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ABSTRACT 
SEASONALITY OF CONCEPTIONS UNDER VARYING CONDITIONS IN A 

RHESUS MACAQUE BREEDING COLONY 
 

by 

Ryan D.P. Dunk 

 

The University of Wisconsin-Milwaukee, 2013 
Under the Supervision of Andrew J. Petto, Ph.D 

 

Rhesus macaques (Macaca mulatta) are well documented as seasonal breeders.  Despite 

this, little is known about what factors influence seasonal reproduction in rhesus.  It has 

been proposed that rhesus are “relaxed income breeders” (Brockman and van Schaik, 

2005), which means they respond to changes in photoperiod but endogenous cues can 

allow deviations from photoperiod-timed seasonality.  This study presents the results of a 

natural experiment on the influence of different housing conditions (featuring different 

levels of environmental exposure) on the seasonal pattern of reproduction in rhesus.  

Once the number of attempts was controlled for, rhesus did not exhibit a seasonal 

distribution in their conceptions regardless of their level of exposure to environmental 

cues.  This indicates that no conceptual model as of yet has adequately assessed the 

variation in seasonal reproduction in rhesus macaques. 
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Introduction 

While human reproduction in developed nations generally occurs year-round, this is not 

common throughout the animal kingdom.  Instead, we find that many species of animals, 

particularly those residing in temperate regions, show a distinctly seasonal pattern of 

conceptions and births.  In fact, this is precisely what evolutionary theory predicts: where 

seasonal variation in availability of resources necessary for survival and reproduction 

exists, selection should act in a way to minimize resource use in lean times and schedule 

costly reproductive demands in such a way that they coincide with times of relative 

abundance.   

 There are three primary ways in which this reproductive resource optimization is 

thought to be accomplished, and these comprise what is called the “income-capital 

continuum model” (Brockman and van Schaik, 2005).  The first is income breeding, 

whereby females use current available resources to invest in reproduction (Stearns, 

1989).  The opposite of this is capital breeding, in which females store energy for future 

reproductive effort (Stearns, 1989).  Intermediate between strict income breeding (income 

breeding as described above) and capital breeding is relaxed income breeding (Brockman 

and van Schaik, 2005).   

 Strict income breeders, then, have a selective pressure to time their most 

energetically demanding reproductive efforts such that they coincide with the time of 

highest resource availability.  In smaller organisms where infant survival is more 

advantageous than maternal survival, this time corresponds to immediately after weaning.  

In larger and longer-lived organisms, however, maternal survival is more advantageous, 

and the time of greatest resource stress for her is mid-to-late lactation (Janson and 
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Verdolin, 2005).  Because rhesus macaques are long-lived, large-bodied, iteroparous 

organisms, the case of maternal survival will be primarily considered here, following 

Brockman and van Schaik (2005).  We would thus expect income breeders to respond 

primarily to exogenous cues that predict with regularity the oncoming period of resource 

abundance so as to time their reproductive efforts in a way that infants are nursing during 

times of relatively abundant resources.   

 Capital breeders, on the other hand, are able to store resources during the times of 

relative resource abundance, begin reproduction at that time, and use stored reserves for 

energy while nurturing offspring.  We should thus expect capital breeders to respond to 

endogenous cues such as fat amount or another measure of body condition.  These two 

extremes form a continuum of responses between them, the approximate midpoint of 

which may be thought of as relaxed income breeding: a condition where exogenous cues 

are used as a primary method of timing reproductive output, but endogenous cues can 

either fine-tune or override the general time set by the exogenous cues.  That is, females 

in superior condition can reproduce even in times outside of the conception window set 

for them as income breeders (Brockman and van Schaik, 2005). 

 It is worth noting here that Brockman and van Schaik’s model was developed 

with primates in mind; in many other mammals, gestation periods are much shorter, and 

mating occurring at the beginning of a resource flush may produce young well before the 

resources are gone.  Such an opportunistic breeding style would look similar to capital 

breeding.  Further, with the short life spans that accompany this shortened gestation time, 

it may be advantageous to reproduce if possible regardless of conditions, as death may 

otherwise occur before reproduction.   

  



3 

 When comparing Peromyscus (deer mice), lagomorphs (rabbits and hares), and 

Odocoileus (deer), Bronson and Heideman (1994) found that in all groups seasonality of 

reproduction decreased as latitude decreased, which is consistent with a decrease in the 

seasonality of available food.  However, they further found that each time body size 

increased (from mice to lagomorphs and again from lagomorphs to deer), seasonality 

persisted at relatively lower latitudes.  They ascribed this to a change in breeding 

opportunism: the smaller species were quicker to begin year-round breeding even when 

considerable seasonal changes in food availability still existed, as they have a much 

smaller window of opportunity (total, not seasonally) for breeding time.  For larger-

bodied organisms such as the deer, however, seasonal breeding persisted for a much 

larger range of latitude; Odocoileus exhibited year-round breeding only under 10 degrees 

north.  Thus, for deer, the advantage of delaying reproduction such that the most 

energetically costly parts of reproduction occur during the time of greatest resources is 

greater than the advantage of such a pattern in mice. 

 For income breeders, both strict and relaxed, there must exist a cue that sets in 

motion physiological changes leading to the reactivation of reproductive behaviors.  

Variability between years in most environmental variables could lead to erroneous 

cueing.  It is assumed that this is the reason that photoperiod is generally regarded as the 

proximate variable responsible for seasonal reproduction.  Photoperiod varies predictably 

throughout the year and has extremely little variation between years.  This circannual 

variation in photoperiod is absent on the equator, small in the tropics, but is considered to 

be of sufficient magnitude to provide a reliable cue in subtropical and, especially, 

temperate latitudes.  Photoperiod is responsible for reproductive cueing in birds (Dawson 
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et al., 2001), the Syrian hamster (Mesocircetus auratus), the white-footed mouse 

(Peromysucs leucopus), the brown hare (Lepus europaeus), the domestic sheep, and 

many more (Bronson and Heideman, 1994). 

