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ABSTRACT

ACCELERATING MRI DATA ACQUISITION USING PARALLEL IMAGING AND
COMPRESSED SENSING

by

Haifeng Wang

The University of Wisconsin-Milwaukee, 2012
Under the Supervision of Professor Leslie (Lei)grand Jun Zhang

Magnetic Resonance Imaging (MRI) scanners are énemortant medical instruments, which
can achieve more information of soft issues in hutmady than other medical instruments, such
as Ultrasound, Computed Tomography (CT), Singleté&th&mission Computed Tomography
(SPECT), Positron Emission Tomography (PET), etd. BRI's scanning is slow for patience of
doctors and patients. In this dissertation, thé@uproposes some methods of parallel imaging
and compressed sensing to accelerate MRI data satogpui Firstly, a method is proposed to
improve the conventional GRAPPA using cross-sampleo-calibration data. This method use
cross-sampled auto-calibration data instead ottmwentional parallel-sampled auto-calibration
data to estimate the linear kernel model of thevenohonal GRAPPA. The simulations and
experiments show that the cross-sampled GRAPPAdearease the quantity of ACS lines and
reduce the aliasing artifacts comparing to the eatisnal GRAPPA under same reduction
factors. Secondly, a Hybrid encoding method is pseg to accelerate the MRI data acquisition
using compressed sensing. This method completelpgds the conventional Fourier encoding
into Hybrid encoding, which combines the benefitdourier and Circulant random encoding,

under 2D and 3D situation, through the proposediapbybrid encoding pulse sequences. The



simulations and experiments illustrate that thegesacan be reconstructed by the proposed
Hybrid encoding method to reserve more details @slutions than the conventional Fourier

encoding method. Thirdly, a pseudo 2D random sargpinethod is proposed by dynamically

swapping the gradients of x and y axes on pulseesegs, which can be implemented physically
as the convention 1D random sampling method. Tinelations show that the proposed method
can reserve more details than the convention 1domnsampling method. These methods can
recover images to achieve better qualities underessituations than the conventional methods.
Using these methods, the MRI data acquisitionsheaaccelerated comparing to the conventional

methods.
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1. Introduction

Magnetic Resonance Imaging (MRI) is one imaging atibdbased on the Nuclear Magnetic
Resonance (NMR) phenomenon. Generally, a magret@anance imaging scans use magnetism,
radio waves, and computers to produce detailedesmafhuman body inside structures. An MRI
scanner is a tube surrounded by a large, power@gnet. The patient lies on a moveable bed
which is placed into the magnet. The magnet geegrat strong magnetic field to align the
magnetization of some atomic nuclei in the humadid®m usually such as the protons of
hydrogen atoms. Then, radio waves are transmittedlter the equilibrium alignment of the
magnetization. After that, the decays of the variptoton spins can produce radio waves that are
detected by the receivers of the scanners. The radives are reconstructed to images by
computers. The MR images are quite detailed and goatrast for body structures and can often

detect tiny lesions of human bodies.

As one nonionizing radiation technique differenthnk-rays, Computer Tomography (CT),
Single Photon Emission Computed Tomography (SPE&ID) Positron Emission Tomography
(PET), MRI can achieve true three-dimensional insagemarkable spatial resolution and
outstanding soft-tissue contrast [1]. EspeciallyRINbrovides good contrast in imaging the brain,
muscles, heart and cancers compared with CT oyX-&nd high resolution compared with PET
or SPECT. Although, MRI has many benefits differenth other imaging modalities, imaging
speed is still one of tough challenges for MRI &ggtions. Some schemes have been proposed to
accelerate MR imaging speed, such as Parallel ¥RIR1), Compressed Sensing (CS), Rapid
Imaging, etc. Contemporarily, imaging quality isodver tough challenge after accelerating MR

imaging. Some derivative schemes are presentetstoe@the reconstruction image quality.



1.1 Parallel MRI

1.1.1 Parallel Imaging

Generally, pulse sequences are used to controlintfage encoding method and data
acquisition of MRI scanners. Among the conventiopallse sequences, there are usually four
primary pulses and gradients to spatially excité emcode objects in image domain: RF pulses,
slice selection gradient (Gz), frequency encodingdignt (Gx), and phase encoding gradient
(Gy). As seen as Fig.1, RF pulses excite the psotonobjects; slice selection is realized
simultaneously with RF pulses; frequency encodadgp called readout, is applied to receive
echo signal for data acquisition; phase encodirgpgied between excitation and receiving echo,
and its gradient value is shifted each Repetitionel(TR). Echo Time (TE) is the time between
RF excitation and MR signal sampling, correspondinghaximum echo signals. Sometimes, the
180° RF pulse and the corresponding gradient gokegjpat the time of TE/2. The acquired data
is converted from image space to frequency spdespdce) by mathematical Fourier
transformation [2, 3]. As usual, phase encodinggudency encoding, and slice encoding, of
conventional pulse sequences obey Fourier transttom But sometimes, there is no Fourier
encoding along the slice encoding direction if thdse sequences are not a three dimensional

encoding pulse sequence.
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Fig. 1 Conventional encoding method and pulse sequeragrain. The pulse sequence is a
traditional spin echo pulse sequence, which isdaserepetition of 90° and 180° RF pulses. B
field is generated by a very strong magnetfiBld is generated by RF coils;; Beld is much

smaller than Bfield.

Usually, the data acquisition should fill up tkepace, but totally fully sampling is very slow.
Because frequency ending steps are much fasterptiiase ending steps in MRI scanners, one
way to accelerate data acquisition is skipping thase encoding steps by increasing the step
length of equidistantly samplddspace lines. However, the type of undersampleaseéatvould
yield a reduced field of view (FOV), which is equal fold images along phase encoding

direction and yield aliasing artifacts along thelewrdampled direction as seen as Fig. 2 [4].
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Fig. 2 Comparison of fully sampled acquisition (top roav[d undersampled acquisition (bottom

row). Fully sampling results a full FOV image aftEpurier transformation; undersampled
acquisition yields a reduced FOV image with aligsantifacts. Dot lines mean missing lines; red
solid lines are acquired lines. The accelerationtofa is 2; FFT means Fast Fourier

Transformation.

To short the acquisition time and recover a fulM-ithage, PMRI exploits the phased array
coils to reconstruct the entire image [5]. The tadea of PMRI is simultaneously acquiring
reduced FOV which covering one part of the entinade by one coil of the receive array coils,
and then combine the acquired multiple-coil imamgegield the full-FOV image [6]. The actual
coil sensitivities extend over the FOV and over]dpsrefore amounts of algorithms are proposed
to realize the problem for reconstructing the usdepled raw data in PMRI. Such as, Sensitivity

Encoding (SENSE) [7], Partially Parallel Imagingthviocalized Sensitivity (PILS) [8], Array



Spatial Sensitivity Encoding Technique (ASSET) [Simultaneous Acquisition of Spatial
Harmonies (SMASH) [10], Auto Simultaneous Acqusiti of Spatial Harmonies (AUTO-
SMASH) [11], Variable Density Auto Simultaneous Ausjtion of Spatial Harmonies (VD-
AUTO-SMASH) [12], Generalized Simultaneous Acqudsitof Spatial Harmonies (Generalized-
SMASH) [13], Modified Sensitivity Encoding (mMSENSHE)4], Sensitivity Profiles from an
Array of Coils for Encoding and Reconstruction iar&llel (SPACE RIP) [15], Generalized
Autocalibrating Partially Parallel Acquisition (GR&RA) [16], etc. Among the PMRI algorithms,

SENSE and GRAPPA are two representative algorithms.

1.1.2 SENSE

SENSE is the first reconstruction algorithm useddmical applications. It is considered as
an “unfolding” algorithm in image domain [4]. An dersampled acquisition (reduction fad®r
results in a reduced FOV in every coil image aReurier transforming to the image domain.
Each pixel in the individual reduced FOV coil imagentains information from totaR

equidistantly distributed pixels in the desired feDV imagep . Arbitrary pixel will be weighted
with the coil sensitivityC at the corresponding location in the full FOV imagaus, one folded

pixel | . at a certain locatiorx( y) received in th&™ coil image can be written as [7],

'k(x,y)=ﬁ;ck(x,y.)-p(x,yl) (1)

If Eg. (1) is generalized in matrix notation ane tiatrix knowledge is applied here, the desired

full FOV image p can be written as [7],

p:(éHé)'lé“-r )



Where,é denotes the sensitivity matrix for each coil at #esuperimposed positions; the

vectorp lists the vector of thdl pixels in the desired full FOV image; the Vecrorepresents

the folded complex coil image value at the chosgrlpA detailed description about SENSE is
given by Ref. [4] and [7]. Theoretically, SENSE @&t an exact solution for the reconstruction
of PMRI, but it needs to know coil sensitivities iath is hard to be exactly measured in clinic

situations. Actually, we usually compute approxienedil sensitivities from pre-scan.

1.1.3 GRAPPA

GRAPPA is another traditional algorithm among PM&Hhich is an auto-calibration method
in frequency domain [4]. The additioniglspace lines in low frequency region, named as-auto
calibration signal (ACS) lines, are used to fit teefficients of linear combinations. Next, the
fitting coefficients are applied to estimate thessimgk-space data by interpolation of acquired
data. Finally, the image is recovered by using sfisgquares (SoS) to combine all coil images [5].
Assuming to reconstruct the missikegspace data at the locatiok,,(k+mAky) in coil j, the

acquired data in the neighborhood are linearly doet[16]:

L

(k5 + )= iv1 § ke b ORA ) ®

where ORF represents outer reduction factd, is the number of blocks used in the
reconstruction; one block is defined as a singtpuied line and its adjace®RF1 missing lines;
n(j,b,l,m) represents the coefficients for the linear comlamatThe indeX counts through the
individual coils, while the index counts through the individual reconstruction blocKbis
process is repeated for each coil in the arrayltieg in L sets of fullk-space data for the
uncombined single-coil images. The missing datalimnbtained iMNy+1 different ways, which

are combined in a weighted average based on thdngse-of-fit (GOF). These images are then



combined using a conventional sum-of-squares (Swegpnstruction [5]. More detailed
descriptions are given by Ref. [4] and [16]. GRAPRAan approximate scheme to interpolate
missing lines irk-space with a linear model, which is different fr&@BNSE that is theoretically
an exact scheme. But GRAPPA has no explicit contiputaf sensitivity maps, not like SENSE.

This is the benefit of GRAPPA, comparing to SENSE.

1.2 Compressed Sensing

Compressed sensing/compressive sampling (CS) hasgedhas a new sampling theory,
different from PMRI. CS allows sparse or comprdssgignals to be sampled at a rate that is
close to their intrinsic information rate and wedllow their Nyquist rate [17-18]. The CS theory
can be summarized into three conditions for apfitina [19]: (a) Sparsify: the desired signal has
a sparse or compressible representation in a kntramsform domain; (b) Incoherence:
undersampled sampling space must generate nosealiksing artifacts in the compression
transform domain; (c) Nonlinear Reconstructionoalmear reconstruction is required to exploit
sparsity/compressibility while maintaining consistg with acquired data. Mathematically, CS

reconstruction can be considered to solve theviatig optimization problem,
fop =arg rrgin{"‘{/f”o} st. |pb-of|, <& (4)

wheref is the desiredN dimensional signak: is the optimized desired signaljs the measured
M dimensional signaM<<N; @ is the sensing matriXy is the sparsifying transforng servers
as the bound condition (usually noise level). Beeaminimizing L-O norm is a non-deterministic
polynomial-time hard (NP-hard) problem, L-0 nornginerally substituted by L-1 norm. When
the sensing matrixP satisfies the restricted isometric property (RitBhdition [17], the desired
signal f can be exactly recovered. Theoretically, the sfyamg transform¥ and the sensing
matrix @ together determine the acceleration performanceathrer, how many samples can

exactly recover the desired signal.



In conventional MR, the application of compressedsing is made possible by the facts that
(a) most MR images are compressible by certairstoams and (b) the desired image is Fourier
encoded in the measurement (so callsghace) which allows incoherent sampling. Sucheedu
sampling of CS theory is very desirable in MRI hesmthe data acquisition speed is directly
related to the amount of data that needs to beirechu herefore, CS has been successfully used

in conventional Fourier-encoded MRI application8-p2].

1.3 Benefitsand Limitations

Currently, some of PMRI techniques are commercialmilable. It can generally decrease
data acquisition without the need of gradient penmces, applying the phase array receiver
coils. PMRI techniques have been proved in clinaggblications to improve the image quality
with increased signal to noise ratio (SNR), spatablution, reduced artifacts and the temporal
resolution in dynamic MRI scans. Among PMRI teclugig, SENSE and GRAPPA are two
primary present commercially available techniqugsth techniques are well suited to enhance
most of MRI applications. SENSE uses the presceategty for perspicuous coil sensitivities;
GRAPPA employs the auto-calibration method for neng coil sensitivities. So the betterments
about SENSE mainly focus on how to achieve exaittsemsitivities; the improvements about
GRAPPA mostly lie in the auto-calibration methochefe are no obvious absolute advantage
between SENSE and GRAPPA. Both techniques allowaeselerated image acquisition in
arbitrary image plane orientation as well as withiteary coil configurations with essentially the
same SNR performance, though GRAPPA has a sliglatrdiage than SENSE in inhomogeneous

regions with low spin density [4].

Different from PMRI, CS theory is recently a vengrsficant popular advance in signal

processing community because of its potential tcelecate signal reconstructions from very



fewer sampled data than conventional sampling byguig-Shannon theory. Although, CS
techniques are still being researched and develdpeder, they have illustrated to increase
signal to noise ratio (SNR), and reduce aliasinifeats. CS reduces the data acquisition depend
on sampling below Nyquist rate, which is differfrd®MRI accelerating depend on the multiple
array receiver coils. CS and PMRI techniques hasnbmixed together in some research works
[21-22]. Among CS theory, the sensing matfixand the sparsifying transfori are two
significant factors. They largely influence whettibe CS theory can be applied to recover the
desire signals and how exactly the CS theory caaver the desire signal. However, they are
hard to together achieve optimal settingslodnd¥ , under current commercial MRI hardware
constrains. Otherwise, sampling pattern also affédat image quality of the reconstruction results,

because the real signals from MRI scanners arsmiateal sparse.

