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ABSTRACT 
 

ACCELERATING MRI DATA ACQUISITION USING PARALLEL IMAGING AND 
COMPRESSED SENSING 

 
 

by 

Haifeng Wang 

 

The University of Wisconsin-Milwaukee, 2012 
Under the Supervision of Professor Leslie (Lei) Ying and Jun Zhang 

 
 
 

Magnetic Resonance Imaging (MRI) scanners are one of important medical instruments, which 

can achieve more information of soft issues in human body than other medical instruments, such 

as Ultrasound, Computed Tomography (CT), Single Photon Emission Computed Tomography 

(SPECT), Positron Emission Tomography (PET), etc. But MRI’s scanning is slow for patience of 

doctors and patients. In this dissertation, the author proposes some methods of parallel imaging 

and compressed sensing to accelerate MRI data acquisition. Firstly, a method is proposed to 

improve the conventional GRAPPA using cross-sampled auto-calibration data. This method use 

cross-sampled auto-calibration data instead of the conventional parallel-sampled auto-calibration 

data to estimate the linear kernel model of the conventional GRAPPA. The simulations and 

experiments show that the cross-sampled GRAPPA can decrease the quantity of ACS lines and 

reduce the aliasing artifacts comparing to the conventional GRAPPA under same reduction 

factors. Secondly, a Hybrid encoding method is proposed to accelerate the MRI data acquisition 

using compressed sensing. This method completely changes the conventional Fourier encoding 

into Hybrid encoding, which combines the benefits of Fourier and Circulant random encoding, 

under 2D and 3D situation, through the proposed special hybrid encoding pulse sequences. The 
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simulations and experiments illustrate that the images can be reconstructed by the proposed 

Hybrid encoding method to reserve more details and resolutions than the conventional Fourier 

encoding method. Thirdly, a pseudo 2D random sampling method is proposed by dynamically 

swapping the gradients of x and y axes on pulse sequences, which can be implemented physically 

as the convention 1D random sampling method. The simulations show that the proposed method 

can reserve more details than the convention 1D random sampling method. These methods can 

recover images to achieve better qualities under same situations than the conventional methods. 

Using these methods, the MRI data acquisitions can be accelerated comparing to the conventional 

methods. 
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1. Introduction 

Magnetic Resonance Imaging (MRI) is one imaging modality based on the Nuclear Magnetic 

Resonance (NMR) phenomenon. Generally, a magnetic resonance imaging scans use magnetism, 

radio waves, and computers to produce detailed images of human body inside structures. An MRI 

scanner is a tube surrounded by a large, powerful magnet. The patient lies on a moveable bed 

which is placed into the magnet. The magnet generates a strong magnetic field to align the 

magnetization of some atomic nuclei in the human bodies, usually such as the protons of 

hydrogen atoms. Then, radio waves are transmitted to alter the equilibrium alignment of the 

magnetization. After that, the decays of the various proton spins can produce radio waves that are 

detected by the receivers of the scanners. The radio waves are reconstructed to images by 

computers. The MR images are quite detailed and good contrast for body structures and can often 

detect tiny lesions of human bodies. 

As one nonionizing radiation technique different with X-rays, Computer Tomography (CT), 

Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography 

(PET), MRI can achieve true three-dimensional images, remarkable spatial resolution and 

outstanding soft-tissue contrast [1]. Especially, MRI provides good contrast in imaging the brain, 

muscles, heart and cancers compared with CT or X-rays, and high resolution compared with PET 

or SPECT. Although, MRI has many benefits different with other imaging modalities, imaging 

speed is still one of tough challenges for MRI applications. Some schemes have been proposed to 

accelerate MR imaging speed, such as Parallel MRI (PMRI), Compressed Sensing (CS), Rapid 

Imaging, etc. Contemporarily, imaging quality is another tough challenge after accelerating MR 

imaging. Some derivative schemes are presented to ensure the reconstruction image quality. 
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1.1 Parallel MRI 

1.1.1 Parallel Imaging 

Generally, pulse sequences are used to control the image encoding method and data 

acquisition of MRI scanners. Among the conventional pulse sequences, there are usually four 

primary pulses and gradients to spatially excite and encode objects in image domain: RF pulses, 

slice selection gradient (Gz), frequency encoding gradient (Gx), and phase encoding gradient 

(Gy). As seen as Fig.1, RF pulses excite the protons in objects; slice selection is realized 

simultaneously with RF pulses; frequency encoding, also called readout, is applied to receive 

echo signal for data acquisition; phase encoding is applied between excitation and receiving echo, 

and its gradient value is shifted each Repetition Time (TR). Echo Time (TE) is the time between 

RF excitation and MR signal sampling, corresponding to maximum echo signals. Sometimes, the 

180° RF pulse and the corresponding gradient are applied at the time of TE/2. The acquired data 

is converted from image space to frequency space (k-space) by mathematical Fourier 

transformation [2, 3]. As usual, phase encoding, frequency encoding, and slice encoding, of 

conventional pulse sequences obey Fourier transformation. But sometimes, there is no Fourier 

encoding along the slice encoding direction if the pulse sequences are not a three dimensional 

encoding pulse sequence. 
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Fig. 1 Conventional encoding method and pulse sequence diagram. The pulse sequence is a 

traditional spin echo pulse sequence, which is based on repetition of 90° and 180° RF pulses. B0 

field is generated by a very strong magnet; B1 field is generated by RF coils; B1 field is much 

smaller than B0 field. 

 

Usually, the data acquisition should fill up the k-space, but totally fully sampling is very slow. 

Because frequency ending steps are much faster than phase ending steps in MRI scanners, one 

way to accelerate data acquisition is skipping the phase encoding steps by increasing the step 

length of equidistantly sampled k-space lines. However, the type of undersampled dataset would 

yield a reduced field of view (FOV), which is equal to fold images along phase encoding 

direction and yield aliasing artifacts along the underdampled direction as seen as Fig. 2 [4]. 
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Fig. 2 Comparison of fully sampled acquisition (top row) and undersampled acquisition (bottom 

row). Fully sampling results a full FOV image after Fourier transformation; undersampled 

acquisition yields a reduced FOV image with aliasing artifacts. Dot lines mean missing lines; red 

solid lines are acquired lines. The acceleration factor is 2; FFT means Fast Fourier 

Transformation. 

 

To short the acquisition time and recover a full-FOV image, PMRI exploits the phased array 

coils to reconstruct the entire image [5]. The basic idea of PMRI is simultaneously acquiring 

reduced FOV which covering one part of the entire image by one coil of the receive array coils, 

and then combine the acquired multiple-coil images to yield the full-FOV image [6]. The actual 

coil sensitivities extend over the FOV and overlaps, therefore amounts of algorithms are proposed 

to realize the problem for reconstructing the undersampled raw data in PMRI. Such as, Sensitivity 

Encoding (SENSE) [7], Partially Parallel Imaging with Localized Sensitivity (PILS) [8], Array 
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Spatial Sensitivity Encoding Technique (ASSET) [9], Simultaneous Acquisition of Spatial 

Harmonies (SMASH) [10], Auto Simultaneous Acquisition of Spatial Harmonies (AUTO-

SMASH) [11], Variable Density Auto Simultaneous Acquisition of Spatial Harmonies (VD-

AUTO-SMASH) [12], Generalized Simultaneous Acquisition of Spatial Harmonies (Generalized-

SMASH) [13], Modified Sensitivity Encoding (mSENSE) [14], Sensitivity Profiles from an 

Array of Coils for Encoding and Reconstruction in Parallel (SPACE RIP) [15], Generalized 

Autocalibrating Partially Parallel Acquisition (GRAPPA) [16], etc. Among the PMRI algorithms, 

SENSE and GRAPPA are two representative algorithms. 

 

1.1.2 SENSE 

SENSE is the first reconstruction algorithm used for clinical applications. It is considered as 

an “unfolding” algorithm in image domain [4]. An undersampled acquisition (reduction factorR ) 

results in a reduced FOV in every coil image after Fourier transforming to the image domain. 

Each pixel in the individual reduced FOV coil image contains information from total R  

equidistantly distributed pixels in the desired full FOV imageρρρρ . Arbitrary pixel will be weighted 

with the coil sensitivity C  at the corresponding location in the full FOV image. Thus, one folded 

pixel 
k

I at a certain location (x, y) received in the kth coil image can be written as [7], 

( ) ( ) ( )
1

, , ,
R

k k l l
l

I x y C x y x yρρρρ
=

= ⋅∑                                          (1) 

If Eq. (1) is generalized in matrix notation and the matrix knowledge is applied here, the desired 

full FOV image ρρρρ  can be written as [7], 

( )
1

ˆ ˆ ˆH HC C C Iρρρρ
−

= ⋅
vv                                                          (2) 
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where, Ĉ denotes the sensitivity matrix for each coil at the K  superimposed positions; the 

vectorρρρρv  lists the vector of the K pixels in the desired full FOV image; the vectorI
v

represents 

the folded complex coil image value at the chosen pixel. A detailed description about SENSE is 

given by Ref. [4] and [7]. Theoretically, SENSE can get an exact solution for the reconstruction 

of PMRI, but it needs to know coil sensitivities which is hard to be exactly measured in clinic 

situations. Actually, we usually compute approximate coil sensitivities from pre-scan. 

 

1.1.3 GRAPPA 

GRAPPA is another traditional algorithm among PMRI, which is an auto-calibration method 

in frequency domain [4]. The additional k-space lines in low frequency region, named as auto-

calibration signal (ACS) lines, are used to fit the coefficients of linear combinations. Next, the 

fitting coefficients are applied to estimate the missing k-space data by interpolation of acquired 

data. Finally, the image is recovered by using sum of squares (SoS) to combine all coil images [5]. 

Assuming to reconstruct the missing k-space data at the location (kx, ky+m∆ky) in coil j, the 

acquired data in the neighborhood are linearly combined [16]: 

( ) ( ) ( )
1

1 0

, , ,
−

= =

+ ∆ = + ⋅ ⋅∆∑∑
bNL

j y y l y y
l b

S k m k n j b l m S k b ORF k               (3) 

where ORF represents outer reduction factor; Nb is the number of blocks used in the 

reconstruction; one block is defined as a single acquired line and its adjacent ORF-1 missing lines; 

n(j,b,l,m) represents the coefficients for the linear combination. The index l counts through the 

individual coils, while the index b counts through the individual reconstruction blocks. This 

process is repeated for each coil in the array, resulting in L sets of full k-space data for the 

uncombined single-coil images. The missing data can be obtained in Nb+1 different ways, which 

are combined in a weighted average based on the goodness-of-fit (GOF). These images are then 
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combined using a conventional sum-of-squares (SoS) reconstruction [5]. More detailed 

descriptions are given by Ref. [4] and [16]. GRAPPA is an approximate scheme to interpolate 

missing lines in k-space with a linear model, which is different from SENSE that is theoretically 

an exact scheme. But GRAPPA has no explicit computation of sensitivity maps, not like SENSE. 

This is the benefit of GRAPPA, comparing to SENSE. 

1.2 Compressed Sensing 

Compressed sensing/compressive sampling (CS) has emerged as a new sampling theory, 

different from PMRI. CS allows sparse or compressible signals to be sampled at a rate that is 

close to their intrinsic information rate and well below their Nyquist rate [17-18]. The CS theory 

can be summarized into three conditions for applications [19]: (a) Sparsify: the desired signal has 

a sparse or compressible representation in a known transform domain; (b) Incoherence: 

undersampled sampling space must generate noise-like aliasing artifacts in the compression 

transform domain; (c) Nonlinear Reconstruction: a nonlinear reconstruction is required to exploit 

sparsity/compressibility while maintaining consistency with acquired data. Mathematically, CS 

reconstruction can be considered to solve the following optimization problem, 

{ }0 2
arg min . .= Ψ −Φ <opt f

f f b fs t ε                                         (4) 

where f is the desired N dimensional signal; fopt is the optimized desired signal; b is the measured 

M dimensional signal, M<<N;Φ is the sensing matrix; Ψ is the sparsifying transform; ε  servers 

as the bound condition (usually noise level). Because minimizing L-0 norm is a non-deterministic 

polynomial-time hard (NP-hard) problem, L-0 norm is generally substituted by L-1 norm. When 

the sensing matrix Φ  satisfies the restricted isometric property (RIP) condition [17], the desired 

signal f can be exactly recovered. Theoretically, the sparsifying transform Ψ  and the sensing 

matrix Φ together determine the acceleration performance, or rather, how many samples can 

exactly recover the desired signal. 
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In conventional MRI, the application of compressed sensing is made possible by the facts that 

(a) most MR images are compressible by certain transforms and (b) the desired image is Fourier 

encoded in the measurement (so called k-space) which allows incoherent sampling. Such reduced 

sampling of CS theory is very desirable in MRI because the data acquisition speed is directly 

related to the amount of data that needs to be acquired. Therefore, CS has been successfully used 

in conventional Fourier-encoded MRI applications [19-22]. 

 

1.3 Benefits and Limitations 

Currently, some of PMRI techniques are commercially available. It can generally decrease 

data acquisition without the need of gradient performances, applying the phase array receiver 

coils. PMRI techniques have been proved in clinical applications to improve the image quality 

with increased signal to noise ratio (SNR), spatial resolution, reduced artifacts and the temporal 

resolution in dynamic MRI scans. Among PMRI techniques, SENSE and GRAPPA are two 

primary present commercially available techniques. Both techniques are well suited to enhance 

most of MRI applications. SENSE uses the prescan strategy for perspicuous coil sensitivities; 

GRAPPA employs the auto-calibration method for receiving coil sensitivities. So the betterments 

about SENSE mainly focus on how to achieve exact coil sensitivities; the improvements about 

GRAPPA mostly lie in the auto-calibration method. There are no obvious absolute advantage 

between SENSE and GRAPPA. Both techniques allow an accelerated image acquisition in 

arbitrary image plane orientation as well as with arbitrary coil configurations with essentially the 

same SNR performance, though GRAPPA has a slight advantage than SENSE in inhomogeneous 

regions with low spin density [4]. 

Different from PMRI, CS theory is recently a very significant popular advance in signal 

processing community because of its potential to accelerate signal reconstructions from very 
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fewer sampled data than conventional sampling by Nyquist-Shannon theory. Although, CS 

techniques are still being researched and developed further, they have illustrated to increase 

signal to noise ratio (SNR), and reduce aliasing artifacts. CS reduces the data acquisition depend 

on sampling below Nyquist rate, which is differ from PMRI accelerating depend on the multiple 

array receiver coils. CS and PMRI techniques have been mixed together in some research works 

[21-22]. Among CS theory, the sensing matrix Φ and the sparsifying transform Ψ are two 

significant factors. They largely influence whether the CS theory can be applied to recover the 

desire signals and how exactly the CS theory can recover the desire signal. However, they are 

hard to together achieve optimal settings of Φ andΨ , under current commercial MRI hardware 

constrains. Otherwise, sampling pattern also affects the image quality of the reconstruction results, 

because the real signals from MRI scanners are not so ideal sparse. 

