
Dissertations and Theses 

5-2019 

Experimental and Computational Analysis of a 3D Printed Wing Experimental and Computational Analysis of a 3D Printed Wing 

Structure Structure 

Aryslan Malik 

Follow this and additional works at: https://commons.erau.edu/edt 

 Part of the Aerodynamics and Fluid Mechanics Commons 

Scholarly Commons Citation Scholarly Commons Citation 
Malik, Aryslan, "Experimental and Computational Analysis of a 3D Printed Wing Structure" (2019). 
Dissertations and Theses. 440. 
https://commons.erau.edu/edt/440 

This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted 
for inclusion in Dissertations and Theses by an authorized administrator of Scholarly Commons. For more 
information, please contact commons@erau.edu. 

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/edt
https://commons.erau.edu/edt?utm_source=commons.erau.edu%2Fedt%2F440&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/222?utm_source=commons.erau.edu%2Fedt%2F440&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/edt/440?utm_source=commons.erau.edu%2Fedt%2F440&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu


  

   
 

 

 

 

 

EXPERIMENTAL AND COMPUTATIONAL ANALYSIS  

OF A 3D PRINTED WING STRUCTURE 

 

A Thesis  

Submitted to the Faculty  

of  

Embry-Riddle Aeronautical University  

by  

Aryslan Malik 

 

In Partial Fulfillment of the  

Requirements for the Degree  

of  

Master of Science in Aerospace Engineering  

 

May 2019  

Embry-Riddle Aeronautical University  

Daytona Beach, Florida 

  



iii  

   
 

ACKNOWLEDGMENTS 

 
I would like to express my very great appreciation to my advisor Dr. Claudia 

Moreno and my co-advisor Dr. Ali Yeilaghi Tamijani for their constructive feedback and 

constant support with the development of this research work.  

I would also like to extend my thanks to the ERAU makerspace lab assistant 

Andrew McClary, PhD researcher Sandeep Chava, and machine shop supervisor William 

Russo who helped me with the experimental part of the research work. 

 
  





iv  

   
 

TABLE OF CONTENTS 

 

LIST OF TABLES .............................................................................................................. v 

LIST OF FIGURES ........................................................................................................... vi 

SYMBOLS ......................................................................................................................... ix 

ABBREVIATIONS ............................................................................................................ x 

ABSTRACT ....................................................................................................................... xi 

1. Introduction .................................................................................................................. 1 

2. Aerodynamic Modeling ............................................................................................... 9 

2.1 Vortex Lattice Method ................................................................................................. 11 
2.1.1. VLM Validation ................................................................................................... 13 

2.2 Doublet Lattice Method ............................................................................................... 15 
2.2.1. DLM Validation ................................................................................................... 21 

3. Structural Modeling ................................................................................................... 34 

3.1 FEM Validation ............................................................................................................ 38 

4. Grid Interpolation ...................................................................................................... 41 

5. Analysis of the F-5 wing ............................................................................................ 47 

5.1 Static experiment of 3D printed wing prototype ........................................................ 48 
5.2 Static test of 3D printed wing using DIC .................................................................... 53 

5.3 Ground Vibration Test of the 3D printed wing .......................................................... 61 
5.4 Experimental setup of the wing in ERAU wind tunnel ............................................. 70 
5.5 Modal and aeroelastic analysis in Nastran/Patran ...................................................... 73 

6. Concluding remarks and future work ........................................................................ 80 

REFERENCES ................................................................................................................. 82 

 

 

  



v  

   
 

LIST OF TABLES 

 

Table 1.1 F-5 fighter wing general characteristics .............................................................. 7 

Table 2.1 Comparison of lift coefficients for pitching wing with AR = 2.0, 10 panels 

span-wise, varying number of chord-wise panels and 𝑀 = 0.8....................... 28 

Table 3.1 Displacements of point A and B ....................................................................... 39 

Table 5.1 Displacement of tip chord trailing edge point .................................................. 51 

Table 5.2 Static tests performed with VIC-3D ................................................................. 54 

Table 5.3 Case study design of flutter model via stiffness and dimension control .......... 77 

 

  



vi  

   
 

LIST OF FIGURES 

 

Figure 

1.1    Nasa Armstrong's Active Aeroelastic Wing (2004). ................................................. 2 

1.2    Hadley Page Bi-plane 0/400 bomber (1915). ............................................................ 4 

2.1    Vortex and control points layout (Mason, 1998) ..................................................... 11 

2.2    Wing geometry in Matlab Aeroelastic Code’s VLM ............................................... 13 

2.3    Wing geometry in Tornado VLM ............................................................................ 14 

2.4    Comparison of pressure coefficient at the root chord of the wing ........................... 15 

2.5    Comparison of pressure coefficient at the tip chord of the wing ............................. 15 

2.6    Sketch of experimental model (Lessing, Troutman & Menees, 1960) .................... 22 

2.7    Geometry of the model generated in the DLM code ............................................... 23 

2.8    Root chord pressure distribution, bending mode ..................................................... 26 

2.9    Tip chord pressure distribution, bending mode ....................................................... 27 

2.10  Comparison of 𝐶𝐿 (real) for rectangular AR = 2 wing, M = 0.8, reduced frequency  

k = 0.1 .......................................................................................................................29 

2.11  Comparison of 𝐶𝐿 (imaginary) for rectangular AR = 2 wing, M = 0.8, reduced 

frequency k = 0.1 ..................................................................................................... 30 

2.12  Comparison of 𝐶𝐿 (real) for rectangular AR = 2 wing, M = 0.8, reduced frequency  

k = 0.5 ...................................................................................................................... 30 

2.13  Comparison of 𝐶𝐿 (imaginary) for rectangular AR = 2 wing, M = 0.8, reduced 

frequency k = 0.5 ..................................................................................................... 31 

2.14  Comparison of 𝐶𝐿 (real) for rectangular AR = 2 wing, M = 0.8, reduced frequency  

k = 1.0 ...................................................................................................................... 31 

2.15  Comparison of 𝐶𝐿 (imaginary) for rectangular AR = 2 wing, M = 0.8, reduced 

frequency k = 1.0 ..................................................................................................... 32 

2.16  Comparison of 𝐶𝐿 (real) for rectangular AR = 2 wing, M = 0.8, reduced frequency  

k = 2.0 ...................................................................................................................... 32 

2.17  Comparison of 𝐶𝐿 (imaginary) for rectangular AR = 2 wing, M = 0.8, reduced 

frequency k = 2.0 ..................................................................................................... 33 

3.1    Nodal DoF of a triangular plate in bending (Singiresu, 2017) ................................ 34 

3.2    Square plate schematic ............................................................................................. 38 

3.3    Deflection of Point A (center).................................................................................. 40 

3.4    Deflection of Point B (corner) ................................................................................. 40 

4.1    Example of 2x2 aerodynamic grid ........................................................................... 41 



vii  

   
 

4.2    FEM superimposed on 2x2 aerodynamic grid ......................................................... 42 

4.3    Spline grid ................................................................................................................ 45 

5.1    Rendering of the F-5 wing ....................................................................................... 47 

5.2    Wing internal structure (rib-spar geometry) ............................................................ 48 

5.3    Wing box with hidden top surface ........................................................................... 48 

5.4    Top view with dimensions of the 3D printed wing.................................................. 50 

5.5    3D printed F-5 wing fixture ..................................................................................... 50 

5.6    FE model’s boundary conditions ............................................................................. 51 

5.7    Displacement of tip chord trailing edge point as a function of load ........................ 52 

5.8    Static test, DIC setup with (a) a speckle pattern  and (b) position of cameras ........ 54 

5.9    DIC test 1, no-load ................................................................................................... 56 

5.10  250-gram load case with (a) VIC-3D results and (b) Nastran results ...................... 57 

5.11  500-gram load case with (a) VIC-3D results and (b) Nastran results ...................... 58 

5.12  750-gram load case with (a) VIC-3D results and (b) Nastran results ...................... 59 

5.13  1000-gram load case with (a) VIC-3D results and (b) Nastran results .................... 60 

5.14  Maximum z-axis displacement as a function of load ............................................... 61 

5.15  3D printed wing with a flange ................................................................................. 62 

5.16  Wing fixture ............................................................................................................. 63 

5.17  Force sensor mounted between a stinger and the wing............................................ 63 

5.18  GVT test case 1, test case 4 and test case 8 ............................................................. 64 

5.19  Time domain response corresponding to case 1 ...................................................... 65 

5.20  Frequency response from input force to acceleration response for case 1 .............. 65 

5.21  Hankel Singular Values for 32 order model ............................................................ 66 

5.22  The worst (top) and the best (bottom) fit of the 32 order state-space model ........... 67 

5.23  Stabilization diagram ............................................................................................... 67 

5.24  3D printed wing’s experimental (top) and simulated (bottom) 1st bending mode ... 68 

5.25  3D printed wing’s experimental (top) and simulated (bottom) 1st torsion mode ..... 69 

5.26  ERAU wind tunnel test section ................................................................................ 71 

5.27  Visualization of ERAU wind tunnel section with wing model a) Rendered b) 

Isometric sectioned and c) Isometric side views ...................................................... 72 

5.28  Top view of the wing model with dimensions ......................................................... 73 

5.29  1st bending at 18.66 Hz ............................................................................................ 74 

5.30  1st torsion at 57.19 Hz .............................................................................................. 74 



viii  

   
 

5.31  𝑣 − 𝑔 plot of F-5 wing, “Durus” material, 𝐸 = 1.1 𝐺𝑃𝑎, 2 feet ............................. 75 

5.32  𝑣 − 𝑓 plot of F-5 wing, “Durus” material, 𝐸 = 1.1 𝐺𝑃𝑎, 2 feet ............................. 75 

5.33  𝑣 − 𝑔 plot of F-5 wing, “Durus” material, 𝐸 = 1.1 𝐺𝑃𝑎, 3 feet ............................. 76 

5.34  𝑣 − 𝑓 plot of F-5 wing, “Durus” material, 𝐸 = 1.1 𝐺𝑃𝑎, 3 feet ............................. 76 

5.35  𝑣 − 𝑔 plot of F-5 wing, ”Durus” material, 𝐸 = 1.1 𝐺𝑃𝑎, 2 feet, 1.5 mm ............... 78 

5.36  𝑣 − 𝑔 plot of F-5 wing, ”Durus” material, 𝐸 = 1.1 𝐺𝑃𝑎, 2 feet, 2.5 mm ............... 78 

5.37  𝑣 − 𝑔 plot of F-5 wing, ”Durus” material, 𝐸 = 1.1 𝐺𝑃𝑎, 2 feet, 5.0 mm ............... 79 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix  

   
 

SYMBOLS 

 

𝑚𝑏  Total body mass 

𝐼𝑏  Mass inertia 

𝑉𝑏  Velocity 

𝛺𝑏  Angular velocity 

𝑔𝐸  Gravitational vector 

𝑇𝑏𝐸  Transformation matrix 

𝛷𝑏
𝑇  Rigid body modal matrix about c.g. 

𝑀̂𝑓  Generalized modal mass matrix 

𝐾̂𝑓  Generalized modal stiffness matrix 

𝛴̂𝑓  Generalized damping matrix 

𝜂𝑓  Vector of elastic modal displacements 

𝛷𝑓
𝑇  Flexible modal matrix 

𝑃𝑐  Vector of aerodynamic forces and moments 

𝜙  Velocity potential 

𝐕∞  Free stream velocity 

𝐯𝒃  Velocity generated by vortice 

𝐧𝑖  Normal vector to the panel 𝑖 
(𝑢, 𝑣, 𝑤)𝑖𝑗  Velocities induced by vortex 𝑗 on collocation point 𝑖 

Γ𝑗  Circulation 

∆𝐿𝑖  Lift of the panel 𝑖 
𝑏𝑖  Bound vortex length 

𝜌  Air density  

𝑤𝑖𝑗  Induced normalwash at 𝑖𝑡ℎ panel 

𝑐𝑗  Chord length of the 𝑗𝑡ℎ panel 

𝐾  Kernel function 

(𝑥𝑖, 𝑦𝑖)  Coordinates of the 𝑖𝑡ℎ collocation point 

(𝜉𝑗 , 𝜎𝑗)  Coordinates along the doublet line of the 𝑗𝑡ℎ panel 

𝜔  Frequency at which the lifting surface is oscillating 

𝑉  Free stream velocity 

∆𝑝𝑗  Pressure difference across the doublet at the 𝑗𝑡ℎ panel 

𝑘  Reduced frequency 

𝑞̅  Free stream dynamic pressure 

𝑆  Diagonal matrix of  panel areas 

𝐹𝑎𝑒𝑟𝑜  Aerodynamic force distribution 

𝐷  Normalwash matrix 

ℎ𝑖  Heave displacement of 𝑖𝑡ℎ panel 

𝜃𝑖  Pitch displacement of 𝑖𝑡ℎ Panel 

𝑀  Mach number 

𝐶𝐿  Lift coefficient 



x  

   
 

 

ABBREVIATIONS 

 

3D Three Dimension(al) 

AAW Active Aeroelastic Wing 

ABS Acrylonitrile Butadiene Styrene 

AIC Aerodynamic Influence Coefficients 

AR Aspect Ratio 

CAD Computer Aided Drawing  

CFD Computational Fluid Dynamics 

cm Centimeter 

CSD Computational Structural Dynamics 

DIC Digital Image Correlation 

DLM Doublet Lattice Method 

DoF Degree(s) of Freedom 

ERAU Embry-Riddle Aeronautical University 

FE Finite Element 

FEA Finite Element Analysis 

FEM Finite Element Method, Finite Element Model 

ft Feet 

g Gram 

GPa Gigapascal 

GVT Ground Vibration Test 

Hz Hertz 

in2 Square inch 

kg Kilogram(s) 

lbs Pound(s) 

m Meter(s) 

m/s Meter(s) per second 

m2 Square meter 

mm Millimeter 

MPa Megapascal 

NASA National Aeronautics and Space Administration 

SAnD Structural Analysis and Design 

SISO Single input, single output 

SWBT Symmetric Wing Bending Torsion 

UAV Unmanned Aerial Vehicle 

VLM Vortex Lattice Method 

  



xi  

   
 

ABSTRACT 

 

Malik, Aryslan MSAE, Embry-Riddle Aeronautical University, March 2019. Experimental 

and Computational Aeroelastic Analysis of a 3D Printed Wing Structure. 

