studies and have statistical models of 

customer usage as well as data from these loading conditions. Even in this case 

sometimes parts fail to perform as intended, in which case these components become 

candidates for instrumentation, allowing the strain at the suspected critical location to be 

recorded under vehicle loading conditions [8].  

Design of Experiment 

In engineering, experimentation is used in new product design as well as design 

iteration to identify the reasons for changes to an output variable given a change of an 

input variable or a process or system [9]. The planning and conduction of an experiment, 

design of experiment (DOE), is crucial in obtaining valid data so that objective 

conclusion can be determined through data analysis. For example, DOE can be designed 

to determine key product design characteristics though the specified DOE process. Dean 

and Voss state the outline of a DOE: 
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a) Define the objectives of the experiment 

b) Identify all sources of variation, including: 

i. Treatment factors and their levels, 

ii. Experimental units, 

iii. Blocking factors, noise factors, and covariates 

c) Choose a rule for assigning the experimental units to the treatments 

d) Specify the measurements to be made, the experimental procedure, and the 

anticipated difficulties 

e) Run a pilot experiment 

f) Specify the model 

g) Outline the analysis 

h) Calculate the number of observations that need to be taken 

i) Review the above decisions. Revisit, if necessary. [10, p. 8]  

Where treatment factors are any item whose effect on the data is to be studied. 

Following this process many automotive manufacturers have gathered service 

loading data from instrumentation under specified conditions [11, 12, 13]. The key 

determination of the DOE for this application is the applicable service loads, which can 

be difficult to determine with an acceptable confidence level [14]. The durability of a 

component is determined by its estimated service loads, therefore the accuracy of the 

service loads are of paramount importance to the design for durability of any component 

[15]. In the automotive industry, some service loading conditions are known through 

history and experience of each automotive manufacturer. On occasion engineering 

departments will take a survey of customers, through dealerships, technical societies, or 
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university reports to gather customer usage data, utilizing this data to determine the 

vehicle service loads [15]. There is a spectrum of customer usage for each vehicle and 

geographic location the in which the vehicle is sold depending on the type of driving 

performed by each customer and the severity of the roads [11]. Many studies have been 

conducted with accelerometers, though strain gauge data are collected at structural areas 

of concern [11, 12, 13].  

Strain Gauge 

 Strain gauge technology has been in existence since 1936, invented by two 

different men at the same time, Simmons and Ruge [16]. Throughout this history, the 

production methods have changed significantly but the founding principle of measure has 

not change, nor has the basic electrical implementation [17]. Strain gauges are simple 

mechanisms comprised of a wire on a carrier. This carrier is mounted, through bonding, 

on the specimen to be measured. If bonded properly, “the strain gauge behaves as an 

integrated measuring element” and strain gradients can be measured along the active grid 

length, if they occur along the axis of the strain gauge measuring grid [17, p. 20]. The 

basic principle of measuring strain with a strain gauge is derived explicitly from the 

definition of strain itself. Strain (𝜀) is the quantity of deformation of a body due to an 

applied load, defined by change in length over original length, as illustrated in Figure 7 

[18]. 

 
Figure 7: Definition of Strain [18]. 
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This definition yields Equation 1, the longitudinal strain. 

𝜀 =
∆𝐿

𝐿
 

(1) 

 

Utilizing this equation and the principle that copper and iron wires change in 

resistance when subjected to strain, a principle discovered by Lord Kelvin in 1856, the 

strain in a metallic strain gauge can be measured by applying a voltage to measure the 

change in resistance across the gauge [19]. 

 
Figure 8: Metallic Strain Gauge [18]. 

 
 
 

As seen in Figure 8, the wire of a strain gauge is snaked back and forth along the 

active grid length achieving a compounding resistance or elongation as the specimen is 

subject to loading. This winding develops a sensitivity defined as the gauge factor, k [17]. 

The gauge factor directly relates the change in strain to the change in resistance as given 

in Equation 2. 

𝑘 =  
∆𝑅 𝑅⁄

∆𝐿 𝐿⁄
=  

∆𝑅 𝑅⁄

𝜀
 

(2) 
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While the gauge factor can be derived by principles of wire geometry and 

Poisson’s ratio, the gauge factor given by the manufacturer is recommended for 

measurements because the real gauge factor will vary from the calculated value due to 

manufacturing [17]. 

 Magnitude of measured strain is small, in the order of microns or 10-6. Due to 

this fact, the electrical measurement of strain must be very sensitive. The Wheatstone 

bridge circuit is the most suitable circuit for measuring sensitive resistance changes due 

to the ability of the circuit to measure resistances even with unstable voltage sources [20]. 

The circuit diagram, as shown in Figure 9, displays the circuit in a common format where 

the supplied voltage is defined as VB and the measured voltage is VM.  

 
Figure 9: Wheatstone Bridge Circuit for Measurements Using Strain Gauges [17]. 

 
 
 

Through Kirchhoff’s Laws the Wheatstone bridge yields the electrical 

relationship: 

𝑉

𝑉
=

𝑅

𝑅 + 𝑅
−

𝑅

𝑅 + 𝑅
 

(3) 
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As can be deduced from Equation 3, the change in voltage across the circuit is 

dependent on the ratios of the resistances on each arm of the bridge. If the resistances are 

identical (i.e. R1=R3 and R2=R4) the voltage measured is equal to zero [17]. If any, or all, 

of the resistors are replaced with strain gauges, the strain can be measured through the 

change in voltage across the bridge, resolved with Equation 4.  

𝑉

𝑉
=

(∆𝑅 − ∆𝑅 + ∆𝑅 − ∆𝑅 )

2(2𝑅 + ∆𝑅 + ∆𝑅 + ∆𝑅 + ∆𝑅 )
 

(4) 

 

Assuming small angle theorem, as the relative change of each strain gauge to the 

initial strain value is very small: 

𝑉

𝑉
=

(∆𝑅 − ∆𝑅 + ∆𝑅 − ∆𝑅 )

2(2𝑅 )
 

(5) 

 

While strain gauges are simple mechanisms, their implementation and usage must 

be executed with great care and forethought. Some important considerations for the 

implementation and utilization of strain gauges include transverse sensitivity, temperature 

effects, mechanics of the strain gauge, dynamic behavior, installation methods, 

Wheatstone bridge circuit implementation, cable resistance considerations, signal 

processing, and calibration. 

To mitigate the effects of temperature on the strain reading, the minimum number 

of strain gauges required to measure strain in any direction is two. The wound wire inside 

the strain gauge changes in length as the specimen is subjected to elongation or 

compression. However, the wire is so small it is also sensitive to changes in temperature. 

To cancel the change in temperature, two strain gauges are required in a half bridge 
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configuration, as seen in Figure 10 c). Figure 10 illustrates a half bridge with one active 

strain gauge and a compensation strain gauge; in Figure 10 a) no temperature effects are 

present, therefore pure strain is measured, b) temperature change effecting only the active 

strain gauge, measuring change in gauge length due to strain and temperature, c) 

temperature change effecting both the active gauge and compensation gauge, measuring 

pure strain [17]. 

 
Figure 10: Visual representation of the effects of temperature on the reading of a strain 

gauge [17]. 
 
 
 

Another important consideration for the implementation of strain gauges is 

transverse sensitivity and transverse strain, as mentioned above. Like longitudinal strain, 

as defined in Equation 1, transverse strain is the measure of the change in length over the 

original length. However, the length being measured is perpendicular, or transverse, to 

the strain gauge measurement direction [17]. If present in Figure 7, the transverse strain, 

𝜀 , would be represented as: 

𝜀 =
∆𝐷

𝐷
 (6) 
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For any given material, the material property represented by Poisson’s ratio, ν, is 

mathematically defined as the material’s transverse strain sensitivity in proportion to its 

longitudinal strain, 𝜀 ,  sensitivity: 

𝜈 =  
𝜀

𝜀
 (7) 

 

Therefore, the transverse strain measurement is equal to Poisson’s ratio times the 

longitudinal strain measurement. 

𝜀 = −𝜈 𝜀  (8) 

The change of sign in Equation 8 is due to the mechanics of the material. If the 

bar in Figure 7 was elongated, the measurement D would get smaller therefore transverse 

and longitudinal strain must be of opposite sign. 

As mentioned previously, strain measurements are of an exceedingly small order 

of magnitude, on the order of microns. While the sensitivity of the Wheatstone bridge 

preserves the accuracy of change in resistance signal to a change in voltage, data 

acquisition (DAQ) systems typically require amplification at these excitation levels [21]. 

Amplifiers are utilized to achieve this requirement as well as signal conditioning, 

balancing the bridge, and low-pass filtering [21]. 

Low-pass filtering enables the removal of some aliasing effects on the measured 

signal. When the analog filter whose half-power point is set to the Nyquist frequency 𝑓 , 

defined 𝑓 =  1 2⁄ ∆𝑡, is used as the low-pass filter, 50% of the energy is reduced at 𝑓 . If 

data is then collected at a sample rate of ∆𝑡, “aliasing restores the energy to nearly its true 

value at 𝑓 ” [22, p. 262].  
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Bridge balancing can be accomplished with trimming potentiometers to 

compensate for inexact resistors [23]. Balancing adjustment can also be utilized in the 

amplifier to adjust the analog signal zero point to give the largest measurement range 

[24]. If the analog to digital conversion (ADC) range is 0-5 volts, a nominal 2.5 volt 

reading at zero excitation would give the larges positive and negative range. 

ADCs transform the continuous analog signal into “a discrete binary code suitable 

for digital processing” [21, p. 139]. For application with strain gauges the analogue 

voltage signal must be converted to a digital signal be recorded. The accuracy of the 

chosen ADC must be considered, accuracy requirements include gain error, offset error, 

linearity, no missing codes, and evaluation over the expected temperature range. 

Conversion speed and system power limitations can also be determining factors in the 

choice of ADCs. 

Data Analysis 

Linear Regression Modeling for Calibration. Regression analysis was 

developed to find the best relationship between a response variable, Y, and one or more 

explanatory variables, x, as well as quantifying the strength of the relationship [25]. In 

scientific study, there exists some unknown parameters in the measured relationship 

between x and Y, the method of least squares regression analysis is often used to estimate 

the unknown parameters in this relationship through the generation of a regression line, 

shown in Equation 9 [26].  

𝑌 = 𝑎 + 𝑏𝑋 (9) 
 

Matlab uses the Least Squares linear regression method [27]. This method 

calculates the coefficients a and b of the linear regression line so that the sum of the 
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squares of the errors (SSE) about the regression line is minimum [25]. Where 𝑦  is the 

known value of the response variable, a and b are defined to minimize SSE as defined in 

Equation 10. 

𝑆𝑆𝐸 =  (𝑦 − 𝑎 − 𝑏𝑥 )  (10) 

 

Individual equations for a and b are derived from Equation 10 using partial 

differential equations to yield Equations 11 and 12. 

𝑏 =
𝑛 ∑ 𝑥 𝑦 − (∑ 𝑥 )(∑ 𝑦 )

𝑛 ∑ 𝑥 − (∑ 𝑥 )
 (11) 

𝑎 =  
∑ 𝑦 − 𝑏 ∑ 𝑥

𝑛
 (12) 

 

Where, 𝑥  is the explanatory variable, 𝑦  is the response variable, and n is the 

index of each datapoint.  

The variance, 𝜎 , the squared deviation of the observed response variable, 𝑦 , and 

the corresponding point to the linear regression equation, 𝑦  [25]. Mean squared error 

(MSE), 𝑠 , estimates 𝜎  in Equation 13. 

𝑠 =
𝑆𝑆𝐸

𝑛 − 2
 (13) 

 

A good linear fit of the regression has a small mean squared error. The square root 

of MSE, root mean squared error (RMSE), is the difference between the predicted 

response variable and observed response variable [28]. RMSE value is of the same 
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magnitude as the data therefore, RMSE is only a good predictor of model accuracy as a 

percentage of the error induced for each individual datapoint (RMSE/𝑦 *100) [29].  

The coefficient of determination, R2, is the proportion of variability in the model 

that is unexplained, SSE, to the proportion of variability in the model that is explained, 

total corrected sum of squares (SST) defined in Equation 14 [25].  

𝑆𝑆𝑇 =  (𝑦 − 𝑦 )  (14) 

 

Where, 𝑦  is the mean of the observed response variable for the data set. SST 

ideally represents the variation in the observed response variable explained by the model. 

Therefore, R2 is defined 

𝑅 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
 (15) 

 

It is important to note the reliability of R2 depends on the size of the data set and 

the type of data set to be analyzed. While an R2 value of 0.98 might be too low for a 

chemist to accept an experiment’s findings, an R2 value of 0.7 might be high enough for a 

psychologist to validate their experiment. R2 criterion also becomes dangerous when 

comparing different models of the same data set, if one datapoint is added the R2 value is 

artificially increased. For these reasons it is not recommended to use R2 as the sole 

descriptor of a model when analyzing its validity [25].  