 In tropical regions, where photoperiod varies little throughout the year, 

seasonality is less well studied.  While it is perhaps rarer, seasonal breeding does occur in 

the tropics.  Many regions in the tropics have a very seasonal pattern of rainfall that 

creates seasonal variation in food quality and availability (Bronson and Heideman, 1994).  

It is unclear, however, whether rainfall serves as a zeitgeber, controlling the pattern of 

reproduction by serving as a cue, or if individuals tend to respond to seasonal fluctuations 

in resources directly. 

 It is well recognized that seasonal reproduction is the norm rather than the 

exception in primates (Lancaster and Lee, 1965; Lindburg, 1987; Janson and Verdolin, 

2005); seasonality in primate reproduction has been found in nearly all species studied 

outside the tropics, and many within (Lindburg, 1987). Lancaster and Lee (1965) were 

the first to show convincingly that primates were seasonal; they also introduced the 

concept of varying amounts of seasonality.  In their work, they consider a birth season as 

a pattern wherein births are concentrated in a discrete period with no births occurring in 

other months.  A birth peak, on the other hand, is a period with a higher proportion of 

births, but births can and do occur year-round.  These terms will be adopted in this thesis, 

but the overarching term seasonality has been and will continue to be used to mean a 

general condition that may include either a birth season or a birth peak, in agreement with 

Lindburg (1987).   
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 To help determine the factors leading to reproductive seasonality among primates, 

Janson and Verdolin (2005) conducted an ANCOVA and multiple regression analyses.  

They found seasonality in births to be significantly and distinctly explained by latitude 

squared (which they used instead of latitude to account for an insignificant variation in 

seasonality in latitudes below 15°), the natural log of body mass, diet, continent, and the 

seasonality of the main item in the diet while holding other variables constant.  They also 

found a significant correlation between mean birth date and mean date of peak food 

availability.  Thus, their findings support the model of seasonality responding to both 

proximate and ultimate causal variables for primates. 

  

 Of all the non-human primates, none has been as extensively studied as the rhesus 

macaque (Macaca mulatta).  Lindburg (1987) described rhesus as the species most 

prominently featured in discussions on seasonality in primates; however, while much is 

known about rhesus behavior, reproductive biology, and endocrinology, seasonality in 

rhesus reproduction is poorly understood.  This is not, however, due to a lack of research 

effort.  Rather, the many studies on the subject seem to reach little consensus on how 

seasonal rhesus are, and what drives that seasonality. 

 Rhesus macaques (Macaca mulatta) have a seasonal pattern of reproduction in 

their natural range (Heape, 1897; Hingston, 1920; Carpenter, 1942; Prakash, 1958, 1962; 

Southwick et al., 1961; Ghosh and Sengupta, 1992; Wang et al., 1996; Tian et al., 2013), 

in free-ranging research colonies located in Puerto Rico (Altmann, 1962; Conaway and 

Koford, 1964; Drickamer, 1974; González-Martínez, 2004; Hoffman and Maestripieri, 

2012; Koford, 1965, 1966; Lindburg, 1971; Rawlins and Kessler, 1985; Vandenbergh 
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and Vessey, 1968), the Florida Keys (Lehman et al., 1994; Johnson and Kapsalis, 1995), 

and Brazil (Coimbra-Filho and Maia, 1977), in outdoor enclosures in Cambridge, 

England (Rowell, 1963) and the states of Georgia (Vandenbergh, 1973; Herndon, 1983; 

Ruiz de Elvira et al., 1983; Bernstein, 1993) and Kentucky and Nebraska (Vandenbergh, 

1973), in indoor enclosures exposed to natural light (Birkner, 1970), and in zoos in both 

hemispheres (Heape, 1897; Hartman, 1931; Zuckerman, 1931; Jarvis and Morris, 1962; 

Brand, 1963; Bielert and Vandenbergh, 1981; Gomes and Bicca-Marques, 2003).  While 

variable among sites, the pattern is generally characterized by a period of conceptions in 

the fall and winter months, with a subsequent distribution of births occurring in the spring 

and summer.  In laboratory breeding populations with controlled temperature and 

(usually) 12:12 hour light:dark patterns the occurrence of seasonality is more variable; 

some researchers found no evidence for seasonality (Ponce de Lugo, 1964; Eckstein and 

Kelly, 1966), but most did (Hartman, 1931; Valerio et al., 1969a, 1969b; Riesen et al., 

1971; Vandenbergh, 1973; Hutz et al., 1985), albeit with a lesser intensity compared to 

outdoor colonies. 

 Researchers have proposed several variables that might serve as the proximate 

causation of seasonality in rhesus.  Daylight was the first zeitgeber proposed to be 

controlling the seasonal reproductive pattern in rhesus macaques; a six month difference 

in annual patterns (corresponding to the same season) between northern and southern 

hemisphere rhesus colonies (Hartman, 1931; Brand, 1963; Bielert and Vandenbergh, 

1981) certainly lends some credence to this explanation.  However, daylight alone cannot 

sufficiently explain the seasonal pattern seen.   
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 As previously mentioned, laboratory animals raised in a year-round 12-hour 

daylight environment still showed some seasonality of reproduction; further, 

experimental manipulation of light intervals to long-day (20 hr light) and short-day (4 hr 

light) patterns did not significantly change ovulatory patterns when compared to 

individuals in a 12-hr light pattern (Wehrenberg and Dyrenfurth, 1983), although others 

have argued it is not the absolute period of light but rather the shortening of daylength 

that rhesus respond to.  Furthermore, multiple colonies at similar latitudes in Puerto Rico 

differ significantly in their annual reproductive fluctuations (Altmann, 1962; Conaway 

and Koford, 1964; Koford, 1965, 1966; Vandenbergh and Vessey, 1968; Drickamer, 

1974; Rawlins and Kessler, 1985; González-Martínez, 2004).   