1.4 Our Works

Our works include three parts to separately acatdd¢he MRI data acquisition.

The auto-calibration signal (ACS) lines in convendl GRAPPA are acquired with a
frequency-encoding direction in parallel to othedersampled lines [16]. We propose a cross
sampling method to acquire the ACS lines orthogdonathe undersampled lines. This cross
sampling method increases the amount of calibradimta along the direction whekespace is
undersampled, and especially improves the caldraticcuracy when a small number of ACS
lines are acquired. The cross sampling method jdeimented by swapping frequency and phase
encoding gradients. In addition, an iterative ogistation method is also developed to correct
the inconsistency between the ACS and undersangaedwhich are acquired separately in two
orthogonal directions. The same calibration andomstuction procedure as conventional

GRAPPA is then applied to the co-registered dateetmver the unacquiredspace data and
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obtain the final image. The current results frommidations, phantom anith vivo human brain
experiments have distinctly demonstrated that tiopgsed method, named as Cross-GRAPPA
[23], can effectively reduce the aliasing artifactsconventional GRAPPA when very few ACS

lines are acquired, especially at high outer rédndactors (ORF).

Since now, CS has been successfully applied tolaxete the data acquisition of the
conventional magnetic resonance imaging (MRI) witburier encoding [19-22]. However in
Fourier encoding, the low spatial frequency alwhgs to be fully sampled such that the high
frequency is insufficiently sampled at high accafien factors, leading to serious loss of
resolution. Non-Fourier encoding has been studietheé context of compressed sensing for 2D
imaging, but with limited improvement [24-29]. See propose a novel 3D acquisition method
using hybrid encoding [30]. The method exploitsd@am encoding with a circulant structure
matrix along the “phase encoding” direction, whiteeping conventional Fourier encoding along
the readout and slice encoding directions. A desig?D random undersampling pattern is used
for accelerating the MRI scans according to therattars of thek-space raw dataset. The
simulation and experimental results both demorestitzit the proposed schemes preserve much
better resolution than the conventional 3D Fougiecoding when the same acceleration factors

are applied to accelerate the imaging speeds.

Because the hardware and software constrains ofdd&iners limit the sampling arbitrary in
k-space domain, it is very hard to achieve the idalrandom sampling pattern [19] with
conventional methods to perfectly apply the CS thed/e present a new approach of pseudo 2D
random sampling scheme for application of compikssensing in the Cartesian MRI
applications. The proposed scheme is realized pylse sequence program which switches the
directions of phase encoding and frequency encodining data acquisition such that bdgh
andk, directions can be undersampled randomly [31]. fésulting random sampling pattern

approximates the ideal but impractical 2D samplipgtterns. Current simulations and
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experiments both show the proposed scheme is superihe existing 1D random sampling and
similar to the ideal 2D random sampling in termstloé image reconstruction quality. This

method can potentially improve imaging speed inGeapplications in conventional MRI.

2. Purpose of the Dissertation

The purpose of the dissertation is to improve atcklerate the conventional MR imaging
according to constrains of current commercial M&drmers. The general scans of MR machines
typically last 3~5 min to achieve common resolusidil]. But doctors anticipate to diagnose
patients as soon and accurate as possible. Therafmounts of the accelerated recon techniques
are employed to reduce acquisition and short sca@ fThese techniques can bring economics
benefits for doctors and patients. In the dissertathree schemes corresponding to PMRI and

CS are presented and further developed.

3. Proposed Schemes

Three schemes are proposed to accelerate the iamgeésition and improve the image
quality. They are Cross-GRAPPA, Hybrid-encoded CRIMand Pseudo 2D Random CS MRI.

All these schemes are minutely described as follows

3.1 GRAPPA Using Cross Sampling

GRAPPA scheme [16] has been employed in cliniciegpbns to avoid the estimation of

coil sensitivities, which is usually necessary faher approaches such as SENSE [7] and
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SMASH [10]. GRAPPA uses a linear combination of #ltguiredk-space data to reconstruct the
missingk-space data. The coefficients used for combinatrerusually calculated by fitting some
acquired auto-calibration signal (ACS) lines. Whee number of ACS lines is insufficient,
aliasing artifacts of reconstruction are presenh@lthe undersampling direction. A number of
reconstruction methods have been proposed to redl@sing artifacts and improve image
quality, such as regularization [32], multicolumnultiline interpolation [33], reweighted least
squares [34], high-pass filtering [35], cross-validn [36], iterative optimization [37], virtual

coil using conjugate symmetric signals [38], mslice weighting [39], infinite impulse response

model [40], nonlinear kernel [41].

The way along which ACS data is acquired is acyua#try important in reconstruction
quality. Larger amounts of ACS data usually leadimprove calibration, but on the other hand
prolong the imaging time. There have been only feethods modifying the data acquisition
procedure to improve GRAPPA. In Ref. [41], it haseb noted that the calibration using large
ACS in the center ok-space may not be appropriate for reconstructiggniissing signals in
outer k-spacewith relatively much smaller amplitude, and a meth® proposed to acquire the
outerk-space data with different reduction factors arlibate the GRAPPA coefficients locally.
The method is shown to suppress residual aliasmifpas and noise in GRAPPA when

parameters are optimized, but it is not clear Hwsvaptimization is done in general.

We first demonstrate that the amount of ACS dataled for reconstruction is not isotropic --
more ACS data are needed along the undersampleskqgin@oding direction than the fully
sampled frequency-encoding direction to achieveilainreconstruction quality. We then
propose a new cross-sampling acquisition methodmrove conventional GRAPPA. The
method acquires the ACS lines along the directithogonal to that of the undersampled lines.
By this means, much more ACS data are availablegatbe undersampled direction, and the

image quality is thereby significantly improved. &ddress the “inconsistency” issue usually
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encountered in non-Cartesian sampling, we devetopesative co-registration method to align
the reduced data acquired in two orthogonal divesti The same reconstruction procedure of
conventional GRAPPA is then applied to the co-fegexl data for image reconstruction. We
name the method cross-sampled GRAPPA (Cross-GRAPBulation and experimental
results using phantom ama vivo data demonstrate that the proposed method caificagly
reduce the aliasing artifacts in conventional GRAREconstruction with the same number of

ACS lines and outer reduction factors (ORFs).

3.1.1 Summary of GRAPPA

In conventional GRAPPA, to reconstruct the missirspace data at the locatidq, (k+mAk)

in coil j, the acquired data in the neighborhood are liggamnbined [16]:

Sj(lg+nA|§)=|ZL1:N:ZolI(jblrf}ﬁ(J<+ ORFA } (5)
where ORFrepresents outer reduction factd¥, is the number of blocks used in the
reconstruction, one block is defined as a singtpiimed line and its adjacent ORF-1 missing lines,
andn(j,b,l,m) represents the coefficients for the linear comliamatThe indexX counts through
the individual coils, while the indelx counts through the individual reconstruction blockkis
process is repeated for each coil in the arrayltieg in L sets of fullk-space data for the
uncombined single-coil images. These images ane ¢oenbined using a conventional sum-of-
squares (SoS) reconstruction [5].

In order to perform the reconstruction in Eq. (8)¢ coefficientsn(j,b,l,m) need to be
determined initially. Some ACS lines are acquirethwNyquist rate in parallel to the

undersampled#-space lines that are uniformly spaced. The praeettucalculate the coefficients,

known as auto-calibration, is described by theofelhg equation:
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pd
AN

L b
SISk + mK)=>> f iblrh § k¢ b ORR k ®)
1=1 b=0
where the acquired ACS daBi“Sk,+mAk,) replaces the missing dag(k,+mAk,) in Eq. (5).
After solving the linear equation Eq. (6), the dm&nts n(j,b,l,m) are obtained and slid block-
by-block to reconstruct the missing data using (B)). The missing data can be obtainedNjm1
different ways, which are combined in a weightedrage based on the goodness-of-fit (GOF).

More ACS lines provide more equations of Eq. (&) #rus improve the coefficient accuracy, but

require a longer acquisition time.

3.1.2Which ACS data are important?

Several parameters of GRAPPA calibration affectitigege quality. For example, it is known
that more ACS data improves the calibration acguaad thus the image quality in general.
However, the effect of ACS data on reconstruct®naither isotropic nor proportional. Here we
use a set ain vivo data acquired by an 8-channel head coil to dematest(a) more ACS data
barely improve aliasing artifacts beyond a certhimeshold; (b) the threshold is larger along the
undersampled direction than the fully sampled dioec Three different scenarios were
investigated for GRAPPA with an ORF of 4 and theules are shown in Fig. 3. The first row in
Fig. 3 shows how the reconstruction quality gralguahproves with increasing numbers of ACS
rows while all columns are included. It is seent thiasing reduction saturates at a certain
number (about 26) of rows. Beyond this point, tim@riovement is minimal in aliasing reduction
and is primary in SNR enhancement. On the othed hahen the number of ACS rows is well
below this point, serious residual aliasing artacan be present. Although all columns of ACS
data are usually used in GRAPPA reconstructiontdube availability of full samples along the
frequency encoding direction, the second scenaqibotss only a few columns of the 32 ACS

rows in GRAPPA reconstruction. The results on teeosd row of Fig. 3 demonstrate that
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aliasing reduction also saturates at a certain eurtdbout 18) of columns. In the third scenario
shown on the third row of Fig. 3, a similar obséiais obtained for the extreme case when all
256 rows are available as the ACS data but onlgva dolumns are used for calibration. All
results in Fig. 3 suggest that only a small regibACS data in the centridspace play a key role
in calibration. There are usually more ACS datadeeealong the undersampled direction than
the fully sampled direction to suppress the aligsirifacts. The large number of ACS data along
the fully-sampled frequency encoding direction eanmmprove the accuracy along the
undersampled phase-encoding direction which iscaly important in reducing the aliasing

artifacts.

Row:6[Column: 266 Row:10{Column: 256~ Row:14|Column:256 Row:18Column: 266 Row:26|Column: 256 Row:30|

Row:32|Column:10==«._ Row:32|Column:14- Row:32|Column: 18-~ Row:32|Column:26 Row:32{Column:308~~. Row:32

Row:25§Column; 10 Row: 256 Column: 14 Row:256[Column;18-=Row:256{Column;26~~~Row:256{Column;30-~—-Row:256

Fig. 3 Conventional GRAPPA reconstructions with differenimbers of rows and columns
(shown on the top of each image) for ACS data. fEHsailts suggest more ACS data are needed

along the undersampled direction than fully samplieeiction for aliasing-artifacts suppression.

3.1.3 Cross Sampling M ethod

The contradiction between the demand for a largeouammn of ACS data along the

undersampled direction, and the availability ofasgé amount of ACS data along the fully-
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sampled direction that is not contributing to atis reduction, motivates a new method to
acquire the ACS lines. The method acquires that A@S lines are orthogonal to the
undersampled lines, as illustrated in Fig. 4(aghsthat the amount of ACS data along the
undersampled direction is maximized without proiaggthe acquisition time. To realize the
proposed acquisition method, we simply need to ayoally swap the phase encoding and
frequency encoding gradients of a spin-echo origneglecalled-echo sequence during the ACS
data acquisition such that the frequency/phasedimgalirection is changed from one direction
(e.g., anterior/posterior) for undersampled actjaisito its orthogonal direction (e.g., right/left)
for ACS acquisition as done in Ref. [31]. Fig. 4dhows the diagram for a spin-echo sequence
used for Cross-GRAPPA. The proposed method is lesstieamplementation of the scenario in
Fig. 3 last row which acquires a varying numbeAGIS columns. The results in Fig. 3 last row
show in ideal case, the method suppresses aliastifigcts better than conventional GRAPPA

when a small number of ACS lines are used.

000000
o000 OP0000
000000
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Fig. 4 (a) Sampling pattern of the proposed Cross-GRARfe#od with an ORF of 2, where the
solid black dots represent the acquired undersahgagn, the gray dots represent the ACS data,
and the white dots represent the unacquired dagblack crosses inside the gray dots represent
the intersecting locations between the ACS and nsadepled data. Parameigrando, are the

shifts between the two orthogonal acquisitions @lgrandk, respectivelyy is a complex scaling
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factor. (b) Diagram of a spin-echo pulse sequemxettie proposed scheme. The phase and
frequency encoding gradients are swapped duringattwpiisition. The solid gray gradients
represent acquisition of the ACS lines and the dalsttk gradients represent that of the

undersampled lines (or vice versa).

3.1.4 Data Co-registration

In practice, the data need to be pre-processedebedoonstruction. It is known that when
frequency encoding takes different directions, #wtual acquiredk-space data may not be
perfectly consistent due to practical conditionshsas eddy current, field inhomogeneities and
chemical shift [42-46]. This inconsistency needséocorrected in Cross-GRAPPA before the
assembled data can be used for image reconstrucocomprehensive correction of the
inconsistency is very difficult due to the limiteshount of data from two orthogonal directions
that are supposed to overlap krspace. Most correction methods that are used ih dEP
PROPELLER [47-50] only work for fully sampled data require reference scans, and are
therefore not applicable here. We are able to cbthe inconsistency ik-space rather accurately
using a simple model inspired by a PROPOELLER abise method used in Ref. [50]. In the
model, we assume the two setskedpace data acquired with orthogonal frequency &ings
may be misaligned in position and scaled by a cermmonstant in value due to practical

conditions [23].

