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ABSTRACT 

 

BI- AND MULTI LEVEL GAME THEORETIC APPROACHES IN 

MECHANICAL DESIGN 

 

by 

Ehsan Ghotbi 

 

The University of Wisconsin-Milwaukee, 2013 

Under the Supervision of Professor Anoop Dhingra 

 

This dissertation presents a game theoretic approach to solve bi and multi-level 

optimization problems arising in mechanical design. Toward this end, Stackelberg 

(leader-follower), Nash, as well as cooperative game formulations are considered. To 

solve these problems numerically, a sensitivity based approach is developed in this 

dissertation. Although game theoretic methods have been used by several authors for 

solving multi-objective problems, numerical methods and the applications of extensive 

games to engineering design problems are very limited. This dissertation tries to fill this 

gap by developing the possible scenarios for multi-objective problems and develops new 

numerical approaches for solving them. 

This dissertation addresses three main problems. The first problem addresses the 

formulation and solution of an optimization problem with two objective functions using 

the Stackelberg approach. A computational procedure utilizing sensitivity of follower’s 

solution to leader’s choices is presented to solve the bi-level optimization problem 

numerically. Two mechanical design problems including flywheel design and design of 
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high speed four-bar mechanism are modeled based on Stackelberg game. The partitioning 

of variables between the leader and follower problem is discussed, and a variable 

partitioning metric is introduced to compare various variable partitions.  

The second problem this dissertation focuses on is modeling the multi-objective 

optimization problem (MOP) as a Nash game. A computational procedure utilizing 

sensitivity based approach is also presented to find Nash solution of the MOP 

numerically. Some test problems including mathematical problems and mechanical 

design problems are discussed to validate the results. In a Nash game, the players of the 

game are at the same level unlike the Stackelberg formulation in which the players are at 

different levels of importance.  

The third problem this dissertation addresses deals with hierarchical modeling of 

multi-level optimization problems and modeling of decentralized bi-level multi-objective 

problems. Generalizations of the basic Stackelberg model to consider cases with multiple 

leaders and/or multiple followers are missing from the literature. Three mathematical 

problems are solved to show the application of the algorithm developed in this research 

for solving hierarchical as well as decentralized problems. 
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Chapter 1 

1. INTRODUCTION 

The topic of multiple objective optimization problems comes from the field of 

multiple criteria decision making. Multiple criteria decision making deals with methods 

and algorithms to analytically model and solve problems with multiple objective 

functions. Multi-objective optimization (MOO) problems requiring a simultaneous 

consideration of two or more conflicting objective functions frequently arise in design. 

This dissertation addresses solutions to multi-objective problems arising in the context of 

mechanical design. 

1.1 Multiple Objective Optimization Problems 

Multiple criteria decision making has two aspects, namely, multi-attribute 

decision analysis and multiple objective optimization. Multiattribute decision analysis is 

applicable to problems in which the decision maker is dealing with a small number of 

alternatives in an uncertain environment. This aspect helps in resolving public policy 

problems such as nuclear power plant location, location of an airport, location of a waste 

processing facility, etc. This aspect has been covered in detail by Keeney and Raiffa 

(1993). The second aspect of multiple criteria decision making deals with the application 

of optimization techniques in solving these problems. Techniques for solving multiple 

criteria (objective) optimization have been developed since early 1970s.  

Solutions to multi-objective problems where all objective functions are 

simultaneously minimized generally do not exist. Therefore, optimization techniques 

generally look for the best compromise solution amongst all objectives. Since modeling 

the decision maker’s preferences is a primary goal of multi-objective optimization, to 
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find the best compromise solution, there should be some procedure to obtain preference 

information from the decision maker along with selection of a suitable optimization 

scheme. Hwang and Masud (1979) classified the optimization techniques into three 

groups according to the timing of requesting the preference information: (i) Articulation 

of the decision maker’s preferences prior to optimization, (ii) Progressive articulation of 

preferences (during or in sequence with optimization), and (iii) A posteriori articulation 

of preferences (after optimization problem has been solved). 

Marler and Arora (2004) did a comprehensive survey on the multi-objective 

optimization methods available on literature. They divided the methods based on how the 

decision makers articulate their preferences including priori articulation, posteriori 

articulation and no articulation of preferences. 

1.1.1 Methods with a Priori Articulation of Preferences 

In these methods, preferences are dictated by the decision maker before the 

optimization problem is solved. The difference between the methods is based on the 

different utility functions they may use. Some of the methods which are based on an 

apriori articulation of preferences are discussed below: 

Weighted Sum Method:  

The weighting method is a conventional approach to solve multi-objective 

optimization problems. In this method, a weight is assigned to each objective function 

and the summation of weighted objective functions is considered as the overall objective 

function. Steuer (1989) related the weights to the preference of decision maker. Many 

works have been done to select the weights. Saaty (1977) provided an eigenvalue method 

to determine the weights. This method involves the pairwise comparison between the 
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objective functions. This provides a comparison matrix with eigenvalues which are the 

weights. Yoon and Hwang (1995) developed the ranking method to select the weights. In 

this method, the objective functions are ranked by importance. The least important 

objective function gets a weight of one and the integer weights with increments are 

assigned to objective functions that are more important. There are some constraints in 

applying weighted sum method. For example, Messac et al. (2000) proved that it is 

impossible for this method to obtain points on non-convex portions of the Pareto optimal 

frontier set. Also, Papalambros and Wilde (1988) stated that this approach can mislead 

concerning the nature of optimum design.  

Lexicographic Method: 

In the Lexicographic method, the objective functions are ranked in order of 

importance by the decision maker. The optimization problem of objective function 

deemed most important is solved and the optimum solution is obtained. The second most 

important objective function can be optimized by considering that the optimum value of 

the previous objective function should not be changed. This procedure is repeated until 

all objective functions have been considered. Rentmeesters et al. (1996) showed that the 

optimum solution of lexicographic method does not satisfy the constraint qualification of 

Kuhn-Tucker optimality conditions. The authors developed other optimality conditions 

for the lexicographic approach. 

Goal Programming Method: 

The basic idea in goal programming is to establish a goal level for each objective 

function. The overall objective is to minimize the deviation of each objective function 

from its own goal level. Charnes and Cooper (1961), Lee (1972) and Ignizio (1980) 
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developed the goal programming method. Lee and Olson (1999) reviewed the 

applications of goal programming method. Although the method has the wide range of 

applications, there is no guarantee that the solution obtained with this method is a Pareto 

optimal solution. Weighted goal programming method, in which weights are assigned to 

the deviation of each objective function from its goal, was developed by Charnes and 

Cooper (1977). 

Bounded Objective Function Method: 

In this approach, only the most important objective function is minimized and the 

other objective functions are considered as constraints. The lower and upper bounds are 

set for the other objective functions. Haimes et al. (1971) developed  -constraint method 

in which only the upper limits are considered. Miettinen (1999) showed that if exists a 

solution to  -constraint, then the solution is a weakly Pareto optimal solution. If the 

solution is unique, then it is Pareto optimal. Chankong and Haimes (1983) proved that if 

the problem is convex and objective functions are strictly convex, then the solution is 

unique. Ehrgott and Ryan (2002) improved  -constraint by allowing the objective 

functions, which are in constraints, to be violated and penalizing any violation in the 

objective function. 

There are some other methods such as weighted min-max, physical programming 

and weighted product method in the literature which are based on a priori articulation of 

preferences. 

Utility Theory: 

An approach to solving multiple objective optimization problems is correlating 

the objective functions with value functions; these functions are comparable, and 
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combining these value functions yields a problem with single objective function. Figure 

of Merit (FOM) is an approach to evaluate the multiple objective functions. A more 

analytic approach for the evaluation of attributes (objective functions) is Utility analysis 

developed by Von Neumann (1947), Savage (1954) and Keeney and Raiffa (1993). 

Thurston (1991) compared FOM approach by utility analysis. Thurston (1994) applied 

Utility function in optimization of a design problem. The author defined an overall utility 

function for the design problem of single utility function for each objective function. For 

each single utility function one single scaling constant has been defined which shows the 

relative merits of the utility functions. These scaling constants can be obtained by tools 

such as the Analytic Hierarchy Process (AHP) developed by Saaty (1988) or fuzzy 

analysis developed by Zadeh (1975). To construct the utility function for each objective 

function, Thurston (1994) used the lottery questions to assess a set of points on each 

single utility function. The best fit of these points shows the form of the utility function. 

1.1.2 Methods with a Posteriori Articulation of Preferences 

The methods using posteriori articulation of preferences first look for a set of 

Pareto optimal solutions and then according to the decision maker preference, the best 

compromise solution will be selected from the Pareto optimal set. The advantage of this 

method is that the solution set is independent of the decision maker’s preferences. These 

methods are constructed with the target of obtaining Pareto points and then selecting the 

optimal solution amongst these Pareto optimal points. 

Algorithms using posteriori articulation of preferences to solve MOLP’s can be 

divided into two categories: (1) Algorithms finding all efficient extreme points. (2) 

Algorithm finding just efficient points. Steuer (1976) showed that all algorithms are in 
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the first category consist of three phases. Phase one and two find an initial extreme and 

an initial efficient point respectively. Phase three searches for all efficient extreme points. 

The algorithms in this category differ in their approaches in phase three. Steuer (1975) 

developed two computer codes, ADBASE and ADEX to obtain all efficient extreme 

points. Most works in the area of posteriori articulation of preferences have been done in 

category two. Some of the methods with a Posteriori Articulation of Preferences are 

discussed in below: 

Normal Boundary Intersection (NBI): 

Das and Dennis (1998) developed NBI method. The weighted sum method has a 

shortcoming of not being able to find Pareto optimal points in non-convex problems. But 

NBI approach uses a scalarization method to produce Pareto optimal set for non-convex 

problems. However, the method may also produce non-Pareto optimal points. It means 

that it does not provide a sufficient condition for the Pareto optimality of the solutions. 

Das and Dennis (1998) applied NBI to a three-bar truss design problem with five 

objective functions and four design variables. 

Normal Constraint (NC): 

Messac et al. (2003) improved NBI method to eliminate non-Pareto optimal 

solutions from the optimal solution set. In normal constraint method, first it determines 

the ideal point and its components for each objective function. A plane passing through 

the ideal points is called the utopia hyper plane. The objective functions are normalized 

based on the ideal solution. NC method uses the normalized function value to tackle with 

disparate function scales. This part is different than NBI method. 
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The other approaches available in the literature are Evolutionary algorithms, 

Genetic algorithms and Directed search domain.  

The weighted sum method, goal programming method and lexicographic method 

are some of the common approaches in the literature to solve multiple objective 

optimization problems. In all these methods, the optimum solution is dependent to the 

preferences of the decision maker. For example, in weighted sum method, by changing 

the weights of the objective functions, the optimum solution may change. Also, there is 

no guarantee that the optimum solution of these methods is a Pareto optimal solution. 

Game theory method is not sensitive to preferences of the decision maker and also it can 

provide the Pareto optimal solution, for cooperative game. 

The other methods are attempting to change the multi-objective function problem 

to a single objective problem and solve it, but game theoretic models consider each 

objective function individually. This makes the game theory an interesting topic to do 

research. This thesis studies game theoretic models which can be applied in mechanical 

design. In next section, game theory as a tool for solving multi objective problems is 

reviewed. 

1.2 Game Theory Approaches in Design 

In game theory, the multi-objective optimization problem is treated as a game 

where each player corresponds to an objective function being optimized. The notion of 

designers as players in a game has been demonstrated by several authors (Vincent, 1983; 

Rao, 1987; Lewis and Mistree, 1997; Badhrinath and Rao, 1996; Hernandez and Mistree, 

2000; Shiau and Michalek, 2009). The players control a subset of design variables and 

seek to optimize their individual payoff functions. 
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The objective functions of players are often conflicting and the designers may not 

have the capability of finding a compromise solution. In this situation, game theory can 

be an appropriate tool to model interactions between designers. There are three types of 

games that can be uses in the context of design: cooperative game, non-cooperative 

(Nash) game, and an extensive game. In a cooperative game, the players have knowledge 

of the strategies chosen by other players and collaborate with each other to find a Pareto-

optimal solution. If a cooperation or coalition among the players is not possible, the 

players make decision by making assumptions about unknown strategies selected by 

other players. In extensive games, the players make decisions sequentially. The extensive 

games can be non-cooperative game but it is considered separately in this research.  In 

the next three sections, these three types of games will be discussed in some detail. 

1.2.1 Non-Cooperative Games in Design 

In a non-cooperative game, each player has a set of variables under his control 

and optimizes his objective function individually. The player does not care how his 

selection affects the payoff functions of other players. The players bargain with each 

other to obtain an equilibrium solution, if one exists. In the literature, this solution is 

called Nash equilibrium solution (Mcginty (2012)). Vincent (1983) first proposed the use 

of a non-cooperative game in design. Two designers play in a non-cooperative game and 

end up to the solution. Vincent showed that the Nash solution is usually not on the Pareto 

optimal set. Rao (1987) also discussed the Nash game with two designers as players. The 

case in which there is more than one intersection for rational reaction sets has been 

studied by Rao. Rao and Hati (1980) extended the idea of two-designer game to define a 
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Nash equilibrium solution to n-player non-cooperative game. Finding an intersection of 

rational reaction sets for the all players is difficult, so the Nash solution is usually empty. 

 Several approaches have been proposed over the years for the computation of 

Nash solutions in game-theoretic formulations. These include methods based on 

Nikaido–Isoda function (Contreras et al. 2004), rational reaction set with DOE-RSM 

approach (Lewis and Mistree 1998) and monotonicity analysis (Rao et al. 1997). 

Recently, Deutsch et al. (2011) modeled the interaction between an inspection agency 

and multiple inspectees as a non-cooperative game and obtained all possible Nash 

equilibria. Their model employs a n-person player game where there is one player 

(inspection agency) on one side and multiple players (the inspectees) on other side of the 

game. Explicit closed-form solutions were presented to compute all Nash equilibria. 

For some problems arising in mechanical design such as the pressure vessel 

problem considered in Rao et al. (1997), closed form expressions for Nash equilibria can 

be obtained using the principles of montonicity analysis (Papalambros and Wilde, 2000). 

However, in general, numerical techniques are needed to find the solution. A design of 

experiments based approach (Montgomery 2005) coupled with response surface 

methodology (Myers and Montgomery 2002) has been proposed by Lewis and Mistree 

(1998), Marston (2000), and Hernandez and Mistree (2000). This approach has been used 

by the authors to obtained Nash solutions for non-cooperative games as well as 

Stackelberg games. Lewis and Mistree (2001) discussed modeling interactions of 

multiple decision makers. They used statistical techniques such as design of experiments 

and second-order response surface for numerical approach. 
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1.2.2 Extensive Games in Design 

Extensive design games refer to situations in which the designers make the 

decisions sequentially. Extensive games with two players have been used in engineering 

design and are called Stackelberg games. There are two groups of players in this game. 

One is called Leader which dominates the other group called follower. The leader makes 

its decision first and according to its decision, the follower optimizes its objective 

function. Rao and Badhrinath (1997) modeled the conflicts between designer’s and 

manufacturer’s objective functions using a Stackelberg game. They construct parametric 

solution of rational reaction of follower and substitute this solution in the leader’s 

problem to find its optimum solution. In both design examples presented in the paper, the 

Stackelberg’s solution that they obtained was Pareto optimal, although the Stackelberg’s 

solution in general is not Pareto optimal. Lewis and Mistree (1997) showed application of 

the Stackelberg game in the design of a Boeing 727, while Hernandez (2000) showed the 

application in design of absorption chillers. Lewis and Mistree (1998) compared the 

solution of Stackelberg game with cooperative game and Nash solution (non-cooperative 

game) in design of a pressure vessel and a passenger aircraft. Shiau and Michalek (2009) 

developed an engineering optimization method by considering competitor pricing 

reactions to the new product design. Nash and Stackelberg conditions are imposed on 

three product design cases for price equilibrium. 

One critical point in solving a bi-level problem as a Stackelberg game is obtaining 

the rational reaction set (RRS) of the follower. For simple problems, RRS can be 

obtained by solving the optimization problem of follower parametrically. It gives an 

explicit equation for RRS. Rao and Badhrinath (1996) and J.R.Rao and coauthors (1997) 
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applied this approach. The other way to construct RRS of follower is using response 

surface methodology (RSM) which gives an approximation of RRS. Lewis and Mistree 

(1997), Lewis (1998) and Hernandez (2000) applied RSM in their problems for solving 

Stackelberg game. 

1.2.3 Cooperative Games in Design 

A cooperative game means that all designers or some designers (which form a 

coalition) cooperate. In this game, the players have knowledge of the strategies chosen by 

other players and collaborate with each other to find a Pareto-optimal solution. In Nash 

and Stackelberg game, the players do not cooperate. It is not unusual that players improve 

their non-cooperative solution by cooperating. This approach has been discussed by 

Vincent (1983), S.S.Rao (1987), Rao and Badrinath (1996) and Marston (2000). Also, a 

model for such a game in the context of imprecise and fuzzy information was presented 

by Dhingra and Rao (1995). This cooperative fuzzy game theoretic model was used to 

solve a four bar mechanism design problem. The solution of cooperative games is Pareto 

optimal. 

If Player 1 and 2 cooperate, then there may be two approaches to get the 

cooperative solution. The first approach deals with obtaining the Pareto optimal frontier 

set. All points, which are in this set, are Pareto optimal in point of view of player 1 and 2. 

There are several techniques to get Pareto optimal frontier set for players. These include 

the NSGA-II method developed by Deb (2002) based on genetic algorithms. The TPM is 

a population-based stochastic approach for finding Pareto optimal frontier set. Das and 

Dennis (1998) developed NBI method. Shukla and Deb (2007) compared these different 
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approaches and discussed the limitations of each method. NBI and TPM have some 

difficulties when the Pareto optimal set is discontinuous or non-uniformly spaced.  

A problem with these approaches is that a single solution still needs to be selected 

from the pareto-optimal set for implementation. These methods do not yield a single 

solution from the pareto-optimal set termed the cooperative solution. 

The other approach for obtaining the cooperative solution is by defining a 

bargaining function. In bargaining function, the players will collaborate to maximize the 

difference of their objective functions from the worst value that they can get in the game. 

In the literature, this solution is called Nash bargaining solution (Mcginty (2012)). In this 

research, whenever it talks about Nash it means Nash equilibrium game (Non-cooperative 

game). 

1.3 Summary 

Although game theoretic methods have been used by several authors for solving 

multi-objective problems, applications of extensive games to engineering design 

problems are limited. The limited applications of Stackelberg games to design problems 

are based on using response surface methodologies to construct rational reaction sets 

(RRS). This research presents an alternate approach for obtaining Nash and Stackelberg 

solutions that utilize sensitivity based formulation. The sensitivity of optimum solution to 

problem parameters has been explored by Sobieski et al. (1982) and Hou et al. (2004). 

