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ABSTRACT
THE BOUNDEDNESS OF HAUSDORFF OPERATORS ON FUNCTION
SPACES

by

Xiaoying Lin

The University of Wisconsin—-Milwaukee, 2013
Under the Supervision of Professor Dr. Dashan Fan

For a fixed kernel function ®, the one dimensional Hausdorff operator is defined in

the integral form by

o
ha(h)) = [ TG ar

By the Minkowski inequality, it is easy to check that the Hausdorff operator is
bounded on the Lebesgue spaces LP when p > 1, with some size condition assumed
on the kernel functions ®. However, people discovered that the above boundedness
property is quite different on the Hardy space H? when 0 < p < 1. To establish the
boundedness on the Hardy space for 0 < p < 1, some smoothness must be assumed
on the kernel functions ®.

In this thesis, we first study the boundedness of he on the Hardy space H', and
on the local Hardy space h'(R). Our work shows that for ®(¢) > 0, the Hausdorff
operator hg is bounded on the Hardy space H'! if and only if ® is a Lebesgue integrable
function; and hg is bounded on the local Hardy space h!(R) if and only if the functions
®(t)X(1,0)(t) and ®(t)x(0,1)(1)log(7) are Lebesgue integrable. These results solve an
open question posed by the Israeli mathematician Liflyand. We also establish an
H'(R) — H“*(R) boundedness theorem for hg. As applications, we obtain many
decent properties for the Hardy operator and the kth order Hardy operators. For
instance, we know that the Hardy operator H is bounded from H'(R) — H“*(R),

bounded on the atomic space H}(R, ), but it is not bounded on both H*(R) and the

11



local Hardy space h'(R).
We also extend part of these results to the high dimensional Hausdorff operators.

Here, we study two high dimensional extentions on the Hausdorff operator he:

and

Hasn@ = [

where @ is a local integrable function.

For 0 < p < 1, we obtain a sufficient condition for the H? boundedness for the
Hausdorff operator in the one dimensional case. This theorem needs less smoothness
on the kernel ® than any other theorems in the literature. Since there is no result
involving the boundedness on H?(R™) in the literature for the high dimensional Haus-
dorff operators, if 0 < p < 1 and n > 2, it is interesting to study such problems in the
high dimensional spaces. We establish several sufficient conditions by using a duality
argument.

Additionally, we study boundedness of Hausdorff operators on some Herz type

spaces, and some bilinear Hausdorff operators and fractional Hausdorff operators.

11



©Copyright by Xiaoying Lin, 2013
All Rights Reserved

v



CONTENTS

1 Introduction

2 Preliminaries
2.1 Lebesgue and Hardy Spaces . . . . . . .. .. .. ... ... .....
2.1.1 Lorentz Spaces . . . . . . . . . .. .. ... ...
2.1.2 Hardy Spaces . . . . . . . . ..

2.2 Duality . . . . . .
2.2.1 Lipschitz Spaces . . . . . . . ... .o
222 BMO . . ..

2.3 Alternate Characterizations of HP . . . . . . . . . ... .. ... ...
2.3.1 Atomic Characterization . . . . . .. ... .. ... ......
2.3.2 Hilbert and Riesz Transform . . . . . ... ... ... ... ..

2.4 Interpolation . . . . . .. ..
2.4.1 Stein-Weiss Analytic Interpolation . . . . ... ... ... ..
2.4.2 Marcinkiewisz Interpolation . . . . . ... ... ... ... ..

2.5 Herz Type Spaces . . . . . . . . . . . ..

3 One Dimensional Hausdorff Operators: The Case 0 <p < 1

4 One Dimensional Hausdorff Operators: The Case p =1
4.1 Introduction . . . . . . . ...
4.1.1 The Hardy Operator and its Generalizations . . . . . . . . ..
4.1.2 A Lemma in Local Hardy Spaces . . . . ... .. ... ....
4.2  Necessary and Sufficient Conditions for H* Boundedness . . . . . . .
4.3 Boundedness of the Hardy Operator Near H* . . . . . . .. ... ..
4.4 Generalizations of the Hardy Operator (0 <p<1) . ... ... ...

5 High Dimensional Hausdorff Operators
51 HY(R") - H'(R") Boundedness of Hg . . . . ... ..........
5.2 Boundedness on Lebesgue spaces . . . . . .. .. ... ... ... ..
5.3 Boundedness on HP(R™) . . . . ... ... ...
5.3.1 HP — L? Boundedness of Hpg . . . . . . . ... ... .. ...
5.3.2 HP — HY? Boundedness of Hps . . . . . ... ... ... ...

6 Additional Spaces and Operators
6.1 Motivation . . . . ... ... e
6.2 Boundedness of Hausdorff Operator on HKZP(R™) . .. ... .. ..

6.3 HK;W(R) — H"(R) Boundedness . . . ... ... ..........
6.4 Bilinear Hausdorft Operators . . . . . . . . . .. ... ... ... ...

References

16
16
16
17
18
18
19
19
19
21
23
23
25
26

28

33
33
33
34
36
41
45

51
53
95
o8
o8
61

75
75
79

83
87

90



ACKNOWLEDGMENTS

As T complete my thesis, I would like to take the opportunity to express my gratitude
to my advisor, Dr. Fan, and also to Dr. Sun, for their unselfish help in my academic
career during my graduate study. None of my achievements would have been possible
without their help. I would like to thank all the members of my committee for
their attention and support, especially Dr. Volkmer, who has provided many helpful
suggestions for clarifying my results. I would also like to thank Dr. ChunJie Zhang,
who helped to introduce me to the topic of this thesis.

I also want to take the chance to thank my friend and classmate, America ,for her
help in proofreading this thesis.

Without the people I have mentioned, and others that I have doubtless omitted,
I would never have gotten as far as I have. I will repay their kindness by passing it
on to my own students, fostering my students’ development as mathematicians and
as people, as others have fostered mine.

vi



CHAPTER 1
INTRODUCTION

One of the core problems in harmonic analysis is to study the boundedness of an

operator T" on some function/distribution spaces

ITflly < 1£lx

where X and Y are two function/distribution spaces with norms or quasi norms ||-| y,
|-|ly respectively. This question arises from many natural problems in mathematics
and the sciences. To illustrate the importance of this problem, we look at the following

two examples.

Example 1.1. Any L' function f on [—m,w] has its Fourier series

f(z) ~ Z cpe*®.

k

This means a signal f might be built up from many simple sine and cosine waves

with different wave lengths and amplitude. Unfortunately,

f(l') _ cheikx
k

is not always true pointwise, even when f is a continuous function(see [31]). So we
need to modify the information using a filter {m(ek)} (called the summation of the

Fourier series):

Tm,ef(x) = chm(Ek)eikxv € > Oa
k

where m is a suitably nice function and m(0) = 1. T,, is called a multiplier (operator)

with symbol m. This summation greatly improves the convergence of the Fourier series



in the sense that

. ikx
EEI(% k cxm(e, k)e™ = f(x)

uniformly for a continuous function f if one chooses a suitable function m. For
instance, from [31], we know that Tp, (f) is the Abel summation if m(+/ek) = ekl
and the Riesz summation if m(ek) = (1 — €|k|) 4.

Furthermore, let F' be some function/distribution space with quasi-norm ||, we

are interested in the global convergence
lil& HTm,eg - gHF =0, forgelF.

We suppose that the class S of Schwartz functions is dense in F', and that for f € S,

T [T = f1 =0
Then it is easy to check that the boundedness

|Tegl < llgl z, for € sufficiently small

implies that for all g€ F,

lim |T,,.9 — = 0.

Jim | Toneg =gl =0
To see this fact, for given g € F', and any 6 > 0, choose f € S such that

If=glr <o

As a consequence, we have

T |Toeg = gl < Tim (1 = gllp + 1Tl = 9)lp + [ Tonef = 1)
< i —
<6+ lim [Toef — flr

< 0.

Thus the convergence problem T, .f — f in the space F' is reduced to the boundedness



of Thne on the space F.

Example 1.2. The solution u(t, x) of the Cauchy problem of the Schridinger equation
i0u—Au=0, (t,z)eR; xR"
u(0,x) = up(x)

is formally given by u(t,x) = (e ™ ug)(x), where u(t,r) = (e *Puy) is defined

through its Fourier transform by

(e=itBug) () = ™l iy ¢).

Let X and 'Y be two function spaces. To study the reqularity of the solution, we need

to estimate

itA —itA

—itA(uO o UO)HY — He_ Uy — € UOHY < HUO — UOHX s

e

since the operator e ™ is linear. Again we face the boundedness inequality

le=* 27, < 1f1x -

These examples begin to show the importance of demonstrating the boundedness
of operators on function spaces. In this thesis, we mainly study the boundedness of
the Hausdorff operators on the Lebesgue spaces and on the Hardy spaces. We begin

by recalling the one dimensional Hausdorff operator, defined in the integral form by

hel0)o) = [ T2 py g, (L.1)

o t TVt
where, for simplicity, we initially define hge on the Schwartz space S. Clearly, hg is a
linear operator. This integral operator is deeply rooted in the study of 1-dimensional
Fourier analysis. Particularly, it is closely related to the summability of the classical
Fourier series (see [13]).

The definition of hg is based on the dilation structure of the Euclidean space.

Two important geometric transformations on the Euclidean space R" are translation



and dilation. The translation L, is a linear operator defined by L,(f)(z) = f(z +y),

so its integral form

|ewL (e dy= [ ey ay (12)

is the convolution operator ® = f(z) with kernel @, and its L' norm satisfies
[+ fllp = 1®[pa [ fllpe, if @, f=0.

The dilation Dy is a linear operator defined by Dy(f)(x) = f(tx), for t > 0. The

integral

| 20D (1)@ de = [ @055 a (13)

corresponds to the Hausdorff operator

hel1)w) = | "2 () ) d. (1.4)

o ¢

o) -

Note that ®(¢) in equation (1.3) is replaced by == in equation (1.4). This normalizes

the operator, so that

[ha (N = 1@ [ e, i @, =0.

Many important operators in real and complex analysis are special cases of the Haus-
dorff operator, by taking suitable choice of ®. These operators include, among many

others:

(1) the Hardy operator

the average of antiderivative of a function f in the Fundamental Theorem of

X(l,m)(t) .
t 3

Calculus, is obtained by choosing ®(t) =



(2) the adjoint Hardy operator
Q0
t
wiw = [ 1,
which is obtained by choosing ®(t) = x(0,1)(%);

(3) the Cesaro operator

which is obtained by choosing ®(t) = x(0.1)(t)(1 —)*~;
(4) the Hardy-Littlewood-Pélya operator

P - [ : % dt = Hf(2) + H*f(2).

Also, the Riemann-Liouville fractional derivatives

Dilf)w) = | (=0 @ de, w0

0

can be derived from the fractional Hausdorff operator. In fact

> o fo( _t?ﬂ_lf(% d.
Thus,
Ds(f)(x) = 2" ha(f)(2)
with
o) = U *f)ﬁlx(lm)(t).

The Hausdorff operator has received extensive study in recent years, particularly its
boundedness on the Lebesgue space LP and the Hardy space H? (see [9, 14, 18, 28, 30]).

Consider a quasi-normed space X with quasi-norm |-|,. We say that X satisfies



the norm scaling (N-S) property if there exists a number o = ¢(X) such that

l70], = 171

for any f e X,t > 0. If X satisfies the N-S property, then by Minkowski’s inequality
OIS
hafly < | at
ot < | 26|,

- ([ 2 ae) i

This shows that he is bounded on the space X if

([0 i) < 5

0

Based on these observations, our main interests in the Hausdorff operator are:

(1) Determine when the condition given in equation (1.5) is sharp, that is, for which
spaces X satisfying the N-S property the condition in equation (1.5) is necessary

as well as sufficient.

(2) Study the boundedness of he : X — X if X does not satisfy the N-S property.

The Lebesgue spaces LP when p > 1 satisfy the N-S property. Thus, by the above

argument, we have

lhe flr < ColfllLe

where Cyp is the constant

Cop = (Lw@ti dt>.

It is known that the Hausdorff operator is bounded on the Lebesgue spaces LP when
p = lifand only if Cy < o0, provided ®(¢) is a non-negative valued function. The real
Hardy space H'! is also a space with the N-S property. Again, by a scaling argument

together with the Minkowski inequality, we obtain

170 fll e < [ f e



if ®(t) is a Lebesgue integrable function on (0, 00). The Israeli mathematician Liflyand

posed the following question.

Question 1 (Liflyand [13]). Determine the sharpness of the condition ® € L'(0, «)

to give hg bounded on H'(R).

In this thesis, we will solve this problem by showing that if ®(¢) is a non-negative

valued function, then

17 fll i < [ f ]

if and only if ®(¢) is a Lebesgue integrable function on (0,00). We will also solve
the same problem on the local Hardy space h!. As applications, we obtain some
interesting results for the Hardy operator on the spaces near H*.

The real Hardy space H? is not a normed space when 0 < p < 1. It is known that
the above boundedness property on LP or H' is quite different on the Hardy space
HP? when 0 < p < 1. To establish the boundedness of hg on the real Hardy space H?
for all 0 < p < 1, it seems that any reasonable size condition on ® is not sufficient;
some smoothness condition must be included. This phenomeonon was discovered by
Kinjin [9] who required a smoothness condition on ®, the Fourier transforms of ®.
It was further explored by Liflyand and Miyachi in [14], who required a smoothness
condition on ®, and who further found a bounded function ® supported in a compact
set £ < (0,00), such that the operator hg is not bounded on H?(R) for any 0 < p < 1.