To co-register the ACS data and undersampled Hatate acquired with orthogonal readout

directions, we assume these two sets of data &tedeoy,

Sunder( K( +5x’ K/) =0 %CS( K’ I§_5y)’ (7)
which means thé&-space locations can be misaligned (shiftedspglongx andoé, alongy as

shown in Fig. 4) and thespace values can be off by a complex scaling fac&s shown in Fig.
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si2np

4(a). The complex factar is assumed to bhe €'“” with « andg being real numbers. The model

in EQ. (7) can also be represented in the imageadoas

Singer( X Y) €7 =0 s6( X Y- €Y ®)
Because the ACS lines and the undersampled linbsomihogonal readouts intersect at sdme
space locations indicated by crosses in Fig. 4dap at these locations can be used to estimate
the shifting and scaling parameters in Eq. (7) tredeby used to co-register tkespace data at
other locations. To estimate the unknown parametéies L-1 norm of the total differences
between the two sets of data at the intersedtisgace locations is minimized after registration.

The problem is formulated as

5x’5y’0 = argminz |Sunder( K( +5x ’K/)_G. %CS( I§ ’ l§_5Y) (9)

5X,5y,0
where the summation of the absolute differencevés all intersecting locations &cs andS nger
Note that L-1 norm is used instead of L-2 norm dmets robustness to outliers that are not

adequately characterized in the model in Eq. (7).

To calculate the shift iRk-space, we use the image-domain equivalence i(&qgBecause
the reduced data is fully sampled along the readivattion (assumg), a one-dimensional (1D)
Fouriertransform is carried out alongand then multiplied witte®™*, followed by an inverse

Fourier transform, i.e.,

S K+ K) =] A7 S 5 k)] & ] (10)

Similarly, for the ACS data, a 1D Fourier transfaswarried out along the fully-sampled readout

i2moyy

direction (assumg) and then multiplied bg=™», followed by an inverse Fourier transform:

SACS( Ku IS_5y): L%[L%_l[ acs( Ku K/)] _eizmjyy} 1y
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where&%X and 7), are 1D Fourier transforms alomgandy directions in image domain and

0 -1 g -1 . . . . .
/k ande,/k are 1D inverse Fourier transforms aldq@ndk, directions ink-space.
X y

The above minimization problem is solved using Kedder-Mead algorithm as in [51, 52].
The Nelder-Mead method [53, 54] is a simplex metfurdinding a local minimum of a function
of several variables. A simplex is a polytope (enegralized triangle) oN + 1 vertices inN
dimensions. Examples of simplices include a liresgment on a line, a triangle on a plane, a
tetrahedron in three-dimensional space and so.folth method is a pattern search that compares
the values of the objective function in Eq. (9)adltvertices of a polytope. The worst vertex
giving the largest value of the objective functismrejected and replaced with a new vertex. A
new polytope is formed and the search is repe&tedtively. The simplest step is to replace the
worst point with a point reflected through the ceiat of the remainindN points. If this point is
better than the best current point, then we casttgtching exponentially out along this line. On
the other hand, if this new point isn't much bettem the previous value, then we are stepping
across a valley, so we shrink the simplex towarletger point. The iterative process generates a
sequence of polytope, for which the size is shranll the value of the objective function is
reduced. When the polytope is sufficiently smdik toordinates are found to the minimizing
point. The Nelder-Mead algorithm is heuristic arah converge to a non-stationary point. It is
necessary to properly initialize the parametersdta co-registration. In this study, the initial
values of -1 or 1 ford, and d, and ones fora and p are sufficiently good for all
experiments. Although more advanced algorithmsasedable, we find the method effective and

computationally efficient.
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3.1.5 Image Reconstruction

After the data from orthogonal directions are ogistered, the same calibration and
reconstruction procedure as conventional GRAPPA] [d&n be employed to obtain the
unacquired data, except that there are much mor& AlGta for calibration along the
undersampled direction, as shown in Fig. 5. Speadlfi, Eq. (6) is used for the calibration
process to estimate the coefficienfgb,l,m). The coefficients usually take a size of 4 bloaks
5 columns based on conventional GRAPPA. More ctefits cannot bring more benefits in
image quality, and on the contrary will cost mooenputation time. Eq. (5) is then employed for
reconstruction of the missirigspace data using the estimated coefficients frgm(&). After the
missing data are recovered by a weighted averaggdban GOF, the reconstructed and acquired
data of each coil are then inverse Fourier transfor and combined using a root SoS method [5]
to obtain the final desired image. It is worth ngtithat the image reconstruction step is
independent of the proposed cross-sampling schérherefore, all other reconstruction

algorithms that improve upon conventional GRAPPA ba applicable in this step.
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O Unacquired Pixel
. Acquired Pixel

o ACS Pixel Coil 3

. Intersection Pixel CQ'I 2

Fig.5 lllustration of Cross-GRAPPA reconstruction progedlwith an ORF of 2 and a single
column of ACS. Four blocks and one column are assufor the coefficients. The gray lines
represent the process to fit the ACS data (grag)dotthe center or to estimate the unacquired
data (white dots) outside the center using undgkaindata (solid black dots) from multiple
coils. Gray dots with black crosses represent tita goints where the ACS and undersampled

data intersect. The bottom gray strips show adipmsalong the readout directidg

3.1.6 Nonlinear Denoise

To reduce further noise in reconstruction of Cr@$$APPA, the proposed method can
integrate nonlinear GRAPPA [41] to substitute trenwentional linear kernel [16]. Fig. 6

illustrates the procedures of the integration. dtacacquisition, the ACS lines are acquired along
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the direction orthogonal to that of the undersanhpiees (Fig. 6 step 1). By this means, much
more ACS data are available along the undersamgiegttion to improve the calibration

accuracy. The previous iterative co-registratiorihroé is then used to correct any inconsistency
between the data acquired in two orthogonal diesti(Fig. 6 step 2). In reconstruction, a
nonlinear model [41] is used to represent the icelahip between the missing data and the

acquired undersampled data (Fig. 6 step 3). Spatifj we have [41],

S;(k + k. k)= v&o)x1+i 3 Z W (1hhx 8 k+ bRk Kk Kk
I=1b=B, h=H,
+ZL: "3 w29 (1,b,h)x F(k+ bR K k+ h K (12)
I=1b=B, h=H,

where s (ky + 1A ky, kx) denotes the unacquired-space signal at the target caill,
S (ky +tRA K, Kk + I I§) denotes the one-order acquired undersampled signal
S.2(|<y+ tRA K, k+ I K) denotes the second-order acquired undersampledalsignd

Wi r (I.t,h) are the coefficients obtained through calibratibhe orthogonal ACS lines are

used to estimate the coefficients of the nonlimeadel. The interpolation is then repeated for
each missing point at each coil. These imagesham ¢combined by a root sum-of-squares (SoS)

method [5] to obtain the final image.
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Fig.6 Algorithm procedure illustration of Cross-GRAPPAtwnonlinear kernel. The first step is
cross sampling thk-space data; the second step is aligning the ttfmgonalk-space data; the
third step is using nonlinear kernel to calibrate aecover the missed data. The nonlinear terms

in EQ. (12) are just yielded from the same cails.

3.2 Hybrid-Encoded MRI Using Compressed Sensing

Among the CS MRI applications [19-22], to accelerite MR imaging speed, thespace is
undersampled along the directions other than rdaddior example in 2D and 3D Cartesian
sampling, a variable density random sampling patierused to undersample tkespace data
along the phase encoding and slice encoding dirextiThe imagé can be recovered by solving

a constrained convex minimization problem as sim@itaRef. [19],

argfmin{\b—Fuin +21HWfH1+/?2 TV()} (13)

where b is the measurel#t-space datar, is the random subset of the rows of the Fourier
encoding matrix;WV is the sparsifying transform matrixy () is total variation;; and 3, are

constant regularization parameters.

Although CS has been demonstrated to acceleratspided of data acquisition in several
Fourier-encoded MRI imaging applications, Fouriecading may not be optimal for the CS
theory, and is known to have some limitations [&5]. Firstly, Fourier matrix is known to need
more measurement than random matrices for exaoteer Secondly, Fourier encoding does not
spread out the signal energy for natural imageshencontrary, Fourier encoding concentrates
the energy in the low-frequency region. ActuallygNist sampling is still required in the low-
frequency region, which leads to insufficient sainglof high-frequency components at high
under-sampling factors. Finally, Fourier encodisgniot universal, which is only maximum

incoherent with the canonical basis or some spatiaklet transforms. As a result, the incoherent
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condition is weakly satisfied for some sparsifytrgnsforms such as the coarse scale of wavelet

transform [55].

Fig. 7 k-space comparison of Fourier (left) and non-Fouright) encoding.

As seen as the Fig.7, the Fourier and non-Foufiee(§litz) encodings can generate different
k-space raw dataset. For Fourier encoding, the grierfgequency domain is concentrated; the k-
space is high coherent; there is high SNR in theffequency regions and low SNR in the high
frequency regions. But, for non-Fourier encodinige energy in frequency domain in non-
concentrated; thk-space is high incoherent; there is homogeneous. SN&efore, some people
have investigated to use non-Fourier encoding ®rMMRI [24-29]. For example, independently
identically distributed (i.i.d.) Gaussian random trit&gs have been proved to have several
favorable properties as a CS matrix, such as usavand spread out. It has been studied for MRI
as an alternative to Fourier encoding. However, tiemory usage and computations are

demanding in reconstructing the large-scale 3D emagume. Toeplitz random matrices have
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been shown to share similar properties as i.ixdoen matrices, but with more efficient memory
usage and computations. 2D Toeplitz random encduisgalso been investigated by the authors
for CS MRI [25-27]. 2D random excitation [28] shoasme promising results. But, a complete
2D random excitation may not be practical, becaussquires a very long RF excitation profile
for pulse sequences. Spread spectrum MRI [29] ashen way to address this issue by a linear
chirp modulation instead of the random modulatishjch has been implemented physically
using a second-order shim coil. The linear chirab$e to spread out the signal energy in the
measurement domain. But, this method is constraimethe second-order shim coil and the
MPRAG sequence. In sum, none of these existing Fmmier methods have demonstrated

notable improvement over Fourier encoding in reakeeiments.

We propose a hybrid encoding scheme with a novédepsequence [30]. Based on the
conventional Fourier pulse sequence, the novelepséxjuence replaces the Fourier encoding
along the phase encoding direction by a circulantiom encoding. The encoding scheme excites
the object along the “phase encoding” directiordranly. This excitation profile is repeated but
shifted by a single pixel spatially during eachigaton. The corresponding sensing matrix has a
circulant structure with independent random compéements. With the proposed hybrid
encoding scheme, the benefits of both Fourier engoand random encoding can be achieved
simultaneously. The low frequency signal can $till densely sampled in the Fourier encoding
direction for high SNR. At the same time, the slger@ergy is more spread out in the circulant
random encoding direction such that high-frequeinégrmation is adequately sampled. Using
both simulation and real experiments, we demorestratt hybrid encoding under 3D encoding is

superior to 3D Fourier encoding in preserving resoh at the same reduction factors.

3.2.1. Compressed Sensing

Compressed Sensing /compressive sampling (CS)\tligdy 18] is employed to reconstruct

a signal which is sparse or compressible in mghiles bases, such as wavelet bases. In the CS
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theory, the desire signal is a lengthsignal vectorf € C" ; the measuremens:c C" is a

lengthM measurement vector; the matri:e C"*" is the encoding matrix wittM << N, and

the vector:77 € C" is a lengthM noise vector. The measurement model satisfies:

b=Ef+n wthE=®¥ [14

where the matriX¥! is a sparsifying transform matrix. The basic Céorsstructionf of desire

signalf is solving an L-1 minimization problem:

f =argmin|¥f| .st|o-Ef[ <e (15)

feC

where the L-1 norm and L-2 norm are respectivelyfindd as Hlezzi‘xi‘ and

Htz — ‘/zi‘xi ‘2 for all k-sparse vectox € R"; the € is the noise level of the noise vector

n - The desire signdl can be exactly and stably recovered by the CSnetacction, if the

matrix @ satisfies restricted isometric properties (RIPs}].[TTheoretically, the measurement

matrix @ has restricted isometric properties of order Kié tnequality is satisfied,
(1= 8)|x[, <Jlox], < (1+ 6, )[x], (16)
for all K-sparse (lengtt of nonzero) signals x. The RIP condition doeshait forK < M ,

but it may hold for smalleK . Actually, the RIP condition is a stable embedding

s, < \/E_ 1, then for all k-sparse vectof such thad®x =b, the L-1 solution is equal to
the L-0 solution [19]. And ifé'2K have injectivity; smalleré'2K more stable. If the noise level
H”Hz <gands, < J2 —1, then,

X -%|, <C,-k*o, (%), +C, & (17)
where x  is the L-1 solution; X is the proposed k-sparse vector, and

o, (%), = min||X — z|,whereze X, that is [19],
ze3,
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#supp(x)<k-. (18)

For an arbitrary pair of matricds and¥, it is often computationally infeasible to caldela
practically-useful guarantees on the quality andustness of the CS reconstruction [24]. The
known reconstruction bounds for matrices with estdrawn at random from various probability

distributions is,
k<C-M/log(N /M) (19)

Usually, it is difficult to verify RIP for a givematrix E , and requires checking eigenvalues of
each sub-matrix of the matrix . The random matricds , such as i.i.d. Gaussian entries, i.i.d.
Bernoulli entries, i.i.d. sub-Gaussian entries,dmn Fourier ensemble, random subset of
incoherent dictionary, Toeplitz, etc., have beeovpd to satisfy RIP condition. Wis an
identity matrix, M and N are large, then CS reconstruction is guarantede tmbust with high
probability if the matrixE is a randomly under-sampled discrete Fourier tansfoperator [17-
19, 24]. However, Fourier encoding is not necebsavell suited to CS reconstruction with
arbitrary ¥ [24] Practically, the SNR of readout cannot be uniféommeasuring instruments.
As a result, the use of non-Fourier encoding sclefoe CS-MRI could also potentially yield

benefits [24].