This idea is adapted herein to construct the RRS for Nash and Stackelberg solutions. 

Generalizations of the basic leader-follower model to consider cases with multiple 

leaders and/or multiple followers are also missing from the literature. This thesis is an 

attempt to address these identified shortcomings in the existing literature. 



13 

 

 

1.4 Dissertation Organization 

This dissertation has been divided into five main chapters. Chapter 2 discusses 

terminology associated with solving MOO problems. 

Chapter 3 discusses game theoretic mathematical models for solving bi-level 

optimization problems using Stackelberg game and Nash game approaches. A sensitivity 

based approach is developed to numerically solve optimization problem modeled as a 

Stackelberg game. Also, an algorithm is developed to solve the optimization problem 

modeled as a Nash game. A convergence proof of the proposed algorithm is also 

presented. 

  Chapter 4 develops the sensitivity based approach to numerically solve the 

multi-objective optimization problems modeled as a Nash game. It also considers a bi-

level problem with one leader and three followers where the followers have a Nash game 

among themselves and the interaction between the followers and the leader is a 

Stackelberg game. When solving a bi-level optimization problem using as a Stackelberg 

game, it is necessary to capture the sensitivity of leader’s solution to follower’s variables. 

Previous work in this area has used design of experiment techniques (DOE) to get the 

rational reaction set for the follower. This chapter provides an introduction to design of 

experiments (DOE) and response surface method (RSM). Two examples are presented to 

demonstrate the benefit of using the proposed sensitivity based over the DOE-RSM 

method.  

Chapter 5 presents two mechanical design problems as an application of the 

technique which has been presented in chapter 3. The first problem is the flywheel design 

optimization problem which has been modeled by a bi-level optimization problem. The 
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variable partitioning between the leader and the follower is an issue in this problem and is 

discussed in detail. A criterion is proposed to identify the best variable partitioning. The 

design of high speed four-bar mechanism is the second design optimization problem 

discussed in this chapter. The dynamic and kinematic performances of the mechanism are 

considered simultaneously. The problem is modeled and solved as a multi-level design 

optimization problem as a Stackelberg game. 

Chapter 6 addresses generalization of the basic Stackelberg model (one leader-one 

follower problem) to both hierarchical as well as decentralized problems. Towards this 

end, problems with one leader and several followers are considered where the followers 

could be arranged in a hierarchical or decentralized manner. Finally, problems with 

several followers and several leaders are also studied in this research. For decentralized 

approach with multiple objective functions in leader and the follower two different 

scenarios are studied. Two numerical examples are solved for these two scenarios. 

Finally, Chapter 7 summarizes the main finding of this research.
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Equation Chapter 2 Section 2 

CHAPTER 2 

2. BASIC CONCEPTS IN MULTI-OBJECTIVE OPTIMIZATION 

Multi-objective optimization, also known as multi criteria optimization, deals 

with a simultaneous consideration of two or more conflicting objective functions in a 

design problem. When the problem has one objective function, the optimum solution is 

easy to obtain. It involves optimizing the objective function subject to the constraints 

present in the problem, but when the problem has more than one objective function, the 

solution approach is not as in simple as in the single objective function case. This 

dissertation deals with multi-objective, multi-level design optimization problems and 

develops new computational approaches for solving such problems. 

2.1 Techniques for Solving Multi-Objective Optimization Problems 

There are several approaches for solving multi-objective optimization problems. 

These include the weighted sum method, scalarization techniques, methods to find Pareto 

optimal frontier, game theory methods, etc. Some of these methods were explained in 

chapter 1. The method that is considered in this research is using game theory to solve 

multi-objective optimization problems. In the game theory approach, each player 

corresponds to an objective function. The players compete/collaborate with each other to 

improve their respective payoff (objective function value). There are three main types of 

games: (1) Non-cooperative game. (2) Cooperative game. (3) Sequential game (Leader-

Follower). Figure 1.1 shows theses types of games and the techniques which exist in the 

literature for solving the problems. For example, it can be seen that there are two 

approaches to get the cooperative solution including Pareto optimal frontier set and 
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maximizing a multiplication function. There are four techniques discussed in the 

literature, NSGA-II, TPM, NBI and Naïve and slow, to get Pareto optimal frontier set. 

In cooperative games, the players have knowledge of the other player’s moves 

and they work (cooperate) together to find the best possible solution. Some times because 

of process or information barriers, coalition among the players is not possible. So the 

players can not cooperate. The non-cooperative (Nash) solution is a solution for this case. 

Besides the cooperative and non-cooperative models, the players can also make their 

decision sequentially. This sequential interaction may be advantageous when the 

influence of one player on another is strongly uni-directional. Leader-Follower 

(Stackelberg) game can be used when one or more objective functions (Leader) make 

their decision first. Once the leader makes its decision, the follower makes its decision. 

There is an assumption that the follower will behave rationally. This thesis focuses more 

on solving multi-objective optimization problems using the Stackelberg game approach. 

This is because in certain types of design problems, the decisions are made in a sequential 

manner.  

There are some definitions needed to better understand the concepts discussed in 

subsequent chapters. These definitions and associated terminology are given in the next 

section. 

2.2 Definitions and Terminology 

The general form for a multi-objective optimization problem can be stated as 

selecting values for each of n decision variables, 1 2( , ,..., )nx x x x , in order to optimize p 

objective of functions, 1 2( ), ( ),..., ( )pf x f x f x  subject to constraints. By assuming all 

objective functions are to be minimized, the problem can be stated mathematically by: 
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1 2( ) [ ( ), ( ),..., ( )]pmin F x f x f x f x subject to x X     

           (2.1) 

where  

 ( ) 0, ( ) 0, 1,2,..., , 1,2,...,n

j kX x g x h x j m k q       

 

where ( )jg x  are m inequality constraints and ( )kh x  are q equality constraints and X is 

the set of feasible solutions for problem in Eq. (2.1).  

A solution, sx X , which minimizes each of the objective functions 

simultaneously is called a Superior solution. Since at least two of the p objective 

functions are conflicting, a superior solution to problem shown in Eq. (2.1) rarely exists. 

The definition of Superior solution mathematically is given below. 

Superior Solution: A solution sx to problem shown in Eq. (2.1) is said to be superior if 

and only if sx X  and ( ) ( )s

i if x f x  for 1,...,i p  for all x X . 

The outcome associated with a superior solution is the ideal. The definition of ideal is as 

follows. 

Ideal: The ideal for problem defined in Eq. (2.1) is a point in the outcome space, 

1( ,..., )I I I

pF f f , such that I

if  for 1,...,i p  is the optimum objective function value for 

the problem: 

Min ( ) subject to .I

if x x X  

Suppose there are two objective functions, then Fig 2.2 shows the Ideal point. *

1Z  

and *

2Z  are the optimum value of objective functions 1 2,f f  respectively when they are 

considered separately. Point *Z  is the Ideal point which minimizes 1 2,f f  simultaneously. 
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It was mentioned before that the Ideal point rarely exists. It is clear from Fig. 2.2 that the 

Ideal point is not in the feasible space. 

Pareto Solution (Efficient Solution): A Pareto solution Px  to problem in Eq. (2.1) is a 

feasible solution, Px X , for which there does not exist any other feasible solution, 

x X , such that ( ) ( )P

i if x f x  for all 1,...,i p and ( ) ( )P

i if x f x  for at least one 

1,...,i p . 

Often, the optimum solutions may not be Pareto optimal solution but they satisfy 

other criteria which are making them significant for practical applications. For example, 

weakly Pareto optimal criteria can be defined as follows:  

Weakly Pareto Solution: A point, *x X , is weakly Pareto optimal if and only if there 

does not exist another feasible solution, x X , such that *( ) ( )i if x f x  for all 1,...,i p . 

Typically, there will be many Pareto solutions to a multi-objective problem. To 

determine what solution should be selected requires further information from the decision 

maker concerning his preferences. One way to present this information is the use of a 

value function over the multiple objectives of the problem. 

Value Function: A function  , which associates a real number ( ( ))F x  to each x X , 

is said to be a value function which represents a particular decision maker’s preference 

provided that: 

1) 1 2( ) ( )F x F x  if and only if 1 2( ( )) ( ( ))F x F x   for 1 2,x x X ; 

2) 1 2( ) ( )F x F x  if and only if 1 2( ( )) ( ( ))F x F x   for 1 2,x x X  
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where 1 2( ) ( )F x F x  denotes that decision maker is indifferent between outcomes 

1 2( ) ( )F x and F x . 1 2( ) ( )F x F x  denotes that the decision maker prefers outcomes 1( )x  

over outcomes 2( )x .  

Given the value function  , problem defined in Eq. (2.1) can be changed to the 

following problem: 

 Max ( ( )) subject toF x x X   (2.2) 

Solving problem (2.2) means finding the solution which maximizes the value function 

over all feasible solutions. Such a solution is called a best compromise solution. Problem 

shown in Eq. (2.2) has changed the multi-objective problem to a single objective 

problem. It means that if a value function can be defined, there would not be any need for 

multi-objective optimization techniques. But, a value function is difficult to obtain for a 

multi-objective problem since it requires the preference structure of decision maker to be 

defined, which is not easily possible. The value function is a kind of utility function 

discussed in chapter 1. 

Bargaining function: This is a function providing the cooperative solution for the 

players who collaborate with each other in the game. The expression for this function is 

below: 

 Max ( )i wi

i

Z f f    (2.3) 

where if  is the objective function of the players and wif  is the worst value for objective 

function i. Suppose player 1 can control 1x  and 2x . If player 1 solves its problem, then the 

optimum values will be *

11x  and *

21x . By plugging in these values in player 2’s objective 
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function, then player 2’s payoff * *

2 11 21 2( , ) wf x x f  will be the worst value for 2 1 2( , )f x x . 

Similarly, the worst value for 
1 1 2( , )f x x  can be obtained.  The bargaining function in Eq. 

(2.3) maximizes the distance of each player’s payoff from the worst value. Maximizing 

Eq. (2.3) gives the cooperative solution for players 1 and 2. It can be shown that solutions 

which maximize Eq. (2.3) are Pareto-optimal. 
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Figure 2.1 Flowchart for Possible Cases for Solving Multi-Objective Problems with Game Approach 
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Figure 2.2 Ideal Point 
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CHAPTER 3 

3. MODELING MULTI-OBJECTIVE PROBLEMS USING GAME 

THEORY 

This chapter discusses mathematical models for solving multi-objective and 

multi-level design optimization problems using game theory. For multi-level design 

optimization, the Stackelberg game has been discussed and for multi-objective problem 

where all objective functions are in the same level, the problem has been modeled as a 

Nash game. A sensitivity based approach is developed to numerically solve the 

Stackelberg and Nash game formulations.  

3.1 Game Theoretic Models in Design 

Consider two players, A and B, who can select strategies 1x  and 2x  where 

1

1 1

n
x X R   and 2

2 2

n
x X R  . Here 1X  and 2X  are the set of all possible strategies 

each player can select. U  is defined as the set of strategies which are feasible for the two 

players. The objective (cost or loss) functions 1 1 2( , )f x x  and 2 1 2( , )f x x  account for the 

cost of players 1 and 2, respectively. The game theory models deal with finding the 

optimum strategy 1 2( , )x x  which corresponds to the decision protocol of the specific 

game model. The goal of each model is to minimize the objective (loss) function for each 

player. 
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An optimum strategy pair * *

1 2( , )x x  is said to be stable if neither of the players have 

an incentive to revise their strategy. When the optimum strategy has this property, it is 

defined to be a Pareto solution for that problem. 

The minimum values that the objective functions 
1f  and 

2f  can reach within the 

feasible set 
1 2( , )x x  is defined as 

   
1 1 1 2

1 2

inf ( , ),

( , )

L f x x

x x U




         

  

2 2 1 2

1 2

inf ( , )

( , )

L f x x

x x U




 (3.1)   

It is expected that there is no solution ** **

1 2( , )x x that simultaneously satisfies 

** **

1 1 2 1( , )f x x L  and ** **

2 1 2 2( , )f x x L . The shadow minimum is defined as 1 2: ( , )L L L . 

The various models and corresponding solutions for the two players A and B can 

be classified into four categories: (1) Conservative solution (2) Nash solution (3) 

Cooperative or Pareto solution (4) Stackelberg solution. 

The conservative solutions are used when two players do not cooperate. Player 

one, assumes that player two decides on the strategy 2x  which is least advantageous for 

player one’s objective function. Then player one selects 1x  from the feasible set, which 

corresponds to the minimum value for 1f . A similar approach is used by player two to 

find its conservative solution. The strategy 1 2( , )x x  that satisfies the above description is 

called the conservative solution. The mathematical form of the conservative model is 

defined as  
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*

1 1 1 1 2

2 2

( ) sup ( , ),f x f x x

x X




       

*

2 2 2 1 2

1 1

( ) sup ( , )f x f x x

x X




 (3.2)  

where 1sup f  corresponds to the value for 
2x  which gives the largest 1f  based on the 

selection of 
1x  and 2sup f  corresponds to the value for

1x which gives the largest 2f  

based on the selection of 
2x .  

*

1 1 1

1 1

*

2 2 2

2 2

inf ( ),

inf ( )

T f x

x X

T f x

x X









 (3.3) 

where *

1 1inf ( )f x  corresponds to the value for 
1x  which gives the smallest 1f  and 

*

2 2inf ( )f x  corresponds to the value for 
2x  which gives the smallest 2f . The conservative 

strategies for the two players are 
1 2,T T . Player A knows that he can not get a value 

worse than 
1T  and will reject any strategy 

1x  for a given value 
2x  for which 

1 1 2 1( , )f x x T . 

The Nash or non-cooperative solution
1 2( , )N Nx x , has the property: 

1 1 2 1 1 2

1 1

( , ) min ( , )N N Nf x x f x x

x X




   

     and  
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 2 1 2 2 1 2

2 2

( , ) min ( , )N N Nf x x f x x

x X




 (3.4) 

Finding the Nash solution is often difficult since it is a fixed point on a nonlinear 

map as shown below, 

1 2 1 2 2 1( , ) ( ) ( )N N N N N Nx x X x X x   (3.5) 

where 

1 2 1 1 1 1 2 1 1 2

1 1

( ) : { : ( , ) min ( , )}N N NX x x X f x x f x x

x X

  


 (3.6) 

2 1 2 2 2 1 2 2 1 2

2 2

( ) : { : ( , ) min ( , )}N N NX x x X f x x f x x

x X

  


 (3.7) 

where 1 2( )NX x  and  
2 1( )NX x  are called rational reaction sets for players 1 and 2 

respectively. The term rational reaction set is discussed in the next section. 

The Cooperative or Pareto solution 
1 2( , )P Px x is expected to yield a better result 

than the solution related to non cooperative solution. It is likely that the players can 

improve on the Nash solution by cooperating with each other. A pair 1 2( , )P Px x  is a Pareto 

solution if there is no other pair 1 2( , )x x such that, 

1 1 2 1 1 2( , ) ( , )P Pf x x f x x
      

and 

2 1 2 2 1 2( , ) ( , )P Pf x x f x x
 (3.8) 
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The set of Pareto solution is usually large and it requires some other selection 

criteria within the Pareto solutions.  

The core solution 
1 2( , )C Cx x  is the same as Pareto solution with these two 

additions,   

                                        
1 1 2 1( , )C Cf x x T   and  

2 1 2 2( , )C Cf x x T  (3.9) 

where  
1T  and 

2T  have been defined in Eq. (3.3). 

The Stackelberg game is a special case of a bi-level game where one player 

dominates the other player. Suppose player A is the leader (or dominant) and player B is 

the follower. Player A knows the optimum strategy (solution) of Player B. When player 

A chooses a strategy (its design variables) player B can see the choices made by Player 

A. Player B solves its problem and finds the optimum solution with respect to player B. 

Player A can now adjust its strategy based on choices made by player B. 

The model of the Stackelberg solution when player A is the leader can be written 

as follows, 

                                            

1 1 2

1 2

2 2 1

: ( , )

( , )

: ( ).N

minimize f x x

x x U

subject to x X x





 (3.10) 

On the other hand, when B is the leader, the problem is: 

                                            

2 1 2

1 2

1 1 2

: ( , )

( , )

: ( ).N

minimize f x x

x x U

subject to x X x





 (3.11) 
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where 
1 2 2 1( ), ( )N NX x X x are given by Eqs. (3.6) and (3.7). 

3.1.1 Rational Reaction Set for Stackelberg and Nash Solutions 

Consider two players, 1 and 2, with objective functions 1 1 2( , )f x x  and 2 1 2( , )f x x . 

They select strategies 
1x  and 

2x  from a set of possible strategies where 1

1 1

nx X R   and 

2

2 2

nx X R   respectively. Here
1X  and 

2X are the set of all possible strategies each 

player can select. The game theory approach deals with finding the optimum strategy 

1 2( , )x x  which results in highest possible payoff for each player. Three game theoretic 

models that have been used in the context of engineering design include non-cooperative 

(Nash) game, cooperative game, and the Stackelberg game in which one player 

dominates other player(s). In the Stackelberg method, the leader and the follower have 

different objective functions and each player has control over specific variables. The 

leader chooses optimum values for its variables by solving its problem, then the follower 

observes those values and solves its problem and finds optimum values for its variables. 

From an implementation view point, the bi-level optimization problem is solved by using 

backward induction. It begins with follower’s problem. Assuming the value of leader’s 

decision variables are fixed, the follower’s objective function is optimized.  By varying 

follower’s variables, the optimum values of follower’s variables as a function of leader’s 

variables are obtained. Then these functions are substituted in the leader’s problem and 

the leader optimizes its objective function to obtain optimum values of leader’s variables.  

The Stackelberg game can be used to model the behavior of decision makers 

(players) when they operate in a hierarchical manner. Let ,f ff l

 
 
 

 be a set of objective 
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functions for follower and leader respectively. The follower and leader’s problems are 

given by Eqs. (3.12) and (3.13) respectively:  

 
min ( , )

by varying

f f f l

f

f f x x

x


 (3.12) 

 
min ( , )

by varying

l l f l

l

f f x x

x


 (3.13)  

where subscripts f  and l  correspond to follower and leader objective function and 

variables respectively.  The follower can determine its set of optimum solution(s) based 

on the choices made by the leader. This solution set is called rational reaction set (RRS) 

for the follower. The RRS for the follower is defined as follows: 

     

2

, min ,R R
f f l f f l f l

f

f x x f x x x x

x X

 


         (3.14) 

where  R

f lx x  is the optimum solution of the follower (player 2) which varies depending 

on the strategy lx  chosen by the leader (player 1). It implies that the optimum values of 

follower’s variables are given as a function of leader’s variables (Eq.(3.15)): 

  f

R
f lx x x   (3.15)  

This RRS of the follower is substituted in Eq. (3.13) to solve the leader’s problem 

and find optimum values of the leader’s variables. Next, by substituting these optimum 

values in Eq. (3.15), the optimum values of follower variables can be obtained.  

