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ABSTRACT
THE BOUNDEDNESS OF HAUSDORFF OPERATORS ON FUNCTION

SPACES

by

Xiaoying Lin

The University of Wisconsin–Milwaukee, 2013
Under the Supervision of Professor Dr. Dashan Fan

For a fixed kernel function Φ, the one dimensional Hausdorff operator is defined in

the integral form by

hΦpfqpxq “

ż 8

0

Φptq

t
fp
x

t
q dt.

By the Minkowski inequality, it is easy to check that the Hausdorff operator is

bounded on the Lebesgue spaces Lp when p ě 1, with some size condition assumed

on the kernel functions Φ. However, people discovered that the above boundedness

property is quite different on the Hardy space Hp when 0 ă p ă 1. To establish the

boundedness on the Hardy space for 0 ă p ă 1, some smoothness must be assumed

on the kernel functions Φ.

In this thesis, we first study the boundedness of hΦ on the Hardy space H1, and

on the local Hardy space h1pRq. Our work shows that for Φptq ě 0, the Hausdorff

operator hΦ is bounded on the Hardy space H1 if and only if Φ is a Lebesgue integrable

function; and hΦ is bounded on the local Hardy space h1pRq if and only if the functions

Φptqχp1,8qptq and Φptqχp0,1qptq logp1
t
q are Lebesgue integrable. These results solve an

open question posed by the Israeli mathematician Liflyand. We also establish an

H1pRq Ñ H1,8pRq boundedness theorem for hΦ. As applications, we obtain many

decent properties for the Hardy operator and the kth order Hardy operators. For

instance, we know that the Hardy operator H is bounded from H1pRq Ñ H1,8pRq,

bounded on the atomic space H1
ApR`q, but it is not bounded on both H1pRq and the

ii



local Hardy space h1pRq.

We also extend part of these results to the high dimensional Hausdorff operators.

Here, we study two high dimensional extentions on the Hausdorff operator hΦ:

H̃Φ,βpfqpxq “

ż

Rn

Φpyq

|y|n´β
fp

x

|y|
q dy, n ě β ě 0,

and

HΦ,βpfqpxq “

ż

Rn

Φp x
|y|
q

|y|n´β
fpyq dy, n ě β ě 0,

where Φ is a local integrable function.

For 0 ă p ă 1, we obtain a sufficient condition for the Hp boundedness for the

Hausdorff operator in the one dimensional case. This theorem needs less smoothness

on the kernel Φ than any other theorems in the literature. Since there is no result

involving the boundedness on HppRnq in the literature for the high dimensional Haus-

dorff operators, if 0 ă p ă 1 and n ě 2, it is interesting to study such problems in the

high dimensional spaces. We establish several sufficient conditions by using a duality

argument.

Additionally, we study boundedness of Hausdorff operators on some Herz type

spaces, and some bilinear Hausdorff operators and fractional Hausdorff operators.
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CHAPTER 1

INTRODUCTION

One of the core problems in harmonic analysis is to study the boundedness of an

operator T on some function/distribution spaces

}Tf}Y ď }f}X ,

where X and Y are two function/distribution spaces with norms or quasi norms }¨}X ,

}¨}Y respectively. This question arises from many natural problems in mathematics

and the sciences. To illustrate the importance of this problem, we look at the following

two examples.

Example 1.1. Any L1 function f on r´π, πs has its Fourier series

fpxq „
ÿ

k

cke
ikx.

This means a signal f might be built up from many simple sine and cosine waves

with different wave lengths and amplitude. Unfortunately,

fpxq “
ÿ

k

cke
ikx

is not always true pointwise, even when f is a continuous function(see [31]). So we

need to modify the information using a filter tmpεkqu (called the summation of the

Fourier series):

Tm,εfpxq “
ÿ

k

ckmpεkqe
ikx, ε ą 0,

where m is a suitably nice function and mp0q “ 1. Tm is called a multiplier (operator)

with symbol m. This summation greatly improves the convergence of the Fourier series
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in the sense that

lim
εÑ0`

ÿ

k

ckmpε, kqe
ikx
“ fpxq

uniformly for a continuous function f if one chooses a suitable function m. For

instance, from [31], we know that Tm,εpfq is the Abel summation if mp
?
εkq “ e´ε|k|

2

,

and the Riesz summation if mpεkq “ p1´ ε |k|q`.

Furthermore, let F be some function/distribution space with quasi-norm }¨}F , we

are interested in the global convergence

lim
εÑ0`

}Tm,εg ´ g}F “ 0, for g P F.

We suppose that the class S of Schwartz functions is dense in F , and that for f P S,

lim
εÑ0`

}Tm,εf ´ f}F “ 0.

Then it is easy to check that the boundedness

}Tm,εg}F ď }g}F , for ε sufficiently small

implies that for all g P F ,

lim
εÑ0`

}Tm,εg ´ g}F “ 0.

To see this fact, for given g P F , and any δ ą 0, choose f P S such that

}f ´ g}F ă δ.

As a consequence, we have

lim
εÑ0`

}Tm,εg ´ g}F ď lim
εÑ0`

p}f ´ g}F ` }Tm,εpf ´ gq}F ` }Tm,εf ´ f}F q

ď δ ` lim
εÑ0`

}Tm,εf ´ f}F

ď δ.

Thus the convergence problem Tm,εf Ñ f in the space F is reduced to the boundedness
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of Tm,ε on the space F .

Example 1.2. The solution upt, xq of the Cauchy problem of the Schrödinger equation
$

’

’

&

’

’

%

iBtu´∆u “ 0, pt, xq P R` ˆ Rn

up0, xq “ u0pxq

is formally given by upt, xq “ pe´it∆u0qpxq, where upt, xq “ pe´it∆u0q is defined

through its Fourier transform by

p {e´it∆u0qpξq “ eit|ξ|
2

pu0pξq.

Let X and Y be two function spaces. To study the regularity of the solution, we need

to estimate

›

›e´it∆pu0 ´ v0q
›

›

Y
“
›

›e´it∆u0 ´ e
´it∆v0

›

›

Y
ď }u0 ´ v0}X ,

since the operator e´it∆ is linear. Again we face the boundedness inequality

›

›e´it∆f
›

›

Y
ď }f}X .

These examples begin to show the importance of demonstrating the boundedness

of operators on function spaces. In this thesis, we mainly study the boundedness of

the Hausdorff operators on the Lebesgue spaces and on the Hardy spaces. We begin

by recalling the one dimensional Hausdorff operator, defined in the integral form by

hΦpfqpxq “

ż 8

0

Φptq

t
fp
x

t
q dt, (1.1)

where, for simplicity, we initially define hΦ on the Schwartz space S. Clearly, hΦ is a

linear operator. This integral operator is deeply rooted in the study of 1-dimensional

Fourier analysis. Particularly, it is closely related to the summability of the classical

Fourier series (see [13]).

The definition of hΦ is based on the dilation structure of the Euclidean space.

Two important geometric transformations on the Euclidean space Rn are translation



4

and dilation. The translation Ly is a linear operator defined by Lypfqpxq “ fpx` yq,

so its integral form

ż

ΦpyqL´ypfqpxq dy “

ż

Φpyqfpx´ yq dy (1.2)

is the convolution operator Φ ˚ fpxq with kernel Φ, and its L1 norm satisfies

}Φ ˚ f}L1 “ }Φ}L1 }f}L1 , if Φ, f ě 0.

The dilation Dt is a linear operator defined by Dtpfqpxq “ fptxq, for t ą 0. The

integral

ż

ΦptqDt´1pfqpxq dt “

ż

Φptqfp
x

t
q dt (1.3)

corresponds to the Hausdorff operator

hΦpfqpxq “

ż 8

0

Φptq

t
Dt´1pfqpxq dt. (1.4)

Note that Φptq in equation (1.3) is replaced by Φptq
t

in equation (1.4). This normalizes

the operator, so that

}hΦpfq}L1 “ }Φ}L1 }f}L1 , if Φ, f ě 0.

Many important operators in real and complex analysis are special cases of the Haus-

dorff operator, by taking suitable choice of Φ. These operators include, among many

others:

(1) the Hardy operator

Hfpxq “ 1

x

ż x

0

fptq dt,

the average of antiderivative of a function f in the Fundamental Theorem of

Calculus, is obtained by choosing Φptq “
χp1,8qptq

t
;
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(2) the adjoint Hardy operator

H˚fpxq “
ż 8

x

fptq

t
dt,

which is obtained by choosing Φptq “ χp0,1qptq;

(3) the Cesàro operator

Cαpfqpxq “ α

ż 1

0

p1´ tqα´1

t
fp
x

t
q dt,

which is obtained by choosing Φptq “ χp0,1qptqp1´ tq
α´1;

(4) the Hardy-Littlewood-Pólya operator

P pfqpxq “

ż 8

0

fptq

maxtt, xu
dt “ Hfpxq `H˚fpxq.

Also, the Riemann-Liouville fractional derivatives

D̃βpfqpxq “

ż x

0

px´ tqβ´1fptq dt, x ą 0

can be derived from the fractional Hausdorff operator. In fact

D̃βpfqpxq “ xβ´1

ż x

0

ˆ

1´
t

x

˙β´1

fptq dt

– xβ
ż 8

1

p1´ 1
t
qβ´1

t2
fp
x

t
q dt.

Thus,

D̃βpfqpxq – xβhΦpfqpxq

with

Φptq “
p1´ 1

t
qβ´1

t
χp1,8qptq.

The Hausdorff operator has received extensive study in recent years, particularly its

boundedness on the Lebesgue space Lp and the Hardy spaceHp (see [9, 14, 18, 28, 30]).

Consider a quasi-normed space X with quasi-norm }¨}X . We say that X satisfies
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the norm scaling (N-S) property if there exists a number σ “ σpXq such that

›

›

›
fp
¨

t
q

›

›

›

X
“ tσ }f}X

for any f P X, t ą 0. If X satisfies the N-S property, then by Minkowski’s inequality

}hΦf}X ď

ż 8

0

|Φptq|

t

›

›

›
fp
¨

t
q

›

›

›

X
dt

“

ˆ
ż 8

0

|Φptq|

t
tσ dt

˙

}f}X .

This shows that hΦ is bounded on the space X if

ˆ
ż 8

0

|Φptq|

t
tσ dt

˙

ă 8. (1.5)

Based on these observations, our main interests in the Hausdorff operator are:

(1) Determine when the condition given in equation (1.5) is sharp, that is, for which

spaces X satisfying the N-S property the condition in equation (1.5) is necessary

as well as sufficient.

(2) Study the boundedness of hΦ : X Ñ X if X does not satisfy the N-S property.

The Lebesgue spaces Lp when p ě 1 satisfy the N-S property. Thus, by the above

argument, we have

}hΦf}Lp ď CΦ }f}Lp ,

where CΦ is the constant

CΦ “

ˆ
ż 8

0

|Φptq|

t
t
1
p dt

˙

.

It is known that the Hausdorff operator is bounded on the Lebesgue spaces Lp when

p ě 1 if and only if CΦ ă 8, provided Φptq is a non-negative valued function. The real

Hardy space H1 is also a space with the N-S property. Again, by a scaling argument

together with the Minkowski inequality, we obtain

}hΦf}H1 ď }f}H1
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if Φptq is a Lebesgue integrable function on p0,8q. The Israeli mathematician Liflyand

posed the following question.

Question 1 (Liflyand [13]). Determine the sharpness of the condition Φ P L1p0,8q

to give hΦ bounded on H1pRq.

In this thesis, we will solve this problem by showing that if Φptq is a non-negative

valued function, then

}hΦf}H1 ď }f}H1

if and only if Φptq is a Lebesgue integrable function on p0,8q. We will also solve

the same problem on the local Hardy space h1. As applications, we obtain some

interesting results for the Hardy operator on the spaces near H1.

The real Hardy space Hp is not a normed space when 0 ă p ă 1. It is known that

the above boundedness property on Lp or H1 is quite different on the Hardy space

Hp when 0 ă p ă 1. To establish the boundedness of hΦ on the real Hardy space Hp

for all 0 ă p ă 1, it seems that any reasonable size condition on Φ is not sufficient;

some smoothness condition must be included. This phenomeonon was discovered by

Kinjin [9] who required a smoothness condition on pΦ, the Fourier transforms of Φ.

It was further explored by Liflyand and Miyachi in [14], who required a smoothness

condition on Φ, and who further found a bounded function Φ supported in a compact

set E Ă p0,8q, such that the operator hΦ is not bounded on HppRq for any 0 ă p ă 1.

The original work of Kanjin,Liflyand and Miyachi was motivated by the Cesàro

operator

Cαpfqpxq “ α

ż 1

0

p1´ tqα´1

t
fp
x

t
q dt, α ą 0.

Kanjin showed in ([9]) that Cα is bounded on HppRq provided 2
2α`1

ă p ă 1, and that

this result actually is an application of the following:
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Theorem A ([9]). Let 0 ă p ă 1, M “ r1{p´ 1{2s ` 1, and

AΦ,p “

ż 8

0

t´1`1{p
|Φptq| dt.

Suppose AΦ,1 ` AΦ,2 ă 8, and pΦ P C2MpRq with

sup
ξPR
|ξ|M

´
ˇ

ˇ

ˇ

pΦpMqpξq
ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

pΦp2Mqpξq
ˇ

ˇ

ˇ

¯

ă 8.

Then hΦ is a bounded operator on HppRq.

The proof of Theorem A is based on the Taibleson-Weiss atomic-molecular char-

acterization of the Hardy space (see [28]). Kanjin proved that if Φ satisfies the

conditions of Theorem A, then the Hausdorff operator hΦ maps an atom to an Hp

molecule. Later on, using a different method, which includes a modified atomic de-

composition of Hp, Miyachi improved Kanjin’s result by showing that the Cesàro

operator Cα is bounded on HppRq for any α ą 0 and all p ą 0 (see [23]). In [14]

Liflyand and Miyachi further extended the method used by Miyachi in [23] to study

the HppRq boundedness of the Hausdorff operator hΦ. First, they observed that the

following Theorem B is a direct corollary of Theorem A.

Theorem B ([14]). Let 0 ă p ă 1 and M “ r1{p´1{2s`1. If Φ P CM and its support

is a compact set in p0,8q, then the Hausdorff operator hΦ is bounded on HppRq.

Liflyand and Miyachi then generalized the main result in [23] and obtained the

following two theorems.

Theorem C ([14]). Let 0 ă p ă 1, M “ r1{p ´ 1{2s ` 1 and let ε be a positive

number. If Φ P CMp0,8q satisfies

ˇ

ˇΦpkqptq
ˇ

ˇ ď minttε, t´εut´1{p´k

for k “ 0, 1, ...,M , then hΦ is bounded on HppRq.
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Theorem D ([14]). Let 0 ă p ă 1, M “ r1{p ´ 1{2s ` 1 and let ε and a be positive

numbers. Suppose that Φ is a function on p0,8q such that the support of Φ is a

compact subset of p0,8q. If Φ is of class CM on p0, aq Y pa,8q and satisfies

ˇ

ˇΦpkqptq
ˇ

ˇ ď |t´ a|ε´1´k for k “ 0, 1, ...,M,

then hΦ is bounded on HppRq.

In this thesis, we will establish another sufficient condition for Hp boundedness of

hΦ with less smoothness on Φ than that in Theorems B to D.

Next, we observe that all methods used to show the boundedness of hΦ on HppRq

in the above theorems fail in the high dimensional case, and we notice that there is

no result involving the boundedness on HppRnq in literature for the high dimensional

Hausdorff operators, if 0 ă p ă 1 and n ě 2. Thus we are particularly interested in

studying such problems in the high dimensional spaces.

In the one-dimensional case, when x ą 0, by a changing of variables,

hΦpfqpxq “

ż 8

0

Φpx
t
q

t
fptq dt.

This suggests us to study two different extensions of Hausdorff operator in the high

dimensional space:

H̃Φ,βpfqpxq “

ż

Rn

Φpyq

|y|n´β
fp

x

|y|
q dy, n ě β ě 0,

and

HΦ,βpfqpxq “

ż

Rn

Φp x
|y|
q

|y|n´β
fpyq dy, n ě β ě 0,

where Φ is a locally integrable function. We denote

H̃Φ,0 “ H̃Φ and HΦ,0 “ HΦ.

We note that operators of the form HΦ include the high dimensional Hardy oper-
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ator

1

|x|n

ż

|y|ď|x|

fpyqdy

and the adjoint Hardy operator

ż

|y|ě|x|

fpyq

|y|n
dy.

In [10, 12, 15, 18], Liflyand and Mòricz addressed the following theorem.

Theorem E (Liflyand and Mòricz). H̃Φ is bounded on H1pRnq, n ě 2, if Φ P L1pRnq.

Again, we face the following question.

Question 2 (Liflyand [13]). Determine the sharpness of the condition on Φ given in

Theorem E. That is, determine whether H̃Φ is bounded on H1pRnq, n ě 2, if and only

if Φ P L1pRnq.

Also, we notice that there is no research in the literature addressing HppRnq

boundedness of either the operator H̃Φ or the operator HΦ. All methods of treating

the one dimensional operator used in Theorems A to D fail to establish a similar

theorem on the high dimensional case. This raises the following question.

Question 3. Establish some HppRnq boundedness theorems for the operators H̃Φ or

HΦ for n ě 2 and 0 ă p ă 1.

As usual, the notation, A ď B means that there is a constant C ą 0 that is

independent of all essential variables such that A ď CB. Similarly, we use the

notation A – B if there exist positive constants C and c, independent of all essential

variables, such that

cB ď A ď CB.

The structure of this thesis is as follows.
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Chapter 2 contains some preliminary knowledge. This summary contains no new

results, but several facts which are required for later chapters.

Chapter 3 presents some results on HppRq for 0 ă p ă 1. In particular, Chapter 3

improves on the smoothness conditions described in Theorems B to D.

Chapter 4 includes several results on H1pRq and related spaces. It includes an

answer to Question 1.

Chapter 5 concerns HppRnq, 0 ă p ď 1, n ě 2. This chapter addresses Questions 2

and 3.

Chapter 6 explores extending the techniques used for the previous results to study

Hausdorff operators on the related Herz-type Hardy spaces, and also to study bilinear

Hausdorff operators.

The following are the new theorems that we obtained.

In Chapter 3, we prove a boundedness result for Hausdorff operators on one-

dimensional Hardy spaces:

Theorem 3.1. Let Φ be a Lebesgue integrable function. Denote φptq “
Φp 1

t
q

t
for t ą 0,

and φptq “ 0 for t ď 0. Assume 0 ă p ă 1 and α “ 1
p
´ 1. If φ P Λα then

}hΦpfq}Hp,8pRq ĺ }f}HppRq .