 
Correct prediction of aeroelastic response is a crucial part in designing flutter or divergence 

free aircrafts within a designated flight envelope. The aeroelastic analysis includes 

specifically tailoring the design in order to prevent flutter (passive control) or eliminate it 

by applying input on control surfaces (active control). High-fidelity models such as coupled 

Computational Fluid Dynamics (CFD) - Computational Structural Dynamics (CSD) can 

obtain full structural and aerodynamic behavior of a deformable aircraft. However, these 

models are so large that pose a significant challenge from the control systems design 

perspective.  Thus, the development of an aeroelastic modeling software that can be used 

for further control design is the main motivation of this thesis. In addition, an aeroelastic 

analysis of a topologically optimized wing geometry will serve as a validation tool of the 

software. Initially, a 3D printed prototype of the wing is validated against static 

deformation tests as well as dynamic Ground Vibration Tests (GVT). The developed model 

is compared against the commercial software Nastran/Patran. Further plans include 

experimental aerodynamic test of 3D printed wing in the new Embry-Riddle Aeronautical 

University’s (ERAU) wind tunnel to validate the proposed model. 
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1. Introduction 

Aeroelasticity is a phenomenon that requires a thorough analysis of the combination 

of multiple forces such as aerodynamic, elastic and inertia forces. Contemporary 

airframes are becoming more flexible which in turn makes the aeroelastic analysis a 

crucial part of aircraft design (Livne, 2017). Aeroelasticity, generally, can be divided into 

static aeroelasticity and dynamic aeroelasticity. Static aeroelasticity includes major 

phenomena such as divergence and aileron reversal. Dynamic aeroelasticity includes the 

flutter phenomenon (Chinmaya & Venkatasubramani, 2009).  

To be more specific an example of undesired aeroelastic phenomena is described. 

An aerodynamic surface (e.g., wing, canard or tail) experiences aerodynamic force 

normal to the airstream that increases with the square of speed and the angle of incidence 

which is the angle between the corresponding aerodynamic surface and the air flow 

(Chinmaya & Venkatasubramani, 2009). This aerodynamic force which is generally 

called lift will usually twist the lifting surface with its leading edge up about its elastic 

axis because the center of pressure is located in front of the elastic axis. This twist of the 

lifting surface increases the angle of incidence experienced by the corresponding 

aerodynamic surface which in turn increases the aerodynamic force that increases the 

twist further and so on until the system reaches an equilibrium condition. Undesired 

phenomena such as divergence occurs when the given lifting surface is deformed such 

that the applied aerodynamic load is increased or when the aerodynamic load is moved so 

as to increase the twisting effect on the structure which deflects the structure further until 

it fails.     

When the aileron is commanded to deflect downward, the upward lift force is 
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created so that the aircraft can perform, for instance, a rolling maneuver. This additional 

lift force also creates a pitch-down moment about the elastic axis, since the deflected 

control surface is located behind the elastic axis. This pitch-down moment causes elastic 

rotation of the lifting surface section in a nose-down direction inducing down lift. The 

aileron is considered to be reversed when the induced down lift force exceeds the 

commanded up lift force created by the aileron.  Extensive research was focused on the 

study of the dynamic phenomena that resulted in development of sophisticated analytical 

and computational techniques that would ensure that the design is free of flutter or any 

other undesired aeroelastic phenomena (Livne, 2017). One example of such research 

works could be NASA Armstrong’s Active Aeroelastic Wing (AAW) demonstrated in 

Figure 1.1 which used active control of the leading edge flaps (NASA Armstrong Fact 

Sheets - Active Aeroelastic Wing, 2018). In essence, these control surfaces were 

deployed to eliminate the aileron reversal by compensating the twisting effect of the 

wing. 

 

Figure 1.1 Nasa Armstrong's Active Aeroelastic Wing (2004). 

Having established an understanding of static aeroelastic phenomena an example of 
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dynamic aeroelastic instability is outlined. Flutter is a dynamic aeroelastic phenomena 

that is produced by combination of elastic, inertial and unsteady aerodynamic forces that 

eventually causes airfarme’s vibration. Generally, flutter is more complex problem 

because it involves the vibration of the structure. In order to understand flutter 

phenomenon imagine rectangular unswept wing fixed rigidly on its root chord and 

mounted in a wind tunnel. If a wing in this configuration is disturbed without any airflow 

in the wind tunnel, the perturbation is damped by the structural damping of the wing 

structure. When the airflow speed in the wind tunnel is gradually increased the damping 

rate, at first, increases as well. However, as the airspeed is increased further a point is 

reached where the damping decreases rapidly. Critical flutter speed characterizes the 

condition at which constant steady amplitude is maintained by the interaction of the 

airflow and the structure.  At airspeeds higher than the critical a small vibration in the 

structure could possibly trigger oscillations with increasing amplitude leading to failure 

of the structure. The first recorded flutter incident dates back to 1915 and involved 

Hadley Page’s bomber Bi-plane shown in Figure 1.2 with ‘violent oscillations’ of the tail 

flutter problem (Chinmaya & Venkatasubramani, 2009). Follow-up inspection showed 

that the reason for flutter was that the fuselage’s torsional mode coupled with 

independently actuated anti-symmetrical elevators’ mode (Lanchester, 1916).  
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Figure 1.2 Hadley Page Bi-plane 0/400 bomber (1915). 

For several decades the flutter phenomenon was the primary focus of the research in 

the field of aeroelasticity (Kehoe, 1995), and it is also the primary focus of this thesis. 

There are different models for aeroelastic analysis and currently computational fluid 

dynamics and computational structural dynamics coupling is at highest modeling fidelity 

level. These models can provide accurate representation of the dynamic as well as 

aerodynamic behavior of a deformable aircraft (Livne, 2017). However, there are certain 

limitations to this model which makes it less practical. Firstly, it is so large that it takes 

considerable amount of time to simulate, so in the design environment where myriad 

number of simulations are required the usage of this model is still impractical. Secondly, 

because of the same reason the math models become too involved which poses 

challenges to a control system designer. Moreover, the interdisciplinary nature of the 

phenomenon leads to simplifications and several assumptions during formulation of the 

aeroelastic model therefore requiring experimental validations. Thus, the main objectives 

of this thesis are: 

1) Develop a custom software for coupling of aerodynamic and structural wing 

forces. 

2) Design an aeroelastic wing experiment for the new ERAU wind tunnel. 
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General equations related to the development of a custom aeroelastic modeling 

software are shown as follows:  

 
[
𝑚𝑏(𝑉𝑏̇ + 𝛺𝑏 × 𝑉𝑏 − 𝑇𝑏𝐸𝑔𝐸)

𝐼𝑏𝛺𝑏̇ + 𝛺𝑏 × (𝐼𝑏𝛺𝑏)
] = 𝛷𝑏

𝑇𝑃𝑐 (1.1) 

 𝑀̂𝑓𝜂̈𝑓 + 𝛴̂𝑓𝜂̇𝑓 + 𝐾̂𝑓𝜂𝑓 = 𝛷𝑓
𝑇𝑃𝑐 (1.2) 

where, 

1. 𝑚𝑏: total body mass 

2. 𝐼𝑏: mass inertia 

3. 𝑉𝑏: velocity 

4. 𝛺𝑏: angular velocity 

5. 𝑔𝐸: gravitational vector 

6. 𝑇𝑏𝐸: transformation matrix 

7. 𝛷𝑏
𝑇: rigid body modal matrix about c.g. 

8. 𝑀̂𝑓: generalized modal mass matrix 

9. 𝐾̂𝑓: generalized modal stiffness matrix 

10. 𝛴̂𝑓: generalized damping matrix 

11. 𝜂𝑓: vector of elastic modal displacements 

12. 𝛷𝑓
𝑇: flexible modal matrix 

13. 𝑃𝑐: vector of aerodynamic forces and moments 

The structure of the aeroelastic modeling software consists of several integral parts. 

First is aerodynamic finite element method which is an aerodynamic analysis tool and 

like structural analysis it is based upon finite element approach. Since dynamic 

aeroelastic phenomenon is analyzed, unsteady aerodynamic forces should be considered. 
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These forces are generated when the flow is disturbed by the moving structure. The 

unsteady aerodynamics analysis allows computation of a matrix that correlates the forces 

acting on the lifting surface due to the displacement of the lifting surface’ structure. The 

elements in this matrix are complex, which account for phase lags between the movement 

of the structure and the forces. This matrix depends on reduced frequency and Mach 

number and is computed by Doublet Lattice Method (DLM). Second part of the model is 

the structural model, which is a structural analysis method that utilizes finite element 

method. The structural grid is independent of the aerodynamic grid. Since, structural grid 

points usually do not occupy same spatial coordinates with elements of an aerodynamic 

grid and degrees of freedom of the structural grid may also differ from the aerodynamic 

grid, an aero-structure coupling is required which is usually based upon method of 

splines. This interpolation is a crucial feature because it allows the choice of structural 

and aerodynamic elements to be based upon independent considerations (Rodden & 

Johnson, 1994). Both custom Matlab Aeroelastic Code and Nastran/Patran are based on 

this type structure of aeroelastic modeling software. Prior experimental data and 

Nastran’s Aeroelastic Module which is used on a par with its pre/post processor Patran 

serve as a source of verification and comparison for the custom code that is developed 

throughout the thesis work (Matlab Aeroelastic Code). 

 As the second objective is to design an aeroelastic wing experiment in the new 

ERAU wind tunnel, the setup is first analyzed via simulations in Nastran. For most of the 

simulations and experiments with the goal of validation, a specific wing geometry was 

chosen. This wing geometry corresponds to the Northrop Grumman’s F-5 fighter wing. 

The Computer Aided Drawing (CAD) model of the wing was provided by the Embry-
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Riddle Aeronautical University’s (ERAU) Structural Analysis and Design (SAnD) Lab. 

The internal structure of this wing is topologically optimized with a specific geometry 

and configuration of spars and ribs. General data regarding the geometry of the full-scale 

wing is summarized in Table 1.1. 

Table 1.1  

F-5 fighter wing general characteristics 

Characteristic Value 

Sweep-back of quarter 

chord 

24º  

Leading edge sweep 32º 

Aspect ratio ~4 

Taper ratio 0.2 

Wing area 17.28m2 

Wingspan 8.13m 

Simulations in Nastran are verified and validated as well. The structural FEM is 

verified with static experiment and GVT, for this purpose a smaller scale wing is 3D 

printed from an ABS plastic. Static experiment is carried out by applying a load on a 3D 

printed wing prototype and Digital Image Correlation (DIC) is chosen as data acquisition 

system. After experimental validation of simulations a flutter analysis is carried out in 

Nastran/Patran environment. The future work would include the validation of the Matlab 

Aeroelastic Code with a wind tunnel test that would require the manufacturing, 

specifically 3D printing a large (2ft) wing, and the design of the test setup rig to mount 

accelerometers on the wing’s surface inside wind tunnel test section. 
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The structure of the thesis is as follows: Chapter 2 describes aerodynamic modeling 

approach that includes both steady aerodynamics (VLM) and unsteady aerodynamics 

(DLM). The chapter also includes the validation of both steady and unsteady 

aerodynamic models. Chapter 3 describes the structural model (FEM) developed for the 

Matlab Aeroelastic Code. Chapter 4 covers the interpolation between aerodynamic and 

structural grids and intermediate spline grid. Chapter 5 describes flutter analysis in 

Nastran/Patran, static and GVT experiments with 3D printed wing and preliminary 

experimental setup in wind tunnel. Chapter 6 provides concluding remarks and future 

direction for the work.
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2. Aerodynamic Modeling 

Aerodynamic modeling is crucial part of aeroelastic analysis and modeling. 

Derivation of aerodynamic equations starts from more general fluid dynamics equations. 