3.2.2. Circulant random matrices

Although i.i.d random matrices have been provedaiisfy the restricted isometry property
(RIP) condtion [17], the computation and memorygesare expensive for reconstructing MR
images. Toeplitz and circulant matrices haven ls&wn to be almost as effective as the i.i.d.

Gaussian random matrices in the context of CSrdmutire a significant redcution in computation
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and storage [57-61]. In particular, a circulant mia€ is a special Toeplitz matrix and has the

form,
h h - h,
h
c=|" hl . h":’l , (20)
h, h - hy

where h;, h,,--- h, are the complex numbers atl is the size of matrix. This matrig€ is
known to be decomposed in@=n"’F, XF,, where the matrix, expresses the 1D Fourier
matrix, andediag([al,02,~--an]) is a diagonal matrix whose non-zero entries aee 1B

Fourier transform of vecton = [h, h,- n]. Such a decomposition suggests that multiplication

of the circulant matrixC with one signal X (equivalent to circular convolution) can be
efficiently calculated by a point-wise productioint@wo lengthn vectors in the Fourier domain. A
fast algorithm for CS reconstruction has also béeveloped for circulant measurements based

on this property [61]. Here, in our desig,’s are chosen as complex numbers with uniform

magnitudes and random phases which is uniformlriliged on[O, 271] Such a choice can

further reduce computation, and gaurante to gem¢iatenough excitations to decarease alaising
artifacts. When the raw data are be reconstraetdidear matix equation is mainly sloved. The

eaquation is givenCx=b, whereC is a circulant squanre matix of sidéx N . Usually, we

) ) ) ) ) -1 ) L
can solve this equation with the inverse matrixCof X = C b, but its computaion is very
slow which needs to caculate the inverse matri€ gfnd Gaussian elimination. BecauSeis a

circulant squanre matix, we also can solve thisagqn with the transposition matrix & ,

T . . . .
x=C b, but it also needs to caculate Gaussian eliminatibowever, we can write the
equation as the circulant convolutio® x= b, whereC s the first column ofC , and the vector

C, X and b are cyclically extended in each direction. Usig tresults of the circular
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convolution theorem, we can use the discret Fotmdgsform to transform the cyclic convolution

into component-wise mutiplicatiof, (c*x)=F,(c) F,(X = F,(b, so that , to solve the

n

.
equantionCX = b can become caculatings = F* [( F,(b),/ Fn(c)v) } [62], where

vez,
Z, is a cyclic group. If the fast Fourier transforsnuised, this algorithem is much faster than the
standard Gaussian elimination. If the sizesXafCandb are allN , the computional complextiy
of this algorithm isO(NIog N). If the raw dataset is a three-dimentiokedpace data, this

algorithem is used to decoded circulant random @ingoalong one direction and the fast Fourier

transform is applied along the other two directiadere, we assume that the size of the fully-

sampled data ifN x Nx M along X , Y and Z directions. If the data size is a cube dataset,
M is equal to tharN ; otherwiseM is less thanN . The computational complexty of the

proposed method for this 3Bspace data i:s)(MN2 log N), which is compaterble with the

computational complexty of the inverse fast Fouti@nsformation (FFT)Q(MN2 log N).

Theerfore, the decoding computational complextythaf proposed method is as same as the

conventional Fourier-encoded method.

3.2.2. Hybrid Encoding Scheme

Our objective is to design one MR physical-impletable hybrid encoding scheme for 2D
and 3D imaging which are superior to the convemiiéiourier encoding in the CS reconstruction
framework. Actually, the commercial MRI hardwarenstrains always require fully sampling
along readout directions, hence we cannot undelsainpk-space to accelerate the image
reconstruction along the readout direction. Thersfdo implement the proposed non-Fourier
encoded method, we mix the expected Circulant naneiocoding and the conventional Fourier

encoding in 2D imaging to achieve 1D acceleratims 3D imaging to achieve 2D accelerations.



31

Otherwise, in the CS reconstruction framework, 2fbttl-encoded imaging cannot be compared
with the 2D Fourier-encoded imaging under the &ampling situations of the low and high

frequency domains, as seen as Fig.8. And only 3bridyencoded imaging (a) can ensure the
fair sampling situations comparing to the 3D Faueircoded imaging (b). Therefore, we just

discuss the 3D imaging of Hybrid and Fourier enogdi
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(b)

Fig.8 lllustration of the sampling acqusitions of the Bybrid encoding (a) and 3D Foureir
encoding (b) methods. The sampling patterns of idykind Fourier are seperately based on the
characters of the raltspace datasets. Without loss of generality, Xs&imed to be the readout,
Y is assumed to be the circulant random encodinghase encoding, and Z is assumed to be the
slice encoding. The undersampling is in theéxkplane ofk-space. Hybrid has a variable density
random sampling is used along thedkection, and a uniform random sampling is altimg k,
direction. Fourier encoding has a variable densitbydom sampling is used along thelkection,

and a variable random sampling is along thditection.

As the CS reconstruction of the 3D Fourier-encddeatjing, the CS reconstruction of the 3D
Hybrid-encoded imaging is also in the Y-Z planedader-sampled rak:space datasets per slice
along the X direction, because the riegpace data along X direction which usually isrésdout
direction must be fully sampled. Assuming the vesdoimage to be reconstructed in the Y-Z
plane a$ , the encoding matrikl can be written as the Kronecker product of a cinsirandom
matrix (i.e.,C in Eq. (20)) and a 1D Fourier transform matrix. ThatrixH has a block circulant
structure with each block being a Fourier transfonatrix. The original vectored imafje, can

be reconstructed from the undersampled bldtg solving,
. 2
argfmln{]b—HufHZ+/21HWfH1+/22 TV(f)} (21)

where all notations are the same as in Eq. (13mxbat the Fourier matrfx is replaced by the
circulant-Fourier encoding matrit ; H is the subset matrix of the circulant-Fourier eriegd

matrixH ; W is the wavelet transform matrix;v() is total variation;; and », are constant

regularization parameter{s}-;”1 is the L-1 norm an(ﬂ-”2 is the L-2 norm. To solve the optimized

problem, nonlinear conjugate gradient method idieghpo minimize the target function in the Eq.
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(31). Actually, there are still some methods [62] Gsed to accelerate the image reconstructions

because of the special property of the Toeplitzcstire.

3.2.3. Pulse Sequence Design

According to the MR physics of magnetization witmadl tip angles [63], the excitation

profile should satisfy the following equation, whitie situation of the small tip angles,

T .
_ k(t)-r
M (r) = jyMo(r)[ B,(t)e* . dt 22)
where, 7 is the gyromagnetic ratid; is a unit vector in thdx—space;Bi(t) is a magnetic field
created from an RF coil which oscillates at the nhawr frequency; My(r) is the initial

equilibrium  magnetization, wusually along Z direatio M(r) is the nuclear

magnetizationi,< (Disa trajectory irk-space, which is usually the area of the remaignaglient,

k(t) :Z—Z.LTG(r)dr _ (23)

Where G (T) is the gradient vector in the pulse sequences, hwhiually should satisfy the
T
equation,G(t)Z[Gx(t) G, (1) Gz(t)] :

The Eq.(22) means thd3(t) can satisfy the Fourier transform at small tip asglWwhatever

the random pulse or other. But at the large tiplemghis Fourier transform cannot be exactly
guaranteed. Usually, they are the small tip anglesn the tip angles are not over 30°; otherwise,
they are the larger tip angles [64-69]. But thimalosion is just drawn from the conventional

SINC pulse as the RF pulses which have the confitarangles. The random pulse as the RF

pulses do have variant flip angles instead of tbestant flip angels, which only have the
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conception of the average flip angles. Whatew(!) should less than an upper bound for

satisfying the Fourier transform, and also lardgemta lower bound for gaining the cognizable

signal over background noise. Therefore, in termexperimental experiences, the maximum

amplitude of B(t) should be the 1/4~1/3 of the maximum amplitud@dsfRF pulses.

®(RF) N““MWT ----------------------------- S

A/D ....................... MMWWWMMW

Fig. 9 Timing diagram of the pulse sequence for the ppedd3D hybrid encoding scheme. The
RF pulses are complex numbers with uniform mageiuand random phases. Gy is turned on
simutanisuly as the RF pulses. After the RF exomathe slice encoding gradient Gz is turned on

along z followed by the readout gradient Gx along x

The pulse sequence designed for the proposedamtctdndom encoding is shown in Fig. 9.
Specifically, a random pulse with a constant maglgt and random phases after Fourier
transformation is applied as the excitation prefitf the RF pulses. Each random RF pulse
generates a random excitation profile along their¥ction. Along Y direction, a fixed gradient

G, is turned on to generate random flip angles akbegY direction. To construct the circulant
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structure for the random encoding, a linear phageis applied in image domain at subsequent
excitations. The linear phase shift is designedhstimt the excitations from consecutive
excitations are spatially shifted by a single piieing the Y direction.

Each excitation corresponds to a row of the cirtutandom encoding matri€ in Eq. (20).

As seen on Fig. 8, the amplitudes and phases d#itedshTR by TR, to implement circulant
random encoding along Y axis. In generaBafield applied on-resonance for a finite time is
called an ‘RF pulse.” The RF excitation will allosentrolling the magnetization vector. If the

simplest envelop is a rectangular pulse with thelaude B, and the duration, , yielding a
simple RF burst. In the rotation frame, tBefiled generated by the RF excitation is given by,
B,(t)= B (t)e"”. Here,BS(t) is the envelop oB, (t) andg is its initial phase. The final

tip angle & after an RF excitation pulse of the duratigyis given by

a=y| B (t)dt, (24)
if assuming the initial phasg = 0 . For the special case of a rectangular, the tiglean

isa = 7Blrp. However, the final tip anglér after an RF excitation pulse of the duratigpfor

random encoding cannot be calculated directl)Bll(t) are real numbers, the tip angkcan be

calculated by the Eq. (24). For example, the roeamsquare flip angle [24] can be computed as

the tip anglex . However, if Bl(t) are complex numbers, the final tip angle cannot be

calculated by the Eq. (24) after an RF excitatiats@ of the duration,. So the simulation with

the Bloch equations [1, 43, 66, and 84] should fiyglied to calculate the final tip angké. The
Bloch simulation shows that the final tip angkeis variant each TR, different from the constant

tip angle & of Fourier encoding.



36

After the RF excitation, the slice encoding gratli@pis still turned on along Z axis followed
by the readout gradier@®, along X axis. If assuming the field of vielvOV, of readout, the
gyromagnetic ratig- and the bandwidtiBW for the receiver digitizer, the amplitudex of the

G, gradient is equal to,

BW
Gx= . (25)
yFOV,
If an isotropic cubic FOV, the gradients shouldsfatthe following equation,
GyAtRF =GAt readout:AGZT z (26)

For a non-isotropic cubic FOV, such as the data sfizZXxYxZ is 256x256x%32, the gradients are

designed depend on the corresponding scalar sizegxel. Here,Gy is the amplitude oGy
gradient along Y direction(3, is the amplitude ofsx gradient along X directionAG, is the

variant amplitude of slice ending along Z directidvi;- and Al .qout are the durations of RF

excitation and readout acquisition, amd is the duration ofGz gradient. UsuallyAt..is a

constant value which satisfies the multiple of tlega size along Y direction, ar@@lx has been

calculated by the Eq. (25). Hert cadousatisfiesM eaoi=1/BW , thuscycan be calculated by
the Eq. (26). It means that if hoping to raise dmeplitude of the gradieal, rBWshould be
decreased. Otherwise, if decreagyyg rBWshould be increased.

As seen as Fig.10, to realize 2D imaging, we hamahstrated the feasibility of Toeplitz
random encoding in 2D imaging using MR experimdantur prior work [26, 27]. For 2D
hybrid-encoded imaging the sequence is realizeétleafig. 4, which is based on spin echo pulse
sequence and has the 180° RF pulse to implemestitieeselection along Z direction. There is a
corresponding gradient simultaneously with the 1BE° pulse along Z direction. To guarantee

the signal quality of readout, the two crushersuthde applied because the 180° RF pulse may
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not be exactly 180°, and it may not refocus evéngttat time TE as we expect. The crusher
gradient after the 180° RF pulse destroys theifrdection decay (FID), the one before the 180°
RF pulse is to balance the one after. Otherwigseaally for reconstruction, it will change the
shift direction of the encoding matiiX, if the 180° RF pulse is added into the pulse saqge.
Because, the 180° RF pulse reverses the magnetizadictor direction in the transverse plane,

the reverse circulant shifting direction of the @tiog matrixc* should be equal to,

oo™ o (27)
ho o R

where h, h,,--- h, are the complex numbers aifidis the matrix size, which is the actual image

size along the Y direction.