If there exists a small ε ą 0, such that α ´ ε ą 0 and φ P Λα`ε X Λα´ε, then

}hΦpfq}HppRq ĺ }f}HppRq .

In Chapter 4, we study the boundedness of Hausdorff operators on the Hardy

space H1pRq, obtaining the following main theorems:

Theorem 4.2. Let Φ be a nonnegative valued locally integrable function.

(1) hΦ is bounded on H1pRq if and only if Φ P L1p0,8q.
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(2) hΦ is bounded on the local Hardy space h1pRq if and only if

ż 8

1

Φptq dt`

ż 1

0

Φptq
`

1` logp1
t
q
˘

dt ă 8.

Theorem 4.3. Let φptq “ t´1Φ0ptq. Suppose φ P BMOpRq. Then hΦ extends to a

bounded operator from H1pRq to H1,8pRq.

Corollary 4.6. The Hardy operator H has the following properties

(1) H is not bounded on H1pRq.

(2) H is not bounded on h1pRq.

(3) H is bounded from H1pRq to H1,8pRq.

(4) H is bounded on H1
Ap0,8q.

We also apply our results to some generalizations of the Hardy operator.

In Chapter 5, we begin by generalizing Theorem 3.1 to obtain

Theorem 5.1. Let Φ be a nonnegative valued locally integrable function.

(1) H̃Φ is bounded on H1pRnq if and only if Φ P L1pRnq.

(2) H̃Φ is bounded on the local Hardy space h1pRnq if and only if

ż

|y|ě1

Φpyq dy `

ż

|y|ď1

Φpyq

ˆ

1` log

ˆ

1

|y|

˙˙

dy ă 8.

We next show some boundedness results for the power-weight Lebesgue spaces,

particularly,

Theorem 5.4. Let 1 ď p, q ă 8, 0 ă β ă n, γ ą βp´ n and

1

p
´

β

n` γ
“

1

q
.

In addition, let

Cp,ε “

ż 8

0

|Φptq|
p
p´1 t

γ´βp`n´p`1
p´1

`εdt for p ą 1, C1,ε “ }| ¨ |
n´β`γ`εΦp¨q}L8 .
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For any p ě 1, if, for arbitrarily small positive ε, Cp,˘ε ă 8, then

}HΦ,βpfqpxq}Lqp|x|γdxq ĺ }f}Lpp|x|γdxq.

Finally, we show sufficient conditions for boundedness of operators on high-dimensional

Hardy spaces.

Lemma 5.5. Let 0 ď β ă n and

ψpyq “
Φp1{ |y|q

|y|n´β
.

Assume 0 ă p ă 1 and α “ n
´

1
p
´ 1

¯

. If ψ P Λα, then

}HΦ,βpfq}Lq,8pRnq ĺ }f}HppRnq

where q satisfies

1

p
“

1

q
`
β

n
.

Theorem 5.6. Let β, p, α, q, ψ be as in Lemma 5.5. If for some ε ą 0 small enough

that α ´ ε ą 0, ψ P Λα`ε X Λα´ε, then

}HΦ,βpfq}LqpRnq ĺ }f}HppRnq .

Theorem 5.11. Suppose 0 ă p ă 1, 0 ă β ă n. Let pΦ denote the Fourier transform

of Φ and

1

p
“

1

q
`
β

n
.

For an integer M “ np1
p
´1q, suppose that pΦ is a function in C2M`npRnq with compact

support in the set Rnz t0u. Then

}HΦ,βpfq}Hq,8pRnq ď }f}HppRnq .

Theorem 5.13. Suppose 0 ă p ă 1, 0 ă β ă n. Let pΦ denote the Fourier transform
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of Φ and

1

p
“

1

q
`
β

n
.

For an integer M ą np1
p
´1q, suppose that pΦ is a function in C2M`npRnq with compact

support in the set Rnz t0u. Then

}HΦ,βpfq}HqpRnq ď }f}HppRnq .

In Chapter 6, we establish a size condition for boundedness of Hausdorff operators

on the Herz-type Hardy spaces:

Theorem 6.1. Let 0 ă p ď 1 ă q ă 8, and np1´ 1
q
q ď α ă 8.

(1) For 0 ă p ă 1, let

Cp,σ “

ż

Rn

|Φpyq|

|y|n
|y|α |y|

n
q p1` log |y|qσ dy.

If, for some σ ą 1´p
p

, Cp :“ Cp,σ ă 8, then

}HΦpfq}H 9Kα,p
q pRnq ď }f}H 9Kα,p

q pRnq .

(2) For p “ 1, let

C1 “

ż

Rn

|Φpyq|

|y|n
|y|α |y|

n
q dy.

If C1 ă 8, then

}HΦpfq}H 9Kα,1
q pRnq ď }f}H 9Kα,1

q pRnq .

We further provide a condition for a modified Hausdorff operator to map the Herz-

type Hardy spaces into a weak Hardy space. Here, the modified Hausdorff operator

rhΦ is defined by

rhΦpfqpxq “

ż

R

Φptq

t
f
´x

t

¯

dt
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and we let

φpvq “

$

&

%

Φp 1v q
v

if v ‰ 0

lim
vÑ0

Φp 1v q
v

if v “ 0.

Theorem 6.3. Let 0 ă p ď 1 ă q ă 8, and p1´ 1
q
q ď α ă 8. For

r “
1

α ` 1
q

, N “ rα `
1

q
´ 1s “

„

1

r
´ 1



,
1

q1
`

1

q
“ 1.

Let

γ “
1

r
´ 1´N “

1

r
´ 1´

„

1

r
´ 1



.

If φ P CN and

ż ρ

´ρ

ˇ

ˇφpNqptq ´ φpNqp0q
ˇ

ˇ

q1

dt ď ρ1`γq1

uniformly for ρ ą 0, then we have

›

›

›

rhΦpfq
›

›

›

Hr,8
ď }f}H 9Kα,p

q
.

Finally, we prove some preliminary boundedness results for bilinear Hausdorff

operators on one-dimensional Lebesgue spaces.

Theorem 6.5. Let m, k “ 1, 2, . . .. For any p, p1, p2, r, p
1 ě 1 satisfying

1

p1

`
1

p2

“
1

p
,

1

r
“
m

p1

`
k

p2

,
1

p
`

1

p1
“ 1,

if

¨

˝

ż 8

´8

ˇ

ˇ

ˇ

ˇ

ˇ

Φ
`

1
t

˘

t

ˇ

ˇ

ˇ

ˇ

ˇ

p1

dt

˛

‚

1
p1

ă 8

then

}HΦ,m,kpf, gq}Lr,8 ď }f}Lp1 }g}Lp2 .
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CHAPTER 2

PRELIMINARIES

2.1 Lebesgue and Hardy Spaces

2.1.1 Lorentz Spaces

Let dx be the Lebesgue measure on Rn. The Lebesgue space Lp, 0 ă p ă 8, is the

set of all measurable functions f satisfying

}f}Lp “

ˆ
ż

Rn
|fpxq|p dx

˙
1
p

ă 8.

The power weight Lebesgue space Lpp|x|γ dxq, 1 ď p ď 8, is the set of all measurable

functions f satisfying

}f}Lpp|x|γdxq “

ˆ
ż

Rn
|fpxq|p |x|γ dx

˙
1
p

ă 8.

For a measurable function f , we define the set Ef ptq, for any t ą 0, by

Ef ptq “ tx : |fpxq| ě tu .

The distribution function of f is µf ptq “ |Ef ptq|, the Lebesgue measure of Ef ptq. We

define the weak Lebesgue space by

Lp,8 “ tf : }f}Lp,8u ă 8,

where

}f}pLp,8 “ sup
tą0
ptppµf ptqqq .

When 0 ă p ă 8 and 0 ă q ă 8, we define the norm (or quasi-norm)

}f}Lp,q “ p
1
q

ˆ
ż 8

0

tq |µf ptq|
q
p
dt

t

˙
1
q

.
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The Lorentz space Lp,q is the set of all measurable function f satisfying

Lp,q “ tf : }f}Lp,q ă 8u .

The Lebesgue space Lp and its weak version Lp,8 are special cases of the Lorentz

space Lp,q. (It is easy to see that Lp,p “ Lp.)

2.1.2 Hardy Spaces

When 0 ă p ă 1, the dual space pLpq1 of Lp contains only the zero function, which

makes the structure of Lp difficult to study in this case. Instead, we study a closely

related space, the Hardy space Hp.

Let SpRnq be the set of Schwartz functions and Ψ P SpRnq satisfying

ż

Rn
Ψpyq dy “ 1,

and denote Ψspyq “
1
sn

Ψpy
s
q

The Hardy space HppRnq is the space of all distributions f satisfying

}f}HppRnq :“

›

›

›

›

sup
0ăsă8

|Ψs ˚ f |

›

›

›

›

LppRnq
ă 8.

We similarly define the weak Hardy space Hp,8 to be the set of distributions f

satisfying

}f}Hp,8pRnq :“

›

›

›

›

sup
0ăsă8

|Ψs ˚ f |

›

›

›

›

Lp,8pRnq
ă 8

and more generally the Hardy-Lorentz space Hp,q the set of distributions f satisfying

}f}Hp,qpRnq :“

›

›

›

›

sup
0ăsă8

|Ψs ˚ f |

›

›

›

›

Lp,qpRnq
ă 8.

The local Hardy space hppRnq is the space of all distributions f satisfying

}f}hppRnq :“

›

›

›

›

sup
0ăsă1

|Ψs ˚ f |

›

›

›

›

LppRnq
ă 8.

The definitions above are independent (up to equivalence of norms) of the choices of



18

the function Ψ. From the definition, it is easy to see that

}f}hp ď }f}Hp ,

so that we have an embedding

Hp
Ă hp.

We note that }f}Hp and }f}hp are norms when p ě 1, and they are quasi-norms when

0 ă p ă 1. When p ą 1, it is well known that Hp “ Lp.

2.2 Duality

One motivation for studying Hp rather than Lp when 0 ă p ă 1 is that the dual of Lp

is degenerate in this case, while the dual of Hp is well-developed. The dual of Hp is

an appropriately chosen Companato space; for a good treatment of this space and its

duality with Hp, see for instance [21]. However, in computation, it is easier to pass

to a related space, the Lipschitz space Λα, introduced below.

2.2.1 Lipschitz Spaces

For α ě 0 we define the Lipschitz space Λα as follows.

• For α “ 0,Λ0 “ L8, }f}Λ0
“ }f}L8 .

• For 0 ă α ă 1, Λα “ tf : Dc ą 0 s.t. @x, y, |fpxq ´ fpyq| ď c |x´ y|αu ,

}f}Λα “ inf tc : @x, y, |fpxq ´ fpyq| ď c |x´ y|αu .

• For α ě 1 write α “ k ` β, k P N, 0 ď β ă 1.

Λα “ tf : @κ multiindex s.t. |κ| “ k, f pκq P Λβu,

}f}Λα “ max
|κ|“k

›

›f pκq
›

›

Λβ
.

Intuitively, we can think of f P Λα as meaning that f is “α times” differentiable

with bounded derivative. (This certainly makes sense when α P N.) This intuition

suggests that for α ă β, Λβ Ď Λα; but this is not true in general. We do, however,

have the following inclusions.
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• If α ă γ ă β, then Λα X Λβ Ď Λγ.

• If α ă β and K is compact, then ΛβpKq Ď ΛαpKq.

We don’t have to look very far to find an exception to the expected inclusion. For

example, fpxq “ x2 P Λ2pRq but not in Λ1pRq.

When α “ np1
p
´ 1q, for any f P HppRnq, g P ΛαpRnq, an easy computation shows

the pairing inequality

|〈f, g〉| “ }f}Hp }g}Λα . (2.1)

2.2.2 BMO

The dual space of H1pRnq is BMOpRnq, the space of bounded mean oscillation. Here,

we recall that BMOpRnq is the space of all locally integrable functions f satisfying

}f}BMO :“ sup
1

|B|

ż

B

ˇ

ˇ

ˇ

ˇ

fpxq ´
1

|B|

ż

B

fptq dt

ˇ

ˇ

ˇ

ˇ

dx ă 8,

where the sup is taken over all balls B in Rn. It is known that the space L8 is a

proper subspace of BMO and

log |x| P BMO zL8.

2.3 Alternate Characterizations of Hp

The Hardy spaces have several equivalent characterizations. In this thesis, we will

invoke the atomic decomposition and the Hilbert/Riesz transform characterization.

2.3.1 Atomic Characterization

Let 0 ă p ď 1 ď q ď 8, p ‰ q, s ě rnp1
p
´ 1qs, the integer part of rnp1

p
´ 1qs. We say

that a function apxq P LqpRnq is a pp, q, sq atom with the center at x0, if it satisfies

the following conditions:

Support Condition

supp paq Ă Bpx0, ρq, ρ ą 0,
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Cancellation Condition
ż

Rn
ykapyq dy “ 0 for all multi-indices k such that |k| ď s,

Size Condition

}a}Lq ď ρp
n
q
´n
p
q.

A function b is called a small pp, qq block if b satisfies the support and size conditions

with ρ ă 1. A function B is called a big pp, qq block if B satisfies the support and

size conditions with ρ ě 1.

A well-known theorem by Coifman [3] says that any f P HppRq has an atomic

decomposition

f “
ÿ

λjaj,

where tλju P `
p, and that

}f}pHp – inf
!

ÿ

|λj|
p : f “

ÿ

λjaj, aj are pp, q, sq atoms
)

.

It is also well known

}a}Lp ď }a}Hp ď 1

uniformly for all pp, q, sq atoms if s ą np1
p
´ 1q.

The space hp has an similar decomposition that was discovered by Goldberg in

[6]. Namely, any f P hppRq has a decomposition

f “
ÿ

λjaj,

where

}f}php – inf
!

ÿ

|λj|
p : f “

ÿ

λjaj

)
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and each aj is a pp, q, sq atom or a big pp, qq block. A simple computation (or see [6])

shows

}B}hp ď 1

uniformly for all big pp, qq blocks B. We establish a boundedness result for some

small blocks as Lemma 4.1.

2.3.2 Hilbert and Riesz Transform

When n “ 1, another important characterization of HppRq is the one involving the

Hilbert transform

Rfpxq “ p.v.
1

π

ż

R

fpyq

x´ y
dy.

The Hilbert transform is a very important operator in analysis. From [27] we know

that a non-identity linear transform T commutes with dilation, translation and reflec-

tion if and only if T is the Hilbert transform, up to a constant multiple. It is known

that the Hp space can be characterized by the Hilbert transform in the sense that,

for all f P Hp X L2,

}f}Hp – }Rf}Lp ` }f}Lp .

By checking the Fourier transform, it is easy to see that

{Rfpξq “ i sgnpξq pfpξq,

so ´R2 “ Id is the identity operator. The relationship between the Hilbert transform

and the Hausdorff operator was studied in [17] by Liflyand and Móricz . Particularly,

they obtained the identity

RphΦfqpxq “ hΦpRfqpxq.

When n ě 2, one can similarly characterize the space Hp by using the Riesz
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transform. For j P t1, 2, . . . , nu, the jth Riesz transform Rj is defined by

Rjpfqpxq “ p.v.

ż

Rn
cn

yj

|y|n`1fpx´ yq dy,

where the constant cn is given by

cn “ Γ

ˆ

n` 1

2

˙

{π
n`1
2 .

The Fourier transform of the kernel of Rj is called the symbol of Rj. From [25], we

know that the symbol of Rj is iξj{ |ξ|. From this, we can easily see that

n
ÿ

j“1

R2
j “ ´Id,

where Id is the identity map. We also denote

R0pfqpxq “ fpxq.

For an integer L ě 0, and a multi-index J “ tj1, . . . , jLu P t0, 1, 2, . . . , nu
L, let RJpfq

denote the generalized Riesz transform RJpfq “ Rj1 . . .RjLf . It is known that for L

such that p ą n´1
n´1`L

and all f P L2 XHppRnq,

ÿ

J

}RJpfq}LppRnq – }f}HppRnq ,

where the sum is taken over all J P t0, 1, 2, . . . , nuL. It follows easily that Riesz

transforms are bounded on Hp for all 0 ă p ď 1.

We have an analogous result for the weak Hardy spaces:

ÿ

J

}RJpfq}Lp,8pRnq – }f}Hp,8pRnq .

Particularly, for n “ 1, we have

}f}Hp,8 – }Rf}Lp,8 ` }f}Lp,8

for f P Hp,8 X L2.
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2.4 Interpolation

One major tool we will use to generate boundedness results is interpolation, which

allows us to obtain strong boundedness from weak boundedness. In particular,

we will use two interpolation theorems: Stein-Weiss analytic interpolation [27] and

Marcinkiewisz interpolation.

2.4.1 Stein-Weiss Analytic Interpolation

Let pM,A, µq and pN,B, νq be two measure spaces and DpMq and DpNq be the sets

of all simple functions on pM,A, µq and pN,B, νq respectively. Define the set ∆ to be

the strip

∆ “ tz P C : 0 ď Re z ď 1u

∆̊ “ tz P C : 0 ă Re z ă 1u .

Definition 2.1. Let Tz be a linear operator Tz : DpMq Ñ DpNq for each z P ∆. If

for any f P DpMq, g P DpNq,

hpzq “

ż

N

Tzpfqg dv (2.2)

is analytic on ∆̊ and continuous on ∆, and there exists a constant a ă π, such that

e´a|y| log |hpzq|, z “ x` iy

has an upper bound on ∆, then we call the family of the operators tTzu admissible.

Theorem F (Stein-Weiss). Let tTzu be an admissible family and z “ x` iy. If

}Tiypfq}Lq0,8pNq ďM0pyq }f}Lp0 pMq

}T1`iypfq}Lq1,8pNq ďM1pyq }f}Lp1 pMq .

for all f P DpMq, and if there exists b ă π for which

sup
yPR

e´b|y| logMjpyq ă 8, j P t1, 2u, (2.3)
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then for t P p0, 1q, and pt, qt be defined by

1

pt
“

1´ t

p0

`
t

p1

,
1

qt
“

1´ t

q0

`
t

q1

we have

}Ttpfq}Lqt pNq ďMt }f}Lpt pMq

for all f P DpMq, where Mt is a bounded constant that can be computed using the

three circle theorem (a theorem in Complex Analysis).

We will be using Stein-Weiss analytic interpolation to prove results about spaces

of Schwartz distributions. In general measure spaces, we have no derivatives, no

Schwartz space, no C8, etc. For our purposes, however, we will fix M “ N “ Rn.