The Nash game is a non-cooperative game where each player determines its set of 

optimum solutions based on the choices made by other player(s). This set of solutions for 
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each player is the rational reaction set (RRS). The RRS for players 1 and 2 are defined as 

follows: 

     1 1 2 1 1 2 1 2

1 1

, min ,N Nf x x f x x x x

x X

 


 (3.16) 

     2 1 2 2 1 2 2 1

2 2

, min ,N Nf x x f x x x x

x X

 


 (3.17) 

where 
1

Nx  is the optimum solution of player 1 which varies depending on the strategy 2x  

chosen by player 2. The function  1 2

Nx x  would be RRS for player 1. Similarly,  2 1

Nx x  

is the RRS of player 2. The intersection of these two sets, if it exists, is the Nash solution 

for the non-cooperative game. Therefore,  1 2,N Nx x  is a Nash solution if 

     1 2 1 2 2 1,N N N Nx x x x x x   (3.18) 

When the Stackelberg and Nash problems are solved numerically, it is very 

difficult to obtain explicit expressions for  R
f lx x ,  1 2

Nx x  and  2 1

Nx x  . The numerical 

approach which exists in the literature for generating the RRS is based on design of 

experiments (DOE) combined with response surface methodology (RSM). The RSM 

utilizes DOE (design of experiments) techniques to construct various experiments for the 

players that one is interested in finding the RRS. Then a response surface is fitted to the 

experiment outcomes to find an approximation to the RRS. 

This thesis presetns a new method based on sensitivity information to 

approximate the RRS for the players. The proposed method uses Taylor series to 
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approximate the RRS. For example, for the Stackelberg problem, the 
fx  (optimum 

solution of the follower) can be written as: 

                   

* *

* * 1( )
f f

f f l f l l

l l

dx dx
x x x x x x

dx dx
       (3.19) 

where *

fx  is the optimum solution of the follower’s problem corresponding to 1

lx , and       

denotes how the optimum solution of the follower’s problem is varying with leader’s 

variable, lx . Eq. (3.19) needs 

*

f

l

dx

dx
which denotes the sensitivity of optimal solution of 

follower’s problem to the leader’s variable. fx and lx   can be the vectors, but here for the 

sake of simplicity they are represented as scalar variables. To find 
*

f

l

dx

dx
, the sensitivity 

information for the follower problem is needed. In the next section, it is discussed how 

the sensitivity information will be obtained. 

3.2 Optimum Sensitivity Derivatives 

An optimization problem with inequality constraints can be represented as 

                         
Min  ( , )

by varying

nf x p x R

x


  

                    subject to  ( , ) 0 1,2,...j gg x p j n   (3.20) 

where nx R is the variable vector which is unknown and p denotes the vector of 

problem parameters. The integer gn is the number of inequality of the constraints. There 

are no equality constraints. Hou et al. (2004) showed the general case of this problem 

*

f

l

dx

dx
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when there are equality constraints as well. The problem parameters can be a vector, for 

simplicity, they are taken as a scalar. Let the optimum solution to problem given by Eq. 

(3.20) be *x . It is known that *x satisfies Kuhn-Tucker necessary conditions, 

                                      

*

*

( , ) 0

( , ) 0

0

gj

j

dL
x p

dx

g x p j n





 



 (3.21) 

 where gn denotes active constraints and the Lagrangian (L) defined as 

1

gn

j j

j

L f g


   (3.22) 

Rewriting Eq. (3.21): 

 
   

 

* *

*

1

*

, ,
, 0

, 0

0

gn
j

j

j

gj

j

f x p g x pdL
x p

dx x x

g x p j n







 
  

 

 





 

The values of j  can be obtained by  

 1( )T TG G G f     (3.23) 

where 

1

2



 

 
 

  
 
  

 , are Lagrange multipliers and 1 2[ ]G g g    contains gradient 

information for active constraints.  

The optimum sensitivity derivatives can be obtained by differentiating Eq. (3.21) 

with respect to p  as 
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   

     
1

2 * 2 *2 * 2 *

2 2 2
1

2 * 2 * *

1

1 1

, ,
0

, , ,

g

g g

n
j

j

j

n n
j jj

j

j j

f x p g x pL dx L dx

x dp x p x x dp

f x p g x p g x p

x p x p p x








 

   
     

      

  
 

     



 

 (3.24) 

                    
     * * ** *

1

, , ,
0

T

j j j j j
dg x p g x p g x p g gdx dx

dp x dp p x dp p

    
          

 (3.25) 

where  

2 22 2 2 2

2 2 2
1 1

,
g g

g

n n
j j j j

j j

j jj n

g g gL f L f

x x x x p x p x p p x


 

 

      
    

          
    

Rearranging Eqs. (3.24) and (3.25) 

     

   

2 * 2 * 1 **

2 2
1 1

2 * 2 *

1

, , ,

, ,

g g

g

n n
j jj

j

j j

n
j

j

j

f x p g x p g x pdx

x x dp p x

f x p g x p

x p x p






 



   
   

     

  
  

     

 



     (3.26) 

*

0

T

j jg gdx

x dp p

  
      

         (3.27) 

Eqs. (3.26) and (3.27) can be written in a matrix form as 

                         

22 * 2

2

1

0

gn
j

j

j

T

gL g dx f

x x dp x p x p

dg g

dpx p







       
    

           
      
     

       


 (3.28) 

*dx

dp
 which indicates how the optimum solution (in Eq. (3.20)) varies with p . By 

solving this system of equations, the vector x  can be written as 
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*

* dx
x x p

dp
    (3.29) 

Now, compare Eq. (3.29) with Eq. (3.19). The follower variables 
fx  can be 

replaced by Eq. (3.29) in leader problem. Whenever the leader variables are updated in 

leader optimization problem, i.e. 
lx  changes, the follower variables 

fx  will be updated 

in the leader problem. The next section develops the sensitivity based approach to 

numerically solve the Stackelberg game model. 

3.3 Sensitivity Based Algorithm for Obtaining Stackelberg Solutions 

Let us assume that the optimization problem of players 1 (leader) and 2 (follower) 

for Stackelberg game model can be written as follows: 

               Min     
 ,

by varying

n

L lead f

lead

f x x x R

x


 

               subject to      1

1 2, 0 1,2,...L

j gg x x j n   (3.30) 

               Min     
 ,

by varying

n

f lead f

f

f x x x R

x


 

               subject to      2

1 2, 0 1,2,...f

j gg x x j n   (3.31) 

where 1 2, , ( , )
n n

lead f lead fx R x R x x x   . The leader (Player 1) has control over leadx  and 

the follower’s (player 2) strategy  fx  acts as parameter vector in player 1’s problem. 1

gn  

and 
2

gn  denotes the number of inequality constraints of players 1 and 2 respectively. First, 

the optimization problem of the follower shown in Eq. (3.31) will be solved by assuming 
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an initial value for 
1

lead leadx x . Let the optimum value corresponding to 
1

lead leadx x  be 

*1
fx . As the value of 1

leadx  changes, the optimum value of *1
fx  will change. This change 

can be approximated by using a first order Taylor series expansion as shown in Eq. (3.32) 

 
*1 *1

*1 *1 1f f

f f lead f lead lead

lead lead

dx dx
x x x x x x

dx dx
       (3.32) 

where *1
fx  is optimum vector of follower’s problem corresponding to initial values of 

leader’s variables. The term 
*1

f

lead

dx

dx
 is the sensitivity information of the follower problem 

and can be obtained by solving the system of equations explained in the previous section. 

lead
x  is the difference of leader’s variables from the initial value  1

lead
x . fx  is the 

updated new optimum vector for follower’ problem corresponding to new values of 

leader’s variables. This function can be substituted in the leader’s problem in Eq. (3.30). 

Then, the leader solves its problem. Let the optimum solution be *1
lead

x . Compare this 

value with 1
leadx . If there is the significant difference between the two values, substitute 

*1
lead lead

x x  and repeat the steps until convergence occurs. Fig. 3.1 shows the flowchart of 

this algorithm. Chapter 5 presents an application of this algorithm to two mechanical 

design problems including flywheel design and design of high speed four bar 

mechanisms.  

3.4 Sensitivity Based Algorithm for Obtaining Nash Solutions 

Assume that the optimization problem for players 1 and 2 for Nash game model 

can be written as follows: 
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                         Min     
 1 1 2

1

,

by varying

nf x x x R

x


 

                 subject to     1 1

1 2, 0 1,2,...j gg x x j n    (3.33) 

and for player 2 

                     Min     
 2 1 2

2

,

by varying

nf x x x R

x


 

               subject to     2 2

1 2, 0 1,2,...j gg x x j n   (3.34) 

where 1 2

1 2 1 2, , ( , )
n n

x R x R x x x   and 1 2n n n  . Player 1 has control over 1x  and 

player 2’s strategy  2x  acts as parameter vector in player 1’s problem. 1

gn  and 2

gn  

denote the number of inequality constraints in problems for players 1 and 2 respectively. 

Now, the problem modeled as a Nash game (Eqs. (3.33) and (3.34)) is ready to be 

solved numerically using the sensitivity based approach. 

Assume an initial value for 1

2 2x x , and solve optimization problem of player 1 in 

Eq. (3.33). Let the optimum value corresponding to 1

2 2x x  be *1

1x . As the value of 1

2x  

changes, the optimum value *1

1x  will change. One can linearize this change by using a 

first order Taylor series expansion as shown in Eq. (3.35). Here 
*

1

2

dx

dx
 is calculated by 

performing a sensitivity analysis as explained in section 3.2. 

 
* *

*1 *1 11 1
1 1 2 1 2 2

2 2

dx dx
x x x x x x

dx dx
        (3.35) 
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Similarly, the optimum solution for player 2 can be found by assuming an initial 

value 1

1 1x x . Eq. (3.36) shows how the optimum solution of player 2 varies as 
1x  

changes from 1

1x . Here the value of 
*

2

1

dx

dx
 is computed using sensitivity analysis. 

 
* *

*1 *1 12 2
2 2 1 2 1 1

1 1

dx dx
x x x x x x

dx dx
        (3.36) 

Consider now Eqs. (3.35) and (3.36). One can solve this system of equations for 

1x  and 2x . Let the solution be denoted as 1

1

Nx  and 1

2

Nx . Compare these values with 1

1x  

and 1

2x  respectively. If there is the significant difference between the two solutions, 

substitute 1

1 1

Nx x  and 1

2 2

Nx x  and repeat the steps till convergence occurs. Fig. 3.2 

shows the flowchart of this algorithm. The next section presents a convergence of this 

algorithm. Chapter 4 presents application of this algorithm for solving some 

mathematical and mechanical design problems.  

3.4.1 Convergence Proof 

This section discusses convergence proof for algorithms presented in Figs. 3.1 

and 3.2. Assume players 1 and 2 have real-valued functions ( )x x y  and ( )y y x  as 

their rational reaction sets respectively. The intersection of these two functions provides 

the Nash solution. Let ( , ) ( )g x y x x y   and ( , ) ( )h x y y y x  . The solution of 

( , ) ( , ) 0g x y h x y   gives the Nash solution. In order to find a solution of  

( , ) ( , ) 0g x y h x y   (3.37) 
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consider the following approximation method. One picks an initial guess  1 1,x y . Then it 

one tries to find * *

1 1,x y  such that 

* *

1 1 1 1( , ) ( , ) 0g x y h x y   (3.38) 

One linearizes g  at *

1 1( , )x y and h  at *

1( , )x y  and determines the next 

approximation 2 2( , )x y  as the solution of  

* * *

1 1 1 1 1 1

* * *

1 1 1 1 1 1

( , )( ) ( , )( ) 0,

( , )( ) ( , )( ) 0.

x y

x y

g x y x x g x y y y

h x y x x h x y y y

   

   

 (3.39) 

Then we iterates on this procedure. It can be noticed that these two equations are equal 

two Eqs. (3.35) and (3.36) where 1x x  and 2y x . This is exactly the same thing shown 

in flowchart Fig. 3.2. 

The local convergence of the method can be proved as follows. To simplify the 

notation, it is assumed that the system shown in Eq. (3.37) has the solution (0,0). 

Theorem 1.  Suppose that ,g h  are defined and twice continuously differentiable 

in a neighborhood of  0,0 . Suppose that  

       0,0 0,0 0, 0,0 0, 0,0 0,x yg h g h      (3.40) 

and 

       0,0 0,0 0,0 0,0 0.x y y xg h g h   (3.41) 
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Then the method converges in the following sense. If  1 1,x y  is chosen 

sufficiently close to (0, 0) then the sequence of iterates  ,n nx y  is well-defined and 

converges to (0,0). 

Proof. By using Eq. (3.40) and the implicit function theorem to the equation 

( , ) 0g x y   at  0,0 , one obtains 0a   and a twice continuously differentiable function 

( )G y  on  ,y a a   with (0) 0G   such that  

 ( ( ), ) 0 ,g G y y for y a a    

Similarly, there is 0b   and a twice continuously differentiable function ( )H x  

on  ,x b b   with (0) 0H   such that 

 ( , ( )) 0 ,h x H x for x b b    

Replacing ,a b  by  min ,a b , one may assume that a b . By assumption in Eq. (3.41) 

   ' '0 0 1.G H   Therefore, one can make 0a   so small that 

     ' '1 0 , , .G x H y c for all x y a a      (3.42) 

Moreover, set 

 

 

 

 

'

1

''

2

'

1

''

2

: max ( ) ,

: max ( ) ,

: max ( ) ,

: max ( ) ,

k G y y a a

k G y y a a

L H x x a a

L H x x b b

  

  

  

  

 (3.43) 
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Let    
2

1 1, , .x y a a  Then *

1 1( )x G y  and *

1 1( )y H x  are well defined. The 

linear system shown in Eq. (3.39) to find 
2 2,x y  changes to: 

  '

1 1 1

'

1 1 1

( )( )

( ) ( )( )

x G y G y y y

y H x H x x x

  

  

 (3.44) 

The solution of this system of equation is 

 

 

' ' '

1 1 1 1 1 1 1

2 ' '

1 1

' ' '

1 1 1 1 1 1 1

2 ' '

1 1

( ) ( ) ( ) ( ) ( )
,

1 ( ) ( )

( ) ( ) ( ) ( ) ( )

1 ( ) ( )

G y H x H x x G y G y y
x

G y H x

H x G y G y y H x H x x
y

G y H x

  




  




 (3.45) 

Note that the denominators are nonzero because of assumption in Eq. (3.42). By 

definition of 2 2,k L  in Eq. (3.43),  

 

 

' 22

' 22

( ) ( ) , ,
2

( ) ( ) ,
2

k
G y G y y y for y a a

L
H x H x x x for x a a

   

   

 (3.46) 

it follows that 

1 2 2

2 1 2 1 2 1

1 1

2 2
x c k L x k y  

  
 

 

in the same way 

1 2 2

2 1 2 1 2 1

1 1

2 2
y c L K y L x  

  
 

 

Therefore, there exists a constant M such that  
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    
2

2 2 1 1max , M max ,x y x y  

If  1 1,x y  is selected so close to  0,0  such that  

 1 1

1
max , , ,

2M
x y min a

 
  

 
 

then  

   2 2 1 1

1
max , max ,

2
x y x y . 

By iterating it can be obtained 

   1 1

1
max , max ,

2
n n n nx y x y    

For all 1,2,3,...n  . This shows that the sequence  ,n nx y  converges to  0,0 . 

The sequence of numerical iterates converge to the optimum solution. 

Let the solution after convergence occurs be  * *

1 2,x x . It is shown next that 

 * *

1 2,x x  is the Nash solution for players 1 and 2. 

Proposition 1: If  * *

1 2,x x  is the solution obtained from the algorithm shown in 

Fig. 3.2, then  * *

1 2,x x  is the Nash solution for players 1 and 2. 

Proof: Since  * *

1 2,x x  is the solution obtained after convergence criterion has been 

met, one can write  
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   * * *

1 1 2 1 1 2

1 1

Min , ,f x x f x x

x




 (3.47) 

and 

   * * *

2 1 2 2 1 2

2 2

Min , ,f x x f x x

x




  (3.48) 

where 1  and 2  are feasible solution sets of players 1 and 2 respectively. 

According to the definition of a Nash solution, any solution which satisfies Eqs. (3.16) 

and (3.17) is a Nash solution. Comparing Eqs. (3.47) and (3.48) with Eqs. (3.16) and 

(3.17), it is obvious that 

   * *

1 2 1 2, ,N Nx x x x  

3.5 Summary 

This chapter sequentially develops the mathematical model for numerically 

solving Stackelberg and Nash game problems. The sensitivity based approach is a new 

contribution to the literature presented to numerically solve the optimization problem for 

both Stackelberg and Nash games. Chapter 4 presents application of this algorithm on 

several problems. Chapter 5 presents application of Stackelberg game modeling in the 

context of two mechanical design problems. These two problems are solved numerically 

using the sensitivity based approach developed in this chapter. 
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Figure 3.1 Computational Procedure for Obtaining Stackelberg Solution Using 

Sensitivity Method. 