These more general equations are usually simplified to represent the most important 

physical aspects of aerodynamic flow (Shames, 1982; Anderson, 1984; Katz & Plotkin, 

1991). Example of such simplifications can be attributed to Lifting Line Theory 

developed by Ludwig Prandtl in 1920’s that was, at that time, one of the first 

aerodynamic models predicting aerodynamic forces acting on a finite lifting surface 

(Shames, 1982; Anderson, 1984).  Prandtl Lifting Line Theory assumes that the 

aerodynamic flow is irrotational, inviscid and incompressible. Such flow is also known as 

potential flow (Shames, 1982; Anderson, 1984). Mathematical implications of such 

assumptions are represented in the following equations: 

From the continuity equation, in an incompressible and inviscid flow: 

 ∇ ∙ 𝐯 = 𝟎 (2.1) 

As the flow is irrotational a velocity potential can be introduced: 

 𝐯 = ∇𝜙 (2.2) 

Thus, as a result velocity potential satisfies Laplace’s equation: 

 ∇2𝜙 = 0 (2.3) 

Thenceforward, over the last century modeling of aerodynamic flows significantly 

developed so as to envisage different flow conditions and characteristics that range from 

subsonic potential flow to a more involved supersonic, viscous, compressible flow that is 

described by different underlying assumptions applied to Navier-Stokes equations 

(Shames, 1982; Anderson, 1984). 
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Time varying nature of unsteady flow is crucial because it affects the mathematical 

modeling of unsteady aerodynamics used in aeroelastic analysis. When a lifting surface 

experiences aerodynamic load it is deformed which changes its aerodynamic shape, and 

in turn alters the flow characteristic around it. This process is not instantaneous, thus 

unsteady aerodynamic modeling is of primary importance to capture the forces acting on 

a body in a time varying flow. There are various methods solving unsteady aerodynamics 

for the purpose of aeroelastic analysis ranging from the highest fidelity level CFD-CSD 

coupled solvers, which discretize Navier-Stokes equations, to the lowest fidelity level 

potential flow solvers based on the strip theory and 2-D infinite wing assumption (Livne, 

2017).  

High fidelity CFD-CSD coupled solvers are capable of capturing accurate structural 

and dynamic behavior of the lifting surface, yet computationally expensive and involved 

which renders them as impractical as far as the control system design perspective is 

concerned (Livne, 2017). Contrarily, aerodynamic models based on strip theory are 

relatively simple and computationally inexpensive compared to high fidelity models. 

However, strip theory may lack accuracy required for the aeroelastic analysis (Livne, 

2017). Potential flow based panel methods can be considered as middle tier fidelity 

aerodynamic models which satisfy the requirements of aeroelastic analysis and at the 

same time not as computationally demanding as high fidelity models while still retaining 

reasonable accuracy of lifting characteristics of finite wings, and readily applicable to 

control system design (Katz & Plotkin, 1991). Panel methods such as Vortex Lattice 

Method (VLM) and Doublet Lattice Method (DLM) are used for the purpose of 

aerodynamic modeling where the former is used for steady part of the solution and the 
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latter is essentially unsteady oscillatory extension of the VLM.  

2.1 Vortex Lattice Method  

The VLM is a potential flow solver that utilizes planar surfaces (panels) to represent 

lifting surfaces (e.g. wing, canard, tail etc.) (Moran, 1991). According to Kutta-

Joukowski theorem the vortices represent lift and are placed on the quarter chord of each 

panel. Boundary condition of zero normal velocity on the panel surface is satisfied on so 

called collocation (control) point of each panel that is located at 3/4 of the chord (Katz & 

Plotkin, 1991). Described positioning of vortices and collocation points is not a 

theoretical law but rather a rule of thumb that works well for this method and also it is 

known as “1/4 – 3/4 rule” (Mason, 1998). Figure 2.1 demonstrates the placement of the 

bound vortices and control points.   

 

Figure 2.1 Vortex and control points layout (Mason, 1998) 

Generally, the procedure for the VLM panel method is as follows: 
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Firstly, the lifting surface is discretized into lattice of quadrilateral panels. 

Generally a collection of panels describing lifting surface is referred to as aerodynamic 

grid. Secondly, the zero normal flow condition is satisfied on every panel’s collocation 

(control) point. This is defined by the addition of already known free stream velocity 𝐕∞ 

and unknown velocities 𝐯𝒃 generated by vortices: 

 (𝐕∞ + 𝐯𝑏) ∙ 𝐧 = 0 (2.4) 

Equation 2.4 is satisfied at every collocation point, and combined with Biot-Savart 

Law that leads to the following compact formulation of influence coefficients (more 

detailed derivation is presented in (Katz & Plotkin, 1991)): 

 𝑎𝑖𝑗 = (𝑢, 𝑣, 𝑤)𝑖𝑗 ∙ 𝐧𝑖 (2.5) 

where, 𝐧𝑖 is the normal vector to the panel 𝑖 and (𝑢, 𝑣, 𝑤)𝑖𝑗 represent velocities induced 

by vortex 𝑗 on collocation point 𝑖. Combining above Equation 2.5 leads to the following 

linear system of equations: 

 

[

𝑎11 𝑎12 … 𝑎1𝑁

 𝑎21 𝑎22 … 𝑎2𝑁

⋮ ⋮ ⋱ ⋮

𝑎𝑁1 𝑎𝑁2 … 𝑎𝑁𝑁

 ] [

Γ1

Γ2

⋮

Γ𝑁

]  = [

−𝑉∞ ∙ 𝐧1

−𝑉∞ ∙ 𝐧2

⋮

−𝑉∞ ∙ 𝐧𝑁

] (2.6) 

where Γ𝑗 are unknown circulations. After circulations are calculated the lift can be 

obtained as follows: 

 ∆𝐿𝑖 = 𝜌𝑉∞ × Γ𝑖∆𝑏𝑖 (2.7) 

where ∆𝐿𝑖 is the lift of the panel 𝑖 and 𝑏𝑖 is the bound vortex length. In order to calculate 

the total lift of the lifting surface all panels’ lift contributions are summed. 
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2.1.1. VLM Validation 

A specific wing geometry was analyzed in order to validate the VLM code that is 

based on a code developed by University of Minnesota UAV lab (Kotikalpudi, 2017). 

This specific geometry was chosen because there are experimental results available for 

this geometry that can be used to validate against. The wing under consideration has an 

aspect ratio of 3, quarter chord sweep angle of 45, taper ratio of 0.5 and zero dihedral 

angle. Panels are distributed in such a way that there are 6 panels in chordwise direction 

and 8 panels in spanwise direction resulting in 48 panels for half of the wing, and if 

symmetry is considered – 96. The wing geometry generated in the Matlab Aeroelastic 

Code’s VLM is shown in Figure 2.2 and wing geometry generated in Tornado VLM is 

presented in Figure 2.3. 

 

Figure 2.2 Wing geometry in Matlab Aeroelastic Code’s VLM 
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Figure 2.3 Wing geometry in Tornado VLM 

In order to validate the Vortex Lattice Method (VLM) the results of the Matlab 

Aeroelastic code were compared against experimental results and numerical results 

obtained by Albano-Rodden VLM (Albano & Rodden, 1969) as well as Tornado VLM 

developed by Department of Aeronautics at the KTH Royal Institute of Technology 

(Melin, 2000). Flight conditions are as follows: the angle of attack is 4 degrees and the 

Mach number is 0.8. Particularly, the pressure coefficients at the root chord, shown in 

Figure 2.4, and tip chord, demonstrated in Figure 2.5, of a tapered and swept wing at an 

incidence in a steady flow were compared.  
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Figure 2.4 Comparison of pressure coefficient at the root chord of the wing 

 

Figure 2.5 Comparison of pressure coefficient at the tip chord of the wing 

The results indicate that the developed VLM overestimate the pressure at the 

leading edge and underestimate it further down the chord line in the case of root chord, 

which can be observed in Figure 2.4. As far as tip chord is concerned (Figure 2.5) it can 

be inferred that the developed VLM vice-versa underestimate the pressure at the leading 

edge and slightly overestimate it starting from the half chord. Moreover, it is crucial to 

note that the results obtained by VLM almost identically match the results obtained using 

Tornado VLM. 

2.2 Doublet Lattice Method 
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Essentially, DLM can be considered as a panel method relying on potential flow 

assumption with unsteady oscillatory extension of the steady VLM discussed in section 

2.1 (Albano & Rodden, 1969). The VLM is extended to account for oscillatory doublets 

of constant strength to the bound vortex along the quarter-chord of each box. Similarly to 

VLM, the points located at 3/4 of any given panel’s chord are normalwash calculation 

points, also known as collocation points (Katz & Plotkin, 1991; Albano & Rodden, 

1969). Normalwash is the normal flow to the panel’s surface normalized with respect to 

the freestream velocity (Katz & Plotkin, 1991; Albano & Rodden, 1969). Both doublet 

lines and freestream flow induce normalwash. The DLM utilizes the normalwash 

distribution to calculate the pressure distribution across panels that describe the lifting 

surface.  

The relation between normalwash distribution and pressure distribution is produced 

in an involved process of derivation which includes several simplifying approximations 

and is shown in detail in (Albano & Rodden, 1969; Rodden, Taylor & McIntosh, 1998). 

Thus, a concise overview pertinent to the utilization of the DLM to aeroelasticity is 

presented henceforth.  

As it was mentioned previously the main objective of the DLM is to relate the 

normalwash distribution due to free stream generated by doublet lines to a corresponding 

pressure distribution acting on the lifting surface undergoing oscillatory motion with a 

specific frequency. In order to accomplish this goal as a first step the lifting surface is 

discretized to a lattice similar to the aerodynamic grid used in VLM. However, in this 

case a doublet line is placed on the quarter chord of each panel.  

The second step is to construct the downwash matrix 𝐷 that is obtained by 
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computing the normalwashes induced by each doublet line at all collocation points on the 

lifting surface. The normalwash produced at the 𝑖𝑡ℎ collocation point due to the doublet 

line on 𝑗𝑡ℎ panel in terms of pressure distribution is given as a following integral: 

 

𝑤𝑖𝑗 =
𝑐𝑗

8𝜋
∫ 𝐾(𝑥𝑖 , 𝑦𝑖, 𝜉𝑗(𝑙), 𝜎𝑗(𝑙), 𝜔, 𝑉)∆𝑝𝑗𝑑𝑙

𝐿
2

−
𝐿
2

 (2.8) 

where, 

1. 𝑤𝑖𝑗: induced normalwash at 𝑖𝑡ℎ panel 

2. 𝑐𝑗: chord length of the 𝑗𝑡ℎ panel 

3. 𝐾: Kernel function relating the normalwash produced by an infinitesimal 

acceleration doublet to the pressure difference across it 

4. (𝑥𝑖, 𝑦𝑖): coordinates of the 𝑖𝑡ℎ collocation point at which normalwash is 

computed 

5. (𝜉𝑗 , 𝜎𝑗): coordinates along the doublet line of the 𝑗𝑡ℎ panel 

6. 𝜔: frequency at which the lifting surface is oscillating  

7. 𝑉: free stream velocity 

8. ∆𝑝𝑗: pressure difference across the doublet at the 𝑗𝑡ℎ panel 

Total normalwash at the 𝑖𝑡ℎ panel can be calculated by summing contributions of 

every panel as follows: 

 

𝑤𝑖𝑗𝑤𝑖 = ∑ 𝐷𝑖𝑗

𝑗=𝑁

𝑗=1

∆𝑝𝑗 (2.9) 

 

𝐷𝑖𝑗 =
𝑐𝑗

8𝜋
∫ 𝐾(𝑥𝑖 , 𝑦𝑖 , 𝜉𝑗(𝑙), 𝜎𝑗(𝑙), 𝜔, 𝑉)

𝐿
2

−
𝐿
2

 (2.10) 

where 𝑁 is the total number of panels describing the lifting surface. The resulting 
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normalwash 𝑤𝑖 is a harmonic function because the pressure distribution ∆𝑝𝑗 is harmonic 

function as well. The Equations 2.9-2.10 can be re-written in matrix form as follows: 

 𝑤̅ = 𝐷𝑝̅ (2.11) 

where 𝑤̅ denotes a vector of 𝑁 × 1 dimension containing all total induced normalwash at 

each panel produced by doublet lines at each panel, 𝐷 represents the normalwash matrix 

of 𝑁 × 𝑁 dimension, and 𝑝̅ is the pressure difference vector of 𝑁 × 1 dimension that 

contains pressure difference across each panel. It is worth to mention that the 𝐷𝑖𝑗 depends 

only on the geometry of the lifting surface and known flow condition. Thus, the 𝐷 matrix 

can be obtained by integrating the kernel function 𝐾 along each doublet line. The detailed 

process of integration can be found in (Albano & Rodden, 1969; Watkins, Woolston & 

Cunningham, 1959). The crucial aspect of the formulation is that the equations given in 

(Albano & Rodden, 1969; Watkins, Woolston & Cunningham, 1959) allow the usage of 

non-dimensional parameter called reduced frequency that combines free stream velocity, 

oscillating frequency and given reference chord presented as follows: 

 
𝑘 =

𝜔𝑐̅

2𝑉
 (2.12) 

Thus, for a given geometry of the lifting surface the 𝐷 matrix becomes a function of 

solely reduced frequency. As shown previously, the 𝐷 matrix maps the pressure 

difference across the panels produced by respective doublet liens to the induced 

downwash at each panel’s collocation point. Since the pressure vector is unknown, a 

further step is taken by inverting the 𝐷 matrix. The inverted 𝐷 matrix is also known as 

Aerodynamic Influence Coefficients (AIC) matrix (Kotikalpudi, 2017). The equations 

solving for the pressure difference vector are given as: 
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 𝑝̅ =  𝐷−1𝑤̅ (2.13) 

 
𝑘 =

𝜔𝑐̅

2𝑉
 (2.14) 

The next step is to apply zero net normal flow boundary condition which is a 

physical constraint stating that there cannot be any flow passing perpendicularly to the 

discretized panels (Kotikalpudi, 2017). Ideally this condition should be satisfied across 

the entire surfaces of all panels, however, in practice it is satisfied on the collocation 

points (Kotikalpudi, 2017). In the model the boundary condition is satisfied by relating 

the induced normalwash vector 𝑤̅ produced by the doublet lines to the normalwash 

distribution vector 𝑤̅∞ due to the free stream as follows: 

 𝑤̅ + 𝑤̅∞ = 0 (2.15) 

Thus, the pressure difference can be found using the normalwash distribution vector 

due to the free stream: 

 𝑝̅ = −[𝐴𝐼𝐶(𝑘)]𝑤̅∞ (2.16) 

Using the Equation 2.16 the pressure distribution of an oscillating lifting surface 

can be found from the free stream normalwash distribution. 𝑤̅∞ vector is calculated from 

the given flow condition and the motion of the lifting surface. For small angles the 

normalwash vector 𝑤̅∞ is identical to the angle of attack. Vectors 𝑝̅ and 𝑤̅∞ are both 

harmonic functions in oscillating frequency 𝜔. 