 These results led Vandenbergh and Vessey (1968), and later Rawlins and Kessler 

(1985), to propose a model of rhesus reproductive seasonality that cites the onset of the 

rainy season as the proximate environmental cue responsible for reproductive seasonality, 

with daylight playing a more relaxed role, merely setting the general time that the 

breeding season may occur.  Rawlins and Kessler (1985) found a strong and highly 

significant correlation between the median birth or conception date and the onset of the 

rainy season when tested at Cayo Santiago, Puerto Rico and noted that their correlation 

matched published information on reproductive seasonality at the La Parguera, Puerto 

Rico colony as well (which is where Vandenbergh and Vessey (1968) had collected data).   

 However, Lehman et al. (1994) found no correlation between the onset of the 

rainy season and the seasonality of reproduction for two rhesus colonies in the Florida 

Keys, despite similarities in latitude between the Puerto Rican colonies and the Keys 

(although Johnson and Kapsalis (1995) dispute Lehman et al.’s (1994) data as being 
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based on incomplete records).  Thus, while specific environmental variables are difficult 

to ascertain, the general consensus is that daylight sets a wide range of potential times for 

a reproductive season, and other environmental conditions play a more proximal role in 

the timing of rhesus reproduction.  This would make rhesus relaxed income breeders, and 

indeed that is precisely how Brockman and van Schaik (2005) classified them. 

 

 Despite the large quantity of data collected on rhesus reproduction, few data exist 

that specifically compare reproductive seasonality in differing environments directly.  

Herndon and colleagues (1985) did test for and find a change in breeding seasonality in 

individuals moved from an indoor to an outdoor enclosure.  Unfortunately, their study 

had a treatment group of only five females and did not compare individuals pre- and post-

transfer.  Herndon et al.’s (1985) findings suggest that a study with a large sample size 

and varying levels of environmental exposure would be useful in assessing the level of 

disruption of seasonal breeding patterns in indoor-housed rhesus.  Such a study could also 

offer useful insights into the environmental mechanisms that help regulate such a pattern 

and look for potential seasonal variations in attempt-corrected conceptions across 

treatments.  It is the aim of this study to do just that. 
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Materials and Methods 

 Rhesus monkeys at the New England Regional Primate Research Center 

(NERPRC: at the time of data collection, this facility was named as above; in 2002, the 

name was changed to the New England National Primate Research Center) used in this 

study were housed in three different environments in the course of normal breeding and 

husbandry conditions.  Two groups were involved in timed mating programs with limited 

access to males: the first was housed indoors in individual cages with a 12h:12h 

light/dark cycle and with controlled temperature and humidity (hereafter referred to as the 

“indoor” treatment).   

 The second group in the timed mating program was housed in group enclosures 

containing 4 or 5 females per group and consisted primarily of individuals moved from 

the indoor treatment.  Each enclosure had one wire window, except for corner cages 

which had two.  These windows allowed in sunlight, fresh air (during the non-winter 

months), and other environmental influences as well.  During cold or inclement weather, 

these windows were covered by a translucent plastic shutter.  Group enclosures were 

heated during winter months, but humidity was not controlled during any season.  This 

treatment will be called the “exposed” treatment.   

 The third environmental condition consisted of multifemale rhesus groups living 

with one male in an outdoor/indoor facility.  The outdoor part of these facilities was 

covered by a roof, but featured chain-link fencing on three sides of the enclosure (the 

other side was the wall of the indoor portion) and was thus exposed to open air except in 

winter, when translucent plastic panels were used for shelter.  This condition will be 

referred to as the “outdoor” treatment.  These three treatments exhibit a range of exposure 
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to both mate access and environmental conditions that form a natural experiment on the 

importance of environmental variables on the seasonality of rhesus reproduction. 

 Data exist on the indoor treatment from two different time periods.  The first is 

census data of births from January 1970 through December 1983, which includes, among 

other things, information on the sire and date of parturition.  The second data set for the 

indoor treatment contains detailed records beginning in the breeding season from July 

1983 through June 1984 (the “84” breeding season) and extending for four years through 

June 1987.  These data include details on sire, date of parturition, date of conception, and 

the date and potential sire of breeding attempts that did not result in a conception.  The 

detailed and the census data sets, as defined above, do not overlap.  Detailed records as 

described above, including mating attempts not resulting in a conception, exist for the 

exposed treatment for only one breeding season, from June 1989 through May 1990.  

Data for the outdoor treatment exist as census data (as described above) from January 

1979 through December 1990.   

 For the two census data sets, conceptions were estimated by subtracting 168 days 

from date of birth.  This number was chosen because it was the middle value in a range of 

average pregnancy duration given by Johnson et al. (1989) for NERPRC, was the same 

value used by Van Horn (1980), and agrees with the average found by van Wagenen et al. 

(1965), though Silk et al. (1993) found an average of 166.5 days in a more recent study 

with a larger sample size.  Thus, four data sets exist comprising three different 

treatments: indoor detailed, indoor census, exposed detailed, and outdoor census.  A 

summary of the treatments and their differing methodologies is given in Table 1. 
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Table 1. Summary of treatments. 
 Exposure 

to Natural 
Light 

Exposure to 
Fresh Air 

and Ambient 
Temperature 

Exposure to 
Conspecifics 

Conception 
Date 

Records 

Indoor 
Detailed 

None None Single caged, 
Timed mating 

Known 
within 1-5 

days 

July 1983 to 
June 1987 

Indoor 
Census 

None None Single caged, 
Timed mating 

Estimated 
from births 

January 1970 
to December 

1983 
Exposed 
Detailed 

Total Sheltered 
during winter 

Groups of 4-5 
females, 

Timed mating 

Known 
within 1-5 

days 

June 1989 to 
May 1990 

Outdoor 
Census 

Total Sheltered 
during winter 

One male 
with 4-5 
females 

Estimated 
from births 

January 1979 
to December 

1990 
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 All monkeys were served Monkey Chow or a similar bulk food product 2 cups per 

animal, twice daily (groups were fed in a common hopper and thus individual 

consumption may have differed from the 2 cup allotment).  Fruit, cracked corn, and 

sunflower seeds were added a few times weekly as supplement.  In the indoor and 

exposed treatments, females underwent a daily vaginal swab to detect onset of menses 

and were placed in isolation with a compatible male from roughly the 11th through the 

15th day of their cycles.  Females who became pregnant usually delivered through 

Caesarian section, though live births did occur, as well as stillbirths.  Infants were cared 

for in a nursery to prevent lactational amenorrhea in their mothers.  All infants born were 

assigned a unique identification number, and birth date and sire were recorded.  

