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ABSTRACT

DISCOVERY AND CORRECTION OF BIAS IN PRECISION LANDMARK LOCATION

by

Colin Foster

The University of Wisconsin-Milwaukee, 2012

Under the Supervision of Professor Brian Armstrong

Precision Landmark Location (PLL) estimation is an integral part of 3D motion tracking. Cir-

cular landmark location estimation is one method of PLL. Current methods of estimation lead to

systematic errors with a magnitude of up to .02 pixels. Estimation inaccuracies of this magnitude

lead to unacceptable errors in depth measurement, the largest source of error. In the scope of this

thesis, inadequacies in circular landmark location are uncovered and techniques to correct these er-

rors are analyzed, tested, and demonstrated. Deviations in simulated images are seen to be reduced

by a factor of three and the variances of real-world data were reduced by half. This thesis predicts

and observes increased accuracy in the 3D motion tracking technology.

ii



TABLE OF CONTENTS

I Background 1

1 Introduction 1
1.1 Moiré Phase Tracking (MPT ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 What is MPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 How MPT is used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Jump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Precision landmark location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 History of precision landmark location . . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 Previous investigations into biased estimators . . . . . . . . . . . . . . . . . . 5
1.3.3 Precision landmark location in MPT . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 What is in this Thesis? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Experiments That Establish Certainty That Landmarks Cause Jumps 9
2.1 Jump observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Landmark path interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Statistical investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Image Simulation 15
3.1 High resolution image creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Low resolution image creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

II Numerical Investigation 18

4 Initial Interpolation Method 18
4.1 Linear interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.1 Looking at a single image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2 Looking at thousands of images . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.3 Could this observed bias be related to the jump? . . . . . . . . . . . . . . . . 22
4.2.4 Bias vs noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.5 The bed of nails model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 'Perfect' High Resolution Interpolation Techniques 25
5.1 High resolution interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Spline interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Approaches To An Unbiased Estimate Of The Contour Points 27
6.1 Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.1.1 Quadratic interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.1.2 Sigmoid method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.1.3 Spline interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.1.4 Grid interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.1.5 Pixel surface interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2.1 Quadratic interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2.2 Sigmoid method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2.3 Spline interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2.4 Grid interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2.5 Pixel surface interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

iii



7 Butterworth Tepuy Investigation 39
7.1 Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.1.1 Butterworth tepuy �t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.1.2 Butterworth Tepuy �t with 2D Simpsons integration . . . . . . . . . . . . . . 40

7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.2.1 Butterworth Tepuy �t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.2.2 Butterworth Tepuy �t with 2D Simpsons integration . . . . . . . . . . . . . . 44

7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

III Results and Conclusion 46

8 Butterworth Tepuy method in a jump 46
8.1 Observing depth vs roll angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.2 Observing locations of each ellipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.3 E�ects of the multiple-pass tepuy algorithm . . . . . . . . . . . . . . . . . . . . . . . 49
8.4 E�ects of weights applied to the Butterworth Tepuy algorithm . . . . . . . . . . . . 51
8.5 Introducing a gradient to the Butterworth Tepuy algorithm . . . . . . . . . . . . . . 53

9 Conclusions/Recap 56
9.1 Bias as a source of error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
9.2 Curvature of intensity pro�le causes bed of nails to be inaccurate . . . . . . . . . . . 56
9.3 Curvature causes linear interpolation to be inaccurate . . . . . . . . . . . . . . . . . 56
9.4 Butterworth Tepuy o�ers more accurate landmark estimation than the ellipse algorithm 56
9.5 Impact of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9.6 Future investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

9.6.1 Further investigation into modeling the curvature of landmarks . . . . . . . 57
9.6.2 Gather more contour points before the interpolation process . . . . . . . . . 57
9.6.3 Using more re�ned 2D Simpsons Integration techniques in order to get a better

Butterworth Tepuy estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.6.4 Robust statistical methods to improve Butterworth Tepuy estimation . . . . 58
9.6.5 Modi�cations to the Butterworth Tepuy model . . . . . . . . . . . . . . . . . 58
9.6.6 Modi�cations to the target . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

iv



LIST OF FIGURES

1 Photograph of an MPT Target. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Comparison of standard and motion corrected images. The bottom two images have

intentional motion and the right two images have motion correction enabled. . . . . 3
3 A subject jumping with MPT targets a�xed to them. . . . . . . . . . . . . . . . . . 3
4 A skeletal recreation of a running subject. Targets were placed on a subject and used

to create a model for analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
5 Image of a circular MPT landmark. The center of this landmark is estimated and

used for analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
6 Cross section of a landmark and an intensity threshold. The line intersections are the

estimated contour points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7 Contour plot of a landmark. The points that create this shape are �t to an ellipse

and the center is accepted as the landmark location. . . . . . . . . . . . . . . . . . . 7
8 Setup of the jump experiment with a tilting rotary table, MPT target, camera, and

computer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
9 MPT target with X, Y and Z axes represented as the right, top, and out of page

planes, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
10 Observed jump phenomenon where a clear bias can be observed around 84 degrees. . 10
11 Observation of data without a jump occurrence. All errors appear to be random and

show no signi�cant patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
12 A binary image created as the �rst step of landmark simulation. . . . . . . . . . . . 15
13 A blurred high resolution image created to simulate the blurring e�ects of optical

systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
14 The �nal simulated low resolution landmark. Landmarks like these were used during

all of Part II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
15 Cross section of a landmark and an intensity threshold. The line intersections are the

estimated contour points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
16 First order ideal and estimated contour points. Both the estimated and ideal points

correctly resemble a circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
17 Zoomed in �rst order ideal and estimated contour points. Di�erences of varying

degrees between the ideal and estimated contour points can be seen in this example. 21
18 Observed errors from the linear interpolation method. . . . . . . . . . . . . . . . . . 22
19 An example of the periodic errors observed in the data. When the center of the

landmark was translated across a pixel in one dimension, periodic trends became
apparent in most cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