Further, since in Stein-Weiss analytic interpolation we need the transformations Tz

to work on dense subspaces of our distribution spaces, we will replace DpMq, DpNq

by

C8c pRn
q “ tf P C8 : f has compact supportu .

In this context, we can replace equation (2.2) by

hpzq “

ż

Rn
Tzpfqpxqgpxq d$pxq, (2.4)

where d$pxq is some measure on Rn. We will use the following corollary of Theorem F:

Corollary 2.2. Let tTzu be an admissible family and z “ x` iy. If

}Tiypfq}Lq0,8pRn,d$q ďM0pyq }f}Lp0 pRn,d$q

}T1`iypfq}Lq1,8pRn,d$q ďM1pyq }f}Lp1 pRn,d$q

for all f P C8c pRnq, and there exists b ă π for which

sup
yPR

e´b|y| logMjpyq ă 8, j P t1, 2u
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then for t P p0, 1q, and pt, qt be defined by

1

pt
“

1´ t

p0

`
t

p1

,
1

qt
“

1´ t

q0

`
t

q1

we have

}Ttpfq}Lqt pRn,d$q ďMt }f}Lpt pRn,d$q

for all f P C8c pRnq, where Mt is a bounded constant, and d$ is some measure on Rn.

2.4.2 Marcinkiewisz Interpolation

T is called a quasilinear operator if there exists a constant C ą 0 such that T satisfies

|T pf ` gqpxq| ď C p|Tfpxq| ` |Tgpxq|q

for almost every x. An operator T (possibly quasilinear) satisfying an estimate of the

form

}Tf}Lq,8 ď C }f}Lp

is said to be of weak type pp, qq. An operator is simply of type pp, qq if T is a bounded

transformation from Lp to Lq:

}Tf}Lq ď C }f}Lp .

Now we are ready to recall the Marcinkiewicz interpolation theorem (see [27] for more

details).

Lemma 2.3 (Marcinkiewicz Interpolation). If T is a quasilinear operator of weak

type pp0, q0q and of weak type pp1, q1q where q0 ‰ q1, then for each θ P p0, 1q, T is of

type pp, qq, for p and q with p ď q of the form

1

p
“

1´ θ

p0

`
θ

p1

,
1

q
“

1´ θ

q0

`
θ

q1

.
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2.5 Herz Type Spaces

Many of the results we would like to obtain for higher dimensional Hardy spaces can

be more easily obtained on a subspace, the so-called Herz-type Hardy space. Herz

type spaces are important function spaces in harmonic analysis. Lu and Yang have

made tremendous contributions on these spaces. Their book [20] (joint with Hu) is

the unique research book on this topic.

For each k P Z, define

Bk “
 

x P Rn : |x| ď 2k
(

, Ek “ BkzBk´1

and let χk denote the characteristic function of Ek.

Definition 2.4 (Homogeneous Herz Space). Let α P R, 0 ă p, q ă 8. The homoge-

neous Herz space 9Kα,p
q pRnq is defined by

9Kα,p
q “

!

f P LqlocpR
n
z t0uq : }f} 9Kα,p

q
ă 8

)

,

where

}f} 9Kα,p
q pRnq “

˜

8
ÿ

k“´8

2kαp }fχk}
p
LqpRnq

¸
1
p

.

Definition 2.5 (Herz-type Hardy Space). Let α P R, 0 ă p ă 8, 1 ă q ă 8. The

homogeneous Herz-type Hardy space H 9Kα,p
q pRnq is defined by

H 9Kα,p
q pRn

q “

!

f P S 1pRn
q : Gf P 9Kα,p

q pRn
q

)

,

where Gf is the grand maximal function of f and

}f}H 9Kα,p
q pRnq “ }Gf} 9Kα,p

q pRnq .

Similar to the Hardy spaces, the space H 9Kα,p
q can be decomposed into atoms.

Definition 2.6 (Central Atom). Suppose 1 ă q ă 8, np1 ´ 1
q
q ď α ă 8, and

s ě rα ` np1
q
´ 1qs. A function apxq on Rn is said to be a central pα, qq atom if
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(i) supp a Ă Bp0, ρq ,

(ii) }a}LqpRnq ď |Bp0, ρq|´α{n,

(iii)

ż

Rn
apxqxβ dx “ 0 for any multi-index β with |β| ď s.

It is known that, for 0 ă p ă 8, 1 ă q ă 8, and np1´ 1
q
q ď α ă 8, f P H 9Kα,p

q pRnq

if and only if there exist a sequence of numbers tλku P `
p and a sequence of central

pa, qq atoms taku with the support in Bk such that

f “
8
ÿ

k“´8

λkak

in S 1. Moreover,

}f}H 9Kα,p
q pRnq – inf

$

&

%

˜

ÿ

k

|λk|
p

¸
1
p

: f “
ÿ

k

λkak is an atomic decomposition of f

,

.

-

.

By the definition, it is not difficult to see

9Kα,p
p “ Lp if α “ 0 and p ě 1.

When 0 ă p ď 1, and n
p
“ α ` n

q
, H 9Kα,p

q is a subspace of Hp.
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CHAPTER 3

ONE DIMENSIONAL HAUSDORFF OPERATORS: THE CASE 0 ă p ă 1

In this chapter, we obtain a boundedness result for Hausdorff operators

hΦpfqpxq “

ż 8

0

Φptq

t
f
´x

t

¯

dt

on one-dimensional Hardy spaces Hp, 0 ă p ă 1, which requires a relatively simple

smoothness condition on the function Φ. First, we recall the following result, due to

Liflyand and Miyachi:

Theorem B ([14]). Let 0 ă p ă 1 and M “ r1{p´1{2s`1. If Φ P CM and its support

is a compact set in p0,8q, then the Hausdorff operator hΦ is bounded on HppRq.

Liflyand and Miyachi obtained further generalizations of Theorem B (Theorems C

and D, see page 8), which imply the boundedness of the Cesàro operator Cα for all

α, p ą 0. However, the main purpose of this chapter is to use a different method from

those in [9] and [14] to obtain a new sufficient condition on Φ to ensure the HppRq

boundedness of hΦ. We will establish the following result.

Theorem 3.1. Let Φ be a Lebesgue integrable function. Denote φptq “
Φp 1

t
q

t
for t ą 0,

and φptq “ 0 for t ď 0. Assume 0 ă p ă 1 and α “ 1
p
´ 1. If φ P Λα then

}hΦpfq}Hp,8pRq ĺ }f}HppRq .

If there exists a small ε ą 0, such that α ´ ε ą 0 and φ P Λα`ε X Λα´ε, then

}hΦpfq}HppRq ĺ }f}HppRq .

Clearly, Theorem 3.1 is an improvement of Theorem B. But we should point out

that the theorem is mutually independent to Theorems C and D. First, Theorems C

and D do not imply Theorem 3.1, since Theorem 3.1 assumes less smoothness con-

dition. On the other hand, although in Theorems C and D, Φ is assumed more
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smoothness on the set p0, aq Y pa,8q, Φ is allowed to have very little smoothness at

a single point a. With this advantage, one easily sees that Theorems C and D imply

the HppRq boundedness of the Cesàro operator Cα for any a ą 0, while the HppRq

boundedness of the Cesàro operator can not be deduced from Theorem 3.1 if α ă 1{p.

Proof of Theorem 3.1. The Hardy space Hp is a distribution space when 0 ă p ă 1.

However, it suffices to show the theorem for functions f in the space Hp X L2, since

this space is dense in Hp. Recall that the Hp space can be characterized by the

Hilbert transform in the sense of

}f}Hp – }Rf}Lp ` }f}Lp

for all f P Hp X L2. By Theorem 3 in [17],

R ˝ hΦpfqpxq “ hΦpRfqpxq “
ż 8

´8

Φptq

t
pRfq px

t
qdt.

Changing variables 1
t
“ v, by the definition of φ, we have

|R ˝ hΦpfqpxq| “

ˇ

ˇ

ˇ

ˇ

ż 8

´8

Φp 1
v
q

v
pRfq pxvqdv

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż 8

´8

φpvq pRfq pxvqdv
ˇ

ˇ

ˇ

ˇ

.

Thus, by duality and scaling,

|R ˝ hΦpfqpxq| ď }φ}Λα }Rfpx¨q}Hp

“ |x|´1{p
}φ}Λα }Rf}Hp

ĺ |x|´1{p
}φ}Λα }f}Hp ,

where the last inequality is true because the Hilbert transform is bounded on Hp for

any p ą 0. Now, for any λ ą 0, it is easy to see that

|tx : |R ˝ hΦpfqpxq| ą λu|

ĺ

ˇ

ˇ

ˇ
tx P R : |x|´1{p

}φ}Λα }f}Hp ą λu
ˇ

ˇ

ˇ
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“

ˇ

ˇ

ˇ

ˇ

tx P R : |x|1{p ă
}φ}Λα }f}Hp

λ
u

ˇ

ˇ

ˇ

ˇ

»

ˇ

ˇ

ˇ

ˇ

tx P R : |x| ă

"

}φ}Λα }f}Hp

λ

*p

u

ˇ

ˇ

ˇ

ˇ

.

This shows that for α “ 1
p
´ 1,

}R ˝ hΦpfq}Lp,8 ĺ }f}Hp .

Similarly we can show that

}hΦpfq}Lp,8 ĺ }f}Hp

if α “ 1
p
´ 1. These two inequalities imply, by the Hilbert transform characterization

of Hp,8, that

}hΦpfq}Hp,8pRq ĺ }f}HppRq .

Put

p1 “
1

α ` ε` 1
, p2 “

1

α ´ ε` 1
.

By the above weak Hp estimate, we have that for j “ 1, 2,

}R ˝ hΦpfq}Lpj,8pRq ĺ }f}Hpj pRq ,

}hΦpfq}Lpj,8pRq ĺ }f}Hpj pRq .

Then it follows from the Marcinkiewicz interpolation theorem that,

}R ˝ hΦpfq}LppRq ĺ }f}HppRq

}hΦpfq}LppRq ĺ }f}HppRq .

Therefore, we have

}hΦpfq}HppRq » }R ˝ hΦpfq}LppRq ` }hΦpfq}LppRq ĺ }f}HppRq .

This completes the proof of Theorem 3.1. l
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We have the following corollary:

Corollary 3.2. Suppose α ą 1
p
´ 1 and α is a positive integer. Assume that Φ P

Cα X L1and satisfies

χp1,8qptq
ˇ

ˇΦpkqptq
ˇ

ˇ ĺ t´2k´1´α for all k “ 0, 1, 2, ..., α,

χp0,1qptq
ˇ

ˇΦpkqptq
ˇ

ˇ ĺ t´k´1 for all k “ 0, 1, 2, ..., α.

Then

}hΦpfq}HppRq ĺ }f}HppRq .

Proof. It is easy to see that if t ď 1,

ˇ

ˇ

ˇ

ˇ

dα

dtα

ˆ

Φp1
t
q

t

˙
ˇ

ˇ

ˇ

ˇ

ĺ

α
ÿ

k“0

ˇ

ˇ

ˇ

ˇ

Φkp1
t
q

t1`2k

ˇ

ˇ

ˇ

ˇ

ĺ 1;

and if t ą 1

ˇ

ˇ

ˇ

ˇ

dα

dtα

ˆ

Φp1
t
q

t

˙ˇ

ˇ

ˇ

ˇ

ĺ

α
ÿ

k“0

ˇ

ˇ

ˇ

ˇ

Φkp1
t
q

tα`1

ˇ

ˇ

ˇ

ˇ

ĺ 1.

Hence, the function Φ satisfies the conditions of Theorem 3.1. l

In the capacity of Φ in Theorem 3.1, one may take a number of usual Fourier

multipliers, for example, e´|t|, e´t
2{2, which correspond to the Poisson and Gaussian

kernels, respectively. It is also worthwhile to investigate the Riesz multiplier

Φptq “ p1´ t2qδ`,

where fptq` is the function that is equal to 0 if fptq ď 0 and is equal to fptq if fptq ą 0.

It is easy to check that p1 ´ t2qδ` satisfies the conditions in Theorem 1 if δ ą 1
p
´ 1.

We observe that Stein, Taibleson and Weiss in [26] proved that the Bochner-Riesz

operator Bδ ˚ f is bounded on HppRnq if δ ą n
p
´ n`1

2
, where

{pBδ ˚ fqpξq “ p1´ |ξ|
2
q
δ
`
pfpξq.

Therefore, when n “ 1, our result matches the critical index obtained by Stein,
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Taibleson and Weiss. With this observation, it will be very interesting to extend

Theorem 3.1 to the higher dimensional Hausdorff operator. This generalization is the

subject of Chapter 5.
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CHAPTER 4

ONE DIMENSIONAL HAUSDORFF OPERATORS: THE CASE p “ 1

4.1 Introduction

This chapter will show that, for Φptq ě 0, the Hausdorff operator hΦ is bounded on

the Hardy space H1pRq if and only if Φ is a Lebesgue integrable function; and hΦ is

bounded on the local Hardy space h1pRq if and only if the function Φptqχp0,1qptq logp1
t
q

is Lebesgue integrable. We also establish a weak type H1pRq boundedness theorem

for hΦ. As an application, we conclude that the Hardy operator H is not bounded

on either H1pRq or h1pRq, but it is bounded from H1pRq to the weak space H1,8pRq.

We also study the boundedness property for the kth order Hardy operator Hpkq and

fractional Hardy operator Hpkq,α on spaces HppRq for k ě 1
p
´ 1 ě 0, 0 ď α ă 1.

One operator in particular will serve as a model of Hausdorff operators acting on

H1pRq. We begin with a discussion of the Hardy operator.

4.1.1 The Hardy Operator and its Generalizations

The Hardy operator H is defined by

Hfpxq “ 1

x

ż x

0

fptq dt.

It is known that the operator H is bounded on LppRq, for all 1 ă p ď 8 with the

best bound constant p
p´1

por 1 for p “ 8), and H is not bounded on L1pRq( see [2],

also [7] ). It is also known that some important operators are bounded on H1pRq but

not on L1pRq. Thus a natural question is whether the Hardy operator is bounded on

H1pRq.

After a changing of variables, we have

Hfpxq “
ż 8

0

χp1,8qptq t
´1

t
fp
x

t
q dt.
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Thus, H is a Hausdorff operator with Φ “
χp1,8qptq

t
.

Two generalizations of the Hardy operator will also be of interest: the kth Hardy

operator Hpkq (k “ 0, 1, 2, . . .)

Hpkqpfqpxq “
1

xk`1

ż x

0

tkfptq dt

“

ż 8

1

1

tk`2
fp
x

t
q dt

and the kth fractional Hardy operator Hpkq,α (k “ 0, 1, 2, . . ., 0 ď α ă 1)

Hpkq,αpfqpxq “
1

xk`1´α

ż x

0

tkfptq dt.

It is easy to see that Hp0q “ H and Hpkq,0 “ Hpkq.

4.1.2 A Lemma in Local Hardy Spaces

Recall from that the local Hardy space h1 is characterized by decomposition into

atoms and big blocks. In order to demonstrate a bound on Hausdorff operators on

h1, it is useful to establish bounds on the h1 norm of both big and small blocks.

A simple computation shows (or see [6])

}B}hp ď 1

uniformly for all big pp, qq blocks B. For small blocks, we have the following estimate.

Lemma 4.1. For a small p1, qq block b with support in px0 ´ r, x0 ` rq, we have

}b}h1 ď 1` log
1

r

uniformly on r and x0.

Proof. By a change of variables, we may assume that the support of b is in the interval

p´r, rq. Let Bpuq “ rbpruq. It is easy to see that supp Bpuq Ď p´1, 1q and (after a

simple computation) }B}Lq ď 1; so Bpuq is a big p1, qq-block. Choose Ψpyq “ e´|y|
2
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in the definition of h1pRq. We have

}b}h1pRq “

ż

R
sup

0ăsď1

ˇ

ˇ

ˇ

ˇ

ż

R
Ψspx´ uqbpuq du

ˇ

ˇ

ˇ

ˇ

dx

“

ż

R
sup

0ăsď1

ˇ

ˇ

ˇ

ˇ

ż

R
Ψspx´ ruqrbpruq du

ˇ

ˇ

ˇ

ˇ

dx

“

ż

R
sup

0ăsď1
r

ˇ

ˇ

ˇ

ˇ

ż

R
Ψsprpx´ uqqBpuq du

ˇ

ˇ

ˇ

ˇ

dx

“

ż

R
sup

0ăsď1

ˇ

ˇ

ˇ

ˇ

ż

R

1

ps{rq
Ψ

ˆ

x´ u

s{r

˙

Bpuq du

ˇ

ˇ

ˇ

ˇ

dx

“

ż

R
sup

0ăsď 1
r

ˇ

ˇ

ˇ

ˇ

ż

R
Ψspx´ uqBpuq du

ˇ

ˇ

ˇ

ˇ

dx

“

ż

R
sup

0ăsď 1
r

|Ψs ˚Bpxq| dx.

Let

N “

„

log2

1

r



` 1,

then (recalling that 1
r
ą 1)

sup
0ăsď 1

r

|Ψs ˚Bpxq| ď sup
0ăsď1

|Ψs ˚Bpxq| `
N
ÿ

k“0

sup
2kăsď2k`1

|Ψs ˚Bpxq|

ď sup
0ăsď1

|Ψs ˚Bpxq| `
N
ÿ

k“0

sup
2kăsď2k`1

|Ψs| ˚ |Bpxq|,

ď sup
0ăsď1

|Ψs ˚Bpxq| `
N
ÿ

k“0

pΨ̃k ˚ |B|qpxq

where

Ψ̃kpuq “
1

2k
Ψp

u

2k`1
q.

This gives

ż

R
sup

0ăsď 1
r

|Ψs ˚Bpxq| dx ď

˜

›

›

›

›

sup
0ăsă1

|Ψs ˚B|

›

›

›

›

L1pRq
`

N
ÿ

k“0

›

›

›
Ψ̃k ˚ |B|

›

›

›

L1pRq

¸

.

It is easy to check that there is a constant C independent of k such that

›

›

›
Ψ̃k ˚ |B|

›

›

›

L1pRq
ď C }B}L1pRq ď C.
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Hence,

}b}h1pRq ď N }B}L1 ` }B}h1pRq ď 1` log2

1

r
. l

4.2 Necessary and Sufficient Conditions for H1 Boundedness

In [15, 18], Liflyand and Móricz proved that the Hausdorff operator has the same

behavior on the Hardy space H1pRq as that in the Lebesgue space L1pRq, in the

following sense:

Theorem G ([15]). If Φ P L1p0,8q, then hΦ is bounded on H1pRq.

Motivated by the known Lp results, our first aim is to show that Φ P L1p0,8q is

also a necessity condition in Theorem G, if Φ is nonnegative valued. Precisely, we

establish the following result.