It can be observed that the vector 𝑤̅∞ contains the normalwash of each individual 

panel. This implies that if an elastic deformation of a given lifting surface can be 

approximated by the motion of the discretized panels, the corresponding normalwash 

vector  𝑤̅∞ can be computed (Kotikalpudi, 2017). Consequently, Equation 2.16 can be 

readily used to obtain the pressure distribution across panels corresponding the elastic 
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deformation of the lifting surface (Kotikalpudi, 2017). The aerodynamic force 

distribution can be calculated as follows: 

 𝐹𝑎𝑒𝑟𝑜(𝑘) = 𝑞̅𝑆𝑝̅ (2.17) 

 𝐹𝑎𝑒𝑟𝑜(𝑘) = 𝑞̅𝑆[𝐴𝐼𝐶(𝑘)]𝑤̅ (2.18) 

where 𝑞̅ is the free stream dynamic pressure and 𝑆 is a diagonal matrix of  panel areas 

(Kotikalpudi, 2017). The obtained aerodynamic force acts at the midpoint of the doublet 

line at each panel.  

The DLM is generally more involved than the VLM, and thus involves more 

assumptions and approximations. The implications of such approximations is that at zero 

oscillating frequency the DLM result is not as accurate as the result obtained by VLM 

(Katz & Plotkin, 1991; Albano & Rodden, 1969; Rodden, Taylor & McIntosh, 1998). 

Therefore, for the same aerodynamic grid in order to improve the accuracy of the DLM 

result it is suggested to superimpose unsteady solution of the DLM to the steady solution 

of the VLM as given in (Rodden, Taylor & McIntosh, 1998). 

In order to incorporate steady solution of the VLM into the unsteady part of the 

DLM solution it is required to obtain the incremental downwash matrix that represents 

solely unsteady effects. Incremental downwash matrix is found by obtaining the 

downwash matrix twice using the DLM, first, it is calculated at the given frequency and 

subsequently it is computed at zero frequency. This is demonstrated in the following 

Equation 2.19: 

 𝐷𝑢𝑛𝑠𝑡𝑒𝑎𝑑𝑦(𝑘) = 𝐷𝜔(𝑘) − 𝐷0 (2.19) 

where 𝐷𝑢𝑛𝑠𝑡𝑒𝑎𝑑𝑦 is the incremental downwash matrix that represents only the unsteady 

part of the DLM solution, 𝐷𝜔 is the downwash matrix computed at the given frequency 𝜔 



21  

   
 

and 𝐷0 is the downwash matrix calculated at zero frequency (Kotikalpudi, 2017). Note 

that the downwash matrix at zero frequency 𝐷0 is not a function of reduced frequency 𝑘 

since by setting the oscillating frequency to zero the reduced frequency becomes zero as 

well. 

Total solution is obtained by combining unsteady part of the DLM solution which is 

the incremental downwash matrix 𝐷𝑢𝑛𝑠𝑡𝑒𝑎𝑑𝑦  and steady part is provided by the VLM 

solution, in an essence the VLM solution compensates the subtracted 𝐷0 and bolsters the 

accuracy of the result. The steady part is obtained as shown in section 2.1. It is important 

to mention that downwash matrices are compatible only if the same aerodynamic grid is 

used for both the computation of incremental downwash matrix using the DLM and for 

obtaining steady state downwash matrix using the VLM. Total downwash matrix is 

obtained as follows: 

 𝐷𝑡𝑜𝑡𝑎𝑙(𝑘) = 𝐷𝑢𝑛𝑠𝑡𝑒𝑎𝑑𝑦(𝑘) + 𝐷𝑉𝐿𝑀 (2.20) 

where 𝐷𝑡𝑜𝑡𝑎𝑙(𝑘) is the total downwash matrix that consists of both steady state 

downwash matrix 𝐷𝑉𝐿𝑀 computed using the VLM and unsteady incremental downwash 

matrix 𝐷𝑢𝑛𝑠𝑡𝑒𝑎𝑑𝑦. The improved AIC matrix is given as follows: 

 [𝐴𝐼𝐶(𝑘)] = 𝐷𝑡𝑜𝑡𝑎𝑙
−1 (𝑘) (2.21) 

As it was mentioned earlier, in order to use the DLM in aeroelastic analysis it is 

necessary to express the free stream normalwash vector 𝑤̅∞ so that it accounts for the 

elastic deformation of a lifting surface (Kotikalpudi, 2017). This topic is discussed in 

detail in the following DLM validation section. 

2.2.1. DLM Validation 

The DLM is verified with experimental data and previous DLM codes. The DLM 



22  

   
 

code used in this thesis is based on a work of University of Minnesota UAV Lab 

(Kotikalpudi, 2017).  

Firstly, a lift distribution on a rectangular wing with aspect ratio of 3 oscillating in 

bending mode is used as a source of validation. Experimental measurements of lift 

distribution are provided by (Lessing, Troutman & Menees, 1960). Dimensional sketch of 

the model is given in Figure 2.6. 

 

Figure 2.6 Sketch of experimental model (Lessing, Troutman & Menees, 1960) 

Corresponding geometry generated in the DLM code is given in Figure 2.7 
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Figure 2.7 Geometry of the model generated in the DLM code 

The wing is oscillating in a bending mode that can be described by Equation 2.22: 

 ℎ̅ ≈ 0.1804|(
𝑦

𝑠⁄ )| + 1.702(
𝑦

𝑠⁄ )
2
− 1.136|(

𝑦
𝑠⁄ )|

3
+ 0.253(

𝑦
𝑠⁄ )

4
 (2.22) 

where, ℎ̅ is the heave (vertical displacement) of the lifting surface, 𝑦 is the span-wise 

coordinate, 𝑠 is the span of the lifting surface, in this case it is the span of the wing. In the 

case of the DLM code 𝑦 takes discrete values since the lifting surface (wing) is 

discretized to 8 panels chord-wise and 8 panels span-wise. For a given specific case 𝑦 

becomes a vector and takes the span-wise coordinates of the downwash points. Thus, ℎ̅ 

becomes a vector as well allowing the usage of the DLM techniques described in section 

2.2. 

The deformation vector ℎ̅ that describes the bending of the wing cannot be directly 

used in aeroelastic analysis, as it was mentioned before the elastic deformation of the 

lifting surface given by the vector ℎ̅ should be first expressed in the form the free stream 



24  

   
 

normalwash vector 𝑤̅∞ so that Equation 2.23 can be used to obtain the pressure 

distribution: 

 𝑝̅ = −[𝐴𝐼𝐶(𝑘)]𝑤̅∞ (2.23) 

The next step is, thus, to calculate the normalwash on panels due to their 

corresponding heave and/or pitch motion. Pitch motion is considered in the model to 

make it more general. Special matrices called differentiation matrices 𝐷1 and 𝐷2 are 

constructed in order to relate the motion of the panels to their corresponding 

normalwashes (Kier & Looye, 2009). The differentiation matrix 𝐷1 maps the panels’ 

displacement to the downwash at the collocation point, and 𝐷2 maps the panels’ velocity 

to the downwash at the same point. Equations 2.24-2.25 represent the relation of motion 

and corresponding normalwash: 

 
𝑢𝑎𝑒𝑟𝑜

𝑖 = [
𝜃𝑖

ℎ𝑖
] (2.24) 

 𝑤𝑖 = 𝐷1𝑖𝑢𝑎𝑒𝑟𝑜
𝑖 + 𝐷2𝑖𝑢̇𝑎𝑒𝑟𝑜

𝑖  (2.25) 

where, 𝑢𝑎𝑒𝑟𝑜
𝑖  is the aerodynamic degrees of freedom (DoF) of, 𝜃𝑖 is the pitch 

displacement, ℎ𝑖 is the heave displacement, 𝑤𝑖 is the downwash at collocation point, 𝐷1𝑖 

is the displacement differentiation matrix, 𝐷2𝑖 is the velocity differentiation matrix, 𝑢̇𝑎𝑒𝑟𝑜
𝑖  

is the velocity of the 𝑖𝑡ℎ panel’s DoF. It should be noted that the heave displacement does 

not produce any downwash at the collocation point; however the pitch displacement 

produces the equivalent amount of downwash for small angles because the rotation of the 

panel about its pitch axis results in perpendicular flow at the collocation point 

(Kotikalpudi, 2017). Also, both heave velocity ℎ̇𝑖 and pitch rate 𝜃̇𝑖 induce downwash at 

the collocation point given by −
ℎ̇𝑖

𝑉
⁄  and 

𝜃̇𝑖𝑐𝑖
4𝑉

⁄  respectively, where 𝑐𝑖 is the chord 
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length of 𝑖𝑡ℎ panel (Kier & Looye, 2009). The normalwash is, thus, formulated as 

follows: 

 𝐷1𝑖 = [1 0] (2.26) 

 
𝐷2𝑖 =

2

𝑐̅
[
𝑐𝑖

4
−1] (2.27) 

 
𝑤𝑖 = 𝐷1𝑖[𝜃𝑖 ℎ𝑖]

𝑇 + 𝐷2𝑖[𝜃̇𝑖 ℎ̇𝑖]
𝑇

𝑐̅

2𝑉
 (2.28) 

The differentiation matrix 𝐷2𝑖 is normalized with respect to the reference chord 𝑐̅ so 

that 𝑐̅ 2𝑉⁄   factor is isolated which later is combined with oscillating frequency 𝜔 in order 

to be expressed as reduced frequency 𝑘. Both 𝜃𝑖 and ℎ𝑖 are harmonic functions of 

oscillating frequency 𝜔, thus 𝜃̇𝑖 and ℎ̇𝑖 can be expressed as follows: 

 𝜃𝑖 = 𝜃0𝑒
𝑖𝜔𝑡 (2.29) 

 ℎ𝑖 = ℎ0𝑒
𝑖𝜔𝑡 (2.30) 

 𝜃̇𝑖 = 𝑖𝜔𝜃𝑖 (2.31) 

 ℎ̇𝑖 = 𝑖𝜔ℎ𝑖 (2.32) 

The normalwash can be rewritten as: 

 𝑤𝑖 = (𝐷1𝑖 + 𝑖𝑘𝐷2𝑖)[𝜃𝑖 ℎ𝑖]
𝑇 (2.33) 

The differentiation matrices 𝐷1𝑖 and 𝐷2𝑖 are computed for all panels and combined 

in block-diagonal manner in the DLM code so that the total differentiation matrices 𝐷1 

and 𝐷2 are obtained.  

In the case of the validation, the wing is oscillating in bending mode and thus its 𝑖𝑡ℎ 

panel has heave ℎ𝑖 and zero pitch 𝜃𝑖. Thus, the normalwash on 𝑖𝑡ℎ panel can be expressed 

as follows: 
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 𝑤𝑖
𝑣𝑎𝑙 = (𝑖𝑘𝐷2𝑖)[0 ℎ𝑖]

𝑇 (2.34) 

 
𝐷2𝑖 =

2

𝑐̅
[
𝑐𝑖

4
−1] (2.35) 

 
𝑤𝑖

𝑣𝑎𝑙 = 𝑖𝑘
2

𝑐̅
[
𝑐𝑖

4
−1] [0 ℎ𝑖]

𝑇 (2.36) 

 
𝑤𝑖

𝑣𝑎𝑙 = −𝑖𝑘
2

𝑐̅
ℎ𝑖 (2.37) 

It can be noticed that the differentiation matrix 𝐷1𝑖 is absent since it is only related 

to pitch 𝜃, which is zero in the case of a lifting surface oscillating in bending mode. The 

pressure acting on the panels can be computed using Equation 2.28: 

 𝑝̅ = −[𝐴𝐼𝐶(𝑘)]𝑤𝑣𝑎𝑙 (2.38) 

The result of pressure distribution on the root chord is given in Figure 2.8 and the 

pressure distribution on the tip chord is shown in Figure 2.9. Mach number 𝑀 is 0.24 and 

the reduced frequency 𝑘 is set to 0.47 to match the experimental flight condition. 