 

 

 

 

 

 

 

 

 

 

 
 

Assuming initial value for
leadx      

1k          
k

lead leadx x  

 

Solve the Follower Optimization Problem to 

 obtain optimum values *k

fx  Corresponding to 
k

leadx  

 

 

In leader problem, substitute fx with the following expression: 

                              

*

* ( )

k

fk k

f f lead lead

lead

dx
x x x x

dx
    

 
  

Obtain Sensitivity information 

of follower problem 
*k

f

lead

dx

dx
 

Solve the Leader Problem to obtain 

 optimum vector   *

leadx  

If 
*

0.01
k

lead lead

k

lead

x x

x




*k

lead leadx x  

1k k   

No 

* *,lead fx x  are 

Stackelberg 

solutions 

Yes 
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No Yes 

Assume initial value for 
1x  and 

2x  

1k        
1 1

kx x        
2 2

kx x  

Solve optimization problem of player 1 and 2. 
*

1

kx  and *

2

kx  are optimum solutions 

corresponding to 
1

kx  and 
2

kx  

Obtain Sensitivity information 
*

1

2

kdx

dx
 and 

*

2

1

kdx

dx
 

Linearize the optimum solutions with 
* *

* *1 1
1 1 2 1 2 2

2 2

( )
k k

k k kdx dx
x x x x x x

dx dx
     

 
* *

* *2 2
2 2 1 2 1 1

1 1

( )
k k

k k kdx dx
x x x x x x

dx dx
     

 

 Solve this system of linear equations to find 
* *

1 2 1 2( , ) ( , )x x x x  

If  
*

1 1

1

0.01
k

k

x x

x


  and          

*

2 2

2

0.01
k

k

x x

x


  

* *

1 2( , )x x is 

converged 

solution 

*

1 1

kx x  and 

*

2 2

kx x  

1k k   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 3.2 Computational Procedure for Obtaining Nash Solution Using Sensitivity 

Method. 
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Equation Chapter 4 Section 1 

CHAPTER 4 

4. GENERATING RRS USING DOE-RSM AND SENSITIVITY BASED 

APPROACHES 

4.1. Introduction 

The sensitivity based approach was presented in chapter 3 to determine Nash 

solution(s) in multi-objective problems modeled as a non-cooperative game. The 

proposed approach provides an approximation to the rational reaction set (RRS) for each 

player. An intersection of these sets yields the Nash solution for the game. An alternate 

approach for generating the RRS based on design of experiments (DOE) combined with 

response surface methodology (RSM) was also mentioned. In this chapter, the two 

approaches for generating RRS are compared on three problems to find Nash and 

Stackelberg solutions. Three examples are presented to demonstrate the versatility of the 

sensitivity based method for obtaining Nash and Stackelberg solutions in multilevel 

optimization problems. Results for three example problems with two or more objectives, 

and isolated as well as non-isolated Nash solutions are presented. It is shown that the 

sensitivity based approach for constructing the RRS is computationally more efficient 

than RSM-DOE techniques because of (i) its lower computational burden, (ii) its ability 

to find all Nash solutions, and (iii) on one example problem, yielding better Nash 

solutions than those reported in the literature. 

There are two points about the Nash game that might be interesting to mention: (i) 

there might be a bargaining Nash game in which more than one Nash solution exists. For 

example, assume the intersection of RRS of players 1 and 2 shown in Eqs. (3.16) and 
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(3.17) has more than one solution. Then it is possible that one of the solutions is better on 

all objective functions for players 1 and 2 than the other Nash solutions. (ii) If there is a 

solution  1 2,N Nx x , then a question arises is how can it be verified that it is a Nash 

solution. Suppose player 1 knows about the strategy of the player 2 , 
2

Nx , then player one 

asks itself: Can I improve my objective function by switching from 
1

Nx  to other strategy? 

If every player would answer No to this question, then  1 2,N Nx x  is the Nash solution. But 

if any player answers Yes to the question, then the solution is not a Nash solution. This 

comes from the definition of Nash equilibria. 

4.2. DOE-RSM Method 

Design of Experiments (DOE) is studied in statistics and has been widely applied 

to engineering problems. The independent variables, governing variables, are set at 

specific values which are called levels. By identifying a minimum and a maximum for 

each variable, a two-level experiment can be set up. The outcomes, which are called 

outcomes from the experiments, are regressed over the independent variables to build an 

empirical model of the system. There are two major categories of experiments: full 

factorial designs and fractional factorial designs. 

Full Factorial Design: To construct an approximation model that can model the 

interaction between design variables, a full factorial approach is needed to investigate all 

possible interactions of design variables. In full factorial designs, lower and upper bounds 

of the design variables in the optimization problem are defined: If there are n design 

variables and each design variable is defined at only upper and lower bounds (two 

levels), then the total number of trials required to implement the experiment is 2n . The 
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experiment is called a 2n  full factorial experiment. If the midpoints of the design variables 

are also included, then there are 3 levels and the total number of trials needed to carry out 

the three-level full factorial design would be 3n . A 33  full factorial experiment is shown 

in Fig. 4.9.  

Fractional Factorial Design: It can be seen that the number of trials required in 

implementing a full factorial experiment increases rapidly with an increase in the number 

of design variables. This can be very time consuming and resource intensive. A full 

factorial design is used for five or fewer variables. For large number of variables, a 

fraction of full factorial design can be used. This is called fractional factorial design. It is 

used for screening the important design variables. The fractional factorial experiment can 

reduce the number of trials required to complete the experiment. For a 3n  full factorial 

design, a 
1

3

P
 
 
 

fraction of full factorial design can be considered as fractional factorial 

design. Assuming 1P   in a 33  full factorial design, the fractional factorial design is one-

third of full factorial design. It is shown in Fig. 4.10 (Montgomery 2005). 

When a first-order model (linear regression) suffers lack of fit due to interaction 

between variables, a second-order model can significantly improve the model 

approximation. A general second-order model is defined as  

   (4.1) 

where ix  and jx are the design variables and a are the parameters which should be 

determined. 
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Central Composite Design (CCD): By adding center and axial points, CCD can help 

construct a second-order model. Fig. 4.11 shows a CCD for 3 design variables (with two 

levels) (Montgomery 2005). The design involves 2n  (n=3) full factorial points, 2n  axial 

points and 1 center points. CCD presents an alternative to 3n  trials need for construction 

of second-order models. It reduces the number of experiments compared to a full factorial 

design (15 in case of CCD compared to 27 for a full factorial design). The number of 

center point can be repeated in order to improve the precision of the experiment. If the 

purpose of replicated points is to obtain model with lower error, it is better to have more 

than 4 or 5 replications. 

4.3. Numerical Examples 

Three examples are presented to compare the sensitivity based approach and the 

DOE-RSM method. 

4.3.1 Bilevel Problem with Three Followers 

Consider a bilevel problem with one leader and three followers where the 

followers have non-cooperative game among themselves. The leader has control over 

variables  1 2,x x x  and the followers one, two and three control variables 

     1 11 12 2 21 22 3 31 32, , , , ,y y y y y y y y y    respectively. A Stackelberg-Nash solution to 

this problem using genetic algorithm has been presented by Liu (1998). The problem is as 

follows: 
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 
     

 

22 2

11 12 21 22 31 32

1 2 3 2 2

1 2 1 2

1 2

1 2

2 2

1 1 11 12

11 21 31 1

12 22 32 2

11 12

3 5 10
, , ,

2 3

subject to:

2 10

, 0

subject to:

1, 2 ,

lead

y y y y y y
min f x y y y

x x x x

x x

x x

min f y y y

y y y x

y y y x

y y

    


 

 



 

  

  

 

 (4.2) 

  11 12
2 2 21 22

21 22

21 22

2 2

31 21 32 22
3 3

31 32

31 32

31 32

subject to:

, 0 ,

( ) ( )
( )

:

2 3 5

, 0

y y
min f y y y

y y

y y

y y y y
min f y

y y

subject to

y y

y y

   



 
 

 



 (4.3) 

This is a leader follower problem with three players in the follower level. The 

sensitivity based approach presented in chapter 3 and Fig. 3.2 will be applied first to find 

a Nash solution amongst the followers. Next, the algorithm shown in Fig. 3.1 is used to 

find a Stackelberg solution between the leader and the set of followers. The algorithm 

converges after 4 iterations to 1 2 31.510, 7.697, 6.061, 0.483leadf f f f    . To verify 

that the converged solution is indeed a Nash solution for followers 1 to 3, the approach 

discussed at the beginning of this chapter will be applied. It is verified that this is a Nash 

solution for the followers 1 to 3. Table 4.1 compares the results obtained using the 
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proposed algorithm with those reported by Liu (1998). It can be seen from Table 1 that 

both approaches yield the same value for leader’s objective function ( 1.510)leadf   but 

the sensitivity based approach yields a better solution for all three followers 
1 2 3( , , )f f f  

compared to those reported by Liu. It shows that the sensitivity based approach improves 

the Nash solution. The computational time required to obtain this solution is 2.08 sec 

versus 9 minutes reported by Liu using a genetic algorithm. 

4.3.2 Design of a Pressure Vessel 

Consider next the problem dealing with the design of a thin-walled pressure 

vessel with three design variables; the radius R, the length L, and the thickness T (see 

Fig. 4.1). This problem has been used as a test problem in the literature by several 

researchers (Rao et al. 1997, Lewis and Mistree 1998). The two objective functions 

include maximizing the volume (VOL) and minimizing the weight (WGT) of the vessel. 

Player 1 (VOL) wishes to maximize the volume by controlling variables R and L whereas 

player 2 (WGT) minimizes the weight with control over variable T. The vessel is under 

internal pressure P. The problem constraints include: (i) the circumferential stress should 

not exceed the tensile stress, and (ii) some additional geometric constraints due to space 

limitations. These constraints are given in Eqs. (4.4)-(4.7). 

circ t

PR
S

T
    (4.4) 

5 0T R   (4.5) 

40 0R T     (4.6) 

2 2 150 0L R T      (4.7) 
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The mathematical form of the problems for players VOL and WGT are given in 

Eqs. (4.8) and (4.9) respectively. 

  3 2

1

4
,

3

by varying ,

Min f V R L R R L

R L

  
 

     
    (4.8) 

subject to      Eqs. (4.4)-(4.7) 

                     
l u

l u

R R R

L L L

 

 
 

For player WGT: 

     
3 2 3 2

2

4 4
, ,

3 3

by varying

Min f W R T L R T R T L R R L

T

    
  

        
    

subject to      Eqs. (4.4)-(4.7)     (4.9) 

                    l uT T T   

where   is the cylinder density and , , , , ,l u l u l uR R L L T T  denote the lower and upper 

bounds on radius, length and thickness of the vessel respectively. The problem’s 

constants are given in Table 4.2. 

The Nash solution of the non cooperative game between players VOL and WGT 

is found by applying the algorithm shown in Fig 3.2. It should be noted that changing the 

initial point for the radius results in a different Nash solution; this means that there are 

infinite Nash solutions for this problem. Figs. 4.2 and 4.3 show these solutions as a 

function of vessel radius (R). The Nash solution(s) for this problem have also been 

derived analytically by Rao et al. (1997) and are given by Eq. (4.10). It may be noted that 
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the entire positive dimensional set of Nash solutions given by Eq. (4.10) is reproduced 

using the sensitivity based approach as shown in Figs. 4.2 and 4.3. 

 

 

150 40

2

150 2 1

t u N t

t t

N N

t

N
N

t

S L S
R

P S P S

P
L R

S

PR
T

S


 

 

 
   

 



 (4.10) 

Marston (2000) presents a DOE based approach to approximate the RRS for the 

minimization WGT problem in Eq. (4.9). It is needed to design an experiment in the 

variables R and L, substitute these variables in the follower problem. The two factors R 

and L each have three levels with a five repeated points in the center of the DOE block. 

Table 4.3 shows the design data for this problem. For each (R, L) combination, an 

optimum solution for T is obtained. The third column of the Table 4.3 is the optimum 

solution for T corresponding to the set of (R, L). The response surface regression of 

optimum T over (R, L) yields the following approximation function of RRS.  

( , ) 0.0002+0.1112*RT R L    (4.11) 

where ( , )T R L  approximates the optimum vector of WGT problem for varying values of 

R and L. It can be seen that the variable L does not appear in RRS of WGT. Repeating 

the above steps for the VOL problem yields the RRS for variables R and L as follows: 

( ) 9*R T T   (4.12) 

( ) 150 20*L T T    (4.13) 

Next, these three RRS are used to obtain Nash and Stackelberg solutions.  
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Nash Solution: The intersection of three RRS functions in Eqs. (4.11)-(4.13) 

yields the Nash solution of the game. The Nash equilibrium for this case is (R=28.4 in, 

L=86.9 in, T=3.16 in), which is a unique solution. However, it should be noted that this 

problem has infinite Nash solutions. The RSM-DOE based method is unable to provide 

all Nash solutions to this problem. However, as shown in Figs. 4.2 and 4.3, the sensitivity 

based approach is able to generate all possible Nash solutions. These solutions match the 

analytical results given by Eq. (4.10). 

Stackelberg Solution: With players VOL and WGT as leader and follower 

respectively, the Stackelberg game problem is solved by substituting Eq. (4.11), which is 

RRS of the follower problem, into the leader’s problem. Both Marston (2000) and Rao et 

al. (1997) obtained the Stackelberg solution of (R=35.99 in, L=70 in, T=4 in). 

The sensitivity based method outlined herein yields the same results as those 

obtained Marston and Rao et al. However, the sensitivity based approach is able to 

accomplish this at a much lower computational burden. Table 4.4 compares the number 

of optimization problems that were solved using each method to obtain the final solution. 

It can be seen from Table 4.4 that the DOE-RSM method requires the follower problem 

to be solved 14 times and the leader problem once. The sensitivity based approach 

requires the leader and follower problems to be solved 2 times each. It should be noticed 

that the number of iterations needed to get convergence depends on the initial values and 

the convergence criteria which have been selected. For example, by changing the criteria 

of convergence from 0.01 to 0.5, the algorithm converges after solving the leader and 

follower problems one time. To conclude, the DOE-RSM method requires a total of 15 
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optimization problems to be solved to obtain the optimum solution whereas the 

sensitivity based method obtains the solution by solving only 4 optimization problems. 

Finally, a word of caution about sensitivity of final solution to numerical 

perturbation in regression coefficients obtained using the DOE method. The DOE- based 

method yields a regression coefficient of 0.1112 for “R” in Eq. (4.11). If this coefficient 

is changed slightly to 0.1111 and this new RRS function is substituted in the leader 

problem to solve a Stackelberg game, the optimum solution will be 

 R 7 in,  L 134.4 in,  T 0.78 in   . This solution is significantly different from the 

correct solution to this problem. 

A justification for why this problem is sensitive to coefficient of the radius (R) is 

proposed next. The leader’s objective function  1f  monotonically increases with respect 

to R. So the leader attempts to increase R provided the constraints in Eqs. (4.4)-(4.7) are 

satisfied. Fig. 4.4 shows the stress constraint of the leader’s problem as a function of the 

radius (Eq. (4.4)) when the RRS of the follower problem is substituted in leader’s 

constraints. The vertical axis is the stress constraint of the leader’s problem. It can be 

seen from Fig. 4.4 that the stress constraint is satisfied for all values of the radius. 

Therefore, the leader will choose the upper bound of the radius value (R=36) to optimize 

its objective function.  

If the RRS of the follower problem is changed to ( , ) 0.0002+0.1111*RT R L   , 

Fig. 4.5 shows that the stress constraint will become active for R=7. Then, the optimum 

solution for the leader is R=7 which is quite different from the previous case. This small 

change in coefficient from 0.1112 to 0.1111 is quite likely depending on the software 

(Matlab vs Minitab) used for regression as well as the regression model (linear vs 
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quadratic). The sensitivity based approach proposed herein is not prone to these solution 

instabilities due to numerical perturbations. 

4.3.3 Two-Bar Truss Problem 

This problem has been considered by Azarm and Li (1990). The two-bar truss 

problem shown in Fig. 4.6 is subject to a vertical load of 100 kN at point C. The variables 

are the cross-sectional areas of the bars 
1 2, ,x x  and the y -coordinate of joint C. The 

problem constraints include limitations on the stress in the elements, which should not 

exceed 100,000 kN/m
2
, and the bounds on vertical coordinate  y . The objective 

function is to minimize the volume of the truss. The problem formulation is as follows: 

     

 

 

0.5 0.5
2 2

1 2 1 2

0.5
2

1

0.5
2

2

1 2

, , 16 1

subject to:

20 16 100,000 0

80 1 100,000 0

1 3

, 0

Minimize f x x y x y x y

y yx

y yx

y

x x

   

  

  

 



 (4.14) 

Azarm and Li (1990) decomposed the problem in two levels. Level one is the 

follower problem, with two players, players 1 and 2, who have control over variables 1x  

and 2x  respectively. The follower problems are given below: 

   

 

0.5
2

1 1 1

1

0.5
2

1

1

, 16

subject to:

20 16 100,000 0

0

minimize f x y x y

x

y yx

x

 

  



 (4.15) 
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   
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subject to:

80 1 100,000 0

0
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 (4.16) 

The leader problem is given as:  

     1 2 1 1 2 2, , , ,

subject to:

1 3

minimize f x x y f x y f x y

y

y

 

 

 (4.17) 

This problem can be modeled as a Stackelberg game with two players in the 

follower level. Using the principles of monotonicity analysis, it can be verified that the 

constraints are active at optimum solution of the follower problems when they are 

optimized individually. So the optimum solutions of follower problems are as follows: 

     
0.5

* 2

1 20 16 / 100,000x y y y   (4.18) 

     
0.5

* 2

2 80 1 / 100,000x y y y   (4.19) 

Since Eqs. (4.18) and (4.19) show the variation of optimum solution of *

1x  and *

2x  

with respect to y , they are the closed-form function of RRS for the followers. It can be 

noticed that these RRS are non linear functions of y . By substitution of these RRS in the 

leader problem, the optimum solution of the leader can be obtained. The optimum 

solution of  1 24.48, 8.96, 2x x y    was reported for this problem by Azarm and Liu 

(1990). Using the sensitivity based approach and the algorithm shown in Fig. 3.1 to solve 
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the Stackelberg game formulation, a solution identical to that reported by Azarm and Li 

is obtained after 4 iterations.  

Discussed next is the implementation of the algorithm for this example: Here 

leadx y ,
1 2( , )fx x x . Set 1k  , the convergence criteria=0.01 and initial value of 

1.2y  . Solve optimization problems for the followers in Eqs. (4.15) and (4.16) 

assuming 1.2y  . The optimum solution would be *1

1 6.96x   and *1

2 10.41x  . In leader 

problem, Eq. (4.17), substitute 1 2,x x by these approximations: 

*1

1
1 6.96 ( 1.2)

dx
x y

dy
    (4.20) 

*1

2
2 10.41 ( 1.2)

dx
x y

dy
    (4.21) 

These two functions are approximations of RRS for the follower 1 and 2 

respectively. The terms 
*1

1dx

dy
and 

*1

2dx

dy
 are sensitivity information of the followers’ 

optimization problem obtained by solving Eq. (3.28). Now, the leader problem will be 

solved and the optimum solution would be *1 1.8976y  . Compute convergence criteria: 

*1 1

1

1.89 1.2
0.58

1.2

y y

y

 
  . Since it does not meet convergence limit (0.001), the second 

iteration is started. k  is updated to 2 and *1 1.8976ky y  . Using this new updated 

value for y , the optimum values of the followers would be *2

1 4.66x   and *2

2 9.04x  . 

The new approximations would be: 

*2

1
1 4.66 ( 1.89)

dx
x y

dy
    (4.22) 
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*2

2
2 9.04 ( 1.89)

dx
x y

dy
    (4.23) 

The new optimum value of y  can be obtained by substituting these new 

approximations in the leader’s problem and optimizing it. That would be *2 1.9760y  . 