Additional details about animal husbandry for the NERPRC can be found in Johnson et 

al. (1986, 1989) and Toloczko McIntyre and Petto (1993). 

 

Statistical Tests 

Conceptions 

 A preliminary analysis of the conception data revealed that while conceptions 

occurred throughout the year, they were concentrated in the fall and winter.  This 

presented a problem of statistical analysis because a standard calendar year runs from 

January through December.  A good portion of the winter season’s conceptions occurred 

in January, and using a standard January-December year would split one season’s 

conceptions into two years’ data.  Standard linear statistical analyses (such as an 

ANOVA) of the data would thus be flawed because the data would form a bimodal 

distribution, with the average being pulled toward summer because of the January 
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conceptions.  Thus, two different methods, linear and circular, for dealing with this 

problem were adopted, and for all tests regarding conceptions, the data was subjected to 

both linear and circular analysis.   

 For linear analysis, instead of a break point of December 31– January 1, a break 

point of June 30– July 1 was adopted.  This coincided with the general time of fewest 

conceptions, and also represented the exact middle of the year, both in conventional 12-

month form and in day of year (365 ∕2 = 182.5, rounded to 183, which is July 1).  The 

resulting distributions appeared normal or semi-normal, and thus linear statistics were 

carried out on the conceptions with day-of-year days ranging from 183 to 548.   

 While linear statistical tests are more familiar, more comparable, conceptually 

simpler, and have a greater amount of mathematical research behind them, conception 

data occur in a cyclical pattern throughout the year.  Rather than split the year at all, 

circular statistics is a branch of statistics that allows data occurring in a continuous 

circular fashion (time of day, compass orientation, or day of year as examples) to be 

analyzed without the need for any arbitrary break point.  To conduct circular statistics, 

conception dates were converted to angular measurements using the following formula: a 

= (360° * X) / k, where X is the unmodified day of year and k is 365 days.  In this thesis, 

linear tests will serve as the primary method of statistical analysis and circular analogs 

will serve as secondary support of the findings.  Unless otherwise stated, all linear 

statistical tests were carried out in Systat, and all circular statistical tests were carried out 

manually, using Excel for computational efficiency and using Systat to assess the 

significance of the test statistics. 
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 The first hypotheses of interest were whether conceptions in the four treatment 

groups were seasonally distributed throughout the year.  This was tested linearly using a 

one-sample Kolmogorov-Smirnov test against a uniform (183,548) distribution.  Note the 

minimum and maximum dates correspond to the linearly modified days-of-year described 

above.  The circular analog chosen was the Rayleigh test for uniformity (Fisher, 1993; 

Zar, 1999), which tests whether the mean vector ρ is significantly different from zero.  

The mean vector ρ (and its sample statistic r) is a measure of dispersion around the circle 

which ranges from 0 (data are uniformly distributed around the circle or oppositely 

bimodal) to 1 (data all occur on the same point). 

 Next, the main hypothesis of interest regarding conceptions was tested: whether 

the treatments differed from one another in the timing of their mean conceptions (i.e., 

their breeding peaks).  For the standard linear test (a one-way ANOVA), a priori tests 

were conducted to determine if a significant difference existed between: a) the treatments 

exposed to any environmental condition and those exposed to none (exposed detailed and 

outdoor census vs. indoor detailed and indoor census; note this also divides the 

individuals exposed to group living from the individuals caged singly), b) the two indoor 

treatments (indoor census vs. indoor detailed), which would indicate if the methodology 

of estimating conception dates from census birth dates is flawed, and c) the exposed 

detailed and outdoor group treatment, which differed both in amount of environmental 

exposure and access to males.  Post-hoc pairwise tests between all treatments were 

conducted using Tukey’s honestly significant difference method.   

 For the circular analog of the one-way ANOVA, the Watson-Williams test was 

used (Zar, 1999); it is also referred to as an approximate ANOVA (Jammalamadaka and 
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SenGupta, 2001).  Post-hoc pairwise tests were conducted via the Watson-Williams test 

as well; however, when multiple tests are applied to the same family of data, it increases 

the chance of a type I error (incorrect rejection of null hypothesis) occurring.  In the 

linear tests, Tukey’s HSD method controls this; in the circular analog, p-values for the 

multiple pairwise tests were adjusted using the Holm-Šidàk correction (Abdi, 2010) as it 

is computationally simpler and at least as stringent (likely more so) than Tukey’s method. 

 The final tests on the conception data were conducted to determine if the 

treatments differed in the spread of conceptions throughout the year.  For the linear data, 

Levene’s test for homogeneity of variances (Sokal and Rohlf, 2005) was used.  The 

closest circular analog available is the test of homogeneity of circular distribution factor 

κ.  While κ is not strictly analogous to variance, it does give a measure of the spread of 

the data, and is the best test available for circular data to approximate a test of 

heteroscedasticity besides that already inherent in ρ. 