The original work of Kanjin,Liflyand and Miyachi was motivated by the Cesaro

operator

Kanjin showed in ([9]) that C, is bounded on HP?(R) provided 525 < p < 1, and that

this result actually is an application of the following:



Theorem A ([9]). Let 0 <p<1, M =[1/p—1/2] +1, and

Q0
Aq,m:f t=YP B (t)| dt.
0

Suppose Ap1 + Ap o < 0, and de C*M(R) with

suple* ([|B40©)| + [ (¢)]) < o

Then he is a bounded operator on HP(R).

The proof of Theorem A is based on the Taibleson-Weiss atomic-molecular char-
acterization of the Hardy space (see [28]). Kanjin proved that if ¢ satisfies the
conditions of Theorem A, then the Hausdorff operator he maps an atom to an H?
molecule. Later on, using a different method, which includes a modified atomic de-
composition of H?, Miyachi improved Kanjin’s result by showing that the Cesaro
operator C, is bounded on HP(R) for any o > 0 and all p > 0 (see [23]). In [14]
Liflyand and Miyachi further extended the method used by Miyachi in [23] to study
the H?(R) boundedness of the Hausdorff operator he. First, they observed that the

following Theorem B is a direct corollary of Theorem A.

Theorem B ([14]). Let 0 <p <1 and M = [1/p—1/2]+1. If ® € CM and its support

is a compact set in (0,00), then the Hausdorff operator he is bounded on HP(R).

Liflyand and Miyachi then generalized the main result in [23] and obtained the

following two theorems.

Theorem C ([14]). Let 0 < p < 1, M = [1/p — 1/2] + 1 and let £ be a positive
number. If ® € CM(0,0) satisfies

2" ()| < min{te, ¢}k

for k=0,1,...., M, then he is bounded on HP(R).



Theorem D ([14]). Let 0 <p <1, M = [1/p — 1/2] + 1 and let € and a be positive
numbers. Suppose that ® is a function on (0,00) such that the support of ® is a

compact subset of (0,00). If ® is of class C™ on (0,a) U (a,0) and satisfies
‘q)(k)(tﬂ <|t—alf7F fork=0,1,..., M,
then hg is bounded on HP(R).

In this thesis, we will establish another sufficient condition for H? boundedness of
he with less smoothness on ® than that in Theorems B to D.

Next, we observe that all methods used to show the boundedness of he on HP(R)
in the above theorems fail in the high dimensional case, and we notice that there is
no result involving the boundedness on H?(R™) in literature for the high dimensional
Hausdorff operators, if 0 < p < 1 and n > 2. Thus we are particularly interested in
studying such problems in the high dimensional spaces.

In the one-dimensional case, when x > 0, by a changing of variables,

This suggests us to study two different extensions of Hausdorftf operator in the high

dimensional space:

")

foslfle) = |

)dy, n=p=0,

[y Y|

and

q)(ly\)

Hop(f)(x) = | —=5fy)dy, n=p=>0,
R [y|"”

where ® is a locally integrable function. We denote

]N{@’O = ]‘TI@ and Hq>70 = Hq;.

We note that operators of the form Hg include the high dimensional Hardy oper-
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ator

1
S d
- J| S

J f@%y
izl 1yl

In [10, 12, 15, 18], Liflyand and Moricz addressed the following theorem.

and the adjoint Hardy operator

Theorem E (Liflyand and Moricz). Hg is bounded on H (R™),n > 2, if ® € L'(R™).
Again, we face the following question.

Question 2 (Liflyand [13]). Determine the sharpness of the condition on ® given in
Theorem E. That is, determine whether Hy is bounded on H'(R™), n > 2, if and only

if ®e LY(RM).

Also, we notice that there is no research in the literature addressing H?(R")
boundedness of either the operator Hg or the operator He. All methods of treating
the one dimensional operator used in Theorems A to D fail to establish a similar

theorem on the high dimensional case. This raises the following question.

Question 3. Establish some H?(R") boundedness theorems for the operators Hg or

Hg forn>2and 0 <p < 1.

As usual, the notation, A < B means that there is a constant C' > 0 that is
independent of all essential variables such that A < CB. Similarly, we use the
notation A =~ B if there exist positive constants C and c, independent of all essential

variables, such that
cB<A<CB.

The structure of this thesis is as follows.
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Chapter 2 contains some preliminary knowledge. This summary contains no new
results, but several facts which are required for later chapters.

Chapter 3 presents some results on H?(R) for 0 < p < 1. In particular, Chapter 3
improves on the smoothness conditions described in Theorems B to D.

Chapter 4 includes several results on H'(R) and related spaces. It includes an
answer to Question 1.

Chapter 5 concerns HP(R™), 0 < p < 1, n > 2. This chapter addresses Questions 2
and 3.

Chapter 6 explores extending the techniques used for the previous results to study
Hausdorff operators on the related Herz-type Hardy spaces, and also to study bilinear
Hausdorff operators.

The following are the new theorems that we obtained.

In Chapter 3, we prove a boundedness result for Hausdorff operators on one-

dimensional Hardy spaces:

Theorem 3.1. Let @ be a Lebesgue integrable function. Denote ¢(t) = @ fort >0,

and ¢(t) =0 fort < 0. Assume 0 < p <1 cmdozzé—l. If o € A, then

120 () ooy < 151 oy

If there exists a small € > 0, such that « — e > 0 and ¢ € Ayye N Ao_c, then

170 () aro ey < 1F Doy -

In Chapter 4, we study the boundedness of Hausdorff operators on the Hardy

space H'(R), obtaining the following main theorems:
Theorem 4.2. Let ® be a nonnegative valued locally integrable function.

(1) hg is bounded on H'(R) if and only if ® € L'(0, ).
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(2) hg is bounded on the local Hardy space h*(R) if and only if

foo (t) dt + f ®(t) (14 log()) dt < 0.

Theorem 4.3. Let ¢(t) = t7'®(t). Suppose ¢ € BMO(R). Then hg extends to a
bounded operator from H'(R) to HM*(R).

Corollary 4.6. The Hardy operator H has the following properties

(1) H is not bounded on H*(R).

(2) H is not bounded on h*(R).

(3) H is bounded from H'(R) to H"*(R).
(4) H is bounded on H%(0,00).

We also apply our results to some generalizations of the Hardy operator.

In Chapter 5, we begin by generalizing Theorem 3.1 to obtain
Theorem 5.1. Let ® be a nonnegative valued locally integrable function.
(1) Hg is bounded on H'(R™) if and only if ® € L'(R").

(2) Hg is bounded on the local Hardy space h'(R") if and only if

L|>1 P(y) dy + L|<1 D(y) <1 + log <é)> dy < o,

We next show some boundedness results for the power-weight Lebesgue spaces,

particularly,

Theorem 5.4. Let 1 < p,g< o, 0<f<n,v>Pp—n and

g1
n+y g

D

In addition, let

© —Bptn—p
Che = f DT T T A forp> 1, Che = || - [TPTD() | oo
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For any p = 1, if, for arbitrarily small positive €, C,, +. < o0, then

1Hao s(f)(@)|La(efrde) < || Lr(elrde)-

Finally, we show sufficient conditions for boundedness of operators on high-dimensional

Hardy spaces.

Lemma 5.5. Let 0 < 8 <n and

wiy) = 2D
vl

Assume 0 < p < 1 andaznG—l). Ifv e A, then

[ Ha () oo g@ny < 1F 1o eny

where q satisfies

1 1 B

- ==+
p g n

Theorem 5.6. Let B,p,a,q,v be as in Lemma 5.5. If for some € > 0 small enough

that « —e >0, Y € Ayye N Ay_e, then

[Ha 5(F) oy < 151 oy -

Theorem 5.11. Suppose 0 <p<1,0< <n. Let ® denote the Fourier transform
of ® and

For an integer M = n(% —1), suppose that d is a function in C*M+7(R™) with compact

support in the set R™\ {0}. Then

| Has () rraogny < 1F Lo emy

Theorem 5.13. Suppose 0 <p<1,0< 3 <mn. Let ® denote the Fourier transform
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of ® and

1

=

p g n

For an integer M > n(L—1), suppose that ® is a function in C2M+1(R™) with compact
g P

support in the set R™\ {0}. Then

||H¢’,ﬂ(f)||Hq(Rn) < ”fHHp(Rn) .

In Chapter 6, we establish a size condition for boundedness of Hausdorft operators

on the Herz-type Hardy spaces:

Theorem 6.1. Let 0 <p <1< g < o0, andn(1—$)<a<oo.

(1) For0 <p <1, let

CI)y a L0 o
c, . - f “y(‘ﬁ’w 1yl (1+ log|y])” dy.
R?’L

If, for some o > %, Cp = Cp s < 0, then
HH‘D(JC)HHK,‘;"P(R") < HfHHK;"’p(]R”) :

(2) Forp=1, let

® -
a:j %m s dy.

If Cy < oo, then
| Ho (f) o ny < If | i oy -

We further provide a condition for a modified Hausdorff operator to map the Herz-
type Hardy spaces into a weak Hardy space. Here, the modified Hausdorff operator
he is defined by
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and we let

) B q)(j) ifv#£0
o) = im 2 i — 0.

v—0

Theorem 6.3. Let 0 < p<1<q< o0, and(l—%)<a<oo. For

1 1 1 1 1
r= T N—[oH———l]l——l], —+-=1.
a+ q r 7 q
Let
1 1 1
7:——1—]\7———1—[——1]
r r r
If g€ CN and

uniformly for p > 0, then we have

o

- < ||fH1L1K;”p :

Finally, we prove some preliminary boundedness results for bilinear Hausdorff

operators on one-dimensional Lebesgue spaces.

Theorem 6.5. Let m,k =1,2,.... For any p,p1,pa, 7,0 = 1 satisfying

1 1 1 1 m k 1
—+—==,  —=—+—  —t-—=1,
P1 P2 p r P1 P2 b p
if
/ %
0 q)l p P
J (t) dt] < oo
—o0 t
then

| Ham i (fs O proe < [flor 19l 12 -
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CHAPTER 2
PRELIMINARIES

2.1 LEBESGUE AND HARDY SPACES
2.1.1 Lorentz Spaces

Let dx be the Lebesgue measure on R™. The Lebesgue space LP, 0 < p < o0, is the

set of all measurable functions f satisfying

1710 = ( o) d:c) <o,

The power weight Lebesgue space LP(|z|” dx), 1 < p < o0, is the set of all measurable

functions f satisfying

| £l 2o opray = (JW \f(z)[" |=]” daz) " oo

For a measurable function f, we define the set E((t), for any ¢ > 0, by

The distribution function of f is ps(t) = |Ef(t)|, the Lebesgue measure of E¢(t). We

define the weak Lebesgue space by

= {1 flppe} < o2,

where

e = sp (0025 (0).

When 0 < p < o0 and 0 < ¢ < o0, we define the norm (or quasi-norm)

1
1 (" dt\
line =0t ([ elnst0f )

R3S
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The Lorentz space LP1 is the set of all measurable function f satisfying

LA =A{f 2 [ flppa < 0}

The Lebesgue space LP and its weak version LP® are special cases of the Lorentz

space LP4. (It is easy to see that LPP = LP.)
2.1.2 Hardy Spaces

When 0 < p < 1, the dual space (L?)" of L” contains only the zero function, which
makes the structure of L? difficult to study in this case. Instead, we study a closely
related space, the Hardy space HP.

Let S(R™) be the set of Schwartz functions and ¥ € S(R") satisfying

L‘I’(y) dy =1,

and denote U,(y) = V(%)

The Hardy space HP(R") is the space of all distributions f satisfying

< 0.
LP(R™)

HfHHP(R") =

sup [V = f]|
0<s<oo

We similarly define the weak Hardy space HP'® to be the set of distributions f

satisfying

<
Lpoo(R7)

up |‘118*f|

S
0<s<aoo

11l 0,00 ey =
and more generally the Hardy-Lorentz space HP? the set of distributions f satisfying

< O0.
Lr:a(Rm)

HfHHp,q(Rn) = sup |\I/S % f|
O<s<oo
The local Hardy space h*(R™) is the space of all distributions f satisfying

< 0.
Lr(R™)

HthP(R”) = OS<1;I<)1 W, = f]

The definitions above are independent (up to equivalence of norms) of the choices of
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the function ¥. From the definition, it is easy to see that

[l < 1f o

so that we have an embedding
HP < hP.

We note that | f|, and | f|,, are norms when p > 1, and they are quasi-norms when

0 <p<1 When p>1,itis well known that H? = LP.
2.2 DuALITY

One motivation for studying H? rather than L? when 0 < p < 1 is that the dual of LP
is degenerate in this case, while the dual of H? is well-developed. The dual of H? is
an appropriately chosen Companato space; for a good treatment of this space and its
duality with H?| see for instance [21]. However, in computation, it is easier to pass

to a related space, the Lipschitz space A, introduced below.
2.2.1 Lipschitz Spaces
For a = 0 we define the Lipschitz space A, as follows.

e For a=0,A0 = L=, |fl, = [lfll -

e ForO<a<1,A,={f:3c>0st.Va,y, |f(x)— fy)| <clz—y|"},

[flas = inf{e: Va,y, [f(z) = f(y)| < cle—y|"}.

e Fora>1lwritea=k+6,keN 0< (< 1.
A, = {f : V& multiindex s.t. |x| = k, f*) € Ag},
171, = max |7
Intuitively, we can think of f € A, as meaning that f is “a times” differentiable
with bounded derivative. (This certainly makes sense when o € N.) This intuition
suggests that for o < 3, Ag © A,; but this is not true in general. We do, however,

have the following inclusions.
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o Ifao<vy<f, then Ay, nAg S A,
o If @ < f and K is compact, then Ag(K) < A, (K).