 

1.4 Our Works 

Our works include three parts to separately accelerate the MRI data acquisition. 

The auto-calibration signal (ACS) lines in conventional GRAPPA are acquired with a 

frequency-encoding direction in parallel to other undersampled lines [16]. We propose a cross 

sampling method to acquire the ACS lines orthogonal to the undersampled lines. This cross 

sampling method increases the amount of calibration data along the direction where k-space is 

undersampled, and especially improves the calibration accuracy when a small number of ACS 

lines are acquired. The cross sampling method is implemented by swapping frequency and phase 

encoding gradients. In addition, an iterative co-registration method is also developed to correct 

the inconsistency between the ACS and undersampled data which are acquired separately in two 

orthogonal directions. The same calibration and reconstruction procedure as conventional 

GRAPPA is then applied to the co-registered data to recover the unacquired k-space data and 
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obtain the final image. The current results from simulations, phantom and in vivo human brain 

experiments have distinctly demonstrated that the proposed method, named as Cross-GRAPPA 

[23], can effectively reduce the aliasing artifacts of conventional GRAPPA when very few ACS 

lines are acquired, especially at high outer reduction factors (ORF). 

Since now, CS has been successfully applied to accelerate the data acquisition of the 

conventional magnetic resonance imaging (MRI) with Fourier encoding [19-22]. However in 

Fourier encoding, the low spatial frequency always has to be fully sampled such that the high 

frequency is insufficiently sampled at high acceleration factors, leading to serious loss of 

resolution. Non-Fourier encoding has been studied in the context of compressed sensing for 2D 

imaging, but with limited improvement [24-29]. So, we propose a novel 3D acquisition method 

using hybrid encoding [30]. The method exploits random encoding with a circulant structure 

matrix along the “phase encoding” direction, while keeping conventional Fourier encoding along 

the readout and slice encoding directions. A designed 2D random undersampling pattern is used 

for accelerating the MRI scans according to the characters of the k-space raw dataset. The 

simulation and experimental results both demonstrate that the proposed schemes preserve much 

better resolution than the conventional 3D Fourier encoding when the same acceleration factors 

are applied to accelerate the imaging speeds. 

Because the hardware and software constrains of MRI scanners limit the sampling arbitrary in 

k-space domain, it is very hard to achieve the ideal 2D random sampling pattern [19] with 

conventional methods to perfectly apply the CS theory. We present a new approach of pseudo 2D 

random sampling scheme for application of compressed sensing in the Cartesian MRI 

applications. The proposed scheme is realized by a pulse sequence program which switches the 

directions of phase encoding and frequency encoding during data acquisition such that both kx 

and ky directions can be undersampled randomly [31]. The resulting random sampling pattern 

approximates the ideal but impractical 2D sampling patterns. Current simulations and 
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experiments both show the proposed scheme is superior to the existing 1D random sampling and 

similar to the ideal 2D random sampling in terms of the image reconstruction quality. This 

method can potentially improve imaging speed in the CS applications in conventional MRI. 

 

2. Purpose of the Dissertation 

The purpose of the dissertation is to improve and accelerate the conventional MR imaging 

according to constrains of current commercial MRI scanners. The general scans of MR machines 

typically last 3~5 min to achieve common resolutions [1]. But doctors anticipate to diagnose 

patients as soon and accurate as possible. Therefore, amounts of the accelerated recon techniques 

are employed to reduce acquisition and short scan time. These techniques can bring economics 

benefits for doctors and patients. In the dissertation, three schemes corresponding to PMRI and 

CS are presented and further developed. 

 

3. Proposed Schemes 

Three schemes are proposed to accelerate the image acquisition and improve the image 

quality. They are Cross-GRAPPA, Hybrid-encoded CS MRI, and Pseudo 2D Random CS MRI. 

All these schemes are minutely described as follows. 

 

3.1 GRAPPA Using Cross Sampling 

GRAPPA scheme [16] has been employed in clinic applications to avoid the estimation of 

coil sensitivities, which is usually necessary for other approaches such as SENSE [7] and 
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SMASH [10]. GRAPPA uses a linear combination of the acquired k-space data to reconstruct the 

missing k-space data. The coefficients used for combination are usually calculated by fitting some 

acquired auto-calibration signal (ACS) lines. When the number of ACS lines is insufficient, 

aliasing artifacts of reconstruction are present along the undersampling direction. A number of 

reconstruction methods have been proposed to reduce aliasing artifacts and improve image 

quality, such as regularization [32], multicolumn multiline interpolation [33], reweighted least 

squares [34], high-pass filtering [35], cross-validation [36], iterative optimization [37], virtual 

coil using conjugate symmetric signals [38], multi-slice weighting [39], infinite impulse response 

model [40], nonlinear kernel [41]. 

The way along which ACS data is acquired is actually very important in reconstruction 

quality. Larger amounts of ACS data usually lead to improve calibration, but on the other hand 

prolong the imaging time. There have been only few methods modifying the data acquisition 

procedure to improve GRAPPA. In Ref. [41], it has been noted that the calibration using large 

ACS in the center of k-space may not be appropriate for reconstructing the missing signals in 

outer k-space with relatively much smaller amplitude, and a method is proposed to acquire the 

outer k-space data with different reduction factors and calibrate the GRAPPA coefficients locally. 

The method is shown to suppress residual aliasing artifacts and noise in GRAPPA when 

parameters are optimized, but it is not clear how the optimization is done in general. 

We first demonstrate that the amount of ACS data needed for reconstruction is not isotropic -- 

more ACS data are needed along the undersampled phase-encoding direction than the fully 

sampled frequency-encoding direction to achieve similar reconstruction quality. We then 

propose a new cross-sampling acquisition method to improve conventional GRAPPA. The 

method acquires the ACS lines along the direction orthogonal to that of the undersampled lines. 

By this means, much more ACS data are available along the undersampled direction, and the 

image quality is thereby significantly improved. To address the “inconsistency” issue usually 
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encountered in non-Cartesian sampling, we develop an iterative co-registration method to align 

the reduced data acquired in two orthogonal directions. The same reconstruction procedure of 

conventional GRAPPA is then applied to the co-registered data for image reconstruction. We 

name the method cross-sampled GRAPPA (Cross-GRAPPA). Simulation and experimental 

results using phantom and in vivo data demonstrate that the proposed method can significantly 

reduce the aliasing artifacts in conventional GRAPPA reconstruction with the same number of 

ACS lines and outer reduction factors (ORFs). 

 

3.1.1 Summary of GRAPPA 

In conventional GRAPPA, to reconstruct the missing k-space data at the location (kx, ky+m∆ky) 

in coil j, the acquired data in the neighborhood are linearly combined [16]: 

( ) ( ) ( )
1

1 0

, , , ORF
bNL

j y y l y y
l b

S k m k n j b l m S k b k
−

= =

+ ∆ = + ⋅ ⋅∆∑∑                (5) 

where ORF represents outer reduction factor, Nb is the number of blocks used in the 

reconstruction, one block is defined as a single acquired line and its adjacent ORF-1 missing lines, 

and n(j,b,l,m) represents the coefficients for the linear combination. The index l counts through 

the individual coils, while the index b counts through the individual reconstruction blocks. This 

process is repeated for each coil in the array, resulting in L sets of full k-space data for the 

uncombined single-coil images. These images are then combined using a conventional sum-of-

squares (SoS) reconstruction [5].  

In order to perform the reconstruction in Eq. (5), the coefficients n(j,b,l,m) need to be 

determined initially. Some ACS lines are acquired with Nyquist rate in parallel to the 

undersampled k-space lines that are uniformly spaced. The procedure to calculate the coefficients, 

known as auto-calibration, is described by the following equation: 
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( ) ( ) ( )
1

1 0

, , ,
bNL

ACS
j y y l y y

l b

S k m k n j b l m S k b ORF k
−

= =

+ ∆ ≅ + ⋅ ⋅∆∑∑                       (6) 

where the acquired ACS data Sj
ACS(ky+m∆ky) replaces the missing data Sj(ky+m∆ky) in Eq. (5). 

After solving the linear equation Eq. (6), the coefficients n(j,b,l,m) are obtained and slid block-

by-block to reconstruct the missing data using Eq. (5). The missing data can be obtained in Nb+1 

different ways, which are combined in a weighted average based on the goodness-of-fit (GOF). 

More ACS lines provide more equations of Eq. (6) and thus improve the coefficient accuracy, but 

require a longer acquisition time. 

 

3.1.2 Which ACS data are important? 

Several parameters of GRAPPA calibration affect the image quality. For example, it is known 

that more ACS data improves the calibration accuracy and thus the image quality in general. 

However, the effect of ACS data on reconstruction is neither isotropic nor proportional. Here we 

use a set of in vivo data acquired by an 8-channel head coil to demonstrate: (a) more ACS data 

barely improve aliasing artifacts beyond a certain threshold; (b) the threshold is larger along the 

undersampled direction than the fully sampled direction. Three different scenarios were 

investigated for GRAPPA with an ORF of 4 and the results are shown in Fig. 3. The first row in 

Fig. 3 shows how the reconstruction quality gradually improves with increasing numbers of ACS 

rows while all columns are included. It is seen that aliasing reduction saturates at a certain 

number (about 26) of rows. Beyond this point, the improvement is minimal in aliasing reduction 

and is primary in SNR enhancement. On the other hand, when the number of ACS rows is well 

below this point, serious residual aliasing artifacts can be present. Although all columns of ACS 

data are usually used in GRAPPA reconstruction due to the availability of full samples along the 

frequency encoding direction, the second scenario exploits only a few columns of the 32 ACS 

rows in GRAPPA reconstruction. The results on the second row of Fig. 3 demonstrate that 
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aliasing reduction also saturates at a certain number (about 18) of columns. In the third scenario 

shown on the third row of Fig. 3, a similar observation is obtained for the extreme case when all 

256 rows are available as the ACS data but only a few columns are used for calibration. All 

results in Fig. 3 suggest that only a small region of ACS data in the central k-space play a key role 

in calibration. There are usually more ACS data needed along the undersampled direction than 

the fully sampled direction to suppress the aliasing artifacts. The large number of ACS data along 

the fully-sampled frequency encoding direction cannot improve the accuracy along the 

undersampled phase-encoding direction which is critically important in reducing the aliasing 

artifacts.  

 

Fig. 3 Conventional GRAPPA reconstructions with different numbers of rows and columns 

(shown on the top of each image) for ACS data. The results suggest more ACS data are needed 

along the undersampled direction than fully sampled direction for aliasing-artifacts suppression. 

 

3.1.3 Cross Sampling Method 

The contradiction between the demand for a large amount of ACS data along the 

undersampled direction, and the availability of a large amount of ACS data along the fully-
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sampled direction that is not contributing to artifacts reduction, motivates a new method to 

acquire the ACS lines. The method acquires that the ACS lines are orthogonal to the 

undersampled lines, as illustrated in Fig. 4(a), such that the amount of ACS data along the 

undersampled direction is maximized without prolonging the acquisition time. To realize the 

proposed acquisition method, we simply need to dynamically swap the phase encoding and 

frequency encoding gradients of a spin-echo or gradient-recalled-echo sequence during the ACS 

data acquisition such that the frequency/phase encoding direction is changed from one direction 

(e.g., anterior/posterior) for undersampled acquisition to its orthogonal direction (e.g., right/left) 

for ACS acquisition as done in Ref. [31]. Fig. 4(b) shows the diagram for a spin-echo sequence 

used for Cross-GRAPPA. The proposed method is a realistic implementation of the scenario in 

Fig. 3 last row which acquires a varying number of ACS columns. The results in Fig. 3 last row 

show in ideal case, the method suppresses aliasing artifacts better than conventional GRAPPA 

when a small number of ACS lines are used. 

 

Fig. 4 (a) Sampling pattern of the proposed Cross-GRAPPA method with an ORF of 2, where the 

solid black dots represent the acquired undersampled data, the gray dots represent the ACS data, 

and the white dots represent the unacquired data. The black crosses inside the gray dots represent 

the intersecting locations between the ACS and undersampled data. Parameter δx and δy are the 

shifts between the two orthogonal acquisitions along kx and ky respectively; σ is a complex scaling 
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factor. (b) Diagram of a spin-echo pulse sequence for the proposed scheme. The phase and 

frequency encoding gradients are swapped during the acquisition. The solid gray gradients 

represent acquisition of the ACS lines and the dash black gradients represent that of the 

undersampled lines (or vice versa). 

 

3.1.4 Data Co-registration 

In practice, the data need to be pre-processed before reconstruction. It is known that when 

frequency encoding takes different directions, the actual acquired k-space data may not be 

perfectly consistent due to practical conditions such as eddy current, field inhomogeneities and 

chemical shift [42-46]. This inconsistency needs to be corrected in Cross-GRAPPA before the 

assembled data can be used for image reconstruction. A comprehensive correction of the 

inconsistency is very difficult due to the limited amount of data from two orthogonal directions 

that are supposed to overlap in k-space. Most correction methods that are used in EPI or 

PROPELLER [47-50] only work for fully sampled data or require reference scans, and are 

therefore not applicable here. We are able to correct the inconsistency in k-space rather accurately 

using a simple model inspired by a PROPOELLER correction method used in Ref. [50]. In the 

model, we assume the two sets of k-space data acquired with orthogonal frequency encodings 

may be misaligned in position and scaled by a complex constant in value due to practical 

conditions [23]. 

To co-register the ACS data and undersampled data that are acquired with orthogonal readout 

directions, we assume these two sets of data are related by, 

( ) ( )under ACS, ,x x y x y yS k k S k kδ σ δ+ = ⋅ − ,                                    (7) 

which means the k-space locations can be misaligned (shifted by δx along x and δy along y as 

shown in Fig. 4) and the k-space values can be off by a complex scaling factor σ as shown in Fig. 
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4(a). The complex factor σ is assumed to be α·e-i2πβ with α and β being real numbers. The model 

in Eq. (7) can also be represented in the image domain as 

( ) ( ) 22
under ACS, , yx

i yi xs x y e s x y e πδπδ σ − ⋅⋅ = ⋅ ⋅   .                          (8) 

Because the ACS lines and the undersampled lines with orthogonal readouts intersect at some k-

space locations indicated by crosses in Fig. 4 (a), data at these locations can be used to estimate 

the shifting and scaling parameters in Eq. (7) and thereby used to co-register the k-space data at 

other locations. To estimate the unknown parameters, the L-1 norm of the total differences 

between the two sets of data at the intersecting k-space locations is minimized after registration. 