 When implemented correctly, a linear regression model provides a 

relationship between a measured response variable and a known explanatory (input) 

variable [26]. When dealing with instrumentation, linear regression is used as a 
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calibration tool in the automotive industry, transportation industry, and at universities. 

The Texas Department of Transportation (DOT) contracted the Texas Transportation 

Institute (TTI) at Texas A&M University to conduct a study on the effects of road surface 

finish on vehicle dynamic loads and pavement life [30]. In this study, TTI instrumented a 

trailer axle with strain gauges, setup to measure in the vertical loading direction. This 

instrumentation was calibrated using specialized equipment, MTS loading system, to 

apply the highly accurate loads, reading the strain through a data acquisition system. The 

measured load-strain relationship was linear, as expected, therefore, a linear regression 

line was developed to characterize the load-strain relationship, calibration. Some data 

points from the calibration can be seen with the regression line in Figure 11. 

 
Figure 11: Data from Calibration of Trailer Axle [30]. 

 
 
 

 At Mahindra, an automotive company in India, strain gauges installed on a 

steering track rod were calibrated known tension and compression loads were applied to 

the component through a test fixture [31]. Strain data was collected during each loading 

application and analyzed to establish the calibrated strain-load relationship in Figure 12. 
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Figure 12: Track Rod Strain-Load Calibration [31]. 

 
 
 

 In another study at Mahindra, the torque on a driveshaft, CV-half shaft, was 

measured using a strain gauge installation [32]. In this study, the strain-load 

characterization was calibrated using specialized test equipment to apply a known torque 

on the instrumented driveshaft. 

 Finally, at the university level, a study was performed to calibrate a six-degree 

of freedom (DOF) force and torque sensor [33]. In each direction, the force and moment 

about that direction were applied and the strain was measured. A linear regression was 

performed to calibrate the gauge reading to the known force. All six forces and torques 

were calibrated within 1% error. One linear regression calibration is shown in Figure 13. 
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Figure 13: Linear Regression and Error Bars for Strain Output due to Torque about Y 

[33]. 
 
 
 

 From university to industry, linear regression is a useful and widely used tool 

for calibrating data. Careful inspection of the regression characteristics, MSE, RMSE, 

and R2, should be conducted to ensure the validity of the model before use. If the model 

strongly correlates to the data set, linear regression is a useful data analysis tool. 

Digital Filtering. The data sampling rate was determined by the designed event 

length and speed. Within this data collection frequency, noise is introduced to the sensor 

through the vibration of the system. On the vehicle, there are many frequency 

components, generated by mechanical sources not relevant to the system’s performance 

[23]. To understand the structural system performance only low-frequencies were of 

interest, introducing the need for a low-pass digital filter. This filter was specifically 

designed to remove unwanted frequencies utilizing the fast Fourier transform (FFT) 

function, {fft()}, in Matlab. 
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Digital filtering is performed in the frequency domain, instead of the time domain, 

allowing the data to be filtered without adding any phase angle or distortion [34]. The 

Fourier transform is the mathematical tool used to transform a time domain data series 

into the frequency domain [35]. Once in the frequency domain, the contribution of 

different frequencies can be adjusted and the inverse Fourier transform performed to 

return to the time domain, without any distortion of the original signal [23]. There are 

two main types of Fourier transforms, continuous- and discrete-time Fourier transforms. 

Continuous-time Fourier transforms are good for real-time processing of constant signals 

while discrete-time Fourier transforms are utilized to analyze data with set sampling 

intervals. The discrete Fourier transform is said to be the “backbone of modern digital 

signal processing” [35, pp. I-1]. The FFT is a special form of the discrete-time Fourier 

transform developed by Cooley and Tukey to reduce the computational time of 

performing the transformation [34]. Computational efficiency of the Cooley-Tukey 

method is achieved with an added requirement; the data string must be of a power of two 

in length. 

 In the automotive industry, Diamler-Chrysler Canada and other original 

equipment manufacturers (OEMs) utilize digital filter designs based on the FFT to 

analyze vehicle instrumentation data collected from an array of devices, including wheel 

force transducers, strain gauges, accelerometers, and rotary variable inductance 

transducers [36]. Using a band-pass filter to removed unwanted frequency from the data, 

Daimler-Chrysler Canada were able to create damage and displacement profiles. The 

output loads and displacements were used to validate a finite element analysis. 



 

26 

The Matlab fast Fourier transform is based off the FFTW Fourier transform 

software, developed at the Massachusetts Institute of Technology [37]. FFTW is an 

adaptive, high performance implementation of the Cooley-Tukey [38] FFT algorithm 

specifically designed to reduce the computational time to perform the discrete-time 

Fourier transform. FFTW outperforms similar programs in computational speed and 

result accuracy while maintaining the ability to perform one- and multi-dimensional 

transforms without restricting input sizes to only powers of two.  

Simplified from Cooley-Tukey [38], the main equations from FFTW, presented 

by Matlab [39] are defined as follows, where X is the dataset in the time domain, Y is the 

Fourier transformed dataset into the frequency domain of a dataset of length n. 

𝑌(𝑘) =  𝑋(𝑗)𝑊
( )( ) (16) 

𝑋(𝑗) =  
1

𝑛
𝑌(𝑘)𝑊

( )( ) (17) 

 

Where 

𝑊 =  𝑒( )/  

 

is one of n roots of unity. 

(18) 

 

Equation 16 is the overall equation executed when the Fourier transform is taken 

utilizing the {fft()} function in Matlab, while Equation 17 is the overall equation 
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executed when the inverse Fourier transform is taken utilizing the {ifft()} function in 

Matlab [39]. 

The designed low-pass frequency must be taken with particular attention to the 

effects of signal aliasing, as described below. 

Figure 14: Two Continuous Sinusoidal Signals Sampled at 0.2 Sec [40]. 
 
 
 

 In Figure 14, two continuous sinusoidal signals of different frequencies are 

sampled every 0.2 seconds. The discrete points generated from sampling each signal 

every 0.2 seconds are the same values, causing the higher frequency analog signal, when 

sampled, to appear like the lower frequency signal. This phenomenon is called aliasing 

[40]. Due to aliasing, the cutoff frequency in low-pass filtering must be significantly 

larger than the frequency of interest, 10 to 20 times higher than the frequency of interest 

[22]. 

Confidence Interval. Of the various types of statistical intervals calculable from 

sample data, the confidence interval contains an unknown characteristic of the sampled 

population or sampling process [26]. Therefore, the confidence interval can help account 

for some of the unknown variability in the sampling process, giving the analyst a higher 

degree of confidence by providing the probability of selecting a random sample that is 
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within the specified interval range [25]. For a Gaussian distribution, where the sample 

mean 𝑋 and sample standard deviations are known, the 95% confidence interval is 

defined as 𝑋 ± 1.96𝑠 [21]. As a rule-of-thumb, the confidence interval proportion, 1.96, 

can be estimated to be 2 [41].  

𝑋 is the mean of the sample population and s is the standard deviation of the 

sample population, as defined in Equations 19 and 20. 

The sample mean, 𝑋, is defined as the average of the samples observed. 

𝑋 =
∑ 𝑥

𝑛
 (19) 

Sample standard deviation, s, is the square root of the average squared deviation 

of individual observations from the sample mean.  

𝑠 =  
∑ (𝑥 − 𝑋)

𝑛 − 1
 (20) 

 

It is important to utilize uncertainty analysis (confidence intervals) to estimate the 

uncertainty in the measured data [42]. Confidence intervals can give an acceptable level 

of confidence associated with the measured response variable for a normal distribution. 

The central limit theorem suggests that with a sufficiently large samples size, the sample 

mean will be approximately normally distributed [41]. Therefore, if the sample size is 

large enough, a confidence interval, of x standard deviations from the mean, can be 

utilized to account for some of the unknown variability in the data collection process. For 

smaller sample sizes, Wei [43] at Tenneco Automotive, established the accuracy of the 

confidence interval to provide a conservative design limit on strain data, noting that a 

sample size of three is too small and would result in an overly-conservative estimate. 
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Finite Element Modeling 

To perform a linear static analysis on the CAD of a component, a finite element 

(FE) software must be utilized. The FE method is popular because of its speed in 

performing a large number of computations, enabling the software to analyze problems 

with complex geometry and loading conditions in a wide variety of engineering problems 

[44]. FE software execute a system of partial equations in the form of matrix 

mathematics. There are three matrices used to calculate the displacement in each node 

due to the boundary conditions; force matrix, structural matrix, and displacement matrix. 

The structural matrix represents the geometric and material properties of the model. 

These properties define the structural characteristics of the element to resist deformation 

under loading, allowing the forces and displacements to be correlated at each node of the 

elements. There are two types of structural matrices; the stiffness matrix, and the transfer 

matrix. The stiffness matrix defines the relationship of the displacements at the nodes to 

the forces while the transfer matrix defines the relationship of the displacements and 

forces of one node to another [44]. 

 
Figure 15: Force Matrix (Left), Structural Matrix (center), Displacement Matrix 

(Right) [44]. 
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FEMs are approximate by nature. Due to the use of a finite number of elements, 

the displacements not at a nodal location are not solved. FEMs are also only as good as 

the input characteristics; load case, geometry, constraints, material properties, and mesh 

[44].  

Using the methodology described above an FEA is performed by a series of steps: 

 Divide the structure into finite elements, known as meshing. 

 Define the properties of the elements, material characteristics as well as the type 

of FEs.  

 Define the constraints on the model. 

 Define the loads acting on the model. 

 Solve the system of equations. 

 Calculate the desired output, stress, strain, displacement, factor of safety, etc. 

The precision of each of these steps is critically important to the precision of the 

model. An error in any of these steps will propagate through the simulation and result in a 

large error in the result.  

Each software has a different user interface for selection of the input variables but the 

fundamental methods of solving the matrices are based in the same mathematics. Some 

popularly used software are Nastran, Abaqus, Ansys, and Solidworks Simulation [44]. 

The main difference in software are the specific theorems implemented to solve a model 

and the logic in determining what theorem best fits each model. This software logic is not 

published as it is more beneficial for the corporations who create the software to keep 

them private. One key aspect of the FEM that information is published about is the mesh. 
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Ansys and Solidworks both publish what type of mesh elements are utilized in their FE 

software [45, 46].  

Solidworks Simulation “high quality” mesh uses second-order tetrahedral solid 

elements [45]. As displayed below in Figure 16, second-order tetrahedral elements have a 

much higher resolution than first-order tetrahedral elements, 30-DOF as compared to 12-

DOF [47].  

 
Figure 16: First-Order Tetrahedral Element, Left, Second-Order Tetrahedral Element, 

Right [47]. 
 
 
 
 

The Solidworks Simulation second-order tetrahedral solid element is the same type of 

element used by ANSYS [48]. ANSYS is a commonly used FE modeling software that 

uses 3-D quadratic tetrahedral elements as of their newest software release, 19.0 [46]. 3-

D quadratic is another way of saying second-order as second order is quadratic.  

The accuracy of the elements is important to note, as any variation in calculation 

of elements can lead to vastly differing results in FE models. Previously the accuracy of 

tetrahedral and hexahedral mesh elements has been compared to beam theory, with a high 

degree of accuracy in tension, bending, and torsion, as displayed in Figure 17: Stress 
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Concentration Test for Different Elements . Where the closed solution is beam theory 

[48]. 

 
Figure 17: Stress Concentration Test for Different Elements [48]. 

 
 
 

Solidworks is becoming more widely used at universities and in many industries 

including the automotive industry, particularly in race vehicle design [49, 50, 51, 52, 53]. 

Donkervoort Automobielen BV, a Dutch automotive manufacturer utilizes Solidworks to 

design their high-performance vehicles. Using the integrated design and simulation 

platform to save time in the design process [50]. University design teams utilize 

Solidworks CAD and Solidworks Simulation because its ease of use reduces the learning 

curve for new members while the integration between simulation and design reduce 

design iteration time [51]. 

Topology Optimization 

Structural design optimization turns design constraints into a minimization 

problem with the goal of finding the optimal solution of the variable(s), x, to minimize a 

function, f(x) [54]. Components of a structure that can be used as a design variable 

include material, cross-sectional shape and dimensions, joint and member assembly, joint 

location, and types of joints and supports used. For example, for a beam under axial, 
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torsional, and bending loads with specified material, constraints, and geometric envelope, 

the cross-sectional shape can be optimized to minimize weight while meeting failure 

criteria. Axial loading capacity depends on the cross-sectional area of the beam, as 

determined by the normal stress in the beam under axial loading in Equation (21) [55]. 

𝜎 =
𝑃

𝐴
 (21) 

 
Where bending capacity depends on the second area moment of inertia of the 

beam, I, also determined by normal stress in the beam under bending in Equation(22). 