The convergence criterion is 0.05 which does meet the specified limit and a third iteration 

is needed. For 3k  , ky 1.98, *3

1 4.49x  , *3

2 8.95x  and *2 1.9981y  . The 

convergence criterion is 0.011 which is still more than the limit (0.01). So, the fourth 

iteration will be performed. For 4k  , 1.9981ky  , *3

1 4.49x  , *3

2 8.95x  and . The 

convergence criteria is less than 0.01 and the iteration stops. The optimum solution would 

be *

1 4.49x  , *

2 8.95x  and 1.9981ky  . It may be noted that the number of iterations 

depends on the limit of convergence criterion set for the algorithm. For example, if the 

limit decreases from 0.01 to 0.1, then the algorithm converges after 3 iterations but with 

less accurate solution. If the limit is set to 0.001, then 5 iterations are needed to get 

convergence for this problem and the solution would be *

1 4.47x  , *

2 8.96x  and 

2.0000ky  . 

To solve this problem using DOE based method, an experiment was designed for 

the follower problem. Since there is a single factor (y), the interval of y ([1, 3]) was 

divided into 10 even spaces. A regression analysis of the results of follower’s experiment 

yielded the following approximation of follower’s RRS. 

 1 9.44 2.42x y y   (4.24) 

 2 11.80 1.26x y y    (4.25) 
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By substituting these approximations in the leader problem, an optimum solution 

with  1 22.17, 8.01, 3x x y    is obtained. Fig. 4.7 shows analytical and RSM 

approximation of 1( )x y , Eqs. (4.18) and (4.24). It shows how the sensitivity based 

approach and RSM method converges to different solution. Also, Fig. 4.8 showes the 

leader objective function in Eq. (4.17) where RSM approximation of 1( )x y  and 2 ( )x y , 

Eqs. (4.24) and (4.25) are substituted. From the Fig. 4.8, it can be noticed that the 

minimum value of the leader objective function occurs at 3y  . A quadratic 

approximation with 11 experiments yielded the following optimum 

 1 27.9868, 11.0933, 1x x y    whereas a 21 experiment quadratic regression yielded 

the following approximate RRS: 

2

1

2

2

13.9855 7.3489 1.2872

14.9663 4.8282 0.9004

x y y

x y y

  

  

 (4.26) 

and an optimum of  1 27.9238, 11.0385, 1x x y   . It can be seen that there is a 

significant difference between the optimum solutions obtained using the 3 RSM 

formulations and the exact solution of the Stackelberg problem. Because of the nonlinear 

nature of the RRS, the DOE based method is unable to converge to the correct 

Stackelberg solution for this problem. It seems the reason that DOE method does not 

converge to correct solution but sensitivity based approach does would be existence of 

updating the 1x  and 2x  in each iteration. In the RSM method, this updating does not exist 

and linear fixed functions in Eqs. (4.24) and (4.25) are used for 1x  and 2x . 
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4.4 Conclusions 

In this chapter, the approach proposed in chapter 3 is tested on three example 

problems for which solutions are available in the literature. It is seen that the proposed 

sensitivity based approach is (i) computationally less intense, and less prone to numerical 

errors than a RSM-DOE approach, (ii) is able to approximate non linear RRS, (iii) can 

find all Nash solutions where the Nash solution is not a singleton, and (iv) for one 

example problem, is able to improve the Nash solution that was reported in literature. 

Further extensions of the proposed approach to hierarchical systems with multiple leaders 

and multiple followers are presented in chapter 6 .
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Table 4-1 Comparison of Results for Example 1 (from Liu 1998). 

 

 Liu’s results Sensitivity based approach 

lf  1.510 1.510 

1f  12.323 10.821 

2f  6.225 6.061 

3f  0.835 0.483 

 1 2,x x x    (5.768,2.116) (5.379,2.310) 

 1 11 12,y y y    (2.885,2.000) (2.612,2.000) 

 2 21 22,y y y    (1.699,1.414) (1.616,1.414) 

 * * *

3 31 32,y y y  (1.183,0.878) (1.149,0.900) 

 

 

 

 

Table 4-2 Pressure Vessel Problem Parameters. 

 

 

 

P tS    
lL  uL  lR  uR  lT  uT  

3890 lb 35000 lb 0.283 lbs/ 3in  0.1 in 140 in 0.1 in 36 in 0.5 in 6 in 
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Table 4-3 Experimental Design to Obtain RRS for the Follower (WGT). 

 

R(in) L(in) T(R,L) (in) 

20.25 55 2.2506 

4.5 10 0.5001 

36 100 4.0000 

4.5 100 0.5001 

36 10 4.0000 

20.25 55 2.2506 

20.25 55 2.2506 

20.25 55 2.2506 

4.5 55 0.5001 

36 55 4.0000 

20.25 55 2.2506 

20.25 100 2.2506 

20.25 10 2.2506 

20.25 55 2.2506 

 

Table 4-4 Number of Optimization Problems Solved for Example 2. 

 

Method WGT Problem VOL Problem Total 

DOE-RSM 14 1 15 

Optimal Sensitivity 2 2 4 

For each row, one follower 

optimization problem has 

been solved to calculate the 

optimum value of T 

corresponding to that set of 

R and L. 



 

 

63 

 

 

 

 

Figure 4.1 Thin-Walled Pressure Vessel. 

 

 

 

 

Figure 4.2 Nash Solution Length vs Radius for Pressure Vessel Problem. 
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Figure 4.3 Nash Solution Thickness vs Radius for Pressure Vessel Problem. 

 

 

Figure 4.4 Stress Constraint of Player VOL. 
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Figure 4.5 Stress Constraint of Player VOL. 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Two-Bar Truss Problem. 
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Figure 4.7 The Analytical and RSM Approximation RRS for 1x . 
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Figure 4.8 The Leader Objective Function Applying RSM Method. 

 

 
 

Figure 4.9 A 33  Full Factorial Design (27 points). 
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Figure 4.10 Three One-Third Fraction of the 33  Design. 

 

 

 

 
 

Figure 4.11 Central Composite Design for 3 Design Variables at 2 Levels. 
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Equation Chapter 5 Section 1 

CHAPTER 5 

5. APPLICATION OF STACKELBERG GAMES IN MECHANICAL 

DESIGN  

This chapter illustrates the application of a bilevel, leader-follower model for 

solving two mechanical design problems (i) optimum design of flywheels and (ii) 

optimum design of high speed mechanisms. Both optimization problems are modeled as a 

Stackelberg game. The first problem deals with design of flywheels wherein the objective 

is to maximize the energy stored in the flywheel while simultaneously minimizing the 

manufacturing costs. This model consists of two conflicting objective functions. The 

second problem considers the design of a high speed mechanism as a multi objective 

optimization problem wherein the kinematic and dynamic criteria are optimized 

simultaneously. The partitioning of variables between the leader and follower problem is 

discussed, and a variable partitioning metric is introduced to compare various variable 

partitions. The sensitivity based approach discussed in chapter 3 is applied for 

exchanging information between follower and leader problems.  

5.1 Optimum Design of Flywheels  

High speed rotating disks are commonly used as flywheels as well as rotors in 

turbines and compressors. Flywheels are used to store energy in many power generation 

applications and help smoothen torque fluctuations. The flywheel problem has been 

considered by Sandgren and Ragsdell (1983) and Bhavikatti and Ramakrishnan (1980) 

who used Fourier series and 5th order polynomial functions respectively to find the 
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optimum shape of the flywheel for a single objective function. A solution to this problem 

for the two-objective function case has been considered by Pakala (1994) and Rao 

(1997). However, considerations pertaining to updating of the follower’s solution as well 

as variable partitioning are not addressed in these works. For simple problems where 

explicit expressions for objective and constraint functions are available, a gradient based 

approach for variable updating has been presented by Azarm and Li (1990). However, 

this approach is not helpful when explicit expressions are not available for objectives and 

constraints, such as the design problem considered herein. The sensitivity based variable 

updating approach presented in previous chapter is general, and is used along with 

proposed variable partitioning metric to solve the flywheel problem using a Stackelberg 

game based approach. 

5.1.1 Design Problem Formulation 

The two objective functions used for the flywheel problem include maximizing 

the kinetic energy stored in the flywheel while simultaneously minimizing the 

manufacturing cost. The proposed overall objective is to determine optimum flywheel 

shape that maximizes the kinetic energy stored in the flywheel while minimizing the 

overall manufacturing cost. The flywheel shape is one of the most important determinants 

of the amount of energy stored in the flywheel as well as the induced stresses. A uniform 

cross-section for flywheel is quite uneconomical because all the material is not fully 

stressed. Besides the hyperbolic cross-section profile proposed by Stodola, mathematical 

programming techniques have been applied by Bhavikatti and Ramakrishnan (1980), 

Sandgren and Ragsdell (1983) and Dems and Turant (2009) to optimize the cross section 

of rotating disks. In Bhavikatti’s approach, the disk is approximated by a number of rings 
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and the optimum profile is obtained by smoothening the stepped shape. Sandgren used 

polynomial and Fourier series approximations. Polynomial approximations as well as 

Fourier series allow for a continuous form representation with a limited number of 

variables. A use of Fourier series for thickness representation affords the ability to 

represent any general function with a relatively few terms, and allows for exact value of 

derivatives of thickness function with respect to radius (r) to be used in the computation 

of radial and tangential stresses. 

The flywheel has a specified inside radius 
iR  and an outside radius oR . The 

thickness is different at any radius, and this relation is defined by function ( )f r . The 

general cross sectional shape of the flywheel is shown in Fig 5.1. 

The rotational speed   is fixed and the total kinematic energy stored in the 

flywheel can be calculated. The constraints include allowable limits on induced stress, 

and flywheel mass and thickness. To insure that the stresses do not exceed the allowable 

limit, N points over the cross section from iR  to oR  are defined and the stress values at 

each of these N points are calculated. The maximum stress value amongst these N points 

should be less than the allowable stress.  

The total mass is calculated using numerical integration, and should be less than a 

maximum allowable value. There is one constraint on the cross-section thickness; the 

maximum thickness across the whole of profile should be less than a specified value.  

5.1.2 Thickness Function 

The flywheel thickness is a function of its radius. A Fourier series representation 

is used to define the thickness (t) as a function of the radius (r) as: 
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0

1 1

( ) sin cos .
n n

i i
i i i o

i io i o i

r R r R
t r s a i b i R r R

R R R R
 

 

    
       

    
   (5.1) 

In this work, n=3 is used in the thickness function. It assumes a 3-term 

approximation because it gives a good control over the general form of the flywheel 

profile without an undue increase in the problem complexity.  The problem variables 

are 0s , ia and ib . Therefore, a total of 7 variables are used to determine the profile shape 

of the flywheel. With the thickness function (the coefficients of Fourier series) specified, 

the values of objective functions and constraints can be obtained.  

An upper limit on thickness is one of the constraints. The maximum profile 

thickness should be less than allowable thickness. Eq. (5.2) shows this constraint: 

                                      ( ( )) allowable i omax t r t R r R    (5.2) 

5.1.3 Mass and Kinetic Energy 

The kinetic energy stored in the flywheel is the first objective function of the 

optimization problem. Since it is of interest to store as much the energy in the flywheel as 

possible for a given flywheel weight, this objective function will be maximized. The 

kinetic energy stored in the flywheel is given as: 

   
22 2 31 1

2 2
2 ( )

o o o

i i i

R R R

R R R
r r t r drV dM r t r drKE          (5.3) 

where   is the mass density of the flywheel disk, and   is the angular velocity. The 

flywheel thickness ( )t r  is a function of the flywheel radius at each point. The limits of 

integration are the inner radius ( )iR  and the outer radius ( )oR . 
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An upper limit (
maxM ) is placed on the overall flywheel mass. The mass 

constraint is defined as: 

max2 ( )
o

i

R

R
M rt r dr M    (5.4) 

5.1.4 Stress Analysis 

The stress analysis begins with formulating the governing equations for the 

flywheel. Assuming that the tangential forces have negligible effect on stresses compared 

to centrifugal forces, a force balance on a flywheel stress element yields the following 

governing equations of equilibrium: 

2 2( ( ) ) ( ) ( ) 0r

d
t r r t r r t r

dr
      (5.5) 

( )(1 ) 0r
r

d d
r r

dr dr




 
         (5.6) 

where ,r    are radial and tangential stresses respectively, and   is the Poisson’s ratio. 

Defining the stress function ( ) rt r r  : 

( )
r

t r r


    (5.7) 

Substituting Eq. (5.7) in Eq. (5.5) and solving for   yields: 

2 21
( )

( )

d
r t r

t r dr



 

 
  

 
 (5.8) 

Next, substituting Eq. (5.7) and Eq. (5.8) into Eq. (5.6), the resulting second order of 

differential equation will be as follows: 
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2
2 2 3

2

( )
(3 ) ( ) 0

( )

d d r dt r d
r r t r r r

dr dr t r dr dr

  
   

 
       

 
 (5.9) 

The derivation of this differential equation is discussed in Timoshenko and 

Goodier (1951). This equation can be solved numerically, but it needs two initial 

conditions. Consider the inner and outer radii of flywheel; the radial stress at these points 

is zero, i.e.  0r   at ir R  and or R . This provides two boundary conditions for :  

0   at   ir R  (5.10) 

0   at   or R  (5.11) 

Now there is a two-point boundary value problem with a second order differential 

equation. By solving this equation, the values of   and 
d

dr


 will be obtained as a function 

of r. The number of points will depend on how many points (r) are defined for solving the 

ODE. Next, using Eq. (5.7) and Eq. (5.8), the radial and tangential stress at each r can be 

obtained. An application of distortion energy theory helps find the total stress acting at 

each point  r  as: 

1
2 2 2 2( ( ) ( )) ( ) ( )total r rr r r r            (5.12) 

The maximum value of this stress should be less than the allowable stress. Eq. (5.13) 

expresses this constraint. 

1
2 2 2 2( ( ) ( )) ( ) ( )r r a i omax r r r r R r R              (5.13)  

Pakala (1994) and Sandgren (1983) used this equation for the stress constraint. 
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5.1.5 Manufacturing Objective Function 

The manufacturing cost is the second objective function and is quantified by the 

deviation of the thickness function from a straight line profile. Large deviations in 

thickness function from a straight line lead to higher manufacturing costs. By minimizing 

these deviations, the manufacturing costs can be reduced. To define this objective 

function, the disk is divided into N equal parts and the thickness ( )t r  for each part can be 

obtained. Suppose for 
ir r   the thickness is ( )it r  and for adjacent section 

1ir
 the 

thickness is 1( )it r . The difference of these values is 
it . The summation of absolute 

value of these 
it  is defined as the second objective function as: 

1 1

2 1

1 1

( ) ( )
N N

i i i

i i

f t r t r t
 



 

      (5.14) 

5.1.6 The Optimization Problem 

The optimization problem has two objective functions, seven variables and three 

constraints. The objectives are to maximize the kinematic energy stored in the flywheel 

while keeping the manufacturing costs low. This problem will be set up as a bi-level 

(leader-follower) model. One of the objective functions, energy stored in the flywheel, is 

considered as the leader whereas the second one, manufacturing cost, is treated as the 

follower. All constraints are associated with the leader problem. A three term Fourier 

series representation is used to define the shape function. The problem variables are the 7 

coefficients (constant terms + 3 sin/cos terms) of this Fourier series. For the problem, it is 

not clear which variables should be associated with the leader problem and which 

variables with the follower problem. Some of the 7 coefficients are assigned as variables 
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for the leader problem and the remaining variables are assigned to the follower problem. 

Since the variable partitioning is not unique, several variable partitions can be explored 

for the entire set of variables. There are a total of 126 different variable partitions. Each 

partitioning can be used to set up and solve a bi-level Stackelberg problem, and has its 

own solution. 

Now there are two objective functions given by Eq. (5.3) and Eq. (5.14), and 

three nonlinear constraints on thickness Eq. (5.2), mass Eq. (5.4) and stress Eq. (5.13). 

The variables are Fourier coefficients of thickness function. ( 0 1 2 3 1 2 3, , , , , ,s a a a b b b ). 

5.1.7 Partitioning the variables 

In some bi-level problems, the partitioning of decision variables for leader and 

follower problems is obvious. However, for our problem, it is not clear which of the 

variables should be associated with the leader’s problem and which variables should be 

associated with the follower’s problem. Since a total of 126 partitions of seven variables 

are possible and each combination will yield a possible optimal solution, what is needed 

is a criterion to compare these results to identify the best variable partitioning. One 

criterion is developed and proposed in this work as a variable partitioning metric (VPM):. 

( )( )

( )( )

l wl f wf

bl wl bf wf

f f f f
VPM

f f f f

 


 
 (5.15) 

where lf  and ff  are the values of leader and follower objective functions when the 

optimization problem is solved using the Stackelberg approach. blf , bff , wlf  and wff  

denote best and worst values of leader and follower objective function, respectively. 

These values are obtained as follows. The leader optimization problem with seven 
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variables is considered and solved. The optimum value of objective function for this 

problem is 
blf . If the optimum objective vector of this problem is substituted in the 

follower objective function (Eq. (5.14)), the corresponding follower objective function 

value would be wff . Similarly, by solving the follower optimization problem (Eq. (5.14)) 

the value of bff  can be obtained and by substituting the optimum vector of follower’s 

problem into leader’s objective function (Eq. (5.3)), the value wlf  can be calculated. 

5.1.8 Numerical Results 

The first step involved in solving the bi-level optimization problem is to solve two 

single objective optimization problems separately. Each single objective problem is 

solved by ignoring the other objective function as follows: 

Maximize 

                   1 0 1 2 3 1 2 3( , , , , , , )f s a a a b b b  (5.16) 

subject to 

                   

max( )

allowable

total allowable

allowable

M M

t r t

 







 (5.17) 

and 

Minimize 

                      2 0 1 2 3 1 2 3( , , , , , , )f s a a a b b b  (5.18) 

subject to 

   same constraints given by Eq. (5.17) 
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The first objective function is to maximize the kinetic energy stored in flywheel 

rotating at 630 radians per second. The flywheel thickness is controlled by seven 

variables  0 1 2 3 1 2 3, , , , , ,s a a a b b b . The maximum allowable mass is 80.5 kg and the stress 

can not exceed 250 Mpa. The inner and outer flywheel radii were set as 2.54 and 30 cm 

respectively. The maximum profile thickness is limited to 12 cm. The optimization 

problem is given as: 

Minimize 

 0 1 2 3 1 2 3. . ( , , , , , , )K E s a a a b b b  (5.19) 

subject to 

 80.5 0totalmass    (5.20) 

 82.5 10 0t     (5.21) 

 max( ) 0.12 0t r    (5.22) 

Similarly, by changing the objective function to manufacturing cost, the optimum 

solution to the second optimization problem is obtained. Table 5.1 shows the results for 

these two single objective optimization problems. 