The problem is formulated as 

( ) ( )under ACS
, ,

, , arg min | , , |
x y

x y x x y x y yS k k S k k
δ δ σ

δ δ σ δ σ δ= + − ⋅ −∑              (9) 

where the summation of the absolute difference is over all intersecting locations of SACS and Sunder. 

Note that L-1 norm is used instead of L-2 norm due to its robustness to outliers that are not 

adequately characterized in the model in Eq. (7). 

To calculate the shift in k-space, we use the image-domain equivalence in Eq. (8). Because 

the reduced data is fully sampled along the readout direction (assume x), a one-dimensional (1D) 

Fourier transform is carried out along x and then multiplied with ei2πδxx, followed by an inverse 

Fourier transform, i.e.,  

( ) ( ) 21
under under, , x

x

i x
x x y x k x yS k k S k k eπδδ −  + =   F F

                  
(10) 

Similarly, for the ACS data, a 1D Fourier transform is carried out along the fully-sampled readout 

direction (assume y) and then multiplied by e-i2πδyy, followed by an inverse Fourier transform: 

( ) ( ) 21
ACS ACS, , y

y

i y
x y y y k x yS k k S k k e πδδ −−  − =   F F               (11) 
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where xF and yF  are 1D Fourier transforms along x and y directions in image domain and 

1

xk
−F and 1

yk
−F are 1D inverse Fourier transforms along kx and ky directions in k-space. 

The above minimization problem is solved using the Nelder-Mead algorithm as in [51, 52]. 

The Nelder-Mead method [53, 54] is a simplex method for finding a local minimum of a function 

of several variables. A simplex is a polytope (or generalized triangle) of N + 1 vertices in N 

dimensions. Examples of simplices include a linear segment on a line, a triangle on a plane, a 

tetrahedron in three-dimensional space and so forth. The method is a pattern search that compares 

the values of the objective function in Eq. (9) at all vertices of a polytope.  The worst vertex 

giving the largest value of the objective function is rejected and replaced with a new vertex.  A 

new polytope is formed and the search is repeated iteratively.  The simplest step is to replace the 

worst point with a point reflected through the centroid of the remaining N points. If this point is 

better than the best current point, then we can try stretching exponentially out along this line. On 

the other hand, if this new point isn't much better than the previous value, then we are stepping 

across a valley, so we shrink the simplex towards a better point. The iterative process generates a 

sequence of polytope, for which the size is shrunk and the value of the objective function is 

reduced. When the polytope is sufficiently small, the coordinates are found to the minimizing 

point. The Nelder-Mead algorithm is heuristic and can converge to a non-stationary point. It is 

necessary to properly initialize the parameters for data co-registration. In this study, the initial 

values of -1 or 1 for δx and δy and ones for α and β are sufficiently good for all 

experiments. Although more advanced algorithms are available, we find the method effective and 

computationally efficient.  
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3.1.5 Image Reconstruction 

After the data from orthogonal directions are co-registered, the same calibration and 

reconstruction procedure as conventional GRAPPA [16] can be employed to obtain the 

unacquired data, except that there are much more ACS data for calibration along the 

undersampled direction, as shown in Fig. 5. Specifically, Eq. (6) is used for the calibration 

process to estimate the coefficients n(j,b,l,m). The coefficients usually take a size of 4 blocks and 

5 columns based on conventional GRAPPA. More coefficients cannot bring more benefits in 

image quality, and on the contrary will cost more computation time. Eq. (5) is then employed for 

reconstruction of the missing k-space data using the estimated coefficients from Eq. (6). After the 

missing data are recovered by a weighted average based on GOF, the reconstructed and acquired 

data of each coil are then inverse Fourier transformed and combined using a root SoS method [5] 

to obtain the final desired image. It is worth noting that the image reconstruction step is 

independent of the proposed cross-sampling scheme. Therefore, all other reconstruction 

algorithms that improve upon conventional GRAPPA can be applicable in this step.  
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Fig.5 Illustration of Cross-GRAPPA reconstruction procedure with an ORF of 2 and a single 

column of ACS. Four blocks and one column are assumed for the coefficients. The gray lines 

represent the process to fit the ACS data (gray dots) in the center or to estimate the unacquired 

data (white dots) outside the center using undersampled data (solid black dots) from multiple 

coils. Gray dots with black crosses represent the data points where the ACS and undersampled 

data intersect. The bottom gray strips show acquisition along the readout direction kx. 

 

3.1.6 Nonlinear Denoise 

To reduce further noise in reconstruction of Cross-GRAPPA, the proposed method can 

integrate nonlinear GRAPPA [41] to substitute the conventional linear kernel [16]. Fig. 6 

illustrates the procedures of the integration. In data acquisition, the ACS lines are acquired along 
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the direction orthogonal to that of the undersampled lines (Fig. 6 step 1). By this means, much 

more ACS data are available along the undersampled direction to improve the calibration 

accuracy. The previous iterative co-registration method is then used to correct any inconsistency 

between the data acquired in two orthogonal directions (Fig. 6 step 2). In reconstruction, a 

nonlinear model [41] is used to represent the relationship between the missing data and the 

acquired undersampled data (Fig. 6 step 3). Specifically, we have [41], 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 2

1 1

2 2

1 1

0 1
, ,

1

2,0 2
,

1

, 1 , , ,

, , ,

B HL

j y y x j r j r l y y x x
l b B h H

B HL

j r l y y x x
l b B h H

S k r k k w w l b h S k bR k k h k

w l b h S k bR k k h k

= = =

= = =

+ ∆ = × + × + ∆ + ∆

+ × + ∆ + ∆

∑∑ ∑

∑∑ ∑             (12) 

where ( ),j y y xS k r k k+ ∆  denotes the unacquired k-space signal at the target coil, 

( ),l y y x xS k tR k k h k+ ∆ + ∆  denotes the one-order acquired undersampled signal, 

( )2 ,+ ∆ + ∆l y y x xS k tR k k h k  denotes the second-order acquired undersampled signal, and 

( ), , ,j rw l t h  are the coefficients obtained through calibration. The orthogonal ACS lines are 

used to estimate the coefficients of the nonlinear model. The interpolation is then repeated for 

each missing point at each coil. These images are then combined by a root sum-of-squares (SoS) 

method [5] to obtain the final image. 
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Fig.6 Algorithm procedure illustration of Cross-GRAPPA with nonlinear kernel. The first step is 

cross sampling the k-space data; the second step is aligning the two orthogonal k-space data; the 

third step is using nonlinear kernel to calibrate and recover the missed data. The nonlinear terms 

in Eq. (12) are just yielded from the same coils. 

3.2 Hybrid-Encoded MRI Using Compressed Sensing 

Among the CS MRI applications [19-22], to accelerate the MR imaging speed, the k-space is 

undersampled along the directions other than readouts. For example in 2D and 3D Cartesian 

sampling, a variable density random sampling pattern is used to undersample the k-space data 

along the phase encoding and slice encoding directions. The image f can be recovered by solving 

a constrained convex minimization problem as similar as Ref. [19], 

          
2

1 22 1
argmin{ TV( )}− + +

f
b F f Wf fu λ λ                                 (13) 

where b is the measured k-space data; 
uF  is the random subset of the rows of the Fourier 

encoding matrix; W is the sparsifying transform matrix; TV( )⋅  is total variation; 
1λ  and 

2λ  are 

constant regularization parameters. 

Although CS has been demonstrated to accelerate the speed of data acquisition in several 

Fourier-encoded MRI imaging applications, Fourier encoding may not be optimal for the CS 

theory, and is known to have some limitations [55, 56]. Firstly, Fourier matrix is known to need 

more measurement than random matrices for exact recovery. Secondly, Fourier encoding does not 

spread out the signal energy for natural images, on the contrary, Fourier encoding concentrates 

the energy in the low-frequency region. Actually, Nyquist sampling is still required in the low-

frequency region, which leads to insufficient sampling of high-frequency components at high 

under-sampling factors. Finally, Fourier encoding is not universal, which is only maximum 

incoherent with the canonical basis or some spatial wavelet transforms. As a result, the incoherent 
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condition is weakly satisfied for some sparsifying transforms such as the coarse scale of wavelet 

transform [55]. 

 

  

Fig. 7 k-space comparison of Fourier (left) and non-Fourier (right) encoding. 

 

As seen as the Fig.7, the Fourier and non-Fourier (Toeplitz) encodings can generate different 

k-space raw dataset. For Fourier encoding, the energy in frequency domain is concentrated; the k-

space is high coherent; there is high SNR in the low frequency regions and low SNR in the high 

frequency regions. But, for non-Fourier encoding, the energy in frequency domain in non-

concentrated; the k-space is high incoherent; there is homogeneous SNR. Therefore, some people 

have investigated to use non-Fourier encoding for CS MRI [24-29]. For example, independently 

identically distributed (i.i.d.) Gaussian random matrices have been proved to have several 

favorable properties as a CS matrix, such as universal and spread out. It has been studied for MRI 

as an alternative to Fourier encoding. However, the memory usage and computations are 

demanding in reconstructing the large-scale 3D image volume. Toeplitz random matrices have 
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been shown to share similar properties as i.i.d. random matrices, but with more efficient memory 

usage and computations. 2D Toeplitz random encoding has also been investigated by the authors 

for CS MRI [25-27]. 2D random excitation [28] shows some promising results. But, a complete 

2D random excitation may not be practical, because it requires a very long RF excitation profile 

for pulse sequences. Spread spectrum MRI [29] is another way to address this issue by a linear 

chirp modulation instead of the random modulation, which has been implemented physically 

using a second-order shim coil. The linear chirp is able to spread out the signal energy in the 

measurement domain. But, this method is constrained by the second-order shim coil and the 

MPRAG sequence. In sum, none of these existing non-Fourier methods have demonstrated 

notable improvement over Fourier encoding in real experiments. 

We propose a hybrid encoding scheme with a novel pulse sequence [30]. Based on the 

conventional Fourier pulse sequence, the novel pulse sequence replaces the Fourier encoding 

along the phase encoding direction by a circulant random encoding. The encoding scheme excites 

the object along the “phase encoding” direction randomly. This excitation profile is repeated but 

shifted by a single pixel spatially during each excitation. The corresponding sensing matrix has a 

circulant structure with independent random complex elements. With the proposed hybrid 

encoding scheme, the benefits of both Fourier encoding and random encoding can be achieved 

simultaneously. The low frequency signal can still be densely sampled in the Fourier encoding 

direction for high SNR. At the same time, the signal energy is more spread out in the circulant 

random encoding direction such that high-frequency information is adequately sampled. Using 

both simulation and real experiments, we demonstrate that hybrid encoding under 3D encoding is 

superior to 3D Fourier encoding in preserving resolution at the same reduction factors. 

3.2.1. Compressed Sensing 

Compressed Sensing /compressive sampling (CS) theory [17, 18] is employed to reconstruct 

a signal which is sparse or compressible in multi-scale bases, such as wavelet bases. In the CS 
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theory, the desire signal is a length-N signal vector: f C∈ N ; the measurement:b C∈ M is a 

length-M measurement vector; the matrix: E C ×∈ M N is the encoding matrix with M << N , and 

the vector: C∈ Mηηηη  is a length-M noise vector. The measurement model satisfies: 

b Ef+ηηηη=  , with E ΦΨ=                                                 (14) 

where the matrix Ψ is a sparsifying transform matrix. The basic CS reconstruction ̂f of desire 

signal f  is solving an L-1 minimization problem: 

1
ˆ arg min

f C
f Ψf

∈
=

N
 , s.t. 

2

2
b Ef εεεε− ≤                                   (15) 

where the L-1 norm and L-2 norm are respectively defined as 
1

x i i
x= ∑  and 

2

2
x i i

x= ∑ for all k-sparse vector x R∈ N ; the εεεε  is the noise level of the noise vector 

ηηηη . The desire signal f  can be exactly and stably recovered by the CS reconstruction, if the 

matrix Φ  satisfies restricted isometric properties (RIPs) [17]. Theoretically, the measurement 

matrix Φhas restricted isometric properties of order K if the inequality is satisfied, 

( ) ( )2 2 2

2 2 2
1 1K Kx x xδ δδ δδ δδ δ− ≤ Φ ≤ +                                     (16) 

for all K-sparse (length-K of nonzero) signals x. The RIP condition does not hold forK M< , 

but it may hold for smallerK . Actually, the RIP condition is a stable embedding. 

If
2

2 1
K

δδδδ < − , then for all k-sparse vector x  such that Φx b= , the L-1 solution is equal to 

the L-0 solution [19]. And if 
2K

δδδδ have injectivity; smaller 
2K

δδδδ more stable. If the noise level 

2
η εη εη εη ε≤  and

2
2 1

K
δδδδ < − , then,  

( )* 1 2

0 112
ˆˆ-x x

k
C k x Cσ εσ εσ εσ ε−≤ ⋅ + ⋅                                     (17) 

where *x is the L-1 solution; x̂  is the proposed k-sparse vector; and 

( )
11

ˆ ˆmin
k

k
z

x x zσσσσ
∈Σ

= − where z
k

∈Σ that is [19],  
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( )#supp x k≤ .                                                      (18) 

For an arbitrary pair of matrices E  andΨ , it is often computationally infeasible to calculate 

practically-useful guarantees on the quality and robustness of the CS reconstruction [24]. The 

known reconstruction bounds for matrices with entries drawn at random from various probability 

distributions is, 

/ log( / )k C M N M≤ ⋅                                             (19) 

Usually, it is difficult to verify RIP for a given matrix E , and requires checking eigenvalues of 

each sub-matrix of the matrix E . The random matricesE , such as i.i.d. Gaussian entries, i.i.d. 

Bernoulli entries, i.i.d. sub-Gaussian entries, random Fourier ensemble, random subset of 

incoherent dictionary, Toeplitz, etc., have been proved to satisfy RIP condition. If Ψ is an 

identity matrix, M and Nare large, then CS reconstruction is guaranteed to be robust with high 

probability if the matrix E is a randomly under-sampled discrete Fourier transform operator [17-

19, 24]. However, Fourier encoding is not necessarily well suited to CS reconstruction with 

arbitrary Ψ [24]. Practically, the SNR of readout cannot be uniform for measuring instruments. 