𝜎 =
𝑀𝑦

𝐼
 (22) 

 
While the torsional loading capability depends on the polar moment of inertia, J, 

as determined by shear stress in the beam under torsion in Equation(23). 

𝜏 =
𝑇𝑦

𝐽
 (23) 

 
The cross-sectional area, second area moment of inertia, and the polar moment of 

inertia are determined based on the shape of the beam. 

For a hollow tube, the cross-sectional area and second moment of inertia are given 

in [56] while the polar moment of inertia is given in [57], displayed in Equations 

(24)(25), and (26) respectively. 
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Figure 18: Hollow Tube, Inner and Outer Radii 

 
 
 

𝐴 = 𝜋(𝑟 − 𝑟 ) (24) 

𝐼 =
𝜋

4
(𝑟 − 𝑟 ) (25) 

𝐽 =  
𝜋

2
(𝑟 − 𝑟 ) (26) 

 

For a square tube, the cross-sectional area, second area moment of inertia, and 

polar moment of inertia are derived in Equations 27, 28, and 29 respectively derived from 

Rajan (2001) [54]. 

 
Figure 19: Square Tube, Inner and Outer Edge Length 

 
 
 

𝑟

𝑟

a

b
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𝐴 =  𝑎 − 𝑏  (27) 

𝐼 =
𝑎 − 𝑏

12
 (28) 

𝐽 =
𝑎 − 𝑏

6
 (29) 

 

In the automotive industry complex optimization equations are created and 

utilized to solve more complex geometrical cross-sectional shapes under various 

constraints; material, space, etc. [58]. Others use complex optimization software, like 

Altair’s Optistruct, to optimize for example the thickness of a beam, to get the minimum 

volume, given the constraints and loads as well as the optimization parameters of 

maximum fatigue life and maximum allowable deflection [14]. The topological results 

from complex simulation can sometimes be used directly for component final design but 

this is not always the best or most manufacturable solution [59]. Topological results are 

an efficient way to find the idealized shape and work from this to make the component 

manufacturable. 
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Chapter III 

Methodology 

After testing the 2016 Women’s Baja vehicle, Nichole, the front passenger lower 

fore control link bent, as see in Figures Figure 20 and Figure 21. 

 
Figure 20: Right Front Lower Fore Control Arm, Deformation 

 
 
 

 
Figure 21: Control Arm Deformation Area, Enhanced 

 
 
 

The deformation failure present in the component was not predicted with the 

loading condition used in initial model validation. To understand the most common load 

case in the component, DOE methods were used to design an experimental test of this 

load case, measure the strain present in the member, and re-design the member to 

withstand this loading condition. 
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To validate this load case, it must first be defined. In the automotive industry, 

manufacturers have to deal with a wide service loading variation but fortunately for Baja, 

the vehicle service life has little variation as it is only designed to meet the loading 

conditions experienced at competition [15]. Competition loading conditions vary 

according to where the track is setup and who leads this charge. However, there are some 

loading conditions that consistently occur at each competition. One of these loading 

conditions is an obstacle that is hard, stationary, fixed and between 3 and 12-in tall; 

obstacles can include logs, concrete blocks, and rocks. 

 
Figure 22: Concrete Block, Approximately 3.5in High 
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Figure 23: Logs, Approximately 15in in Diameter 

 
 
 

 
Figure 24: Muddy Log, Approximately 8-12in Protruding 
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Figure 25: Large Concrete Chunk, Approximately 1 ft in Height 

 
 
 

To replicate this common load case on campus, an obstacle similar in shape and 

height is utilized, a parking chalk. Parking calks on campus vary in shape and size but the 

ones near the Mechanical Engineering building are 8-in wide and 5-in tall. This height is 

close to some of these obstacles and similar in shape. 

 
Figure 26: Parking Calk Width Measurement 
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Figure 27: Parking Calk Height Measurement 

 
 
 

Obstacles of this magnitude are typically contacted at a middle range speed, 

around 12 mph. Though they can be contacted at full speed, around 30 mph, if the driver 

does not see the obstacle. For combined loading, in axial and bending, the worst case is 

contacting the parking chalk straight on therefore this is the chosen loading condition. 

The initial FEM used for component design validation, with the approximation of 

this loading condition, was used as a starting point to identify the area where the strain in 

the component would be highest in order to instrument the component in that location. 

For the DOE the objectives are to: 

1. Obtain three statistically calibrated maximum strain gauge measurements from 

each run of the event. One in the axial direction and two in bending about SAE-

coordinate x and z axis respectively during the dynamic loading condition defined 

above. Along with vehicle speed and position captured by global positioning 

system (GPS). 

2. Statically model the measured event to calculate each strain, 𝜀 , 𝜀 , and 𝜀 , 

using a 95% confidence interval. 
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3. Utilize the linear FEM to calculate the remote load based on the strain in each 

direction. 

4. Re-Design the component to withstand this load case under fatigue and to 

structurally withstand the load case scaled, by momentum, for the top speed of the 

vehicle. 

Strain Gauge Installation and Instrumentation 

To achieve the first objective of the DOE, strain gauges must be specified and 

sourced, strain gauge layout must be determined, an amplifier must be specified and 

sourced, and a data acquisition system must be selected, or designed, and programmed. 

Strain gauges were then specified and purchased based on industry recommended 

manufacturers, excitation voltage of DAQ system, and ease of use. Omega manufactures 

strain gauges for many industrial applications and are widely used in the automotive 

industry. The strain gauge selected is specified in Table 1.  

 
 
 

Table 1 
 

Strain Gauge Specification 
 
Company Type Resistance Grid 

Length 
Grid 
Width 

Tolerance Gauge 
Factor 

Product 
Name 

Omega Linear 350 ohms 4.5mm 3.2mm +/- 0.30% 2.13 
SGD-
5/350-
LY11 

 
 
 

The strain gauge resistance was determined by the supply voltage of the DAQ, 5 

volts. For stability of the strain gauge zero balance no more than 10 to 15 mA is 

recommended to go through the strain gauge [17]. This would mean a 350 Ω resistor 
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could withstand anywhere from 5 to 10 volts where the next common size down, 120 Ω, 

would only be recommended to work between 2 and 4 volts. 

For the same gauge specifications, there are many grid dimensions to choose 

from, both in width and length. The larger the strain gauge the easier it is to align 

correctly making installation more accurate. The chosen strain gauge was close to the 

length of the elements in the FEM and not too wide to fit on the curved component. The 

gauge also came with ribbon leads, for easier installation to the bondable terminal pads, 

and was built to be mounted on steel. 

A half bridge installation was used to cancel temperature changes and use the 

smallest number of strain gauges. Utilizing Equation (5), a half-bridge was circuit derived 

to measure strain of a bar in bending, with strain gauges in the R1 and R4 positions. 

Therefore: 

𝑉

𝑉
=

(∆𝑅 − 0 + 0 − ∆𝑅 )

2(2𝑅 )
 

(30) 

 

 
Figure 28: Strain Gauge Longitudinal Strain Measurement of a Beam in about the SAE 

defined z-direction in a Half Bridge 
 
 
 

For strain in bending about the SAE defined x-direction a half-bridge, strain 

gauge set 1 (SG1), was installed with R1 is on the bottom of the bar and R4 is on the top 

of the bar, from a view point looking at the vehicle from the front, as illustrated above in 
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Figure 28. The longitudinal strain is the only strain being measured and is defined for 

each gauge as: 

 

With the positive moment defined in Figure 28, the equation of the half bridge 

can be derived from Equation 30: 

𝑉

𝑉
=

𝑅 (1 − 𝑘𝜀) − 𝑅 (1 + 𝑘𝜀)

2(2𝑅 )
 (33) 

𝑉

𝑉
=

𝑅 (−2𝑘𝜀)

2(2𝑅 )
 (34) 

𝑉

𝑉
=

−𝑘𝜀

2
 (35) 

 

The sign of the measurement was confirmed with the calibration, when a force is 

applied to cause a negative moment the circuit measures a positive strain. This is 

considered in the calibration. 

For strain in bending about the SAE defined z-direction a half-bridge, strain 

gauge set 2 (SG2), was installed with, R1 is on the front of the bar and R4 is on the back 

of the bar, from a view point looking down from above the vehicle, as illustrated below in 

Figure 29. 

𝑅 = 𝑅 (1 − 𝑘𝜀) (31) 

𝑅 = 𝑅 (1 + 𝑘𝜀) (32) 
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Figure 29: Strain Gauge Longitudinal Strain Measurement of a Beam in Bending about 

the SAE defined z-direction in a Half Bridge. 
 
 
 

The derivation of the strain measured in the half-bridge created above is the same 

as the half-bridge created by the bending about the x-direction. The sign of the 

measurement was confirmed with the calibration and accounted for in the calibration. 

One method of measuring axial strain utilizing a half-bridge is to measure the 

transverse strain. For this experiment one strain gauge in the half-bridge, strain gauge set 

3 (SG3), was setup to measure both transverse and longitudinal strain illustrated below in 

Figure 30. 

 
Figure 30: Strain Gauge Set 3, Longitudinal and Transverse Strain Measurement of a 

Beam Subject to Bending and Axial Force. 
 
 
 

As depicted in Figure 30, the strain gauge in bridge position 4 is installed 

transverse to the y-axis and the strain gauge in bridge position 1 is installed longitudinally 

along the y-axis. This strain gauge setup measures the axial strain and the bending strain 

in the bar as derived, starting with Equation 30, below. 
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𝜀 = 𝜀 + 𝜀  (36) 

∆𝑅 =  −𝜈𝜀  (37) 

∆𝑅 =  𝜀   (38) 

Δ𝑅

𝑅
= 𝑘𝜀 (39) 

 

𝑉

𝑉
=

Δ𝑅

4𝑅
−

Δ𝑅

4𝑅
 (40) 

𝑉

𝑉
=

𝑘

4
𝜀 −

𝑘

4
−𝜈𝜀  (41) 

𝑉

𝑉
=  

𝑘

4
(1 + 𝜈)𝜀  (42) 

𝑉

𝑉
=

𝑘

4
(1 + 𝜈) 𝜀 + 𝜀  (43) 

 

To obtain pure axial strain from SG3, the bending strain must be removed after 

the measurements are taken. This bending strain is the same bending strain measured in 

SG1. Re-writing Equation 43 in terms of axial strain: 

𝜀 =  
𝑉

𝑉

4

𝑘(1 + 𝜈)
− 𝜀  (44) 

 

 From Equation 35: 

𝜀 = −
𝑉

𝑉

2

𝑘
 (45) 

 

 Combining Equations 44 and 45, resolves the axial strain in the member. 
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𝜀 =  
𝑉

𝑉

4

𝑘(1 + 𝜈)
+

𝑉

𝑉

2

𝑘
 (46) 

The location of the strain gauges was determined by the initial FEM performed on 

the component with the approximate loading condition applied, as previously mentioned. 

The FEM strain result of this approximate loading condition can be seen in Figure 31. 

The element selected is one of the highest strain locations on the member, no due to small 

angle error at the mounting point of the spherical bearing attachment to the member. This 

location is also close to the failure location identified in Figure 20 and Figure 21. 

Figure 31: Component Strain Due to Initial Loading Condition Estimation. 
 

The strain gauges were then installed on the left lower fore control link following 

the Vishay installation guide provided by the ERAU Aerospace Engineering (AE) 

materials lab instructor [60]. Vishay is a strain gauge manufacturer that also produces 

strain gauge adhesives. As Omega does not provide a guide or recommendation for the 

adhesive used for installation. The strain gauges used can be secured with either “cold or 

hot curing adhesives” [61]. There is no specific adhesive in the strain gauge datasheet, 

only that the strain gauge and the soldering pads be affixed with the same adhesive. The 
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chemical composition of strain gauge adhesives are similar between manufacturers 

therefore the Vishay M-Bond 200 adhesive donated by the ERAU AE materials lab 

instructor were used out of convenience. M-Bond 200 is a good adhesive to use for this 

experiment as it is designed to withstand high elongation tests, exceeding 60,000 micro 

strain (με). Normal operating temperature range of the adhesive is -25° to 150°F, 

significantly above the range of the experiment 70° to 85°F.  

M-Bond 200 is recommended, for best reliability, to be installed at a temperature 

range of 70° to 85°F and between 30% and 65% relative humidity [60]. This criterion 

was met by installing the strain gauges in the lab, where the temperature and humidity are 

within this range. The strain gauge installation guide [60] was followed step by step to 

secure the strain gauges and the solder pads to the specimen, notes on any deviations 

taken and the installation guide can be seen in Appendix B. The required products for 

complete installation of the strain gauges are listed: 

 M-Bond 200 Adhesive 

 PDT-1 6600 Drafting Tape 

 M-Flux AR-2 Activated Rosin soldering Flux 

 M-Coat A Air-Drying Polyurethane Coating 

 M-Line Rosin Solvent 

 M-Prep Neutralizer 

 Isopropyl Alcohol 

 GSP-1 Gauze Sponges 

 CPS-1 Cotton Swabs 

 PCT – 2M Gauge Installation Tape 
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After securing the strain gauges and solder pads to the specimen, via the adhesive 

process described above, the ribbon leads and lead wires need to be soldered to the solder 

pads. This process is described in Vishay application note TT-609 [62]. After all 

soldering was complete, the strain gauge installation needed to be protected, a 

polyurethane coating aids in this goal as well as protecting the adhesive bond. 