RE) L SN

®(RF)

A/D

Fig. 10 Timing diagram of the pulse sequence for the psed®D hybrid encoding scheme. It's
based on spin echo pulse sequence and has theRE8pfiIse to implement the slice selection
along Z direction. There is a corresponding gradémultaneously with the 180° RF pulse along

Z direction. There are two crusher gradients tardggshe free induction decay (FID).
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3.2.4. Bloch Equation Simulation

The Bloch equations are a set of macroscopic emgathat are used to calculate the nuclear
magnetization in the classical nuclear magnetiorrasce (NMR). Because its solution includes
T1 and T2 relaxation time and precession, its satmuh is the most accurate way to study the
effect of pulse sequence on magnetization. Thesagrhenological equations were introduced
by Felix Bloch in 1946 [85]. Here T1 is the spitttiee relaxation time, and various tissues with

the body have different T1 values; T2 is the spim$elaxation time, and various tissues with the

body have different T2 values; usually, T1 is larj@an T2. If assuming thaM(t) is the nuclear
magnetization which should satisfy the equatimrt)=[M (t) M,(t) My(t)]T and Bt)is the
magnetic field which should satisfy the equatign)=| B, (t) B,(t) By(t)]T, then the Bloch

equations are as follows:

dext(t) _(M{U)xB(1). Mi(t)
deyt(t) =y(M (t)XB(t))y - M_vl_(t) | n
dl\/l(;t(t) = 7/(|\/| (t)XB(t))Z B MZ(tT)Z_ M,

wherey is the gyromagnetic ratio arld(t)xB(t)is the cross product dfl(t) and B(t). M,is
the steady state nuclear magnetization whero. The Eq. (28) is for the Larmor precession of
the nuclear magnetizatioM (t) in the external magnetic fieB{t). The relaxation terms which
are the established physical processes of transverse amdjitudinal relaxation of nuclear
magnetizatioM (t) , are equal to,

M My MZ_MO)
L 0 T

(29)

According to the Eq. (28), there are spin-lattind apin-spin relaxation. Spin-lattice relaxation is

the mechanism by which tlzecomponent of the magnetization vector comes imonhodynamic
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equilibrium with its surroundings (the "lattice'l}.is characterized by the spin—lattice relaxation

time, named as T1. Spin-spin relaxation is the meism byM  whichism , =M  + jM
the transverse component of the magnetization yeotaxponentially decays towards its
equilibrium value of zero. It is a time constanaccterizing the signal decay, named as T2.
Therefore, according to the different measuremeqtirements, there are T1 weighted, T2
weighted scans, T2* weighted scans and proton tfensighted scans using different TE and
TR parameters on different pulse sequences. T1htezigscans refer to a set of standard scans.
T1 weighted images can be obtained by setting shBri{TR<750ms ) and TE (TE<40ms )
values in conventional SE sequences, while in GB#u&nces they can be obtained by using flip
angles of larger than 3@hile setting TE values to less than 15ms. T2 titeid scans are another
basic type. T2 weighted images can be obtained diting long TR (TR>1500ms) and
TE (TE>75ms) values in conventional SE sequenatdle in GRE sequences they can be
obtained by using flip angles of less than 40°eadtof 90° while setting TE values to above
30ms. T2* weighted scans use a GRE sequence, wit) TE and long TR. Proton density
weighted scans try to have no contrast from eiftZeor T1 decay, the only signal change coming

from differences in the amount of available spihgdfogen nuclei in water). It uses a SE or

sometimes a GRE sequence, with short TE and long TR
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O(RF) | ....................................... ...................

TE

Fig. 11 Timing diagram of the traditional SE pulse seqeedhe SE sequence has a steady-state
magnetization. And the SE sequence has a 90-degm@tation and a 180-degree refocusing

pulse that is TE/2 after the 90-degree pulse samuen

The SE sequence is the most commonly used pulseiseg in clinical imaging, as seen as
Fig.11. The SE sequence which has a steady-stajeatization, consists of two radiofrequency
pulses, a 90-degree excitation and a 180-degreeusihg pulse that is TE/2 after the 90-degree
pulse sequence. With each repetitiok;space line is filled with a different phase encodiThe
180° rephasing pulse eliminates field inhomogeraity chemical shift effects at the echo to
obtain an echo that is weighted in T2 and not ih. P2oper selection of the TE time of the pulse

sequence can help to control the amount of T1 azdrfrast present in the image.
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TR

Fig. 12 Timing diagram of the traditional GRE pulse seqeehe GRE sequence has a none-

steady-state magnetization and only a 90-degreagra.

The GRE sequence is generated by using a paimpofarigradient pulses which has a none-
steady-state magnetization consists of an exaitatiw readout as usual, as seen as Fig.12. There
is no refocusing 180° pulse and the data are sahtpleing a gradient echo, which is achieved
by dephasing the spins with a negatively pulsedigra before they are rephased by an
opposite gradient with opposite polarity to gererdte echo. The flip angle of the excitation is
typically between 0° and 90°, which also be slowlgreased during data acquisition. With a
small flip angle there is a reduction in the valfetransverse magnetization that will affect
subsequent RF pulses. However, at the end of sequera spoiler-gradient basically a gradient
that tried to completely dephase the transversenetamtion across voxel. GRE techniques are
very common. It is useful to compare their contidstracteristics to the other sequences here.
GRE sequences have a lower SAR, are more senstiield inhomogeneity and have a reduced

crosstalk. Gradient Recalled Acquisition in Stedtate (GRASS) sequence is one of GRE
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sequences with low flip angles and without the Igpopulse. As a result, any transverse
magnetization still present at the time of the reiktpulse is incorporated into the steady state.
GRASS uses a RF pulse that alternates in sign.uBecthere is still some remaining transverse
magnetization at the time of the RF pulse, a RBguaf a degree flips the spins less than a degree
from the longitudinal axis. Spoiled Gradient Reedll(SPGR) sequence is similar to the
spoiled GRASS sequence. The spoiled gradient estd8PGR) acquisition in steady state uses
semi-random changes in the phase of the radio éremyu (RF) pulses to produce a spatially
independent phase shift.

The proposed Hybrid encoding pulse sequence islaietiusing the Bloch equations. The
RF pulses are from the circulant matdix as seen as Eq. (20), which has some complex mambe

with uniform constatent magnitudes and randomahjhases which is uniformly distributed on
[0, 271] The RF pulses are acually the Fourier transfaonadf every column of the circulant

matrixC . Each random RF pulse generates a random exaitatievery TR along the Y direction.
A gradientG, is turned on along Y direction, simultaneouslyhaibe RF pulse. Others are as
same as SE or GRE pulse sequences. As seen agti8 Rhe dephasing gradient after (e
gradient can affect the phase of #hgpace raw data. Actually it will change the pasitof the
filed-of-view (FOV) in the image domain. Withoutetllephasing gradient seen Fig.13 (a, ¢) and
with the dephasing gradient seen Fig.13 (b, d), ithage can also be well decoded or
reconstructed. The Bloch equation simulation sheévwet the distribution of th&-space raw

dataset will variant because of the amplitude efdaphasing gradient.
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Fig. 13 Timing diagrams without depasing gradient (a) anith depasing gradient (b) ard

space raw data without depasing gradient (c) and depasing gradient (d) of the proposed

Hybrid encoding pulse sequence

3.2.5. Pulse Sequence | mplementation

The proposed 3D Hybrid encoding methods have beptemented on the 1.5 and 3.0 Tesla
GE SIGNA MR Systems at GE Healthcare, Waukesha, W& system hardware consists from
two parts: the host and target. The target usismtye SIGNA MR system, and the host usually is

the workstation system. The host running on Linu& i® used to set scan prescription, image
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displaying and post-processing. The target is usedyenerate waveform excitation, data
acquisition, filtering and reconstruction. The caments of the target can directly control the
elements in the magnet room. Sometimes they reféor@s Transceiver Processing and Storage
(TPS), Acquisition Processing System (APS), Appi@ma Gateway Processor (AGP), Digital
Receiver Filter (DRF), Interface & Remote Funct{tiRF), Scan Control Processor (SCP), Array
Processor (AP) and Sequence Related FunctionsérriggRotational Functions (SRF/TRF), as
seen as Fig. 14. In general, the MR excitation conisists of the x, y, and z MR gradient magnet
coils, as well as RF transmitter and receiver coilse TPS unit controls pulses to all MR
gradient magnet coils, as well as RF coils, andives (acquires and stores) MR data according
to the pulse sequence software. The Host compatges as the user interface (as seen as Fig.
15), image database, and communication gatewaythfersystem console. A computer is
connected to the SIGNA computer system via a setchkthernet network using the TCP/IP
protocol, which downloads thk-space raw data, and reconstruct images on the MMSTL
platform. The 3D Hybrid encoding pulse sequenceesypias developed based on gradient-
recalled echo pulse sequences, as seen as Fibhd@mplitude of the RF pulse is constant, and
the phase of RF pulse and the amplitude of the Xand Z gradients obey the rulers and
calculations described on the Chapter 3.2.3. Adngrtb the pulse sequences as seen as Fig. 16,
the actual pulse sequences can add some additomaonents to become the proposed pulse
sequences based on 3D GRASS or 3D SPGR pulse seguekctually the proposed Hybrid
encoding pulse sequence based on 3D GRASS pulserssx has not spoiler pulse, but the
proposed Hybrid encoding pulse sequence based dBFZER pulse sequence has spoiler pulse.
The actual experimental results shows that theqaeg Hybrid encoding pulse sequences based
on 3D SPGR has less aliasing artifacts and langgalitudes of the RF pulses than the proposed

Hybrid encoding pulse sequences based on 3D GRABS pequence.
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Fig. 14 Basic components of the target in GE SIGNA MR 8yst. They are Transceiver

Processing and Storage (TPS), Acquisition ProcgsSiygstem (APS), Application Gateway

Processor (AGP), Digital Receiver Filter (DRF),driace & Remote Function (IRF), Scan

Control Processor (SCP), Array Processor (AP) aaduénce Related Functions/Trigger &

Rotational Functions (SRF/TRF).
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Fig. 15 Human interface of the host computer. The pulsgueseces are controlled by the
parameters on the human interface on the host demmuch as TE, TR, FOV, BW, thickness,

flip angle, spacing, etc.
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Fig. 16 Actual timing digram of the proposed 3D Hybrid edmg pulse sequence. It has
circulant random encoding along Y axis, slice efmgdlong Z axis, and frequency encoding

along X axis.

3.3 Pseudo 2D Random Samplingin CSMRI

We design a practical random sampling pattern doventional Cartesian MRI that performs
similarly to the 2D random sampling pattern on Sp#RI [19]. The 2D random sampling uses a
2D variable-density sampling pattern with densenang near the center of thespace. The

probability function for sampling at a locati@nin k-space is [19]:

1 r<R,

p(r)=q_1 (30)
oy N
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wherer:||F||2, F=[r, r]", andRy is a real number an<R, <1. Since the 2D random

sampling cannot be physically implemented in cotieeal MRI scanners, 1D random sampling
is adopted instead. The 1D random sampling usd3 watiable-density sampling scheme with

denser sampling near the center ofkispace. The corresponding probability function is:

1 r<R,
p(f)=4_1 (31)
(l_rx)p r>Rd

where the parameters are defined as same as Bq. (30

Our proposed sampling scheme adopts a diswibdtinction different from either 2D or
1D random sampling. It uses two 1D variable-densémpling that are orthogonal to each other
in Cartesiark-space, also with denser sampling near the cehtee&-space. The corresponding

probability function is:

1 r<R,
p(F): a 1-a

(1-1,)" +(1—ry)p

where the parameters are defined as same as Bq.dq38 a constant that depend on the number

r>R, (32)

of sampling lines along,ldirection ofk-space.

Fig. 17 compares the probability functions of theee random sampling patterns. It is
obvious that the proposed pseudo 2D random samiglicgser to the 2D random sampling than
the 1D random sampling is. As a result, the progosgeudo 2D random sampling should

outperform the 1D random sampling in CS reconstract
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(@) pseudo 2D random sampling (b) 1DdRam Sampling (c) 2D Randsampling

Fig. 17 Probability function (top row) and the corresporgdisampling pattern (bottom row) of

the three random sampling patterns.

In conventional Cartesian MRI, the phase encodnagignt and frequency encoding gradient
are applied on orthogonal directions krspace [69]. The amplitude of the phase encoding
gradient is changed at each excitation to sampiiéffarent line ink-space. The 1D random
sampling can be easily implemented by changingihglitudes of the phase encoding randomly.
However, it is extremely difficult (if not imposs@) to implement 2D random sampling which
requires simultaneous change of the phase encaddrequency encoding gradients randomly.
In current commercial MR systems, gradients of @uequences are limited by maximum
amplitude and maximum slew-rate. In addition, hggadient amplitudes and rapid switching can

produce peripheral nerve stimulation.

The proposed pseudo 2D random sampling scheme eeamgdemented on a conventional
MRI scanner as easily as the 1D scheme. To retizgroposed sampling scheme, both the
amplitude and the direction of the phase encodiaglignt have to be changed. For example, if

the totalN lines are to be acquired, the fitdt lines are acquired with phase encoding along k
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direction and frequency encoding along direction, and the restN{N;) lines with phase

encoding along kdirection and frequency encoding alongdkection. In either case, these data
are randomly undersampled only along the phasedamgdirection, while keeping the frequency
encoding direction to be fully sampled. The valfieNadepends on the undersampling factor to

achieve, and the value Bf is equal taa N, wherea is the constant in Eq. (32).

Fig. 18 shows the timing diagram of the pulse segee for the proposed pseudo 2D random
sampling. The gradients shown in solid red repreiem 1D random sampling sequence with
phase encoding along y and frequency encoding dtguiirection. In the proposed pseudo 2D
random sampling, we alternate between the gradiergslid red and those in dashed green. It

corresponds to alternatively switching phase aeduency encoding directions.

1
BRI NN NN NN NN NN RN

" .
0

Fig. 18 Timing diagram of the pulse sequences for the gseé2D random sampling scheme.
Dynamically swap red and green directions to a#tevely change phase encoding and frequency

encoding directions on real physiespace.
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As seen in Fig. 17 (a), at certain locations of kispace, the data are acquired twice — one
from the horizontal lines and the other from thetigal lines. The two values are averaged to
represent the value of the data at this pointatidhal situation. There are a totalMifx (N-N;)
such points. Although there is redundancy in suath dcquisition, the averaging can improve the
signal to noise ratio of the acquired data and thegeconstructed image. With the data acquired
using the proposed sampling scheme, the imagec@nseructed by the following nonlinear

convex program [19, 70-71],

arg rr?in{ It |l+a TV (F)} st lIRf-blb<e (33)

wheref is the spare image to be reconstructed and igipiext as a vectoW denotes the linear
operator that transforms the image from a pixeteggntation into a sparse representation, such

as wavelet transfornty is the acquire#t-space dataF, is Fourier Transform associated with the
proposed under-sampling patteff¥/(-) is total-variation function;s controls the fidelity of

reconstruction to the measured data. Here, theshiblé parametet is usually set below the

expected noise level.