As a result, the use of non-Fourier encoding schemes for CS-MRI could also potentially yield 

benefits [24]. 

 

3.2.2. Circulant random matrices 

 

Although i.i.d random matrices have been proved to satisfy the restricted isometry property 

(RIP) condtion [17], the computation and memory usage are expensive for reconstructing MR 

images. Toeplitz and circulant matrices haven been shown to be almost as effective as the i.i.d. 

Gaussian random matrices in the context of CS, but require a significant redcution in computation 
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and storage [57-61]. In particular, a circulant matrix C is a special Toeplitz matrix and has the 

form, 

1 2

1 1

2 3 1

C

n

n n

h h h

h h h

h h h

−

 
 
 =
 
 
 

L

L

M O O M

L

 ,                                                   (20) 

where 1 2, , nh h hL  are the complex numbers and n  is the size of matrix. This matrix C is 

known to be decomposed into 
1 2 *

1 1C F Fn−= ∑ , where the matrix 
1F  expresses the 1D Fourier 

matrix, and [ ]( )1 2, , ndiag σ σ σ∑ = L  is a diagonal matrix whose non-zero entries are the 1D 

Fourier transform of vector [ ]1 2, , nh h h h= L . Such a decomposition suggests that multiplication 

of the circulant matrix C  with one signal x  (equivalent to circular convolution) can be 

efficiently calculated by a point-wise production of two length-n vectors in the Fourier domain. A 

fast algorithm for CS reconstruction has also been developed for circulant measurements based 

on this property [61].  Here, in our design, iσ ’s are chosen as complex numbers with uniform 

magnitudes and random phases which is uniformly distributed on [ ]0,2π . Such a choice can 

further reduce computation, and gaurante to generate the enough excitations to decarease alaising 

artifacts. When the raw data are be reconstracted, a linear matix equation is mainly sloved. The 

eaquation is given: Cx b= , where C  is a circulant squanre matix of size N N× . Usually, we 

can solve this equation with the inverse matrix of C , 
1Cx b−= , but its computaion is very 

slow which needs to caculate the inverse matrix of C and Gaussian elimination. Because C  is a 

circulant squanre matix, we also can solve this equation with the transposition matrix of C , 

CTx b= , but it also needs to caculate Gaussian elimination. However, we can write the 

equation as the circulant convolution c x b∗ = , where c is the first column of C , and the vector 

c, x  and b  are cyclically extended in each direction. Using the results of the circular 
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convolution theorem, we can use the discret Fourier transform to transform the cyclic convolution 

into component-wise mutiplication ( ) ( ) ( ) ( )n n n nF c x F c F x F b∗ = = , so that , to solve the 

equantion Cx b= can become caculating, ( ) ( )( )1

g

T

n n nv v v Z
x F F b F c−

∈

 =   
[62], where 

gZ  is a cyclic group. If the fast Fourier transform is used, this algorithem is much faster than the 

standard Gaussian elimination. If the sizes of x , c and b are allN , the computional complextiy 

of this algorithm is ( )logO N N . If the raw dataset is a three-dimentional k-space data, this 

algorithem is used to decoded circulant random encoding along one direction and the fast Fourier 

transform is applied along the other two directions. Here, we assume that the size of the fully-

sampled data is N N M× × along X , Y and z  directions. If the data size is a cube dataset, 

M is equal to than N ; otherwise M is less than N . The computational complexty of the 

proposed method for this 3D k-space data is ( )2 logO MN N , which is compaterble with the 

computational complexty of the inverse fast Fourier transformation (FFT), ( )2 logO MN N . 

Theerfore, the decoding computational complexty of the proposed method is as same as the 

conventional Fourier-encoded method. 

 

3.2.2. Hybrid Encoding Scheme  

Our objective is to design one MR physical-implementable hybrid encoding scheme for 2D 

and 3D imaging which are superior to the conventional Fourier encoding in the CS reconstruction 

framework. Actually, the commercial MRI hardware constrains always require fully sampling 

along readout directions, hence we cannot undersample in k-space to accelerate the image 

reconstruction along the readout direction. Therefore, to implement the proposed non-Fourier 

encoded method, we mix the expected Circulant random encoding and the conventional Fourier 

encoding in 2D imaging to achieve 1D accelerations and 3D imaging to achieve 2D accelerations. 
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Otherwise, in the CS reconstruction framework, 2D Hybrid-encoded imaging cannot be compared 

with the 2D Fourier-encoded imaging under the fair sampling situations of the low and high 

frequency domains, as seen as Fig.8. And only 3D Hybrid-encoded imaging (a) can ensure the 

fair sampling situations comparing to the 3D Fourier-encoded imaging (b). Therefore, we just 

discuss the 3D imaging of Hybrid and Fourier encoding.    

 

 

(a) 
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(b) 

Fig.8 Illustration of the sampling acqusitions of the 3D Hybrid encoding (a) and 3D Foureir 

encoding (b) methods. The sampling patterns of Hybrid and Fourier are seperately based on the 

characters of the raw k-space datasets. Without loss of generality, X is assumed to be the readout, 

Y is assumed to be the circulant random encoding or phase encoding, and Z is assumed to be the 

slice encoding. The undersampling is in the ky-kz plane of k-space. Hybrid has a variable density 

random sampling is used along the kz direction, and a uniform random sampling is along the ky 

direction. Fourier encoding has a variable density random sampling is used along the kz direction, 

and a variable random sampling is along the ky direction. 

 

As the CS reconstruction of the 3D Fourier-encoded imaging, the CS reconstruction of the 3D 

Hybrid-encoded imaging is also in the Y-Z plane for under-sampled raw k-space datasets per slice 

along the X direction, because the raw k-space data along X direction which usually is the readout 

direction must be fully sampled. Assuming the vectored image to be reconstructed in the Y-Z 

plane asf , the encoding matrixH can be written as the Kronecker product of a circulant random 

matrix (i.e., C in Eq. (20)) and a 1D Fourier transform matrix. The matrixH has a block circulant 

structure with each block being a Fourier transform matrix. The original vectored imagef , can 

be reconstructed from the undersampled datab by solving, 

2

1 22 1
argmin{ TV( )}− + +

f
b H f Wf fu λ λ                                  (21) 

where all notations are the same as in Eq. (13) except that the Fourier matrixF is replaced by the 

circulant-Fourier encoding matrixH ; Hu is the subset matrix of the circulant-Fourier encoding 

matrixH ; W is the wavelet transform matrix; TV( )⋅  is total variation; 
1λ  and 

2λ  are constant 

regularization parameters; 1⋅ is the L-1 norm and 2
⋅ is the L-2 norm. To solve the optimized 

problem, nonlinear conjugate gradient method is applied to minimize the target function in the Eq. 
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(31). Actually, there are still some methods [61, 62] used to accelerate the image reconstructions 

because of the special property of the Toeplitz structure.  

 

3.2.3. Pulse Sequence Design 

According to the MR physics of magnetization with small tip angles [63], the excitation 

profile should satisfy the following equation, when the situation of the small tip angles,  

( )
0 10

( ) ( ) ( ) ⋅= ⋅∫ k rr r
T j tM j M B t e dtγ .                              (22) 

where, γ is the gyromagnetic ratio;r is a unit vector in the k-space; 1( )B t  is a magnetic field 

created from an RF coil which oscillates at the Larmor frequency;
 0( )rM  is the initial 

equilibrium magnetization, usually along Z direction; ( )rM  is the nuclear 

magnetization; ( )k t is a trajectory in k-space, which is usually the area of the remaining gradient,  

( )( )
2

γ
τ τ

π
= ∫k G

T

t
t d  .                                                 (23)  

Where ( )G τ is the gradient vector in the pulse sequences, which usually should satisfy the 

equation, ( ) ( ) ( ) ( )G
T

x y zt G t G t G t =   .  

The Eq.(22) means that 1( )B t can satisfy the Fourier transform at small tip angles, whatever 

the random pulse or other. But at the large tip angles, this Fourier transform cannot be exactly 

guaranteed. Usually, they are the small tip angles when the tip angles are not over 30°; otherwise, 

they are the larger tip angles [64-69]. But this conclusion is just drawn from the conventional 

SINC pulse as the RF pulses which have the constant flip angles. The random pulse as the RF 

pulses do have variant flip angles instead of the constant flip angels, which only have the 
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conception of the average flip angles. Whatever, 1( )B t  should less than an upper bound for 

satisfying the Fourier transform, and also larger than a lower bound for gaining the cognizable 

signal over background noise. Therefore, in term of experimental experiences, the maximum 

amplitude of 1( )B t  should be the 1/4~1/3 of the maximum amplitude of 90° RF pulses. 

 

 

Fig. 9 Timing diagram of the pulse sequence for the proposed 3D hybrid encoding scheme. The 

RF pulses are complex numbers with uniform magnitudes and random phases. Gy is turned on 

simutanisuly as the RF pulses. After the RF excitation, the slice encoding gradient Gz is turned on 

along z followed by the readout gradient Gx along x. 

 

The pulse sequence designed for the proposed circulant random encoding is shown in Fig. 9. 

Specifically, a random pulse with a constant magnitude and random phases after Fourier 

transformation is applied as the excitation profiles of the RF pulses. Each random RF pulse 

generates a random excitation profile along the Y direction. Along Y direction, a fixed gradient 

Gy is turned on to generate random flip angles along the Y direction. To construct the circulant 
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structure for the random encoding, a linear phase shift is applied in image domain at subsequent 

excitations. The linear phase shift is designed such that the excitations from consecutive 

excitations are spatially shifted by a single pixel along the Y direction.  

Each excitation corresponds to a row of the circulant random encoding matrix C  in Eq. (20). 

As seen on Fig. 8, the amplitudes and phases are shifted, TR by TR, to implement circulant 

random encoding along Y axis. In general, a 1B  field applied on-resonance for a finite time is 

called an ‘RF pulse.’ The RF excitation will allow controlling the magnetization vector. If the 

simplest envelop is a rectangular pulse with the amplitude 1B  and the durationpτ , yielding a 

simple RF burst. In the rotation frame, the 1B filed generated by the RF excitation is given by, 

( ) ( )1 1
e jB t B t eϕ= . Here, ( )1

eB t  is the envelop of ( )1B t  and ϕ is its initial phase. The final 

tip angle α after an RF excitation pulse of the duration pτ is given by 

( )10

p eB t dt
τ

α γ= ∫ ,                                                            (24) 

if assuming the initial phase 0ϕ = . For the special case of a rectangular, the tip angle 

is 1 pBα γ τ= . However, the final tip angle α after an RF excitation pulse of the duration pτ  for 

random encoding cannot be calculated directly. If ( )1B t are real numbers, the tip angle α can be 

calculated by the Eq. (24). For example, the root mean square flip angle [24] can be computed as 

the tip angleα . However, if ( )1B t  are complex numbers, the final tip angle α  cannot be 

calculated by the Eq. (24) after an RF excitation pulse of the durationpτ . So the simulation with 

the Bloch equations [1, 43, 66, and 84] should be applied to calculate the final tip angleα . The 

Bloch simulation shows that the final tip angle α is variant each TR, different from the constant 

tip angle α of Fourier encoding. 
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After the RF excitation, the slice encoding gradient Gz is still turned on along Z axis followed 

by the readout gradient Gx along X axis. If assuming the field of view fFOV of readout, the 

gyromagnetic ratioγ and the bandwidth BW for the receiver digitizer, the amplitude Gx of the 

Gx gradient is equal to, 

f

BW
Gx

FOVγ
= .                                                              (25) 

If an isotropic cubic FOV, the gradients should satisfy the following equation, 

zy xRF readout zG ∆t =G∆t =∆G T
.                                      (26) 

For a non-isotropic cubic FOV, such as the data size of X×Y×Z is 256×256×32, the gradients are 

designed depend on the corresponding scalar size per voxel. Here, yG  is the amplitude of Gy 

gradient along Y direction; xG  is the amplitude of Gx  gradient along X direction; z∆G  is the 

variant amplitude of slice ending along Z direction; RF∆t  and readout∆ t  are the durations of RF 

excitation and readout acquisition, and T z  is the duration of Gz  gradient. Usually, RF∆t is a 

constant value which satisfies the multiple of the data size along Y direction, and Gx has been 

calculated by the Eq. (25). Here, readout∆t satisfies readout∆t =1/BW , thus Gycan be calculated by 

the Eq. (26). It means that if hoping to raise the amplitude of the gradientGy, rBWshould be 

decreased. Otherwise, if decreasingGy , rBWshould be increased. 

As seen as Fig.10, to realize 2D imaging, we have demonstrated the feasibility of Toeplitz 

random encoding in 2D imaging using MR experiments in our prior work [26, 27]. For 2D 

hybrid-encoded imaging the sequence is realized as the Fig. 4, which is based on spin echo pulse 

sequence and has the 180° RF pulse to implement the slice selection along Z direction. There is a 

corresponding gradient simultaneously with the 180° RF pulse along Z direction. To guarantee 

the signal quality of readout, the two crushers should be applied because the 180° RF pulse may 
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not be exactly 180°, and it may not refocus everything at time TE as we expect. The crusher 

gradient after the 180° RF pulse destroys the free induction decay (FID), the one before the 180° 

RF pulse is to balance the one after. Otherwise, especially for reconstruction, it will change the 

shift direction of the encoding matrixC , if the 180° RF pulse is added into the pulse sequence. 

Because, the 180° RF pulse reverses the magnetization vector direction in the transverse plane, 

the reverse circulant shifting direction of the encoding matrix C∗ should be equal to,  

1 2

2 3 1

1 1

C

n

n n

h h h

h h h

h h h

∗

−

 
 
 =
 
 
 

L

L

M O O M

L

 .                                                  (27) 

where  
1 2, , nh h hL  are the complex numbers and n  is the matrix size, which is the actual image 

size along the Y direction.  