Polyurethane coatings are essential for the life of the bond as M-Bond 200 bonds are 

weakened by exposure to high humidity. Due to this degradation, M-Bond 200 is not 

recommended for installations exceeding one to two years. 

Data Acquisition System 

After the strain gauges are installed on the specimen, the lead-wires are wired, 

through connectors, Figure 32 and Figure 33, to the DAQ.  

 
Figure 32: Lead-Wire Connected to Wire Harness 
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Figure 33: Wire Harness Connected to DAQ Box 

 
Since no access to an industrial DAQ was found, the DAQ was designed around 

using an Arduino to process and record the strain signal. For this setup to function the 

strain signal first needed to be amplified. 

Amplifier.  There were two iterations of amplifier design. The first was an off the 

shelf amplifier and ADC, HX711, while the second was a custom amplifier build by 

Mike Potash, an electronics technician with the college of engineering at ERAU. The first 

amplifier was easy to implement with included example code and wiring guide. With a 

gain of 128 and a 24-bit ADC, the amplifier had good resolution. The issue with the 

HX711 amplifier was the sampling frequency allowed. At just 10Hz to 80Hz the data 

collection could not be made at a high enough frequency to measure the event. 

Sampling Frequency.  The sampling frequency needed to capture the event is 

derived from the event time defined in Equation (47) and the number of samples needed 

during the event, typically 10-20 to prevent aliasing, illustrated in Figure 34.  
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Figure 34: Samples within Event 

 
 
 

𝑣 ≅  
∆𝑥

∆𝑡
 =>  ∆𝑡 ≈  

∆𝑥

𝑣
 (47) 

 

Where, distance is x, velocity is v, and time is t. 

For the defined event the target speed is 12 mph, the parking chalk is 8 inches 

wide therefore the event time can be calculated using Equation (47). 

∆𝑡 =  
8𝑖𝑛

1

1𝑓𝑡

12𝑖𝑛

1𝑚𝑖𝑙𝑒

5280𝑓𝑡

1 ℎ𝑟

12𝑚𝑝ℎ

3600𝑠

1ℎ𝑟
=  0.03787s 

(48) 

 

With the event time of 0.03787s, the frequency for one sample over the event 

would be the 1/0.03787s or 26.4Hz. The need for 10 to 20 samples over the event makes 

the sampling frequency between 264 and 528Hz. This is well above the 10 to 80Hz 

sampling frequency provided by the HX711 amplifier.  

As there is no speedometer on the Baja vehicle a higher sampling frequency was 

selected, 350Hz, to provide a buffer for inaccuracy in driving speed during the data 
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collection. The second amplifier was designed to have a maximum sampling frequency of 

1kHz, well above the design sample frequency. The amplifier contains the second half of 

the Wheatstone bridge built into the board as well as an antialiasing filter and zero offset 

balancing potentiometers for each strain gauge set. Leaving the ADC to the Arduino. The 

ADC on the Arduino Uno board used has a 10-bit resolution, providing 1023 units at 5 

volts or 0.0049 volts per unit [63]. With the 128 gain of the amplifier this provides a 

resolution of 0.00003828 volts/unit or 11.15με in the axial direction and 7.19με in 

bending. At the expected strain this resolution within 5% error. The final important factor 

of the ADC is the reading rate, or frequency at which the board can read the signal. For 

the Arduino Uno the maximum reading rate is 10kHz, many factors above the selected 

sampling frequency [63].  

With the amplifier and ADC selected, the last part of the hardware components 

for the DAQ is the data recording component. Many SD shield are compatible with the 

Arduino, however none of them can record enough channels, 3 strain gauge channels and 

3 GPS channels. Thankfully the Raspberry Pi microcomputer can communicate with 

serial devices through the USB ports. 

Raspberry Pi. The Raspberry Pi communicates over serial through python 

scripting. Two python scripts were created to import the data from the Arduino and the 

GPS respectively and write the information to two separate comma separated variables 

(csv) files. This was accomplished by identifying the device location as defined by the 

Raspberry Pi, creating a file and type, reading the serial input from the device, and 

writing that information into the file. For the Arduino the baud rate was the most 

important variable as it is defined as the signal speed in number of bits per second [64]. 
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For the data collection from the Arduino, a count sample count is sent along with the 

voltage and three strain signals. Each of these five signals are an eight-byte number 

which makes forty-bytes per sample. With eight bits in a byte, each sample is 320 bits. 

To get the baud rate of the signal, at 350 samples per second, the sample size in bytes 

must be multiplied by the sample frequency, obtaining a minimum baud rate of 112,000 

bytes per second. The baud rate is less important for the GPS data collection as the GPS 

device only operates at 1Hz. A baud rate of 115,200 bits per second is a standard baud 

rate for most micro-controllers. The Arduino scrip and two python scripts written for the 

DAQ system can be seen in Appendix D. Once the data acquisition system was specified 

and programmed, an initial data collection test was performed by collecting data from the 

Arduino and the GPS through the DAQ while driving the vehicle around in the parking 

lot near the lab. 

Calibration 

After the initial proof of concept did not present any errors in the DAQ system, 

the strain gauges were calibrated. Calibration of the three strain gauge sets requires three 

setups; one to apply a load in the positive z-direction of the SAE coordinate frame to 

create a negative moment about the x-axis to calibrate SG1 and SG3 for the strain created 

due to the moment at the gauge, one to apply load in the negative x-direction to create a 

negative moment about the z-axis to calibrate SG2 for the strain created due to the 

moment at the gauge, and one to apply the axial force about the positive y-axis to 

calibrate SG3 for the strain created due to the axial strain in the member. The calibration 

setup for the moment about the x-axis is shown in Figure 35 and Figure 36. The 

component is fixed such that the instrumented linkage is pinned at the end closest to the 
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strain gauges and the non-gauged link is free, creating a cantilevered beam loading 

application. The weight is applied to the right end of the beam, near the spherical bearing, 

creating a large moment at the strain gauge location. 

 
Figure 35: Strain Gauge Calibration Setup for Strain Measurement Due to Bending 

about the x-axis in the SAE Coordinate Frame, Component Perpendicular to the 
Ground 

 
 
 

 
Figure 36: Strain Gauge Calibration Setup for Strain Measurement Due to Bending 

about the x-axis in the SAE Coordinate Frame, Component Perpendicular to the 
Ground and Non-Gauged Linkage Not Constrained. 

 
 
 

 The z-moment calibration setup, as seen in Figure 37, was also fixed as a 

cantilevered beam. The weight application can be seen in the figure. 
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Figure 37: Strain Gauge Calibration Setup for Strain Measurement Due to Bending 

about the z-axis in the SAE Coordinate Frame, Component Perpendicular with 
Calibrated Weights Applied. 

 
 
 

 Finally, the axial load, applied in the positive y-direction, was calibrated with the 

setup seen in Figure 38 but applying the weight using the setup illustrated in Figure 39. 

 
Figure 38: Strain Gauge Calibration Setup for Axial Loading, Along Positive y-axis. 
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Figure 39: Weight Balance for Strain Gauge Axial Calibration Utilizing Two 

Turnbuckles. 
 
 
 

 The turnbuckles seen in Figure 39 were used to level the weight about the 

component to minimize the offset of the weight from the center axis of the component. 

These setups were used along with a serial capture program [65] to write the strain 

readings from each strain gauge set to a csv file. During the calibration the component 

was loaded and unloaded with three to five different weights thirty times each. For the 

bending moment strains, in the x- and z-directions, five different weights were applied 

while only three weights were applied in the axial direction, due to the need for load 

variation and a limited number of weights. The mean and standard deviations of the thirty 

measurements taken during each weight application are presented in Table 2, Table 3, 

and Table 4. 
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Table 2 
 
Calculated and Measured Strain Due to Load Applied to Cantilevered Beam Creating a 
Moment of Bending about the x-axis, Mb , at the Strain Gauge as Seen in Figure 35. 

Mean and Standard Deviation of 30 Measurements Presented for Each Weight. 
 

Weight 
(lbs) 

SG1 measurement 
 (με) 

Expected 
Strain at 
SG1(με) 

SG3 measurement 
 (με) 

Expected 
Strain at 
SG3(με) 

 𝑋 𝑠  𝑋 𝑠  

10  96.4   2.6078 -97.7 -110.5962 4.7836 -102.2 
20  194.0361 1.7944 -195.4 -236.5254 3.9121 -204.4 
25  241.7861 1.9793 -244.2 -296.8024 3.0161 -255.5 
35  337.4406 5.6248 -341.9 -414.2892 7.0744 -357.8 
45  437.7361 2.5962 -439.5 -540.4107 3.7807 -460.0 

 

 
 
 

Table 3 
 
Calculated and Measured Strain Due to Load Applied to Cantilevered Beam Creating a 

Moment of Bending about the z-axis at the Strain Gauge as Seen in Figure 37. 
 

Weight 
(lbs) 

SG2 measurement 
 (με) 

Expected Strain 
at SG2(με) 

𝑋 𝑠 
10  95.4486 1.8117 -97.2 
20  192.1500 2.8415 -194.4 
25  243.1733 1.7690 -243.1 
35  342.642 3.0068 -340.3 
45  440.7454 3.2138 -437.5 

 

 
 
 

Table 4 
 
Calculated and Measured Strain Due to Axial Load, F , Applied to Component as Seen 

in Figure 38. 
 

Weight 
(lbs)  

SG3 measurement 
 (με) 

Expected Strain 
at SG3(με) 

𝑋 𝑠 
100 13.4578 0.8692 34.06 
150 21.7400 1.4967 51.09 
194 26.7907 1.3206 66.11 
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All the calibration datapoints are used in a linear regression model to create one 

linear equation of calibration for each strain gauge. The linear calibration are shown in 

Equations (49), (50), and (51). 

𝜀 = 2.2512 ∗ 𝜀 + 3.8787 (49) 

𝜀 = −1.0039 ∗ 𝜀 − 1.2337 (50) 

𝜀 = −0.9827 ∗ 𝜀 − 4.1858 (51) 

 
 
 

 The regression lines are highly correlated with low MSE, RMSE, and high 𝑅  

values as seen in Table 5. 

 
 
 

Table 5 
 

Descriptive Statistics of Linear Regression Model for Strain in Each Direction. 
 

Calibrated Direction MSE RMSE 𝑅  
𝜀  9.8994 3.1463 0.9442 

𝜀  11.5114 3.3928 0.9992 
𝜀  6.9273 2.6320 0.9995 

 

 
 
 

With the vehicle instrumented and calibrated the experiment could be run but first 

the FEM setup was checked with the calibration loads and constraints to ensure similar 

strain values as the ones in the gauged locations. 

Finite Element Model 

 The similar loads and constraints were used in the FEM as the calibration to 

verify the material properties, the mesh, and the model software. First the 𝜀  load case 
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was tested; a cantilevered beam, modeled with fixed tri-axial rotation at the bushing-

chassis attachment joint, with the load applied as a point load at the same location as the 

calibration, 15.8 inches from the axis of fixed rotation. Next the axial load case, 𝜀 , was 

tested in the FEM with fixed tri-axial rotation at the bushing-chassis attachment joint and 

the axial load applied at the far end of the bar. Finally, the 𝜀  load case was tested, 

similarly to the 𝜀  conditions but the force is applied at 16.425 inches from the axis of 

fixed rotation. This last load case under 45 lb condition is modeled in Figure 40, where 

the strain in the component at the location of SG2 is 327.4 με, expectedly lower than the 

calibration value due to the fixed location being farther from the strain gauge. These 

results are similar enough to the calibration to continue with the model. 

 
Figure 40: Strain Calibration in Bending about the z-axis FEM. 

 
 
 

 The FEM was then constructed with the same constraints as the loading condition 

of the event, a beam pinned at both ends. The constraints at both bushing-chassis 
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attachment points were pinned using a “on cylindrical faces” constraint where the 

cylinder was not allowed to translate in either direction only rotate about its axis. While 

the constraint at the spherical bearing mount was free to translate along the y-axis and to 

rotate about the z-axis but not to translate along the z-axis using the “on cylindrical 

faces” constraint.  

 With the model constraints verified, the strain gauges installed and calibrated, the 

component re-installed in the vehicle, and the DAQ wired the data collection was 

performed over the event eleven times. The data produced from those runs are analyzed 

in the Chapter IV. 
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Chapter IV 

Results 

 On December 13th, 2018, 11 runs were collected utilizing the hardware and 

software outlined above. Each run was recorded to a csv file and imported into Matlab 

utilizing the Thesis_Data_Collection_Code_Setup_v2.m file. First running sub-code 

Calibration_Data_Collection_Analysis.m which defines the constants, imports the 

calibration data, and calibrates the data collection readings to the known applied strain, as 

discussed above.  