When only the objective function corresponding to the leader is considered, the 

optimized objective function value is 61.95 10  (also denotes as blf ). Using this optimum 

vector in follower’s objective function yields a follower objective function value of 

1.6219 ( wff ). The second row in Table 5.1 corresponds to an optimization of the follower 

objective function with optimized of value 0.0324 ( bff ) and the corresponding leader 
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objective function value is 60.3535 10  ( )wlf .  Figure 5.2 shows the flywheel profile for 

both these solutions. 

In the second step, the bi-level problem is formulated as a Stackelberg game. The 

leader and follower objective functions are given by Eq. (5.3) and Eq. (5.14) respectively. 

All constraints (Eqs. (5.20), (5.21) and (5.22)) are associated with the leader’s problem, 

and no constraints are imposed on the follower’s problem. There are seven variables, 

 0 1 2 3 1 2 3, , , , , ,s a a a b b b . The leader can pick up some of the Fourier coefficients as 

variables and the remaining coefficients will act as variables for the follower. Suppose 

the variables 0 2 3, ,s a b  are assigned to the leader, then the follower will have 1 3 1 2, , ,a a b b  

as its variables. The optimization problem for leader and follower can be formulated as: 

Leader Problem: 

               Minimize 0 1 2 3 1 2 3. . ( , , , , , , )K E s a a a b b b  

                by varying 0 2 3( , , )s a b  

subject to          (5.23) 

                              80.5 0totalmass    

                             82.5 10 0t      

                           max( ) 0.12 0.t r    

Follower problem: 

           Minimize 
1 1

2 0 1 2 3 1 2 3 1

1 1

( , , , , , , ) ( ) ( )
N N

i i i

i i

f s a a a b b b t r t r t
 



 

      
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            by varying 
1 3 1 2( , , , )a a b b  (5.24) 

The follower problem is solved at first. There are four variables (
1 3 1 2, , ,a a b b ) and 

three parameters (
0 2 3, ,s a b ). Assuming that 

                     1 1 1

0 0 2 2 3 3, ,s s a a b b   , (5.25)  

where 1 1 1

0 2 3, ,s a b  are known assumed values for 0 2 3, ,s a b . The follower problem is 

unconstrained because all constraints are considered in the leader’s problem. After 

solving the follower’s problem, the optimum values for 1 3 1 2, , ,a a b b  are obtained. 

Next, let 1 3 1 2[ , , , ]x a a b b , and 0 2 3[ , , ]p s a b . Substituting these values into 

system of equations given by Eq. (3.28), the sensitivity information 
*dx

dp
 is obtained. 

Here, ,x p  are vectors. This sensitivity information is used to construct Eq. (3.29) for 

vector x . After substituting this expression in the leader problem (Eq. (5.23)), the leader 

problem has 0 2 3, ,s a b  as variables and the constraints are given by Eqs. (5.20), (5.21) and 

(5.22). 

The optimum solution to the leader problem is * * *

0 2 3, ,s a b . If the difference of these 

values and the values 1 1 1

0 2 3, ,s a b  is within the allowable limit of 1%, the iterations 

terminate and these values are taken as the solution of the optimization problem Eq. 

(5.23) and Eq. (5.24) using the Stackelberg approach. If the convergence criterion is not 

met, then substitute * * *

0 2 3, ,s a b  in the follower problem and repeat this procedure until 

convergence criteria is met. The results of the optimization problem are given in the third 

row of Table 5.1. 
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The bi-level optimization problem converged after 7 iterations. On comparing the 

values of objective functions using the Stackelberg formulation with the values given in 

Table 5.1, It can be seen that the value of leader’s objective function was 61.95 10  when 

only the leader was considered and it decreased to 61.45 10  both the objectives were 

considered with follower in the Stackelberg game. Similarly the value of follower’s 

objective function was 0.0324 when it was considered individually. When it was 

considered along with leader’s function, the optimum value increased to 0.1675. Figure 

5.3 compares the profile shapes of single and multi-objective solutions. The horizontal 

axis shows the length of the flywheel fixed at 0.3 m and the vertical axis is the thickness 

of flywheel in meter. It can be seen from Fig. 5.3 that when only the manufacturing cost 

is considered, the profile shape has less deviation than other two cases. 

The value of the variable partitioning metric (VPM) given by Eq. (5.15) for this 

variable partitioning is 0.6240. As mentioned before, VPM was defined the criterion to 

compare different variable partitionings. The VPM can take any value between zero and 

one. The higher the value of the VPM, the better is that variable partitioning case. When 

the coefficient partitioning is changed the different optimum solutions are obtained. Table 

5.2 shows some of the partitions which were tried; each partitioning case has its own 

optimum solution and corresponding optimum vector.  

The results in the second row were obtained after 31 iterations. The value of VPM 

is 0.6926 which is better than the value associated with the solution in table 5.1. The third 

row has two variables for the leader and 5 variables for the follower. The values of  

2 1 3, ,a b b   compared to the other coefficients are negligible, and can be ignored in the 

profile function of the flywheel. Both values of leader and follower objective function 
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values are worse compared to the second row; also the value of the VPM criterion for this 

partition is the smallest one amongst the five partitioning cases indicated in Table 4.2. 

The fourth row yields the highest value for VPM and is selected as the best partitioning 

case. The last two rows are other possible options for partitioning the coefficients. 

Figures 5.4 and 5.5 compare flywheel profile shapes for cases 2-6. 

The bold graph in Figure 5.4 is for the case which has the best criterion value 

(0.832) the two other graphs are related to second and third rows of the table 5.2 which 

have criterion values of 0.6926 and 0.6027 respectively. These two graphs have more 

deviation in the flywheel profile than the bold one. Similarly in Fig 5.5, flywheels 

corresponding to rows 5 and 6 (with lower VPM values) show more deviation than shape 

corresponding to row 4. This example illustrated the application of sensitivity based 

approach to a complex problem where in partition in problem variables was not obvious. 

5.2 Optimum Design of High-Speed 4-bar Mechanisms 

This section considers the design of a high speed mechanism as a multi objective 

optimization problem wherein the kinematic and dynamic criteria are optimized 

simultaneously. The kinematic criteria include minimization of the structural error and a 

minimization of deviation of the transmission angle from its ideal value. The dynamic 

criterion used is minimization of the peak torque required to drive the input link over a 

cycle. A Stackelberg (leader-follower) game theoretic approach is used to solve the 

multiobjective problem. Three variants, wherein both the kinematic and the dynamic 

criteria are treated as the leader, are considered. The design variables include mechanism 

dimensions. The computational procedure using sensitivity information is used for 
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approximating rational reaction sets needed for capturing exchange of information 

between the leader and the follower problems.  

5.2.1 Introduction 

The design of high speed mechanisms requires a simultaneous consideration of 

both kinematic dynamic criteria. The kinematic criteria involve minimizing the difference 

between the desired and generated motion while keeping the transmission angle close to 

its ideal value. The dynamic performance criteria include minimizing the peak driving 

torque required over a cycle while reducing the shaking forces transmitted to the frame. 

In the literature, little research has been done wherein both kinematic and dynamic 

criteria are considered simultaneously. Most of the research has focused either on 

consideration of only kinematic criteria (Cabrera et al. (2011), Acharyya and Mandal 

(2009)) or on the consideration of dynamic criteria (Rao (1986)). Various optimization 

techniques have been used in these works including, genetic algorithms, goal 

programming, fuzzy methods, and evolutionary algorithms. However, these works 

considered only a single-objective function. Recently, some works have appeared where 

multiple objective functions are considered (Khorshidi et al. (2011), McDougall and 

Nokleby (2010), Nariman et al. (2009), and Yan and Yan (2009)). 

This section considers the design of planar high speed mechanism as a multiple 

objective problem wherein the dynamic and kinematic criteria are simultaneously 

considered as objective functions in the context of a Stackelberg game. The kinematic 

criteria are affected by link dimensions and orientations, whereas the dynamic criteria 

will be sensitive to link dimensions and orientations as well as counterweights added to 

all moving links. An example problem dealing with the design of a path generating four-



 

 

84 

bar mechanism is presented. The computational procedure utilizes sensitivity of 

follower’s solution to leader’s choices to generate rational reaction sets for the follower 

problem. The example shows that the proposed approach is able to simultaneously 

improve both kinematic and dynamic performance measures of the mechanism under 

consideration. 

5.2.2 Mechanism Design Problem Formulation 

Consider the design of a high speed path generating four-bar mechanism wherein 

both kinematic and dynamic criteria need to be considered simultaneously to improve the 

overall design. The kinematic criteria consist of two objective functions: (i) minimize the 

difference between the desired motion and the actual motion generated by the 

mechanism; (ii) minimize the deviation of the transmission angle from its ideal value 

(90 )  over the entire range of motion. The dynamic criteria include (i) minimization of 

input driving torque required over a cycle and/or (ii) minimization of shaking forces 

transmitted to the frame. 

5.2.2.1 Kinematic Criteria and Constraints: 

A four bar mechanism shown in Fig. 5.6 is to be designed to generate a desired 

path with rotation of the input link. The coordinates of the path described by the coupler 

point P are given as  

52 2 3 6 3
cos( ) cos( ) sin( )

A
gi O i i i

X X r r r                      (5.26) 

52 2 3 6 3
sin( ) sin( ) cos( )

A
gi O i i i

Y Y r r r                     (5.27) 

where   2 2 2i s i                         (5.28) 
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and ( , )
A AO OX Y  are the coordinates of the ground pivot AO ,   is the angular orientation of 

the ground link, ( 1,2, ,6)jr j   are the link lengths, and 2s is the starting position of the 

input link, and 2i and 3i  are the angular orientation of link 2 and 3 at the i-th design 

position. Suppose one whole cycle of input link rotation is divided by N design positions 

( 1,2, , )i N . The corresponding desired values of the path coordinates is given as 

( , )di diX Y . The first objective function minimizes the path error over the entire range of 

motion: 

2 2 2
1

1 1

( ) ( )
N N

i gi gidi di
i i

f X X Y Y 
 

 
 

             (5.29) 

where  

0.4 sin2 ( 0.34)idi
X t            (5.30) 

2.0 0.9sin2 ( 0.5)idi
Y t             (5.31) 

1
( 1,2, , )i

i
t i N

N


            (5.32) 

In this research, a value of 15N   is used. The coordinated input link orientations 

are determined using 

2 2 ii t              (5.33) 

The minimization of 1f  is achieved by varying the link lengths 
1
r  to 

6
r  and the 

ground coordinates ,
A AO OX Y , and  . The second kinematic criterion is to minimize the 

deviation of transmission angle    from its ideal value (90 )  over the entire cycle. 

2 2
max2 min

( 90) ( 90)f           (5.34) 

where the minimum and maximum values of   can be obtained by 
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2 2
3 4 1 2

min
3 4

( )
cos

2

r r r r

r r


  
    (5.35) 

2 2 2
3 4 1 2

max

3 4

( )
cos

2

r r r r

r r


  
    (5.36) 

The constraints on the design problem include: 

1. The mechanism should satisfy the loop closure equation at each design 

position. This is enforced through an equality constraint of the form: 

2 2 2 2
2 4 2 4 1 4 4 1 2 2 3 1 2 4

.2 cos( ) 2 cos 2 cos 1,2, ,
i i i i

r r r r r r r r r r i N               (5.37) 

2. The path error at each design point should be less than a specified small 

quantity  , 

, 1,2, , .i i N      (5.38) 

3. The following two constraints enforce the restriction to have input link as a 

crank: 

1 2 3 4r r r r         (5.39) 

2 2
3 4 1 2

( ) ( )r r r r                (5.40) 

4. The value of transmission angle over the entire cycle is constrained as 

1 5

6 6
        (5.41) 

5.2.2.2 Dynamic criteria and constraints: 

The rigid links are assumed to have general shape and the revolute joints are 

frictionless. Each link has a length ir , 1,2,3,4,i   and each moving link has a mass im   
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and a moment of inertia iI  with respect to the center of mass which is defined by gir  and 

i  as shown in Fig. 5.6. The free body diagram for each link, including the ground link, is 

shown in Fig. 5.7. For each link, two force equilibrium equations and one moment 

equilibrium equation can be written resulting in the following system of equations: 

2 23 12O x x xF F F     (5.42) 

2 23 12O y y yF F F     (5.43) 

2 32 2 2 32 2 2 2 2 2 2 2 2 2 2sin( ) cos( ) sin( ) cos( ) 0S O x i y i O x g i O y g iT T F r F r F r F r                (5.44) 

3 34 23O x x xF F F     (5.45) 

3 34 23O y y yF F F                (5.46) 

3 34 3 3 34 3 3 3 3 3 3 3 3 3 3sin( ) cos( ) sin( ) cos( ) 0O x i y i O x g i O y g iT F r F r F r F r                (5.47) 

4 34 14O x x xF F F                (5.48) 

4 34 14O y y yF F F                (5.49) 

4 34 4 4 34 4 4 4 3 4 4 4 4 4 4sin( ) cos( ) sin( ) cos( ) 0O x i y i O x g i O y g iT F r F r F r F r                   (5.50) 

This system of equations consists of nine equations in nine unknowns including 

the x  and y  components of four bearing reactions  12 23 34 14, , ,F F F F  and the input torque 

( )sT . All inertia forces  ,Oix OiyF F  and couples  Oi
T  are known. The shaking force  SF  

is vector summation of forces acting on the ground link. 

21 41SF F F                  (5.51) 
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The dynamic analysis is performed at every five degree rotation of the input link. 

This results in 72 evaluations during each cycle of rotation. The ultimate objective is to 

design a mechanism which requires minimum driving torque. So in dynamic analysis, the 

input torque ( )sT  is used as the objective function. 

5.2.3 The Optimization Problem 

There are three objective functions, nine variables including 

51 2 3 4 6, , , , , , , ,OA OAr r r r x y r r   and 34 constraints in Eqs. (5.37)-(5.41). The objective 

functions include minimizing the path error over the entire range of motion Eq. (5.34), 

the deviation of transmission angle Eq. (5.34) and input torque over a cycle ( )sT . The bi-

level optimization problem has two objective functions. Based on which pair of objective 

functions is selected, the common variables between the two objective functions are 

determined. For example, if the deviation of transmission angle and input torque are 

considered, then the effective variables would be 51 2 3 4 6, , , , , , , ,OA OAr r r r x y r r   and the 

common variables are 
1 2 3 4, , ,r r r r . The variables 5 6, , , ,OA OAx y r r   will not show up in the 

deviation of transmission angle’s problem. 

This problem will be set up as a bi-level (leader-follower) model. One of the 

objective functions, input torque, is considered as the leader whereas the second one, the 

deviation of transmission angle, is treated as the follower. Eqs. (5.39)-(5.41) are 

associated with the follower problem for the constraints. The constraints associated for 

leader problem are the structural error at each design position Eq. (5.38) and the equality 

constraint given by Eq. (5.37).  
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There are four common variables,
1 2 3 4, , ,r r r r , that can be considered to be common 

between leader and follower problems. Since the variable partitioning is not unique, 

several variable partitions can be explored for the entire set of variables.  According to 

the flowchart in Fig. 3.1, the follower’s problem is solved first. The follower solves its 

problem based on some initially selected values for the leader’s variables. Then the 

rational reaction set of the follower’s variables is approximated as in Eq. (3.32). The 

follower’s variables are substituted in the leader’s problem using this approximation for 

the RRS. Now, the leader solves its problem. These steps are repeated until convergence 

occurs as shown in Fig. 3.1. 

5.2.4 Partitioning the variables 

In many Stackelberg formulations, the design variables which belong to each 

leader and follower problem are known, but for the problem at hand, there are 4 common 

variables  1 2 3 4, , ,r r r r . The leader and follower have the freedom to pick amongst these 

four variables which will be under their control. This results in several possible 

combinations for partitioning the variables. Each combination yields a potential solution 

to the optimization problem. The criteria discussed in Eq. (5.15) can be used to compare 

the results and select the best choice.  

5.2.5 Numerical Results 

Consider first the synthesis problem for a 4-bar mechanism where the objectives 

are to minimize the peak driving torque over a cycle as the input link goes through a 

complete rotation while simultaneously minimizing the deviation of the transmission 

angle from its ideal value of 90 . The maximum value for the input torque obtained over 
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the entire cycle is the leader’s objective function. The input torque is obtained by solving 

Eqs. (5.42)-(5.50) in 5
o increments over a 360

o cycle. The follower minimizes deviation 

of transmission angle from the ideal value  90  over the entire range of motion (Eq. 

(5.34)). The common variables between these two objective functions are 
1 2 3 4, , ,r r r r . It is 

assumed that the leader has control over variables 
1 2,r r  and the follower has the control 

over 
3 4,r r . The leader will optimize its problem by varying 51 2 6, , , , , ,OA OAr r x y r r  . The bi-

level optimization problem is given as: 

Bi-Level Problem 1 

Level 1 (leader): Minimize   ST  

       by varying  1 2 5 6, , , , , ,OA OAr r x y r r                     

subject to 

2 2 2 2
2 4 2 4 1 4 4 1 2 2 3 1 2 42 cos( ) 2 cos 2 cos

0.1, 1,2, ,10.

i i i i

i

r r r r r r r r r r

i

   



      

 

                  (5.52) 

where i  is the structural error at each design position. 

The follower’s problem is: 

Level 2 (follower): Minimize 2 2
max2 1 2 3 4 min

( , , , ) ( 90) ( 90)f r r r r                (5.53) 

                    by varying 3 4,r r  

  subject to     Eqs. (5.39)-(5.41) 

where max  and 
min
 can be obtained by Eqs. (5.35) and (5.36). 

The follower problem is solved at first; there are two variable  3 4
,r r  and two 

parameters  1 2
,r r . Assuming that  
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      1 1
1 1 2 2

,r r r r                         (5.54) 

where 1 1
1 2

,r r  are initial values for 
1 2,r r . After solving the follower’s problem, the 

optimum values for 
3

r  and 
4

r  can be obtained. 

Next, for the follower’s variables, the approximation of rational reaction set 

(RRS) is obtained. Using the sensitivity based approach explained in chapter 3, an 

approximation to the RRS for follower’s variables is constructed as follows: 

* 1 13 3
3 3 1 1 2 2

1 2

( ) ( )
r r

r r r r r r
r r

 
    

 
  (5.55) 

* 1 14 4
4 4 1 1 2 2

1 2

( ) ( )
r r

r r r r r r
r r

 
    

 
  (5.56) 

where *
3

r  and *
4

r  are optimum values for 
3 4,r r  corresponding to 1 1

1 1 2 2
,r r r r  .  3

1

r

r




, 3

2

r

r




 

, 4

1

r

r




 and 4

2

r

r




 is the sensitivity information which is obtained from the follower problem. 