We don’t have to look very far to find an exception to the expected inclusion. For
example, f(z) = 2% € Ay(R) but not in A;(R).
When o = n(% — 1), for any f € HP(R"), g € A,(R™), an easy computation shows

the pairing inequality

[(Fo )l =1 F g 9l - (2.1)

2.2.2 BMO

The dual space of H'(R") is BMO(RR"), the space of bounded mean oscillation. Here,

we recall that BMO(RR") is the space of all locally integrable functions f satisfying

1 1
1 fllno = SUPE JB flx) — E JB f(t) dt‘ dx < o0,

where the sup is taken over all balls B in R™. It is known that the space L™ is a

proper subspace of BMO and
log |z| € BMO\L®”.

2.3 ALTERNATE CHARACTERIZATIONS OF HP

The Hardy spaces have several equivalent characterizations. In this thesis, we will

invoke the atomic decomposition and the Hilbert/Riesz transform characterization.
2.3.1 Atomic Characterization

Let 0<p<1<g<wo,p#gq,s= [n(% — 1)], the integer part of [n(% —1)]. We say
that a function a(z) € LIY(R™) is a (p, q,s) atom with the center at xy, if it satisfies
the following conditions:

Support Condition

Supp (CL) - B(x()?p)? p = 07
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Cancellation Condition

J y"a(y) dy = 0 for all multi-indices k such that |k| < s,

Size Condition

(ﬁ_ﬂ

lallpa < pre 7.

A function b is called a small (p, q) block if b satisfies the support and size conditions
with p < 1. A function B is called a big (p, q) block if B satisfies the support and
size conditions with p > 1.

A well-known theorem by Coifman [3] says that any f € HP(R) has an atomic

decomposition

f= Z Aja;,
where {\;} € /7, and that
1%, = inf {Z NP f = Z)\jaj, aj are (p,q,s) atoms}.
It is also well known
lalp, < llaf g <1

uniformly for all (p, ¢, s) atoms if s > n(}l7 —1).
The space h? has an similar decomposition that was discovered by Goldberg in

[6]. Namely, any f € h?(R) has a decomposition

f=>Naj,

where

171 = it {35 £ = 3 A
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and each a; is a (p, ¢, s) atom or a big (p, ¢) block. A simple computation (or see [6])

shows
IBl), <1
uniformly for all big (p,q) blocks B. We establish a boundedness result for some
small blocks as Lemma 4.1.
2.3.2 Hilbert and Riesz Transform

When n = 1, another important characterization of H?(R) is the one involving the

Hilbert transform

Rf(x) = p.v.% § xf@?y

dy.

The Hilbert transform is a very important operator in analysis. From [27] we know
that a non-identity linear transform 7" commutes with dilation, translation and reflec-
tion if and only if T is the Hilbert transform, up to a constant multiple. It is known
that the H? space can be characterized by the Hilbert transform in the sense that,
for all f e HP n L?,

[l = IR e + 1 e -

By checking the Fourier transform, it is easy to see that

o —_ ~

Rf(§) = isgn(&)f(E),

so —R? = Id is the identity operator. The relationship between the Hilbert transform
and the Hausdorff operator was studied in [17] by Liflyand and Méricz . Particularly,

they obtained the identity

R(ha f)(x) = ha(Rf)(z).

When n > 2, one can similarly characterize the space HP by using the Riesz
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transform. For j e {1,2,...,n}, the jth Riesz transform R; is defined by

Ry =po- | e tierfe ) dy

where the constant c¢,, is given by

The Fourier transform of the kernel of R; is called the symbol of R;. From [25], we

know that the symbol of R, is i§;/|{|. From this, we can easily see that

j=1

where Id is the identity map. We also denote

For an integer L > 0, and a multi-index J = {jy,...,j.} € {0,1,2,...,n}", let R;(f)

denote the generalized Riesz transform R,;(f) = R;, ... R;, f. It is known that for L

such that p > — and all f e L? n HP(R"),

1+L
Z ”RJ HLP(R” ”fHHP(]R") )

where the sum is taken over all J € {0,1,2,... ,n}L. It follows easily that Riesz
transforms are bounded on H? for all 0 < p < 1.

We have an analogous result for the weak Hardy spaces:

DRI ey = 1 L pgmcoeny -

J

Particularly, for n = 1, we have

[l o = RS oo + 1] e

for f e HP® ~ L2,
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2.4 INTERPOLATION

One major tool we will use to generate boundedness results is interpolation, which
allows us to obtain strong boundedness from weak boundedness. In particular,
we will use two interpolation theorems: Stein-Weiss analytic interpolation [27] and

Marcinkiewisz interpolation.
2.4.1 Stein-Weiss Analytic Interpolation

Let (M, A, 1) and (N, B,v) be two measure spaces and D(M) and D(N) be the sets
of all simple functions on (M, A, u) and (N, B, v) respectively. Define the set A to be

the strip

A={zeC:0<Rez<1}

A={zeC:0<Rez<1}.

Definition 2.1. Let T, be a linear operator T, : D(M) — D(N) for each z € A. If
for any f € D(M), g€ D(N),

he) = | T o (22)
N
1s analytic on A and continuous on A, and there exists a constant a < m, such that
e Wlog|h(z)|, z==z+iy
has an upper bound on A, then we call the family of the operators {T,} admissible.

Theorem F (Stein-Weiss). Let {T.} be an admissible family and z = x + 1y. If

HTiy<f)Hquvw(N) < Mo(y) ||fHLPO(M)
HTlJriy(f)Hquo(N) < Ml(y) HfHLm(M) .

for all f e D(M), and if there exists b < w for which

supe W log M;(y) < o0, je{1,2}, (2.3)
yeR
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then for t € (0,1), and py, q; be defined by

11—t t 1 1-t ¢

9

y4s Do 41 qt qo q1

we have

1T ey < Mell £l ey

for all f € D(M), where M, is a bounded constant that can be computed using the

three circle theorem (a theorem in Complex Analysis).

We will be using Stein-Weiss analytic interpolation to prove results about spaces
of Schwartz distributions. In general measure spaces, we have no derivatives, no
Schwartz space, no C°, etc. For our purposes, however, we will fix M = N = R".
Further, since in Stein-Weiss analytic interpolation we need the transformations 7,
to work on dense subspaces of our distribution spaces, we will replace D(M), D(N)

by
CP(R"™) = {f € C* : f has compact support} .
In this context, we can replace equation (2.2) by
h:) = | TDelgta) deole), (2.4
where dw(x) is some measure on R”. We will use the following corollary of Theorem F:

Corollary 2.2. Let {T,} be an admissible family and z = x + iy. If

1Ty () Lo o (r gy S Mo () [ f ] oo @ )

[Ty (P v oo ey < Ma(9) 11| o (e e
for all f e CP(R™), and there exists b < 7 for which

sup e ¥ log M;(y) <o, je{l,2}
yeR
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then for t € (0,1), and py, q; be defined by

11—t t 1 1-t ¢

9

y4s Do 41 qt qo q1

we have

T () e e oy < Me [ ] Lo ey
for all f € CP(R™), where My is a bounded constant, and dw is some measure on R™.

2.4.2 Marcinkiewisz Interpolation

T is called a quasilinear operator if there exists a constant C' > 0 such that T satisfies

T(f+9) (@) < C(Tf(@)] + [Tg(x)])

for almost every x. An operator T' (possibly quasilinear) satisfying an estimate of the

form

ITf ]l oo < C U Sfo

is said to be of weak type (p,q). An operator is simply of type (p, ¢) if T is a bounded

transformation from LP? to L9:

ITflle < Clf gy

Now we are ready to recall the Marcinkiewicz interpolation theorem (see [27] for more

details).

Lemma 2.3 (Marcinkiewicz Interpolation). If T is a quasilinear operator of weak
type (po, qo) and of weak type (p1,q1) where qo # q1, then for each 6 € (0,1), T is of
type (p,q), for p and q with p < q of the form

1 1-6 0

1 1-06 0
, - +
p Po b1 q qo0 q1
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2.5 HERZ TYPE SPACES

Many of the results we would like to obtain for higher dimensional Hardy spaces can
be more easily obtained on a subspace, the so-called Herz-type Hardy space. Herz
type spaces are important function spaces in harmonic analysis. Lu and Yang have
made tremendous contributions on these spaces. Their book [20] (joint with Hu) is
the unique research book on this topic.

For each k € Z, define
By={xeR":|z| <2*}, E,=B\Bi
and let y; denote the characteristic function of Fj.

Definition 2.4 (Homogeneous Herz Space). Let « € R, 0 < p,q < 0. The homoge-

neous Herz space K;‘vp(R") is defined by

Kp? = {f & L (RO{0)) : [flgpr < 0}

where

3=

0
Hf”kg*P(Rn) = ( Z gker |ka‘iq(Rn)>

k=—00
Definition 2.5 (Herz-type Hardy Space). Let a e R, 0 <p < o0, 1 < ¢ < . The
homogeneous Herz-type Hardy space HKg’p(]R”) 15 defined by
HESP(R™) = {f e S'(R"): Gf e K;”’(R”)} ,

where G f is the grand maximal function of f and

1 gecor @y = 1GF | keorny -
Similar to the Hardy spaces, the space H K .7 can be decomposed into atoms.

Definition 2.6 (Central Atom). Suppose 1 < ¢ < o0, n(l — é) < o < o, and

s> |a+ n(% —1)]. A function a(z) on R™ is said to be a central (e, q) atom if
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(i) supp a = B(0,p) ,
(i) al pogny < |B(0, p)| ",
(iii) a(z)z? dx = 0 for any multi-index § with |5] < s
R

It is known that, for 0 < p < 0, 1 < ¢ < o0, and n(1— ) <a<ow, fe HKQP(R")
if and only if there exist a sequence of numbers {\;} € /7 and a sequence of central
(a,q) atoms {ay} with the support in By such that

0
Z )\kak

k=—00

in S’. Moreover,

| fll e @ny = inf (2 |)\k|p> cf = 2 Arag is an atomic decomposition of f
k

By the definition, it is not difficult to see

Kz‘f’p:Lpifoz:()andp>1

When 0 < p < 1, and——oc+— HKO‘plsasubspace of HP.
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CHAPTER 3
ONE DIMENSIONAL HAUSDORFF OPERATORS: THE CASEO0 <p <1

In this chapter, we obtain a boundedness result for Hausdorff operators

ra) = [ 05 (%) ar

0 t
on one-dimensional Hardy spaces H?, 0 < p < 1, which requires a relatively simple

smoothness condition on the function ®. First, we recall the following result, due to

Liflyand and Miyachi:

Theorem B ([14]). Let 0 <p <1 and M = [1/p—1/2]+1. If ® € CM and its support

is a compact set in (0,00), then the Hausdorff operator he is bounded on HP(R).

Liflyand and Miyachi obtained further generalizations of Theorem B (Theorems C
and D, see page 8), which imply the boundedness of the Cesaro operator C,, for all
a,p > 0. However, the main purpose of this chapter is to use a different method from
those in [9] and [14] to obtain a new sufficient condition on ® to ensure the H?(R)

boundedness of hg. We will establish the following result.
1
Theorem 3.1. Let @ be a Lebesgue integrable function. Denote ¢(t) = @ fort >0,

and ¢(t) =0 fort < 0. Assume 0 < p <1 anda:%—l. If p € A, then

120 ()L azvon gy < 151 oy

If there exists a small € > 0, such that « — e > 0 and ¢ € Ayye N Ao_c, then

170 () ero ey < 1F L iio ey -

Clearly, Theorem 3.1 is an improvement of Theorem B. But we should point out
that the theorem is mutually independent to Theorems C and D. First, Theorems C
and D do not imply Theorem 3.1, since Theorem 3.1 assumes less smoothness con-

dition. On the other hand, although in Theorems C and D, ® is assumed more
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smoothness on the set (0,a) U (a, ), ¢ is allowed to have very little smoothness at
a single point a. With this advantage, one easily sees that Theorems C and D imply
the HP(R) boundedness of the Cesaro operator C,, for any a > 0, while the H?(R)

boundedness of the Cesaro operator can not be deduced from Theorem 3.1 if a < 1/p.