Data Analysis 

The eleven runs of data were then imported from two separate files each, the 

Arduino files, and the GPS files. As discussed above it was not possible to collect both 

readings into the same datafile. The GPS records velocity in knots, converted here to m/s. 

A check was performed to ensure all values were between 0 and 1023, as any 

value outside this range would be a bad datapoint due to the utilization of the Arduino 

analogue pins, which read from this range [63]. All data values were found to be within 

the acceptable range. 

As discussed above, the data collection frequency was set to 350 Hz for the 

Arduino data collection. This frequency was met however, some intervals were not 

received by the raspberry pi due to the collection maxing out the central processing unit 

(CPU). The missed data and its effect on the ability of the run to capture the event is 

illustrated in Table 6 and Table 7. 
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Table 6  
 

Missed Data During Experimental Data Collection, Illustrated as a Percentage of the 
Total Data Collection with the Effect on the Event. 

 
Run Collection 

Points Missed 
Number of Collection 

Points Total 
Percentage 

Missed 
Effect on Data 

About Run 
1 0 19885 0% None 
2 471 20213 2.33% None 
3 378 17057 2.22% None 
4 205 17219 1.19% None 
5 267 18844 1.42% None** 
6 621 17146 3.62% None* 
7 225 16567 1.36% None 
8 0 19063 0% None 
9 450 16215 2.78% None 

10 0 14259 0% None 
11 0 11295 0% None 

*Missing Data Occurs One Second After the End of the Event. 
**Missed Data Occurs Two Seconds After the End of the Event. 
Special attention should be paid to the data about the event for these two runs to verify 
the event was captured and the missing data does introduce error 

 
 
 

Table 7  
 

Identification of Missing Datapoints and Location of Event Endpoint 
 
Run Missing Sections Event 

Endpoint 
Notes 

2 12,722-13,139 1,197 - 
3 11,065-11,443 1,260 - 
4 13,274-13479 1,374 - 
5 1,848-2,115 1,278 less than 2 seconds after event 
6 1,502-1,673 & 16,512-16,962 1,251 less than 1 second after event 
7 8,280-8,505 1,247 - 
9 15,764-16,214 1,107 - 

 

 
 
 

 

The event endpoint was identified at the end of run 11 when the vehicle was 

driven to the far side of the parking chalk while the instrumentation was still gathering 
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data, providing GPS data for the location just after the parking chalk. This data was then 

utilized to develop a line of the approximate parking chalk location, as seen in Figure 41. 

Figure 41: GPS Waypoints of Data Collection 11, Identifying the GPS Location of the 
Parking Chalk 

 
 
 

All the preceding runs were conducted in an oval pattern as seen in Figure 42. 

 
Figure 42: GPS Waypoints, Data Collection 4, Overlay with Google Maps 

 
 
 

The Matlab “polyxpoly” function was utilized to return the location of 

intersection of each GPS dataset with the chalk line and the index of the closest GPS 
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datapoint from each dataset before the parking chalk location, seen in Figure 60-Figure 

70 in Appendix .  

 The next step is GPS and Arduino data concatenation. Differences in sampling 

frequency introduced complexity to this step, as the GPS data is collected at 1Hz and the 

Arduino data is collected at 350Hz. To correlate the datasets, the “time.time” function in 

the python scripts was recorded in each dataset. This function is supposed to record to the 

milliseconds however, in the Arduino (ARD) datasets and GPS data collection 1 the 

function only recorded to the seconds. Therefore, the time offset between the first data 

point in the Arduino datasets and the GPS datasets must be calculated. To calculate the 

offset between the two datasets, the GPS first data value was taken as it should also be 

noted that since GPS data collection 1 only recorded to the second, the concatenation 

could be off by up to 0.999s. For all other datasets the concatenation resolution relies on 

the logic used to identify the offset between the two datasets; identifying the first 

datapoint in the ARD dataset that changed into the next second and adding the known 

time elapsed since the beginning of the data collection, based on the frequency collected 

and the number of datapoints to that location, this sum is subtracted from the first GPS 

time to obtain the offset between the two datasets. This offset could be off by just under 

the timestep of the ARD data collection which is 0.002857 seconds. These errors should 

be kept in mind when analyzing the location of the parking chalk contact within the 

Arduino recorded strain gauge data. 
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Table 8  
 

GPS and Arduino (ARD) Resolution of the "time.time" Function Recorded on the 
Raspberry Pi 

 
Run GPS ARD 

1 seconds seconds 
2 millis seconds 
3 millis seconds 
4 millis seconds 
5 millis seconds 
6 millis seconds 
7 millis seconds 
8 millis seconds 
9 millis seconds 

10 millis seconds 
11 millis seconds 

 

 
 
 

Data Filtering. The initial data collection of strain, through ARD, was very noisy 

because it contained frequency energy from other parts of the vehicle system. The 

structural response of the component of interest in the study and therefore only the 

frequencies associated with this component and the system it is within, the suspension, 

are of interest. The natural frequency of the suspension is 1.03Hz due to the system 

design. To capture only the frequency energy due to the suspension frequency a FFT is 

performed through the Matlab fft() function and all frequency energy above 10Hz is 

removed. 10 Hz was chosen due to the potential for aliasing of the signal, discussed in the 

Data Analysis section of the Literature Review. The resulting change in signal can be 

seen in Figure 43: Uncalibrated ARD Measurement of Voltage Across the Wheatstone 

Bridge, Vm_analog, Pre-FFT and Post-FFT  
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Figure 43: Uncalibrated ARD Measurement of Voltage Across the Wheatstone Bridge, 

Vm_analog, Pre-FFT and Post-FFT, Data Collection Run 1, SG1. 
 
 
 

The remaining signals can be seen in Appendix E in Figure 71: Uncalibrated 

ARD Measurement of Voltage Across the Wheatstone Bridge, Vm_analog, Pre-FFT and 

Post-FFT, Data Collection Run 1, SG1. to Figure 103: Uncalibrated ARD Measurement 

of Voltage Across the Wheatstone Bridge, Vm_analog, Pre-FFT and Post-FFT, Data 

Collection Run 11, SG3.  

Zero-Offset. After the FFT filtering, the GPS and ARD data are concatenated and 

the end of event location was identified for each dataset as previously discussed. Finally, 

a section, 1050 datapoints before and after the event, was taken for each dataset. This 

allows the event to be focused on and the plots of the data to more clearly illustrate where 

the event is occurring. After which point, calibration steps were implemented. Starting 
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with finding the zero-offset for the ARD Vm_analog for each dataset. This identification 

was done statistically using the first 100 datapoints of each run at each reading, accuracy 

verified with standard deviation, as seen in Table 9. 
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Table 9 
 

ARD Vm_analog Reading Zero-Offset Value Identification Using Mean of First 100 
Datapoints, Accuracy Verified with Standard Deviation. 

 
Run Strain Gauge 

Set 
𝑋 →  𝑠 →  Noted 

Deviations 
1 SG1 558.1404 1.1378 - 
1 SG2 412.4751 1.0939 - 
1 SG3 539.7049 1.1647 - 
2 SG1 559.1575 0.2879 - 
2 SG2 412.7594 0.2432 - 
2 SG3 541.1236 0.7337 - 
3 SG1 560.8382 0.3352 - 
3 SG2 414.1805 0.4618 - 
3 SG3 548.6908 0.4651 - 
4 SG1 561.7106 0.6236  *Datapoints: 

160 to 300 
Used 

4 SG2 415.1533 0.5500 
4 SG3 552.0968 0.5321 
5 SG1 562.2870 0.6743 - 
5 SG2 414.3316 0.7062 - 
5 SG3 553.7315 0.4661 - 
6 SG1 563.0007 0.8728  - 
6 SG2 414.7958 0.8228  - 
6 SG3 557.2933 0.7151 - 
7 SG1 558.8851 3.7108     - 
7 SG2 410.6911 3.5775     - 
7 SG3 553.2896 3.6791 - 
8 SG1 557.0510 0.2403     - 
8 SG2 409.0112 0.2258     - 
8 SG3 555.0790 0.2666 - 
9 SG1 560.7682 0.7084     *Datapoints: 

240 to 440 
Used 

9 SG2 411.8738 0.6024     
9 SG3 557.4614 0.9760 

10 SG1 557.0309 0.2539     - 
10 SG2 408.2965 0.3190     - 
10 SG3 553.8175 0.2696 - 
11 SG1 556.7511 0.2697     - 
11 SG2 409.7545 0.3351     - 
11 SG3 553.7113 0.2595 - 

*Beginning ARD Vm_analog readings contained excitations, datapoint range used after 
signal flattened out again.  
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Strain Calculation. The mean zero-offset values for each strain gauge 

measurement, Vm_analog, were subtracted from the corresponding array of strain gauge 

measurements, leaving the change in amplified voltage, Vm_amp. This strain delta reading 

was then used to find the strain value, 𝜀 , for each array. First by calculating the voltage 

measured based on the DAQ setup, using Equation 52. 

𝑉 =

𝑉 _

𝑔𝑎𝑖𝑛_𝑎𝑟𝑑
𝑉

𝑔𝑎𝑖𝑛_𝑎𝑚𝑝
 (52) 

 

 Where, 𝑉  is the Arduino maximum voltage range of 5 volt, 𝑔𝑎𝑖𝑛_𝑎𝑟𝑑 is the 

value 1023, due to the 10-bit analog to digital conversion, and 𝑔𝑎𝑖𝑛_𝑎𝑚𝑝 is the gain of 

the amplifier, 128. The reading from each strain gauge set, 𝑉 _ , is some number 

between 0 and 1023 due to the ADC conversion in the Arduino where this range is a 

representation of 0 to 5 volts. By dividing by the range and multiplying by the voltage the 

measurement was converted from unitless to in units of volts. Finally, the voltage reading 

needs to be divided by the gain from the amplifier to return it to the initial measurement 

scale, before amplification, at the Wheatstone bridge of the strain gauge set. The strain in 

each gauge set can be calculated through this bridge voltage measurement using Equation 

53 for SG1 and SG2 and Equation 54 for SG3.  

𝜀 =
𝑉

𝑉
∗

2

𝑘
 (53) 

𝜀 =
𝑉

𝑉
∗

4

𝑘(1 + 𝜐)
 (54) 

 
Recall from Equation (43), the strain in Equation (54) is the combined axial and 

bending strain at the location of SG3. The bending strain in SG3 and SG1 are measured 
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about the same axis however, the strain gauges are not in exactly the same location. 

Therefore, the strain measurement in SG3 must be projected to the location of SG1. 

Based on the component constraints of a double pinned beam in bending, the moment 

about the beam is parabolic, similar to a simply-supported beam under uniform load [56]. 

 
Figure 44: Simply-Supported Beam Under Uniform Loading [56]. 

 
 
 

Therefore, the strain calculated from Equation (54) must be multiplied by a factor 

accommodating the difference in positions of SG3 to SG1, in order to subtract the correct 

amount of bending strain from the SG3 measurement. This factor is defined in Equation 

55. 

𝑓𝑎𝑐𝑡𝑜𝑟 =
(𝐿 ∗ 𝑥 − 𝑥 )

(𝐿 ∗ 𝑥 − 𝑥 )
 (55) 

 

Where: 

  𝐿  = Total length of the beam from pin to pin. 

 𝑥  = Distance from SG1 to the spherical bearing pin location. 
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 𝑥  = Distance from SG3 to the spherical bearing pin location. 

Making the combined strain equation for SG3: 

𝜀 =
𝑉

𝑉
∗

4

𝑘(1 + 𝜐)
∗ 𝑓𝑎𝑐𝑡𝑜𝑟 (56) 

 

To calculate the axial strain alone the calculated strain measured from SG1 is 

subtracted from the combined calculated strain measured from SG3, since the signs of 

these strains are opposite, as expressed in Equations (35) and (43), the strains are added. 

Each calculated strain reading is then multiplied by the corresponding linear regression 

calibration function, displayed in Equations (49), (50), and (51), to obtain the calibrated 

strain value over the event for each strain gauge during each data collection. A smaller 

window of data was then identified to make the event location clearer. The data 

collection with the clearest parking chalk contact location is run 10, seen in Figure 45. 

Due to the inherent noisiness of strain gauge readings, some events are harder to see 

clearly, all events are shown in Figure 104 to Figure 114. 
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Figure 45: Strain Measured by Each Gauge During Event Run 10 with Parking Chalk 

Location Estimation and Velocity. 
 
 
 

Using Figure 104 to Figure 114 to identify the max strain location of each data 

collection event, except runs 6 and 7 due to lack of clear contact with the parking chalk. 