Fig. 10 Timing diagram of the pulse sequence for the proposed 2D hybrid encoding scheme. It’s 

based on spin echo pulse sequence and has the 180° RF pulse to implement the slice selection 

along Z direction. There is a corresponding gradient simultaneously with the 180° RF pulse along 

Z direction. There are two crusher gradients to destroy the free induction decay (FID). 
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3.2.4. Bloch Equation Simulation 

The Bloch equations are a set of macroscopic equations that are used to calculate the nuclear 

magnetization in the classical nuclear magnetic resonance (NMR). Because its solution includes 

T1 and T2 relaxation time and precession, its simulation is the most accurate way to study the 

effect of pulse sequence on magnetization. These phenomenological equations were introduced 

by Felix Bloch in 1946 [85]. Here T1 is the spin-lattice relaxation time, and various tissues with 

the body have different T1 values; T2 is the spin-spin relaxation time, and various tissues with the 

body have different T2 values; usually, T1 is larger than T2.  If assuming that ( )M t is the nuclear 

magnetization which should satisfy the equation, ( ) ( ) ( ) ( )M
T

x y yt M t M t M t =   and ( )B t is the 

magnetic field which should satisfy the equation( ) ( ) ( ) ( )B
T

x y yt B t B t B t =   , then the Bloch 

equations are as follows: 

( )
( ) ( )( ) ( )

( )
( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

2

2

0

2

M B

M B

M B

x x

x

y y

y

z z

z

dM t M t
t t

dt T

dM t M t
t t

dt T

dM t M t M
t t

dt T

γ

γ

γ


= × −




= × −

 −
 = × −


,                                                  (28) 

where γ  is the gyromagnetic ratio and ( ) ( )M Bt t× is the cross product of ( )M t

 

and ( )B t . 0M is 

the steady state nuclear magnetization when t→∞.  The Eq. (28) is for the Larmor precession of 

the nuclear magnetization ( )M t

 

in the external magnetic field( )B t . The relaxation terms which 

are the established physical processes of transverse and longitudinal relaxation of nuclear 

magnetization ( )M t , are equal to,  

0

2 2 1

( )yx z
MM M M

T T T

−
− − − .                                                  (29) 

According to the Eq. (28), there are spin-lattice and spin-spin relaxation. Spin-lattice relaxation is 

the mechanism by which the z component of the magnetization vector comes into thermodynamic 
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equilibrium with its surroundings (the "lattice"). It is characterized by the spin–lattice relaxation 

time, named as T1. Spin-spin relaxation is the mechanism by xyM  which is xy x yM M jM= +  , 

the transverse component of the magnetization vector, exponentially decays towards its 

equilibrium value of zero. It is a time constant characterizing the signal decay, named as T2.  

Therefore, according to the different measurement requirements, there are T1 weighted, T2 

weighted scans, T2* weighted scans and proton density weighted scans using different TE and 

TR parameters on different pulse sequences. T1 weighted scans refer to a set of standard scans. 

T1 weighted images can be obtained by setting short TR (TR<750ms ) and TE (TE<40ms ) 

values in conventional SE sequences, while in GRE Sequences they can be obtained by using flip 

angles of larger than 50o while setting TE values to less than 15ms. T2 weighted scans are another 

basic type. T2 weighted images can be obtained by setting long TR (TR>1500ms) and 

TE  (TE>75ms) values in conventional SE  sequences, while in GRE sequences they can be 

obtained by using flip angles of less than 40° instead of 90° while setting TE values to above 

30ms. T2* weighted scans use a GRE sequence, with long TE and long TR. Proton density 

weighted scans try to have no contrast from either T2 or T1 decay, the only signal change coming 

from differences in the amount of available spins (hydrogen nuclei in water). It uses a SE or 

sometimes a GRE sequence, with short TE and long TR.  
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Fig. 11 Timing diagram of the traditional SE pulse sequence. The SE sequence has a steady-state 

magnetization. And the SE sequence has a 90-degree excitation and a 180-degree refocusing 

pulse that is TE/2 after the 90-degree pulse sequence. 

 

The SE sequence is the most commonly used pulse sequence in clinical imaging, as seen as 

Fig.11. The SE sequence which has a steady-state magnetization, consists of two radiofrequency 

pulses, a 90-degree excitation and a 180-degree refocusing pulse that is TE/2 after the 90-degree 

pulse sequence. With each repetition, a k-space line is filled with a different phase encoding. The 

180° rephasing pulse eliminates field inhomogeneity and chemical shift effects at the echo to 

obtain an echo that is weighted in T2 and not in T2*. Proper selection of the TE time of the pulse 

sequence can help to control the amount of T1 or T2 contrast present in the image. 
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Fig. 12 Timing diagram of the traditional GRE pulse sequence. The GRE sequence has a none-

steady-state magnetization and only a 90-degree excitation. 

 

The GRE sequence is generated by using a pair of bipolar gradient pulses which has a none-

steady-state magnetization consists of an excitation and readout as usual, as seen as Fig.12. There 

is no refocusing 180° pulse and the data are sampled during a gradient echo, which is achieved 

by dephasing the spins with a negatively pulsed gradient before they are rephased by an 

opposite gradient with opposite polarity to generate the echo. The flip angle of the excitation is 

typically between 0° and 90°, which also be slowly increased during data acquisition. With a 

small flip angle there is a reduction in the value of transverse magnetization that will affect 

subsequent RF pulses. However, at the end of sequence is a spoiler-gradient basically a gradient 

that tried to completely dephase the transverse magnetization across voxel. GRE techniques are 

very common. It is useful to compare their contrast characteristics to the other sequences here. 

GRE sequences have a lower SAR, are more sensitive to field inhomogeneity and have a reduced 

crosstalk. Gradient Recalled Acquisition in Steady State (GRASS) sequence is one of GRE 
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sequences with low flip angles and without the spoiler pulse. As a result, any transverse 

magnetization still present at the time of the next RF pulse is incorporated into the steady state. 

GRASS uses a RF pulse that alternates in sign. Because there is still some remaining transverse 

magnetization at the time of the RF pulse, a RF pulse of a degree flips the spins less than a degree 

from the longitudinal axis. Spoiled Gradient Recalled (SPGR) sequence is similar to the 

spoiled GRASS sequence. The spoiled gradient recalled (SPGR) acquisition in steady state uses 

semi-random changes in the phase of the radio frequency (RF) pulses to produce a spatially 

independent phase shift.  

The proposed Hybrid encoding pulse sequence is simulated using the Bloch equations. The 

RF pulses are from the circulant matrixC , as seen as Eq. (20), which has some complex numbers 

with uniform constatent magnitudes and random initial phases which is uniformly distributed on 

[ ]0,2π . The RF pulses are acually the Fourier transformation of every column of the circulant 

matrixC . Each random RF pulse generates a random excitation at every TR along the Y direction. 

A gradient Gy is turned on along Y direction, simultaneously with the RF pulse. Others are as 

same as SE or GRE pulse sequences. As seen as the Fig. 13, the dephasing gradient after the Gy 

gradient can affect the phase of the k-space raw data. Actually it will change the position of the 

filed-of-view (FOV) in the image domain. Without the dephasing gradient seen Fig.13 (a, c) and 

with the dephasing gradient seen Fig.13 (b, d), the image can also be well decoded or 

reconstructed. The Bloch equation simulation shows that the distribution of the k-space raw 

dataset will variant because of the amplitude of the dephasing gradient. 
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(a)                                                                          (b)  

           

(c)                                                                         (d)  

Fig. 13 Timing diagrams without depasing gradient (a) and with depasing gradient (b) and k-

space raw data without depasing gradient (c) and with depasing gradient (d) of the proposed 

Hybrid encoding pulse sequence 

 

3.2.5. Pulse Sequence Implementation 

The proposed 3D Hybrid encoding methods have been implemented on the 1.5 and 3.0 Tesla 

GE SIGNA MR Systems at GE Healthcare, Waukesha, WI. The system hardware consists from 

two parts: the host and target. The target usually is the SIGNA MR system, and the host usually is 

the workstation system. The host running on Linux OS is used to set scan prescription, image 
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displaying and post-processing. The target is used to generate waveform excitation, data 

acquisition, filtering and reconstruction. The components of the target can directly control the 

elements in the magnet room. Sometimes they referred to as Transceiver Processing and Storage 

(TPS), Acquisition Processing System (APS), Application Gateway Processor (AGP), Digital 

Receiver Filter (DRF), Interface & Remote Function (IRF), Scan Control Processor (SCP), Array 

Processor (AP) and Sequence Related Functions/Trigger & Rotational Functions (SRF/TRF), as 

seen as Fig. 14. In general, the MR excitation unit consists of the x, y, and z MR gradient magnet 

coils, as well as RF transmitter and receiver coils. The TPS unit controls pulses to all MR 

gradient magnet coils, as well as RF coils, and receives (acquires and stores) MR data according 

to the pulse sequence software. The Host computer serves as the user interface (as seen as Fig. 

15), image database, and communication gateway for the system console. A computer is 

connected to the SIGNA computer system via a switched Ethernet network using the TCP/IP 

protocol, which downloads the k-space raw data, and reconstruct images on the MATLAB 

platform. The 3D Hybrid encoding pulse sequence types was developed based on gradient-

recalled echo pulse sequences, as seen as Fig. 16. The amplitude of the RF pulse is constant, and 

the phase of RF pulse and the amplitude of the X, Y and Z gradients obey the rulers and 

calculations described on the Chapter 3.2.3. According to the pulse sequences as seen as Fig. 16, 

the actual pulse sequences can add some additional components to become the proposed pulse 

sequences based on 3D GRASS or 3D SPGR pulse sequences. Actually the proposed Hybrid 

encoding pulse sequence based on 3D GRASS pulse sequence has not spoiler pulse, but the 

proposed Hybrid encoding pulse sequence based on 3D SPGR pulse sequence has spoiler pulse. 

The actual experimental results shows that the proposed Hybrid encoding pulse sequences based 

on 3D SPGR has less aliasing artifacts and larger amplitudes of the RF pulses than the proposed 

Hybrid encoding pulse sequences based on 3D GRASS pulse sequence. 
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Fig. 14 Basic components of the target in GE SIGNA MR Systems. They are Transceiver 

Processing and Storage (TPS), Acquisition Processing System (APS), Application Gateway 

Processor (AGP), Digital Receiver Filter (DRF), Interface & Remote Function (IRF), Scan 

Control Processor (SCP), Array Processor (AP) and Sequence Related Functions/Trigger & 

Rotational Functions (SRF/TRF). 
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Fig. 15 Human interface of the host computer. The pulse sequences are controlled by the 

parameters on the human interface on the host computer, such as TE, TR, FOV, BW, thickness, 

flip angle, spacing, etc. 
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Fig. 16 Actual timing digram of the proposed 3D Hybrid encoding pulse sequence. It has 

circulant random encoding along Y axis, slice encoding along Z axis, and frequency encoding 

along X axis. 

 

3.3 Pseudo 2D Random Sampling in CS MRI 

We design a practical random sampling pattern for conventional Cartesian MRI that performs 

similarly to the 2D random sampling pattern on SparseMRI [19]. The 2D random sampling uses a 

2D variable-density sampling pattern with denser sampling near the center of the k-space. The 

probability function for sampling at a location r
r
 in k-space is [19]:  

( )
( )

1

1

1

≤


= > −

r
d

dp

r R

p r
r R

r

                                                                (30) 
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where
2

r r=
r

, [ ]T
x yr r r=

r
, and Rd is a real number and 0 1< <dR . Since the 2D random 

sampling cannot be physically implemented in conventional MRI scanners, 1D random sampling 

is adopted instead. The 1D random sampling uses a 1D variable-density sampling scheme with 

denser sampling near the center of the k-space. The corresponding probability function is:  

( )
( )

1

1

1

d

dp

x

r R

p r
r R

r

≤


=  > −

r
                                                        (31) 

where the parameters are defined as same as Eq. (30).  

   Our proposed sampling scheme adopts a distribution function different from either 2D or 

1D random sampling. It uses two 1D variable-density sampling that are orthogonal to each other 

in Cartesian k-space, also with denser sampling near the center of the k-space. The corresponding 

probability function is:  

( )
( ) ( )

1

1

1 1

≤
 −=  + >
 − −

r
d

dp p

x y

r R

a ap r r R
r r

                                              (32) 

where the parameters are defined as same as Eq. (30).  a  is a constant that depend on the number 

of sampling lines along kx direction of k-space. 

Fig. 17 compares the probability functions of the three random sampling patterns. It is 

obvious that the proposed pseudo 2D random sampling is closer to the 2D random sampling than 

the 1D random sampling is. As a result, the proposed pseudo 2D random sampling should 

outperform the 1D random sampling in CS reconstruction. 
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(a) pseudo 2D random sampling                (b) 1D Random Sampling                          (c) 2D Random Sampling 

Fig. 17 Probability function (top row) and the corresponding sampling pattern (bottom row) of 

the three random sampling patterns.  

 

In conventional Cartesian MRI, the phase encoding gradient and frequency encoding gradient 

are applied on orthogonal directions in k-space [69]. The amplitude of the phase encoding 

gradient is changed at each excitation to sample a different line in k-space. The 1D random 

sampling can be easily implemented by changing the amplitudes of the phase encoding randomly. 

However, it is extremely difficult (if not impossible) to implement 2D random sampling which 

requires simultaneous change of the phase encoding and frequency encoding gradients randomly. 

In current commercial MR systems, gradients of pulse sequences are limited by maximum 

amplitude and maximum slew-rate. In addition, high gradient amplitudes and rapid switching can 

produce peripheral nerve stimulation. 

The proposed pseudo 2D random sampling scheme can be implemented on a conventional 

MRI scanner as easily as the 1D scheme. To realize the proposed sampling scheme, both the 

amplitude and the direction of the phase encoding gradient have to be changed. For example, if 

the total N lines are to be acquired, the first N1 lines are acquired with phase encoding along kx 
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direction and frequency encoding along ky direction, and the rest (N-N1) lines with phase 

encoding along ky direction and frequency encoding along kx direction. In either case, these data 

are randomly undersampled only along the phase encoding direction, while keeping the frequency 

encoding direction to be fully sampled. The value of N depends on the undersampling factor to 

achieve, and the value of N1 is equal to a �N, where a is the constant in Eq. (32).  

Fig. 18 shows the timing diagram of the pulse sequences for the proposed pseudo 2D random 

sampling. The gradients shown in solid red represent the 1D random sampling sequence with 

phase encoding along y and frequency encoding along kx direction. In the proposed pseudo 2D 

random sampling, we alternate between the gradients in solid red and those in dashed green. It 

corresponds to alternatively switching phase and frequency encoding directions.  

 

Fig. 18 Timing diagram of the pulse sequences for the pseudo 2D random sampling scheme. 

Dynamically swap red and green directions to alternatively change phase encoding and frequency 

encoding directions on real physics k-space. 
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As seen in Fig. 17 (a), at certain locations of the k-space, the data are acquired twice – one 

from the horizontal lines and the other from the vertical lines. The two values are averaged to 

represent the value of the data at this point at the ideal situation. There are a total of N1 × (N-N1) 

such points. Although there is redundancy in such data acquisition, the averaging can improve the 

signal to noise ratio of the acquired data and thus the reconstructed image. With the data acquired 

using the proposed sampling scheme, the image is reconstructed by the following nonlinear 

convex program [19, 70-71],  

( ){ }1arg min || ||+ ⋅
f

Ψf fTVα  s.t. 2|| ||− <uF f b ε                     (33) 

where f is the spare image to be reconstructed and is presented as a vector; Ψ denotes the linear 

operator that transforms the image from a pixel representation into a sparse representation, such 

as wavelet transform; b is the acquired k-space data; uF  is Fourier Transform associated with the 

proposed under-sampling pattern; ( )TV ⋅  is total-variation function; ε  controls the fidelity of 

reconstruction to the measured data. Here, the threshold parameter ε is usually set below the 

expected noise level. 