 

Figure 2.8 Root chord pressure distribution, bending mode 

It can be observed from Figure 2.8 that the DLM slightly overestimate the 
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imaginary and real values of the pressure distribution.  

 

Figure 2.9 Tip chord pressure distribution, bending mode 

Figure 2.9 demonstrates that the code is in good agreement with the experimental 

results for the case of tip chord pressure distribution. 

The custom DLM code is also verified with other DLM codes, namely N5KQ and 

N5KA where former code uses more accurate quartic approximation in the kernel 

numerator and the latter utilizes parabolic approximation (Rodden, Taylor, McIntosh & 

Baker, 1999). In this case, authors studied the effect of panel’s aspect ratio (AR) on 

rectangular wings that are pitching about their mid-chord at 𝑀 = 0.8. The AR of the 

wing is 2 and it is divided into 10 equal span-wise strips, after that the number of chord-

wise panels is varied from 5 to 100 that, in turn, varies the ARs of panels from 0.5 to 

10.0. Moreover, the reduced frequencies are varied as well from 𝑘 = 0.1 to 2.0. It should 

be noted that the normalwash vector was calculated differently in this case because the 

panels describing lifting surface are pitching about their respective mid-chords. The 

results for lift coefficient 𝐶𝐿 are presented below in Table 2.1 where both imaginary and 

real values are given. 
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Table 2.1  

Comparison of lift coefficients for pitching wing with AR = 2.0, 10 panels span-wise, 

varying number of chord-wise panels and 𝑀 = 0.8 

𝑘 

Chord-

wise panels 

N5KQ N5KA Custom DLM 

Real Imaginary Real Imaginary Real Imaginary 

0.1 5 2.968 0.3626 2.968 0.3626 2.9681 0.3509 

0.1 10 2.968 0.3565 2.975 0.3653 2.9832 0.3462 

0.1 20 2.971 0.3563 2.977 0.3657 2.9881 0.3439 

0.1 50 2.972 0.3560 2.978 0.3658 2.9893 0.3433 

0.1 100 2.972 0.3560 2.978 0.3658 2.9895 0.3433 

0.5 5 3.638 1.739 3.638 1.739 3.3094 1.6609 

0.5 10 3.770 1.724 3.810 1.731 3.5659 1.5385 

0.5 20 3.859 1.712 3.870 1.724 3.6526 1.4839 

0.5 50 3.898 1.706 3.885 1.723 3.6732 1.4699 

0.5 100 3.902 1.705 3.887 1.722 3.6756 1.4684 

1.0 5 4.492 1.823 4.492 1.823 3.6661 2.6431 

1.0 10 4.768 1.528 4.820 1.479 4.5425 2.3065 

1.0 20 4.901 1.313 4.920 1.338 4.8250 2.1146 

1.0 50 4.948 1.212 4.930 1.303 4.8901 2.0628 

1.0 100 4.953 1.200 4.932 1.300 4.8974 2.0569 

2.0 5 4.652 2.380 4.652 2.380 2.7568 4.1813 

2.0 10 5.396 1.814 5.461 1.729 5.2472 2.0019 

2.0 20 5.720 1.393 5.681 1.449 5.7793 1.1570 

2.0 50 5.840 1.194 5.730 1.378 5.8561 0.9452 
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𝑘 

Chord-

wise panels 

N5KQ N5KA Custom DLM 

Real Imaginary Real Imaginary Real Imaginary 

2.0 100 5.854 1.170 5.735 1.371 5.8636 0.9216 

 

Figure 2.10 through Figure 2.17 show the real and imaginary 𝐶𝐿 of custom DLM 

code, which is shown in blue line, compared with the real and imaginary 𝐶𝐿 of N5KQ 

(shown in red) and N5KA (shown in cyan) as the number of chord-wise panels is 

increased from 5 to 100. 

 

Figure 2.10 Comparison of 𝐶𝐿 (real) for rectangular AR = 2 wing, M = 0.8, reduced 

frequency k = 0.1 
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Figure 2.11 Comparison of 𝐶𝐿 (imaginary) for rectangular AR = 2 wing, M = 0.8, 

reduced frequency k = 0.1 

 

Figure 2.12 Comparison of 𝐶𝐿 (real) for rectangular AR = 2 wing, M = 0.8, reduced 

frequency k = 0.5 
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Figure 2.13 Comparison of 𝐶𝐿 (imaginary) for rectangular AR = 2 wing, M = 0.8, 

reduced frequency k = 0.5 

 

Figure 2.14 Comparison of 𝐶𝐿 (real) for rectangular AR = 2 wing, M = 0.8, reduced 

frequency k = 1.0 
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Figure 2.15 Comparison of 𝐶𝐿 (imaginary) for rectangular AR = 2 wing, M = 0.8, 

reduced frequency k = 1.0 

 

Figure 2.16 Comparison of 𝐶𝐿 (real) for rectangular AR = 2 wing, M = 0.8, reduced 

frequency k = 2.0 
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Figure 2.17 Comparison of 𝐶𝐿 (imaginary) for rectangular AR = 2 wing, M = 0.8, 

reduced frequency k = 2.0 

The results indicate that the custom DLM code is in good agreement with other 

developed codes, and its imaginary and real parts seem to converge for the same number 

of chord-wise panels, however, it should be noted that for high reduced frequencies 

starting from 𝑘 = 0.5 the imaginary part is slightly off as it can be seen in Figure 2.13, 

Figure 2.15 and Figure 2.17. Apart from that, the real part of the 𝐶𝐿 almost matches the 

values of other DLM codes through the whole range of reduced frequencies as shown in 

Figure 2.10, Figure 2.12, Figure 2.14 and Figure 2.16. 
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3. Structural Modeling 

In order to describe the structure of the wing a Finite Element Method (FEM) is 

utilized. Since the aerodynamic model allows the panels to pitch and heave, triangular 

plate bending element is chosen so that the structural grid describing the lifting surface 

can translate and rotate as well to account for heave and pitch motion introduced by the 

aerodynamic modeling. 

The FEM code developed for the Matlab Aeroelastic Code is based on several 

models presented in (Singiresu, 2017). Since triangular bending element is considered, 

there are 3 nodes per element, and each node has 3 DoF which sums to 9 DoF per 

element. The DoF of triangular bending element are shown in Figure 3.1. 

 

Figure 3.1 Nodal DoF of a triangular plate in bending (Singiresu, 2017) 

In Figure 3.1 a single element with 3 nodes is presented. Each node has 3 DoF: 
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𝑞1,which is the vertical (transverse) translation in 𝑧, 𝑞2, which is the slope (rotation) in 𝑥 

and 𝑞3, which is the slope (rotation) in 𝑦. The magnitude of the translation of the first 

node is given by 𝑤(𝑥1, 𝑦1), similarly the rotation in 𝑥 axis is given by  
𝜕𝑤

𝜕𝑦
(𝑥1, 𝑦1) and the 

rotation in 𝑦 is shown as  −
𝜕𝑤

𝜕𝑥
(𝑥1, 𝑦1). The thickness of the plate is denoted by 𝑡. 

Since, there are 9 displacement DoF per element, the assumed polynomial for the 

displacement function 𝑤(𝑥, 𝑦) should also contain nine constant terms (Singiresu, 2017). 

The chosen displacement model is the nonconforming element (T-9) (Tocher, 1962) and 

is given as: 

 𝑤(𝑥, 𝑦) = 𝛼1 + 𝛼2𝑥 + 𝛼3𝑦 + 𝛼4𝑥
2 + 𝛼5𝑥𝑦 + 𝛼6𝑦

2 + 𝛼7𝑥
3

+ 𝛼8(𝑥
2𝑦 + 𝑥𝑦2) + 𝛼9𝑦

3 

(3.1) 

 𝑤(𝑥, 𝑦) = [𝜂]𝛼̅ (3.2) 

 [𝜂] = [1   𝑥   𝑦   𝑥2  𝑥𝑦   𝑦2   𝑥3  (𝑥2𝑦 + 𝑥𝑦2)  𝑦3] (3.3) 

 

𝛼̅ = [

𝛼1

𝛼2

⋮
𝛼9

] (3.4) 

The constants 𝛼1, 𝛼2, … , 𝛼9 from the vector 𝛼̅ are determined from the nodal 

conditions: 

 𝑤(𝑥, 𝑦) = 𝑞1,
𝜕𝑤

𝜕𝑦
(𝑥, 𝑦) = 𝑞2, −

𝜕𝑤

𝜕𝑥
(𝑥, 𝑦) = 𝑞3  at (𝑥1, 𝑦1) = (0, 0) (3.5) 

 𝑤(𝑥, 𝑦) = 𝑞4,
𝜕𝑤

𝜕𝑦
(𝑥, 𝑦) = 𝑞5, −

𝜕𝑤

𝜕𝑥
(𝑥, 𝑦) = 𝑞6  at (𝑥2, 𝑦2) = (0, 𝑦2) (3.6) 

 𝑤(𝑥, 𝑦) = 𝑞7,
𝜕𝑤

𝜕𝑦
(𝑥, 𝑦) = 𝑞8, −

𝜕𝑤

𝜕𝑥
(𝑥, 𝑦) = 𝑞9  at (𝑥3, 𝑦3) (3.7) 

Note that the local coordinates are chosen in such a way that the origin is placed at 

node 1, thus (𝑥1, 𝑦1) = (0, 0), the local 𝑦 axis is the line connecting the nodes 1 and 2, 
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and the local 𝑥 axis is pointing towards the node 3 which is demonstrated in Figure 3.1. 

Single element’s DoF can be put in matrix form as: 

 

𝑞̅ = [

𝑞1

𝑞2

⋮
𝑞9

] = [𝜂̃]𝛼̅ (3.8) 

where, 

 

[𝜂̃] =

[
 
 
 
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
1 0 𝑦2 0 0 𝑦2

2 0 0 𝑦2
3

0 0 1 0 0 2𝑦2 0 0 3𝑦2
2

0 −1 0 0 −𝑦2 0 0 −𝑦2
2 0

1 𝑥3 𝑦3 𝑥3
2 𝑥3𝑦3 𝑦3

2 𝑥3
3 (𝑥3

2𝑦3 + 𝑥3𝑦3
2) 𝑦3

3

0 0 1 0 𝑥3 2𝑦3 0 (2𝑥3𝑦3 + 𝑥3
2) 3𝑦3

2

0 −1 0 −2𝑥3 −𝑦3 0 −3𝑥3
2 (−𝑦3

2 + 2𝑥3𝑦3) 0
  ]

 
 
 
 
 
 
 
 
 
 

 (3.9) 

Any point on the element experiences transverse 𝑤 (in z-axis) and in-plane 𝑢 (in x-

axis) and 𝑣 (in y-axis) displacements. Thus, the strain-displacement relations can be 

expressed as: 

 
𝜀𝑥𝑥 =

𝜕𝑢

𝜕𝑥
= −𝑧

𝜕2𝑤

𝜕𝑥2
 (3.10) 

 
𝜀𝑦𝑦 =

𝜕𝑣

𝜕𝑦
= −𝑧

𝜕2𝑤

𝜕𝑦2
 (3.11) 

 
𝜀𝑥𝑦 =

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
= −2𝑧

𝜕2𝑤

𝜕𝑥𝜕𝑦
 (3.12) 

The strains can be expressed in matrix form as: 

 𝜀̅ = [𝐵̃]𝛼̅ = [𝐵]𝑞̅ (3.13) 

where, 
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[𝐵̃] = −𝑧 [

0 0 0 2 0 0 6𝑥 2𝑦 0
0 0 0 0 0 2 0 2𝑥 6𝑦
0 0 0 0 2 0 0 4(𝑥 + 𝑦) 0

] (3.14) 

 [𝐵] = [𝐵̃][𝜂̃]−1 (3.15) 

The element stiffness matrix in local coordinates can be expressed as: 

 
[𝑘𝑒] = ∭[𝐵]𝑇[𝐷][𝐵]𝑑𝑉

𝑉𝑒

 (3.16) 

where, 𝑉𝑒 is the volume of the element and [𝐷] is the flexural rigidity matrix given by: 

 

[𝐷] =
𝐸

(1 − 𝜈2)
[

1 𝜈 0
𝜈 1 0

0 0
1 − 𝜈

2

] (3.17) 

The transverse displacement is expressed as: 

 𝑤(𝑥, 𝑦) = ([𝜂][𝜂̃]−1)𝑞̅ (3.18) 

The in-plane displacements are expressed as: 

 
𝑢 = −𝑧 ∙

𝜕𝑤

𝜕𝑥
 (3.19) 

 
𝑣 = −𝑧 ∙

𝜕𝑤

𝜕𝑦
 (3.20) 

Combined translational displacements can be shown as: 

 

{

𝑢(𝑥, 𝑦)

𝑣(𝑥, 𝑦)

𝑤(𝑥, 𝑦)
} =

[
 
 
 
 
 −𝑧 ∙

𝜕[𝜂]

𝜕𝑥

−𝑧 ∙
𝜕[𝜂]

𝜕𝑦
[𝜂] ]

 
 
 
 
 

[𝜂̃]−1𝑞̅ = [𝑁1][𝜂̃]−1𝑞̅ = [𝑁]𝑞̅ (3.21) 

[𝑁1]

= [

0 −𝑧 0 −2𝑥𝑧 −𝑦𝑧 0 −3𝑥2𝑧 −𝑧(𝑦2 + 2𝑥𝑦) 0

0 0 −𝑧 0 −𝑥𝑧 −2𝑦𝑧 0 −𝑧(2𝑥𝑦 + 𝑥2) −3𝑦2𝑧

1 𝑥 𝑦 𝑥2 𝑥𝑦 𝑦2 𝑥3 (𝑥2𝑦 + 𝑥𝑦2) 𝑦3

] 

(3.22) 

The consistent mass matrix can be evaluated as: 
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[𝑚𝑒] = ∭𝜌[𝑁]𝑇[𝑁]𝑑𝑉

𝑉𝑒

 (3.23) 

 
= ∭𝜌([𝜂̃]−1)𝑇[𝑁1]

𝑇[𝑁1][𝜂̃]−1𝑑𝑉

𝑉𝑒

 (3.24) 

3.1 FEM Validation 

The developed FEM is validated with the results provided by (Clough, 1965). The 

setup is shown in Figure 3.2.  