Proof of Theorem 3.1. The Hardy space H? is a distribution space when 0 < p < 1.
However, it suffices to show the theorem for functions f in the space H? n L?, since
this space is dense in HP. Recall that the H? space can be characterized by the

Hilbert transform in the sense of

[l = IR e + 11 o

for all f € H? n L?. By Theorem 3 in [17],

Roha(f)e) = (RN = [ LR G

—0 t

Changing variables % = v, by the definition of ¢, we have

Rem(@l = [ 2 @) @i

- ‘ fi o(v) (RF) (av)dv

Thus, by duality and scaling,

R oha(f)(@)] < ¢y, RF@)] g
= || @lln, IRF o
< 2l 1@lla, 110

where the last inequality is true because the Hilbert transform is bounded on H? for

any p > 0. Now, for any A\ > 0, it is easy to see that

{z - IR o ha(f)(x)] > A}|

< [{reR: \x!fl/p Pl [l gw > A}
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= ’{x€R2|QJ|1/p<W}
’{xER:‘x’<{%} 1B

This shows that for a = % -1,

0

IR ©ha(F)l oo < [f 210 -

Similarly we can show that

[ha ()] oo < 1 v

if a = ]lo — 1. These two inequalities imply, by the Hilbert transform characterization

of HP* that
Hh<1>(f)||HP700(R) = HfHHP(R) :
Put
B 1 B 1
= rer PP Terr

By the above weak HP estimate, we have that for j = 1,2,

IR ©ha(Mlprimy =< 1)

[0 (P s o gy

IA

11l s gy -

Then it follows from the Marcinkiewicz interpolation theorem that,

IR o h<1>(f)HLp(R)

[he ()] 2o )

IA

11l oy

IA

11l o ey -

Therefore, we have

170 (F)ll oy = IR © ha () Loy + 170 ()l oy < 1 1o ey -

This completes the proof of Theorem 3.1. ]
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We have the following corollary:

Corollary 3.2. Suppose a > i — 1 and o is a positive integer. Assume that ® €

C* n L'and satisfies

X(1,00)(t) ‘<I>(k) (t)‘ < 2 forallk =0,1,2, ..., a,

X(0,1)(%) ‘CID(k) )] < ¢t forallk=0,1,2,..,a.

Then

170 () ero ey < 1F Do ey -

Proof. 1t is easy to see that if ¢t < 1,

d ((3) & 2F()
dte ( t = Z L2k <1
k=0
and if £ > 1
o P(L @ | Pkl
d_ (t> < Z <t) <1
dto‘ t ta+1
k=0
Hence, the function ® satisfies the conditions of Theorem 3.1. OJ

In the capacity of ® in Theorem 3.1, one may take a number of usual Fourier
multipliers, for example, eI, et/ 2 which correspond to the Poisson and Gaussian

kernels, respectively. It is also worthwhile to investigate the Riesz multiplier

d(t) = (1 —1%)

+

where f(t) is the function that is equal to 0 if f(¢) < 0 and is equal to f(¢) if f(t) > 0.
It is easy to check that (1 — %)} satisfies the conditions in Theorem 1 if § > & — 1.
We observe that Stein, Taibleson and Weiss in [26] proved that the Bochner-Riesz

operator Bj « f is bounded on HP(R") if § > % — 241 where

(Bs * 1)(€) = (1 — [ F(&).

Therefore, when n = 1, our result matches the critical index obtained by Stein,
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Taibleson and Weiss. With this observation, it will be very interesting to extend
Theorem 3.1 to the higher dimensional Hausdorff operator. This generalization is the

subject of Chapter 5.



33

CHAPTER 4
ONE DIMENSIONAL HAUSDORFF OPERATORS: THE CASE p =1

4.1 INTRODUCTION

This chapter will show that, for ®(¢) > 0, the Hausdorff operator he is bounded on
the Hardy space H'(R) if and only if @ is a Lebesgue integrable function; and hg is
bounded on the local Hardy space h*(R) if and only if the function ®(¢)x(0.1)(¢) log(F)
is Lebesgue integrable. We also establish a weak type H'(R) boundedness theorem
for he. As an application, we conclude that the Hardy operator H is not bounded
on either H'(R) or h!(R), but it is bounded from H'(R) to the weak space HV*(R).
We also study the boundedness property for the kth order Hardy operator H ) and

fractional Hardy operator H ). on spaces HP(R) for k> - -1>0, 0 <o < 1.

SRl

One operator in particular will serve as a model of Hausdorff operators acting on

H'(R). We begin with a discussion of the Hardy operator.
4.1.1 The Hardy Operator and its Generalizations

The Hardy operator H is defined by

Hf(r) =+ f i) dt.

It is known that the operator #H is bounded on LP(R), for all 1 < p < oo with the

best bound constant £ (or 1 for p = o), and H is not bounded on LY (R)( see [2],

also [7] ). Tt is also known that some important operators are bounded on H*(R) but

not on L'(R). Thus a natural question is whether the Hardy operator is bounded on
H'(R).

After a changing of variables, we have
1

Hf(x) = L —X(Lw)it) -

0e]

J() .
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Thus, H is a Hausdorff operator with & = M
Two generalizations of the Hardy operator will also be of interest: the kth Hardy
operator Hpy (K =0,1,2,...)

Mo (Da) = = | 700 at
1 x

o0
:fl ezl ()

and the kth fractional Hardy operator Huyo (B =0,1,2,...,0<a <1)

1 €T
Hol)@) = L tRf(t) dt.

It is easy to see that H )y = H and H),o = Hw)-
4.1.2 A Lemma in Local Hardy Spaces

Recall from that the local Hardy space h' is characterized by decomposition into
atoms and big blocks. In order to demonstrate a bound on Hausdorff operators on
h', it is useful to establish bounds on the A! norm of both big and small blocks.

A simple computation shows (or see [6])
|Bll» < 1

uniformly for all big (p, ¢) blocks B. For small blocks, we have the following estimate.
Lemma 4.1. For a small (1,q) block b with support in (xg —r,xo + 1), we have

1

16], < 1+ log —

,

uniformly on r and xy.

Proof. By a change of variables, we may assume that the support of b is in the interval
(—r,r). Let B(u) = rb(ru). It is easy to see that supp B(u) < (—1,1) and (after a

simple computation) |B];, < 1; so B(u) is a big (1, ¢)-block. Choose ¥(y) = e~ lv?
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in the definition of A*(R). We have

dx

J (x — w)b(u) du

01 ®R) = J sup
R 0<s<1

J up J (& — ru)rb(ru) dul da
J gglrf S+ — ) B(u) du| dz

dx

J Sup
R 0<s<1
f ,s< 1

J e () o

f (& — ) B(u) dul da

sup |V, * B(z)| dx.

R0<s<%

Let
1
N = llog2 —] +1,
r
then (recalling that + > 1)

sup |V B(z)| < sup |V = B(z ]+Z sup |V = B(x)]

0<S<% O<s<1 ko= 02k<s<2k+1

< sup [V« B(z !+Z sup | W]« [B(z)],

0<s<1 e 02’“<s<2’€+1

< sup |U, * B(x y+2\1/k*\3\ x)

0<s<l1

where

~ 1 U

Uy (u) = 2—k\IJ(2k+1).
This gives

N ~
f sup |Uy = B(z)| dov < | || sup |V, * B| +ZH‘II;C* :
R O<s<% 0<s<1 LY(R) k=0 (R)

It is easy to check that there is a constant C' independent of k& such that

%+ 1B1], ,, < CIBlu <C
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Hence,
1
[0llp1 ) < NIBl s + 1By < 1+ log, —. [
r

4.2 NECESSARY AND SUFFICIENT CONDITIONS FOR H! BOUNDEDNESS

In [15, 18], Liflyand and Méricz proved that the Hausdorff operator has the same
behavior on the Hardy space H'(R) as that in the Lebesgue space L'(R), in the

following sense:

Theorem G ([15]). If ® € L'(0,0), then he is bounded on H'(R).

Motivated by the known LP results, our first aim is to show that ® € L'(0,00) is
also a necessity condition in Theorem G, if ® is nonnegative valued. Precisely, we

establish the following result.
Theorem 4.2. Let ® be a nonnegative valued locally integrable function.
(1) hg is bounded on H'(R) if and only if ® € L'(0, ).

(2) hg is bounded on the local Hardy space h'(R) if and only if

1

Jw B(t) dt+J B(t) (1 + log(1)) dt < o,

Proof of Part 1. To prove the first part of the theorem, by Theorem G, it suffices to
show the only if part. Suppose ® ¢ L'(0,00), we use the atomic characterization of

the space H!. Let b be a C* odd function with support on [—1, 1] which satisfies

b(z) = % for x € [}l, %], and % = b(x) =0 for z € [0,1].

Then b is a (1,00,0) atom. Thus, be H'. Let a = —R(b). Recalling that —R? = Id

and that the Hilbert transform is bounded on H', we know a € H* and b = R(a).



37

Now

1ha (@)l ) = [Rhe(a)] 1 m

“P(t) x
Jo TRCL(;) dt

= 0(1) 2
f PO ar

0

L1(R, dz)

L' (R, dx)
The last equality holds because the Hilbert transform commutes with the dilation %

So,
| (@) g1y > LOO fooo @b(%) dt' da

_JOO@@) dtfob(x) dz = .

0 0

If he were bounded on H', it could be
th)(a)“Hl(R) < lalm <1,
which leads to a contradiction. ]

Proof of Part 2. To show the second part, we first show sufficiency. For any f e

h'(R), we may write
fla) =Y Nag(x) + Y uBj()
J J
where each a; is a (1,00,0) atom and each B, is a big (1, ) block, and

2l 1) = 1y -

J

By the Minkowski inequality,

[ha (Nl < D31l Tha (@)l + 25 15l 1ha (B5) 1 ay-
j

Since




38

is again a (1,00,0) atom, by the Minkowski inequality

o0 o0
a@s ooy < [ 9O 1A oo < | 000 ar
Similarly,
1 1 . o0 1 .
o Bl < [ 20| 38,6)] e+ o |imc)
0 h1(R) 1 RY(R)

Note that $B;(%) is again a big (1,90) block if ¢t > 1, and it may become a small

(1,00) block when ¢t < 1. Thus, by Lemma 4.1 we have

1 00

CD(t)(l—HogQ(%)) dt+f O(t) dt.

1

e (Bl ) < f

Combining all estimates, we obtain

Hhé(fwhl(R) <C Hf”hl(R) )

where

o0

- F(I)(t)(l +log2(%)) dt+f (1) dt.

Conversely, suppose

L O(4)(1 + 10g2(%)) dt = oo,

Let W (z) = e~ and B(y) = X(0,41(). Then B(y) is a big (1,00) block. We have

S

JR sup |V = he(B)(x)| de = J sup |U, = he(B)(x)| dx = L U, = he(B)(z)| du.

0<s<1 0 O<s<l1

Here

e, na(B)a) = [ [ L p) ay

o ¢t T
1 12
O(t 2 1 y\2
>J L)J —e~ 5 dy dt
o o L
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Thus
PO (21 g
sup |V, * he(B)(z)| dz = — | —e V=) dydtdx
R o T

O<s<1 0 JO t

S

e
|
&
S
~
S~—
—
@]
OS]
[\
—~
<~
N—
QL
~+
|

4 Jo
On the other hand, if hg(f) were bounded on h*(R), it would be

jR sup W, + ho(B)()] dz = [ha(B) g < 1Bl < 1

0<s<1

which leads to a contradiction. Next, assume

fooé(t) dt = oo,

1
and let B be as before. We have
J sup |\ys*h¢(3)<x>ydx>f U, + ha(B)(x)| da
R R

0<s<1
IONE 2
f QJ2 <J e~ (@Y dx) dy dt
1t Jo \Ur

0
ZJ O(t) dt = oo,
1

WV

so again he is unbounded. O

Our second aim is to establish conditions for H'(R) — H"*(R) boundedness. To
do this, we use an approach similar to that in Chapter 3. We rewrite the Hausdorff

operator as

haf(x) = foo PO f (2 at.

.t t

where () is a function that is equal to ® on (0,0) and is equal to 0 on (—c0,0).
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Denote

Then we have the following result:

Theorem 4.3. Let ¢(t) = t7'®(t). Suppose ¢ € BMO(R). Then hg extends to a
bounded operator from H'(R) to H“*(R).

Proof. 1t suffices to show the theorem for functions f in the space H' n L2, since this
space is dense in H'.

By Theorem 3 in [17],

©Dy(t)
t

R o ha(f)(z) = ha(Rf)(z) = f

RN d,

Changing variables % = v, we have

Py (1)

v

RNl =| [ 20w a

_ \ ji O(0)(Rf)(xv) dv

Thus, by duality and scaling,

IR o ha(f)(@)] < [0l gmo (R (@)
= |51C|_1 ||¢HBM0 H(Rf)HHl
< |21 I8llgyo 111 -

The last inequality is because that the Hilbert transform is bounded on H!. Note,
for any A > 0, it is easy to see that
{z eR:|Rohs(f)(z)] > A}

<[z eR:fal™ [$lpo I/l > A

{xeR:|x|<%}'

 6llmaro 1
= Pl il
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So by the definition,

IR 0 ha(F)ll 1o < I Dlmnio 1] -

Similarly, we can show

[7a (P 1o < IlBno 1] -

These two inequalities imply

halDlgre < g O

4.3 BOUNDEDNESS OF THE HARDY OPERATOR NEAR H!

So far we have considered Hardy spaces defined on the whole real line R. If we wish
to consider a Hardy space only on the half line R, = (0, c0), we might use the atomic
Hardy space H}(R,) studied by Coifman and Weiss (see [4]).

The space R, = (0,0) is a space of homogeneous type. Based on the study by
Coifman and Weiss [4], we consider the atomic Hardy space H}(R,). Applying the
definition of a (1,0,0) atom a(x) (or 1-atom, for the sake of brevity) to the current
case, we obtain
Support Condition

supp (a) < (a, 8) = (0, 0).
Cancellation Condition
$r, aly) dy = 0.