 

4. Simulations and Experiments 

4.1 Cross-GRAPPA 

The proposed Cross-GRAPPA was evaluated using simulation, phantom experiment, and two 

in vivo experiments. All reconstruction schemes were implemented in MATLAB (MathWorks, 

Natick, MA) on an HP XW8400 workstation with 2.33GHz CPU and 2GB RAM. The SoS 

reconstruction from the fully sampled data was used as the reference image for comparisons. The 

proposed Cross-GRAPPA method was compared with the conventional GRAPPA. The 
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reconstructed images with different ORFs and number of ACS lines were shown for visual 

comparison of noise and artifacts. The coefficient of 4 blocks and 5 columns was employed for 

all reconstructions. On the following results, “Cross” means the proposed Cross-GRAPPA. 

The objective of the simulation is to demonstrate the performance of the proposed method 

under the ideal condition when the ACS and undersampled data are exactly consistent. A set of 

fully acquired in vivo data was used to simulate the acquisition pattern of the proposed Cross-

GRAPPA method by manually omitting the “missing data”. The data set was obtained from a 3T 

commercial MR scanner (GE Healthcare, Waukesha, WI) with an 8-channel head coil (Invivo, 

Gainesville, FL) using a 2D spin echo (SE) sequence (TE/TR = 11/700ms, matrix size = 256 × 

256, FOV = 220mm2). Informed consent was obtained from the volunteer in accordance with the 

institutional review board policy. Both GRAPPA and Cross-GRAPPA were performed at ORFs 

of 2, 3 and 4 with 8, 12 and 16 ACS lines respectively. In addition, we also distribute a fixed 

number of ACS lines to both parallel and orthogonal directions with different ratios. An ORF of 4 

and total of 16 ACS lines were used. It is expected to find an optimal ratio for such a combination. 

A phantom experiment was carried out to demonstrate the performance of the proposed 

method in absence of the chemical shift effects of in vivo study. A uniform water phantom was 

scanned using a gradient echo (GRE) sequence (TE/TR = 10/100 ms, 31.25 kHz bandwidth, 

matrix size = 256×256, FOV = 250 mm2) on a 3T commercial scanner (GE Healthcare, 

Waukesha, WI) with an 8-channel head coil (Invivo, Gainesville, FL). Two sets of fully sampled 

data were acquired separately with two orthogonal readout directions. One dataset was manually 

reduced to generate the undersampled acquisition and the other was reduced to obtain the cross-

sampled ACS data for Cross-GRAPPA. The first dataset was used for conventional GRAPPA. 

Results for both conventional GRAPPA and Cross-GRAPPA were compared with different 

number of ACS lines at an ORF of 4. The comparison is to find the least number of ACS lines 

required for each method to suppress aliasing artifacts.   
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Two in vivo experiments were performed on a 3T commercial MR scanner (GE Healthcare, 

Waukesha, WI) with an 8-channel head coil (Invivo, Gainesville, FL) to validate the proposed 

method in presence of all practical conditions. Brain was chosen to be the anatomical region of 

interest in this study due to minimal chemical-shift effects. All data were acquired in accordance 

with the institutional review board policy. Similar to the phantom experiments, each in vivo 

experiment acquired two sets of fully sampled data with orthogonal readout directions. The first 

experiment uses a spin-echo sequence with parameters TE/TR = 10/550 ms, 31.25 kHz 

bandwidth, matrix size = 256×256, FOV = 220 mm2, and the other one uses a spin-echo sequence 

with TE/TR = 14/500ms, 62.5 kHz bandwidth, matrix size = 256×256, FOV = 240 mm2. 

Conventional GRAPPA and Cross-GRAPPA were both performed at the ORFs of 2, 3 and 4 with 

8, 8, 10 ACS lines, respectively. We also compare conventional GRAPPA and Cross-GRAPPA 

with an increasing number of ACS lines at an ORF of 4 to find the least number required for 

artifacts-free reconstruction. 

 

4.1.1 Simulation 

The reconstruction results of GRAPPA and Cross-GRAPPA are shown in Fig. 19. Cross-

GRAPPA performs similar to GRAPPA at a low ORF of 2, but significantly reduces the aliasing 

artifacts in GRAPPA with only very few ACS lines at higher ORFs. This is because at low ORFs, 

the coefficients can be calibrated accurately with a small amount of ACS data along the direction 

that is undersampled. The increase of ACS data along the undersampled direction by Cross-

GRAPPA does not reduce the aliasing artifacts. At high ORFs, calibration of the coefficients 

demands more ACS data along the undersampled direction than those along the fully sampled 

direction, and thus the benefit of Cross-GRAPPA becomes more evident. On the other hand, it is 

also seen that the reduced aliasing artifacts in Cross-GRAPPA is at the cost of slightly reduced 

SNR. Data co-registration is not necessary here for simulation because both the ACS and 
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undersampled data are obtained from an acquisition with the same readout directions. In summary, 

the simulations show when the data are perfectly consistent, Cross-GRAPPA requires fewer ACS 

lines than GRAPPA to suppress the aliasing artifacts. 

 

 

Fig. 19 GRAPPA and Cross-GRAPPA reconstructions from 8-channel human brain data and 

their corresponding difference images with the reference. The ORFs of 2 with 10 ACS lines, 3 

with 12 ACS lines, and 4 with 16 ACS lines (shown on the top-right corner) were used. 
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Fig. 20 Sampling patterns (top row), reconstructions (middle row) and their corresponding 

difference images (bottom row) with the reference when different combinations of parallel- and 

cross- sampled ACS lines. The ORF is 4 and total number of ACS lines is 16. The distributions 

among the parallel- and cross-sampled directions are 12:4, 10:6, 8:8, 6:10, and 4:12 from left to 

right. 

 

The sampling patterns for a mix of both parallel- and cross-sampled ACS lines are shown in 

Fig. 20 top row. They can be viewed as intermediate transitions from conventional GRAPPA (all 

parallel ACS) to Cross-GRAPPA (all cross ACS) with conventional GRAPPA and Cross-

GRAPPA being two extreme cases. Fig. 20 shows the results when both parallel- and cross-

sampled ACS lines were combined for reconstruction. Different distributions between the two 

directions were used. The results demonstrate that the more cross-sampled ACS lines, the fewer 

the aliasing artifacts. It suggests that it is desirable to acquire all ACS lines in orthogonal when 

only few ACS lines are acquired. 
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4.1.2 Phantom Experiment 

Fig. 21 shows the phantom reconstruction results comparing conventional GRAPPA and 

Cross-GRAPPA. For Cross-GRAPPA, the parameters δx, δy, α, and β for data co-registration were 

initialized to be -1.0, -1.0, 1.0, and 1.0, respectively. After data co-registration, the parameters δx, 

δy, α, and β were optimized to be -0.4653, -0.4425, 0.9987, and -0.0398, respectively. Although 

the optimization process generated parameters that are slightly different for different ORFs and 

ACS lines, the same set of values were used without degrading the image quality. It is seen that 

Cross-GRAPPA performs similarly to conventional GRAPPA when ORF is 2. As the ORF 

increases, conventional GRAPPA requires a much larger amount of ACS data along the 

undersampled direction. When the number of ACS lines is not sufficient, conventional GRAPPA 

reconstructions present aliasing artifacts. Cross-GRAPPA can significantly reduce these aliasing 

artifacts by maximizing the amount of ACS data along the undersampled direction without 

prolonging the ACS acquisition time. The consistent results with simulation suggest that the co-

registration method can effectively align the data with orthogonal readouts for the phantom study. 

In Fig. 22, we increase the number of ACS lines from 14 to 20, 24 and 26 for both 

conventional GRAPPA and Cross-GRAPPA with an ORF of 4. The reconstruction results show 

that conventional GRAPPA reconstruction improves with the number of ACS lines due to the 

increased calibration data along the undersampled direction. In contrast, Cross-GRAPPA remains 

almost the same. This is because more ACS lines in Cross-GRAPPA increases the amount of 

ACS data only along the fully sampled direction in reconstruction and is not contributing to 

artifacts reduction after saturation. Conventional GRAPPA needs at least 26 ACS lines to achieve 

a quality similar to that achieved by Cross-GRAPPA with as few as 14 ACS lines. 
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Fig. 21 GRAPPA and Cross-GRAPPA reconstructions from an 8-channel phantom experiment. 

The top-right corner of each image shows the ORF-ACS combinations of 2-10, 3-12 and 4-16. 
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Fig. 22 Phantom results of GRAPPA (top) and Cross-GRAPPA (bottom) with an ORF of 4 and 

ACS lines of 14, 20, 24 and 26 from left to right. The results show that GRAPPA reconstruction 

improves with the number of ACS lines, while Cross-GRAPPA remains almost the same. 

GRAPPA needs at least 26 ACS lines to achieve a quality similar to that achieved by Cross-

GRAPPA with as few as 14 ACS lines. 

 

4.1.3 In Vivo Experiments 

Fig. 23 shows conventional GRAPPA and Cross-GRAPPA reconstructions for the first 

experiment. For the proposed Cross-GRAPPA, the initial parameters δx, δy, α, and β for data co-

registration were -1.0, -1.0, 1.0, and 1.0, respectively. After data co-registration, the optimized 

parameters δx, δy, α, and β were calculated to be -0.2792, -0.3155, 1.0909, and 0.3987, 

respectively. Consistent with the simulation and phantom studies, conventional GRAPPA and 

Cross-GRAPPA performs similarly well at an ORF of 2. At ORFs of 3 and 4, both present a 

higher level of noise, but Cross-GRAPPA suppresses much more aliasing artifacts than 

conventional GRAPPA with the same number of ACS lines. 
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Fig. 23 GRAPPA and Cross-GRAPPA reconstructions of the first set of 8-channel in vivo data. 

The top-right corner of each image shows the ORF-ACS combinations of 2-8, 3-8 and 4-10. 

 

Fig. 24 compares conventional GRAPPA and Cross-GRAPPA with increasing numbers of 

ACS lines at an ORF of 4. The results show that GRAPPA reconstruction improves with the 

number of ACS lines, while Cross-GRAPPA barely changes. Even with 32 ACS lines, visible 

residual aliasing artifacts still present in conventional GRAPPA, while the artifacts are well 

suppressed in Cross-GRAPPA with only 10 ACS lines. 



60 

 

 

 

 

Fig. 24 GRAPPA and Cross-GRAPPA reconstructions of the first set of 8-channel brain data. The 

top-right corner of each image shows the ORF-ACS combinations of 4-8, 4-20 and 4-32. 

 

Fig. 24 shows conventional GRAPPA and Cross-GRAPPA reconstructions for two slices of 

the other in vivo experiments. The co-registration parameters δx, δy, α, and β were calculated to be 

-0.4569, -0.5650, 1.0219, and 0.7661, respectively for the first slice (top row) and -0.7034, -

0.5185, 0.9118, and 0.8956, respectively for the second one (bottom row). The reconstruction 

results of both slices demonstrate that Cross-GRAPPA suppresses more aliasing artifacts but 

presents more noise than conventional GRAPPA at the same ORF-ACS combination. 
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Fig. 24 GRAPPA and Cross-GRAPPA reconstructions of two slices for the second in vivo 

experiment at an ORF of 3 and ACS lines of 6. The results consistently show that Cross-

GRAPPA can suppress more aliasing artifacts than GRAPPA but at the cost of degraded SNR 

when few ACS lines are acquired. 

 

4.1.4 Noise Issue 

The noise behavior of conventional GRAPPA reconstruction has been well investigated in 

Refs. [72-73]. Cross-GRAPPA has similar behavior such as spatially-varying noise but usually 

presents a higher level of noise. It is conjectured that this reduced SNR is due to the tradeoff 

between SNR and reduced aliasing artifacts in reconstruction, similar to the observation in 

SENSE regularization [74]. This conjecture is also based on the observation in the top row of Fig. 

3 where conventional GRAPPA reconstruction with more (e.g., 30) ACS lines is noisier but has 

fewer artifacts than that with fewer (e.g., 10) lines. Mis-registration of the data with orthogonal 
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readouts does not seem to be the cause of increased noise because the reduced SNR of Cross-

GRAPPA is also evident in simulation results in the bottom row of Fig. 20 where no mis-

registration is present. 

The higher level of noise in Cross-GRAPPA can be suppressed using methods like 

regularization [32], iterative optimization [37], or nonlinear GRAPPA [41]. As said before, 

nonlinear GRAPPA replaces the conventional linear fitting procedure with a nonlinear model to 

suppress noise in the final image [75]. The nonlinear fitting procedure can be directly used in 

Cross-GRAPPA reconstruction and the reconstruction results of the first set of in vivo data at the 

ORF of 4 is shown in Fig. 25. The optimized co-registration parameters δx, δy, α, and β were 

calculated to be -0.2793, -0.3148, 1.0914, and 0.3984. It is seen the nonlinear approach improves 

the SNR of Cross-GRAPPA. The improvement suggests that noise reduction methods can be 

easily integrated into the proposed cross-sampling framework to achieve even higher acceleration.  

 

 

Fig. 25 MR image reconstruction comparisons of GRAPPA, Cross-GRAPPA (Cross) and Cross-

GRAPPA with nonlinear GRAPPA (Cross-NL). The reconstructions use ORF-ACS combinations 

of 4-10 and 4-12. 
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4.2 Hybrid-Encoded MRI 

4.2.1 Simulations of GE QA Phantom 

We conducted the simulations of GE QA phantom to demonstrate the different performance 

of the proposed 3D Hybrid encoding and the conventional 3D Fourier encoding. The dataset of 

GE QA phantom was scanned by the 3.0T MRI scanners (GE Healthcare, Waukesha, WI) with 

3D GRE pulse sequence. One-channel body coil was applied to acquire the k-space raw dataset. 

The reduction factors are both 2.0 for 3D Fourier encoding and 3D Hybrid encoding. As seen as 

the Fig. 26, the results demonstrate the CS recon of the proposed 3D Hybrid encoding is closer to 

the reference images than the CS recon of the conventional 3D Fourier encoding. 