From this datapoint the maximum strain at each gauged location for each run can be 

calculated by taking the value of maximum strain and subtracting the offset of signal 

drift. The standard deviation of this maximum strain measurement is large due to the 

variation in velocities for each run, seen in Table 10. 
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Table 10 
 

Velocity of Vehicle at Event Contact Location in Meters per Second and Miles per 
Hour 

 
Run Velocity at Event (m/s) Velocity at Event (mph) 

1 5.0706 11.3426 
2 5.0501 11.2968 
3 5.3308 11.9247 
4 5.3261 11.9142  
5 5.3630 11.9968 
8 4.7533 10.6328 
9 5.4027 12.0856 

10 6.0917 13.6269    
11 6.2940 14.0792 

 

 
 
 

Maximum strain values can be normalized to eliminate the error induced by the 

difference in velocity between events using momentum. Momentum is equal to the mass 

of an object times its velocity. Since the mass is unchanged between data collections, the 

maximum strain values of each event can be multiplied by the proportion of the velocity 

of one singular event over each event respectively. As the target speed for the experiment 

was 12 mph, the velocity of the event in run 5 is used to normalize maximum strain 

values of the event in each run. After accounting for this potential error comparing the 

measurements the mean, standard deviation, 95% confidence interval, and kurtosis were 

calculated for the 9 events captured during experimentation, see Table 11. 
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Table 11 
 

Maximum Strain Due to Event at each Strain Gauge Location, Type of Strain 
Specified, with Mean, Standard Deviation, and 95% Confidence Interval of all 9 Data 

Collection Events 
 

Strain 
Type 

Strain 
Location 

𝑋  
(με) 

s  
(με) 

95% Confidence 
Interval 

Kurtosis 

𝜀  SG1 25.8381 15.3311 56.5 0.201 
𝜀  SG2 -25.9104 -18.6336 -63.18 -0.456 
𝜀  SG3 266.3615 107.8677 482.10 -0.9773 

 

 
 
 

Using the 95% confidence interval maximum strain value, the loading condition 

in the linear FEM was validated. Since the beam is simply supported, there should be no 

strain about the bending about the x-axis, 𝜀 . The strain present in the SG1 

measurement can be attributed to the binding of the suspension system, at the shock and 

in the joints, in jounce. This strain is ignored in the FEM validation because the exact 

source of binding or resistance in jounce is not known and therefore cannot be modeled 

accurately. 

FEM Validation 

To obtain the forces acting on the component from the wheel, a remote unit load 

was applied in the y- and z-axis, separately, to the attachment point of the component to 

the spherical bearing mount. The model was simulated twice, once for each unit load, to 

obtain the resultant strain at the locations of SG2 and SG3. This data was used to develop 

a four by four matrix of strain readings at the respective gauge locations for the 

respective unit load. Strain results of constraints and unit load applied in the -Fy direction 

can be seen in Figure 46: Simply Supported Beam Constraints with one Unit Load (N) 

Applied in the Axial Direction (+Fy FEM Coordinates, -Fy SAE Coordinates). 
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Figure 46: Simply Supported Beam Constraints with one Unit Load (N) Applied in the 

Axial Direction (+Fy FEM Coordinates, -Fy SAE Coordinates). 
 
 
 

The matrix of strains per unit load in the Fy and Fx directions respectively, 

compliance matrix, can be seen in Equation 57, where the columns are 𝜀  over 𝜀  due 

to Fx and Fy respectively. 

 

𝜀
𝜀 =

0.011195 0.0021
0.039495 0.03602

𝐹
𝐹  (57) 

 
This matrix represents the linear relationship between force in Fx and Fy to the 

strain about 𝜀  and 𝜀  for the FEM. Knowing the strain values 𝜀  and 𝜀  due to the 

loading condition tested, the forces, Fx and Fy, can be calculated by multiplying a matrix 

of 𝜀  over 𝜀  by the inverse of the compliance matrix in Equation 57.  
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0.011195 0.0021
0.039495 0.03602

=
112.4555 −6.5563

−123.3046 34.9511
 (58) 

 

 𝜀  and 𝜀  are known from Table 11, making the matrix multiplication: 

−112.4555 6.5563
123.3046 −34.9511

∗
−63.18
482.10

=
−10266𝑁
24640𝑁

 (59) 

 

This loading condition was simulated in the FEM and the strain values for 𝜀  

and 𝜀  were -61.95με and 468με respectively, or 2% and 3% error respectively. 

With the loading condition fully defined, the component could be evaluated for 

failure based on maximum yield stress (𝜎 ), 0.709 GPa, and total fatigue non-reversed 

loading cycles to failure based on Von Mises stress in the member. The total loading 

cycles are calculated based on ASME elastic modulus S-N curve, with a non-reversing 

load. The tested event condition was evaluated first, and the test condition scaled for 

maximum vehicle velocity (𝑣 ), approximately 30mph. 

 
 
 

Table 12 
 

FEM Results, Maximum Stress in the Member and von Mises FOS, from Event 
Loading Condition, Scaled Loading Condition for Maximum Velocity, v , and 

Scaled Loading Condition for Maximum Mass and Velocity, v  and W . 
 

Condition Fx Fy 𝜎  
Cycles to 
Failure 

Tested -10.26 kN 24.64 kN 0.082 GPa 48,470 

𝑣  -25.66 kN 61.6 kN 0.2114 GPa 777 
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The model does not structurally yield under the test condition, even when 

amplified for a heavier driver and a higher vehicle speed. Therefore, the tested loading 

condition did not cause the failure seen on the right fore lower control link, Figure 20. 

However, the loading condition is a repeated load case and if this component were to 

complete more than one competition or more than on design season, which is highly 

likely, the FOS should not be ignored and the member should be re-designed to 

accommodate for that failure and reduce the likelihood of the failure exhibited in Figure 

20.  

Component Re-Design. The initial design load case did not predict any axial 

loading in the member. Since the larges stress in the member was axial, the member was 

re-designed with this condition as the main focus. From the topology optimization 

section, it is noted that topology optimization turns design constraints into a minimization 

problem. For the design in question, the member must fit within the existing envelope of 

the member. Meaning, the re-designed member must be the same length as the original 

member, must mount to the spherical bearing mount and the bushing mount without 

interference, and must accommodate the aft member of the component in assembly. With 

these constraints, changing the cross-sectional shape of the member is the simplest 

solution. For axial load, the axial strain in the member is determined in Equation (21) by 

the load and the cross-sectional area, A. For a hollow tube A is calculated by Equation 

(24), and for the member in question is equal to 0.1909 square inches. While a square 

tube with the same wall thickness and outer length would have a cross-sectional area of 

0.2431square inches. Increasing the maximum axial force from 87.3 kN to 111.2 kN. 

Also increasing the maximum bending moment from 487 N to 11 kN, and the torsional 
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load from 109.9 kN to 624.2 kN. While only increasing the weight by 0.23lbs. Using this 

as a starting point, the component was re-designed to be a square tube with a one-inch 

outer length and 0.065-inch wall thickness. This component failed the FOS test in the full 

FEM until the wall thickness was increased to 0.08 inches, increasing the weight by 0.53-

lbs. Seeing as this weight increase was not ideal, as the unsprung mass of the suspension 

system directly affect suspension performance, the component was lightened by 

removing material from the top and bottom sections, as the bending moment about this 

axis is low. 

 
Figure 47: Re-Designed Suspension Lower Fore Link. 

 
 

 
Figure 48: FEM Stress Results in the Re-Designed Component Under Tested Loading 

Condition. 
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The re-designed member, seen in Figure 48, was assembled into the lower 

suspension Solidworks assembly in place of the original member. The FEM was 

performed under the same conditions as illustrated in Table 12. Results for the re-

designed member can be seen in Table 13. 

 
 
 

Table 13  
 

FEM Results Re-Designed Member, Maximum Stress in the Member and von Mises 
FOS, from Event Loading Condition, Scaled Loading Condition for Maximum 

Velocity, v , and Scaled Loading Condition for Maximum Mass and Velocity, v  
and W . 

 

Condition Fx Fy 𝜎  
Cycles to 
Failure 

Tested -10.26 kN 24.64 kN 0.1014 GPa 1e6 

𝑣  -25.66 kN 61.6 kN 0.2523 GPa 333,900 
 
 
 

For the tested event the re-designed member can withstand the tested event for 

infinite life. The second two cases no not come near the yield point of the material, nor 

are these loading conditions fatigue loading conditions, they are abuse loading 

conditions.  

Since the new member does not fail infinite life testing or yield during abuse 

cases, the member can be recommended for implementation after one final check. 

Remembering, there was strain due to bending about the x-axis, 𝜀 , during the 

experimental data collection. Due to the lightening holes about this strain direction, the 

member should be checked for this loading condition. If the measured strains are resolved 

into forces, based on cantilevered beam constraint, all three forces can be resolved, and a 
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FEM can be run under this loading condition. The resolved force for the corresponding 

strain measurement is illustrated in Table 14. 

 
 
 

Table 14 
 

Resolved Force, Based on Corresponding Strain Measurement Under Cantileavered 
Beam Constraints. 

 
Force Direction Measured Strain (με) Resolved Force (N) 

Fz 56.50 -21.9 
Fx -63.18 -23.5 
Fy 482.10 6298.5 

 
 
 

 The resolved FEM of the component was simulated, and the yield FOS was 

determined to be 2. Stress in the member is below the yield stress by almost a factor of 

ten, 0.95 GPa. Stress Results from the FEM can be seen in Figure 49. 

 
Figure 49: Component FEM Under Cantilevered Beam Constraints and Loads. 

 
 
 

 The final design was verified through the FEMs, with a final design weight 
increase of 0.04-lbs.  
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Chapter V 

Discussion, Conclusions, and Recommendations 

An experiment to ascertain the loading conditions of the front suspension fore 

control link was designed and executed. Using Omega strain gauges, a custom amplifier, 

an Arduino and a Raspberry Pi, the data was reliably and accurately obtained. Strain 

gauge installation quality was verified through the calibration with standard deviations 

less than 5% of the measured value and linear regression calibration equations within 

four microstrain, below the minimum resolution of the DAQ system. Event data has a 

low kurtosis, meaning the measurements did not produce significant outliners, implying a 

low variation between the measurements. To account for the potential measurement 

errors in the system, a 95% confidence interval was used for the FEM validation of strain 

in the member. Using the linearity of the FEM, the forces acting on the component at the 

spherical bearing were resolved. After which, the member was re-designed to withstand 

this loading condition for structural strength and infinite fatigue life only increasing the 

weight of the assembly by 0.04-lbs.  

The design change analyzed here is recommended for implementation on this 

year’s Baja vehicle as it will reduce the likelihood of component failure. However, the 

event tested in this thesis was discovered not to be the event that caused the structural 

failure of the right lower fore suspension arm on the Baja vehicle. It should be noted that 

the failure may still occur, though the design change makes this less likely.  

In the future it is recommended to buy a wheel force transducer to measure the 

exact wheel load and validate not only this component FEM for the event tested but the 

entire suspension over the full loading conditions of the competition. This was not 
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feasible for the DOE presented as wheel force transducers are expensive and collecting 

data at competition requires an expensive data acquisition system to be mounted in the 

vehicle, made more expensive as it must be waterproofed to survive competition 

environmental conditions.  

Fatigue failure is rare on the Baja vehicle due to the short design life cycle. 

Therefore, it is not recommended to instrument different components on the vehicle with 

strain gauges to obtain strain life histories. The only recommended strain gauging would 

be to resolve specific model validation and load case questions on failing components as 

completed in this thesis. 

The data collected during the course of this thesis work can and should be utilized 

by the Baja team in the future to aid in any re-designs of the front suspension system. The 

strain values along with the linearity of the FEM can be utilized, as shown in the FEM 

validation section of the results, to resolve the remote forces at any location. Resolving 

the forces at the wheel center is recommended as this load can then be applied to the 

upper a-arm linkage. It is recommended for any future re-design to follow these steps: 

1. Use the original FEM of the front suspension lower control arm assembly 

to resolve the forces at the wheel; following the steps discussed in the 

FEM validation section of the results. 

2. As long as the tires and the shock remain the same, this force is accurate 

for the tested loading condition at 12mph. If the tires change (structure or 

pressure) or the shock changes, which is recommended, the loading 

condition is a good place to start but should be modified based on the 

changes in stiffnesses of the suspension and the tires.  
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Appendix B 

Vishay Micro-Measurements: Strain Gage Installations with M-Bond 200 Adhesive 

Step 1:  

a) Thoroughly degrease the gauging area with isopropyl alcohol. Recommended 

to use one-way containers to make sure solvents are uncontaminated. [60] 

Action Performed:  

a) Poured isopropyl alcohol into a clean mug, only dipped new gauze pads into 

mug, wiped gauging area with isopropyl alcohol. 