 

Figure 3.2 Square plate schematic 

 The square plate is simply supported at three corners and subjected to a vertical 

load at the fourth corner as shown in Figure 3.2. The plate is square with a side of 8 

inches and its thickness 𝑡 is 1 inch, the elastic modulus 𝐸 is 10,000 𝑙𝑏𝑠/𝑖𝑛2 and 

Poisson’s ratio is 0.3. Transverse load is applied on Point B and its magnitude is 5 𝑙𝑏𝑠. 

Displacements at Point A (center) and Point B are recorded.  

The FEA was also carried out in Nastran so that the results of the FEM code can be 

verified with the output of Nastran. The analysis was performed with different mesh sizes 

with increasing numbers of elements per side from 𝑁𝑒 = 4 to 𝑁𝑒 = 24.  

Table 3.1 demonstrates the displacements of point A and point B shown in Figure 

3.2. The “Experiment” column in Table 3.1 depicts the displacements of point A and B 
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obtained experimentally by (Clough, 1965). It is important to mention that structural 

grids generated in Nastran are identical to the ones generated in the Matlab FEM code. 

The “Nastran” and “Matlab” columns in Table 3.1 show the displacements of nodes 

corresponding to the central point A and corner point B shown in Figure 3.2 generated 

using Nastran code and Matlab code respectively. 

Table 3.1  

Displacements of point A and B 

Mesh Size Point Nastran Matlab Experiment 

N = 4 

A 0.06912453 0.0672 0.0624 

B 0.2764981 0.2690 0.24960 

N = 8 

A 0.07034770 0.0646 0.0624 

B 0.2813908 0.2583 0.24960 

N = 12 

A 0.07165316 0.0638 0.0624 

B 0.2866126 0.2551 0.24960 

N = 16 

A 0.07259741 0.0634 0.0624 

B 0.2903896 0.2536 0.24960 

N = 20 

A 0.07326044 0.0632 0.0624 

B 0.2930418 0.2528 0.24960 

N = 24 

A 0.07373901 0.0631 0.0624 

B 0.2949560 0.2522 0.24960 

 



40  

   
 

Figure 3.3 and Figure 3.4 show the data in Table 3.1 as the mesh size is varied from 

𝑁𝑒 = 4 to 𝑁𝑒 = 24. 

 

Figure 3.3 Deflection of Point A (center) 

 

Figure 3.4 Deflection of Point B (corner) 

It can be observed from Figure 3.3 and Figure 3.4 that the Matlab code’s result is 

converging very close to the experimental value similarly to the Nastran’s output which 

is converging to a value slightly closer to the experimental value for the same number of 

elements per side.  
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4. Grid Interpolation 

As it was discussed in section 2.2, the DLM provides the aerodynamic force 

distribution on an aerodynamic grid describing a lifting surface at a given frequency and 

for a given normalwash distribution. However, in order to obtain the normalwash 

distribution corresponding to a lifting surface’s elastic deformation the aerodynamic 

model should interact with the structural model. Moreover, the effect of aerodynamic 

forces on the structural grids should be computed as well.  

 

Figure 4.1 Example of 2x2 aerodynamic grid 

Figure 4.1 demonstrates an aerodynamic grid with collocation points (shown as 

blue circles) and doublet lines (shown as dashed blue lines) that has 4 panels in total. 

Panel boundaries are represented as solid blue lines. The flow direction is also shown in 

Figure 4.1. The next step is to superimpose FEM on the aerodynamic grid which is 

X-axis 

Y-axis 

Collocation point 

Flow Direction 

Doublet Line 
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demonstrated in Figure 4.2. It should be noted that the selected FEM has triangular 

elements, and in this demonstration every aerodynamic grid’s element has corresponding 

4 triangular bending elements (boundaries of FEM are shown in black dashed lines) 

which can be seen in Figure 4.2. Black dots represent structural grid’s nodes.  

 

Figure 4.2 FEM superimposed on 2x2 aerodynamic grid 

FEM grid superimposed on aerodynamic grid can be observed in Figure 4.2. The 

FEM elements are triangular and their boundaries are shown in black dashed lines, the 

nodes of the structural grid are presented as black solid circles. As it was mentioned back 

in Chapter 3, the structural elements are triangular bending elements which have 3 DoF 

per node, which means that there are 9 DoF per structural element. The aerodynamic 

X-axis 

Y-axis 

Flow Direction 

FEM’s nodes 
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grid, however, has 2 DoF per panel (element): pitch about centerline parallel to the y-axis 

and heave. Since the FEM was validated in section 3.1 the next step is to interconnect the 

aerodynamic grid with structural grid so that structural DoF are projected to the 

aerodynamic grid and the normalwash vector can be computed for a given elastic 

deformation. This is achieved by using grid interpolation technique that can relay 

information from FE grid to the aerodynamic grid and vice-versa. Generally, the elastic 

deformation provided by the FE grid is relayed to the aerodynamic grid so that the 

normalwash vector is computed. In the other direction, the aerodynamics forces are 

transmitted to the structural grid using the same grid interpolation. Considering linear 

interpolation, this can be described by the following transformation matrices: 

 𝑢𝑎𝑒𝑟𝑜 = 𝑇𝑎𝑠𝑢𝑠𝑡𝑟𝑢𝑐 (4.1) 

 𝐹𝑠𝑡𝑟𝑢𝑐 = 𝑇𝑠𝑎ℱ𝑎𝑒𝑟𝑜 (4.2) 

where, 𝑢𝑎𝑒𝑟𝑜 is aerodynamic panels’ DoF, 𝑢𝑠𝑡𝑟𝑢𝑐 is the structural nodes’ DoF, 𝐹𝑠𝑡𝑟𝑢𝑐 is 

the force applied on the structural grid, ℱ𝑎𝑒𝑟𝑜 is the force acting on the aerodynamic grid, 

𝑇𝑎𝑠 is the transformation matrix that gives aerodynamic panels’ DoF displacements or 

forces given structural grid’s displacement or forces, 𝑇𝑎𝑠 is the opposite transformation 

matrix (Kotikalpudi, 2017). It is important to note that the  ℱ𝑎𝑒𝑟𝑜 is a vector that consists 

of lift and pitching moments of each panel about their midpoints, and it can be expressed 

as: 

 
ℱ𝑎𝑒𝑟𝑜

𝑖 = [
𝐹𝑖

𝑀𝑖
] = [

1
𝑐𝑖

4
] 𝐹𝑎𝑒𝑟𝑜

𝑖 = 𝑇ℱ
𝑖 𝐹𝑎𝑒𝑟𝑜

𝑖  (4.3) 

where, ℱ𝑎𝑒𝑟𝑜
𝑖  vector consisting of force acting on 𝑖𝑡ℎ panel’s midpoint and moment about 

its midpoint, whereas 𝐹𝑎𝑒𝑟𝑜
𝑖  is the force acting on 𝑖𝑡ℎ panel’ quarter-chord (Kotikalpudi, 
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2017). The transformation matrix 𝑇ℱ can be constructed in diagonal manner to account 

for all panels. 

 Also, the transformation matrices are transpose of one another: 

 𝑇𝑎𝑠 = 𝑇𝑠𝑎
𝑇  (4.4) 

This is true because the interpolation of aerodynamic forces on to the structural grid 

requires structural equivalence, which implies that the load vectors 𝐹𝑠𝑡𝑟𝑢𝑐 and ℱ𝑎𝑒𝑟𝑜 

deform the structure identically (Rodden 1959; Rodden & Johnson, 1994). From 

structural equivalence, it can be shown that: 

 𝛿𝑢𝑠𝑡𝑟𝑢𝑐
𝑇 𝐹𝑠𝑡𝑟𝑢𝑐 = 𝛿𝑢𝑎𝑒𝑟𝑜

𝑇 ℱ𝑎𝑒𝑟𝑜 (4.5) 

and, 

 𝛿𝑢𝑎𝑒𝑟𝑜 = 𝑇𝑎𝑠𝛿𝑢𝑠𝑡𝑟𝑢𝑐 (4.6) 

 𝛿𝑢𝑎𝑒𝑟𝑜
𝑇 = 𝛿𝑢𝑠𝑡𝑟𝑢𝑐

𝑇 𝑇𝑎𝑠
𝑇  (4.7) 

thus, 

 𝛿𝑢𝑠𝑡𝑟𝑢𝑐
𝑇 [𝐹𝑠𝑡𝑟𝑢𝑐 − 𝑇𝑎𝑠

𝑇 ℱ𝑎𝑒𝑟𝑜] = 0 (4.8) 

 𝐹𝑠𝑡𝑟𝑢𝑐 = 𝑇𝑎𝑠
𝑇 ℱ𝑎𝑒𝑟𝑜 (4.9) 

It can be seen that the 𝑇𝑎𝑠
𝑇  actually equals to 𝑇𝑠𝑎 as shown. Thus, it is required to 

find transformation in one direction only (Kotikalpudi, 2017). 

In order to obtain such transformation surface spline theory for thin surfaces is 

utilized. The surface splines used in this thesis are based on the work of (Harder & 

Desmarais, 1972). This method is a mathematical tool that interpolates between grids 

using infinite thin plate deformation equations. However, this is a two-step process since 

firstly the structural deformations have to be represented as deformations on infinite thin 

plate and secondly using the surface spline method these deformations are interpolated to 
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match with aerodynamic panels’ DoF. Similar technique is used in Nastran which is 

discussed in detail in (Rodden & Johnson, 1994). 

An infinite thin plate has only 1 DoF since it can only deform in the direction 

normal to its surface (Kotikalpudi, 2017). Thus, it is required to represent the deformation 

of structural grid that has 3 DoF per node purely as 1 DoF heave deformations. This is 

done by constructing spline grid. Figure 4.3 demonstrates the spline grid superimposed 

on FE grid and aerodynamic grid. The nodes of spline grid are shown as red solid circles, 

and its boundaries that match with FE grid’s boundaries are shown in red dashed lines 

and solid red line show additional nodes that are added to each structural grid’s node.  