Size Condition

lall g < (8 —a)7".
The space H} (R, ) is the collection of all f e L*(R,) such that

fla) = > Naj(x),
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where each a; is a 1-atom and {);} € /. We define

F gy = DS 5l £(@) = 2 Ajasa)}

It is a little surprising to note that the Hardy operator H is bounded on H (R, ).
Theorem 4.4. For the Hardy operator H

HKH(f)HH}X(IRq) < Hf”H}q(Rg-

Proof. We need only show that, for any 1-atom a, H(a) is also a 1-atom. We proceed
by showing that #(a) satisfies the three conditions.
Support Condition
Suppose a has support in («, 5). We show that if z ¢ («, ), then H(a)(z) = 0,
so supp (H(a)) < (o, 8). Recall

Now, if 2 < o, then a(t) = 0 for all ¢ € (0,), so H(a)(x) = = §; a(t) dt = 0.

On the other hand, of z > 3, then a(t) = 0 for t > x, and so

H(a)(x) = éf a(t) dt
1 e}

:_J a(t) dt =0

T Jo
with the last equality holding by the cancellation condition.
Size Condition
This is easily seen by a computation.

1
@l <5 [ lalye dy=lal, < 5

J— a '
Cancellation Condition

An easy computation with the support condition on H(a) gives

LOO%( dx—f f dt dz.
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Since the above double integral is well defined, by the Fubini theorem we

obtain
“ :1:
J H(a)(z) do = J f =) dx dt
0 1 t
= lim — J ) dx dt
N—o t2
. N1
= lim = (J a(z) dx) dt = 0.
N-w Ji T \Jo

Thus H(a) is a 1-atom, and so for f e H}(0, ),

= H (E Vo) = X AH(@)@)

expresses H(f) as a sum of atoms, and so
1,000 < 25l = 11z 0.0
which is the desired bound. ]

In [5], Garcia-Cuerva, and Rubio De Francia discuss a connection between H} (R )
and even elements of H'(R)(see [5, lemmas 7.39 and 7.40] especially.) This suggests
that the following result is a corollary to Theorem 4.4, and indeed, this is what we

see.
Corollary 4.5. Let
1
fula) = 5 1) + F(-))
be the even part of f. If f € H', then we have

IH U < 1F -

Particularly, we have

IHCO e < 1f ]

for all even functions f € H'.
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Proof. We write

flx) =D Aay(x)

with each a; being a (1,0, 0) atom and

2l = 1l

As in the proof of Lemma 7.39 on page 353 in [5], we may write

fela) = D N A(x)

where

() + ay(~x)

Aj(x) = 5

If a;(z) has support in [0, 0), then a; (x) = a;(—x) has support in (-0, 0]. Following

the proof of Theorem 4.4, we know both H(a;) and H(a; ) are (1, 00,0) atoms so that
[H (A < L.

If 0 is interior to the interval-support (o, ;) of a;, then without loss of generality,

we assume ; > |a;|. Thus A; is supported in the interval (—f;, 5;), and

J ]<

On the other hand, since A; is an even function, with the cancellation condition we
have
Bj Bj 0
0= J Ai(z) do = ZJ Aj(z) do = 2f A;(z) d.
—B; 0 -8
This indicates that, without loss of generality, both X (o,x0)(2)A;j(x) and x(—cw,0)(z)A;(2)

are (1,00,0) atoms. Thus, again we have

1A < [HX (=000 A5) | g1 + [ (X000 A7) |1 < L.
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This completes the proof. O

Corollary 4.6. The Hardy operator H has the following properties

(1) H is not bounded on H*(R).

(2) H is not bounded on h*(R).

(3) H is bounded from H'(R) to H“*(R).
(4) H is bounded on H}(0,00).

Proof. Recalling that H = he with ® = M, and noting that ® ¢ L'(0,00), we
see parts (1) and (2) from Theorem 4.2. However, noting that in this case ¢(t) =
X(0,1)(t) € BMO, Theorem 4.3 gives part (3). Part (4) is the result in Theorem 4.4,

above. ]

4.4 GENERALIZATIONS OF THE HARDY OPERATOR (0 <p < 1)

We now turn to the kth order Hardy operator

M (/)@) =~ f ") dt,

Theorem 4.7. Let 0 <p <1 .

. s . o l o
(1) M) is bounded from HP(R) to H»*(R) if k = - — 1.
(2) M is bounded on HP(R) if k > % —1.

Proof. We begin by showing the first part. Then, with the easy fact that H, is
weakly bounded on H' (by Theorem 4.3), we complete the proof of the theorem by
using an interpolation argument.

Choose p such that 119 — 1 = k. Tt suffices to show that HH(k)(f)HHpm < |If] > for
f e HP n L? since HP n L? is dense in HP. Using the Hilbert transform, we can show

this by showing

HR o H(k)(f)HLp,OO + H,H(k)<f)HLp,oo < ”fHHp .
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We show HROH(k)(f)Hmoo < ||f|lge; the proof that HH(k)(f)HLp,OO < [ fly» is the
same.

As in the proof of Theorem 4.3, the Hilbert Transform satisfies

o0
|
Iy ar.
/

RoHu(f)la) = HoRAe) = | 5 (RAN

For any f € HP(R), Rf € H? since the Hilbert transform is bounded on H?. Thus,

we have an atomic decomposition
Rf = Z )\jaj,
J
where each a; is a (p, 0, k) atom and

2Nl = IR -

Hence
RoHu(f) =), /\jﬁ @%’(g) dt = \H(ay),
JEL
and therefore,

p

|R o Hay ()70 = HZ At (a;)

Lp.®

By [26, Lemma 1.8], showing that

HZ AjH ) (as) ;w <INl

is equivalent to show that

|H (@), <1

Lp,©

for any (p, o0, k)-atom a;. Since > |N\;|[° = [|Rf|l5e < || fIl5», this will give the desired
result.
If a; is a (p, 0, k) atom with support in («;, 8;) < (0,0) or (o, ;) < (—,0),

then by a method similar to that in the proof of Theorem 4.4, it easy to see that
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Hw(a;) is again a (p, o0, k) atom with support in (a;, 8;). Thus, we have

|H (@) e < [Hiw(as)] 1y, <1

uniformly on j € Z.
If the support of a (p, 0, k) atom a; contains the origin, without loss of generality,

we may assuline
supp (a;) < (=r4,7;)

and

lajll oo <757

orn
|| ||/

For each fixed z # 0, the support of a;(tz) is in (—

1

M (a;)(z) = J " on(® (a1 th(,%%)(t)aj(m)) dt.

=T 1
] I

We now claim that, for  # 0, the function

1
Aja(t) = |z|r th(,%,%)(t)%(m)

is a (1,00,0) atom supported in the interval (—%, %

|z ||

). In fact, the support condition
is obvious from the definition. Also,
0 T
J Aj(t) dt = J tha;(t) dt = 0,
—Q0 —Tj

by the cancellation condition on a;, and

X

Tk, 1
45l o < 0l |2 Jol? <

J
This shows that A, , also satisfies the cancellation and size conditions. Thus, by the

duality,

1

Hwy(a;)(@)] < =[x [puo |Aiel i < —7

= =
|7 ||
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uniformly on j and z € R\ {0}. Following the proof of Theorem 4.3 we obtain that,

for any A > 0,

s [y (a)@)] > A < .

Thus, by the same proof as in Theorem 4.3, we obtain that

| My (a5) ()] e < 1.

as desired.

Now we show part (2). Given k, 0 < p < 1 such that k > % — 1, we fix py such
that k = pio — 1. Then py < p < 1. The above argument shows that H; is weakly
bounded on HP°, and Theorem 4.3 shows that Hj, is weakly bounded on H!. Thus

by the Marcinkiewicz interpolation, we obtain the result in part (2). O

Remark 4.8. The first part of Theorem 4.7 can also be proved by using the result in
[14].
This result can be further generalized to the kth order fractional Hardy operators

1 €T
Hi.aN)@) = s L " ft)dt, 0<a<l1.

We first establish an easy LP — L7 estimate.

Lemma 4.9. Choose q so that % —a = %.

(1) For1 <p < o0, HH(k),a(f)HLq,oo < fllze-

(2) For1<p< oo,

H(’C)a(f)HLq < HfHLp-

Proof. Clearly, we only need to show the weak boundedness. The strong L? — L1

boundedness then follows by an interpolation. By Hélder’s inequality,

f thf(at) dt
0

1
< —Iflp
B

‘H(k),a(f)(x)‘ = ma
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Hence, for any A > 0,

{reR: [Hua(H@)] = N} < (fT'L) |

This proves the weak LP — L%* boundedness. ]

Theorem 4.10. Let 0 <p < 1, and % —a= 5.

(1) H),a is bounded from HP(R) to L¥*(R) if k = % —1.

(2) Hpya is bounded from HP(R) to LYR) if k> 5 — 1.

Proof. With Lemma 4.9 and interpolation, it suffices to show the first part of the
theorem. For i = k+ 1 and any f € HP(R), as in the proof of Theorem 4.7, we write

an atomic decomposition

f = Z )\jaj,
J
where each a; is a (p, 0, k) atom. Thus,

Hiwy,alf) = Z N H ), (@)) -

JEZ

Similar to the proof of Theorem 4.7, we only need to show

”H(k),a (aj)HLq,oo < ]-7

uniformly for all (p, 0, k) atoms a;.
If a; is (p, o0, k) atom with support in (a;,5;) < (0,%) or (a;,5;) < (—0,0),
1

H(k),a (a;) is also supported in (o, 3;) = I;. Choose p’,¢" > 1 so that z% —a =

Then we have the following bound uniformly on j.

HH(k),a(aj)Hqu = "H(k),Oé(aj)q " X1 HLI

< [Hoyalar] o - bes | e

L oNE
- ([ osatep@l™® as) ™ s
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= [Huwyalap)|], 157

4
< gl 1L < 1.

If the support of a (p, o0, k) atom a; contains the origin, with an easy modification

of the proof for Theorem 4.7, we obtain

”H(k),a (aj)HLq,oo < 17

uniformly for all (p, 0, k) atom a;. This completes the proof of part (1).

To show part (2), take p; = 1, py such that p, = and ¢, ¢o such that

L
1+k7

1 _ l‘_a (7, = 1’2) Then by part (1)7

qi Pi

Hik)a()] oz < £ 152, and by Lemma 4.9,
H’H(k),a( f)H s < |fl - Applying the Marcinkiewicz interpolation in this case gives

[H0.0 ()| o < 1f > as desired. .

Remark 4.11. We do not proceed to show H? — H? boundedness because H ), fails

to commute with the Hilbert transform.



51

CHAPTER 5
HIGH DIMENSIONAL HAUSDORFF OPERATORS

In this chapter, we study two extensions of the Hausdorff operator in R™. For one,
we obtain a sufficient and necessary condition for its boundedness on the real Hardy
space H'(R™). For the other, we study its boundedness on the real Hardy space
HP(R") for 0 < p < 1.

Recall the definition of the one dimensional Hausdorff operator: Let ® be a locally
integrable function on the positive real line. The one dimensional Hausdorff operator

he with the generating function ® is defined in the integral form by

o
m(h)e) = [ B a

where, for simplicity, we initially assume that the operator hg is defined on the class
of all Schwartz functions f. For positive values x, a change of variables gives an
equivalent form of hg by

“ o)

t

he(F)(e) = |

AL

This suggests two different extensions of the Hausdorff operator on high dimensional

space,

and

——=fly)dy, n>p=0,

where ® is a locally integrable function. Each of these definitions gives a so-called

fractional Hausdorff operator. We denote

Hgo = Hg, Hpo = Hp.
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When ®(z) = ®(|z|), and ®(t) = x(1.00)(t)t""?, Hgp is the fractional Hardy
operator if 0 < 8 < n, and Hg g is the Hardy operator if 8 = 0 (see [2]).

By the Minkowski inequality and a scaling argument, it is easy to see that Hy
is bounded on the Lebesgue space LP(R") for all 1 < p < oo, if & satisfies the size

condition

| e dy <.
Rn

Similarly, Hy is bounded on the real Hardy space H'(R") if ® is Lebesgue integrable
(see [10, 12, 15, 18]). In [13], Liflyand posed an open question (among others) to
establish the sharpness of this condition on ® to assure the H'(R") boundedness for
Hy. Motivated by his question, the first aim of this chapter is to solve the problem
by showing that, for ® > 0, Hy is bounded on the real Hardy space H'(R") if and
only if ® is a Lebesgue integrable function.

In Chapter 3, we established some results which used duality to provide a smooth-
ness condition on ® to ensure boundedness of hy on HP. The second aim of this
chapter is to apply this technique to give an HP(R") — L%(R"™) boundedness re-
sult for Hg g in the case where ® is a radial function. We also establish bounded-
ness on LP(R", |z|"dx) — LY(R",|z|” dz). With these results, we naturally expect
to establish an H?(R") — H?(R") boundedness theorem for the operator Hg s(f).
However, by checking the proofs of the theorems in the earlier chapter for the one
dimensional Hausdorff operator, we find that all methods fail to establish a suffi-
cient condition for HP(R™) — HY(R"™) boundedness for the operator Hg z. Also,
in the high dimensional case, we do not find in the literature any high dimensional
HP(R") — HY(R™), 0 < p < 1, boundedness results for the (fractional) Hausdorff
operator, although the H'(R™) — H'(R") boundedness has been studied extensively
(see [10, 12, 16, 18, 17, 16, 24, 30]). Hence, as the third purpose of this chapter, we

will establish a sufficient condition for the H?(R™) — H9(R"™) boundedness for Hg g.
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51 H'(R") — H'(R") BOUNDEDNESS OF Hg

Theorem 5.1. Let ® be a nonnegative valued locally integrable function.
(1) Hg is bounded on H*(R™) if and only if & € L'(R").