 

 

(a)                                                             (b) 

 

(c)                                                            (d) 
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(e)                                                            (f) 

Fig. 26 3D MR images and one slice of images of the reference (a, b), the CS recon of Fourier 

encoding(c, d), and the CS recon of Hybrid encoding (e, f) 

 

4.2.2 Simulations of Human Brain and Knee 

We conducted the simulations of human brain and knee to demonstrate the different methods 

in the context of CS framework. For Fourier encoding, we followed the sampling scheme used in 

[19] where a 2D variable density random under-sampling pattern was used on Y-Z plane (as seen 

as Fig. 8(a)), which samples the low spatial frequency region densely with 2D variable density 

random sampling, but for Hybrid encoding, the a 2D hybrid variable density random under-

sampling pattern was used on Y-Z plane (as seen as Fig.. 8(b)), which samples the low spatial 

frequency region densely with the random sampling mixing 1D variable density and 1D uniform 

random patterns. Non-linear conjugate gradient [19] algorithm was applied to reconstruct the 

image based on Eq. (13) for Fourier and Eq. (21) for hybrid encoding. Both wavelet transform 

and TV were adopted to sparsify the images. As seen as Fig. 27, two k-space raw datasets of 3D 

Hybrid (a) and Foureir (b) encoding, and their sampling patterns are illustrated. The right 

parallerograms are respectively sampling patterns of Fourier and Hybrid, and the white dots are 

coressponding sampling positions. They shows that the k-space raw data has been spreaded 

wildly in the 3D Hybrid encoding, which can benefit to apply CS reconstration [19]. 
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Two 3D raw datasets (sagittal brain and knee) were used to simulate the proposed 3D Hybrid 

encoding and conventional Fourier encoding, scanned on a 3.0T commercial MR scanner (GE 

Healthcare, Waukesha, WI). The sizes of the simulated images both are 256×256×16 and 

256×256×32 voxels. The 2D sampling patterns (as seen as Fig. 27) were done on the Y-Z plane 

from the full image size of 256×16 and 256×32. The reduction factors which are bout 2 and 3 

were used to accelerate the data acquisition. 

Fig. 28 (a, c, and d) compares the 3D reconstructed images for the brain dataset which has the 

reduction factor is 2.95. Fig. 28 (b, e and f) compares the 3D reconstructed images for the knee 

dataset which has the reduction factor is 3.39. Fig. 29 (a, c, and d) compares one slice of the 

reconstructed images on X-Y plane for the brain dataset which has the reduction factor is 2.95. 

Fig. 29 (b, e and f) compares one slice of the reconstructed images on X-Y plane for the knee 

dataset which has the reduction factor is 3.39. 

Fig. 30 (a, c, and d) compares the 3D reconstructed images for the brain dataset which has the 

reduction factor is 1.89. Fig. 30 (b, e and f) compares the 3D reconstructed images for the knee 

dataset which has the reduction factor is 1.89. Fig. 31 (a, c, and d) compares one slice of the 

reconstructed images on X-Y plane for the brain dataset which has the reduction factor is 1.89. 

Fig. 31 (b, e and f) compares one slice of the reconstructed images on X-Y plane for the knee 

dataset which has the reduction factor is 1.89.  

Table 1 compares the normalized mean square error (NMSE) and root mean square error 

(RMSE) between 3D Fourier and Hybrid encoding by different reduction factors. The results 

show that the proposed 3D Hybrid encoding method can reconstruct more high quality images 

than the conventional 3D Fourier encoding. And the proposed method is seen to visually preserve 

better resolutions and more details than the conventional 3D Fourier encoding method. 
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(a)                                                                               (b) 

Fig.27 Illustration of the sampling patterns and k-space raw data of 3D Foureir (a) and Hybrid (b) 

encoding. The right parallerograms are respectively sampling patterns of Fourier and Hybrid, and 

the white dots are coressponding sampling positions. 

 

 

(a)                                                                                    (b) 

 

(c)                                                                                        (d) 
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(e)                                                                                        (f) 

Fig. 28 3D 256×256×16 images of brain (R=2.95) and knee (f) (R=3.39) of the reference (a, b), 

the CS recon of Fourier encoding(c, d), and the CS recon of Hybrid encoding (e, f) 

 

  

(a)                                                                              (b) 
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(c)                                                                                  (d) 

  

(e)                                                                              (f) 

Fig.29 Illustration of one slice of the 3D 256×256×16 refernce (a, b) and the CS reconstruction 

3D 256×256×16 results (c, d, e and f) of sagittal human brain (e) (R=2.95) and knee (f) (R=3.39) 

comparing 3D Foureir encoding (c, d) and Hybrid encoding (e, f) 
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(a)                                                                              (b) 

 

(c)                                                                                  (d) 

 

(e)                                                                              (f) 

Fig. 30 3D 256×256×16 images of brain (R=1.89) and knee (f) (R=1.89) of the reference (a, b), 

the CS recon of Fourier encoding(c, d), and the CS recon of Hybrid encoding (e, f) 
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(a)                                                                              (b) 

   

(c)                                                                                  (d) 
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(e)                                                                              (f) 

Fig.31 Illustration of one slice of the 3D 256×256×16 refernce (a, b) and the 3D 256×256×16 CS 

reconstruction results (c, d, e and f) of sagittal human brain (e) (R=1.89) and knee (f) (R=1.89) 

comparing 3D Foureir encoding (c, d) and Hybrid encoding (e, f) 

 

 

Type Size Method NMSE RMSE 

Reduction Factor R=1.89 R=2.95 R=1.89 R=2.95 

Brain 256×256×16 
Fourier 0.0080 0.0120 0.0274 0.0337 

Hybrid 0.0060 0.0090 0.0238 0.0291 

 R=1.97 R=3.10 R=1.97 R=3.10 

Brain 256×256×32 
Fourier 0.0065 0.0099 0.0240 0.0297 

Hybrid 0.0064 0.0092 0.0239 0.0287 

 R=1.89 R=3.39 R=1.89 R=3.39 

Knee 256×256×16 
Fourier 0.0045 0.0077 0.0287 0.0374 

Hybrid 0.0022 0.0032 0.0200 0.0243 
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 R=1.97 R=3.44 R=1.97 R=3.44 

Knee 256×256×32 
Fourier 0.0053 0.0056 0.0300 0.0309 

Hybrid 0.0020 0.0034 0.0182 0.0239 

 
Table 1. Simulation comparison of human brain and knee. The normalized mean square error 

(NMSE) and root mean square error (RMSE) between 3D Hybrid and Fourier encoding are 

calculated with different data sizes of 256×256×32 and 256×256×16, and reduction factors of 

1.89, 1.97, 2.95, 3.10, 3.39 and 3.44. 

 

4.2.1 Experiments of Phantoms 

A ball phantom was scanned by the 1.5T MRI scanners (GE Healthcare, Waukesha, WI) with 

3D GRASS pulse sequence and the 3D Hybrid encoding pulse sequences based on GRASS. One-

channel body coil was applied to acquire the k-space raw dataset. As seen as the Fig. 32, the 3D 

256×256×32 results demonstrate the proposed 3D Hybrid encoding different from the 

conventional 3D Fourier encoding spread out the image energy in the k-space. The proposed 

method has some benefits for the CS reconstructions. 

 



73 

 

 

 

 

(a)                                                                                     (b) 

Fig. 32 k-space raw data and decoded image data of 3D Fourier (a) and Hybrid (b) encoding.  

 

4.2.3 Experiments of Watermelon 

In actual experiments, one watermelon was scanned on a 3.0T commercial MRI scanner (GE 

Healthcare, Waukesha, WI) with one standard body coil using both the 3D Hybrid encoding and 

Fourier encoding pulse sequences. For Hybrid encoding, a proposed pulse sequence based on a 

3D GRASS pulse sequence (RF pulse duration: 1.536ms) was applied to sample k-space raw 

dataset. For Fourier encoding, the conventional 3D GRASS pulse sequence are applied as 

comparison (both with TE/TR: 5/15 ms; BW: 31.50 kHz; FOV: 24 cm2; thickness: 6.5 cm full 

data size: 256×256×32). The datasets were acquired with full Nyquist sampling and then 

manually under-sampled by removing some data points based on the designed sampling patterns 

(as seen as Fig. 27). Here, the 2D under-sampling was done on the Y-Z plane from the full size of 

256×32.  
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Fig. 33 shows comparison of 3D CS reconstructions between the proposed 3D Hybrid 

encoding and the conventional 3D Fourier encoding. The reduction factors which are 2.07 and 3.0 

were used to accelerate the data acquisitions. The proposed Hybrid method and the conventional 

Fourier method have same imaging time, and same parameters of the pulse sequences, such as, 

TE, TR, data size, thickness, FOV, etc.. The images reconstructed from the full data were used as 

the reference for comparison.  

Table 2 compares the normalized mean square error (NMSE) and root mean square error 

(RMSE) between 3D Hybrid and Fourier encoding of the watermelon raw datasets, scanned by 

the proposed and conventional sequences. All experiments illustrate that the experimental results 

agree with the conclusion from simulations that the proposed 3D Hybrid encoding method can 

reconstruct more high quality images than the conventional 3D Fourier encoding, and the 

proposed method can visually preserve better resolutions and more details. The comparisons of 

the NMSE and RMSE also sustain these conclusions. 

 

  

(a)                                                                      (b) 
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(c)                                                                              (d) 

Fig.33 Comparsion of one slice of the watermelon references(a,c)  and CS reconstruction (R=3.0) 

watermelon results (b, d) of 3D Foureir (a,b) and Hybrid (c,d) encoding with the data size of 

256×256×32 

 

Type Size Method NMSE RMSE 

Reduction Factor R=2.07 R=3.00 R=2.07 R=3.00 

Watermelon 256×256×32 
Fourier 0.0161 0.0192 0.0435 0.0475 

Hybrid 0.0133 0.0167 0.0368 0.0413 

 
Table 2. Comparison of 3D watermelon raw dataset. The normalized mean square error (NMSE) 

and root mean square error (RMSE) between 3D Hybrid and Fourier encoding are calculated with 

different data size of 256×256×32, and reduction factors of 2.07 and 3.00. 

 

4.2.4 In Vivo Experiments of Human Knee 

       In the first in vivo experiment, human knee was scanned on a 1.5T commercial MRI scanner 

(GE Healthcare, Waukesha, WI) with one standard 8-channel knee coil using both the 3D Hybrid 

encoding and 3D Fourier encoding pulse sequences. For Hybrid encoding, a proposed pulse 
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sequence based on a 3D GRASS pulse sequence (RF pulse duration: 6.144ms) is applied to scan. 

For Fourier encoding, the conventional 3D GRASS pulse sequence are applied as comparison 

(both with TE/TR: 15/40 ms; BW: 5.95 kHz; FOV: 20 cm2; thickness: 4.0 cm; full data size: 

256×256×32; Flip angle: 5°). The datasets were acquired with full Nyquist sampling and then 

manually under-sampled by removing some data points based on the designed sampling patterns 

(as seen as Fig. 23). Here, the 2D under-sampling was done on the Y-Z plane from the full size of 

256×32. A reduction factor of 2.0 was used to accelerate the data acquisitions. After recovering 

each channel under-sampled dataset, the SoS method was applied to compose the final 

reconstructed images. The SoS image from the full data were used as the reference for 

comparison. 

Fig. 34 shows comparison between the proposed 3D Hybrid encoding and the conventional 

3D Fourier encoding. The proposed method and the conventional method both have same 

imaging time, and same parameters of the pulse sequences, such as, TE, TR, data size, thickness, 

FOV, spacing, etc.. The images reconstructed from the full data were used as the reference for 

comparison.  According to the results, they show that the in vivo experiment agree with that the 

proposed Hybrid encoding preserves more details and sharp edges than the Fourier encoding. 

In the second in vivo human knee experiment, human knee was scanned on a 3.0T 

commercial MRI scanner (UCSF, San Francisco, CA) with one HD 8-channel knee coil using 

both the 3D Hybrid-encoding and 3D Fourier encoding pulse sequences. For Hybrid encoding, a 

proposed pulse sequence based on a 3D GRASS pulse sequence (RF pulse duration: 1.536ms) is 

applied to sample. For Fourier encoding, the conventional 3D GRASS pulse sequence are applied 

as comparison (both with TE/TR: 5/26 ms; BW: 31.50 kHz; FOV: 20 cm2; thickness: 6.5 cm; full 

data size: 256×256×34; Flip angle: 10°). The datasets were acquired with full Nyquist sampling 

and then manually under-sampled by removing some data points based on the designed sampling 

patterns (as seen as Fig. 8). Here, the 2D under-sampling was done on the Y-Z plane from the full 

size of 256×34. A reduction factor of 2.0 was used to accelerate the data acquisitions. After 
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recovering each channel under-sampled dataset, the SoS method was applied to compose the final 

reconstructed images. The SoS image from the full data were used as the reference for 

comparison. 

Fig. 35 shows comparison between the proposed 3D Hybrid encoding and the conventional 

3D Fourier encoding. The proposed method and the conventional method both have same 

imaging time, and same parameters of the pulse sequences, such as, TE, TR, data size, thickness, 

FOV, spacing, etc.. The images reconstructed from the full data were used as the reference for 

comparison.  According to the results, they show that the in vivo experiment agree with that the 

proposed Hybrid encoding preserves more details and sharp edges than the Fourier encoding. 

Table 3 compares the normalized mean square error (NMSE) and root mean square error 

(RMSE) between 3D Hybrid and Fourier encoding of 256×256×34 in vivo human knee raw 

datasets from the second in vivo human knee experiment. The comparisons of the NMSE and 

RMSE illustrate that the proposed 3D Hybrid encoding method can recover more high quality 

images than the conventional 3D Fourier encoding, and the proposed method can visually 

preserve better resolutions and more details. 