 

Paired conceptions 

 In addition to the above tests which included all individuals, a subset of the data 

was examined that included individuals who had recorded detailed conceptions both 

indoors and exposed (n=52).  Differences in seasonality were measured linearly by a 

repeated-measures ANOVA of the mean indoor conception date versus the mean exposed 

conception date.  Instances in which only one conception occurred under a treatment 

(which was especially common for the exposed treatment) had that singular value used as 

the mean.  These values were also converted to angular measurements and tested 

circularly using the Hotelling test for paired samples of angles (Zar, 1999). 
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Attempt-corrected conceptions 

 For two treatments, the indoor detailed and exposed detailed, detailed records 

(hence the name) exist not only for the successful pregnancies, but also for both 

recognizable conceptions terminated before birth and mate-pairing attempts that did not 

result in a recognized conception.  This allows for the conception data considered 

previously to be corrected for number of mating attempts.  This is useful, because 

although attempts were conducted with the same protocol throughout the year, 

differences exist in the number of attempts, and conceptions were highly correlated with 

the number of attempts.  These data were used as an extension of the conception data to 

determine whether the probability of conceiving changed seasonally in the same manner 

as the actual conceptions; it can be seen that this then verifies if seasonal changes in 

conceptions are actually due to biologic changes or merely an artifact of sampling 

intensity (i.e., mating attempts), and is similar in theory to fecundability, a measure used 

in demography (Bongaarts, 1975; Biggers, 1988). The test for homogeneity of slopes, a 

necessary prerequisite to ANCOVA, had to be conducted in SPSS, as Systat treated the 

months×exposure interaction term and the months×exposure×attempts three-way 

interaction terms as using 11 degrees of freedom, which led to a loss of degrees of 

freedom and a failure to execute the model properly.  SPSS treated the above interaction 

terms with 1 degree of freedom and processed the test for homogeneity of slopes without 

issue.  None of the interaction terms was significant; thus, the standard ANCOVA model 

was able to be applied.  An ANCOVA of conceptions was completed with month of the 

year and treatment (indoor detailed or exposed detailed) as factors and attempts as a 

covariate. 
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Heritability 

 Heritability, in the narrow sense, measures the proportion of a trait’s phenotypic 

variance that is due to additive genetic effects.  It is most frequently measured by 

regressing the mean value of a trait in a pair of parents on the mean value in their 

offspring (Futuyma, 2013).  While the overall census data contain many offspring from 

colony parents (in fact a majority of the individuals are colony born), only the detailed 

data sets suffice for evaluating the heritability of attempt-corrected conceptions.  Further, 

only individuals in the indoor detailed treatment were analyzed in order to eliminate any 

influences of environmental variation between treatments.  With these limits placed on 

the data, there were not enough mother-daughter pairs to reliably estimate heritability via 

parent-offspring regression.  However, an alternate heritability analysis was possible, 

using half-sibs and testing for sire effects (Falconer and Mackay, 1996; Lynch and 

Walsh, 1998).  There are few males used for maintenance of the breeding colony (relative 

to the number of females), so the data lend themselves well to this type of analysis.  

Overall, 40 females (as attempt-corrected conceptions are a female-only trait) were found 

that shared 11 sires amongst them.  Nine of the 40 females formed four groups of full 

siblings; the analysis requires half siblings, so for each group of full siblings the number 

of conceptions and failed attempts were averaged and entered as one data point, bringing 

the total number of offspring in the analysis to 35.  An ANCOVA was performed with 

conceptions as the dependent variable, sire as the factor, and attempts as the covariate.  

Heritability was then calculated by taking the proportion of the within-sire variance to the 

total variance and multiplying by four (Falconer and Mackay, 1996; Lynch and Walsh, 

1998). 
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Summary of statistical methods 

 To recapitulate, the main research question of this study is: In provisioned, 

captive rhesus macaques, what effect does season have on reproduction?  This question 

was analyzed first by looking for a birth season or birth peak in the four data sets 

described in detail above; it was then determined if differences exist in the timing of birth 

peaks between treatments.  Paired data were used to verify differences between the 

indoor and exposed treatments, and heritability in the likelihood of conceiving was tested 

to eliminate the possibility of variation between treatments being due to relatedness of 

individuals.  Finally, in the two timed mating treatments, number of conceptions were 

corrected by the number of attempts.  These attempt-corrected conceptions (an estimate 

of likelihood of conception) were tested for seasonal fluctuation throughout the year and 

for a significant difference between treatments.  Table 2 gives a summary of the 

statistical methods used in this thesis. 
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Table 2. Summary of statistical methods. 
Hypothesis or Data to be 

tested 
Linear Test Circular Test 

Seasonality of conceptions Kolmogorov-Smirnov test 
against Uniform (183,548) 

distribution 

Rayleigh test of uniformity 
of mean vector ρ 

Differences in breeding 
peak between treatments 

ANOVA with a priori tests 
and a posteriori pairwise 

comparisons 

Watson-Williams test of 
overall significance and 
pairwise comparisons 

Differences in spread of 
conceptions 

Levene’s test for 
homogeneity of variances 

Test for homogeneity of 
circular distribution factor κ 

Paired conceptions 
(indoors vs. exposed) 

Repeated-measures 
ANOVA 

Hotelling test for paired 
samples of angles 

Heritability of attempt-
corrected conceptions 

ANCOVA with sire as 
factor and attempts as 

covariate 

None necessary 

Attempt-corrected 
conceptions 

ANCOVA with month and 
treatment as factors, 
attempts as covariate 

None necessary 
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Results 

Conceptions 

 In all four treatments (indoor detailed, indoor census, exposed detailed, and 

outdoor group census) conceptions occurred throughout the year, with a discernible peak 

that ranges among the four treatments from September and October to as late as May.  

This pattern is shown in Figure 1 for the linear data and Figure 2 for the circular data.  

As is evident from both of these figures, conceptions occurred year-round in all 

treatments, but all treatments also displayed a distinct breeding peak (but not a breeding 

season, as per Lancaster and Lee [1965]).  Therefore, the removal of photoperiod does 

not eliminate seasonal variation in number of conceptions; this suggests other variables 

affect seasonality.  The other striking feature of the graph is the paucity of data in the 

exposed detailed treatment relative to that in the other three treatments.  Unfortunately, 

the data available for this analysis terminated shortly after the colony was moved to this 

condition, but there are 78 conceptions recorded for that treatment, which is sufficient for 

statistical analyses. 