Theorem 4.2. Let Φ be a nonnegative valued locally integrable function.

(1) hΦ is bounded on H1pRq if and only if Φ P L1p0,8q.

(2) hΦ is bounded on the local Hardy space h1pRq if and only if

ż 8

1

Φptq dt`

ż 1

0

Φptq
`

1` logp1
t
q
˘

dt ă 8.

Proof of Part 1. To prove the first part of the theorem, by Theorem G, it suffices to

show the only if part. Suppose Φ R L1p0,8q, we use the atomic characterization of

the space H1. Let b be a C8 odd function with support on r´1, 1s which satisfies

bpxq “ 1
2

for x P r1
4
, 1

2
s, and 1

2
ě bpxq ě 0 for x P r0, 1s.

Then b is a p1,8, 0q atom. Thus, b P H1. Let a “ ´Rpbq. Recalling that ´R2 “ Id

and that the Hilbert transform is bounded on H1, we know a P H1 and b “ Rpaq.
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Now

}hΦpaq}H1pRq ľ }RhΦpaq}L1pRq

“

›

›

›

›

ż 8

0

Φptq

t
Rapx

t
q dt

›

›

›

›

L1pR, dxq

“

›

›

›

›

ż 8

0

Φptq

t
bp
x

t
q dt

›

›

›

›

L1pR, dxq
.

The last equality holds because the Hilbert transform commutes with the dilation 1
t
.

So,

}hΦpaq}H1pRq ľ

ż 8

0

ˇ

ˇ

ˇ

ˇ

ż 8

0

Φptq

t
bp
x

t
q dt

ˇ

ˇ

ˇ

ˇ

dx

“

ż 8

0

Φptq dt

ż 8

0

bpxq dx “ 8.

If hΦ were bounded on H1, it could be

}hΦpaq}H1pRq ď }a}H1 ď 1,

which leads to a contradiction. l

Proof of Part 2. To show the second part, we first show sufficiency. For any f P

h1pRq, we may write

fpxq “
ÿ

j

λjajpxq `
ÿ

j

µjBjpxq

where each aj is a p1,8, 0q atom and each Bj is a big p1,8q block, and

ÿ

j

p|λj| ` |µj|q – }f}h1pRq .

By the Minkowski inequality,

}hΦpfq}h1pRq ď
ÿ

j

|λj| }hΦpajq}h1pRq `
ÿ

j

|µj| }hΦpBjq}h1pRq.

Since

ajp
x
t
q

t
“ Ajpxq
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is again a p1,8, 0q atom, by the Minkowski inequality

}hΦpajq}h1pRq ď

ż 8

0

Φptq }Aj}h1pRq dt ď

ż 8

0

Φptq dt.

Similarly,

}hΦpBjq}h1pRq ď

ż 1

0

Φptq

›

›

›

›

1

t
Bjp

¨

t
q

›

›

›

›

h1pRq
dt`

ż 8

1

Φptq

›

›

›

›

1

t
Bjp

¨

t
q

›

›

›

›

h1pRq
dt.

Note that 1
t
Bjp

x
t
q is again a big p1,8q block if t ě 1, and it may become a small

p1,8q block when t ă 1. Thus, by Lemma 4.1 we have

}hΦpBjq}h1pRq ď

ż 1

0

Φptqp1` log2p
1

t
qq dt`

ż 8

1

Φptq dt.

Combining all estimates, we obtain

}hΦpfq}h1pRq ď C }f}h1pRq ,

where

C “

ż 1

0

Φptqp1` log2p
1

t
qq dt`

ż 8

1

Φptq dt.

Conversely, suppose

ż 1

0

Φptqp1` log2p
1

t
qq dt “ 8.

Let Ψspxq “
1
s
e
´x2

s2 and Bpyq “ χr0, 1
2
spyq. Then Bpyq is a big p1,8q block. We have

ż

R
sup

0ăsď1
|Ψs ˚ hΦpBqpxq| dx ě

ż 1

0

sup
0ăsď1

|Ψs ˚ hΦpBqpxq| dx ě

ż 1

0

|Ψx ˚ hΦpBqpxq| dx.

Here

|Ψx ˚ hΦpBqpxq| “

ż 8

0

Φptq

t

ż

R

1

x
e´p

x´y
x
q2Bp

y

t
q dy dt

ě

ż 1

0

Φptq

t

ż t
2

0

1

x
e´p

x´y
x
q2 dy dt.
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Thus
ż

R
sup

0ăsď1
|Ψs ˚ hΦpBqpxq| dx ě

ż 1

0

ż 1

0

Φptq

t

ż t
2

0

1

x
e´p

x´y
x
q2 dy dt dx

ě

ż 1

0

Φptq

t

˜

ż 1

t

ż t
4

0

1

x
e´p

x´y
x
q2 dy dx

¸

dt

ě
e´4

4

ż 1

0

Φptq

ˆ
ż 1

t

1

x
dx

˙

dt

– ´
e´4

4

ż 1

0

Φptq log2ptq dt “ 8.

On the other hand, if hΦpfq were bounded on h1pRq, it would be

ż

R
sup

0ăsď1
|Ψs ˚ hΦpBqpxq| dx “ }hΦpBq}h1pRq ď }B}h1pRq ď 1,

which leads to a contradiction. Next, assume

ż 8

1

Φptq dt “ 8,

and let B be as before. We have

ż

R
sup

0ăsď1
|Ψs ˚ hΦpBqpxq| dx ě

ż

R
|Ψ1 ˚ hΦpBqpxq| dx

ě

ż 8

1

Φptq

t

ż t
2

0

ˆ
ż

R
e´px´yq

2

dx

˙

dy dt

ľ

ż 8

1

Φptq dt “ 8,

so again hΦ is unbounded. l

Our second aim is to establish conditions for H1pRq Ñ H1,8pRq boundedness. To

do this, we use an approach similar to that in Chapter 3. We rewrite the Hausdorff

operator as

hΦfpxq “

ż 8

´8

Φ0ptq

t
f
´x

t

¯

dt,

where Φ0ptq is a function that is equal to Φ on p0,8q and is equal to 0 on p´8, 0q.
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Denote

φptq “
Φ0p

1
t
q

t
,

Then we have the following result:

Theorem 4.3. Let φptq “ t´1Φ0ptq. Suppose φ P BMOpRq. Then hΦ extends to a

bounded operator from H1pRq to H1,8pRq.

Proof. It suffices to show the theorem for functions f in the space H1XL2, since this

space is dense in H1.

By Theorem 3 in [17],

R ˝ hΦpfqpxq “ hΦpRfqpxq “
ż 8

´8

Φ0ptq

t
pRfqpx

t
q dt.

Changing variables 1
t
“ v, we have

|R ˝ hΦpfqpxq| “

ˇ

ˇ

ˇ

ˇ

ż 8

´8

Φ0p
1
v
q

v
pRfqpxvq dv

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż 8

´8

φpvqpRfqpxvq dv
ˇ

ˇ

ˇ

ˇ

.

Thus, by duality and scaling,

|R ˝ hΦpfqpxq| ď }φ}BMO }pRfqpx¨q}H1

“ |x|´1
}φ}BMO }pRfq}H1

ď |x|´1
}φ}BMO }f}H1 .

The last inequality is because that the Hilbert transform is bounded on H1. Note,

for any λ ą 0, it is easy to see that

|tx P R : |R ˝ hΦpfqpxq| ą λu|

ď
ˇ

ˇx P R : |x|´1
}φ}BMO }f}H1 ą λ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

"

x P R : |x| ď
}φ}BMO }f}H1

λ

*
ˇ

ˇ

ˇ

ˇ

–
}φ}BMO }f}H1

λ
.
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So by the definition,

}R ˝ hΦpfq}L1,8 ď }φ}BMO }f}H1 .

Similarly, we can show

}hΦpfq}L1,8 ď }φ}BMO }f}H1 .

These two inequalities imply

}hΦpfq}H1,8 ď }f}H1pRq . l

4.3 Boundedness of the Hardy Operator Near H1

So far we have considered Hardy spaces defined on the whole real line R. If we wish

to consider a Hardy space only on the half line R` “ p0,8q, we might use the atomic

Hardy space H1
ApR`q studied by Coifman and Weiss (see [4]).

The space R` “ p0,8q is a space of homogeneous type. Based on the study by

Coifman and Weiss [4], we consider the atomic Hardy space H1
ApR`q. Applying the

definition of a p1,8, 0q atom apxq (or 1-atom, for the sake of brevity) to the current

case, we obtain

Support Condition

supp paq Ă pα, βq Ă p0,8q.

Cancellation Condition
ş

R` apyq dy “ 0.

Size Condition

}a}L8 ď pβ ´ αq
´1.

The space H1
ApR`q is the collection of all f P L1pR`q such that

fpxq “
ÿ

λjajpxq,
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where each aj is a 1-atom and tλju P `
1. We define

}f}H1
ApR`q

“ inf
!

ÿ

|λj| : fpxq “
ÿ

λjajpxq
)

.

It is a little surprising to note that the Hardy operator H is bounded on H1
ApR`q.

Theorem 4.4. For the Hardy operator H

}Hpfq}H1
ApR`q ď }f}H1

ApR`q.

Proof. We need only show that, for any 1-atom a, Hpaq is also a 1-atom. We proceed

by showing that Hpaq satisfies the three conditions.

Support Condition

Suppose a has support in pα, βq. We show that if x R pα, βq, thenHpaqpxq “ 0,

so supp pHpaqq Ď pα, βq. Recall

Hpaqpxq “ 1

x

ż x

0

aptq dt.

Now, if x ď α, then aptq “ 0 for all t P p0, xq, so Hpaqpxq “ 1
x

şx

0
aptq dt “ 0.

On the other hand, of x ě β, then aptq “ 0 for t ą x, and so

Hpaqpxq “ 1

x

ż x

0

aptq dt

“
1

x

ż 8

0

aptq dt “ 0

with the last equality holding by the cancellation condition.

Size Condition

This is easily seen by a computation.

}Hpaq}L8 ď
1

x

ż x

0

}a}L8 dy “ }a}L8 ď
1

β ´ α
.

Cancellation Condition

An easy computation with the support condition on Hpaq gives

ż 8

0

Hpaqpxq dx “
ż β

α

ż 8

1

1

t2
a
´x

t

¯

dt dx.
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Since the above double integral is well defined, by the Fubini theorem we

obtain
ż 8

0

Hpaqpxq dx “
ż 8

1

1

t2

ż 8

0

ap
x

t
q dx dt

“ lim
NÑ8

ż N

1

1

t2

ż 8

0

ap
x

t
q dx dt

“ lim
NÑ8

ż N

1

1

t

ˆ
ż 8

0

apxq dx

˙

dt “ 0.

Thus Hpaq is a 1-atom, and so for f P H1
Ap0,8q,

Hpfq “ H
´

ÿ

λjajpxq
¯

“
ÿ

λjHpajqpxq

expresses Hpfq as a sum of atoms, and so

}Hpfq}H1
Ap0,8q

ď
ÿ

|λj| “ }f}H1
Ap0,8q

which is the desired bound. l

In [5], Garćıa-Cuerva, and Rubio De Francia discuss a connection between H1
ApR`q

and even elements of H1pRq(see [5, lemmas 7.39 and 7.40] especially.) This suggests

that the following result is a corollary to Theorem 4.4, and indeed, this is what we

see.

Corollary 4.5. Let

fepxq “
1

2
tfpxq ` fp´xqu

be the even part of f . If f P H1, then we have

}Hpfeq}H1 ď }f}H1 .

Particularly, we have

}Hpfq}H1 ď }f}H1

for all even functions f P H1.
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Proof. We write

fpxq “
ÿ

λjajpxq

with each aj being a p1,8, 0q atom and

ÿ

|λj| – }f}H1 .

As in the proof of Lemma 7.39 on page 353 in [5], we may write

fepxq “
ÿ

λjAjpxq

where

Ajpxq “
ajpxq ` ajp´xq

2
.

If ajpxq has support in r0,8q, then a´j pxq “ ajp´xq has support in p´8, 0s. Following

the proof of Theorem 4.4, we know both Hpajq and Hpa´j q are p1,8, 0q atoms so that

}HpAjq}H1 ď 1.

If 0 is interior to the interval-support pαj, βjq of aj, then without loss of generality,

we assume βj ą |αj|. Thus Aj is supported in the interval p´βj, βjq, and

βj ´ αj
2

ď βj ď βj ´ αj.

On the other hand, since Aj is an even function, with the cancellation condition we

have

0 “

ż βj

´βj

Ajpxq dx “ 2

ż βj

0

Ajpxq dx “ 2

ż 0

´βj

Ajpxq dx.

This indicates that, without loss of generality, both χp0,8qpxqAjpxq and χp´8,0qpxqAjpxq

are p1,8, 0q atoms. Thus, again we have

}HpAjq}H1 ď
›

›Hpχp´8,0qAjq
›

›

H1 `
›

›Hpχp0,8qAjq
›

›

H1 ď 1.
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This completes the proof. l

Corollary 4.6. The Hardy operator H has the following properties

(1) H is not bounded on H1pRq.

(2) H is not bounded on h1pRq.

(3) H is bounded from H1pRq to H1,8pRq.

(4) H is bounded on H1
Ap0,8q.

Proof. Recalling that H “ hΦ with Φ “
χp1,8qptq

t
, and noting that Φ R L1p0,8q, we

see parts (1) and (2) from Theorem 4.2. However, noting that in this case φptq “

χp0,1qptq P BMO, Theorem 4.3 gives part (3). Part (4) is the result in Theorem 4.4,

above. l

4.4 Generalizations of the Hardy Operator (0 ă p ă 1)

We now turn to the kth order Hardy operator

Hpkqpfqpxq “
1

xk`1

ż x

0

tkfptq dt,

Theorem 4.7. Let 0 ă p ă 1 .

(1) Hpkq is bounded from HppRq to Hp,8pRq if k “ 1
p
´ 1.

(2) Hpkq is bounded on HppRq if k ą 1
p
´ 1.

Proof. We begin by showing the first part. Then, with the easy fact that Hpkq is

weakly bounded on H1 (by Theorem 4.3), we complete the proof of the theorem by

using an interpolation argument.

Choose p such that 1
p
´ 1 “ k. It suffices to show that

›

›Hpkqpfq
›

›

Hp,8 ď }f}Hp for

f P HpXL2, since HpXL2 is dense in Hp. Using the Hilbert transform, we can show

this by showing

›

›R ˝Hpkqpfq
›

›

Lp,8
`
›

›Hpkqpfq
›

›

Lp,8
ď }f}Hp .
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We show
›

›R ˝Hpkqpfq
›

›

Lp,8
ď }f}Hp ; the proof that

›

›Hpkqpfq
›

›

Lp,8
ď }f}Hp is the

same.

As in the proof of Theorem 4.3, the Hilbert Transform satisfies

R ˝Hpkqpfqpxq “ HpkqpRfqpxq “
ż 8

1

1

tk`2
pRfqpx

t
q dt.

For any f P HppRq, Rf P Hp since the Hilbert transform is bounded on Hp. Thus,

we have an atomic decomposition

Rf “
ÿ

j

λjaj,

where each aj is a pp,8, kq atom and

ÿ

|λj|
p
– }Rf}pHp .

Hence

R ˝Hpkqpfq “
ÿ

jPZ

λj

ż 8

1

1

tk`2
ajp
¨

t
q dt “

ÿ

λjHpkqpajq,

and therefore,

›

›R ˝Hpkqpfq
›

›

p

Lp,8
“

›

›

›

ÿ

λjHpkqpajq
›

›

›

p

Lp,8
.

By [26, Lemma 1.8], showing that

›

›

›

ÿ

λjHpkqpajq
›

›

›

p

Lp,8
ď

ÿ

|λj|
p

is equivalent to show that

›

›Hpkqpajq
›

›

p

Lp,8
ď 1

for any pp,8, kq-atom aj. Since
ř

|λj|
p
– }Rf}pHp ď }f}pHp , this will give the desired

result.

If aj is a pp,8, kq atom with support in pαj, βjq Ă p0,8q or pαj, βjq Ă p´8, 0q,

then by a method similar to that in the proof of Theorem 4.4, it easy to see that
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Hpkqpajq is again a pp,8, kq atom with support in pαj, βjq. Thus, we have

›

›Hpkqpajq
›

›

Hp,8 ď
›

›Hpkqpajq
›

›

Hp ď 1

uniformly on j P Z.

If the support of a pp,8, kq atom aj contains the origin, without loss of generality,

we may assume

supp pajq Ă p´rj, rjq

and

}aj}L8 ď rj
´ 1
p .

For each fixed x ‰ 0, the support of ajptxq is in p´
rj
|x|
,
rj
|x|
q. Write

Hpkqpajqpxq “
1

|x|
1
p

ż 8

´8

χp0,1qptq
´

|x|
1
p tkχ

p´
rj
|x|
,
rj
|x|
q
ptqajptxq

¯

dt.

We now claim that, for x ‰ 0, the function

Aj,xptq “ |x|
1
p tkχ

p´
rj
|x|
,
rj
|x|
q
ptqajptxq

is a p1,8, 0q atom supported in the interval p´
rj
|x|
,
rj
|x|
q. In fact, the support condition

is obvious from the definition. Also,

ż 8

´8

Aj,xptq dt –

ż rj

´rj

tkajptq dt “ 0,

by the cancellation condition on aj, and

}Aj,x}L8 ď }a}L8

ˇ

ˇ

ˇ

rj
x

ˇ

ˇ

ˇ

k

|x|
1
p ď

ˇ

ˇ

ˇ

ˇ

x

rj

ˇ

ˇ

ˇ

ˇ

.

This shows that Aj,x also satisfies the cancellation and size conditions. Thus, by the

duality,

ˇ

ˇHpkqpajqpxq
ˇ

ˇ ď
1

|x|
1
p

›

›χp0,1q
›

›

BMO
}Aj,x}H1 ď

1

|x|
1
p



48

uniformly on j and x P Rz t0u. Following the proof of Theorem 4.3 we obtain that,

for any λ ą 0,

ˇ

ˇ

 

x :
ˇ

ˇHpkqpajqpxq
ˇ

ˇ ą λ
(
ˇ

ˇ ď
1

λp
.

Thus, by the same proof as in Theorem 4.3, we obtain that

›

›Hpkqpajqpxq
›

›

Lp,8
ď 1.

as desired.