(2) Hg is bounded on the local Hardy space h*(R") if and only if

L|>1 D(y) dy + L|<1 d(y) (1 + log (ﬁ)) dy < 0.

Proof. The “if” part of (1) and (2) was proved in [24] and [1], respectively. We need

only show the “only if” part. Let a be a function with support on [—1,1]" which

satisfies.
(i) a(z) = % for x e [%, "
(ii) 1>a(x)=0for > x>0

Clearly,

Thus, a is a (1,00,0) atom (see [28] or [26]). By the same easy computation as in the

one-dimensional case we know

la] g gy < 1.

Suppose ® ¢ L. If Hg were bounded on H!, we have,

[,

< afp <1
On the other hand, by the Riesz transform characterization of H', we have

f{.:p(a)

i, -

Lt
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L P(y) o5 dy‘ i

JY x>0 ’y| |

- ()
_ [R B(y) (szizoa(x) dx) dy = o0

This leads to a contradiction.

Next, we show the “only if” part of (2). Suppose

j )0 oz [y dy =

For notational simplicity, use the ¢* norm on vectors, i.e. |z| = max{|z;|}. Let
_la? o
U, = e 2 and B(z) = X[o,%]"(x)- An easy computation similar to that for one

dimension shows
| Bl gy < 1.

On the other hand,

[ -
— | sup |W, « He(B)(x ‘ dz
h1(R™) JR”0<S£1‘ 2(B)(@)

f‘

|f1a(B)

U, - pr(B)(x)’ dz

= sup
J[0,1]» 0<s<1
r‘ ~
Z (B)(SC)‘ dx.
J[OJ]n
Here
] @ 1 |lz—2|
Ve *H¢(B)($)‘ :f (Zi?)f _e Ul )QB< ) dz dy
< bl e [ fl
@ 1 _ |lz—z]\2
>J (%)J —e U * dz dy.
wi<t Y17 Jjz<l [z
Hence,

J sup \IIS*]:Lp(B)(x)‘ dx
Rn 0<s<1

J J J %) dx dz dy
lyl<1 ‘y‘ lyl<|z|<1 |x|
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>—f B(y)log, |y| dy = .
ly|<1

This leads to a contradiction.

Next, suppose

f D(y) dy = .
ly[=1

We have

\1/8*1?@(3)@)‘ dr > f \Ill*f]q)(B)(x)‘ dz

>J MJ <f g~ (o=l dm) dz dy
w1 W e \Jge

4

> J O (y) dy = .
lyl>1

J sup
Rn 0<s<1

5.2 BOUNDEDNESS ON LEBESGUE SPACES

The duality techniques we have been using to show boundedness of Hausdorft op-
erators on the Hardy spaces also yield the following nice results on power weight

Lebesgue spaces.

Theorem 5.2. Let 1 < p,g< w0, 0<f <n,v>Pp—n and

1B 1
p n+vy q
Finally, let
o 1
ca=fwwwww”@%”dwwp>L Cy = [ " D) 1o
0

For anyp =1, if C, < 0 then

[Ha,s(f)(@) | 2asopraz) < | £l Lot az)-



Proof. We write

o(k)
Iyl 2
Hop(f)(2) = | — 5z fW)lyl»dy.
R [y
By Holder’s inequality, we have
||

o) 7
[Hos(f)(x)] < {fw ||y|n+z;+;|p dy} [ Fllzoqtypray):

Using polar coordinates and changing variables, we have

1
7

1/p'
(I)(W) 1 0 d(t ,
{J |#|pd = [S" v <J |t57§>w’ P4 1dt> | |/P +B=n=p,
n 0

Ifp=1,

o ()
[Hos(f)(2)] < ||fHL1(|z|’Ydm)HmHL°O

= [ £l oo 272N PR oo

Let

1
Oy forp>1 K, =C

Then for p > 1 and any A > 0, we have

{z e R":  |[Hep(f)(@)] > A

<HzeR": Kyl " fll1oapan > A}
K| fl v (afaz)

<[zeRm: |gmemn =8 < '
K x X
<lrerr: <rx|*—i>"+v ATl
n Hf”Lp ‘a}|'¥d1‘
S lreRr: ot < LAy
Note that in the last equality, we have used the condition

1 g1
p n+v q
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This shows

1Ho g(f)llLoe(zprae) < | fllze(apde)
as desired. ]

Recall that if ®(¢) = x(1,0)(¢)t "7, then Hg g is the fractional Hardy operator.
Let Hp denote the fractional Hardy operator. Applying Theorem 5.2, we have the

following corollary:

Corollary 5.3. Let 1 <p,g<o0,0< B <n,np>~>pp—n and

LB
Pty

1
.
We have

[Hs () (@) oo qoprazy < 1f Lo (iatraa)-

Proof. If v < np, then ® = x(1,,0)(t)t "7 satisfies the conditions of Theorem 5.2. []

Theorem 5.4. Let 1 < p,g< w0, 0<f <n,v>Pp—n and

1 g1
p n+vy g
In addition, let
o0
Cpe = f D)7 T for p> 1, Cup = || [PTR() | oo
0

For any p = 1, if, for arbitrarily small positive €, C,, +. < o0, then

1Ho,5(f)(@)|Laqepazy < [ flreqep -

Proof. For p > 1, this result follows from Theorem 5.2 and the Marcinkiewicz Inter-
polation Theorem. To prove the result for p = 1, we define an analytic family:

|z
® (1)

)y

He.(f)(x) fy)dy
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Following the proof of Theorem 5.2, it is easy to check that there exist 31, B satisfying

0 < By < B < By <n, such that

|Ha 2, (f)llLaro(epraz) < | f21(2prd)

and

| Ha 2 (f) (@) Lo2 o0 (aprazy < |l L1(jfda)

where Re z1 = 01, Rezo = s and 1 < ¢4 < ¢ < g2 < 2. Thus we obtain the result

by using the Stein-Weiss analytic Interpolation Theorem (see Corollary 2.2). OJ

5.3 BOUNDEDNESS ON HP?(R")
5.3.1 H? — L9 Boundedness of Hg g

In this section, we suppose that ® is radial, that is, if |x1| = |xs|, then ®(x1) = §(z3).

Thus we can think of ® as having domain [0, c0),where ®(t) = ®(z) when |z| = t.
Lemma 5.5. Let 0 < 8 <n and
o1/ ]y])
Wy) = 5
Y]
Assume 0 <p <1 and « =n<%— 1). If v e A, then

”Hq%ﬂ(f)HLq,w(Rn) < ||fHHp(Rn)

where q satisfies

|
I
< |
+
S'IQ

p

Proof. Changing variables, we compute

(el /1y _ | wes ¥
o = N,
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By duality and scaling,

()

[Ha(f)(@)] < |21 | f | o ey

= |$|7n/p+6 ”fHH;D(]R”) WHAQ :
Ao
This shows that for all A > 0,

{z e R" : [Ho(f)(z)] > A}
< ‘{x eR™: |z|» 7 < | £l o meny 9], )‘_1}‘

< Hx eR":|z|" < {HfHHp(Rn) WHAQ A—l}q}
The last inequality holds because

SEE

Thus, we obtain

”H<1>,ﬂ(f)HLq,OO(Rn) =< ||fHHp(Rn)
as desired.

[

Theorem 5.6. Let 3, p,a,q,v be as in Lemma 5.5. If for some € > 0 small enough
that « —e >0, Y € Ayye N Ay_e, then

[Ha,5(F) oy < 151 o ggny -

Proof. Choose pi1,p2, s.t. a + €

= n(pi1 - 1), a—¢€= n(pi2 — 1), and choose ¢, g2
satisfying

1 1
—=—+§, i=1,2.
Di q n
An easy computation shows that pi,ps,p,q1,¢o,q satisfy the requirement for the
Marcinkiewisz interpolation, and by the Lemma 5.5, |\Hq>,5(f)HLqi,oo(Rn) < [ £ gros gy

So by Marcinkiewisz Interpolation, | He5(f)| pagny < [f1l o (n):

[
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Unfortunately, we cannot continue in the manner shown in Theorem 3.1, since
RjoHsps(f) # Hop(Rsf), as was in the case in one dimension. Instead, we see the

following.

Lemma 5.7. Suppose CID,CTD e L'(R"), and0 < 3 < n. Then for any J = {j1,...,jL} €
{0,1,2,... ,n}L, fes, we have

RJH<I>,,B(f) = H’Rﬁlﬁﬁ(f)'

Proof. Without loss of generality, we suppose L = 1. (L > 1 may be shown similarly.)
Fix J = j. We show the desired equality by taking Fourier transform and inverse

Fourier transform. By definition,

HoalDIE) = | (J e () dy) .

Noting that ® € L!, f is a Schwartz function, and 3 > 0, we may use Fubini’s theorem

to obtain

e = [ ( [ Lty dx> iy

w ly" P Nyl

= f (J [yl” £ () @ (u)e Il du) dy

= [ 1l F)(inl) dy

Thus, we see that

RiHaal €)= L Honte) = 2 |

Next, we let F~! denote the inverse Fourier transform, and compute

Wyl f()®(|y| €) dy.

F (R (@) = [ (5 [l f)dsl o) dy ) 9 e

Noting that de L! and again that § > 0, we again use Fubini’s theorem to obtain

7 (Ra)) 0 = [ 1l 1) ([ 2800190+ ac) ay
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- J " f(y)R;® <£> dy

Y|

= Hr,a
as desired. O]

5.3.2 HP — H? Boundedness of Hg g

The condition of Lemma 5.5, that ¢ € A,, can be rewritten, when & is radial, as

"7 |l —a
Hn—_gq)(w) < =7

Ao (R™)

In this form, we can omit the condition that ® is radial, obtaining

Lemma 5.8. Let 0 <p < 1,0 < 8 <n, and a = n(: —1). If ® satisfies, for all

5_

r e R",
=" o
n—p_ (I)(ﬂ) < ‘:17’
| | Aa(Rn)
then
| Ha ()] oo gny < 11 o)
with
1 1
1_1.8
p qg n

Proof. Noting the pairing inequality (equation (2.1)) relating the Lipschitz space A,
and the Hardy space H?, and multiplying and dividing by |x|n75 in the definition of
Hg 5, we obtain

"™

T

Nt

|Hap(f)(2)] < Hf”HP(]Rn) |$rn+ﬁ

Ao (R™)

< \-’B!%”} HfHHP(R") :
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This shows that for all A > 0,

{z e R™: [Hop(f)(x)| > A

<|{z e R 1277 gy = M|

_ reR" - |ZE| < (|f”HP(R”)>
A
q
< ”fHHp(]Rn) .
A

Thus, | Hos(f)] g < |f] 50, a5 desired. 0

In many important cases, even when @ is radial, the condition of Lemma 5.8 is
easier to check than the one give in Lemma 5.5. For example, we see this in the proof

of the following corollary.

Corollary 5.9. Let ®(y) be the Gaussian function e~V or the Poisson function el
The Hausdorff operator He g is bounded from HP(R™) to L(R™) for all 0 < p < o0,

1_ 1,8
0<,3<n,cmdp s T

Proof. We will show the corollary for the Poisson function e~¥!, since the proof for

the Gaussian function is similar. By Lemma 5.8, we need to check

2" il _
| |n*5 e M <z
¥ N
for all integer a = 0, 1,2, ..., where by convention, we denote Aqg = L*. First, when
a =0,
" 2" el
—ec I sup —e I
R G R 1]

= sup ‘|y|"*ﬁ e W< 1,

ly[>0

For integers o > 0, we recall the definition of the A, norm, namely

£, = sup {0 f] .}

[I]=a



where I = (iy,4, - ,i,) € N® is a multi-index and ¢! denotes the derivative

(ﬁ)“(iy7“CQY"
8y1 5y2 a Yn .

So we must show that, for each multi-index I such that |I| = a,

n—p
()
y"-

This can easily be shown by computation.

< fa
Lo
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OJ

We can also see how the condition of Lemma 5.8 might be extended to allow us

to obtain a boundedness result on Hardy spaces.

Theorem 5.10. Letn > 2, a = n(% —-1),0<p <n, and ® e Ll If for some L

large enough that p > %, all generalized Riesz transforms Ry;(®) = R;, -+ R;, @
satisfy
x|" x _
SR <l
’ ’ Aa(Rn)
then
”H@,ﬁ(f)”]-[q,oo(ﬂgn) < HfHHP(]R”)
with
1 1
1_1. 5
p q n

Proof. Applying Lemma 5.8 to each R ;®, we obtain for each R,

HHRJ(‘I’)’ﬁHLq,w < Hf”Hp .

Lemma 5.7 tells us that for each R, RyHop = Hg,@)s(f). Applying the Reisz

transform characterization of H?%,

|Has (Nl gace = 3 IR Has (Dl e < 110
J

as desired.
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The condition of Theorem 5.10 is somewhat laborious to check. The main result
of this chapter is to provide a sufficient (but not necessary) condition on ® to meet

the requirement of Theorem 5.10.