Step 2:  

a) If surface scale or oxide present, preliminary dry abrading with 220- or 320-grit 

silicon-carbide paper is generally required.  

b) Final abrading is performed with 320-grit silicon-carbide paper on the gauging 

surface(s) after being thoroughly wetted with M-Prep Conditioner A 

c) Followed by wiping dry with a gauze pad 

d) Repeat steps b and c with 400-grit silicon-carbide paper.  

e) Using ballpoint pen, burnish alignment marks, clean with M-Prep Conditioner A 

and cotton tipped applicators until there is no discoloration on the tip.  

f) Remove all residue and Conditioner by slowly wiping the surface with a gauze 

pad. Never allow any solution to dry on the surface because this will leave a 

contaminating film and interfere with the bond strength. 

g) Apply a liberal amount of M-Prep Neutralizer 5A and scrub with a cotton-tipped 

applicator. 

h) With a single, slow wiping motion of a gauze pad, carefully dry this surface. [60] 
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Action Performed: 

a) Paint and rust present on the specimen, therefore preliminary dry abrading 

performed with 320-grit silicon-carbide paper. 

b) Final abrading performed with 320-grit silicon-carbide paper, after being 

thoroughly wetted with M-Prep conditioner A. 

c) Wiped the surface in one direction completely dry with gauze pads 

d) Repeated steps b and c with 600-grit silicon-carbide paper 

e) Used a scribe to burnish alignment marks into the specimen then cleaned surface 

again with M-Prep Conditioner A and gauze pads 

f) Thoroughly dried specimen with gauze pads, wiping in a slow fluid unidirectional 

motion. 

g) Applied a liberal amount of M-Prep Neutralizer 5A and scrubbed with cotton-

tipped applicators. 

h) Area was dried with a gauze pad, wiping in a slow fluid unidirectional motion. 

Steps g and h were repeated until a new applicator showed no discoloration after 

wiping the surface. 

Step 4:  

a) Using tweezers to remove the gauge from the transparent envelope, place the 

gauge (bonding side down) on a chemically clean glass plate or gauge box 

surface. If a solder terminal will be used, position it on the plate adjacent to the 

gauge as shown. A space of approximately 1/16 in or more where the space 

allows, or application requires should be left between the gauge backing and the 

terminal. 
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b) Place a 4- to 6-in piece of Vishay Micro-Measurement PCT-2M gauge installation 

tape over the gauge and terminal. Take care to center the gauge on the tape. 

c) Carefully lift the tape at a shallow angle, bringing the gauge up with the tape as 

illustrated above. [60] 

Action Performed: 

a) Using needle nose pliers to remove the gauge from the transparent envelope the 

gauge was placed onto the specimen, as it was the only chemically clean surface. 

Solder terminal was placed approximately 1/16 in below the gauge backing. 

b) 4 in piece of PCT-2M gauge installation tape was placed over the gauge and 

terminal, taking care to center the tape on the gauge.  

c) Tape was slowly and carefully peeled back at a very shallow angle (less than 

45deg).  

Step 5: 

a) Position the gauge/tape assembly so that the triangle alignment marks on the 

gauge are over the layout lines (alignment marks) on the specimen. If the 

assembly appears to be misaligned, lift one end of the tape at a shallow angle until 

the assembly is free of the specimen. Realign properly, and firmly anchor at least 

one end of the tape to the specimen. Vishay PCT-2M gauge installation tape can 

be realigned without contamination by the tape mastic because this tape will 

retain its mastic when removed. [60] 

Action Performed: 

a) Gauge was positioned along burnished alignment marks, starting with the top 

triangle alignment mark on the gauge. The tape/gauge assembly was pivoted a 
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few times to align the triangle alignment marks on the side of the gauge with the 

corresponding burnish marks on the specimen. Gauge tape firmly pressed to 

specimen. 

Step 6:  

a) Lift the gauge end of the tape assembly at a shallow angle to the specimen surface 

(about 40 degrees) until the gauge and terminal are free of the specimen surface. 

Continue lifting the tape until it is free from the specimen approximately ½ in 

beyond the terminal. 

b) Tuck the loose end of the tape under and press to the specimen surface so that the 

gauge and terminal lie flat, with the bonding surface exposed. [60] 

Action Performed: 

a) Gauge tape was lifted, at a shallow angle (about 40 degrees) until the terminal and 

strain gauge were fully removed from the specimen. 

b) The gauge tape was then peeled back ½ in more as specified in the Vishay Micro-

Measurements strain gauge installation procedure. 

Step 7: 

a) M-Bond 200 catalyst can now be applied to the bonding surface of the gauge and 

terminal. (M-Bond 200 adhesive will harden without the catalyst, but less quickly 

and reliably.) Very little catalyst is needed, and it should be applied in a thin, 

uniform coat. 

b) Lift the brush-cap out of the catalyst bottle and wipe the brush approximately 10 

strokes against the inside of the neck of the bottle to wring out most of the 

catalyst.  
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c) Set the brush down on the gauge and swab the gauge backing. Do not stroke the 

brush in a painting style but slide the brush over the entire gauge surface and then 

the terminal. 

d) Move the brush to the adjacent tape area prior to lifting from the surface. 

e) Allow the catalyst to dry at least one minute under normal ambient conditions of 

+75 deg F and 30-65% relative humidity before proceeding. [60] 

Action Performed: 

a) After raising to room-temperature, the M-Bond 200 catalyst bottle was opened, 

and the brush was wiped 10 times on the inside of the neck of the bottle to wring 

out most of the catalyst. Too much catalyst can cause poor bond strength, age-

embrittlement of the adhesive and poor glue-line thickness, among other issues. 

b) The brush was then placed on the gauge, at the top of the gauge, and with one 

fluid stroke the brush was used to swab the gauge and terminal backing and 

continued onto the adjacent tape area before lifting the brush from the surface. 

c) A timer was set for one minute, after which time the catalyst was checked, 

visually, for dryness (if the catalyst isn’t completely dry there will be areas of no 

discoloration, this discoloration looks like a chalky texture and is whiter than the 

deep blue of the applied catalyst.). 

Steps 8, 9, and 10 must be completed in the sequence shown and within 3-5 

seconds. 

Step 8: 

a) Lift the tucked-under tape end of the assembly, and, holding in the same position, 

apply one or two drops of M-Bond 200 adhesive at the fold formed by the 
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junction of the tape and specimen surface. This adhesive application should be 

approximately ½ in outside the actual gauge installation area.  This will insure 

that local polymerization that takes place when the adhesive comes in contact 

with the specimen surface will not cause unevenness in the gauge glueline. [60] 

Action Performed: 

a) After the catalyst was determined to be fully dry, one to one and a half minutes, 

one drop of M-Bond 200 adhesive was applied at the fold formed by the junction 

of the tape and the specimen surface, approximately ½ in from the gauge 

installation area. 

Step 9: 

a) Immediately rotate the tape to approximately a 30-degree angle so that the gauge 

is bridged over the installation area. 

b) While holding the tape slightly taut, slowly and firmly make a single wiping 

stroke over the gauge/tape assembly with a piece of gauze bringing the gauge 

back down over the alignment marks on the specimen. 

c) Use a firm pressure with your fingers when wiping over the gauge. A very thin, 

uniform layer of adhesive is desired for optimum bond performance. [60] 

Action Performed: 

a) The tape was immediately rotated to approximately 30 degrees from the 

specimen.  

b) Holding the tape taut with one hand, a gauze pad was used in the other hand to 

apply a firm and slow wiping stroke over the assembly. 
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Step 10: 

a) Immediately upon completion of wipe-out of the adhesive, firm thumb pressure 

must be applied to the gauge and terminal area. 

b) This pressure should be held for at least one minute. In low-humidity conditions 

(below 30%), or if the ambient temperature is below +70 deg F, this pressure 

application time may have to be extended to several minutes. [60] 

Action Performed: 

a) Constant firm thumb pressure was applied after the wipe-out of the adhesive. 

b) A timer was set for one minute and a half and constant firm pressure was held for 

this time. 

Step 11: 

a) The gauge and terminal strip are now solidly bonded in place. It is not necessary 

to remove the tape immediately after gauge installation. The tape will offer 

mechanical protection for the grid surface and may be left in place until it is 

removed for gauge wiring. 

b) To remove the tape, pull it back directly over itself, peeling it slowly and steadily 

off the surface. This technique will prevent possible lifting of the foil on open-

faced gauges or other damage to the installation. [60] 

Action Performed: 

a) The gauge tape was left on to protect the gauge from the subsequent installations. 

b) After installations were all completed, one strain gauge at a time, the strain gauge 

tape was removed by pulling it back directly over itself, in a slow and steady 
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motion, to solder the ribbon leads to the solder terminals. The gauge tape was not 

removed from remaining gauges. 

c) The protective coating was removed from each ribbon lead with a pencil eraser. 

d) M-Flux AR-2 Activated Resin soldering Flux was applied to the solder tap and 

ribbon lead 
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Appendix C 

Vishay Micro-Measurements Application Note TT-609: Strain Gage Soldering 

Techniques 

Soldering must be done with the appropriate tools, supplies, and techniques to 

ensure accurate strain measurement. Vishay application note TT-609, outlines the 

recommended procedures and materials to achieve accurate lead-wire attachment to strain 

gauge solder tabs. Vishay recommends using a temperature-controlled soldering station 

as an unregulated soldering iron is most likely too hot, causing unwanted oxidation of the 

solder tip. Elevated temperatures can cause damage to the strain gauge, bonding adhesive 

and even the test specimen. It is recommended to use a temperature-controlled iron at the 

recommended temperature for the solder utilized. For routine applications, excluding 

testing at elevated temperatures or specimens that cannot be exposed to heat, a solder 

with an intermediate melting temperature is the normal selection. If rosin-core solder is 

used no soldering flux is necessary, if using solid-wire solder, a liquid activated-rosin 

flux is recommended to remove oxidation from members being joined and prevent further 

oxidation during soldering. M-Flux AR-2 activated resin soldering flux (M-Flux AR) was 

utilized during this installation, following the Vishay application note TT-609 

recommendations of applying flux to tin the solder terminals and lead-wires before 

making soldered connections [60]. Tinning helps ensure good heat transfer during the 

soldering operation and simplify the lead-wire attachment procedure. During solder 

installation the strain gauges were protected with gauge tape, to prevent any solder splash 

from causing damage to the strain gauge. In preparation for soldering to the terminal the 

ribbon leads were stripped of their protective coating, with a pencil eraser, as instructed 
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in Omega documentation [61]. The ribbon leads were positioned on the terminal and 

ready for soldering, Figure 50. 

Figure 50: Ribbon Leads Aligned on Solder Pad with Protective Coating Removed. 
 
 
 

The terminal tinning procedure from Vishay application note TT-609 was 

followed exactly; 

“The tinning procedure for strain gage tabs and terminals consists of first cleaning 

and reapplying a small amount of solder to the hot soldering iron tip. Next, apply a drop 

of M-Flux AR to the tab or terminal. Hold the soldering pencil in a nearly horizontal 

position (<30 deg), with the flat surface of the tip parallel to the solder tab or terminal. 

Place the solder wire flat on the gage tab, and press firmly with the tinned hot soldering 

tip for about one to two seconds, while adding approximately 1/8 in of fresh solder at the 

edge of the tip. This procedure ensures that there is sufficient solder and flux for effective 

tinning. Simultaneously lift both the soldering pencil and solder wire from the tab area. If 

M-Flux AR… is used in the tinning, it is not necessary to remove the residual soldering 

flux at this time.” [62, p. 209]. 
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Lead-wires must be prepped next for installation. For preparation the wire must 

be stripped and tinned. The wire is stripped and twisted for ease of tinning. Tinning is 

done by applying M-Flux AR to the wire end. Solder is melted on the tip of the soldering 

iron to form a hemisphere of molten solder, twice the diameter of the wire to be tinned. 

The wire is then slowly drawn through the molten solder, while adding more solder to the 

interface as needed. 

 
Figure 51: Tinned Lead-Wire 

 
 
 

Figure 52: Lead-Wires Installed on Solder Pads After Tinning 
 
 
 

The tinned lead-wire can then be positioned on the specimen and trimmed such 

that the exposed, tinned, wire is only as long as the connection area on the solder terminal 

and does not protrude off the solder terminal. The wire was affixed in this position with 

PDT-1 6600 drafting tape before following the Vishay instructions for proper soldering 
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attachment; “Apply a small amount of M-Flux AR to the joint area and, holding the 

soldering pencil nearly horizontal, firmly press the flat surface of the tip on the junction 

for about one second; then lift the tip from the soldered joint. This procedure should 

result in a smooth, hemispherical solder joint, without any peaks or jagged areas.” [62]. 

After soldering is complete M-Line Rosin Solvent was used to remove any 

residual flux from the soldering joints. This step is crucial as any flux residue can cause 

gauge instability and drift.  