Now we show part (2). Given k, 0 ă p ă 1 such that k ą 1
p
´ 1, we fix p0 such

that k “ 1
p0
´ 1. Then p0 ă p ă 1. The above argument shows that Hk is weakly

bounded on Hp0 , and Theorem 4.3 shows that Hk is weakly bounded on H1. Thus

by the Marcinkiewicz interpolation, we obtain the result in part (2). l

Remark 4.8. The first part of Theorem 4.7 can also be proved by using the result in

[14].

This result can be further generalized to the kth order fractional Hardy operators

Hpkq,αpfqpxq “
1

xk`1´α

ż x

0

tkfptq dt, 0 ď α ă 1.

We first establish an easy Lp Ñ Lq estimate.

Lemma 4.9. Choose q so that 1
p
´ α “ 1

q
.

(1) For 1 ď p ă 8,
›

›Hpkq,αpfq
›

›

Lq,8
ď }f}Lp.

(2) For 1 ă p ă 8,
›

›Hpkq,αpfq
›

›

Lq
ď }f}Lp.

Proof. Clearly, we only need to show the weak boundedness. The strong Lp Ñ Lq

boundedness then follows by an interpolation. By Hölder’s inequality,

ˇ

ˇHpkq,αpfqpxq
ˇ

ˇ “ |x|α
ˇ

ˇ

ˇ

ˇ

ż 1

0

tkfpxtq dt

ˇ

ˇ

ˇ

ˇ

ď
1

|x|
1
q

}f}Lp .
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Hence, for any λ ą 0,

ˇ

ˇ

 

x P R :
ˇ

ˇHpkq,αpfqpxq
ˇ

ˇ ě λ
(
ˇ

ˇ ď

ˆ

}f}Lp

λ

˙q

.

This proves the weak Lp Ñ Lq,8 boundedness. l

Theorem 4.10. Let 0 ă p ă 1, and 1
p
´ α “ 1

q
.

(1) Hpkq,α is bounded from HppRq to Lq,8pRq if k “ 1
p
´ 1.

(2) Hpkq,α is bounded from HppRq to LqpRq if k ą 1
p
´ 1.

Proof. With Lemma 4.9 and interpolation, it suffices to show the first part of the

theorem. For 1
p
“ k` 1 and any f P HppRq, as in the proof of Theorem 4.7, we write

an atomic decomposition

f “
ÿ

j

λjaj,

where each aj is a pp,8, kq atom. Thus,

Hpkq,αpfq “
ÿ

jPZ

λjHpkq,α pajq .

Similar to the proof of Theorem 4.7, we only need to show

›

›Hpkq,α pajq
›

›

Lq,8
ď 1,

uniformly for all pp,8, kq atoms aj.

If aj is pp,8, kq atom with support in pαj, βjq Ă p0,8q or pαj, βjq Ă p´8, 0q,

Hpkq,α pajq is also supported in pαj, βjq “ Ij. Choose p1, q1 ą 1 so that 1
p1
´ α “ 1

q1
.

Then we have the following bound uniformly on j.

›

›Hpkq,αpajq
›

›

q

Lq
“
›

›Hpkq,αpajqq ¨ χIj
›

›

L1

ď
›

›Hpkq,αpajqq
›

›

L
q1
q
¨
›

›χIj
›

›

L
q1

q1´q

“

ˆ
ż

ˇ

ˇHpkq,αpajqpxq
ˇ

ˇ

q¨ q
1

q dx

˙
1
q1
¨q

|Ij|
1´ q

q1
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“
›

›Hpkq,αpajq
›

›

q

Lq1
|Ij|

1´ q
q1

ď }aj}
q

Lp1
|Ij|

1´ q
q1 ď 1.

If the support of a pp,8, kq atom aj contains the origin, with an easy modification

of the proof for Theorem 4.7, we obtain

›

›Hpkq,α pajq
›

›

Lq,8
ď 1,

uniformly for all pp,8, kq atom aj. This completes the proof of part (1).

To show part (2), take p1 “ 1, p2 such that p2 “
1

1`k
, and q1, q2 such that

1
qi
“ 1

pi
´α (i “ 1, 2). Then by part (1),

›

›Hpkq,αpfq
›

›

Lq2,8
ď }f}Hp2 , and by Lemma 4.9,

›

›Hpkq,αpfq
›

›

Lq1,8
ď }f}H1 . Applying the Marcinkiewicz interpolation in this case gives

›

›Hpkq,αpfq
›

›

Lq
ď }f}Hp , as desired. l

Remark 4.11. We do not proceed to show Hp Ñ Hq boundedness because Hpkq,α fails

to commute with the Hilbert transform.
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CHAPTER 5

HIGH DIMENSIONAL HAUSDORFF OPERATORS

In this chapter, we study two extensions of the Hausdorff operator in Rn. For one,

we obtain a sufficient and necessary condition for its boundedness on the real Hardy

space H1pRnq. For the other, we study its boundedness on the real Hardy space

HppRnq for 0 ă p ă 1.

Recall the definition of the one dimensional Hausdorff operator: Let Φ be a locally

integrable function on the positive real line. The one dimensional Hausdorff operator

hΦ with the generating function Φ is defined in the integral form by

hΦpfqpxq “

ż 8

0

Φptq

t
fp
x

t
q dt,

where, for simplicity, we initially assume that the operator hΦ is defined on the class

of all Schwartz functions f . For positive values x, a change of variables gives an

equivalent form of hΦ by

hΦpfqpxq “

ż 8

0

Φpx
t
q

t
fptq dt.

This suggests two different extensions of the Hausdorff operator on high dimensional

space,

H̃Φ,βpfqpxq “

ż

Rn

Φpyq

|y|n´β
fp

x

|y|
q dy, n ą β ě 0

and

HΦ,βpfqpxq “

ż

Rn

Φp x
|y|
q

|y|n´β
fpyq dy, n ą β ě 0,

where Φ is a locally integrable function. Each of these definitions gives a so-called

fractional Hausdorff operator. We denote

H̃Φ,0 “ H̃Φ, HΦ,0 “ HΦ.
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When Φpxq “ Φp|x|q, and Φptq “ χp1,8qptqt
´n`β, HΦ,β is the fractional Hardy

operator if 0 ă β ă n, and HΦ,β is the Hardy operator if β “ 0 (see [2]).

By the Minkowski inequality and a scaling argument, it is easy to see that H̃Φ

is bounded on the Lebesgue space LppRnq for all 1 ď p ď 8, if Φ satisfies the size

condition

ż

Rn
|Φpyq| |y|´n`

n
p dy ă 8.

Similarly, H̃Φ is bounded on the real Hardy space H1pRnq if Φ is Lebesgue integrable

(see [10, 12, 15, 18]). In [13], Liflyand posed an open question (among others) to

establish the sharpness of this condition on Φ to assure the H1pRnq boundedness for

H̃Φ. Motivated by his question, the first aim of this chapter is to solve the problem

by showing that, for Φ ě 0, H̃Φ is bounded on the real Hardy space H1pRnq if and

only if Φ is a Lebesgue integrable function.

In Chapter 3, we established some results which used duality to provide a smooth-

ness condition on Φ to ensure boundedness of hΦ on Hp. The second aim of this

chapter is to apply this technique to give an HppRnq Ñ LqpRnq boundedness re-

sult for HΦ,β in the case where Φ is a radial function. We also establish bounded-

ness on LppRn, |x|γ dxq Ñ LqpRn, |x|γ dxq. With these results, we naturally expect

to establish an HppRnq Ñ HqpRnq boundedness theorem for the operator HΦ,βpfq.

However, by checking the proofs of the theorems in the earlier chapter for the one

dimensional Hausdorff operator, we find that all methods fail to establish a suffi-

cient condition for HppRnq Ñ HqpRnq boundedness for the operator HΦ,β. Also,

in the high dimensional case, we do not find in the literature any high dimensional

HppRnq Ñ HqpRnq, 0 ă p ă 1, boundedness results for the (fractional) Hausdorff

operator, although the H1pRnq Ñ H1pRnq boundedness has been studied extensively

(see [10, 12, 16, 18, 17, 16, 24, 30]). Hence, as the third purpose of this chapter, we

will establish a sufficient condition for the HppRnq Ñ HqpRnq boundedness for HΦ,β.
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5.1 H1pRnq Ñ H1pRnq Boundedness of H̃Φ

Theorem 5.1. Let Φ be a nonnegative valued locally integrable function.

(1) H̃Φ is bounded on H1pRnq if and only if Φ P L1pRnq.

(2) H̃Φ is bounded on the local Hardy space h1pRnq if and only if

ż

|y|ě1

Φpyq dy `

ż

|y|ď1

Φpyq

ˆ

1` log

ˆ

1

|y|

˙˙

dy ă 8.

Proof. The “if” part of (1) and (2) was proved in [24] and [1], respectively. We need

only show the “only if” part. Let a be a function with support on r´1, 1sn which

satisfies.

(i) apxq “ 1
2

for x P r1
4
, 1

2
sn.

(ii) 1
2
ě apxq ě 0 for

řn
i“1 xi ě 0.

(iii) apxq “ ´ap´xq if
řn
i“1 xi ď 0.

Clearly,

ż

Rn
apxq dx “ 0.

Thus, a is a p1,8, 0q atom (see [28] or [26]). By the same easy computation as in the

one-dimensional case we know

}a}H1pRnq ď 1.

Suppose Φ R L1. If H̃Φ were bounded on H1, we have,

›

›

›
H̃Φpaq

›

›

›

H1
ď }a}H1 ď 1.

On the other hand, by the Riesz transform characterization of H1, we have

›

›

›
H̃Φpaq

›

›

›

H1
ľ

›

›

›
H̃Φpaq

›

›

›

L1
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ě

ż

ř

xiě0

ˇ

ˇ

ˇ

ˇ

ż

Rn

Φpyq

|y|n
ap
x

|y|
q dy

ˇ

ˇ

ˇ

ˇ

dx

“

ż

Rn

Φpyq

|y|n

ˆ
ż

ř

xiě0

ap
x

|y|
q dx

˙

dy

“

ż

Rn
Φpyq

ˆ
ż

ř

xiě0

apxq dx

˙

dy “ 8.

This leads to a contradiction.

Next, we show the “only if” part of (2). Suppose

ż

|y|ă1

Φpyqp1´ log2 |y|q dy “ 8.

For notational simplicity, use the `8 norm on vectors, i.e. |x| “ max t|xi|u. Let

Ψs “
1
sn
e´

|x|2

s2 and Bpxq “ χr0, 1
2
snpxq. An easy computation similar to that for one

dimension shows

}B}h1pRnq ď 1.

On the other hand,

›

›

›
H̃ΦpBq

›

›

›

h1pRnq
“

ż

Rn
sup

0ăsď1

ˇ

ˇ

ˇ
Ψs ˚ H̃ΦpBqpxq

ˇ

ˇ

ˇ
dx

ě

ż

r0,1sn
sup

0ăsď1

ˇ

ˇ

ˇ
Ψs ˚ H̃ΦpBqpxq

ˇ

ˇ

ˇ
dx

ě

ż

r0,1sn

ˇ

ˇ

ˇ
Ψ|x| ˚ H̃ΦpBqpxq

ˇ

ˇ

ˇ
dx.

Here

ˇ

ˇ

ˇ
Ψ|x| ˚ H̃ΦpBqpxq

ˇ

ˇ

ˇ
“

ż

Rn

Φpyq

|y|n

ż

Rn

1

|x|n
e´p

|x´z|
|x|

q2B

ˆ

z

|y|

˙

dz dy

ě

ż

|y|ď1

Φpyq

|y|n

ż

|z|ď |y|
4

1

|x|n
e´p

|x´z|
|x|

q2 dz dy.

Hence,

ż

Rn
sup

0ăsď1

ˇ

ˇ

ˇ
Ψs ˚ H̃ΦpBqpxq

ˇ

ˇ

ˇ
dx

ě

ż

|y|ď1

Φpyq

|y|n

ż

|z|ď |y|
4

ż

|y|ď|x|ď1

1

|x|n
e´p

|x´z|
|x|

q2 dx dz dy
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ě ´

ż

|y|ď1

Φpyq log2 |y| dy “ 8.

This leads to a contradiction.

Next, suppose

ż

|y|ě1

Φpyq dy “ 8.

We have

ż

Rn
sup

0ăsď1

ˇ

ˇ

ˇ
Ψs ˚ H̃ΦpBqpxq

ˇ

ˇ

ˇ
dx ě

ż

Rn

ˇ

ˇ

ˇ
Ψ1 ˚ H̃ΦpBqpxq

ˇ

ˇ

ˇ
dx

ě

ż

|y|ě1

Φpyq

|y|n

ż

|z|ď |y|
4

ˆ
ż

Rn
e´p|x´z|q

2

dx

˙

dz dy

ě

ż

|y|ě1

Φpyq dy “ 8.

l

5.2 Boundedness on Lebesgue spaces

The duality techniques we have been using to show boundedness of Hausdorff op-

erators on the Hardy spaces also yield the following nice results on power weight

Lebesgue spaces.

Theorem 5.2. Let 1 ď p, q ă 8, 0 ă β ă n, γ ą βp´ n and

1

p
´

β

n` γ
“

1

q
.

Finally, let

Cp “

ż 8

0

|Φptq|
p
p´1 t

γ´βp`n´p`1
p´1 dt for p ą 1, C1 “ }| ¨ |

n´β`γΦp¨q}L8 .

For any p ě 1, if Cp ă 8 then

}HΦ,βpfqpxq}Lq,8p|x|γdxq ĺ }f}Lpp|x|γdxq.
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Proof. We write

HΦ,βpfqpxq “

ż

Rn

Φp |x|
|y|
q

|y|n´β`
γ
p

fpyq|y|
γ
p dy.

By Hölder’s inequality, we have

|HΦ,βpfqpxq| ď

#

ż

Rn
|

Φp |x|
|y|
q

|y|n´β`
γ
p

|
p1dy

+

1
p1

}f}Lpp|y|γdyq.

Using polar coordinates and changing variables, we have

#

ż

Rn
|

Φp |x|
|y|
q

|y|n´β`
γ
p

|
p1dy

+1{p1

“ |Sn´1
|
1
p1

ˆ
ż 8

0

|
Φptq

tβ´n´γ{p
|
p1t´n´1dt

˙
1
p1

|x|n{p
1`β´n´γ{p.

If p “ 1,

|HΦ,βpfqpxq| ď }f}L1p|x|γdxq}
Φp |x|

|¨|
q

| ¨ |n´β`γ
}L8

“ }f}L1p|x|γdxq|x|
´n`β´γ

}| ¨ |
n´β`γΦp¨q}L8 .

Let

Kp “
ˇ

ˇSn´1
ˇ

ˇ

1
p1 C

1
p1

p for p ą 1 K1 “ C1

Then for p ě 1 and any λ ą 0, we have

|tx P Rn : |HΦ,βpfqpxq| ą λu|

ď |tx P Rn : Kp|x|
n{p1`β´n´γ{p

}f}Lpp|x|γdxq ą λu|

ď |tx P Rn : |x|n`γ{p´n{p
1´β
ď
Kp}f}Lpp|x|γdxq

λ
u|

ď |tx P Rn : p|x|
1
p
´

β
n`γ q

n`γ
ď
Kp}f}Lpp|x|γdxq

λ
u|

“ |tx P Rn : |x|n`γ ď
Kp

q
}f}qLpp|x|γdxq
λq

u|.

Note that in the last equality, we have used the condition

1

p
´

β

n` γ
“

1

q
.
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This shows

}HΦ,βpfq}Lq,8p|x|γdxq ĺ }f}Lpp|x|γdxq

as desired. l

Recall that if Φptq “ χp1,8qptqt
´n`β, then HΦ,β is the fractional Hardy operator.

Let Hβ denote the fractional Hardy operator. Applying Theorem 5.2, we have the

following corollary:

Corollary 5.3. Let 1 ă p, q ă 8, 0 ă β ă n, np ą γ ą βp´ n and

1

p
´

β

n` γ
“

1

q
.

We have

}Hβpfqpxq}Lq,8p|x|γdxq ĺ }f}Lpp|x|γdxq.

Proof. If γ ă np, then Φ “ χp1,8qptqt
´n`β satisfies the conditions of Theorem 5.2. l

Theorem 5.4. Let 1 ď p, q ă 8, 0 ă β ă n, γ ą βp´ n and

1

p
´

β

n` γ
“

1

q
.

In addition, let

Cp,ε “

ż 8

0

|Φptq|
p
p´1 t

γ´βp`n´p`1
p´1

`εdt for p ą 1, C1,ε “ }| ¨ |
n´β`γ`εΦp¨q}L8 .

For any p ě 1, if, for arbitrarily small positive ε, Cp,˘ε ă 8, then

}HΦ,βpfqpxq}Lqp|x|γdxq ĺ }f}Lpp|x|γdxq.

Proof. For p ą 1, this result follows from Theorem 5.2 and the Marcinkiewicz Inter-

polation Theorem. To prove the result for p “ 1, we define an analytic family:

HΦ,zpfqpxq “

ż Φp |x|
|y|
q

|y|n´z
fpyqdy.
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Following the proof of Theorem 5.2, it is easy to check that there exist β1, β2 satisfying

0 ă β1 ă β ă β2 ă n, such that

}HΦ,z1pfq}Lq1,8p|x|γdxq ĺ }f}L1p|x|γdxq

and

}HΦ,z2pfqpxq}Lq2,8p|x|γdxq ĺ }f}L1p|x|γdxq

where Re z1 “ β1, Re z2 “ β2 and 1 ă q1 ă q ă q2 ă 8. Thus we obtain the result

by using the Stein-Weiss analytic Interpolation Theorem (see Corollary 2.2). l

5.3 Boundedness on HppRnq

5.3.1 Hp Ñ Lq Boundedness of HΦ,β

In this section, we suppose that Φ is radial, that is, if |x1| “ |x2|, then Φpx1q “ Φpx2q.

Thus we can think of Φ as having domain r0,8q,where Φptq “ Φpxq when |x| “ t.

Lemma 5.5. Let 0 ď β ă n and

ψpyq “
Φp1{ |y|q

|y|n´β
.

Assume 0 ă p ă 1 and α “ n
´

1
p
´ 1

¯

. If ψ P Λα, then

}HΦ,βpfq}Lq,8pRnq ĺ }f}HppRnq

where q satisfies

1

p
“

1

q
`
β

n
.

Proof. Changing variables, we compute

Φp|x| { |y|q

|y|n´β
“ |x|´n`β ψp

y

|x|
q.
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By duality and scaling,

|HΦpfqpxq| ď |x|
´n`β

}f}HppRnq

›

›

›

›

ψ

ˆ

¨

|x|

˙
›

›

›

›

Λα

“ |x|´n{p`β }f}HppRnq }ψ}Λα .