4. Simulations and Experiments

4.1 Crosss-GRAPPA

The proposed Cross-GRAPPA was evaluated using afion] phantom experiment, and two
in vivo experiments. All reconstruction schemes were implged in MATLAB (MathWorks,
Natick, MA) on an HP XW=8400 workstation with 2.33GHCPU and 2GB RAM. The SoS
reconstruction from the fully sampled data was usethe reference image for comparisons. The

proposed Cross-GRAPPA method was compared with dbweventional GRAPPA. The
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reconstructed images with different ORFs and numifeACS lines were shown for visual
comparison of noise and artifacts. The coefficighd blocks and 5 columns was employed for

all reconstructions. On the following results, “€sb means the proposed Cross-GRAPPA.

The objective of the simulation is to demonstréie performance of the proposed method
under the ideal condition when the ACS and undeptesindata are exactly consistent. A set of
fully acquiredin vivo data was used to simulate the acquisition patérthe proposed Cross-
GRAPPA method by manually omitting the “missingalafl he data set was obtained from a 3T
commercial MR scanner (GE Healthcare, Waukesha, With an 8-channel head coil (Invivo,
Gainesville, FL) using a 2D spin echo (SE) sequéi&TR = 11/700ms, matrix size = 256 x
256, FOV = 220mﬁ). Informed consent was obtained from the voluniteerccordance with the
institutional review board policy. Both GRAPPA a@doss-GRAPPA were performed at ORFs
of 2, 3 and 4 with 8, 12 and 16 ACS lines respetyivin addition, we also distribute a fixed
number of ACS lines to both parallel and orthogatigdctions with different ratios. An ORF of 4

and total of 16 ACS lines were used. It is expetbefthd an optimal ratio for such a combination.

A phantom experiment was carried out to demonstiiage performance of the proposed
method in absence of the chemical shift effectaafivo study. A uniform water phantom was
scanned using a gradient echo (GRE) sequence (TE/TR/100 ms, 31.25 kHz bandwidth,
matrix size = 256x256, FOV = 250 fymon a 3T commercial scanner (GE Healthcare,
Waukesha, WI) with an 8-channel head coil (Inviainesville, FL). Two sets of fully sampled
data were acquired separately with two orthogoeatiout directions. One dataset was manually
reduced to generate the undersampled acquisitidriremother was reduced to obtain the cross-
sampled ACS data for Cross-GRAPPA. The first datases used for conventional GRAPPA.
Results for both conventional GRAPPA and Cross-GRARvere compared with different
number of ACS lines at an ORF of 4. The comparisao find the least number of ACS lines

required for each method to suppress aliasingpattif
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Two in vivo experiments were performed on a 3T commercial &hser (GE Healthcare,
Waukesha, WI) with an 8-channel head coil (InviGainesville, FL) to validate the proposed
method in presence of all practical conditions.iBrsas chosen to be the anatomical region of
interest in this study due to minimal chemical-sbifects.All data were acquired in accordance
with the institutional review board policy. Similéo the phantom experiments, eachvivo
experiment acquired two sets of fully sampled deith orthogonal readout directions. The first
experiment uses a spin-echo sequence with parasnd®/TR = 10/550 ms, 31.25 kHz
bandwidth, matrix size = 256x256, FOV = 220 mand the other one uses a spin-echo sequence
with TE/TR = 14/500ms, 62.5 kHz bandwidth, matrizes= 256x256, FOV = 240 nfm
Conventional GRAPPA and Cross-GRAPPA were bothgoeréd at the ORFaf 2, 3 and 4 with
8, 8, 10 ACS lines, respectively. We also compameventional GRAPPA and Cross-GRAPPA
with an increasing number of ACS lines at an ORH @b find the least number required for

artifacts-free reconstruction.

4.1.1 Simulation

The reconstruction results of GRAPPA and Cross-GIRARre shown in Fig. 19. Cross-
GRAPPA performs similar to GRAPPA at a low ORF obgt significantly reduces the aliasing
artifacts in GRAPPA with only very few ACS lineskdagher ORFs. This is because at low ORFs,
the coefficients can be calibrated accurately wigmall amount of ACS data along the direction
that is undersampled. The increase of ACS datagatba undersampled direction by Cross-
GRAPPA does not reduce the aliasing artifacts. igh tORFs, calibration of the coefficients
demands more ACS data along the undersampled idimeittan those along the fully sampled
direction, and thus the benefit of Cross-GRAPPAobees more evident. On the other hand, it is
also seen that the reduced aliasing artifacts o8& 6GRAPPA is at the cost of slightly reduced

SNR. Data co-registration is not necessary heresiowlation because both the ACS and
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undersampled data are obtained from an acquisititmthe same readout directions. In summary,

the simulations show when the data are perfecthgistent, Cross-GRAPPA requires fewer ACS

lines than GRAPPA to suppress the aliasing arsfact

Fig. 19 GRAPPA and Cross-GRAPPA reconstructions from 8wkl human brain data and
their corresponding difference images with the nexfiee. The ORFef 2 with 10 ACS lines, 3

with 12 ACS lines, and 4 with 16 ACS lines (showntbe top-right corner) were used.



Fig. 20 Sampling patterns (top row), reconstructions (fe@dcbw) and their corresponding
difference images (bottom row) with the referendeew different combinations of parallel- and
cross- sampled ACS lines. The ORF is 4 and totallbar of ACS lines is 16. The distributions
among the parallel- and cross-sampled directioaslar4, 10:6, 8:8, 6:10, and 4:12 from left to

right.

The sampling patterns for a mix of both paralleld &ross-sampled ACS lines are shown in
Fig. 20 top row. They can be viewed as intermediatesitions from conventional GRAPPA (all
parallel ACS) to Cross-GRAPPA (all cross ACS) witbnventional GRAPPA and Cross-
GRAPPA being two extreme cases. Fig. 20 shows é¢kalts when both parallel- and cross-
sampled ACS lines were combined for reconstructivifferent distributions between the two
directions were used. The results demonstratethieainore cross-sampled ACS lines, the fewer
the aliasing artifacts. It suggests that it is @gse to acquire all ACS lines in orthogonal when

only few ACS lines are acquired.
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4.1.2 Phantom Experiment

Fig. 21 shows the phantom reconstruction resultapawing conventional GRAPPA and
Cross-GRAPPA. For Cross-GRAPPA, the parameigi, a, andp for data co-registration were
initialized to be -1.0, -1.0, 1.0, and 1.0, respety. After data co-registration, the paramet#s
dy, @, andp were optimized to be -0.4653, -0.4425, 0.9987, 0398, respectively. Although
the optimization process generated parametersatlaslightly different for different ORFs and
ACS lines, the same set of values were used witegtading the image quality. It is seen that
Cross-GRAPPA performs similarly to conventional GMPA when ORF is 2. As the ORF
increases, conventional GRAPPA requires a muchetagmount of ACS data along the
undersampled direction. When the number of ACSslisenot sufficient, conventional GRAPPA
reconstructions present aliasing artifacts. CroB&BPA can significantly reduce these aliasing
artifacts by maximizing the amount of ACS data gladhe undersampled direction without
prolonging the ACS acquisition time. The consistesults with simulation suggest that the co-

registration method can effectively align the daith orthogonal readouts for the phantom study.

In Fig. 22, we increase the number of ACS lineanfra4 to 20, 24 and 26 for both
conventional GRAPPA and Cross-GRAPPA with an GRE. The reconstruction results show
that conventional GRAPPA reconstruction improvethwhe number of ACS lines due to the
increased calibration data along the undersamptedtmn. In contrast, Cross-GRAPPA remains
almost the same. This is because more ACS lingSrass-GRAPPA increases the amount of
ACS data only along the fully sampled directionra@tonstruction and is not contributing to
artifacts reduction after saturation. ConventidBRAPPA needs at least 26 ACS lines to achieve

a quality similar to that achieved by Cross-GRARWK as few as 14 ACS lines.
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2-10|GRAPPA 3-12|GRAPPA

Fig. 21 GRAPPA and Cross-GRAPPA reconstructions from aainel phantom experiment.

The top-right corner of each image shows the ORSA&Gmbinations of 2-10, 3-12 and 4-16.
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GRAPPA 4-14/GRAPPA 4-20GRAPPA 4-24GRAPPA 4-26

Fig. 22 Phantom results of GRAPPA (top) and Cross-GRAPB@#t¢m) with an ORFf 4 and
ACS lines of 14, 20, 24 and 26 from left to righhe results show that GRAPPA reconstruction
improves with the number of ACS lines, while Cr@&RAPPA remains almost the same.
GRAPPA needs at least 26 ACS lines to achieve ditgusamilar to that achieved by Cross-

GRAPPA with as few as 14 ACS lines.

4.1.31n Vivo Experiments

Fig. 23 shows conventional GRAPPA and Cross-GRARB¢éonstructions for the first
experiment. For the proposed Cross-GRAPPA, thairparametersy, d,, a, andg for data co-
registration were -1.0, -1.0, 1.0, and 1.0, respelgt After data co-registration, the optimized
parametersd,, J,, a, and f were calculated to be -0.2792, -0.3155, 1.0909] @ar8987,
respectively. Consistent with the simulation anémbm studies, conventional GRAPPA and
Cross-GRAPPA performs similarly well at an ORF ofR2 ORFs of 3 and 4, both present a
higher level of noise, but Cross-GRAPPA suppressesh more aliasing artifacts than

conventional GRAPPA with the same number of AC8din
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Fig. 23 GRAPPA and Cross-GRAPPA reconstructions of thet 8et of 8-channeh vivo data.

The top-right corner of each image shows the ORSA&BGmbinations of 2-8, 3-8 and 4-10.

Fig. 24 compares conventional GRAPPA and Cross-GBRiith increasing numbers of
ACS lines at an ORMBf 4. The results show that GRAPPA reconstructimproves with the
number of ACS lines, while Cross-GRAPPA barely dem Even with 32 ACS lines, visible
residual aliasing artifacts still present in comi@mal GRAPPA, while the artifacts are well

suppressed in Cross-GRAPPA with only 10 ACS lines.
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4-20]GRAPPA

Fig. 24 GRAPPA and Cross-GRAPPA reconstructions of thet fiet of 8-channel brain data. The

top-right corner of each image shows the ORF-AQ8Mipations of 4-8, 4-20 and 4-32.

Fig. 24 shows conventional GRAPPA and Cross-GRAPE®Nstructions for two slices of
the otheiin vivo experiments. The co-registration paramedgrs,, «, andg were calculated to be
-0.4569, -0.5650, 1.0219, and 0.7661, respectit@iythe first slice (top row) and -0.7034, -
0.5185, 0.9118, and 0.8956, respectively for theoisé one (bottom row). The reconstruction
results of both slices demonstrate that Cross-GRAREppresses more aliasing artifacts but

presents more noise than conventional GRAPPA adhee ORF-ACS combination.
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T

Fig. 24 GRAPPA and Cross-GRAPPA reconstructions of twaeslifor the seconih vivo
experiment at an ORBf 3 and ACS lines of 6. The results consistentipvs that Cross-
GRAPPA can suppress more aliasing artifacts thal\FFR\ but at the cost of degraded SNR

when few ACS lines are acquired.

4.1.4 Noiselssue

The noise behavior of conventional GRAPPA recomsibn has been well investigated in
Refs. [72-73]. Cross-GRAPPA has similar behaviazthsas spatially-varying noise but usually
presents a higher level of noise. It is conjectutteat this reduced SNR is due to the tradeoff
between SNR and reduced aliasing artifacts in &coction, similar to the observation in
SENSE regularization [74]. This conjecture is daged on the observation in the top row of Fig.
3 where conventional GRAPPA reconstruction with en@.g., 30) ACS lines is noisier but has

fewer artifacts than that with fewer (e.g., 10e8n Mis-registration of the data with orthogonal
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readouts does not seem to be the cause of increasssl because the reduced SNR of Cross-
GRAPPA is also evident in simulation results in thettom row of Fig. 20 where no mis-

registration is present.

The higher level of noise in Cross-GRAPPA can bepsessed using methods like
regularization [32], iterative optimization [37]r monlinear GRAPPA [41]. As said before,
nonlinear GRAPPA replaces the conventional linéting procedure with a nonlinear model to
suppress noise in the final image [75]. The nomlini@ting procedure can be directly used in
Cross-GRAPPA reconstruction and the reconstructsnlts of the first set oh vivo data at the
ORF of 4 is shown in Fig. 25. The optimized co-sg@ition parameter§,, J,, a, andf were
calculated to be -0.2793, -0.3148, 1.0914, and82.3R is seen the nonlinear approach improves
the SNR of Cross-GRAPPA. The improvement suggdss rioise reduction methods can be

easily integrated into the proposed cross-samitargework to achieve even higher acceleration.

4-12|Cross-NL 4-12

Z28\
=)

Fig. 25 MR image reconstruction comparisons of GRAPPA,sS{GRAPPA (Cross) and Cross-
GRAPPA with nonlinear GRAPPA (Cross-NL). The redongtions use ORF-ACS combinations

of 4-10 and 4-12.
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4.2 Hybrid-Encoded MRI

4.2.1 Simulations of GE QA Phantom

We conducted the simulations of GE QA phantom tmalestrate the different performance
of the proposed 3D Hybrid encoding and the conweali 3D Fourier encoding. The dataset of
GE QA phantom was scanned by the 3.0T MRI scanj@&EsHealthcare, Waukesha, WI) with
3D GRE pulse sequence. One-channel body coil wakedpto acquire th&-space raw dataset.
The reduction factors are both 2.0 for 3D Fourmeosling and 3D Hybrid encoding. As seen as
the Fig. 26, the results demonstrate the CS retitmegroposed 3D Hybrid encoding is closer to

the reference images than the CS recon of the otiowal 3D Fourier encoding.