 

Figure 4.3 Spline grid 

X-axis 

Y-axis 

Flow Direction 

Spline Grid 

Spline Grid’s Node 
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The DoF of 𝑁𝑜𝑑𝑒1 shown in Figure 4.3 can be represented as heave motion of 

spline nodes attached to the structural grid’s 𝑁𝑜𝑑𝑒1: 

 

[

ℎ𝑠𝑝1

ℎ𝑠𝑝2

ℎ𝑠𝑝3

] = [
1 0 𝑙1
1 0 0
1 0 −𝑙2

] [

ℎ𝑁𝑜𝑑𝑒1

𝜃𝑁𝑜𝑑𝑒1

𝛽𝑁𝑜𝑑𝑒1

] (4.10) 

where ℎ𝑠𝑝𝑖
 is the heave displacement of spline grid’s 𝑖𝑡ℎ node, 𝑙1 is the distance between 

𝑠𝑝1 grid and 𝑠𝑝2 grid, 𝑙2 is the distance between 𝑠𝑝2 grid and 𝑠𝑝3 grid, ℎ𝑁𝑜𝑑𝑒1
 is the 

heave displacement (z-axis translation) of 𝑁𝑜𝑑𝑒1, 𝜃𝑁𝑜𝑑𝑒1
is the bending (rotation aboux 

x-axis) of 𝑁𝑜𝑑𝑒1, 𝛽𝑁𝑜𝑑𝑒1
 is the twist (rotation in y-axis) of 𝑁𝑜𝑑𝑒1. The total 

transformatioan matrix between structural grid and spline grid is formed by obtaining 

spline grid’s DoF for each node of structural grid, so that it can be expressed as: 

 𝑢𝑠𝑝𝑙𝑖𝑛𝑒 = 𝑇𝑠𝑝𝑙𝑖𝑛𝑒𝑢𝑠𝑡𝑟𝑢𝑐 (4.11) 

where 𝑢𝑠𝑝𝑙𝑖𝑛𝑒 contains the deformations of spline grid which consists of purely heave 

motion. After the deformation of spline grid is obtained the deformations at the locations 

of aerodynamic panel midpoints can be found using the infinite surface spline theory 

(Kotikalpudi, 2017). This interpolation between spline grid and aerodynamic grid can be 

expressed as 𝑇𝑖𝑝𝑠, so that the interpolation between structural grid and aerodynamic grid 

can be expressed as: 

 𝑇𝑎𝑠 = [𝑇𝑖𝑝𝑠][𝑇𝑠𝑝𝑙𝑖𝑛𝑒] (4.12) 

The detailed derivation of 𝑇𝑖𝑝𝑠 matrix is shown in (Rodden & Johnson, 1994; 

Harder & Desmarais, 1972). It is important to note that this approach is general in a way 

that it allows having independent structural and aerodynamic grids. 
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5. Analysis of the F-5 wing 

The F-5 wing was analyzed in Nastran environment and the analysis included 

modal, flutter and static. Moreover, a static experiment and GVT was conducted to 

validate the FE model of the wing. The flutter analysis was performed in Nastran/Patran 

environment. Patran was used as a graphical user interface to setup the analysis by 

specifying the geometry, mesh, properties of material, loads, boundary conditions and 

flight condition. Since, the flutter analysis is of interest aeroleastic module built-in within 

Nastran was used. 

As it was mentioned in introductory section 1, a specific wing geometry was chosen 

for aeroelastic analysis which is Northrop Grumman’s F-5 fighter wing. The FE model of 

the wing was provided by the Embry-Riddle Aeronautical University’s (ERAU) 

Structural Analysis and Design (SAnD) Lab (Tamijani et al., 2018; Locatelli et al., 2013). 

General characteristics of the wing are listed in Table 1.1. The rendering of the wing 

geometry is presented in Figure 5.1. 

 

Figure 5.1 Rendering of the F-5 wing 

The internal structure of the wing is topologically optimized which is demonstrated 
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in Figure 5.2 and Figure 5.3. 

 

Figure 5.2 Wing internal structure (rib-spar geometry) 

 

Figure 5.3 Wing box with hidden top surface 

5.1 Static experiment of 3D printed wing prototype 

Prior to flutter analysis, a static experiment was carried out in “Structures” lab at 

ERAU to validate the FE model made in Nastran. A small version of the wing was 3D 

printed in ERAU 3D printing workshop using “Makerbot Replicator 2X” 3D printer 
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(MakerBot Industries, New York, USA). Important issue that was considered prior to the 

experiment was the mechanical properties of the printing material. Since the wing has 

complex internal structure (Figure 5.2, Figure 5.3) and it was planned to analyze the 

displacement of the wing structure under static load, it was required that the printing 

material and the final structure had uniform modulus of elasticity. In other words, it was 

desired that the printing material had the same modulus of elasticity throughout the whole 

structure. Another issue was that there are enclosed spaces between spars, ribs, top and 

bottom surface as shown in Figure 5.3, so that if support material was used it would have 

been trapped within the enclosures changing the properties of the final printed structure. 

Furthermore, because of the same reason it would have been challenging to remove the 

support material from those enclosures once the manufacture is complete. Thus, it was 

decided that the structure of the wing is manufactured vertically and without support 

material. Dimensions of the manufactured wing was limited by the dimensions of 

“Makerbot Replicator 2X” 3D printer which is 24.6 cm x 16.3 cm x 15.5 cm (MakerBot 

Industries, 2018). As the wing was manufactured vertically, and, geometrically, the half-

span of the wing is the largest dimension of the model it was decided to use the 

maximum allowable vertical print dimension of the “Makerbot Replicator 2X” 3D printer 

that resulted in the actual span-wise dimension of the wing to be 153 mm as shown in 

Figure 5.4. 
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Figure 5.4 Top view with dimensions of the 3D printed wing 

The material was chosen from the list of offered materials provided by ERAU 3D 

printing workshop. The wing was printed from “HATCHBOX” Acrylonitrile Butadiene 

Styrene (ABS) 3D printer filament with elastic modulus of 𝐸 = 1.8 𝐺𝑃𝑎. For the static 

analysis the wing was fixed along the root chord as can be seen in Figure 5.5 and the load 

was applied at the center of the tip chord. The same boundary conditions were equally 

applied to the FE model shown in Figure 5.6. 

 

Figure 5.5 3D printed F-5 wing fixture 

~153 mm 

~153 mm 
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Figure 5.6 FE model’s boundary conditions 

Loads were applied on the 3D printed wing so that the wing itself was not damaged. 

This was achieved by adhering double-coated foam squares on the lower surface of the 

wing and gluing “L” shaped aluminum extrusion to the foam square using cyanoacrylate 

based glue. The load was varied by adding weights to a plastic bag that was mounted on 

the “L” extrusion as shown in Figure 5.5. 

The displacement of the tip chord trailing edge point was recorded for varying loads 

for both the experiment and simulation in Nastran and the data is presented in Table 5.1. 

Table 5.1  

Displacement of tip chord trailing edge point 

Load (g) 

Displacement (mm) 

Experiment Nastran 

200 2 1.52 

300 3.5 2.28 

400 4.2 3.05 

900 6.8 6.848 
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Load (g) 

Displacement (mm) 

Experiment Nastran 

1000 7.7 7.61 

1300 9 9.93 

1500 10.5 11.45 

1800 13.2 13.738 

2000 15.5 15.22 

 

Figure 5.7 Displacement of tip chord trailing edge point as a function of load 

Experimental results of the static experiment and the results of Nastran are in good 

agreement as demonstrated in Figure 5.7, thus, bolstering the confidence in further 

aeroelastic analysis within the Nastran’s aeroelastic module. 
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5.2 Static test of 3D printed wing using DIC 

A different static experiment utilizing DIC as the data acquisition tool was 

performed. The specimen in this case was the same 3D printed wing that was used for a 

static experiment described in section 5.2. However, this time DIC was used to obtain the 

map of z-axis displacements of the upper surface of the 3D printed wing. 

The VIC-3D system based on the principle of Digital Image Correlation was used to 

measure the displacement. The VIC-3D system requires an applied random speckle 

pattern on a specimen and a calibration procedure since two cameras are used to capture 

3-Dimensional measurements of displacements. 

Since the 3D printed wing was printed from black ABS plastic a white spray paint 

was applied on the top surface of the wing as it is shown in Figure 5.8. The cameras were 

positioned vertically pointing downwards as it is demonstrated in Figure 5.8 and at a 

proper distance so that cameras’ resolution is fully utilized. 
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Figure 5.8 Static test, DIC setup with (a) a speckle pattern and (b) position of cameras 

The load was applied and varied similarly as in section 5.2 by means of adding 

weights to a plastic bag that was mounted on the “L” extrusion as shown in Figure 5.5.  

Table 5.2  

Static tests performed with VIC-3D 

 Maximum displacement in z-axis (mm)  

Test 

Number 

Load (g) VIC-3D Nastran 

Absolute 

Error (mm) 

1 0 0 0 0 

2 100 0.525 0.76 0.235 

3 150 0.83 1.14 0.31 

4 200 1.105 1.52 0.415 

5 250 1.38 1.9 0.52 

a) b) 
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 Maximum displacement in z-axis (mm)  

Test 

Number 

Load (g) VIC-3D Nastran 

Absolute 

Error (mm) 

6 300 1.68 2.28 0.6 

7 350 1.97 2.66 0.69 

8 400 2.25 3.04 0.79 

9 450 2.54 3.42 0.88 

10 500 2.82 3.8 0.98 

11 550 3.12 4.18 1.06 

12 600 3.4 4.56 1.16 

13 650 3.74 4.94 1.2 

14 700 4 5.32 1.32 

15 750 4.3 5.7 1.4 

16 800 4.58 6.08 1.5 

17 850 4.86 6.46 1.6 

18 900 5.25 6.84 1.59 

19 950 5.5 7.22 1.72 

20 1000 5.8 7.6 1.8 

 

As it is shown in Table 5.2 several tests were carried out with loads varying from 

100 to 1000 grams and for all test cases the Nastran simulation result showed slightly 

larger value of deformation. It can be noticed that the first test has a load of zero grams 

and the reason why first test’s load is zero grams is that the consequent tests with nonzero 
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loads are compared to the first no-load case that acts as a reference so that z-axis 

displacements are obtained rather than z-axis position map of the top surface. The first 

no-load case is demonstrated in Figure 5.9. It can be observed that the whole surface is 

colored in green which demonstrates that this test is the reference no-load case with zero 

z-axis displacements. 

 

Figure 5.9 DIC test 1, no-load 

The results obtained using VIC-3D were compared to Nastran simulation and are in 

Figure 5.10 through Figure 5.13 below for several load cases. 
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Figure 5.10 250-gram load case with (a) VIC-3D results and (b) Nastran results 

a) 

b) 
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Figure 5.11 500-gram load case with (a) VIC-3D results and (b) Nastran results 

a) 

b) 
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Figure 5.12 750-gram load case with (a) VIC-3D results and (b) Nastran results 

a) 

b) 
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Figure 5.13 1000-gram load case with (a) VIC-3D results and (b) Nastran results 

The comparison between FEM and experiment indicates that the Nastran slightly 

overestimates the z-axis displacement for every load case as it is demonstrated in a 

summarized data plot given in Figure 5.14. Nevertheless, the displacement patterns look 

a) 

b) 
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similar with some differences in the area close to the fixed root chord, which could be 

attributed to the fact that Nastran uses linear approximation for the displacements. 

 

Figure 5.14 Maximum z-axis displacement as a function of load 

The discrepancy between the slopes of FEM and experiment shown in Figure 5.14 

is attributed to the fact that in Nastran simulations a certain value of elastic modulus was 

used (1.8 GPa). However, the elastic modulus of the 3D printed part can be affected by 

the manufacturing conditions.  

5.3 Ground Vibration Test of the 3D printed wing 

In addition to the static test a GVT test was carried out with the 3D printed wing. 

The test was conducted using dynamic shaker Modal Exciter 2060E which can apply 

forces up to 267 N at frequencies between 1-6000 Hz.  

For the purpose of this test a modified wing with a flange demonstrated in Figure 

5.15 was 3D printed so that a more accurate fixed root boundary condition can be 

achieved.   
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Figure 5.15 3D printed wing with a flange 

The wing was fixed horizontally via clamps as it is demonstrated in Figure 5.16. 

The shaker was connected to the structure from below with a stinger. A PCB 208C01 

force sensor was also mounted between the stinger and the wing to measure the excitation 

force as shown in Figure 5.17. The force sensor is capable of measuring forces of ±45 N 

within a frequency range of 0.01-36000 Hz with a sensitivity of 112.41 mV/N. 
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Figure 5.16 Wing fixture 

 

Figure 5.17 Force sensor mounted between a stinger and the wing 

In order to measure the acceleration signals four PCB 352A24 miniature 

lightweight accelerometers were used. Utilized accelerometers are capable of measuring 
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accelerations of ±490 m/s2 within a frequency range of 1-8000 Hz and with 10.2 mV/( 

m/s2) sensitivity. The data from accelerometers and force sensors was sampled at 2048 

Hz frequency. The accelerometers were placed on the top surface of the wing structure 

and were advanced span-wise towards root chord for each test case which is 

demonstrated below in Figure 5.18.  

   

Figure 5.18 GVT test case 1, test case 4 and test case 8 

 In total 8 test cases were performed which resulted in 32 accelerometer output 

signals. As far as the input is concerned: the structure was excited by sine sweep wave 

input on dynamic shaker from 1 to 300 Hz in 600 seconds. This frequency range was 

chosen because the Nastran simulation showed that the 1st torsional mode has a natural 

frequency of 289.3 Hz. 

An example of time domain response is shown in Figure 5.19. The data shows the 

accelerometer output signal and the input excitation force signal. The time response data 

for all 8 cases was transformed to frequency response data by utilizing empirical transfer 

function estimation and then it was analyzed in Matlab to obtain the natural frequencies 

and mode shapes within 0 to 300 Hz frequency range. Figure 5.20 shows the single 

input-single output (SISO) frequency responses of the first test case and it can be 

observed that there are several peaks of magnitude, some of which correspond to natural 

frequencies of the structure. 
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Figure 5.19 Time domain response corresponding to case 1 

 
Figure 5.20 Frequency response from input force to acceleration response for case 1  

After 32 individual SISO systems’ frequency responses were obtained, the System 

Identification Toolbox from Matlab was used to identify the natural frequencies and 

estimate the model that would reproduce the dynamic behavior of the 3D printed wing. A 

state-space model with 32 states was found to be suitable in order to accurately 
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approximate the experimental results. The estimated model’s states are all stable as 

shown in Figure 5.21. The worst and the best fits between the experimental data and the 

estimated model is presented in Figure 5.22. 