 Summary statistics are provided in Table 3.  Oriana was used to calculate the 

circular median and 95% confidence intervals of the circular mean.  It can be seen that 

while linear measures of median and mean provide estimates similar to the more accurate 

circular ones, they are in no case exactly the same, and in some, fairly different.  For 

example, while three of the linear means fall within the 95% confidence intervals of the 

circular mean (the outdoor census does not), the opposite (circular mean falling within 

95% confidence interval of linear mean) is only true in two cases, indoor detailed and 

exposed detailed. 
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Figure 1. Histograms of total conceptions by month in each treatment condition.  
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Figure 2. Equal-area rose diagrams of total conceptions by month in each treatment condition.  Black 
Ts represent the mean with 95% confidence interval.
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Table 3. Summary statistics of conceptions for both linear and circular data. 
 Indoor Detailed Indoor Census Exposed Detailed Outdoor Census 

# Cases (N) 307 480 78 201 
Linear 

Median 
339 (Dec. 4) 351 (Dec. 16) 397.5 (Feb. 1/2) 318 (Nov. 13) 

Circular 
Median 

336 (Dec. 1) 339 (Dec. 4) 43 (Feb. 12) 317 (Nov. 12) 

Linear Mean 350 (Dec. 15) 358 (Dec. 23) 386 (Jan. 21) 327 (Nov. 22) 
95% CI of 

Linear Mean 
341-358 (Dec. 

6-23) 
350-366 (Dec. 

15- Jan. 1) 
367-404 (Jan. 2- 

Feb. 8) 
318-335 (Nov. 

13-30) 
Circular 

Mean 
341 (Dec. 6) 347 (Dec. 12) 35 (Feb. 4) 315 (Nov. 10) 

95% CI of 
Circular 

Mean 

330-351 (Nov. 
25- Dec. 16) 

334-360 (Nov. 
29- Dec. 25) 

9-62 (Jan. 9- Mar. 
2) 

307-323 (Nov. 
2-18) 

Linear SD 75.892 88.333 81.781 62.855 
r (circular 

dispersion) 
0.4216 0.2696 0.3348 0.6235 
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 The timing of conceptions was found, with high statistical significance, to be 

seasonally distributed throughout the year (Table 4). 

 An overall ANOVA conducted on the uncorrected linear conception data found 

overall significance (F=12.478, p=5.053×10-8), as did the Watson-Williams test on the 

circular data (F=19.423, p=2.903×10-12).  The a priori test of significant differences 

between the indoor treatments combined against the exposed detailed and outdoor group 

census combined was found to be not significant (F=0.144, p=0.704), as was the test of 

significance between the indoor detailed and indoor census data (F=2.282, p=0.131).  The 

a priori test for significant differences between the exposed detailed and outdoor group 

census treatments was highly significant (F=30.743, p=3.716×10-8; Table 5).  P-values 

for pairwise comparisons for both the linear data and the circular data are given in Table 

6. 

 As both the a priori test on the linear data and the a posteriori tests on both the 

circular and linear data show, the indoor census and indoor detailed data sets did not 

differ in their mean breeding peak, which is expected given their identical treatment 

methods.  This finding lends support to the method of estimation of conception dates 

used in this study, which is identical to that used in other studies (e.g., [Van Horn, 1980]).   

 Although the a priori test for significant differences between the indoor 

treatments combined versus the treatments with some environmental exposure combined 

was found to be insignificant, this is likely due to the fact that the exposed detailed and 

outdoor group treatments shift the breeding peak in opposite directions; thus, when 

combined, they have a cancelling effect; the pairwise differences between all indoor and 

exposed or outdoor treatments were significant. 
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Table 4. Results of statistical tests of uniformity. 
 

Treatments 
Kolmogorov- 

Smirnov D  
Linear p-value 
(Kolmogorov-

Smirnov1) 

Rayleigh’s z Circular p-
value 

(Rayleigh1) 
Indoor Detailed 0.177 8.949×10-9 54.575 1.529×10-25 
Indoor Census 0.114 6.844×10-6 34.876 3.842×10-16 

Exposed 
Detailed 0.193 5.911×10-3 8.743 1.308×10-4 

Outdoor Census 0.335 1.192×10-7 78.134 1.079×10-38 
1As described in the text, uniformity was tested both linearly using the Kolmogorov-Smirnov test and 
circularly using the Rayleigh test. 
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Table 5. ANOVA table for conception tests. 
Source 

 
Sum-of-
Squares 

df Mean-
Square 

F-ratio P 

Treatment 239879 3 79959.6 12.478 5.1×10-8 
 
Indoor detailed and 
indoor census vs. 
exposed detailed 
and outdoor census 
 

 
922.797 

 
1 

 
922.797 

 
0.14401 

 
0.704 

Indoor detailed vs. 
indoor census 

 
14625.7 

 
1 

 
1.4625.7 

 
2.2825 

 
0.131 

 
Exposed detailed 
vs. outdoor census 

 
196996 

 
1 

 
196996 

 
30.743 

 
3.7×10-8 

 
Error 

 
6805120 

 
1062 

 
6407.83 
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Table 6. P-values for pairwise comparisons of both linear and circular data sets. 
Tukey’s HSD (linear): 
 Indoor 

detailed 
Indoor census Exposed 

detailed 
Outdoor census 

Indoor detailed 1    
Indoor census 0.431 1   

Exposed detailed 0.002 0.025 1  
Outdoor census 0.009 1.532×10-5 1.490×10-6 1 

Watson-Williams with Holm-Šidàk correction (circular): 
 Indoor 

detailed 
Indoor census Exposed 

detailed 
Outdoor census 

Indoor detailed 1    
Indoor census 0.352 1   

Exposed detailed 2.983×10-6 2.908×10-5 1  
Outdoor census 1.375×10-4 1.274×10-5 2.433×10-12 1 
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 Both Levene’s test of homogeneity of variances (F=16.003, p=7.025×10-10) and 

the test of homogeneity of circular distribution factor κ (F=11.082, p=7.272×10-7) found 

significant differences among treatments in the spread of the data.  However, the 

distribution of conceptions across all treatments seem to approach normality; it is 

possible, then, that the difference is based largely on an inflation of significance due to 

large sample sizes and only to a lesser extent due to important underlying differences 

among treatments. 