Theorem 5.11. Suppose 0 <p<1,0< B <n. Let ® denote the Fourier transform
of ® and

For an integer M = n(]lJ —1), suppose that ® is a function in C*MA(R™) with compact
support in the set R™\ {0}. Then
HHi’,/B(f)”qu(Rn) < ”fHHp(Rn) .

Proof. Let M = n(% —1). By Theorem 5.10, we need to check

"

<Rﬂ>><ﬁ>

with a = M. Taking Fourier transforms, we may write

< e,
A (R7)

R

n—

| |n_g (RJ(I))(_)

_ |x‘n—ﬂf 53‘15‘1'52';5@ 6(5 ‘y’—(n—ﬁ) eiﬁ@)@ dé.

For a multi-index I = (41,14, - ,4,) € N", we will use the notation
o = (i) (i) » ( 4 )
on Y2 Yn ’

I| =iy 4+ i+ -+ ip.

and

From easy computations

7 eimiten) o (€ ) ==

Yj
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and

2
1
B M(& T _ 1 <§ a?> y_e ‘y|<§x> t ey <§’ >|_€ M(Ex)
Y

where ¢y, ¢c9, c3 are constants, in general, it is easy to see that for any multi-index I,

ale Iy\ =e |y‘ (&) ZQll Plz 67 >)7
I|<ii<2|1|
li—la=|1|

where @, (y) is a C*(R™\{0}) function satisfying

‘Qh’ ~

ly Ill

and P, is a homogeneous polynomial of degree 5.

Also, it is easy to check

o <| |—n+,8> . |SI( y)

n—p+2[I]’

where S(y) is a C*(R™\{0}) function satisfying
Si(w)l < 1yl

So, by the generalized Leibniz rule, for any multi-index I with || > 1, we have

(&)
e \yl n ) i (6
ol ( — ) _ Z C}I{ o5 |y~ +,3)5K (e (€ >)

\y\ Ki+Kao=1

S 1
2 CKMK% N Qu () W17 P, (€, 2))

Ki+Ko=I |K2|<l1<2|Ko|
l1—l2=|K3|

where Cf, are constants.

It is easy to see that

n—

(Rs®) ()

i |

Aq(R™)



= sup
yeR"\{0} | |1=a

o (lat [ SaSarondio g e ag )

= sup |z
yeR™\{0} |IZ=:a

-8 €16 & I( n+p 1y 51
[ sarsndion (i ) aglt

So, let us consider the value of

" f i (g)of |y o) dS’

s | [ tntnt 516, @)
— || J SERR TG KlHn%g‘Kl' S Qu ()¢ €7 P ((€, 7))

K1+ Koy= |K2|<l1<2|K2|
l1—la=|Ka]

n- Sk, (¥) €182 65 it (€
=le™*| 30k ety NQu() | Lo m R ((e,a)) de

K1 +Ko= |K2|<lhi <2| K|
l1—l2=|K2]

<|a" 7Y Jff;agm S 1Qn )

Ki+Ko= |K2|<li <2|Ka|
l1—l2=|K23|

38 |1
< |;p|n Z | yb|y|ﬁ+2|K1 Z |y‘111

Ki+Ka= [ K2 |<li <2|K2|
l1—l2=|K3|

() S| ek
ly| |y}|K1| ly|'t

Ki+Ko= |K2‘S11S2|K2‘
li—la=|Ks|

|| etertudigen I p, (€ o df\

fﬂ 80 §()elm ) P (€, 7)) dﬁ’

We now consider two possible cases. If

Izl 4.
i
then
sup ol (‘wynﬂf 5]1£|J§‘L£JL (I)( ) ’y’*(nfﬁ) eﬂjﬂ(&@ df)'
yeR™\{0} [|=a n

S e GRA A E) dﬁ\

66
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.
< o 03 S | N[ S, (e ) dg
YeR™O} | (|0 K1+ Ka= |Ka|<l1<2|K»| VR"
\ l1—la=|K3]
.
x|'2 £j1£j2 o '£J'L ES
<sup<22% 21;('1]7@(5)(15
YER™MO} | |1|=a Ky +Ka=1 ™ |K2|<l1<2J<2‘ U
\ l1—l2=|Ka3]
1 N SR SN
R DI B W = I K
veR™\0} ||/ Z0 Kyt Kot | Ko<tz | €]
l1—l2=|K2|
<|z|7*.
On the other hand, if
m > 1,
[yl
for fixed x, without loss of generality, we assume |z > | For each integral
1 €165y € il (€
e f LRI (E)e ST Py (€, 7)) dE]

using integration by parts on the &; variable k times, where
k=2M+4n=|Il+1l+n—p.

Recalling [ —l, = | K>, and using the fact that ® € C2M+7(R") with compact support

in R™\ {0}, we obtain

| [ et m, 6.0 a

l
)
" \lzl /) Jy|®
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This shows that

sup
yeR™\{0}

af(kd”‘ tf Sl B G(c) [y| P el dg)‘

I|=a

n—_ [I|l+n—_
1 1
< sup (x|> 2 TR (|y|>
yER”\{O} 1] ’y| Ki+Ko=I |y| ! |y| 2 ‘x|

n— I|+n—
- (|) ! <| |>'* e
vern\fo) | (7= \ 1yl [y \ ]

This proves that for each J, when M = n(% —1),

ﬂ 5 (R

and thus by Theorem 5.10, ||Hq>,g(f)HHq,QO(Rn) < [ fll o g - O

)

<lz[™*,
Ao (R™)

We show the following H'(R™)-boundedness result in order to provide another
endpoint for interpolation. Note that the results obtained in Section 5.1 were about

ﬁ@ﬁ, and so unrelated to this one.

Lemma 5.12. Suppose 0 < 3 <n. Let ® denote the Fourier transform of ® and

1
=12

q n

Suppose disa function in C™(R™) with compact support. Then

| Ha,5(f) prace < 1f g -

Proof. Define the analytic family of operators

Hoo1)@) = | . <“> f(y) dy.

R Y]

Fix 27,29 such that Re z; = 1, Re 2z = [, with 0 < 81 < < (2 < n. Using

Holder’s inequality, for ¢ = 1,2, we have

o(E
Hou @] = || |y|(,liif<y> y
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@(77)

’y’nfﬁi )

< | flzx sup

ly|>0

Clearly, @ is a bounded function, by assumption. Thus, if ||— 1, we can write,

[ Ho o, (/) (@) < | flpo 27"

If % > 1, we use integration by parts n times, using d e C" with compact support

to obtain

1

®(7yr) PN
] - JR n B(6)em e g

s < |x|*n+b’¢.
ly|"

Y|

This gives

o oo (D@ > M < [{o: 112l = A}

{
{x o] < (!f)}|

Wi
N A
IS
A
where g1, ¢o are such that

1 .

—+ @ =1 1=1,2

q; n

By definition of the weak type spaces, then, the last inequality implies

[ Hai ()] oie oy < 1l 21y -

Thus, by Stein-Weiss analytic interpolation, we obtain, for any ¢q such that ¢; < ¢p <

q2,

[Ha 5 () oo ey < 12 @ny < 1S e gemy -
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In particular, this holds when ¢y = ¢, so

[ Hos(f) oy < 1Sl geny -
But ¢ > 1, so H? = L4, and thus
[Has (N ragny < 11 a1 gmy -
Further, we know || e < ||| 4, S0
[ Ha 5 () 0.0 ey < 11 ny
as desired. ]
Theorem 5.13. Suppose 0 <p<1,0< 3 <n. Let ® denote the Fourier transform

of ® and

1

=

1
p g n

For an integer M > n(ﬁ —1), suppose that d is a function in C*M+7(R™) with compact

support in the set R™\ {0}. Then

| Ha,5(f) | pragrny < 1f | rogrny -
Proof. Since M > n(% — 1) we have a p; < p satisfying
1
M=n <— — 1) .
b
By Theorem 5.11, we have

HH@,ﬁ(f)Hqum(Rn) < Hf”HPl(Rn) ,

where
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Further, by Lemma 5.12,

| Hoo () ey < 1 s

where

1
L)
G2 N

Thus, by an interpolation argument, we obtain

”H@,ﬂ(f)HHq(Rn) < ||fHHP(R”)
as desired. ]

The techniques used to prove Theorems 5.11 and 5.13 can also be used to show
the following result. The specific ® considered here does not meet the conditions on
Theorems 5.11 and 5.13, which may suggest in general a method of relaxing these

conditions.

Corollary 5.14. Suppose 0 <p <1,0 < <n. Let Ve S(R"), and

11
1_1. 5

p g n

For an integer M > n(% — 1), let

© IAMTE W ifn s even
]A]M+”TH U ifn is odd

where A is the Laplacian and |A]" is the fractional Laplacian defined for any function
F by

(A F)() = [ F(e).

If M =n( 1), then

1_
p

HHQ,B(JC)”Hq,OO(Rn) < ”fHHp(]Rn) s
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If M > n(% — 1), then

||H<I>76(f)||Hq(Rn) < ”fHHP(R") :

Proof. Recall that according to Theorem 5.10, we must show that

!ﬂf!” ’

(Rﬂ’)(

for for all J € {0,...,n

choose L even such that 2M +n > L.

In the proof of Theorem 5.11, we have shown that

="~ x
TnTE (RJCI))(H)
‘ ’ Aa(Rn)
< sp 43 (E)TS | Y| [ S8 den e, (6 0)) de
 yeRn\(0) ] g W | Jn LI BN
I|=c Ki+Ka= |Ka|<li <2|Ka2|

li—l2=|K2|
where P, is a homogeneous polynomial of degree l5. In this case, from the definition

of ., we can rewrite the above as

Ed T
(R
" Aa(Rn)
E 1 1 3 i (€,)
< swp 43 ()Y k| Sk || POUQER IR ) e |
yER"\{O} I= y K1+ Ko= ; ' |K2|<l1 2|iufl(2| R
l1—l2=|K2|

where P() is a function of £ with polynomial growth, namely,

P(f) _ { fhsz o '§jL|§|2M+"_L if n is even ‘

.64y &5, €M ILif s odd

An integration by parts, as used in the proof of Theorem 5.11, works as expected. []

We can replace the support condition in Theorems 5.11 and 5.13 by the following

condition, to show H? — L? boundedness.
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Corollary 5.15. Suppose 0 <p <1,0< 3 <n. Let ® denote the Fourier transform
of ® and

For an integer M > n(]lj — 1), suppose disa function in C*MF7(R™) and satisfies,

for all I with |I| <2M + n,
(®)() €] e LNR™), for k=0,1,2,...|I].
Assume also

lim ‘01 }|£] =0, for all I satisfying |I| < 2M + n.

-

If M = n(]lj — 1), then

||H<I’,ﬂ( )”quo Rn) N ”fHHp (R™)

If M > n(}l7 — 1), then

HH‘P,ﬂ(f)HLq(Rn) < Hf”HP(]R") .

Proof. The proof follows the same argument as the proof of Theorem 5.11. We prove
the case M = n(% —1). To prove the first inequality in the corollary, by Lemma 5.8,

we need to check

2"

7 ‘D(r )

<z,

Ao

where o = M. Here, by Fourier transforms, we may write

x x n— = n z x
oy = [ e e e

Thus, as in the proof of Theorem 5.11,

o (1 [ B e ag)
R

sup
veR"\(0} | |72,
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< su AN o 1
S o vl 1] i
eRm\{0} Y v} lv|

Y [=a Ki+Ka= | K2|<li <2|Ka|
l1—l2=|K3|

[ e p (e ae

The conditions in the theorem are sufficient to allow the integration by parts in
Theorem 5.11 to proceed, which allows us to prove the first inequality. An argument
similar to the one used to prove Lemma 5.12 shows that the condition is also sufficient
to give the conclusion to that lemma. Thus, we obtain the second inequality by an

interpolation argument. O
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CHAPTER 6
ADDITIONAL SPACES AND OPERATORS

6.1 MOTIVATION
In studying the H? boundedness of the Hausdorff operator, we have so far obtained

only results which require some smoothness condition on .

Question 4. If we don’t assume any smoothness condition on ®, and only assume ¢

satisfies some size condition, can we obtain the H? boundedness of ®7

To gain insight into this question, let us review the argument showing that hg is
bounded on H!(R) when ® € L'. When p = 1, H' is a normed space, and so we may
use the Minkowski inequality.

Recall that for f € HP, 0 < p < 1, we may write f as an atomic decomposition,

f = Z )\jaj
with

2N = 11

where each a;(z) is a (p, 0, s) atom, with s an integer such that s > [n (% — 1)]

We study the H? boundedness of the Hausdorff operator.
So, for f € H', take an atomic decomposition f = >} \;a;. Using the Minkowski

inequality, we have

[ha (Nl < D5l 1R (@) -

where > Aja; is an atomic decomposition of f. In the above inequality, by the

Minkowski inequality again,

o)l = | [ 2 )

Hl
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<J, B o, o

=fﬂﬂm\ .

Since, for fixed ¢t > 0, %aj(%) is also a (1,0, s) atom, we have

Hl

dt.

1
Jail

H1

<1
22!

—a;(5)

t 7t

' 1

uniformly for ¢ and j. Thus we obtain that

o0 0
helD)ls < TN [ 10001 =11l | 000 ar
Therefore, we obtain that hg is bounded on H' provided

F@(m dt < 0.