Then Eqs. (5.55) and (5.56) are substituted in the leader’s problem and the leader 

optimizes its problem and obtains the optimum vector  * *
1 2,r r . This optimum vector will 

be compared with 1 1
1 1 2 2

,r r r r  . If the difference is not significant, then optimum vector 

would be the solution for the game, otherwise this loop continues until *
1
r  and *

2
r  are 

relatively unchanged with respect to 1 1
1 1 2 2

,r r r r  .  

Before solving the bi-level problem 1, optimization problems with single 

objective function are solved to get an idea about the best and worst possible values of 

leader and follower objective functions. This involves considering only one objective 
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problem and finding the optimum solution, and repeating this procedure for the second 

function. These two optimization problems are given below: 

Problem 1: Minimize ST  

                        by varying  51 2 3 4 6, , , , , , , ,OA OAr r r r x y r r      (5.57) 

             subject to 

            Eqs. (5.37)-(5.41) 

 

Problem 2: Minimize 

                        2 2
max min( 90) ( 90)       

                     by varying  1 2 3 4 5 6, , , , , , , ,OA OAr r r r x y r r   (5.58) 

         subject to 

            Eqs. (5.37)-(5.41) 

Table 5.3 shows the results of these two problems. 
bl

f  is optimum value of 

optimization problem Eq. (5.57). If this optimum vector is substituted in objective 

function of Eq. (5.58) the corresponding value would be 
wf

f . Similarly by solving 

problem given by Eq. (45), 
bf

f  and 
wl

f  are obtained.  

Next, using the solution procedure shown in Fig. 3.1, the Stackelberg solution 

obtained is given in Table 5.4. There are several possible variable partitionings between 

the leader and follower problem. Table 5.4 shows three of the selected partitions which 

were tried. In first row of Table 5.4, ST  is treated as leader by having control over 

51 2 6, , , , , ,OA OAr r x y r r   and deviation of transmission angle is follower with 
3 4,r r  as its 
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variables. In second row, leader and follower have control over 51 2 3 6, , , , , , ,OA OAr r r x y r r   

and 
4r  respectively. The leader and follower in third row control 51 2 4 6, , , , , , ,OA OAr r r x y r r   

and 
3r  respectively. It can be noted from Table 5.4 that when the number of variables 

which follower has control over decrease from 
3 4,r r  to

4r , the optimum value of the 

follower will be increased from 1240 to 1380 which is to be expected. On the other hand, 

the leader’s optimum value is getting better. The value of the variable partitioning metric 

(VPM) for the second partitioning is greater than the value associated with the other 

partitionings. It means that according to the VPM criteria, the partition which has 

variables 51 2 3 6, , , , , , ,OA OAr r r x y r r   for leader and 
4r  for follower is better than others. 

Fig. 5.8 shows the variation of input torque over a whole 360° cycle for the 

starting solution and the Stackelberg solution. It may be noted the peak value of the input 

driving torque has been improved significantly. Fig. 5.9 shows the variation of the 

follower objective function over the whole cycle at the start point and for the Stackelberg 

solution. Once again, it can be seen that the deviation of the transmission angle from its 

ideal angle (90°) has been improved significantly over the entire range of motion. 

A second variant for the problem when the leader objective function is a 

minimization of structural error Eq. (5.29) and the follower’s objective is a minimization 

of the deviation of transmission angle is also considered. The optimization problem is 

given as: 

Bi-Level Problem 2 

Level 1 (leader): Minimize   

          subject to Eqs. (5.37) and (5.38) 

     and            (5.59) 
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           Level 2 (follower): Minimize 2 2

max min( 90) ( 90)       

         subject to Eqs. (5.39)-(5.41) 

Since dimensions 
3 4,r r  subtend the transmission angle, control of at least one of 

these two variables is given to the follower and leader will have control over the rest of 

variables. Table 5.5 shows the results of the optimization algorithm for two different 

partitioning. The last column of the table is VPM corresponding to each partitioning. It 

can be noticed that where the leader and follower have control over 

51 2 4 6, , , , , , ,OA OAr r r x y r r   and 
3r  the VPM has the highest value. Table 5.6 shows the 

results of these two problems when they are considered individually. Fig. 5.10 shows the 

path function of the mechanism for the desired and generated function over a whole cycle 

when the problem considered by Stackelberg game. Fig. 5.11 shows the deviation of the 

transmission angle from 90° for the starting point and Stackelberg solution. 

The third scenario for the bi-level optimization problem would be the case when 

the leader is the minimization of path error Eq. (5.29) and the follower is minimizing the 

input the maximum input torque over a whole cycle of crank rotation 
ST . The 

optimization problem is given as: 

Bi-Level Problem 3 

Level 1 (leader): Minimize   

         subject to Eqs. (5.37) and (5.38) 

                     and   (5.60) 

Level 2 (follower): Minimize sT  

          subject to Eqs. (5.37)-(5.41) 
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 The control of 51 2 3 6, , , , , ,OA OAr r r x y r r has been given to the leader and the follower 

has the control over
4r  and  . Table 5.7 shows the results for this bi-level optimization 

problem. Fig. 5.12 shows the path generated by the mechanism over a whole cycle. Fig. 

5.13 shows the variation of input torque over a whole 360° cycle for the starting solution 

and the Stackelberg solution. It can be seen from Figs. 5.12 and 5.13 that a significant 

improvement in both the kinematic and dynamic performance measures is achieved 

simultaneously. 

5.3 Summary 

In this chapter, the flywheel design problem is modeled by a Stackelberg game. 

The concept of variable partitioning metric (VPM) in a Stackelberg game was 

considered. The VPM can be used to compare different variable partitioning cases when 

it was not clear which variables should be associated with leader’s objective function and 

which variables are used with the follower’s objective function. The solution procedure 

used sensitivity information from the follower problem for variable updating while 

solving the leader’s problem. 

In this chapter, an integrated approach to synthesizing high speed mechanisms for 

three kinematic and dynamic criteria was also studied. A multi-objective formulation was 

presented and the Stackelberg game approach was implemented to solve the bi level 

optimization problem. Three different bi-level game optimization problems were set up 

and solved numerically. For numerical solution, the sensitivity based approach was 

applied for approximating the rational reaction sets of the follower’s variables. The 

numerical examples showed that the proposed approach yields a significant improvement 
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in both the kinematic and dynamic performance measures simultaneously. The concept of 

partitioning the variables between leader and follower problem was discussed and a 

criteria, variable partitioning metric, was applied to compare and rank different variable 

partitionings.  
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Figure 5.1 General Shape of the Flywheel. 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Profile Shape of Flywheel for Follower and Leader Problem. 
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Figure 5.3 Flywheel Profile for Single Objective and Stackelberg Solutions. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Flywheel Profile for Cases 2, 3, 4. 
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Figure 5.5 Flywheel Profile for Cases 4, 5, 6. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 The Path Generating Four Bar Mechanism. 
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FBD of the Ground Link 

 

 

 

 

 

Figure 5.7 Free Body Diagrams of Four Bar Mechanism. 
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Figure 5.8 Input Torque Variation Over the Whole Cycle. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 Transmission Angle Deviation from Ideal Value Over a Whole Cycle. 
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Figure 5.10 Desired versus Generated Path. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11 Deviation of Transmission Angle from Ideal Value. 
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Figure 5.12 Desired Versus Generated Path. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13 Input Torque Variation over the Whole Cycle. 
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Table 5-1 Optimum Solutions for Single Objective Optimizations and the Stackelberg Solution 

 

Objective  

function 
0s  

1a  
2a  

3a  
1b  

2b  
3b  

KE 

Joules 

Manf.cost 

m 

Kinetic Energy 

(Leader) 

0.0906 -0.0824 0.0040 -0.0127 -0.0186 0.0045 -0.0064 61.95 10  1.6219 

Manufacturing cost  

(Follower) 

0.0106 0.0004 0.0001 -0.0001 0.0014 0.0010 0.0002 60.3535 10  0.0324 

Stackelberg 

Solution 

0.0417 -0.0015 -0.1020 -0.0004 0.0858 -0.0012 -0.0553 61.45 10  0.1675 
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Table 5-2 Optimum Solutions for Different Variable Partitions 

 

 

Case 
Leader 
Variables 

Follower 
Variables 0s  1a  2a  3a  1b  2b  3b  

Kinetic 
 

Energy 
 

Joules 

Manf. 

cost 

m 

Variable 
Partitioning 

Metric 

VPM 

1 0 2 3, ,s a b  1 3 1 2, , ,a a b b  0.0417 -0.0015 -0.1020 -0.0004 0.0858 -0.0012 -0.0553 61.45 10  0.1675 0.6240 

2 0 1 1, ,s a b  2 3 2 3, , ,a a b b  0.6221 -0.9667 0.0171 0.1482 -0.0227 -0.5165 0.0082 61.65 10  0.2480 0.6926 

3 0 1,s a  
2 3 1 2 3, , , ,a a b b b  0.7885 -1.2391 65.7 10  0.1945 10-5 -0.6685 75 10  61.53 10  0.3156 0.6027 

4 0 1 2, ,s a b  2 3 1 3, , ,a a b b  0.1171 -0.1153 0.0038 0.0152 0.0007 -0.0046 0.0010 61.85 10  0.2007 0.8320 

5 0 2 1, ,s a b  1 3 2 3, , ,a a b b  0.0532 -0.0235 -0.0953   0.0026 0.0735 -0.0116 -0.0423 61.51 10  0.1431 0.6735 

6 0 2 2, ,s a b
 1 3 1 3, , ,a a b b

 
-0.0446 0.1500 -0.0907 -0.0322 0.0846 0.1000 -0.0392 61.43 10  0.1492 0.6269 

 

 
1
0
5
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Table 5-3 Objective Values for Single Objective Optimization. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5-4 Stackelberg Solution for Bi-Level Problem 1. 

 

 

 

 

 

 

 

 

 

 

 

Objective 
function blf  

wlf  

Torque 

(
ST ) 

0.1094 5.1857 

Objective 
Function bff  wff  

 Deviation of 
Transmission 

angle ( ) 

233.62 1796 

Leader Variables 
Follower 
Variables 

leaderf  

ST  

followerf  

  

1 2

5 6

, , ,

, ,

OA OAr r x y

r r 
 

3 4,r r  0.796 804 
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Table 5-5 Stackelberg Solutions for Bi-Level Problem 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5-6 Optimum Values for Single Objective Optimizations. 

 

 

 

 

 

 

 

 

 

 

 

Leader 
Variables 

Follower 
Variables 

leaderf  

  

followerf  

  

VPM 

1 2

5 6

, , ,

, ,
OA OA

r r x y

r r 
 

3 4,r r  0.054 906.5 0.1017 

1 2 4

5 6

, , , ,

, ,
OA OA

r r r x y

r r 

 
3r  0.0129 1043.1 0.3052 

Objective function 
blf  

wlf  

Structural Error 

(  ) 

0.0046 0.0668 

Objective Function 
bff  wff  

 Deviation of 
Transmission angle 

( ) 
233.6 1481.3 
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Table 5-7 Stackelberg Solution for Bi-level Problem 3. 

 

 

 

 

 

 

 

 

 

Leader Variables 
Follower 
Variables 

leaderf  

  

followerf  

sT  

51 2 3 6
, , , , , ,

OA OA
r r r x y r r

 4 ,r   0.0191 0.163 



 

 

109 

Equation Chapter (Next) Section 1  

CHAPTER 6 

6. GAME BASED APPROACHES IN HIERARCHICAL AND 

DECENTRALIZED SYSTEMS  

This chapter presents application of game theory approach to solve two types of 

problem, hierarchical and decentralized bi-level multi-objective problem with multiple 

objective functions at the leader level and multiple players at the follower level. The 

sensitivity based approach is applied for numerical solutions. Two scenarios are studied 

in this chapter for modeling the decentralized bi-level multi-objective problem. The first 

scenario considers the cooperative game as an interaction between the players at upper 

(leader) level and the lower level (follower) individually. The interaction between the 

upper and lower level is considered as Stackelberg game. In the second scenario, the 

interaction in the lower level is modeled by Nash game. The sensitivity based method is 

used to provide an approximation to the rational reaction set (RRS) for each player. An 

alternate approach for generating the RRS based on design of experiments (DOE) 

combined with response surface methodology (RSM) is also explored. Two numerical 

examples are given to demonstrate the proposed algorithm for both scenarios. For the 

hierarchical approach, one numerical example is studied to show the application of the 

algorithm. For this example, there are three objective functions in three levels. The 

interaction between each level and its upper level is considered as a Stackelberg game. 

6.1 Introduction 

Bi-level decentralized decision-making problems with multiple decision makers at 

the upper and lower level frequently arise in manufacturing plants, logistic companies 

 

 



 

 

110 

and any hierarchical organization. Fig. 6.1 shows the structure of a bi-level decentralized 

organization. Hierarchical problems are another type of multi-level problem in which 

there are several levels and with a decision maker at each level. Fig. 6.2 presents the 

structure of a Hierarchical problem. 

This chapter applies sensitivity based approach to solve the hierarchical problem 

and decentralized bi-level problem. One numerical example for the hierarchical model 

and two test problems for decentralized bi-level are studied. This study shows that the 

sensitivity based approach for constructing the RRS is computationally more efficient 

than RSM-DOE techniques reported in the literature. 

6.2 Decentralized Bi-level Model 

Fig. 6.1 shows the structure of the decentralized bi-level system. Consider four 

players, 1 2, 3 and 4 with objective functions 1 1 2 3( , , )f x x x , 2 1 2 3( , , )f x x x , 3 1 2 3( , , )f x x x  and 

4 1 2 3( , , )f x x x  respectively. Assume that players 1 and 2 are in the same level and this level 

functions as a leader. Players 3 and 4 are in the same level and this level functions as the 

follower. The optimization problem for these 4 players is modeled as below: 

For player 1: 

Min  
 1 1 2 3

1

, ,

by varying

nf x x x x R

x


 

         subject to     (6.1) 

 1 1

1 2 3, , 0 1,2,...j gg x x x j n          

 

for player 2: 
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Min     
 2 1 2 3

1

, ,

by varying

nf x x x x R

x


 

            subject to  (6.2) 

 2 2

1 2 3, , 0 1,2,...j gg x x x j n   

 

for player 3: 

Min     
 3 1 2 3

2

, ,

by varying

nf x x x x R

x


 

            subject to  (6.3) 

 3 3

1 2 3, , 0 1,2,...j gg x x x j n   

 

for player 4: 

Min     
 4 1 2 3

3

, ,

by varying

nf x x x x R

x


          

            subject to  (6.4) 

 4 4

1 2 3, , 0 1,2,...j gg x x x j n   

For this problem, two scenarios can be considered. In the first scenario, the 

interaction between players 1, 2 and 3, 4 is considered as a cooperative game. Then, the 

interaction between levels 1 and 2 is considered as a Stackelberg game. The second 

scenario, assumes cooperative game between players 1 and 2, and Nash game between 

player 3 and 4. Then the Stackelberg game between level 1 and 2 is modeled and solved. 
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To capture the cooperative behavior between players 1 and 2, the bargaining 

function in Eq. (6.5) is used: 

1 1 2 2

1 21 2

( )( )

( )( )
w w

B
w wb b

f f f f
f

f f f f

 


 
 (6.5) 

where Bf  is bargaining function and
1f , 

2f  are the values of players 1 and 2 objective 

functions. 
1bf , 

2bf , 
1wf  and 

2wf denote best and worst values of players 1 and 2 objective 

functions, respectively. These values are obtained as follows. If the player 1 optimization 

problem with three variables,
1 2 3, ,x x x , is solved, then the optimum value of objective 

function for this problem is called 1bf . This is the best value player 1 can achieve. 

The player 1 optimization problem in Eq. (6.1) is a minimization problem. If it 

changed to a maximization problem and is solved by varying 
1 2 3, ,x x x , then the optimum 

value of objective function is called 1wf . Similarly, by solving the player 2 optimization 

problem in Eq. (6.2) by varying 1 2 3, ,x x x , the value of 2bf  can be obtained. If player 2 

optimization problem is changed to maximization problem, then the optimum value of 

objective function called 2wf  is obtained by varying 
1 2 3, ,x x x . 

To get the Nash solution and Stackelberg solution, the sensitivity based approach 

discussed on chapter 3 is applied. The flowchart shown in Fig. 3.2 is applied to get the 

Nash solution for player’s 3 and 4 problem, and then the flowchart shown in Fig 3.1 is 

implemented to find the Stackelberg solution between level 1 and 2. This algorithm is 

applied to two numerical examples.  
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6.3 Decentralized Bi-level Model Example 

6.3.1 Example 1 

To demonstrate the proposed algorithm procedure for solving a decentralized bi-

level optimization problem, two following examples are considered. In the first example, 

there are three objective functions in leader level, and there are two followers. Each 

follower has two objective functions. The mathematical model of this problem is as 

below: 

Level 1 

 

0

11 0 1 2 12 0 1 2 13 0 1 2
Min

          by varying 

2 2 , 2 3 , 3

x

f x x x f x x x f x x x        
 (6.6) 

Level 2: 

 

First Follower: 

            
 

1

21 0 1 2 22 0 1 2Min

by varying  

4 , 3 4

x

f x x x f x x x      
 (6.7) 

 Second Follower: 

 

            
 

2

31 0 1 2 32 0 2Min 3

by varying  

7 4 ,

x

f x x x f x x   
 (6.8) 

Subject to: 

       

0 1 2

0 1 2

0 1 2

0 1 2

2

0 1 2

3

1

1,

1

0.5,

, , 0

x x x

x x x

x x x

x x x

x

x x x

  

  

  

   




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Two scenarios discussed in section 6.3 are applied for this example. In the first 

scenario, the interaction between the objective functions in level 1 is considered as 

cooperative game and a bargaining function explained in Eq. (6.5) is applied for this 

level. Table 6.1 shows the best and worst values for objective functions 
11f  to 

31f . Eq. 

(6.9) shows the bargaining function for the players in level 1. 