 

Paired 

 The 52 individuals who had recorded conceptions both in the indoor detailed and 

exposed detailed treatments differed significantly between the two treatments in mean 

conception date, as shown linearly by a repeated-measures ANOVA (F=10.144, p=0.002) 

and circularly by the Hotelling test for paired samples of angles (F=6.639, p=0.003).  

Figure 3 depicts the mean conception date in both treatments for these individuals.  For 

most individuals, then, movement to the exposed treatment resulted in a later date of 

conception, in line with the changes seen in the breeding population as a whole. 

 

Heritability 

 The half-sib ANCOVA found sires to be an insignificant source of variation in 

number of conceptions once number of attempts was accounted for (F=1.162 and 

p=0.364 for sires).  Regardless, an estimate of heritability was calculated; it was found to 

be small (h2=0.018).  R.A. Fisher argued that the more closely a trait is tied to fitness, the 

more natural selection should have already acted on it and selected out the available  
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Figure 3. Mean conception date for individuals in the indoor detailed vs. exposed detailed treatments. 
Note that the dates cannot exceed 548 (600 shown on Y-axis is for scale). 
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variance due to genetic components (e.g., Mosseau and Roff (1987), but see Price and 

Schluter (1991)).  Thus, a lack of heritability for attempt-corrected conceptions is not 

surprising, but was not a foregone conclusion.  The finding of no heritable differences in 

attempt-corrected conceptions allowed for an analysis of the full data sets of attempt-

corrected conceptions without the possibility of familial relationships obscuring the 

variations in the data set. 

 

Attempt-corrected conceptions 

   The ANCOVA table is shown in Table 7.  In the ANCOVA, neither month nor 

treatment (indoor detailed vs. exposed detailed) had a significant effect on number of 

conceptions once variation in the number of attempts was accounted for, though 

treatment approached significance.  Also, the interaction of month and treatment was not 

significant.  Number of attempts was highly significantly correlated with conceptions and 

the only part of the model that showed a significant effect on conceptions; this shows 

that, at least for the indoor detailed and exposed detailed conditions, there was no 

significant variation in conceptions between treatments or throughout the year beyond 

that due to variation in the number of attempts. 
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 Table 7. ANCOVA table for attempt-corrected conceptions. 
Source of variance Type III SS df Mean Squares F-Ratio p-Value 

Treatment (Indoor v. Exposed) 28.78002 1 28.78002 3.72122 0.05880 
Month 118.33602 11 10.75782 1.39097 0.20291 
Treatment×Month Interaction 41.74009 11 3.79455 0.49063 0.90129 
Attempts 531.01856 1 531.01856 68.66007 2.36453×10-11 

Error 433.10526 56 7.73402   
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Discussion 

Conceptions 

 Conceptions were found to occur year-round in all treatments; however, the 

distribution of conceptions in all treatments was found to be significantly seasonal.  The 

finding of seasonality in the outdoor group is not surprising and agrees with comparable 

findings in wild and free-ranging populations (Heape, 1897; Carpenter, 1942; Prakash, 

1958, 1962; Southwick et al., 1961; Altmann, 1962; Conaway and Koford, 1964; Koford, 

1966; Vandenbergh and Vessey, 1968; Lindburg, 1971; Drickamer, 1974; Coimbra-Filho 

and Maia, 1977; Wang et al., 1996; Tian et al., 2013), although as the outdoor group is in 

enclosures which restrict long-distance movement and rely solely on human provisioning 

for food, this treatment is more comparable to individuals in other outdoor colonies 

(Vandenbergh, 1973) and those found in zoos (Brand, 1963).  In fact, in wild and free-

ranging populations rhesus have a distinct breeding season, but the outdoor group data 

conform more to outdoor colonies and zoos in showing a breeding peak.   

 The exposed treatment was also found to be seasonal.  Unlike the outdoor or 

indoor treatments, this is a much more novel finding.  Birkner (1970) had a treatment in 

which individuals were housed indoors, but had exposure to daylight through a window.  

The exposed treatment, however, has exposure to sunlight, temperature, and humidity 

throughout most of the year.  Thus, there are no treatments in the literature I am aware of 

to make direct comparisons to, but Birkner’s (1970) treatment did find seasonality. 

 The seasonality exhibited in the indoor, isolated treatment confirms that reported 

by several researchers (Hartman, 1931; Valerio et al., 1969a, 1969b; Riesen et al., 1971; 

Vandenbergh, 1973; Hutz et al., 1985), but contradicts others (Ponce de Lugo, 1964; 
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Eckstein and Kelly, 1966).  This shows that seasonal cues such as photoperiod, 

temperature, or seasonal fluctuations of food availability are not required for rhesus to 

conceive in a seasonal pattern. 

 When the mean of the most “natural” group, the outdoor census, is compared to 

Van Horn’s (1980) regression for rhesus macaques in natural conditions, it is found to 

fall very far short of where his line predicts it.  A group with a mean birth date of 327 

(such as that of the outdoor group treatment) corresponds to a latitude of about 32 

degrees north on his line, while the NERPRC is located at roughly 42° 20’ N, a latitude 

well outside the range of the data used to generate the regression.  If the line were 

extrapolated to the latitude of the NERPRC, the expected mean birth date would be 

around 367, which would actually be day 2 of the following year, January 2.  January 2 is 

included in the 95% confidence interval of the mean only for the exposed treatment 

(although the indoor census mean is closer), but it is at the very beginning of it.  While 

Van Horn’s (1980) data did not include individuals in a treatment similar to any in this 

study, it is still interesting to note the lack of fit to his model. 