This shows that for all λ ą 0,

|tx P Rn : |HΦpfqpxq| ą λu|

ď

ˇ

ˇ

ˇ

!

x P Rn : |x|
n
p
´β
ă }f}HppRnq }ψ}Λα λ

´1
)ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

!

x P Rn : |x|n ď t}f}HppRnq }ψ}Λα λ
´1
u
q
)
ˇ

ˇ

ˇ
.

The last inequality holds because

n
n
p
´ β

“ q.

Thus, we obtain

}HΦ,βpfq}Lq,8pRnq ĺ }f}HppRnq

as desired. l

Theorem 5.6. Let β, p, α, q, ψ be as in Lemma 5.5. If for some ε ą 0 small enough

that α ´ ε ą 0, ψ P Λα`ε X Λα´ε, then

}HΦ,βpfq}LqpRnq ĺ }f}HppRnq .

Proof. Choose p1, p2, s.t. α ` ε “ np 1
p1
´ 1q, α ´ ε “ np 1

p2
´ 1q, and choose q1, q2

satisfying

1

pi
“

1

qi
`
β

n
, i “ 1, 2.

An easy computation shows that p1, p2, p, q1, q2, q satisfy the requirement for the

Marcinkiewisz interpolation, and by the Lemma 5.5, }HΦ,βpfq}Lqi,8pRnq ĺ }f}Hpi pRnq.

So by Marcinkiewisz Interpolation, }HΦ,βpfq}LqpRnq ĺ }f}HppRnq. l
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Unfortunately, we cannot continue in the manner shown in Theorem 3.1, since

RJ ˝HΦ,βpfq ‰ HΦ,βpRJfq, as was in the case in one dimension. Instead, we see the

following.

Lemma 5.7. Suppose Φ, pΦ P L1pRnq, and 0 ă β ă n. Then for any J “ tj1, . . . , jLu P

t0, 1, 2, . . . , nuL, f P S, we have

RJHΦ,βpfq “ HRJΦ,βpfq.

Proof. Without loss of generality, we suppose L “ 1. (L ą 1 may be shown similarly.)

Fix J “ j. We show the desired equality by taking Fourier transform and inverse

Fourier transform. By definition,

{HΦ,βpfqpξq “

ż

Rn

˜

ż

Rn

fpyq

|y|n´β
Φ

ˆ

x

|y|

˙

dy

¸

e´i〈x,ξ〉 dx.

Noting that Φ P L1, f is a Schwartz function, and β ą 0, we may use Fubini’s theorem

to obtain

{HΦ,βpfqpξq “

ż

Rn

˜

ż

Rn

fpyq

|y|n´β
Φp

x

|y|
qe´i〈x,ξ〉 dx

¸

dy

“

ż

Rn

ˆ
ż

Rn
|y|β fpyqΦpuqe´i〈u,|y|ξ〉 du

˙

dy

“

ż

Rn
|y|β fpyqΦ̂p|y| ξq dy.

Thus, we see that

{RjHΦ,βpfqpξq –
ξj
|ξ|

zHΦ,βpξq “
ξj
|ξ|

ż

Rn
|y|β fpyqΦ̂p|y| ξq dy.

Next, we let F´1 denote the inverse Fourier transform, and compute

F´1
´

{RjHΦ,βpfq
¯

pxq “

ż

Rn

ˆ

ξj
|ξ|

ż

Rn
|y|β fpyqΦ̂p|y| ξq dy

˙

ei〈x,ξ〉 dξ.

Noting that pΦ P L1 and again that β ą 0, we again use Fubini’s theorem to obtain

F´1
´

{RjHΦ,βpfq
¯

pxq “

ż

Rn
|y|β fpyq

ˆ
ż

Rn

ξj
|ξ|

pΦp|y| ξqei〈x,ξ〉 dξ

˙

dy
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“

ż

Rn
|y|β´n fpyqRjΦ

ˆ

x

|y|

˙

dy

“ HRjΦ,β

as desired. l

5.3.2 Hp Ñ Hq Boundedness of HΦ,β

The condition of Lemma 5.5, that ψ P Λα, can be rewritten, when Φ is radial, as
›

›

›

›

›

|x|n´β

|¨|
n´β

Φp
|x|

|¨|
q

›

›

›

›

›

ΛαpRnq

ď |x|´α .

In this form, we can omit the condition that Φ is radial, obtaining

Lemma 5.8. Let 0 ă p ă 1, 0 ď β ă n, and α “ np1
p
´ 1q. If Φ satisfies, for all

x P Rn,
›

›

›

›

›

|x|n´β

|¨|
n´β

Φp
x

|¨|
q

›

›

›

›

›

ΛαpRnq

ď |x|´α

then

}HΦpfq}Lq,8pRnq ď }f}HppRnq

with

1

p
“

1

q
`
β

n
.

Proof. Noting the pairing inequality (equation (2.1)) relating the Lipschitz space Λα

and the Hardy space Hp, and multiplying and dividing by |x|n´β in the definition of

HΦ,β, we obtain

|HΦ,βpfqpxq| ď }f}HppRnq |x|
´n`β

›

›

›

›

›

|x|n´β

|¨|
n´β

Φp
x

|¨|
q

›

›

›

›

›

ΛαpRnq

ď |x|
´n
p
`β
}f}HppRnq .
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This shows that for all λ ą 0,

|tx P Rn : |HΦ,βpfqpxq| ą λu|

ď

ˇ

ˇ

ˇ

!

x P Rn : |x|
´n
p
`β
}f}HppRnq ě λ

)
ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

$

&

%

x P Rn : |x| ď

˜

}f}HppRnq

λ

¸
q
n

,

.

-

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

˜

}f}HppRnq

λ

¸q

.

Thus, }HΦ,βpfq}Lq,8 ď }f}Hp , as desired. l

In many important cases, even when Φ is radial, the condition of Lemma 5.8 is

easier to check than the one give in Lemma 5.5. For example, we see this in the proof

of the following corollary.

Corollary 5.9. Let Φpyq be the Gaussian function e´|y|
2

or the Poisson function e´|y|.

The Hausdorff operator HΦ,β is bounded from HppRnq to LqpRnq for all 0 ă p ă 8,

0 ď β ă n, and 1
p
“ 1

q
`

β
n

.

Proof. We will show the corollary for the Poisson function e´|y|, since the proof for

the Gaussian function is similar. By Lemma 5.8, we need to check
›

›

›

›

›

|x|n´β

|¨|
n´β

e´
|x|
|¨|

›

›

›

›

›

Λα

ď |x|´α

for all integer α “ 0, 1, 2, . . ., where by convention, we denote Λ0 “ L8. First, when

α “ 0,
›

›

›

›

›

|x|n´β

|¨|
n´β

e´
|x|
|¨|

›

›

›

›

›

L8

“ sup
|y|ą0

ˇ

ˇ

ˇ

ˇ

ˇ

|x|n´β

|y|n´β
e´

|x|
|y|

ˇ

ˇ

ˇ

ˇ

ˇ

“ sup
|y|ą0

ˇ

ˇ

ˇ
|y|n´β e´|y|

ˇ

ˇ

ˇ
ď 1.

For integers α ą 0, we recall the definition of the Λα norm, namely

}f}Λα “ sup
|I|“α

 
›

›B
If
›

›

L8

(
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where I “ pi1, i2, ¨ ¨ ¨ , inq P Nn is a multi-index and BI denotes the derivative

ˆ

B

By1

˙i1 ˆ
B

By2

˙i2

¨ ¨ ¨

ˆ

B

Byn

˙in

.

So we must show that, for each multi-index I such that |I| “ α,

›

›

›

›

B
I

ˆ

|x|n´β

|y|n´β
e´

|y|
|x|

˙›

›

›

›

L8
ď |x|´α.

This can easily be shown by computation. l

We can also see how the condition of Lemma 5.8 might be extended to allow us

to obtain a boundedness result on Hardy spaces.

Theorem 5.10. Let n ě 2, α “ np1
p
´ 1q, 0 ă β ă n, and Φ, pΦ P L1. If, for some L

large enough that p ą n´1
n´1`L

, all generalized Riesz transforms RJpΦq “ Rj1 ¨ ¨ ¨RjLΦ

satisfy
›

›

›

›

›

|x|n´β

|¨|
n´β

pRJΦqp
x

|¨|
q

›

›

›

›

›

ΛαpRnq

ď |x|´α

then

}HΦ,βpfq}Hq,8pRnq ď }f}HppRnq

with

1

p
“

1

q
`
β

n
.

Proof. Applying Lemma 5.8 to each RJΦ, we obtain for each RJ ,

›

›HRJ pΦq,β

›

›

Lq,8
ď }f}Hp .

Lemma 5.7 tells us that for each RJ , RJHΦ,β “ HRJ pΦq,βpfq. Applying the Reisz

transform characterization of Hq,8,

}HΦ,βpfq}Hq,8 –
ÿ

J

}RJHΦ,βpfq}Lq,8 ď }f}Hp

as desired. l
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The condition of Theorem 5.10 is somewhat laborious to check. The main result

of this chapter is to provide a sufficient (but not necessary) condition on Φ to meet

the requirement of Theorem 5.10.

Theorem 5.11. Suppose 0 ă p ă 1, 0 ă β ă n. Let pΦ denote the Fourier transform

of Φ and

1

p
“

1

q
`
β

n
.

For an integer M “ np1
p
´1q, suppose that pΦ is a function in C2M`npRnq with compact

support in the set Rnz t0u. Then

}HΦ,βpfq}Hq,8pRnq ď }f}HppRnq .

Proof. Let M “ np1
p
´ 1q. By Theorem 5.10, we need to check

›

›

›

›

›

|x|n´β

|¨|
n´β

pRJΦqp
x

|¨|
q

›

›

›

›

›

ΛαpRnq

ď |x|´α ,

with α “M . Taking Fourier transforms, we may write

|x|n´β

|y|n´β
pRJΦqp

x

|y|
q

“ |x|n´β
ż

Rn

ξj1ξj2 ¨¨¨ξjL
|ξ|L

zΦpξq |y|´pn´βq ei
1
|y|

〈ξ,x〉 dξ.

For a multi-index I “ pi1, i2, ¨ ¨ ¨ , inq P Nn, we will use the notation

B
I
“

ˆ

B

By1

˙i1 ˆ
B

By2

˙i2

¨ ¨ ¨

ˆ

B

Byn

˙in

,

and

|I| “ i1 ` i2 ` ¨ ¨ ¨ ` in.

From easy computations

B

Byj
ei

1
|y|

〈ξ,x〉
– 〈ξ, x〉 yj

|y|3
ei

1
|y|

〈ξ,x〉
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and

B2

By2
j

ei
1
|y|

〈ξ,x〉
“ c1 〈ξ, x〉2

y2
j

|y|6
ei

1
|y|

〈ξ,x〉
` c2 〈ξ, x〉

1

|y|3
ei

1
|y|

〈ξ,x〉

` c3 〈ξ, x〉
y2
j

|y|5
ei

1
|y|

〈ξ,x〉,

where c1, c2, c3 are constants, in general, it is easy to see that for any multi-index I,

B
Iei

1
|y|

〈ξ,x〉
“ ei

1
|y|

〈ξ,x〉
ÿ

|I|ďl1ď2|I|
l1´l2“|I|

Ql1pyqPl2p〈ξ, x〉q,

where Ql1pyq is a C8pRnzt0uq function satisfying

|Ql1 | ď
1

|y|l1

and Pl2 is a homogeneous polynomial of degree l2.

Also, it is easy to check

B
I
´

|y|´n`β
¯

“
SIpyq

|y|n´β`2|I|
,

where SIpyq is a C8pRnzt0uq function satisfying

|SIpyq| ď |y||I| .

So, by the generalized Leibniz rule, for any multi-index I with |I| ě 1, we have

B
I

˜

ei
1
|y|

〈ξ,x〉

|y|n´β

¸

“
ÿ

K1`K2“I

CI
K1
B
K1p|y|´n`βqBK2pei

1
|y|

〈ξ,x〉
q

“
ÿ

K1`K2“I

CI
K1

SK1pyq

|y|n´β`2|K1|

¨

˚

˚

˝

ÿ

|K2|ďl1ď2|K2|

l1´l2“|K2|

Ql1pyqe
i 1
|y|

〈ξ,x〉Pl2p〈ξ, x〉q

˛

‹

‹

‚

where CI
K1

are constants.

It is easy to see that
›

›

›

›

›

|x|n´β

|¨|
n´β

pRJΦqp
x

|¨|
q

›

›

›

›

›

ΛαpRnq
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“ sup
yPRnzt0u

$

&

%

ÿ

|I|“α

ˇ

ˇ

ˇ

ˇ

B
I

ˆ

|x|n´β
ż

Rn

ξj1ξj2 ¨¨¨ξjL
|ξ|L

pΦpξq |y|´n`β ei
1
|y|

〈ξ,x〉 dξ

˙ˇ

ˇ

ˇ

ˇ

,

.

-

“ sup
yPRnzt0u

$

&

%

ÿ

|I|“α

|x|n´β
ˇ

ˇ

ˇ

ˇ

ż

Rn

ξj1ξj2 ¨¨¨ξjL
|ξ|L

pΦpξqBI
´

|y|´n`β ei
1
|y|

〈ξ,x〉
¯

dξ

ˇ

ˇ

ˇ

ˇ

,

.

-

.

So, let us consider the value of

|x|n´β
ˇ

ˇ

ˇ

ˇ

ż

Rn

ξj1ξj2 ¨¨¨ξjL
|ξ|L

pΦpξqBI
´

|y|´n`β ei
1
|y|

〈ξ,x〉
¯

dξ

ˇ

ˇ

ˇ

ˇ

“ |x|n´β

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Rn

ξj1ξj2 ¨¨¨ξjL
|ξ|L

pΦpξq
ÿ

K1`K2“I

CI
K1

SK1
pyq

|y|n´β`2|K1|

¨

˚

˚

˝

ÿ

|K2|ďl1ď2|K2|

l1´l2“|K2|

Ql1pyqe
i 1
|y|

〈ξ,x〉Pl2p〈ξ, x〉q

˛

‹

‹

‚

dξ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ |x|n´β

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

K1`K2“I

CI
K1

SK1
pyq

|y|n´β`2|K1|

¨

˚

˚

˝

ÿ

|K2|ďl1ď2|K2|

l1´l2“|K2|

Ql1pyq

ż

Rn

ξj1ξj2 ¨¨¨ξjL
|ξ|L

pΦpξqei
1
|y|

〈ξ,x〉Pl2p〈ξ, x〉q dξ

˛

‹

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď |x|n´β
ÿ

K1`K2“I

|SK1
pyq|

|y|n´β`2|K1|

¨

˚

˚

˝

ÿ

|K2|ďl1ď2|K2|

l1´l2“|K2|

|Ql1pyq|

ˇ

ˇ

ˇ

ˇ

ż

Rn

ξj1ξj2 ¨¨¨ξjL
|ξ|L

pΦpξqei
1
|y|

〈ξ,x〉Pl2p〈ξ, x〉q dξ
ˇ

ˇ

ˇ

ˇ

˛

‹

‹

‚

ď |x|n´β
ÿ

K1`K2“I

|y||K1|

|y|n´β`2|K1|

¨

˚

˚

˝

ÿ

|K2|ďl1ď2|K2|

l1´l2“|K2|

1

|y|l1

ˇ

ˇ

ˇ

ˇ

ż

Rn

ξj1ξj2 ¨¨¨ξjL
|ξ|L

pΦpξqei
1
|y|

〈ξ,x〉Pl2p〈ξ, x〉q dξ
ˇ

ˇ

ˇ

ˇ

˛

‹

‹

‚

“

´

|x|
|y|

¯n´βÿ

K1`K2“I

1

|y||K1|

¨

˚

˚

˝

ÿ

|K2|ďl1ď2|K2|

l1´l2“|K2|

1

|y|l1

ˇ

ˇ

ˇ

ˇ

ż

Rn

ξj1ξj2 ¨¨¨ξjL
|ξ|L

pΦpξqei
1
|y|

〈ξ,x〉Pl2p〈ξ, x〉q dξ
ˇ

ˇ

ˇ

ˇ

˛

‹

‹

‚

.

We now consider two possible cases. If

|x|

|y|
ď 1,

then

sup
yPRnzt0u

$

&

%

ÿ

|I|“α

ˇ

ˇ

ˇ

ˇ

B
I

ˆ

|x|n´β
ż

Rn

ξj1ξj2 ¨¨¨ξjL
|ξ|L

pΦpξq |y|´pn´βq ei
1
|y|

〈ξ,x〉 dξ

˙
ˇ

ˇ

ˇ

ˇ

,

.

-
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ď sup
yPRnzt0u

$

’

’

&

’

’

%

ÿ

|I|“α

ÿ

K1`K2“I

1

|y||K1|

¨

˚

˚

˝

ÿ

|K2|ďl1ď2|K2|

l1´l2“|K2|

1

|y|l1

ˇ

ˇ

ˇ

ˇ

ż

Rn

ξj1ξj2 ¨¨¨ξjL
|ξ|L

pΦpξqei
1
|y|

〈ξ,x〉Pl2p〈ξ, x〉q dξ
ˇ

ˇ

ˇ

ˇ

˛

‹

‹

‚

,

/

/

.

/

/

-

ď sup
yPRnzt0u

$

’

’

&

’

’

%

ÿ

|I|“α

ÿ

K1`K2“I

1

|y||K1|

¨

˚

˚

˝

ÿ

|K2|ďl1ď2|K2|

l1´l2“|K2|

1

|y||K2|

|x|l2

|y|l2

ż

Rn

ˇ

ˇ

ˇ

ˇ

ˇ

ξj1ξj2 ¨ ¨ ¨ ξjL

|ξ|L´l2
pΦpξq

ˇ

ˇ

ˇ

ˇ

ˇ

dξ

˛

‹

‹

‚

,

/

/

.

/

/

-

ď
1

|x|α
sup

yPRnzt0u

$

’

’

&

’

’

%

ÿ

|I|“α

ÿ

K1`K2“I

¨

˚

˚

˝

ÿ

|K2|ďl1ď2|K2|

l1´l2“|K2|

ż

Rn

ˇ

ˇ

ˇ

ˇ

ˇ

ξj1ξj2 ¨ ¨ ¨ ξjL

|ξ|L´l2
pΦpξq

ˇ

ˇ

ˇ

ˇ

ˇ

dξ

˛

‹

‹

‚

,

/

/

.

/

/

-

ď |x|´α .