RAW Data 3D

CS Recon 30

(c) (d)
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CS Recon 30

(€) (f)

Fig. 26 3D MR images and one slice of images of the refsxga, b), the CS recon of Fourier

encoding(c, d), and the CS recon of Hybrid encod@d)

4.2.2 Simulations of Human Brain and Knee

We conducted the simulations of human brain an@ kaelemonstrate the different methods
in the context of CS framework. For Fourier encgdiwve followed the sampling scheme used in
[19] where a 2D variable density random under-samggbattern was used on Y-Z plane (as seen
as Fig. 8(a)), which samples the low spatial fregyeregion densely with 2D variable density
random sampling, but for Hybrid encoding, the a R¥brid variable density random under-
sampling pattern was used on Y-Z plane (as sedfigas8(b)), which samples the low spatial
frequency region densely with the random sampliingng 1D variable density and 1D uniform
random patterns. Non-linear conjugate gradient @l8prithm was applied to reconstruct the
image based on Eq. (13) for Fourier and Eq. (2 )hidrid encoding. Both wavelet transform
and TV were adopted to sparsify the images. As ssdfig. 27, twd-space raw datasets of 3D
Hybrid (a) and Foureir (b) encoding, and their shmgp patterns are illustrated. The right
parallerograms are respectively sampling pattefrisoarier and Hybrid, and the white dots are
coressponding sampling positions. They shows thatkispace raw data has been spreaded

wildly in the 3D Hybrid encoding, which can beneétapply CS reconstration [19].
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Two 3D raw datasets (sagittal brain and knee) weeal to simulate the proposed 3D Hybrid
encoding and conventional Fourier encoding, scammmed 3.0T commercial MR scanner (GE
Healthcare, Waukesha, WI). The sizes of the siradlatmages both are 256x256x16 and
256x256x32 voxels. The 2D sampling patterns (as aserig. 27) were done on the Y-Z plane
from the full image size of 256x16 and 256x32. Taduction factors which are bout 2 and 3
were used to accelerate the data acquisition.

Fig. 28 (a, ¢, and d) compares the 3D reconstruotades for the brain dataset which has the
reduction factor is 2.95. Fig. 28 (b, e and f) cangs the 3D reconstructed images for the knee
dataset which has the reduction factor is 3.39. Z8&j(a, c, and d) compares one slice of the
reconstructed images on X-Y plane for the brairasktt which has the reduction factor is 2.95.
Fig. 29 (b, e and f) compares one slice of thensttacted images on X-Y plane for the knee
dataset which has the reduction factor is 3.39.

Fig. 30 (a, ¢, and d) compares the 3D reconstruntades for the brain dataset which has the
reduction factor is 1.89. Fig. 30 (b, e and f) cangs the 3D reconstructed images for the knee
dataset which has the reduction factor is 1.89. 8ig(a, c, and d) compares one slice of the
reconstructed images on X-Y plane for the brairasktt which has the reduction factor is 1.89.
Fig. 31 (b, e and f) compares one slice of thensiracted images on X-Y plane for the knee
dataset which has the reduction factor is 1.89.

Table 1 compares the normalized mean square edidSE) and root mean square error
(RMSE) between 3D Fourier and Hybrid encoding bifedent reduction factors. The results
show that the proposed 3D Hybrid encoding methad reaonstruct more high quality images
than the conventional 3D Fourier encoding. Andpaheposed method is seen to visually preserve

better resolutions and more details than the cdiomal 3D Fourier encoding method.
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@) (b)
Fig.27 lllustration of the sampling patterns aadpace raw data of 3D Foureir (a) and Hybrid (b)

encoding. The right parallerograms are respectisatypling patterns of Fourier and Hybrid, and

the white dots are coressponding sampling positions

RAWY Data 30 RAYW Data 30

(@) (b)

CS Recon 30 CS Recon 3D
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CS Recon 3D CS Recon 3D

(e) ®
Fig. 28 3D 256x256x16 images of brain (R=2.95) and kneéR£3.39) of the reference (a, b),

the CS recon of Fourier encoding(c, d), and thede8n of Hybrid encoding (e, f)

(a) (b)
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© (d)

(e) U]
Fig.29 lllustration of one slice of the 3D 256x256x16ergice (a, b) and the CS reconstruction

3D 256x256x%16 results (c, d, e and f) of sagittahbn brain (e) (R=2.95) and knee (f) (R=3.39)

comparing 3D Foureir encoding (c, d) and Hybridastieg (e, f)
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RAMY Data 30 RAW Data 30

(@) (b)

CS Recon 30 C5 Recon 3D

(© (d)

CS Recon 30 C5 Recon 30

(e) ®

Fig. 30 3D 256x256%16 images of brain (R=1.89) and kng¢R$1.89) of the reference (a, b),

the CS recon of Fourier encoding(c, d), and thee2sn of Hybrid encoding (e, f)
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(b)

(@)

(d)

(©



reconstruction results (c, d, e and f) of sagitiainan brain (e) (R=1.89) and knee (f) (R=1.89)

(e)

(®
Fig.31 lllustration of one slice of the 3D 256x256x16ergice (a, b) and the 3D 256x256x16 CS

comparing 3D Foureir encoding (c, d) and Hybridaelieg (e, f)
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Type Size Method NMSE RMSE
Reduction Factor R=1.89 R=2.95 R=1.89 R=2.95
Fourier 0.0080 0.0120 0.0274 0.0337
Brain 256x256x%16
Hybrid 0.0060 0.0090 0.0238 0.0291
R=1.97 R=3.10 R=1.97 R=3.10
Fourier 0.0065 0.0099 0.0240 0.0297
Brain 256x256x%37
Hybrid 0.0064 0.0092 0.0239 0.0287
R=1.89 R=3.39 R=1.89 R=3.39
Fourier 0.0045 0.0077 0.0287 0.0374
Knee 256x256x16
Hybrid 0.0022 0.0032 0.0200 0.0243
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R=1.97 R=3.44 R=1.97 R=3.44

Fourier 0.0053 0.0056 0.0300 0.0309
Knee 256x256x32

Hybrid 0.0020 0.0034 0.0182 0.0239

Table 1. Simulation comparison of human brain andek The normalized mean square error
(NMSE) and root mean square error (RMSE) betweenH3Drid and Fourier encoding are
calculated with different data sizes of 256x256%B8@ 256x256x16, and reduction factors of

1.89, 1.97, 2.95, 3.10, 3.39 and 3.44.

4.2.1 Experiments of Phantoms

A ball phantom was scanned by the 1.5T MRI scanf@EsHealthcare, Waukesha, WI) with
3D GRASS pulse sequence and the 3D Hybrid encqalitge sequences based on GRASS. One-
channel body coil was applied to acquire kkspace raw dataset. As seen as the Fig. 32, the 3D
256x256%x32 results demonstrate the proposed 3D itHybncoding different from the
conventional 3D Fourier encoding spread out thegananergy in thé&-space. The proposed

method has some benefits for the CS reconstructions
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k-space Data

k-space Data

0o

Raw Data Haw Data

(@ (b)

Fig. 32 k-space raw data and decoded image data of 3D Fdajiand Hybrid (b) encoding.

4.2.3 Experiments of Watermelon

In actual experiments, one watermelon was scanned0T commercial MRI scanner (GE
Healthcare, Waukesha, WI) with one standard bodyusing both the 3D Hybrid encoding and
Fourier encoding pulse sequences. For Hybrid engodi proposed pulse sequence based on a
3D GRASS pulse sequence (RF pulse duration: 1.58@ras applied to samplespace raw
dataset. For Fourier encoding, the conventional GRASS pulse sequence are applied as
comparison (both with TE/TR: 5/15 ms; BW: 31.50 kHEOV: 24 cni; thickness: 6.5 cm full
data size: 256x256x32). The datasets were acquuigd full Nyquist sampling and then
manually under-sampled by removing some data pbased on the designed sampling patterns
(as seen as Fig. 27). Here, the 2D under-samplaggdene on the Y-Z plane from the full size of

256x%32.
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Fig. 33 shows comparison of 3D CS reconstructioasvéen the proposed 3D Hybrid
encoding and the conventional 3D Fourier encodiihg. reduction factors which are 2.07 and 3.0
were used to accelerate the data acquisitions pidosed Hybrid method and the conventional
Fourier method have same imaging time, and sanmenyers of the pulse sequences, such as,
TE, TR, data size, thickness, FOV, etc.. The imagesnstructed from the full data were used as
the reference for comparison.

Table 2 compares the normalized mean square edidSE) and root mean square error
(RMSE) between 3D Hybrid and Fourier encoding @& tiatermelon raw datasets, scanned by
the proposed and conventional sequences. All expets illustrate that the experimental results
agree with the conclusion from simulations that pineposed 3D Hybrid encoding method can
reconstruct more high quality images than the cotigeal 3D Fourier encoding, and the
proposed method can visually preserve better regpkiand more details. The comparisons of

the NMSE and RMSE also sustain these conclusions.

(@) (b)
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() (d)

Fig.33 Comparsion of one slice of the watermelon refegs(a,c) and CS reconstruction (R=3.0)

watermelon results (b, d) of 3D Foureir (a,b) angbiitl (c,d) encoding with the data size of

256%256x32
Type Size Method NMSE RMSE
Reduction Factor R=2.07 R=3.00 R=2.07 R=3.00
Fourier 0.0161 0.0192 0.0435 0.0475
Watermelon| 256x256x32
Hybrid 0.0133 0.0167 0.0368 0.0413

Table 2. Comparison of 3D watermelon raw dataset. The nleethmean square error (NMSE)
and root mean square error (RMSE) between 3D HyrdlFourier encoding are calculated with

different data size of 256x256x32, and reductianois of 2.07 and 3.00.

4.2.41n Vivo Experiments of Human Knee

In the firstin vivo experiment, human knee was scanned on a 1.5T canangIRI scanner
(GE Healthcare, Waukesha, WI) with one standartiéinel knee coil using both the 3D Hybrid

encoding and 3D Fourier encoding pulse sequenaasHbrid encoding, a proposed pulse
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sequence based on a 3D GRASS pulse sequence (fd-duwhtion: 6.144ms) is applied to scan.
For Fourier encoding, the conventional 3D GRASSs@uequence are applied as comparison
(both with TE/TR: 15/40 ms; BW: 5.95 kHz; FOV: 2én% thickness: 4.0 cm; full data size:
256x256x32; Flip angle: 5°). The datasets were is@eguvith full Nyquist sampling and then
manually under-sampled by removing some data pbiated on the designed sampling patterns
(as seen as Fig. 23). Here, the 2D under-samplaggdene on the Y-Z plane from the full size of
256x32. A reduction factor of 2.0 was used to aredé the data acquisitions. After recovering
each channel under-sampled dataset, the SoS methsdapplied to compose the final
reconstructed images. The SoS image from the fath dvere used as the reference for
comparison.

Fig. 34 shows comparison between the proposed 3@itHgncoding and the conventional
3D Fourier encoding. The proposed method and thevesdional method both have same
imaging time, and same parameters of the pulseesegs, such as, TE, TR, data size, thickness,
FOV, spacing, etc.. The images reconstructed fioenfall data were used as the reference for
comparison. According to the results, they shoat thein vivo experiment agree with that the
proposed Hybrid encoding preserves more detailsharp edges than the Fourier encoding.

In the secondin vivo human knee experiment, human knee was scanned 810Ta
commercial MRI scanner (UCSF, San Francisco, CAhwhne HD 8-channel knee coil using
both the 3D Hybrid-encoding and 3D Fourier encoguntse sequences. For Hybrid encoding, a
proposed pulse sequence based on a 3D GRASS pgjsense (RF pulse duration: 1.536ms) is
applied to sample. For Fourier encoding, the cotiweal 3D GRASS pulse sequence are applied
as comparison (both with TE/TR: 5/26 ms; BW: 31kblx; FOV: 20 crf; thickness: 6.5 cm; full
data size: 256x256x34; Flip angle: 10°). The dasasere acquired with full Nyquist sampling
and then manually under-sampled by removing sorte izints based on the designed sampling
patterns (as seen as Fig. 8). Here, the 2D undepisay was done on the Y-Z plane from the full

size of 256x34. A reduction factor of 2.0 was usedaccelerate the data acquisitions. After
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recovering each channel under-sampled datasegaBemethod was applied to compose the final
reconstructed images. The SoS image from the fath dvere used as the reference for
comparison.

Fig. 35 shows comparison between the proposed 3@itHgncoding and the conventional
3D Fourier encoding. The proposed method and thevesdional method both have same
imaging time, and same parameters of the pulseesegs, such as, TE, TR, data size, thickness,
FOV, spacing, etc.. The images reconstructed fioenfall data were used as the reference for
comparison. According to the results, they shoat thein vivo experiment agree with that the
proposed Hybrid encoding preserves more detailshatp edges than the Fourier encoding.

Table 3 compares the normalized mean square edidiSE) and root mean square error
(RMSE) between 3D Hybrid and Fourier encoding 062856%34in vivo human knee raw
datasets from the secomd vivo human knee experiment. The comparisons of the NMSE
RMSE illustrate that the proposed 3D Hybrid encgdinethod can recover more high quality
images than the conventional 3D Fourier encodimg] the proposed method can visually

preserve better resolutions and more details.