After completing the installation and securing the lead-wires to the solder 

terminals, the circuits were tested to ensure proper strain reading before coating the 

installation with polyurethane. 

Each strain gauge was covered with strain gauge tape to protect it until a 

polyurethane coating could be applied. One strain gauge at a time, the strain gauge tape 

was removed and a rectangular area around the strain gauge, including the soldering 

terminal and the 1/16th in of the encased lead-wires, was taped off with PDT-1 6600 

drafting tape, layered to keep the polyurethane contained. M-Coat A air-drying 

polyurethane coating was applied and allowed to dry for 20 minutes, as recommended on 

the bottle, repeating to form enough coats to cover the entire gauge, terminals, solder, and 

lead-wires within the taped off area. 
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Appendix D 

DAQ Scripts 

 Arduino script written to use ‘analogRead()’ to perform the analog to digital 

conversion of the strain gauge and voltage signals, seen in Figure 53, Figure 54, and 

Figure 55, where the commented out portions of the code were used to verify the sample 

frequency. 
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Figure 53: Arduino Strain Gauge and Voltage Reading Script, Part 1 of 3 
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Figure 54: Arduino Strain Gauge and Voltage Reading Script, Part 2 of 3 
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Figure 55:Arduino Strain Gauge and Voltage Reading Script, Part 3 of 3 
 
 
 

The Python scripts written to read the serial signals from the Arduino, Figure 56, 

and the GPS, Figure 57, Figure 58, and Figure 59. 
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Figure 56: Arduino Python Script, Serial Read and Write 
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Figure 57: GPS Python Script, Serial Read and Write, Part 1 of 3 
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Figure 58: GPS Python Script, Serial Read and Write, Part 2 of 3 
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Figure 59: GPS Python Script, Serial Read and Write, Part 3 of 3 
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Appendix E 

Plotted Results 

GPS Waypoint and Parking Chalk Location. The Matlab “polyxpoly” function 

was utilized to return the location of intersection of each GPS dataset with the chalk line 

and the index of the closest GPS datapoint from each dataset before the parking chalk 

location, seen in Figures  Figure 60-Figure 70. 

 
Figure 60: GPS Waypoints of Data Collection 1 
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Figure 61: GPS Waypoints of Data Collection 2 

 
 
 

 
Figure 62: GPS Waypoints of Data Collection 3 
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Figure 63: GPS Waypoints of Data Collection 4 

 
 
 

 
Figure 64: GPS Waypoints of Data Collection 5 
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Figure 65: GPS Waypoints of Data Collection 6 

 
 
 

 
Figure 66: GPS Waypoints of Data Collection 7 

 
 
 

2911.325 2911.33 2911.335 2911.34 2911.345 2911.35 2911.355

Latitude

8102.72

8102.725

8102.73

8102.735

8102.74

8102.745

8102.75

8102.755

8102.76
GPS Waypoints of Data Collection 6

GPS Waypoints of Run
Parking Calk
Intersection
Closest GPS Datapoint

2911.325 2911.33 2911.335 2911.34 2911.345 2911.35 2911.355

Latitude

8102.72

8102.725

8102.73

8102.735

8102.74

8102.745

8102.75

8102.755

8102.76
GPS Waypoints of Data Collection 7

GPS Waypoints of Run
Parking Calk
Intersection
Closest GPS Datapoint



 

115 

 
Figure 67: GPS Waypoints of Data Collection 8 

 
 
 

 
Figure 68: GPS Waypoints of Data Collection 9 
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Figure 69: GPS Waypoints of Data Collection 10 

 
 
 

 
Figure 70: GPS Waypoints of Data Collection 11 

 
 
 

 

FFT Digital Filtered Results. Pre- and Post-FFT resulting ARD Vm_analog signal 

can be seen for each data collection in Figure 71 to Figure 103. 
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Figure 71: Uncalibrated ARD Measurement of Voltage Across the Wheatstone Bridge, 

Vm_analog, Pre-FFT and Post-FFT, Data Collection Run 1, SG1. 
 
 
 
 

 
Figure 72: Uncalibrated ARD Measurement of Voltage Across the Wheatstone Bridge, 

Vm_analog, Pre-FFT and Post-FFT, Data Collection Run 1, SG2. 
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Figure 73: Uncalibrated ARD Measurement of Voltage Across the Wheatstone Bridge, 

Vm_analog, Pre-FFT and Post-FFT, Data Collection Run 1, SG3. 
 
 
 

 
Figure 74: Uncalibrated ARD Measurement of Voltage Across the Wheatstone Bridge, 

Vm_analog, Pre-FFT and Post-FFT, Data Collection Run 2, SG1. 
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Figure 75: Uncalibrated ARD Measurement of Voltage Across the Wheatstone Bridge, 

Vm_analog, Pre-FFT and Post-FFT, Data Collection Run 2, SG2. 
 
 
 

 
Figure 76: Uncalibrated ARD Measurement of Voltage Across the Wheatstone Bridge, 

Vm_analog, Pre-FFT and Post-FFT, Data Collection Run 2, SG3. 
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Figure 77: Uncalibrated ARD Measurement of Voltage Across the Wheatstone Bridge, 

Vm_analog, Pre-FFT and Post-FFT, Data Collection Run 3, SG1. 
 
 
 

 
Figure 78: Uncalibrated ARD Measurement of Voltage Across the Wheatstone Bridge, 

Vm_analog, Pre-FFT and Post-FFT, Data Collection Run 3, SG2. 
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Figure 79: Uncalibrated ARD Measurement of Voltage Across the Wheatstone Bridge, 

Vm_analog, Pre-FFT and Post-FFT, Data Collection Run 3, SG3. 
 
 
 

 
Figure 80: Uncalibrated ARD Measurement of Voltage Across the Wheatstone Bridge, 

Vm_analog, Pre-FFT and Post-FFT, Data Collection Run 4, SG1. 
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Figure 81: Uncalibrated ARD Measurement of Voltage Across the Wheatstone Bridge, 

Vm_analog, Pre-FFT and Post-FFT, Data Collection Run 4, SG2. 
 
 
 

 
Figure 82: Uncalibrated ARD Measurement of Voltage Across the Wheatstone Bridge, 

Vm_analog, Pre-FFT and Post-FFT, Data Collection Run 4, SG3. 
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Figure 83: Uncalibrated ARD Measurement of Voltage Across the Wheatstone Bridge, 

Vm_analog, Pre-FFT and Post-FFT, Data Collection Run 5, SG1. 
 
 
 

 
Figure 84: Uncalibrated ARD Measurement of Voltage Across the Wheatstone Bridge, 

Vm_analog, Pre-FFT and Post-FFT, Data Collection Run 5, SG2. 
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Figure 85: Uncalibrated ARD Measurement of Voltage Across the Wheatstone Bridge, 

Vm_analog, Pre-FFT and Post-FFT, Data Collection Run 5, SG3. 
 
 
 

 
Figure 86: Uncalibrated ARD Measurement of Voltage Across the Wheatstone Bridge, 

Vm_analog, Pre-FFT and Post-FFT, Data Collection Run 6, SG1. 
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Figure 87: Uncalibrated ARD Measurement of Voltage Across the Wheatstone Bridge, 

Vm_analog, Pre-FFT and Post-FFT, Data Collection Run 6, SG2. 
 
 
 

 
Figure 88: Uncalibrated ARD Measurement of Voltage Across the Wheatstone Bridge, 

Vm_analog, Pre-FFT and Post-FFT, Data Collection Run 6, SG3. 
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Figure 89: Uncalibrated ARD Measurement of Voltage Across the Wheatstone Bridge, 

Vm_analog, Pre-FFT and Post-FFT, Data Collection Run 7, SG1. 
 
 
 

 
Figure 90: Uncalibrated ARD Measurement of Voltage Across the Wheatstone Bridge, 

Vm_analog, Pre-FFT and Post-FFT, Data Collection Run 7, SG2. 
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Figure 91: Uncalibrated ARD Measurement of Voltage Across the Wheatstone Bridge, 

Vm_analog, Pre-FFT and Post-FFT, Data Collection Run 7, SG3. 
 
 
 

 
Figure 92: Uncalibrated ARD Measurement of Voltage Across the Wheatstone Bridge, 

Vm_analog, Pre-FFT and Post-FFT, Data Collection Run 8, SG1. 
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Figure 93: Uncalibrated ARD Measurement of Voltage Across the Wheatstone Bridge, 

Vm_analog, Pre-FFT and Post-FFT, Data Collection Run 8, SG2. 
 
 
 

 
Figure 94: Uncalibrated ARD Measurement of Voltage Across the Wheatstone Bridge, 

Vm_analog, Pre-FFT and Post-FFT, Data Collection Run 8, SG3. 

0 10 20 30 40 50 60

Time (s)

535

540

545

550

555

560

565

570

575

580

585

U
n

ca
lib

ra
te

d 
V

ol
ta

ge
 M

e
as

u
re

d
 A

cr
o

ss
 th

e
W

h
ea

ts
to

n
e 

B
ri

dg
e

 (
0

-1
0

2
3)

Uncalibrated ARD V
m

 Readings, Pre and Post-FFT

Data Collection Run 8, SG3

Pre-FFT Strain Signal
Post-FFT Strain Signal



 

129 

 

 
Figure 95: Uncalibrated ARD Measurement of Voltage Across the Wheatstone Bridge, 

Vm_analog, Pre-FFT and Post-FFT, Data Collection Run 9, SG1. 
 
 
 

 
Figure 96: Uncalibrated ARD Measurement of Voltage Across the Wheatstone Bridge, 

Vm_analog, Pre-FFT and Post-FFT, Data Collection Run 9, SG2. 
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Figure 97: Uncalibrated ARD Measurement of Voltage Across the Wheatstone Bridge, 

Vm_analog, Pre-FFT and Post-FFT, Data Collection Run 9, SG3. 
 
 
 

 
Figure 98: Uncalibrated ARD Measurement of Voltage Across the Wheatstone Bridge, 

Vm_analog, Pre-FFT and Post-FFT, Data Collection Run 10, SG1. 
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Figure 99: Uncalibrated ARD Measurement of Voltage Across the Wheatstone Bridge, 

Vm_analog, Pre-FFT and Post-FFT, Data Collection Run 10, SG2. 
 
 
 

 
Figure 100: Uncalibrated ARD Measurement of Voltage Across the Wheatstone 

Bridge, Vm_analog, Pre-FFT and Post-FFT, Data Collection Run 10, SG3. 
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Figure 101: Uncalibrated ARD Measurement of Voltage Across the Wheatstone 

Bridge, Vm_analog, Pre-FFT and Post-FFT, Data Collection Run 11, SG1. 
 
 
 

 
Figure 102: Uncalibrated ARD Measurement of Voltage Across the Wheatstone 

Bridge, Vm_analog, Pre-FFT and Post-FFT, Data Collection Run 11, SG2. 
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Figure 103: Uncalibrated ARD Measurement of Voltage Across the Wheatstone 

Bridge, Vm_analog, Pre-FFT and Post-FFT, Data Collection Run 11, SG3. 
 

 

Event Window Plots. The bending and axial strain at SG1, SG2, and SG3 at the 

event window is plotted with velocity and the estimated parking calk location. Seen in 

Figure 104 to Figure 114. 
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Figure 104: Strain Measured by Each Gauge During Event Run 1 with Parking Chalk 

Location Estimation and Velocity. 
 
 
 

 
Figure 105:Strain Measured by Each Gauge During Event Run 2 with Parking Chalk 

Location Estimation and Velocity. 
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Figure 106: Strain Measured by Each Gauge During Event Run 3 with Parking Chalk 

Location Estimation and Velocity. 
 
 
 

 
Figure 107: Strain Measured by Each Gauge During Event Run 4 with Parking Chalk 

Location Estimation and Velocity. 
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Figure 108: Strain Measured by Each Gauge During Event Run 5 with Parking Chalk 

Location Estimation and Velocity. 
 
 
 

 
Figure 109: Strain Measured by Each Gauge During Event Run 6 with Parking Chalk 

Location Estimation and Velocity. 
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Figure 110: Strain Measured by Each Gauge During Event Run 7 with Parking Chalk 

Location Estimation and Velocity. 
 
 
 

 

 
Figure 111: Strain Measured by Each Gauge During Event Run 8 with Parking Chalk 

Location Estimation and Velocity. 
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Figure 112: Strain Measured by Each Gauge During Event Run 9 with Parking Chalk 

Location Estimation and Velocity. 
 
 
 

 
Figure 113: Strain Measured by Each Gauge During Event Run 10 with Parking Chalk 

Location Estimation and Velocity. 
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Figure 114: Strain Measured by Each Gauge During Event Run 11 with Parking Chalk 

Location Estimation and Velocity. 
 


	Finite Element Model Validation and Testing of an Off-Road Vehicle under Dynamic Loading Conditions
	Scholarly Commons Citation

	tmp.1557253345.pdf.mZzOQ