On the other hand, if

|x|

|y|
ą 1,

for fixed x, without loss of generality, we assume |x1| ě
|x|
n

. For each integral

1

|y|l1

ˇ

ˇ

ˇ

ˇ

ż

Rn

ξj1ξj2 ¨¨¨ξjL
|ξ|L

pΦpξqei
1
|y|

〈ξ,x〉Pl2p〈ξ, x〉q dξ
ˇ

ˇ

ˇ

ˇ

,

using integration by parts on the ξ1 variable k times, where

k “ 2M ` n ě |I| ` l2 ` n´ β.

Recalling l1´l2 “ |K2|, and using the fact that pΦ P C2M`npRnq with compact support

in Rnz t0u, we obtain

1

|y|l1

ˇ

ˇ

ˇ

ˇ

ż

Rn

ξj1ξj2 ¨¨¨ξjL
|ξ|L

pΦpξqei
1
|y|

〈ξ,x〉Pl2p〈ξ, x〉q dξ
ˇ

ˇ

ˇ

ˇ

ď
1

|y|l1´l2

ˆ

|y|

|x|

˙k
|x|l2

|y|l2

ď
1

|y||K2|

ˆ

|y|

|x|

˙|I|`n´β

.
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This shows that

sup
yPRnzt0u

$

&

%

ÿ

|I|“α

ˇ

ˇ

ˇ

ˇ

B
I

ˆ

|x|n´β
ż

Rn

ξj1ξj2 ¨¨¨ξjL
|ξ|L

pΦpξq |y|´n`β ei
1
|y|

〈ξ,x〉 dξ

˙
ˇ

ˇ

ˇ

ˇ

,

.

-

ď sup
yPRnzt0u

$

&

%

ÿ

|I|“α

ˆ

|x|

|y|

˙n´β
ÿ

K1`K2“I

1

|y||K1|

1

|y||K2|

ˆ

|y|

|x|

˙|I|`n´β

,

.

-

– sup
yPRnzt0u

$

&

%

ÿ

|I|“α

ˆ

|x|

|y|

˙n´β
1

|y||I|

ˆ

|y|

|x|

˙|I|`n´β

,

.

-

ď |x|´α .

This proves that for each J , when M “ np1
p
´ 1q,

›

›

›

›

›

|x|n´β

|¨|
n´β

pRJΦqp
x

|¨|
q

›

›

›

›

›

ΛαpRnq

ď |x|´α ,

and thus by Theorem 5.10, }HΦ,βpfq}Hq,8pRnq ď }f}HppRnq . l

We show the following H1pRnq-boundedness result in order to provide another

endpoint for interpolation. Note that the results obtained in Section 5.1 were about

rHΦ,β, and so unrelated to this one.

Lemma 5.12. Suppose 0 ă β ă n. Let pΦ denote the Fourier transform of Φ and

1 “
1

q
`
β

n
.

Suppose pΦ is a function in CnpRnq with compact support. Then

}HΦ,βpfq}Hq,8 ď }f}H1 .

Proof. Define the analytic family of operators

HΦ,zpfqpxq “

ż

Rn

Φ
´

x
|y|

¯

|y|n´z
fpyq dy.

Fix z1, z2 such that Re z1 “ β1, Re z2 “ β2, with 0 ă β1 ă β ă β2 ă n. Using

Hölder’s inequality, for i “ 1, 2, we have

|HΦ,zipfqpxq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Rn

Φp x
|y|
q

|y|n´zi
fpyq dy

ˇ

ˇ

ˇ

ˇ

ˇ
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ď }f}L1 sup
|y|ą0

ˇ

ˇ

ˇ

ˇ

ˇ

Φp x
|y|
q

|y|n´βi

ˇ

ˇ

ˇ

ˇ

ˇ

.

Clearly, Φ is a bounded function, by assumption. Thus, if |x|
|y|
ď 1, we can write,

|HΦ,zipfqpxq| ď }f}L1 |x|
´n`βi .

If |x|
|y|
ą 1, we use integration by parts n times, using pΦ P Cn with compact support

to obtain
ˇ

ˇ

ˇ

ˇ

ˇ

Φp x
|y|
q

|y|n´βi

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

1

|y|n´βi

ż

Rn
pΦpξqei

1
|y|

〈ξ,x〉 dξ

ˇ

ˇ

ˇ

ˇ

ˇ

ď |x|´n`βi .

This gives

|tx : |HΦ,zipfqpxq| ą λu| ď

ˇ

ˇ

ˇ

!

x : }f}L1 |x|
´n`βi ě λ

)ˇ

ˇ

ˇ

–

ˇ

ˇ

ˇ

ˇ

ˇ

#

x : |x| ď

ˆ

}f}L1

λ

˙
1

n´βi

+ˇ

ˇ

ˇ

ˇ

ˇ

–

ˆ

}f}L1

λ

˙
n

n´βi

“

ˆ

}f}L1

λ

˙qi

.

where q1, q2 are such that

1

qi
`
βi
n
“ 1 i “ 1, 2.

By definition of the weak type spaces, then, the last inequality implies

}HΦ,zipfq}Lqi,8pRnq ď }f}L1pRnq .

Thus, by Stein-Weiss analytic interpolation, we obtain, for any q0 such that q1 ă q0 ă

q2,

}HΦ,βpfq}Lq0 pRnq ď }f}L1pRnq ď }f}H1pRnq .
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In particular, this holds when q0 “ q, so

}HΦ,βpfq}LqpRnq ď }f}H1pRnq .

But q ą 1, so Hq “ Lq, and thus

}HΦ,βpfq}HqpRnq ď }f}H1pRnq .

Further, we know }¨}Hq,8 ď }¨}Hq , so

}HΦ,βpfq}Hq,8pRnq ď }f}H1pRnq

as desired. l

Theorem 5.13. Suppose 0 ă p ă 1, 0 ă β ă n. Let pΦ denote the Fourier transform

of Φ and

1

p
“

1

q
`
β

n
.

For an integer M ą np1
p
´1q, suppose that pΦ is a function in C2M`npRnq with compact

support in the set Rnz t0u. Then

}HΦ,βpfq}HqpRnq ď }f}HppRnq .

Proof. Since M ą np1
p
´ 1q we have a p1 ă p satisfying

M “ n

ˆ

1

p1

´ 1

˙

.

By Theorem 5.11, we have

}HΦ,βpfq}Hq1,8pRnq ď }f}Hp1 pRnq ,

where

1

p1

“
1

q1

`
β

n
.
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Further, by Lemma 5.12,

}HΦ,βpfq}Hq2,8pRnq ď }f}H1pRnq

where

1 “
1

q2

`
β

n
.

Thus, by an interpolation argument, we obtain

}HΦ,βpfq}HqpRnq ď }f}HppRnq

as desired. l

The techniques used to prove Theorems 5.11 and 5.13 can also be used to show

the following result. The specific Φ considered here does not meet the conditions on

Theorems 5.11 and 5.13, which may suggest in general a method of relaxing these

conditions.

Corollary 5.14. Suppose 0 ă p ă 1, 0 ă β ă n. Let Ψ P SpRnq, and

1

p
“

1

q
`
β

n
.

For an integer M ě np1
p
´ 1q, let

Φ “

#

|∆|M`
n
2 Ψ if n is even

|∆|M`
n`1
2 Ψ if n is odd

,

where ∆ is the Laplacian and |∆|γ is the fractional Laplacian defined for any function

F by

{p|∆|γ F qpξq “ |ξ|2γ pF pξq.

If M “ np1
p
´ 1q, then

}HΦ,βpfq}Hq,8pRnq ď }f}HppRnq ,
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If M ą np1
p
´ 1q, then

}HΦ,βpfq}HqpRnq ď }f}HppRnq .

Proof. Recall that according to Theorem 5.10, we must show that

›

›

›

›

|x|n´β

| ¨ |n´β
pRJΦqp

x

| ¨ |
q

›

›

›

›

ΛαpRnq
ď |x|´α

for for all J P t0, ..., nuL, where L is large enough that p ą n´1
n´1`L

. Note that we can

choose L even such that 2M ` n ą L.

In the proof of Theorem 5.11, we have shown that
›

›

›

›

›

|x|n´β

|¨|
n´β

pRJΦqp
x

|¨|
q

›

›

›

›

›

ΛαpRnq

ď sup
yPRnzt0u

$

’

’

&

’

’

%

ÿ

|I|“α

´

|x|
|y|

¯n´βÿ

K1`K2“I

1

|y||K1|

¨

˚

˚

˝

ÿ

|K2|ďl1ď2|K2|

l1´l2“|K2|

1

|y|l1

ˇ

ˇ

ˇ

ˇ

ż

Rn

ξj1ξj2 ¨¨¨ξjL
|ξ|L

pΦpξqei
1
|y|

〈ξ,x〉Pl2p〈ξ, x〉q dξ
ˇ

ˇ

ˇ

ˇ

˛

‹

‹

‚

,

/

/

.

/

/

-

,

where Pl2 is a homogeneous polynomial of degree l2. In this case, from the definition

of Φ, we can rewrite the above as
›

›

›

›

›

|x|n´β

|¨|
n´β

pRJΦqp
x

|¨|
q

›

›

›

›

›

ΛαpRnq

ď sup
yPRnzt0u

$

’

’

&

’

’

%

ÿ

|I|“α

´

|x|
|y|

¯n´βÿ

K1`K2“I

1

|y||K1|

¨

˚

˚

˝

ÿ

|K2|ďl1ď2|K2|

l1´l2“|K2|

1

|y|l1

ˇ

ˇ

ˇ

ˇ

ż

Rn
P pξqpΨpξqei

1
|y|

〈ξ,x〉Pl2p〈ξ, x〉q dξ
ˇ

ˇ

ˇ

ˇ

˛

‹

‹

‚

,

/

/

.

/

/

-

,

where P pξq is a function of ξ with polynomial growth, namely,

P pξq “

#

ξj1ξj2 ¨ ¨ ¨ ξjL |ξ|
2M`n´L if n is even

ξj1ξj2 ¨ ¨ ¨ ξjL |ξ|
2M`n`1´L if n is odd

.

An integration by parts, as used in the proof of Theorem 5.11, works as expected. l

We can replace the support condition in Theorems 5.11 and 5.13 by the following

condition, to show Hp Ñ Lq boundedness.
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Corollary 5.15. Suppose 0 ă p ă 1, 0 ď β ă n. Let pΦ denote the Fourier transform

of Φ and

1

p
“

1

q
`
β

n
.

For an integer M ě np1
p
´ 1q, suppose pΦ is a function in C2M`npRnq and satisfies,

for all I with |I| ď 2M ` n,

B
I
ppΦqpξq |ξ|k P L1

pRn
q, for k “ 0, 1, 2, . . . |I| .

Assume also

lim
ξÑ8

ˇ

ˇ

ˇ
B
I
ppΦqpξq

ˇ

ˇ

ˇ
|ξ|M “ 0, for all I satisfying |I| ď 2M ` n.

If M “ np1
p
´ 1q, then

}HΦ,βpfq}Lq,8pRnq ď }f}HppRnq .

If M ą np1
p
´ 1q, then

}HΦ,βpfq}LqpRnq ď }f}HppRnq .

Proof. The proof follows the same argument as the proof of Theorem 5.11. We prove

the case M “ np1
p
´ 1q. To prove the first inequality in the corollary, by Lemma 5.8,

we need to check
›

›

›

›

›

|x|n´β

|¨|
n´β

Φp
x

|¨|
q

›

›

›

›

›

Λα

ď |x|´α ,

where α “M . Here, by Fourier transforms, we may write

|x|n´β

|y|n´β
Φp

x

|¨|
q “ |x|n´β

ż

Rn
pΦpξq |y|´n`β ei

1
|y|

〈ξ,x〉 dξ.

Thus, as in the proof of Theorem 5.11,

sup
yPRnzt0u

$

&

%

ÿ

|I|“α

ˇ

ˇ

ˇ

ˇ

B
I

ˆ

|x|n´β
ż

Rn
pΦpξq |y|´pn´βq ei

1
|y|

〈ξ,x〉 dξ

˙
ˇ

ˇ

ˇ

ˇ

,

.

-
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ď sup
yPRnzt0u

$

’

’

&

’

’

%

ÿ

|I|“α

´

|x|
|y|

¯n´βÿ

K1`K2“I

1

|y||K1|

¨

˚

˚

˝

ÿ

|K2|ďl1ď2|K2|

l1´l2“|K2|

1

|y|l1

ˇ

ˇ

ˇ

ˇ

ż

Rn
pΦpξqei

1
|y|

〈ξ,x〉Pl2p〈ξ, x〉q dξ
ˇ

ˇ

ˇ

ˇ

˛

‹

‹

‚

,

/

/

.

/

/

-

.

The conditions in the theorem are sufficient to allow the integration by parts in

Theorem 5.11 to proceed, which allows us to prove the first inequality. An argument

similar to the one used to prove Lemma 5.12 shows that the condition is also sufficient

to give the conclusion to that lemma. Thus, we obtain the second inequality by an

interpolation argument. l
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CHAPTER 6

ADDITIONAL SPACES AND OPERATORS

6.1 Motivation

In studying the Hp boundedness of the Hausdorff operator, we have so far obtained

only results which require some smoothness condition on Φ.

Question 4. If we don’t assume any smoothness condition on Φ, and only assume Φ

satisfies some size condition, can we obtain the Hp boundedness of Φ?

To gain insight into this question, let us review the argument showing that hΦ is

bounded on H1pRq when Φ P L1. When p “ 1, H1 is a normed space, and so we may

use the Minkowski inequality.

Recall that for f P Hp, 0 ă p ď 1, we may write f as an atomic decomposition,

f “
ÿ

λjaj

with

ÿ

|λj|
p
– }f}pHp ,

where each ajpxq is a pp,8, sq atom, with s an integer such that s ě
”

n
´

1
p
´ 1

¯ı

.

We study the Hp boundedness of the Hausdorff operator.

So, for f P H1, take an atomic decomposition f “
ř

λjaj. Using the Minkowski

inequality, we have

}hΦpfq}H1 ď
ÿ

|λj| }hΦpajq}H1 .

where
ř

λjaj is an atomic decomposition of f . In the above inequality, by the

Minkowski inequality again,

}hΦpajq}H1 “

›

›

›

›

ż 8

0

Φptq

t
ajp

x

t
q dt

›

›

›

›

H1
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ď

ż 8

0

|Φptq|

t

›

›

›
ajp
¨

t
q

›

›

›

H1
dt

“

ż 8

0

|Φptq|

›

›

›

›

1

t
ajp
¨

t
q

›

›

›

›

H1

dt.

Since, for fixed t ą 0, 1
t
ajp

x
t
q is also a p1,8, sq atom, we have

›

›

›

›

1

t
ajp
¨

t
q

›

›

›

›

H1

ď 1

uniformly for t and j. Thus we obtain that

}hΦpfq}H1 ď
ÿ

|λj|

ż 8

0

|Φptq| dt – }f}H1

ż 8

0

|Φptq| dt.

Therefore, we obtain that hΦ is bounded on H1 provided

ż 8

0

|Φptq| dt ă 8.

Now we try to extend the above argument to the Hp boundedness for 0 ă p ă 1.

First we have

}hΦpfq}
p
Hp ď

ÿ

|λj|
p
}hΦpajq}

p
Hp . (6.1)

If we can show, by assuming certain size condition on Φ, that

}hΦpajq}
p
Hp ď 1 (6.2)

uniformly on j, then from equation (6.1) we obtain the Hp boundedness of hΦ. So,

showing the Hp boundedness of hΦ is reduced to showing equation (6.2). Unfortu-

nately, when p ă 1, Hp is not a normed space, so we cannot apply the Minkowski

inequality to obtain, for an atom a,

}hΦpaq}Hp ď

ż 8

0

|Φptq|

t

›

›

›
ap
¨

t
q

›

›

›

Hp
dt

as we did for H1 norm. To overcome this difficulty, we write

hΦpaqpxq “

ż 8

0

Φptq

t
ap
x

t
q dt “

8
ÿ

k“´8

ż 2k`1

2k

Φptq

t
ap
x

t
q dt,
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and study each

ż 2k`1

2k

Φptq

t
ap
x

t
q dt.

We introduce a normalizing factor, and define a pp,8, 0q atom Ak by

Akpxq “

˜

2
1
p

ż 2k`1

2k

t
1
p |Φptq|

t
dt

¸´1
ż 2k`1

2k

Φptq

t
ap
x

t
q dt.

This is possible if supp a contains the origin. To show this fact, without loss of gener-

ality, we may assume the support of a is p´ρ, ρq. As t runs over the interval p2k, 2k`1q,

we can view that the support of apx
t
q is contained in the interval

 

x : |x| ď ρ2k`1
(

.

Thus Akpxq is supported in p´ρ2k`1, ρ2k`1q.

Next, by applying Fubini’s theorem, we can show the cancellation condition, as

follows. Fix u ď s. Then

ż

R
xuAkpxq “

˜

2
1
p

ż 2k`1

2k

t
1
p |Φptq|

t
dt

¸´1
ż 2k`1

2k

Φptq

t

ż

R
xuap

x

t
q dx dt

“

˜

2
1
p

ż 2k`1

2k

t
1
p |Φptq|

t
dt

¸´1
ż 2k`1

2k
Φptqtu

ż

R
xuapxq dx dt “ 0.

Also, we have the size condition with radius ρ2k`1

}Ak}L8 ď

˜

2
1
p

ż 2k`1

2k

t
1
p |Φptq|

t
dt

¸´1
ż 2k`1

2k

|Φptq|

t
}a}L8 dt

ď ρ´
1
p

ż 2k`1

2k

|Φptq|

t
dt

˜

2
1
p

ż 2k`1

2k

t
1
p |Φptq|

t
dt

¸´1

“ 2
1
p p2k`1ρq´

1
p

ż 2k`1

2k

2
k
p |Φptq|

t
dt

˜

2
1
p

ż 2k`1

2k

t
1
p |Φptq|

t
dt

¸´1

– p2k`1ρq´
1
p .

Thus, we have proved that each Ak is a pp,8, sq atom. We write

ż 8

0

Φptq

t
ap
x

t
q dt “

8
ÿ

k“´8

˜

2
1
p

ż 2k`1

2k

t
1
p |Φptq|

t
dt

¸

Akpxq.
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Now, if we assume that for some σ ą 1´p
p

,

ż

R

t
1
p |Φptq|

t
p1` |log2 |t||q

σ dt ď C

then by an easy computation, we obtain

}hΦpaq}
p
Hp ď

8
ÿ

k“´8

˜

2
1
p

ż 2k`1

2k

t
1
p |Φptq|

t
dt

¸p

}Ak}
p
Hp

ď

8
ÿ

k“´8

˜

2
1
p

ż 2k`1

2k

t
1
p |Φptq|

t
dt

¸p

ď

˜

ż

R

t
1
p |Φptq|

t
p1` |log2 |t||q

σ dt

¸p

ď 1.