 

 

(a)                                                                                         (b) 
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(c)                                                                                            (d) 

Fig.34 Illustration of one slice of the references (a, c) and CS reconstruction (R=2.1) invivo knee 

results (b, d) of 3D Foureir encoding (a,b) and Hybrid (c,d) with the data size of 256×256×32 

 

(a)                                                                                      (b) 
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(c)                                                                                   (d) 

Fig.35 IIllustration of one slice of the references (a, c) and CS reconstruction (R=2.0) invivo knee 

results (b, d) of 3D Foureir encoding (a,b) and Hybrid (c,d) with the data size of 256×256×34 

 

Type Size Method NMSE RMSE 

Reduction Factor R=1.99 R=2.99 R=1.99 R=2.99 

in vivo knee 256×256×34 
Fourier 2.6e-3 0.0129 1.1e-2 0.0253 

Hybrid 8.2e-11 0.0119 1.8e-6 0.0222 

 
Table 3. Comparison of 3D in vivo human knee raw dataset. The normalized mean square error 

(NMSE) and root mean square error (RMSE) between 3D Hybrid and Fourier encoding are 

calculated with different data size of 256×256×34, and reduction factors of 1.99 and 2.99. 
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4.3 Pseudo 2D Random Sampling 

4.3.1 Bloch Simulation 

Bloch simulations were carried out to compare the reconstruction results of the proposed 

pseudo 2D random sampling with the existing 1D random sampling and the desired ideal 2D 

random sampling. For validating the proposed pulse sequences, Bloch simulation [66] was done 

to demonstrate the feasibility of all sampling schemes by the conventional existing pulse 

sequences and the proposed pulse sequence designed in Fig. 18. A Shepp-Logan phantom is used 

as the desired object. The image of size 128×128 is reconstructed from the simulated data using 

the nonlinear conjugate gradient (NCG) algorithm and wavelet transformation. Fig. 36 shows the 

reconstruction results with the proposed sampling, the existing 1D sampling and the ideal 2D 

random sampling. Because the desired ideal 2D random sampling cannot be implemented by the 

existing pulse sequences, its full k-space data are from the Bloch simulation of the existing 1D 

random sampling and its sampling pattern is manually generated on computers. The sampling 

patterns of the existing 1D random sampling and the pseudo 2D random sampling both have their 

Bloch corresponding simulations realized by the existing pulse sequences and the proposed pulse 

sequence designed in Fig. 18. Here, all reduction factors are 2.0. The initial recon image by zero 

filling with density compensation (zfw/dc) of the 1D random sampling shows undersampling 

artifacts (ripples horizontally in background), but the initial recon image by zero filling with 

density compensation (zfw/dc) of the proposed pseudo 2D random sampling is seen to be as free 

artifacts as the initial image by zero filling with density compensation (zfw/dc) of the ideal 2D 

random sampling. The CS recon results by total variation (TV) illustrate the pseudo 2D random 

sampling is closer to the ideal 2D random sampling than the existing 1D random sampling. 
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Fig. 36 Comparison of the proposed pseudo 2D random sampling scheme (1st row) and the 

existing 1D (2nd row) and 2D (3rd row) random sampling scheme. Mask means sampling pattern; 

zfw/dc means recon by zero filling with density compensation; TV means recon by total variation. 

The image size is 128×128, and the reduction factor is 2. 

 

4.3.2 Simulation of GE QA phantom 

In the simulation with experimental data as seen as Fig. 37, a GE QA phantom was scanned 

using a gradient echo pulse sequence. The k-space data were acquired in full with size of 

256×256 and then manfully sampled by the proposed, existing and ideal sampling schemes to 
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simulate the desired reduction factors. Identity transform was used as the sparse representation in 

Eq. (33). The reduction factors of 2 and 2.86 were used. The nonlinear conjugate gradient (NCG) 

algorithm and total variation (TV) as Ref. [19] are used to reconstruct results. The recon results 

show that the proposed pseudo 2D random sampling scheme performs similar to the ideal 2D 

random sampling scheme, and is superior to the existing 1D random sampling scheme. 

 

Fig. 37 GE QA Phantom reconstruction results and the corresponding sampling patterns of the 

pseudo 2D, 1D random and 2D random sampling methods. A reduction factor of 2 (left) and 2.86 

(right) is used. 
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5. Discussions and Future Works 

Previously, we present and study the three proposed schemes to accelerate imaging speed and 

improve image quality. Although these methods have been further studied, there are still some 

challenging issues required to be overcome. The following problems are discussed and further 

researched to enhance the current proposed schemes in the future. 

 

5.1 Co-registration and 3D Acquisition of Cross-GRAPPA 

Currently, a simple model is used in this study to characterize the inconsistency between data 

acquired with orthogonal readouts. This model is primarily for the inconsistency caused by eddy 

current and may not be able to correct the inconsistency due to other effects. The superior results 

of Cross-GRAPP in our study suggest the model is sufficiently appropriate for brain experiments 

due to its relatively low chemical shift effects. In addition, spin echo sequence is preferred to 

gradient echo sequence for Cross-GRAPP. This is because gradient echo sequence is known to be 

more susceptible to field inhomogeneity and chemical shift effects, and thus the swapping of 

phase and frequency encoding directions in Cross-GRAPPA results in more significant 

inconsistency between the data acquired with orthogonal readout directions. The inconsistency 

can be reduced by increasing the readout bandwidth, increasing the acquisition matrix, or using 

an in phase TE. The model for registrating the data with orthogonal readout directions primarily 

considers misalignment in k-space. It works well in the brain region as shown in this study. More 

comprehensive co-registration methods, such as those in Refs. [76-79], will be studied for 

challenging scenarios (e.g., gradient echo sequence or regions with significant fat) in future work. 

In addition, the Nelder-Mead algorithm [53, 54] used for data registration is known to be heuristic 

and can converge to a non-stationary point. More sophisticated nonlinear minimization 

algorithms will also be explored. The idea of localized calibration was used in Ref. [42] with 
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some success. Similar idea can be used in Cross-GRAPPA where full ACS data are available 

along the undersampled direction and can be divided into subsets for local calibration. 

Optimization of the size of subsets needs further study.  

In clinical applications, GRAPPA with 3D acquisition has gained more and more interests in 

recent studies [80-82]. The proposed Cross-GRAPP can be easily extended from 2D to 3D 

acquisitions. Fig. 38 illustrates the sampling patterns of 3D GRAPPA and 3D Cross-GRAPP, 

assuming the readout direction for conventional GRAPPA is kx. In 3D Cross-GRAPP, the ACS 

lines need to be orthogonal to kx direction, and thus can be acquired either along ky, kz or a 

combination of both directions as shown in Fig. 38(b). A comprehensive study of 3D Cross-

GRAPP is beyond the scope of this paper and will be further investigated in future work. 

 

 

Fig. 38 Illustrations of sampling schemes for 3D GRAPPA (a) and 3D Cross-GRAPPA (b). The 

solid black lines represent fully sampled readout lines, the dash gray lines represent missing lines, 

and the gray boxes represent 2D fully sampled ACS regions.  
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5.2 Contrast of Hybrid-Encoded MRI 

The current studies of the proposed Hybrid-encoded method show that it suggests a 

significant improvements comparing to the conventional Fourier-encoded method. But there are 

some problems required to be further discussed. 

Firstly, the differences of the flip angles of the proposed method are not stable for any masses, 

such as water, fat, muscle, whiter matter, gay matter, etc. However, the differences of the flip 

angles of the conventional Fourier encoding method are stable. It means that the images from 

Hybrid encoding and Fourier encoding have difference contrasts because of the relations among 

all kinds of materials.  

 

  

(a)                                                                                (b) 

Fig.39 Actual axial watermelon experiments of 3D Fourier (a) and Hybrid (b) encoding methods. 

The raw data size is 256×256×32. 

 

In the Axial watermelon experiments, human knees were scanned on a 1.5T MRI scanner 

(GE Healthcare, Waukesha, WI) with one channel body coil using both the proposed 3D pulse 
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sequence (RF pulse duration: 1.536ms) shown in Fig. 14 and the conventional 3D GRASS pulse 

sequence (TE/TR: 3/10 ms; BW: 125.0 kHz; FOV: 28 cm2; Flip angle = 5°; data size: 

256×256×32). The experimental results illustrate that the contrasts of Hybrid encoding and 

Fourier encoding in some in vivo clinical experiments are totally different as seen as Fig. 39. 

Secondly, the resolutions of Hybrid encoding and Fourier encoding have some distinctions. 

Usually, the receiver bandwidths of the pulse sequences are fixed in MRI scanners. The Hybrid 

encoding is equal for sampling every line along X direction per TR; but the Fourier encoding is 

variant. That is to say, the Fourier encoding will lose the signals in the high frequency region, 

because the receiver bandwidth is not enough large. However, the receiver bandwidth of the 

Hybrid encoding is enough since the k-space dataset has been incoherent and spread widely in the 

k-space. Therefore, the Hybrid encoding method can reserve more signals in the high frequency 

region than the Fourier encoding method.  

Some in vivo experimental data are actually sampled from the commercial GE MRI scanners 

and the decoding were implemented in MATLAB (MathWorks, Natick, MA) on an HP XW8400 

workstation with 2.33GHz CPU and 2GB RAM. In the first in vivo Axial experiments, human 

knees were scanned on a 1.5T MRI scanner (GE Healthcare, Waukesha, WI) with 8-channel 

standard knee coil using both the proposed 3D pulse sequence (RF pulse duration: 1.536ms) 

shown in Fig. 16 and the conventional 3D GRASS pulse sequence (TE/TR: 5/26 ms; BW: 5.96 

kHz; FOV: 15 cm2; Flip angle = 5°). The decoded images from the raw k-space data of 

256×256×34 was compared with the Fourier-encoded dataset. The Sum-of-Square (SoS) method 

is applied to combine decoded 8-channel datasets in image domain. Fig. 40 and 41 show 

comparison between the Hybrid method and Fourier encoding without fat saturation. The 

experimental results illustrate that the Hybrid method change the contrast between fat and water, 

and fat is suppressed more by the proposed Hybrid method than Fourier encoding. At the same 

time, the decoding speed of Hybrid is as similar as decoding Fourier. 
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(b)                                                                                (b) 

Fig.40 Axial in vivo human knee experiments of the 3D Hybrid (a) and Fourier (b) encoding 

methods without fat saturation. 
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Fig.41 Time cost of 3D Fourier encoding using fast Fourier transform and 3D Hybrid encoding 

using the fast algorithm without fat saturation 

 

In the second Sagittal in vivo experiments, human knees were scanned on a 3T commercial 

MRI scanner (UCSF, San Francisco, CA) with 8-channel HD knee coil using both the proposed 

3D spoiled pulse sequence (RF pulse duration: 1.536ms) shown in Fig. 3 and the conventional 3D 

SPGR pulse sequence (TE/TR: 5/26 ms; BW: 31.25 kHz; FOV: 20 cm2; Flip angle = 18°). The 

decoded images from the raw k-space data of 256×256×32 was compared with the Fourier-

encoded dataset. The Sum-of-Square (SoS) method is used to sum decoded 8-channel datasets in 

image domain. Fig. 42 and 43 compare one of slices between the Hybrid and Fourier methods 

without fat saturation. The Sagittal in vivo experimental results illustrate that the Hybrid method 

change the image contrast, and fat is suppressed more by the proposed Hybrid method than the 

conventional Fourier encoding method. Simultaneously, Hybrid decoding speed is as similar as 

Fourier decoding. 

 

(a)                                                                                     (b) 

Fig.42 Sagittal in vivo human knee experiments of the 3D Hybrid (a) and Fourier (b) methods 

without fat saturation. 
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Fig.43 Time cost with 3D Fourier encoding using fast Fourier transform and 3D Hybrid encoding 

using the fast algorithm without fat saturation 

 

Fig. 44 and 45 show comparison between the proposed method and Fourier encoding with 

and without fat saturation. Here, we compare the average k-space raw datasets between the 

proposed method and Fourier encoding with fat saturation and without fat saturation. The 

decoding images show that the proposed 3D Hybrid encoding method can change k-space raw 

data and preserve the data in the high frequency region. One slice of the images shows that the 

proposed 3D Hybrid encoding method can achieve different contrasts from the conventional 3D 

Fourier encoding method. The proposed method exploits a special non-Fourier random encoding 

pulse sequence to generate inhomogeneous B1 filed, thus the signal contrast of fat and other 

tissues is changed comparing the conventional Fourier encoding method. Because, spatially 

varying flip angles across the FOV may lead to B1 inhomogeneity that result in an insufficient fat 
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sat pulse and thus lead to incompletely saturated fat signal [86]. However, this theoretical 

expiation is still fuzzy for clinic applications, further studies should be done in the future. 
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(a)                                                                                     (b) 

Fig. 44 Comparison of average k-space data of 3D Fourier and Hybrid encoding without fat 

saturation (a) and with fat saturation (b) 
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(c)                                                                                    (d) 

Fig. 45 Comparison of decoded images of 3D Fourier (a, b) and Hybrid (c, d) encoding without 

fat saturation (a, c) and with fat saturation (b, d). 

 

5.3 Co-registration of Pseudo 2D Random Sampling 

Currently, the co-registration model is not employed for Pseudo 2D random sampling. In 

common Bloch simulation, the co-registration model is also not required. However, for most 

actual experiments, the co-registration model is necessary for better reconstructions. Although, 

some applications without co-registration models are successfully completed, such as 

Hyperpolarization imaging [83], it is necessary to apply the co-registration model between the 

two orthogonal data for general imaging. Here, we can use the co-registration model as similar as 

the model of Cross-GRAPPA in Eq. (7). We need exploit the intersection points from the two 

orthogonal directions, to align the two raw datasets into one combined data, which will be used to 

recover by CS algorithms. 
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6. Summary  

In sum, we overview our proposed schemes and completed works. 

Firstly, we propose a new Cross-GRAPPA method for parallel imaging. The method 

improves conventional GRAPPA by integrating the new cross sampling and data co-registration 

procedure with the conventional calibration and reconstruction procedure. The method can 

reconstruct images from fewer amounts of ACS data than conventional GRAPPA, especially at 

the high ORFs. The phantom and in vivo human brain imaging experiments have demonstrated 

the advantages of this proposed approach. We anticipate that the proposed Cross-GRAPPA 

scheme can bring benefits to other 2D and 3D GRAPPA applications. 

Secondly, we propose a novel 3D hybrid random encoding scheme which integrates the 

benefits of both random encoding and Fourier encoding. The Fourier encoding with variable 

density sampling ensures signals with high SNR to be sampled densely, while random encoding 

spreads out the signal energy to allow high spatial frequency to be sampled adequately for 

preserving resolution. The circulant structure for random encoding also can allow efficient 

reconstruction algorithms. The computational complexity of CS reconstruction is about the same 

for both hybrid and Fourier encodings. The simulations and real experiments both have illustrated 

that the proposed hybrid encoding scheme outperforms Fourier encoding in preserving 

resolutions. We anticipate that the proposed hybrid encoding scheme can be applied into current 

applications of Fourier-encoded CS MRI. 

Thirdly, we present a random Cartesian sampling technique for applications of CS in 

conventional MRI. The simulation results have shown promising results to accelerate imaging 

speed with high reconstruction quality. We anticipate that the real experiments can also achieve 

better reconstruction results than the actual 1D and ideal 2D random sampling. 
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