0
Now we try to extend the above argument to the H? boundedness for 0 < p < 1.

First we have
[ha () < D5 1M1 Tha(a) | (6.1)
If we can show, by assuming certain size condition on ®, that
[ho (@) < 1 (6.2)

uniformly on j, then from equation (6.1) we obtain the H? boundedness of hg. So,
showing the H? boundedness of he is reduced to showing equation (6.2). Unfortu-
nately, when p < 1, H? is not a normed space, so we cannot apply the Minkowski

inequality to obtain, for an atom a,

dt

HP

a(;)

“e(t)| H ‘
t

ha(@la < | 52

0 t

as we did for H' norm. To overcome this difficulty, we write

ha(a) (@) = foo o - k_i_wf

0 2

2k+1

O(t) x
. TCL(?) dta
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and study each

We introduce a normalizing factor, and define a (p, o0, 0) atom Ay by
ok+1 |1 =1 k41
tr |O(t D(t
Ap(z) = [ 27 f &Il f M) @y gt
2k t 2k t t
This is possible if supp a contains the origin. To show this fact, without loss of gener-
ality, we may assume the support of a is (—p, p). Ast runs over the interval (2% 2~k+1),
we can view that the support of a(%) is contained in the interval{z : [z| < p2~*'}.
Thus Ag(x) is supported in (—p2F1, p2k+1).
Next, by applying Fubini’s theorem, we can show the cancellation condition, as

follows. Fix u < s. Then

2k‘+1

JRx“Ak(x) _ <2i f @ dt) R L @Lxuaé) da dt

ok+1 t% ’(I)(t)| -1 ok+1
= <2P J —_— dt) J (ID(t)t“J x'a(x) dx dt = 0.
2k t 2k R

Also, we have the size condition with radius p2F*!
ok+1 1 -1 ok+1
1 tr | D(t D(t
IAul < (w [o= dt) [ B el a

2k 2k t

2k+1

—1
o(t 24 Dt
<ot |<>|dt<2;J o),
2k t 2k t

ok+1 _k ok+1 1 —1
1 1 217 @ P @
= 2p(2’“+1p)_pf —’t O 4 <2if tr 120l ’t(m dt)

2k 2k

_1

~ (2k+1p) .

Thus, we have proved that each Ay is a (p, 0, s) atom. We write

2k+1 1
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Now, if we assume that for some o > %,
tr |D(t
JR—| t( ) (1 + [log, |t]))7 dt < C

then by an easy computation, we obtain

o0 2k+1 1
|ha (@) < ) (

p
1 tr | (T
2 | Mdt) 4l
ke —oo 2k t

o0 ok+1 1 p
(7 o)
<) <2p [

2k
1 p
tr |P(t
< (f ymrmgz\tm” dt) <1
R

Thus equation (6.2) is proved, if a; is supported in an interval containing 0.
However, we will see that the above argument fails if the support of a does not

contain the origin. If supp (a) < (a, ), and § > a > 0, then

2k+1

Dt
J ﬁa(f) dt
2k t t
is supported in (2%a, 2813). Now the length of (2, 28+14) is
oktlg — okq = 2M1(3 — a) + 2Fa.

This length can not be compared to 2¥*1(3—a), since the number 2*a may be arbitrar-
ily large. Thus, we can not choose a normalizing factor Fy so that Fj S;:H @a(%) dt
satisfies the size condition in general.

Based on these observations, we wish to restrict our discussion to only those
atoms whose support includes the origin. In other words, we wish to consider a space
whose elements f have the central atomic decompositions, that is, each atom a; in a

decomposition of f is supported in (—p;, p;). Such spaces are called Herz-type Hardy

spaces H Kg“’p (R™), introduced in section 2.5.
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6.2 DBOUNDEDNESS OF HAUSDORFF OPERATOR ON HK;’P(R”)

Recall from page 26 the definitions of the homogeneous Herz space and the Herz-type

Hardy space.

Definition 2.4 (Homogeneous Herz Space). Let « € R, 0 < p,q < 0. The homoge-

neous Herz space Kg’p(R”) 15 defined by

Ky = {f € LL R0 : [ g < 0}

where

o »
HfHKg»P(Rn) = ( Z 2keP ’ka‘IEQ(R”)> :

k=—00

Definition 2.5 (Herz-type Hardy Space). Let a € R, 0 < p < o0, 1 < ¢ < 0. The

homogeneous Herz-type Hardy space HK;“’I’(]R”) 1s defined by
HEG?(R") = {f  S'(R") : Gf e Kg"(R")},
where G f is the grand maximal function of f and

1l aregr@my = 1Gfllar @y -

Recall also from page 26 that the Herz-type Hardy space can be decomposed into

central atoms.

Definition 2.6 (Central Atom). Suppose 1 < ¢ < o, n(l — é) < a < o, and

sz [a+ n(é —1)]. A function a(x) on R™ is said to be a central (v, q) atom if
(i) supp a = B(0,p)

(1) |l pagny < 1B(0, p)[ 7",

(ii1) i a(x)z® dz =0 for any multi-index B with |3| < s.

Following logic similar to that in Section 6.1, we have the following result for

Herz-type Hardy spaces.



80

Theorem 6.1. Let 0 <p <1< g < o0, andn(1—$)<a<oo.

(1) For0 <p <1, let

o a n o
c, . - f ‘@fif’w 1yl (1+ log|y])” dy.

If, for some o > %, Cp = Cp s < 0, then
HH‘D(JC)HHK,‘;"P(R") < HfHHK;"’p(]R”) :

(2) Forp=1, let

(I) y a n
e = [ 2y iy
|yl
If Cy < oo, then
| Ho (f) o ny < I | e oy -

Proof. We prove part (1) only; the argument for part (2) is identical. For f e H Kg"p,

take a central atomic decomposition.

f=>
k

where

S = s

keZ

and each ay, is an (o, q) central atom supported in B(0, p;). Now we have

Ho(f) = Z ArHo(ay,).

keZ

To prove the theorem, it suffices to show that

Hy(ay) = Z Ch,j Uk,

JEZ
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where each ay; again is a central (o, ¢) atom and

DlesP <1

<
JEZ

uniformly on k € Z.

We write

d T )
brj(w) = J %) g (-) dy, je€Z.
2-i<lyl<z—i+1 Y] |y

So

x) = D biy(2)

JEL

It is easy to check that each by ; satisfies the same cancellation condition as a;. By
the Minkowski inequality, the size of by ; is
v)|

J el (@)l
\ ak T 1
i<|y|<2—it1 y’ |

Q)| =
f s dy.
<ly|lg2-9+1 |y|

1br5l

dy

If |#| > 277%1p;, then

lz]
[yl =

which means ak(ﬁ) =0 for all 277 < |y| < 277*!. This tells us that

2] ' ’[L’| > Pk

supp (be;) = B(0,277 1 pp).

Now we write
T) =) Crjln,
JEL

with

i P Yy n
cuy = 200 | DN 1 ay,
2 j<|y|<2 j+1 |



and

1

agj = —Dbr ;-
Ck,j
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It is easy to check that ay ; is a central («, ¢) atom and

[P (y)]
el <3 ([ My
2l <2,

JEZ JEZ |y|

|oz+% d )p
Y

< (Jn |q’>y(| ) y|* "7 (1 + |log ly||)” d )” =Gy

This shows

Ho(f) = Y AeHal(ar)

keZ

= 2 2, My

keZ jeZ.

By the atomic decomposition, we obtain

|Ha ()l picer@ny < (ZZIAMJ\>

keZ jel

< (Z Ael?

keZ

>;

< flaker@ny

as desired.
We now return to the example of the Cesaro ope

Corollary 6.2. Let 0 < p <1 < g < o0, and n(1

have

rator Cg.

$)<a<oo. For any B > 0, we

1Cs (M irscor @y < I flaricer ny -

Proof. Note Cg = Hg, where ® = x,<1(y)(1 — |y|)"~!

® meets the conditions of Theorem 6.1.

. It is easy to check that this

O
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6.3 HK;;“P(R) — H"(R) BOUNDEDNESS

In this section, we study the HK oP(R) — H"*(R) boundedness for the one dimen-

sional modified Hausdorff operator

half)a) = [ 2O %) ar

Note that here ® : R — R is a locally integrable function. As before, we denote

S0 ®G) o0
V) = 1
1im$ ifv=0.

v—0

Theorem 6.3. Let 0 <p <1< g < o, and(1—§)<a<oo. For

1 1 1 1 1
r= T Nz[a—i———l]:l——l], —+-=1
0z+§ q r q q

Let

If g€ CN and

—p

uniformly for p > 0, then we have

< [ flaier-

[ret)

H7®©

Proof. For any f € Hqu‘vp, we write

f = 2 )\kalm
k

where

ST = U1

keZ
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and each ay, is an (a, g) central atom supported in the ball B(0, p;). Now we have

ho(f) = Y Acha(a).

keZ

Then as in the proof of Theorem 3.1, for the Hilbert transform R, we can write

Roha(f) = D) M(R o ha)(ar)

k€eZ

and

RoTaae) = [ P Rag(E) .

—00 t
Changing variables % = v, by the definition of ¢, we have
o(y)
v

R o ha(an)(@)] - \ [ 2 ey ao

_ ‘ ﬁ o(v) (Rag)(zv) dv

It is known [20] that the Hilbert transform is bounded on the space H K o7 That is,
|(Raw)licer < llarlpier <1
uniformly for all atoms a,. Thus Ray is an element in H K 27, S0 we may write
(Rag) = > crjan,
J

where each ay ; is again a central («, ¢) atom and

DlesP <1

J
uniformly on k. This shows that

R o 7L¢(ak)(x)‘ = ‘Z Chj fmoo o(v)ay,j(xv) dv

We further note that for each fixed x # 0,

1
brj(v) = |z|" ag;(zv)



is again an (a, q) central atom. Thus,

R o ho(ax)(x)| = [«| "~

0
Zcmf d(v)by,j(v) dv
j —0
For simplicity of notation, we write
b(v) = by,;(v),
and assume the support of b is (—p, p). Thus,

£>0 o(v)by j(v) dv = _p o(v)b(v) dv.

First we assume N > 1. Using the Taylor expansion of ¢, we write

o1 k) ()0 k 1 N N—1.(N)
o(v) = kz_jo Egb (0)v" + mv Jo (1—=s5)" 0" (sv) ds.

By the cancellation condition on b, we now have

[ o) ao- e ( | (1= 516 (50) ds) o) do

0

[ {[a ) - 00 s} o) ao
- [a-sp [ 060 = 60 0100 o s
Thus
[ oty anf < [ [ [6%06s0) - 600 o) av s

1 P , %
<M bliy | (1= (f 6 (s0) — 6™ () dv) s

—p

1 1 sp
<l [ =7 ([ 00 - 60" o)
0 —sp
< prap’Y-l-i
I g4+l o
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uniformly for all atoms b. On the other hand, if N = 0,

UZ $(v)b(v) dv

fﬁmw—meMdv

-p

< ([ 1ot~ s av) ol <1

—p
uniformly for all atoms b.

This indicates

1 0 1
R o Ro(an) o) = ol [Sens [ 000)buse) do| < Jal
j —00
uniformly on central atoms ay.
For any A > 0, now we have
0 e Tutte] )
< Hx #0: |x\_% > )\H
20 ol <
=Rz x|t < =
A
(LY
={y)"
We can show by a similar method
o a2} < (5) -
A
This gives
half)],,,. = [RoBen],, + [
Fa(h)| = |Rebon)]  + )]
1
< (ZW\’) <[ flagg
k
as desired.
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O

Remark 6.4. An analogous strong boundedness result can be shown by interpolating

on r and q.
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6.4 BILINEAR HAUSDORFF OPERATORS

Next we study the bilinear Hausdorff operator

Hamilf.9)(z) = f . @ P g .

. t

Note this is defined for all x € R\{0} when m,k € Z.

Theorem 6.5. Let m,k =1,2,.... For any p,p1,p2,7,p = 1 satisfying

1 1 1 1 m k 1
—+ — = - - = —+ —, —+—/=1,
P1 D2 p r pP1 P2 b p
if
/ L
0 (Dl p P
J (t) dt| <
—00 t
then

[ Ha i (fs 9 e < 1 F o 9] 22 -

Proof. By Hélder’s inequality and a scaling argument, for x > 0

()] = [ 2 ptegtant)
([ )t
< ( 2y dt) o Lo
~ el B ( [ [ dt);, 1l

_m__k
= Colz| 7 %2 | fl g1 9] r2 -

where

1

14 4
dt> |

()
t

[
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Therefore,

{z : [Ho(f, 9)(x)] > A}

v Colal 577 | £ gl > A

{ |.CE‘P1 p2 <M}‘

A
<|f||LP1 ”ng) Bty
where by assumption pml + p%
Recalling r = +L > 1, we have
{a : [Ho(f, 9)(x)]" > A}
= {z: 1Ha (£, 9)@) > A7}
mlﬁ _
< (Ifllgon gl o) 72722 A1
This gives
[ Ho(fs @) proe < If o1 (9] 100
as desired. H|

If we restrict the domains of f, g, ® to [0,00), we can extend the definition of the

bilinear Hausdorff operator as: for f,g € S([0,0)),a, B € R,

Hanstr o)) = [ 207 (5)g (5] at,

in which case, the method of proof used for Theorem 6.5 can also be used to show

the analogous result.
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