Thus equation (6.2) is proved, if aj is supported in an interval containing 0.

However, we will see that the above argument fails if the support of a does not

contain the origin. If supp paq Ă pα, βq, and β ą α ą 0, then

ż 2k`1

2k

Φptq

t
ap
x

t
q dt

is supported in p2kα, 2k`1βq. Now the length of p2kα, 2k`1βq is

2k`1β ´ 2kα “ 2k`1
pβ ´ αq ` 2kα.

This length can not be compared to 2k`1pβ´αq, since the number 2kα may be arbitrar-

ily large. Thus, we can not choose a normalizing factor Fk so that Fk
ş2k`1

2k
Φptq
t
apx

t
q dt

satisfies the size condition in general.

Based on these observations, we wish to restrict our discussion to only those

atoms whose support includes the origin. In other words, we wish to consider a space

whose elements f have the central atomic decompositions, that is, each atom aj in a

decomposition of f is supported in p´ρj, ρjq. Such spaces are called Herz-type Hardy

spaces H 9Kα,p
q pRnq, introduced in section 2.5.
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6.2 Boundedness of Hausdorff Operator on H 9Kα,p
q pRnq

Recall from page 26 the definitions of the homogeneous Herz space and the Herz-type

Hardy space.

Definition 2.4 (Homogeneous Herz Space). Let α P R, 0 ă p, q ă 8. The homoge-

neous Herz space 9Kα,p
q pRnq is defined by

9Kα,p
q “

!

f P LqlocpR
n
z t0uq : }f} 9Kα,p

q
ă 8

)

,

where

}f} 9Kα,p
q pRnq “

˜

8
ÿ

k“´8

2kαp }fχk}
p
LqpRnq

¸
1
p

.

Definition 2.5 (Herz-type Hardy Space). Let α P R, 0 ă p ă 8, 1 ă q ă 8. The

homogeneous Herz-type Hardy space H 9Kα,p
q pRnq is defined by

H 9Kα,p
q pRn

q “

!

f P S 1pRn
q : Gf P 9Kα,p

q pRn
q

)

,

where Gf is the grand maximal function of f and

}f}H 9Kα,p
q pRnq “ }Gf} 9Kα,p

q pRnq .

Recall also from page 26 that the Herz-type Hardy space can be decomposed into

central atoms.

Definition 2.6 (Central Atom). Suppose 1 ă q ă 8, np1 ´ 1
q
q ď α ă 8, and

s ě rα ` np1
q
´ 1qs. A function apxq on Rn is said to be a central pα, qq atom if

(i) supp a Ă Bp0, ρq ,

(ii) }a}LqpRnq ď |Bp0, ρq|´α{n,

(iii)

ż

Rn
apxqxβ dx “ 0 for any multi-index β with |β| ď s.

Following logic similar to that in Section 6.1, we have the following result for

Herz-type Hardy spaces.
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Theorem 6.1. Let 0 ă p ď 1 ă q ă 8, and np1´ 1
q
q ď α ă 8.

(1) For 0 ă p ă 1, let

Cp,σ “

ż

Rn

|Φpyq|

|y|n
|y|α |y|

n
q p1` log |y|qσ dy.

If, for some σ ą 1´p
p

, Cp :“ Cp,σ ă 8, then

}HΦpfq}H 9Kα,p
q pRnq ď }f}H 9Kα,p

q pRnq .

(2) For p “ 1, let

C1 “

ż

Rn

|Φpyq|

|y|n
|y|α |y|

n
q dy.

If C1 ă 8, then

}HΦpfq}H 9Kα,1
q pRnq ď }f}H 9Kα,1

q pRnq .

Proof. We prove part (1) only; the argument for part (2) is identical. For f P H 9Kα,p
q ,

take a central atomic decomposition.

f “
ÿ

k

λkak

where

ÿ

kPZ

|λk|
p
– }f}p

H 9Kα,p
q

and each ak is an pα, qq central atom supported in Bp0, ρkq. Now we have

HΦpfq “
ÿ

kPZ

λkHΦpakq.

To prove the theorem, it suffices to show that

HΦpakq “
ÿ

jPZ

ck,jak,j,
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where each ak,j again is a central pα, qq atom and

ÿ

jPZ

|ck,j|
p

ď 1

uniformly on k P Z.

We write

bk,jpxq “

ż

2´jď|y|ď2´j`1

Φpyq

|y|n
ak

ˆ

x

|y|

˙

dy, j P Z.

So

HΦpakqpxq “
ÿ

jPZ

bk,jpxq.

It is easy to check that each bk,j satisfies the same cancellation condition as ak. By

the Minkowski inequality, the size of bk,j is

}bk,j}Lq ď

ż

2´jď|y|ď2´j`1

|Φpyq|

|y|n

›

›

›

›

ak

ˆ

¨

|y|

˙
›

›

›

›

Lq
dy

ď ρ´α
ż

2´jď|y|ď2´j`1

|Φpyq|

|y|n
|y|

n
q dy.

If |x| ą 2´j`1ρk then

|x|

|y|
ě 2j´1

|x| ą ρk,

which means akp
x
|y|
q “ 0 for all 2´j ď |y| ď 2´j`1. This tells us that

supp pbk,jq Ă Bp0, 2´j`1ρkq.

Now we write

HΦpakqpxq “
ÿ

jPZ

ck,jak,j

with

ck,j “ 2p´j`1qα

ż

2´jď|y|ď2´j`1

|Φpyq|

|y|n
|y|

n
q dy,
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and

ak,j “
1

ck,j
bk,j.

It is easy to check that ak,j is a central pα, qq atom and

ÿ

jPZ

|ck,j|
p

ď
ÿ

jPZ

ˆ
ż

2´jď|y|ď2´j`1

|Φpyq|

|y|n
|y|α`

n
q dy

˙p

ď

ˆ
ż

Rn

|Φpyq|

|y|n
|y|α`

n
q p1` |log |y||qσ dy

˙p

“ Cp.

This shows

HΦpfq “
ÿ

kPZ

λkHΦpakq

“
ÿ

kPZ

ÿ

jPZ

λkck,jak,j.

By the atomic decomposition, we obtain

}HΦpfq}H 9Kα,p
q pRnq ď

˜

ÿ

kPZ

ÿ

jPZ

|λkck,j|
p

¸
1
p

ď

˜

ÿ

kPZ

|λk|
p

¸
1
p

ď }f}H 9Kα,p
q pRnq ,

as desired. l

We now return to the example of the Cesàro operator Cβ.

Corollary 6.2. Let 0 ă p ď 1 ă q ă 8, and np1´ 1
q
q ď α ă 8. For any β ą 0, we

have

}Cβpfq}H 9Kα,p
q pRnq ď }f}H 9Kα,p

q pRnq .

Proof. Note Cβ “ HΦ, where Φ “ χ|y|ă1pyqp1 ´ |y|q
β´1. It is easy to check that this

Φ meets the conditions of Theorem 6.1. l
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6.3 H 9Kα,p
q pRq Ñ HrpRq Boundedness

In this section, we study the H 9Kα,p
q pRq Ñ Hr,8pRq boundedness for the one dimen-

sional modified Hausdorff operator

rhΦpfqpxq “

ż

R

Φptq

t
fp
x

t
q dt.

Note that here Φ : RÑ R is a locally integrable function. As before, we denote

φpvq “

$

&

%

Φp 1v q
v

if v ‰ 0

lim
vÑ0

Φp 1v q
v

if v “ 0.

Theorem 6.3. Let 0 ă p ď 1 ă q ă 8, and p1´ 1
q
q ď α ă 8. For

r “
1

α ` 1
q

, N “ rα `
1

q
´ 1s “

„

1

r
´ 1



,
1

q1
`

1

q
“ 1.

Let

γ “
1

r
´ 1´N “

1

r
´ 1´

„

1

r
´ 1



.

If φ P CN and

ż ρ

´ρ

ˇ

ˇφpNqptq ´ φpNqp0q
ˇ

ˇ

q1

dt ď ρ1`γq1

uniformly for ρ ą 0, then we have

›

›

›

rhΦpfq
›

›

›

Hr,8
ď }f}H 9Kα,p

q
.

Proof. For any f P H 9Kα,p
q , we write

f “
ÿ

k

λkak,

where

ÿ

kPZ

|λk|
p
– }f}p

H 9Kα,p
q
,
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and each ak is an pα, qq central atom supported in the ball Bp0, ρkq. Now we have

rhΦpfq “
ÿ

kPZ

λkrhΦpakq.

Then as in the proof of Theorem 3.1, for the Hilbert transform R, we can write

R ˝ rhΦpfq “
ÿ

kPZ

λkpR ˝ rhΦqpakq

and

pR ˝ rhΦqpakqpxq “

ż 8

´8

Φptq

t
pRakqp

x

t
q dt.

Changing variables 1
t
“ v, by the definition of φ, we have

ˇ

ˇ

ˇ
R ˝ rhΦpakqpxq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ż 8

´8

Φp 1
v
q

v
pRakqpxvq dv

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż 8

´8

φpvqpRakqpxvq dv
ˇ

ˇ

ˇ

ˇ

.

It is known [20] that the Hilbert transform is bounded on the space H 9Kα,p
q . That is,

}pRakq}H 9Kα,p
q

ď }ak}H 9Kα,p
q

ď 1

uniformly for all atoms ak. Thus Rak is an element in H 9Kα,p
q , so we may write

pRakq “
ÿ

j

ck,jak,j,

where each ak,j is again a central pα, qq atom and

ÿ

j

|ck,j|
p

ď 1

uniformly on k. This shows that

ˇ

ˇ

ˇ
R ˝ rhΦpakqpxq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j

ck,j

ż 8

´8

φpvqak,jpxvq dv

ˇ

ˇ

ˇ

ˇ

ˇ

.

We further note that for each fixed x ‰ 0,

bk,jpvq “ |x|
1
r ak,jpxvq
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is again an pα, qq central atom. Thus,

ˇ

ˇ

ˇ
R ˝ rhΦpakqpxq

ˇ

ˇ

ˇ
“ |x|´

1
r

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j

ck,j

ż 8

´8

φpvqbk,jpvq dv

ˇ

ˇ

ˇ

ˇ

ˇ

.

For simplicity of notation, we write

bpvq “ bk,jpvq,

and assume the support of b is p´ρ, ρq. Thus,

ż 8

´8

φpvqbk,jpvq dv “

ż ρ

´ρ

φpvqbpvq dv.

First we assume N ě 1. Using the Taylor expansion of φ, we write

φpvq “
N´1
ÿ

k“0

1

k!
φpkqp0qvk `

1

pN ´ 1q!
vN

ż 1

0

p1´ sqN´1φpNqpsvq ds.

By the cancellation condition on b, we now have

ż 8

´8

φpvqbpvq dv “
1

pN ´ 1q!

ż ρ

´ρ

vN
ˆ
ż 1

0

p1´ sqN´1φpNqpsvq ds

˙

bpvq dv

–

ż ρ

´ρ

"
ż 1

0

p1´ sqN´1
rφpNqpsvq ´ φpNqp0qs ds

*

vNbpvq dv

“

ż 1

0

p1´ sqN´1

ż ρ

´ρ

rφpNqpsvq ´ φpNqp0qsvNbpvq dv ds.

Thus

ˇ

ˇ

ˇ

ˇ

ż 8

´8

φpvqbpvq dv

ˇ

ˇ

ˇ

ˇ

ď ρN
ż 1

0

p1´ sqN´1

ż ρ

´ρ

ˇ

ˇφpNqpsvq ´ φpNqp0q
ˇ

ˇ |bpvq| dv ds

ď ρN }b}Lq

ż 1

0

p1´ sqN´1

ˆ
ż ρ

´ρ

ˇ

ˇφpNqpsvq ´ φpNqp0q
ˇ

ˇ

q1

dv

˙
1
q1

ds

ď ρN }b}Lq

ż 1

0

p1´ sqN´1s
´ 1
q1

ˆ
ż sρ

´sρ

ˇ

ˇφpNqpvq ´ φpNqp0q
ˇ

ˇ

q1

dv

˙
1
q1

ds

ď ρN´αρ
γ` 1

q1

“ ρ
1
r
´1` 1

q1
´α

“ ρ
1
r
´ 1
q
´α
“ 1
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uniformly for all atoms b. On the other hand, if N “ 0,

ˇ

ˇ

ˇ

ˇ

ż 8

´8

φpvqbpvq dv

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż ρ

´ρ

pφpvq ´ φp0qqbpvq dv

ˇ

ˇ

ˇ

ˇ

ď

ˆ
ż ρ

´ρ

|φpvq ´ φp0q| dv

˙
1
q1

}b}Lq ď 1

uniformly for all atoms b.

This indicates

ˇ

ˇ

ˇ
R ˝ rhΦpakqpxq

ˇ

ˇ

ˇ
“ |x|´

1
r

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j

ck,j

ż 8

´8

φpvqbk,jpvq dv

ˇ

ˇ

ˇ

ˇ

ˇ

ď |x|´
1
r

uniformly on central atoms ak.

For any λ ą 0, now we have

ˇ

ˇ

ˇ

!

x ‰ 0 :
ˇ

ˇ

ˇ
R ˝ rhΦpakqpxq

ˇ

ˇ

ˇ
ą λ

)
ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

!

x ‰ 0 : |x|´
1
r ě λ

)
ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

"

x ‰ 0 : |x|
1
r ď

1

λ

*
ˇ

ˇ

ˇ

ˇ

–

ˆ

1

λ

˙r

.

We can show by a similar method

ˇ

ˇ

ˇ

!

x :
ˇ

ˇ

ˇ

rhΦpakqpxq
ˇ

ˇ

ˇ
ą λ

)
ˇ

ˇ

ˇ
ď

ˆ

1

λ

˙r

.

This gives

›

›

›

rhΦpfq
›

›

›

Hr,8
–

›

›

›
R ˝ rhΦpfq

›

›

›

Lr,8
`

›

›

›

rhΦpfq
›

›

›

Lr,8

ď

˜

ÿ

k

|λk|
p

¸
1
p

ď }f}H 9Kα,p
q

as desired. l

Remark 6.4. An analogous strong boundedness result can be shown by interpolating

on r and q.
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6.4 Bilinear Hausdorff Operators

Next we study the bilinear Hausdorff operator

HΦ,m,kpf, gqpxq “

ż 8

´8

Φptq

t
fp
xm

t
qgp

xk

t
q dt.

Note this is defined for all x P Rzt0u when m, k P Z.

Theorem 6.5. Let m, k “ 1, 2, . . .. For any p, p1, p2, r, p
1 ě 1 satisfying

1

p1

`
1

p2

“
1

p
,

1

r
“
m

p1

`
k

p2

,
1

p
`

1

p1
“ 1,

if

¨

˝

ż 8

´8

ˇ

ˇ

ˇ

ˇ

ˇ

Φ
`

1
t

˘

t

ˇ

ˇ

ˇ

ˇ

ˇ

p1

dt

˛

‚

1
p1

ă 8

then

}HΦ,m,kpf, gq}Lr,8 ď }f}Lp1 }g}Lp2 .

Proof. By Hölder’s inequality and a scaling argument, for x ą 0

|HΦ,m,kpf, gqpxq| “

ˇ

ˇ

ˇ

ˇ

ż 8

´8

Φp1
t
q

t
fptxmqgptxkq dt

ˇ

ˇ

ˇ

ˇ

ď

˜

ż 8

´8

ˇ

ˇ

ˇ

ˇ

Φp1
t
q

t

ˇ

ˇ

ˇ

ˇ

p1

dt

¸

1
p1
›

›fp¨xmqgp¨xkq
›

›

Lp

ď

˜

ż 8

´8

ˇ

ˇ

ˇ

ˇ

Φp1
t
q

t

ˇ

ˇ

ˇ

ˇ

p1

dt

¸

1
p1

}fp¨xmq}Lp1
›

›gp¨xkq
›

›

Lp2

“ |x|
´m
p1
´ k
p2

˜

ż 8

´8

ˇ

ˇ

ˇ

ˇ

Φp1
t
q

t

ˇ

ˇ

ˇ

ˇ

p1

dt

¸

1
p1

}f}Lp1 }g}Lp2

“ CΦ |x|
´m
p1
´ k
p2 }f}Lp1 }g}Lp2 ,

where

CΦ “

˜

ż 8

´8

ˇ

ˇ

ˇ

ˇ

Φp1
t
q

t

ˇ

ˇ

ˇ

ˇ

p1

dt

¸

1
p1

.
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Therefore,

|tx : |HΦpf, gqpxq| ą λu|

ď

ˇ

ˇ

ˇ

!

x : CΦ |x|
´m
p1
´ k
p2 }f}Lp1 }g}Lp2 ą λ

)
ˇ

ˇ

ˇ

–

ˇ

ˇ

ˇ

ˇ

"

x : |x|
m
p1
` k
p2 ď

}f}Lp1 }g}Lp2
λ

*
ˇ

ˇ

ˇ

ˇ

–

ˆ

}f}Lp1 }g}Lp2
λ

˙
1

m
p1
` k
p2 ,

where by assumption m
p1
` k

p2
ă 1.

Recalling r “ 1
m
p1
` k
p2

ě 1, we have

|tx : |HΦpf, gqpxq|
r
ą λu|

“

ˇ

ˇ

ˇ

!

x : |HΦpf, gqpxq| ą λ
1
r

)ˇ

ˇ

ˇ

ď p}f}Lp1 }g}Lp2 q
1

m
p1
` k
p2 λ´1.

This gives

}HΦpf, gq}Lr,8 ď }f}Lp1 }g}Lp2

as desired. l

If we restrict the domains of f, g,Φ to r0,8q, we can extend the definition of the

bilinear Hausdorff operator as: for f, g P Spr0,8qq, α, β P R,

HΦ,α,βpf, gqpxq “

ż 8

0

Φptq

t
f

ˆ

xα

t

˙

g

ˆ

xβ

t

˙

dt,

in which case, the method of proof used for Theorem 6.5 can also be used to show

the analogous result.
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[16] Liflyand, E., and Móricz, F. The multi-parameter Hausdorff operator is
bounded on the product Hardy space H11pRˆRq. Analysis, 21 (2001), 107–118.



90

[17] Liflyand, E., and Móricz, F. Commuting relations for Hausdorff operators
and Hilbert transforms on real Hardy spaces. Acta Mathematica Hungarica 97,
1 (2002), 133–143.
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[23] Miyachi, A. Boundedness of the Cesáro operator in Hardy spaces. Journal of
Fourier Analysis and Applications 10, 1 (2004), 83–92.
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