(a) (b)
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© (d)

Fig.34 lllustration of one slice of the references (aawlyl CS reconstruction (R=2.1) invivo knee

results (b, d) of 3D Foureir encoding (a,b) and itykc,d) with the data size of 256x256x32

(@) (b)
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(c)

(d)

Fig.35 llllustration of one slice of the references (gand CS reconstruction (R=2.0) invivo knee

results (b, d) of 3D Foureir encoding (a,b) and tity/ic,d) with the data size of 256x256x34

Type Size Method NMSE RMSE
Reduction Factor R=1.99 R=2.99 R=1.99 R=2.99
Fourier 2.6e-3 0.0129 1.1e-2 0.0253
in vivoknee| 256x256x34
Hybrid 8.2e-11 0.0119 1.8e-6 0.0221

T

Table 3. Comparison of 3Dn vivo human knee raw dataset. The normalized mean square

(NMSE) and root mean square error (RMSE) betweenH3Drid and Fourier encoding are

calculated with different data size of 256x256x&4d reduction factors of 1.99 and 2.99.
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4.3 Pseudo 2D Random Sampling

4.3.1 Bloch Simulation

Bloch simulations were carried out to compare theonstruction results of the proposed
pseudo 2D random sampling with the existing 1D eamdsampling and the desired ideal 2D
random sampling. For validating the proposed psésuences, Bloch simulation [66] was done
to demonstrate the feasibility of all sampling sobe by the conventional existing pulse
sequences and the proposed pulse sequence desigrigd18. A Shepp-Logan phantom is used
as the desired object. The image of size 128x128canstructed from the simulated data using
the nonlinear conjugate gradient (NCG) algorithrd ammvelet transformation. Fig. 36 shows the
reconstruction results with the proposed samplihg, existing 1D sampling and the ideal 2D
random sampling. Because the desired ideal 2D rarséampling cannot be implemented by the
existing pulse sequences, its fllkpace data are from the Bloch simulation of thistesg 1D
random sampling and its sampling pattern is mapugherated on computers. The sampling
patterns of the existing 1D random sampling andpgeido 2D random sampling both have their
Bloch corresponding simulations realized by thes&xg pulse sequences and the proposed pulse
sequence designed in Fig. 18. Here, all reductotofs are 2.0. The initial recon image by zero
filling with density compensation (zfw/dc) of thédlrandom sampling shows undersampling
artifacts (ripples horizontally in background), ke initial recon image by zero filling with
density compensation (zfw/dc) of the proposed ps&lidl random sampling is seen to be as free
artifacts as the initial image by zero filling wittensity compensation (zfw/dc) of the ideal 2D
random sampling. The CS recon results by totaktian (TV) illustrate the pseudo 2D random

sampling is closer to the ideal 2D random samgiiragn the existing 1D random sampling.
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Fig. 36 Comparison of the proposed pseudo 2D random saggitheme (i row) and the

existing 1D (2 row) and 2D (3 row) random sampling scheme. Mask means sampitigrp:;
zfw/dc means recon by zero filling with density guensation; TV means recon by total variation.

The image size is 128x128, and the reduction fastdr

4.3.2 Simulation of GE QA phantom

In the simulation with experimental data as seeRigs37, a GE QA phantom was scanned
using a gradient echo pulse sequence. K3pace data were acquired in full with size of

256x256 and then manfully sampled by the proposegi$ting and ideal sampling schemes to
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simulate the desired reduction factors. Identiysform was used as the sparse representation in
Eq. (33). The reduction factors of 2 and 2.86 wesed. The nonlinear conjugate gradient (NCG)
algorithm and total variation (TV) as Ref. [19] arged to reconstruct results. The recon results

show that the proposed pseudo 2D random samplingnse performs similar to the ideal 2D

random sampling scheme, and is superior to theimxisD random sampling scheme.

Fig. 37 GE QA Phantom reconstruction results and the cporeting sampling patterns of the
pseudo 2D, 1D random and 2D random sampling methodsduction factor of 2 (left) and 2.86

(right) is used.
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5. Discussions and Future Works

Previously, we present and study the three propssleeimes to accelerate imaging speed and
improve image quality. Although these methods haeen further studied, there are still some
challenging issues required to be overcome. THewiig problems are discussed and further

researched to enhance the current proposed sclirethesfuture.

5.1 Co-registration and 3D Acquisition of Cross-GRAPPA

Currently, a simple model is used in this studgharacterize the inconsistency between data
acquired with orthogonal readouts. This model imarily for the inconsistency caused by eddy
current and may not be able to correct the inctersty due to other effects. The superior results
of Cross-GRAPP in our study suggest the modelfficantly appropriate for brain experiments
due to its relatively low chemical shift effects. @addition, spin echo sequence is preferred to
gradient echo sequence for Cross-GRAPP. This igusecgradient echo sequence is known to be
more susceptible to field inhomogeneity and chehstdft effects, and thus the swapping of
phase and frequency encoding directions in Cros8fHR results in more significant
inconsistency between the data acquired with oghabreadout directions. The inconsistency
can be reduced by increasing the readout bandwiatheasing the acquisition matrix, or using
an in phase TE. The model for registrating the dath orthogonal readout directions primarily
considers misalignment kaspace. It works well in the brain region as shamthis study. More
comprehensive co-registration methods, such asethosRefs. [76-79], will be studied for
challenging scenarios (e.g., gradient echo sequam@gions with significant fat) in future work.

In addition, the Nelder-Mead algorithm [53, 54] dder data registration is known to be heuristic
and can converge to a non-stationary point. Morehisticated nonlinear minimization

algorithms will also be explored. The idea of lawadl calibration was used in Ref. [42] with
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some success. Similar idea can be used in CrossPEBRAvhere full ACS data are available
along the undersampled direction and can be divided subsets for local calibration.

Optimization of the size of subsets needs furthetys

In clinical applications, GRAPPA with 3D acquisitithas gained more and more interests in
recent studies [80-82]. The proposed Cross-GRARP bea easily extended from 2D to 3D
acquisitions. Fig. 38 illustrates the sampling graits of 3D GRAPPA and 3D Cross-GRAPP,
assuming the readout direction for conventional GRA isk,. In 3D Cross-GRAPP, the ACS
lines need to be orthogonal kg direction, and thus can be acquired either alknd, or a
combination of both directions as shown in Fig.l38@A comprehensive study of 3D Cross-

GRAPP is beyond the scope of this paper and witubther investigated in future work.

(b)

Fig. 38 lllustrations of sampling schemes for 3D GRAPPAdad 3D Cross-GRAPPA (b). The
solid black lines represent fully sampled readmgd, the dash gray lines represent missing lines,

and the gray boxes represent 2D fully sampled A€g®ons.
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5.2 Contrast of Hybrid-Encoded MRI

The current studies of the proposed Hybrid-encodesthod show that it suggests a
significant improvements comparing to the convardld-ourier-encoded method. But there are
some problems required to be further discussed.

Firstly, the differences of the flip angles of {m@posed method are not stable for any masses,
such as water, fat, muscle, whiter matter, gay enaétc. However, the differences of the flip
angles of the conventional Fourier encoding methig stable. It means that the images from
Hybrid encoding and Fourier encoding have diffeeenontrasts because of the relations among

all kinds of materials.

(a) (b)
Fig.39 Actual axial watermelon experiments of 3D Fou(@rand Hybrid (b) encoding methods.

The raw data size is 256x256x32.

In the Axial watermelon experiments, human kneesevwgeanned on a 1.5T MRI scanner

(GE Healthcare, Waukesha, WI) with one channel boally using both the proposed 3D pulse
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sequence (RF pulse duration: 1.536ms) shown inlEigand the conventional 3D GRASS pulse
sequence (TE/TR: 3/10 ms; BW: 125.0 kHz; FOV: 282;cﬁiip angle = 5° data size:
256x256%32). The experimental results illustratat tthe contrasts of Hybrid encoding and
Fourier encoding in somia vivo clinical experiments are totally different as saerfig. 39.

Secondly, the resolutions of Hybrid encoding andriés encoding have some distinctions.
Usually, the receiver bandwidths of the pulse sageg are fixed in MRI scanners. The Hybrid
encoding is equal for sampling every line alongidédion per TR; but the Fourier encoding is
variant. That is to say, the Fourier encoding Vafle the signals in the high frequency region,
because the receiver bandwidth is not enough ladfgevever, the receiver bandwidth of the
Hybrid encoding is enough since tkepace dataset has been incoherent and spreay wdbé
k-space. Therefore, the Hybrid encoding method earrve more signals in the high frequency
region than the Fourier encoding method.

Somein vivo experimental data are actually sampled from thergercial GE MRI scanners
and the decoding were implemented in MATLAB (MathW&) Natick, MA) on an HP XW8400
workstation with 2.33GHz CPU and 2GB RAM. In thesfiin vivo Axial experiments, human
knees were scanned on a 1.5T MRI scanner (GE HeadthWaukesha, WI) with 8-channel
standard knee coil using both the proposed 3D ps#spience (RF pulse duration: 1.536ms)
shown in Fig. 16 and the conventional 3D GRASS @ulsquence (TE/TR: 5/26 ms; BW: 5.96
kHz; FOV: 15 cri Flip angle = 5°). The decoded images from the kagpace data of
256x256x34 was compared with the Fourier-encodéaksda The Sum-of-Square (SoS) method
is applied to combine decoded 8-channel datasetsnage domain. Fig. 40 and 41 show
comparison between the Hybrid method and Fouriemo@ng without fat saturation. The
experimental results illustrate that the Hybrid lnoet change the contrast between fat and water,
and fat is suppressed more by the proposed Hybeithod than Fourier encoding. At the same

time, the decoding speed of Hybrid is as similadesoding Fourier.
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(b) (b)

Fig.40 Axial in vivo human knee experiments of the 3D Hybrid (a) andrieo (b) encoding

methods without fat saturation.
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Fig.41 Time cost of 3D Fourier encoding using fast Fautiansform and 3D Hybrid encoding

using the fast algorithm without fat saturation

In the second Sagittéh vivo experiments, human knees were scanned on a 3T eamiain
MRI scanner (UCSF, San Francisco, CA) with 8-ch&ifi2 knee coil using both the proposed
3D spoiled pulse sequence (RF pulse duration: im§38hown in Fig. 3 and the conventional 3D
SPGR pulse sequence (TE/TR: 5/26 ms; BW: 31.25 B@YV: 20 cni; Flip angle = 18°). The
decoded images from the rdaspace data of 256x256x32 was compared with theidfeu
encoded dataset. The Sum-of-Square (SoS) methedsto sum decoded 8-channel datasets in
image domain. Fig. 42 and 43 compare one of shetween the Hybrid and Fourier methods
without fat saturation. The Sagittal vivo experimental results illustrate that the Hybridtmoel
change the image contrast, and fat is suppresseel Inyothe proposed Hybrid method than the

conventional Fourier encoding method. Simultanequdi/brid decoding speed is as similar as

Fourier decoding.

€Y (b)
Fig.42 Sagittalin vivo human knee experiments of the 3D Hybrid (a) andariEo (b) methods

without fat saturation.
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Fig.43 Time cost with 3D Fourier encoding using fast keutransform and 3D Hybrid encoding

using the fast algorithm without fat saturation

Fig. 44 and 45 show comparison between the proposgtiod and Fourier encoding with
and without fat saturation. Here, we compare theragek-space raw datasets between the
proposed method and Fourier encoding with fat atitur and without fat saturation. The
decoding images show that the proposed 3D Hybrabding method can chandespace raw
data and preserve the data in the high frequergipneOne slice of the images shows that the
proposed 3D Hybrid encoding method can achievemifft contrasts from the conventional 3D
Fourier encoding method. The proposed method espdospecial non-Fourier random encoding
pulse sequence to generate inhomogeneous B1 filed, the signal contrast of fat and other
tissues is changed comparing the conventional Eowncoding method. Because, spatially

varying flip angles across the FOV may lead to i#ioimogeneity that result in an insufficient fat
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sat pulse and thus lead to incompletely saturattdsifynal [86]. However, this theoretical

expiation is still fuzzy for clinic applicationsyither studies should be done in the future.

Avarage of k-space dataset

Avarage of k-space dataset
T 1 T T T T

. T
— 3D Fourier 3D Fourier
0.9 3D Hybrid 0.9r- 3D Hybrid [

300
X X

300

(@) (b)
Fig. 44 Comparison of averagespace data of 3D Fourier and Hybrid encoding withiat

saturation (a) and with fat saturation (b)

(a) (b)
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(c) (d)

Fig. 45 Comparison of decoded images of 3D Fourier (ana) Hybrid (c, d) encoding without

fat saturation (a, c) and with fat saturation (b, d

5.3 Co-registration of Pseudo 2D Random Sampling

Currently, the co-registration model is not emphtbyer Pseudo 2D random sampling. In
common Bloch simulation, the co-registration mogehlso not required. However, for most
actual experiments, the co-registration model iseagary for better reconstructions. Although,
some applications without co-registration modelse asuccessfully completed, such as
Hyperpolarization imaging [83], it is necessaryajply the co-registration model between the
two orthogonal data for general imaging. Here, @ gse the co-registration model as similar as
the model of Cross-GRAPPA in Eq. (7). We need ekphe intersection points from the two
orthogonal directions, to align the two raw dataseto one combined data, which will be used to

recover by CS algorithms.
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6. Summary

In sum, we overview our proposed schemes and coeapieorks.

Firstly, we propose a new Cross-GRAPPA method faraltel imaging. The method
improves conventional GRAPPA by integrating the raass sampling and data co-registration
procedure with the conventional calibration andonstruction procedure. The method can
reconstruct images from fewer amounts of ACS daém ttonventional GRAPPA, especially at
the high ORFs. The phantom aimdvivo human brain imaging experiments have demonstrated
the advantages of this proposed approach. We patiicithat the proposed Cross-GRAPPA

scheme can bring benefits to other 2D and 3D GRARB#ications.

Secondly, we propose a novel 3D hybrid random engodcheme which integrates the
benefits of both random encoding and Fourier emgpdirhe Fourier encoding with variable
density sampling ensures signals with high SNRetsd&ampled densely, while random encoding
spreads out the signal energy to allow high spdtedquency to be sampled adequately for
preserving resolution. The circulant structure fandom encoding also can allow efficient
reconstruction algorithms. The computational comipfeof CS reconstruction is about the same
for both hybrid and Fourier encodings. The simoladiand real experiments both have illustrated
that the proposed hybrid encoding scheme outpesfoffourier encoding in preserving
resolutions. We anticipate that the proposed hybnicoding scheme can be applied into current

applications of Fourier-encoded CS MRI.

Thirdly, we present a random Cartesian samplindirigue for applications of CS in
conventional MRI. The simulation results have shgwomising results to accelerate imaging
speed with high reconstruction quality. We antitépthat the real experiments can also achieve

better reconstruction results than the actual 1dideal 2D random sampling.
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