     
1311 12

1

54 2

4 1 2 1 5 1B

ff f
f

   
   

   
   

 

     
   (6.9) 

In this scenario, the interaction between the followers 1 and 2 is also considered 

as cooperative game, and followers 1 and 2 construct a bargaining function. This function 

is shown as below: 

       
31 3221 22

2

8.5 21 3

1 2.5 3 3.5 8.5 0.5 2 0B

f ff f
f

    
    
    
    

  

      
  (6.10) 

where 
2B

f  is the bargaining function of level 2 (follower level). The worst and best 

values of the followers’ objective functions are obtained from Table 6.1. The new design 

optimization problem can be written as below: 

Level 1:             (6.11) 

0

1
Max

          by varying 

B

x

f
 

Level 2:             (6.12) 

1 2

2
Max

          by varying  ,

B

x x

f
 

Subject to:  
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0 1 2

0 1 2

0 1 2

0 1 2

2

0 1 2

3

1

1,

1

0.5,

, , 0

x x x

x x x

x x x

x x x

x

x x x

  

  

  

   





 

Then, the interaction between the level 1 and 2 would be a Stackelberg game. The 

objective function considered for level 2 would be 
2B

f  which is defined in Eq. (6.10). 

The sensitivity based approach explained in chapter 3 has been used in this problem to 

approximate the RRS for the level 2 problem. Table 6.2 shows the results for this 

scenario. These results are same as the results that Ibrahim (2009) reported in his paper.  

The other method which can be used to approximate the RRS of the bargaining 

functions of level 2 is applying the DOE-RSM method. An experiment was designed for 

the bargaining function of Level 2 and response surface method was applied on it. In this 

designed experiment, 
0x   goes from zero to 1.5 in steps of 0.1. For each value of 

0x , the 

optimization problem of level 2 shown in Eq. (6.12) can be solved to get the optimum 

solution for *
1

x  and *
2

x .  Then one can regress *
1

x  and *
2

x  over 
0x . The results are the 

RRS for *
1

x  and *
2

x  as function of 
0x . Eqs. (6.13) and (6.14) are the RRS for *

1
x  and *

2
x . 

*
1 0

0.2721* 0.2978x x     (6.13) 

*
2

0.5x    (6.14) 

These two equations show that how the optimum solutions of *
1

x  and *
2

x  are 

varying with 0x . If these functions are plugged in the leader’s problem shown in Eq. 

(6.11) the optimum solution for the leader would be *
0 0.2778x  . Then the optimum 



 

 

116 

solution for the follower would be *
1

0.22x   and *
2

0.5x  . If these results are compared 

with the results reported in the literature by Ibrahim (2009), it can be seen that there is a 

significant difference between the results. It means that the DOE-RSM method can not 

provide the optimum results for this problem. 

There is a second scenario which is also considered for this problem. In this 

scenario, followers 1 and 2 can construct their own bargaining functions as below: 

   
21 22

1

1 3

1 2.5 3 3.5B f

f f
f

  
  
  
  

 

   
  (6.15) 

   
31 32

2

8.5 2

8.5 0.5 2 0B f

f f
f

  
  
  
  

 

  
   (6.16) 

where 
1B f

f  and 
2B f

f  are the bargaining functions for followers 1 and 2 respectively. 

The interaction between the bargaining function of follower 1 and 2 would be 

considered as a Nash game. The interaction between level 1 and 2 is the Stackelberg 

game. Table 6.3 shows the results for this scenario. 

6.3.2 Example 2 

The second numerical example considers a decentralized bi-level optimization 

problem. In this example, there are two objective functions in the leader level, and two 

players are in the follower level. The leader and each follower have two objective 

functions. The mathematical model of this problem is given below: 

Level 1: 
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0

0 1 2 0 1 2
11 12

0 1 2 0 1 2

4

3 2 5

          

Min

by varying 

4 2 2 3
,

2 2

x

x x x x x x
f f

x x x x x x

  
      

    
 

         (6.17) 

            Level 2 : 

            Follower 1:    

1

0 1 2 0 1 2
21 22

0 1 2 0 1 2

2 1

3 2 1

          

Min

by varying 

3 2 2 7
,

5

x

x x x x x x
f f

x x x x x x

  
      

   
 

         (6.18) 

           Follower 2:  

2

0 1 2 0 1 2
31 32

0 1 2 0 1 2

4 4

3 6 10

          

Min

by varying 

2
,

10

x

x x x x x x
f f

x x x x x x

    
      

 
 

          (6.19) 

              Subject to         

       

0 1 2 0 1 2

0 1 2 0 1 2

0 1 2 0 2

0 1 2

2

1

5, 1

, 4

, 2 4

, , 0

x x x x x x

x x x x x x

x x x x x

x x x



  

 

     

  

  



               (6.20) 

Table 6.4 shows the best and worst values for objective functions when they are 

considered individually. 

The interaction between the objective functions of the followers are considered as 

cooperative function by forming the bargaining function explained in Eq. (6.5). Eq. 

(6.21) shows this bargaining function. 

     
31 3221 22

2

( 0.026) 1.1251.353 1

1.125 0.27271.353 0.5 1 1.18 0.026 0.75B

f ff f
f

    
    
    

    

   

      
  (6.21) 
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Also, the leader can form a bargaining function shown in Eq. (6.22) 

 
11 12

1

0.667 1.25

1.25 00.667 0.733B

f f
f

  
  
  

  

 

 
      (6.22) 

The new design optimization problem can be written as follows: 

Level 1: 

0

1
Max

          by varying 

B

x

f
      (6.23) 

Level 2: 

1 2

2
Max

          by varying  ,

B

x x

f
   (6.24) 

       Subject to         

       

0 1 2 0 1 2

0 1 2 0 1 2

0 1 2 0 2

0 1 2

2

1

5, 1

, 4

, 2 4

, , 0

x x x x x x

x x x x x x

x x x x x

x x x



  

 

     

  

  



        

The interaction between level 1 and 2 is Stackelberg game. Table 6.5 shows the 

results of this problem. 

6.4 Hierarchical Model 

Consider three players, 1, 2 and 3, who select strategies 1x , 2x  and 3x  

respectively, where 1

1 1

n
x X R  , 2

2 2

n
x X R   and 3

3 3

n
x X R  . Here 1X , 2X  and 

3X  are the set of all possible strategies each player can select. Let U  denote the set of 

strategies which are feasible for the three players. The objective functions  1 1 2 3, ,f x x x  , 
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 2 1 2 3, ,f x x x  and   3 1 2 3, ,f x x x represent the cost function for players 1, 2 and 3 

respectively. The hierarchical problem in three levels can be modeled as follows:  

Level 1:  

 1 1 2 3

1

Min   , ,

by varying

nf x x x x R

x


 

   subject to                                               (6.25) 

 1 1

1 2 3, , 0 1,2,...j gg x x x j n   

 

For level 2: 

 2 1 2 3

2

Min  , ,

by varying

nf x x x x R

x


 

   subject to           (6.26) 

 2 2

1 2 3, , 0 1,2,...j gg x x x j n   

 

For level 3 

 3 1 2 3

3

Min  , ,

by varying

nf x x x x R

x


 

  subject to             (6.27) 

 3 3

1 2 3, , 0 1,2,...j gg x x x j n   

To solve this problem, the first step is to obtain the RRS for player 3 which is 

given by the following equation. 

 3 3 1 2,Rx x x x    (6.28) 
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where 
3x  is the optimum solution of player 3 which is varying with 1 2,x x . Then this 

function is substituted in optimization problem of players 1 and 2 shown in Eqs. (6.25) 

and (6.26). The second step is getting the RRS for the player 2 which can be represented 

as: 

 2 2 1
Rx x x    (6.29) 

By substituting Eq. (6.29) in optimization problem of player 1 in Eq. (6.25), this 

optimization problem can be solved and the optimum solution for 
1x  can be obtained. By 

substitution of 
1x  in Eq. (6.29), the optimum solution of player 2 will be calculated (

2x ). 

To find the optimum solution of player 3, 
1x  and 

2x  is plugged in Eq. (6.28). The RRS 

shown in Eqs. (6.28) and (6.29) are obtained by sensitivity based approach discussed in 

chapter 3. This method is applied on a numerical example and is presented in next 

section. 

6.5 Hierarchical Model Example 

Consider a hierarchical problem with four levels. The player 1 in level one 

controls variables  1 2,x x x  and players 2, 3 and 4 control variables 

     1 11 12 2 21 22 3 31 32
, , , , ,y y y y y y y y y    respectively. A Stackelberg-Nash solution for 

this problem using sensitivity based approach is presented in chapter 4. Liu (1998) also 

solved this problem by using genetic algorithm. The problem is as follows: 
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 
     

22 2

11 12 21 22 31 32

1 1 2 3 2 2

1 2 1 2

1 2

1 2

3 5 10
Min , , ,

2 3

by varying 

subject to:

2 10

, 0

y y y y y y
f x y y y

x x x x

x

x x

x x

    


 

 



  (6.30) 

 

 

1

2 2
2 1 11 12

11 21 31 1

12 22 32 2

11 12

Min

by varying 

subject to:

1, 2 ,

y

f y y y

y y y x

y y y x

y y

 

  

  

 

   (6.31) 

 

2

11 12
3 2 21 22

21 22

21 22

Min

by varying 

subject to:

, 0 ,

y

y y
f y y y

y y

y y

   



  (6.32) 

2 2

31 21 32 22
4 3

31 32

3

31 32

31 32

( ) ( )
Min ( )

by varying 

subject to :

2 3 5

, 0

y y y y
f y

y y

y

y y

y y

 
 

 



 (6.33) 

This is a leader follower system with player 1 as the leader for the players 2, 3 and 

4. Also, player 2 is the leader for the players 3 and 4. Similarly, player 3 is the leader for 

the player 4. The solution procedure starts from player 4. Section 6.4 explained the steps 
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should be done to solve this problem with sensitivity based approach. The first column of 

the Table 6.6 shows the results of this problem. The same example by considering non-

cooperative game (Nash) between players 2, 3 and 4 and Stackelberg between level 1, 

player 1, and level 2 was modeled and solved in section 4.1.1. The second column of 

Table 6.6 shows the results for this Stackelberg-Nash problem. 
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Figure 6.1 Decentralized Systems. 

 

 

 

 

 

 

 

 

 

Figure 6.2 Hierarchical System with Three Levels.

Level 1 
1f  

 

Level 2 
4f  Level 2  3f  

Level 1 
2f  

 

Level 1 1 1 2 3( , , )f x x x  

 

Level 2 2 1 2 3( , , )f x x x  

Level 3  3 1 2 3( , , )f x x x  
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Table 6-1 The Best and Worst Values of Objective Functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6-2 Optimum Solution for Cooperative-Stackelberg Scenario. 

 

 

 

 

 

 

 

Table 6-3 Optimum Solution for Nash-Stackelberg Scenario. 

 

 

 

 

 

 

 

 

 11f  
12f  

13f  
21f  

22f  
31f  

32f  

Min 
ijf  

(Best) 

-1 -1 -1 -2.5 -3.5 -0.5 0 

Max 
ijf  

(Worst) 

4 2 5 1 3 8.5 2 

*

1x  *

2x  *

3x  *

11f  
*

12f  
*

13f  
*

21f  
*

22f  
*

31f  
*

32f  

0 0.5 0.5 -1 -1 -1 -2.5 -3.5 -0.5 0 

*

1x  *

2x  *

3x  *

11f  
*

12f  
*

13f  
*

21f  
*

22f  
*

31f  
*

32f  

0.647 0.128 0.223 1.612 0.753 2.036 -0.373 -1.155 4.021 0.870 
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Table 6-4 The Best and Worst Values of Objective Functions. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6-5 Optimum Solution for Cooperative-Stackelberg Scenario. 

 

 

 

 

 

 

 

 11f  
12f  

21f  
22f  

31f  
32f  

Min 
ijf  

(Best) 

-0.733 0 -0.5 -1.18 -0.75 0.2727 

Max 
ijf  

(Worst) 

0.667 1.25 1.353 1 -0.026 1.125 

*

1x  *

2x  *

3x  *

11f  
*

12f  
*

21f  
*

22f  
*

31f  
*

32f  

1 1 0 -0.571 0.5 0.2 -1 -0.4 0.5 
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Table 6-6 Hierarchical Model Solution. 

 

 Hierarchical Solution Stackelberg-Nash 

1f  1.5831 1.510 

2f  5 10.821 

3f  5.335 6.061 

4f  0.8736 0.483 

 1 2,x x x    (4.3007,2.8497) (5.379,2.310) 

 1 11 12,y y y    (1.000,2.000) (2.612,2.000) 

 2 21 22,y y y    (2.0068,1.4142) (1.616,1.414) 

 * * *

3 31 32,y y y  (0.8736,1.0843) (1.149,0.900) 
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CHAPTER 7 

7. CONCLUSIONS 

The overall objectives of this dissertation can be classified into three categories: 

(1) Modeling and solving the multi-objective design optimization problems with 

Stackelberg game. Towards this end, a new computational procedure utilizing the 

sensitivity of follower’s solution to leader’s choice is presented. (2) Non cooperative 

game, Nash game, can be used for modeling a multi-objective optimization problem. A 

new algorithm has been developed to find Nash solutions numerically. (3) Developing 

the numerical algorithm for solving of decentralized bi-level multi-objective optimization 

problems and hierarchical systems. 

7.1 Stackelberg Game 

The mathematical model of a bi-level optimization problem modeled as a 

Stackelberg game is developed. Solving a Stackelberg problem is quite different than 

modeling the problem with Stackelberg game. The available literature usually discusses 

the modeling the design optimization problems with Stackelberg game and less 

consideration has been given to numerical approaches. This research addresses the 

formulation and solution of a bi-level optimization problem using the Stackelberg 

approach. A computational procedure utilizing sensitivity of follower’s solution to 

leader’s choices is also presented to solve the bi-level optimization problem numerically. 

When the follower’s problem is solved, optimum values of follower’s variables are 

determined for given values of leader variables, which are treated as fixed parameter 

values. The optimum values for leader’s variables are updated during each iteration. This 

requires an updating follower’s optimum solution while the leader’s variables are 
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changing. The main contribution of this thesis is developing a new approach based on 

sensitivity information to feed back into the leader problem the variable updating 

information coming up from the follower problem. The most challenging part in solving a 

Stackelberg optimization problem is finding the rational reaction set for the follower. 

Once the RRS of the follower is known, the leader’s problem can be solved. The 

available method in the literature to approximate the RRS is applying DOE-RSM 

techniques. This thesis introduced a new technique for approximation the RRS of the 

follower. 

The variables in the optimization problem are partitioned into two groups, 

variables associated with the leader and variables associated with the follower. For some 

Stackelberg problems, partitioning of variables between the leader and the follower is 

obvious, but for other problems such as the flywheel design problem considered herein, 

this choice is not clear. For problems where it is not obvious which variables should be 

associated with which objective function (leader or follower), an analytical criterion was 

proposed to compare various partitioning and rank them. 

Two mechanical design problems including flywheel design and design of high 

speed 4-bar mechanism were modeled by the Stackelberg game. The sensitivity based 

approach was applied to solve the problems numerically. For the flywheel problem, two 

types of objective functions including minimizing manufacturing cost and maximizing 

the absorbed kinetic energy were considered as two players in Stackelberg game. The 

partitioning issue was discussed in this problem and the best partition was selected. For 

high speed mechanism, the dynamic and kinematic criteria were considered as objective 

functions. Three different bi-level game optimization problems were set up and 
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numerically solved. The numerical results show that the Stackelberg game approach 

significantly improves both the kinematic and dynamic performance criteria 

simultaneously. 

7.2 Non-Cooperative (Nash) Game 

The sensitivity based approach can be applied to determine Nash solution(s) in 

multiobjective problems modeled as a non-cooperative game. This approach can provide 

an approximation to the rational reaction set (RRS) for each player. An intersection of 

these sets yields the Nash solution for the game. The other approach which exists in the 

literature to approximate the RRS is applying design of experiment (DOE) combined 

with response surface method (RSM). This thesis explored this method in some 

numerical examples and results were compared with sensitivity based approach. Minitab 

16 was used to design the experiments (DOE) and apply the response surface method. 

The DOE-RSM method was compared with sensitivity based approach on three 

example problems. It was seen that the proposed sensitivity based approach requires less 

computational effort than a RSM-DOE approach. The pressure vessel problem was tested 

for this purpose. The results of pressure vessel problem also showed that the sensitivity 

based approach is less prone to numerical errors than a RSM-DOE approach. The Nash 

solution in the pressure vessel problem was not a unique solution. The sensitivity based 

algorithm could find all Nash solutions, but RSM-DOE method could not produce all 

Nash solutions. For the two-bar truss problem, the closed-form functions of RRS for the 

followers were non linear functions. The sensitivity based approach was able to 

approximate these non linear RRS correctly, although the RSM-DOE method was not 
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successful. Finally for one bi-level test problem (Liu’s problem) the proposed approach 

in this research could improve the Nash solution that was reported in the literature. 

7.3 Hierarchical and Decentralized Systems 

There are four versions of the Stackelberg game, namely: (1) One objective 

function in leader and one in follower, (2) One leader and several followers arranged 

such that there is one follower at each level. This is a Hierarchical System. (3) One leader 

and several followers with all followers on the same level. This represents a decentralized 

system. (4) Several leaders and several followers. The sensitivity based approach was 

applied for Hierarchical system. For the decentralized system, the interaction between the 

followers was considered as Nash game and the interaction between the two levels was 

Stackelberg game. For systems with several leaders and followers, two scenarios were 

discussed. The first scenario considered the cooperative game between players of 

follower and the leader level individually, and then a Stackelberg game was set up 

between the two levels. The second scenario assumed a Nash game interaction between 

the players in the follower level and cooperative game in leader level, and then the 

Stackelberg game was applied between two levels. One numerical example for each 

scenario was tested and the results were checked with results reported in the literature. 

7.4 Scope for Future Work 

There was a big assumption in considering all types of models discussed, 

developed and implemented in this research. It was assumed that all the mathematical 

models, variables and parameters were deterministic. 

The real world is full of uncertainty and this uncertainty needs to be considered in 

the modeling of the engineering problems. Future work could consider the uncertainty 
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concept in modeling of multi-objective optimization problems. New numerical methods 

would be needed to solve these probabilistic problems. 

The DOE-RSM method can approximate RRS for the follower’s problem. Based 

on the experiment designed for the follower’s problem, it provides a fixed function as an 

approximation for RRS. The pattern of this function is not getting updated while the 

leader’s problem is doing iterations. This is a reason that DOE-RSM method in some 

problems can not converge to a correct solution. Updating the RRS can improve the 

efficiency of this method. One approach can be applying moving least square method to 

capture updating effect. To apply this method, it needs to provide more experiments. One 

technique can be adding a level to the experiment. For example if there is an experiment 

with two levels it can be expanded to an experiment with three levels but it increases the 

number of experiments from 2n  to 3n . Other efficient approaches can be considered to 

provide desired number of experiments to the problem so that model updating can be 

done.   
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