 It is also interesting to note that when comparing the circular dispersion statistic r 

of all groups, the largest is for the outdoor group, which most closely resembles a natural 

condition out of the four treatments.  When comparing this number (r=0.6235) to those of 

similar species in Janson and Verdolin (2005), it most closely resembles that found for 

Macaca fascicularis (r=0.6094) and Macaca sinica (r=0.6140).  However, Brockman and 

van Schaik (2005) describe both Macaca mulatta (rhesus) and M. sinica as relaxed 

income breeders, while M. fascicularis is described as a capital breeder, despite a nearly 

equivalent seasonality.  Other capital breeders designated by Brockman and van Schaik 
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include Macaca nemestrina and Macaca silenus, and their r values are much lower 

(0.2479 and 0.2546 for the former, 0.3286 for the latter [Janson and Verdolin, 2005]), 

while relaxed income breeders Macaca sylvanus and Macaca radiata have r values of 

0.8943 and 0.9404 (highest of all macaques) for M. sylvanus and 0.8647 for M. radiata 

(Janson and Verdolin, 2005), much larger values than that found for rhesus.  Macaca 

fuscata (referred to initially by Brockman and van Schaik [2005] as a strict income 

breeder but later in the same chapter as a relaxed income breeder) had the second highest 

r of all macaques, 0.9227 (Janson and Verdolin, 2005), which is quite seasonal.  This 

variation between different species in circular dispersion of breeding times clearly shows 

that Brockman and van Schaik’s categories of capital and relaxed income breeding are 

ill-defined and constitute a wide range of seasonal distributions (at least in the macaques).   

 

Attempt-corrected conceptions 

 It is important to note that while the ANOVA and subsequent pairwise 

comparisons of uncorrected conceptions between the indoor detailed and exposed 

detailed treatments found highly significant differences between them and a highly 

seasonal distribution in each, when corrected for attempts, conceptions were not found to 

differ significantly between months and treatments.  This indicates that, at least for these 

two treatments, most of the variation found in conceptions was due to differences in 

number of mating attempts, a variable for which a protocol was set in place to try to keep 

it fairly constant throughout the study.  As the protocol for setting up mating attempts 

involved vaginal swabs to check for ovulation, a possible reason for variation in attempts 

is that during certain parts of the year (i.e., summer), ovulation and possibly menses 
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occur less frequently (as found by Hutz et al. [1985] and Riesen et al. [1971]), thus mate-

pairs are formed less frequently; those that are formed, however, have an equal chance of 

conception.  Attempts were not found, however, to vary significantly by months. 

 If photoperiod, temperature, or humidity was the main proximate cue that these 

timed-mating rhesus used to time conceptions, we would expect to find that, when 

controlled for attempts, there would be a significant interaction between months and 

treatment for conceptions.  That is, in months that the cue should be increasing 

reproduction (fall and winter), conceptions in the exposed treatment should exceed those 

in the indoor treatment, while in months that the cue should decrease reproduction (spring 

and summer), conceptions in the exposed treatment should be less frequent than those in 

the indoor treatment.  The interaction term was insignificant, and thus it can be concluded 

that proximate environmental cues have no bearing on the timing of reproduction in the 

timed-mating groups. 

  If endogenous cues were responsible for seasonality in these two groups, we 

may expect to find a significant effect of months; it is not significant, and thus it must be 

concluded that endogenous cues do not maintain seasonality between these two 

treatments.  What the results instead show is that none of the proposed proximate 

environmental or endogenous cues maintains seasonality in these two groups; all 

seasonality of conceptions in the indoor and exposed timed mating treatments was due to 

variation in the number of attempts. 

 

 If rhesus seasonality is dictated by photoperiod, as the traditional model suggests, 

we should expect that rhesus maintained indoors on a constant light cycle would not 
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show seasonal variation in the number of conceptions, while those exposed to a natural 

photoperiod would.  In this thesis, it has been shown that rhesus do not have a seasonal 

variation in conceptions once corrected for number of attempts, regardless of their 

exposure to light. 

 Brockman and van Schaik’s (2005) income-capital continuum model suggests 

that rhesus are relaxed income breeders.  As such, rhesus should show a response to 

photoperiod even when maintained in captivity, although the response may be damped 

and females may continue reproductive cycling for a greater portion of the year.  

However, timed-mating rhesus macaques did not vary in their conceptions as a result of 

exposure to photoperiod; the only variable shown to affect distribution of conceptions 

was number of attempts.  This indicates that their model is not very useful in 

differentiating subtle variations in reproductive patterns in captive macaques, and that 

these captive populations provide a unique opportunity to explore the complex 

relationships between season and reproductive biology. 
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Conclusion 

 In all four treatments, the distribution of conceptions throughout the year was 

seasonal.  If photoperiod or other environmental cues were the only proximate cues 

maintaining seasonality, we would expect seasonality to exist only in individuals exposed 

to those variables; however, individuals maintained in constant photoperiod and 

temperature still showed a seasonal peak of conceptions. 

 Once number of attempts was controlled for, it was found that the likelihood of 

conception did not vary throughout the year, did not vary between treatments, and did not 

vary in an interaction of treatment by month, which would be expected if environmental 

cues were serving as the main source of seasonal variation.  Instead, it was found that for 

rhesus with limited access to males, number of attempts was the only significant predictor 

of number of conceptions. 

 These data indicate that while photoperiod, rainfall, food availability, and/or other 

environmental variables are important in the maintenance of seasonal reproduction in 

wild and free-ranging rhesus, in timed mating colonies with little variation in food or 

shelter, their effect is less powerful.  This suggests that in wild and free-ranging 

populations, there is a complex interaction of social interaction, resource availability and 

limitation, and proximate environmental cues that serves to maintain rhesus reproductive 

seasonality. 
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