 

Figure 5.21 Hankel Singular Values for 32 order model 

The analysis of the estimated model identified 4 modal frequencies within a range 

of frequencies from 1 to 300 Hz. The stability of the estimated model’s modal parameters 

was checked as the order of the underlying model was varied, which is demonstrated in 

Figure 5.23. The inspection of the plot suggests that there are 4 modal frequencies which 

have values of approximately 65, 95, 165 and 285 Hz. However, in order to identify the 

wing’s 1st bending and 1st torsion modes the mode shapes of the corresponding modal 

frequencies were visualized and compared to the Nastran modal simulation results.  
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Figure 5.22 The worst (top) and the best (bottom) fit of the 32 order state-space model 

 
Figure 5.23 Stabilization diagram 

Figure 5.24 and Figure 5.25 provide a comparison between experimentally obtained 

natural frequencies and mode shapes and simulated ones obtained in Nastran. The 

Nastran simulation showed that the 1st bending mode’s frequency is 95.99 Hz which is 

very close to the experimental 94.31 Hz frequency shown in Figure 5.24. The 1st torsion 

mode’s frequency obtained in Nastran is 273 Hz which is close to the experimentally 
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identified frequency of 283.3 Hz as it is shown in Figure 5.25. The mode shape of the 1st 

bending is very close to the experimentally obtained mode shape, however the 1st torsion 

mode shape obtained in Nastran has some discrepancies when compared to the 

experimentally obtained torsional mode which can be observed in Figure 5.25. This 

difference can be explained by the fact that Nastran modal analysis utilizes linearized 

model whereas experimentally obtained mode shape possesses non-linear dynamics that 

makes it look like a combination of torsional mode and residual minor effect of bending 

mode. 

 

 

Figure 5.24 3D printed wing’s experimental (top) and simulated (bottom) 1st bending 

mode  
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Figure 5.25 3D printed wing’s experimental (top) and simulated (bottom) 1st torsion 

mode 

Moreover, it can be noticed that the experimental values of frequencies are slightly 

smaller than the values obtained from simulation. This discrepancy can be attributed to 

the fact that the damping is not considered in Nastran simulation whereas the structural 

damping slightly reduces the natural frequency for the case of experiment. Similarly, the 

viscous damping might marginally contribute to this difference. Nevertheless, the 

experiment proved that the Nastran simulation accurately approximates the dynamic 

response of a 3D printed wing structure. 

Since only the wing is planned to be tested, the flutter mechanism was chosen to be 

symmetric wing 1st bending/1st torsion flutter (SWBT) as it is experimentally simplest 
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mode to investigate and furthermore requires a simple fixture at the root (Pankonien, 

Reich, Lindsley & Smyers, 2017). 

Prior to the manufacturing of the wing for the wind tunnel experiment, a feasibility 

study was performed in Patran/Nastran simulation environment to investigate whether the 

chosen flutter mode is attainable given dimensions and material. Thenceforth, the 

following section describes the future experimental setup for flutter analysis and is 

followed by the flutter analysis within the Nastran. 

5.4 Experimental setup of the wing in ERAU wind tunnel 

In order to experimentally test topologically optimized 3D printed internal structure 

of the wing, the new Embry-Riddle Aeronautical University’s (ERAU) wind tunnel 

located at “MicaPlex” innovation complex was selected as to leverage its fairly large test 

section, which is 4 feet high, 6 feet wide and 12 feet long, and its nominal achievable 

flowspeed with mean turbulence intensity of less than 0.5%, which is 350 feet per second 

(0.3 Mach) (Langer, 2018). The depiction of ERAU wind tunnel test section is shown in 

Figure 5.26. 



71  

   
 

 

Figure 5.26 ERAU wind tunnel test section 

ERAU wind tunnel’s range of flowspeed allows for a more unrestrained 3D printed 

wing designs because it expands the choice of dimensions and material to be used by 

providing a wider range for the to-be-tested wing’s stiffness that would inflict required 

flutter mechanism for experimental analysis. 

There are several ways of placing the wing in the wind tunnel for aerodynamic 

tests. Placing the wing vertically attached to the ground or to the top wall (ceiling) of the 

test section could be considered as one of configurations (Ballman et al., 2011; 

Matsuzaki, Ueda, Miyazawa & Matsushita, 1989). Another configuration of placing the 

wing is to attach it to the sidewall of the wind tunnel horizontally (Scott, Coulson, 

Castelluccio & Heeg, 2011; Tang & Dowell, 2001) or vertically (Pankonien, Reich, 

Lindsley & Smyers, 2017). Further variation of this method is to attach the wing 

horizontally to a splitter plate (Ricketts & Doggett, 1980; Heeg, Wieseman & 

Chwalowski, 2016; Huang, Zhao & Hu, 2016). After thorough consideration it was 

decided to install wing model inside ERAU wind tunnel vertically mounted on a splitter 
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plate as demonstrated in Figure 5.27. The main reasons for this decision are the ease of 

manufacturing of the splitter plate, simple fixture using existing screw-threads on a 

turntable (no modification of ERAU wind tunnel section will be required) and ability to 

change angle of attack for each run. Wing mount that is connected to the splitter plate is 

perforated so as to allow positioning the wing at desired angle of attack with a step of 2 

degrees. 

 

 
Figure 5.27 Visualization of ERAU wind tunnel section with wing model a) Rendered b)  

Isometric sectioned and c) Isometric side views. 

The dimensions of the wing for the experimental analysis in wind tunnel is limited 

by the height of the test section, which is 4 feet. The dimensions of the wing that fits the 

a) 

b) c) 
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test section in the configuration described earlier is demonstrated in Figure 5.28. 

5.5 Modal and aeroelastic analysis in Nastran/Patran 

Prior to flutter analysis a modal analysis was performed in Nastran with a scaled 

wing made from polypropylene material called “Durus” 𝐸 = 1.1 𝐺𝑃𝑎 produced by 

“Stratasys” company (Stratasys, 2018). The dimensions of the scaled wing are shown in 

Figure 5.28. 

 

Figure 5.28 Top view of the wing model with dimensions  

The results of the analysis showed that the first natural frequency is 18.66 Hz and 

the corresponding mode was 1st bending which is demonstrated in Figure 5.29. The 

second natural frequency yield a value of 57.19 Hz with the corresponding mode of 1st 

torsion which is shown in Figure 5.30. 2nd bending and 2nd torsion frequencies are at 

71.79 and 122.5 Hz respectively. 1st torsional mode’s frequency was found to be lower 

than the 2nd bending mode, resulting in a favorable symmetric wing bending torsion 

flutter mechanism. Symmetric Wing Bending Torsion (SWBT) flutter mechanism is 

experimentally the simplest flutter mode to investigate since it does not include a rigid 

~2 ft 

2 ft 
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body degree of freedom (Pankonien, Reich, Lindsley & Smyers, 2017), easing the 

mounting implementation via fixed root which is crucial for the future wind tunnel test. 

 

Figure 5.29 1st bending at 18.66 Hz 

 

Figure 5.30 1st torsion at 57.19 Hz 

Preliminary flutter analysis was carried out in Nastran’s aeroelastic module. A case 

study was conducted in which 2 wing dimensions (2ft and 3ft) were tested. The results 

are 𝑣 − 𝑔 and 𝑣 − 𝑓 plots that demonstrate the velocity versus damping and velocity 

versus frequency curves, where 𝑔 represents the structural damping of the vibration. The 

velocity at which the curve on the 𝑣 − 𝑔 plot passes the x-axis so that the value of 𝑔 = 0 

is called the flutter speed. It is possible to determine the frequencies of the modes at 

flutter speed by picking the value of the velocity at which the curve passes the x-axis in 

Figure 5.31 and finding values of frequencies corresponding to that velocity in Figure 

5.32. 
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Figure 5.31 𝑣 − 𝑔 plot of F-5 wing, “Durus” material, 𝐸 = 1.1 𝐺𝑃𝑎, 2 feet 

 

Figure 5.32 𝑣 − 𝑓 plot of F-5 wing, “Durus” material, 𝐸 = 1.1 𝐺𝑃𝑎, 2 feet 
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Figure 5.33 𝑣 − 𝑔 plot of F-5 wing, “Durus” material, 𝐸 = 1.1 𝐺𝑃𝑎, 3 feet 

 

Figure 5.34 𝑣 − 𝑓 plot of F-5 wing, “Durus” material, 𝐸 = 1.1 𝐺𝑃𝑎, 3 feet 

For the case of 2 feet wing model the flutter speed was calculated to be 195 m/s as 

shown in Figure 5.31 and Figure 5.32. If the model size is increased to 3 feet it can be seen 

that the corresponding flutter speed is decreased. This is demonstrated in Figure 5.33 and 
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Figure 5.34 where flutter speed was found to be 160 m/s. The data relevant to the flutter 

analysis is tabulated in Table 5.3. 

Table 5.3  

Case study design of flutter model via stiffness and dimension control 

Case Natural Frequencies (Hz) Predicted 

Flutter Speed 

(m/s) Material 
Characteristic 

Dimension 

1st 

Bending 

1st 

Torsion 

2nd 

Bending 

Durus 

(E=1.1GPa) - 

Homogeneous 

2 feet root 

chord 
18.7 57.2 71.8 195 

3 feet root 

chord 
13.3 40.4 60.6 160 

As it can be seen from Table 5.3 the flutter speed is significantly higher than the 

ERAU wind tunnel’s flowspeed limit of 100m/s. If a lower flutter speed is desired, 

elastomeric breaks can be incorporated in the wing model to reduce its torsional stiffness 

which in case would lower the torsional frequency thus lowering the flutter speed 

(Pankonien, Reich, Lindsley & Smyers, 2017). 

Another case study was conducted to see how the flutter speed changes as the 

thickness of the wing model’s walls are varied from 1.5 mm to 5 mm. The results are 

demonstrated in Figure 5.35, Figure 5.36 and Figure 5.37. For the case of 1.5 mm wall 

thickness the flutter speed was obtained to be 112 m/s as shown in Figure 5.35. As the 

thickness is increased to 2.5 mm the flutter speed increases as well and reaches 139 m/s 

as demonstrated in Figure 5.36. Finally, Figure 5.37 demonstrates a wing configuration 

with a wall thickness of 5 mm which has the flutter speed of 195 m/s. This simulation 

demonstrates that even by decreasing wing walls’ thickness to 1.5 mm the flutter is still 

not reached given ERAU wind tunnel’s limitation of 100 m/s. 
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Figure 5.35 𝑣 − 𝑔 plot of F-5 wing, ”Durus” material, 𝐸 = 1.1 𝐺𝑃𝑎, 2 feet, 1.5 mm 

 

Figure 5.36 𝑣 − 𝑔 plot of F-5 wing, ”Durus” material, 𝐸 = 1.1 𝐺𝑃𝑎, 2 feet, 2.5 mm 
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Figure 5.37 𝑣 − 𝑔 plot of F-5 wing, ”Durus” material, 𝐸 = 1.1 𝐺𝑃𝑎, 2 feet, 5.0 mm 
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6. Concluding remarks and future work 

In the course of this work a significant part of aeroelastic modelling software was 

developed. Steady aerodynamics was modeled using vortex lattice method (VLM) and 

the unsteady aerodynamics was modeled using doublet lattice method (DLM). Triangular 

bending elements were used as a basis for a finite element method (FEM) in this work. 

The interpolation required to relay the results obtained from the DLM into the structural 

modal space (FEM) was developed as well. Moreover, a static, modal and aeroelastic 

analyses of F-5 wing were performed in the framework of Nastran’s solver. 

Consequently, a prototype 3D printed F-5 wing was manufactured and a static and 

ground vibrational test (GVT) analyses for the purpose of validation were carried out.   

The static experiment performed using 3D printed wing prototype and digital image 

correlation (DIC) technique showed that the finite element (FE) model is in good 

agreement with the experiment. Furthermore, a ground vibration test (GVT) showed that 

the computational modal analysis performed in Nastran is in good agreement with the 

experimental results. The results of the flutter analysis performed in Nastran showed that 

the 2 feet wing made from “Durus” 3D printing material is not going to flutter within the 

limit of ERAU wind tunnel’s maximal flowspeed of 100 m/s. Additional flutter analysis 

in Nastran was carried out to see if the reduction in wing walls’ thickness leads to an 

attainable wing bending torsion flutter. The results of this analysis showed that even 

reducing thickness to 1.5 mm does not result in wing fluttering below 100 m/s.  

The analyses and experiments performed in this work allow for several new 

avenues of additional research work as well as experiments to be explored. Experimental 

flutter analysis results can be obtained by testing the larger 2 feet wing inside the ERAU 
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wind tunnel as explained in Chapter 5. Results of this analysis might be used as a source 

of validation for the developed Matlab Aeroelastic Code
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