20 E�ects of pixel noise on the observed errors. . . . . . . . . . . . . . . . . . . . . . . . 24
21 Bed of nails model of a landmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
22 Deviations from high resolution image analysis. This case had 11 times greater linear

resolution in the high resolution case. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
23 Deviations from the high resolution image analysis with 33 times greater linear reso-

lution in the high resolution case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
24 Original second order interpolation method. In this case two points were used from

above the threshold and one was used below the threshold. . . . . . . . . . . . . . . 28
25 Alternative second order interpolation method. This case used two points below the

threshold and one point above the threshold. . . . . . . . . . . . . . . . . . . . . . . 28
26 Varying sigmoid interpolation functions used to �pull� the interpolated landmarks

toward the nearest pixel center. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
27 Example of a spline interpolation process used to try to improve high resolution

interpolation accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
28 A pixel grid interpolation pro�le using 3x3 pixels and high resolution data. . . . . . 33
29 A pixel surface interpolation pro�le using high resolution data across a single low

resolution pixel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
30 Results from the second order interpolation method. . . . . . . . . . . . . . . . . . . 34
31 First order estimated contour points vs second order estimated contour points. . . . 35
32 Spline interpolation method deviations of the centers. . . . . . . . . . . . . . . . . . 36
33 Grid interpolation method deviations of the centers. . . . . . . . . . . . . . . . . . . 36

v



34 First order interpolation vs grid interpolation estimated contour points. . . . . . . . 37
35 Surface interpolation method deviations of the centers. . . . . . . . . . . . . . . . . . 37
36 First order interpolation vs pixel surface interpolated estimated contour points. . . . 38
37 Graphical representation of the R(x,y) function. . . . . . . . . . . . . . . . . . . . . . 40
38 3D plot of an original landmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
39 3D plot of a tepuy �t estimation to a landmark. . . . . . . . . . . . . . . . . . . . . . 41
40 Butterworth Tepuy estimated deviations from center. . . . . . . . . . . . . . . . . . . 44
41 2D Butterworth Tepuy estimated deviations from center. . . . . . . . . . . . . . . . 44
42 Di�erences between the two Butterworth methods. . . . . . . . . . . . . . . . . . . . 45
43 Linear interpolated contour point technique Z measurements vs calculated roll. . . . 47
44 Butterworth Tepuy estimation technique Z measurements vs calculated roll . . . . . 47
45 Linear estimation of contour points and Butterworth Tepuy corrected estimation of

a jump. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
46 Histograms of the errors with linear contour point estimation (left) and Butterworth

Tepuy estimation (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
47 Di�erences in measured Z between ellipse �tting and Butterworth Tepuy techniques. 48
48 Estimated X movement of the circular landmark using the Butterworth Tepuy method

(left) and the ellipse method (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
49 Estimated Y movement of the circular landmark using the Butterworth Tepuy method

(left) and the ellipse method (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
50 E�ects of multiple passes on the tepuy algorithm. Single pass (upper left), double

pass (upper right) and triple pass (lower) Butterworth Tepuy algorithms. . . . . . . 51
51 Histogram of the errors from each pass of the tepuy algorithm. Single pass (upper

left), double pass (upper right) and triple pass (lower) Butterworth Tepuy algorithms 52
52 E�ects of weights on the Tepuy algorithm. Double weights (upper left), half weights

(upper right) and standard (lower) are shown. . . . . . . . . . . . . . . . . . . . . . . 53
53 Errors from di�erent weights of the Tepuy algorithm. Double weights (upper left),

half weights (upper right) and standard (lower) are shown. . . . . . . . . . . . . . . . 54
54 Estimation of a Tepuy with a gradient added. . . . . . . . . . . . . . . . . . . . . . . 55
55 Errors with a gradient introduced in Butterworth Tepuy algorithm. . . . . . . . . . . 55

vi



LIST OF TABLES

1 Minitab best subset regression. Surprisingly low correlation between all regressors
was seen and almost no correlation between roll angle and measured Z was observed. 13

2 Table of results from various elliptical estimation methods. . . . . . . . . . . . . . . 33
3 Table of results from all corrective methods. . . . . . . . . . . . . . . . . . . . . . . . 43

vii



ACKNOWLEDGEMENTS

I would like to thank everybody who has helped my educational career over the past two years.

I have learned more than I could have possibly imagined in the process.

Speci�cally I would like to thank Professor Brian Armstrong for taking me under his wing

and providing me the opportunities I have had. Robb Barrows, Todd Kusik, Qiaotian Li, and

Drew Douglas have been incredibly supportive and helpful by maintaining an encouraging learning

environment. Professor Ethan Munson has o�ered tremendous insight in �nding and resolving the

problems seen in this Thesis. My parents: for everything. Danielle: for putting up with me. And of

course all of my family and friends for the support through the years.

NIH/NIDA Grant: R01DA021146-A1

viii



1

Part I

Background

1 Introduction

1.1 Moiré Phase Tracking (MPT )

3D motion tracking is a commonly used technology that spans a diverse number of applications.

Animation, automation, medicine, simulation, and entertainment are all examples of industries that

utilize and bene�t from this technology. Many of the technologies rely on multi-camera setups and

can require elaborate setup and calibration which cannot easily be relocated [1, 2, 3]. Technologies

can range from the use of Doppler radars [4] and active targets [3].

1.1.1 What is MPT

Moiré Phase Tracking (MPT) is a 3D motion tracking technology developed by Brian Armstrong

[5] that addresses many of the downfalls of current 3D motion tracking technologies. MPT uses

a single camera as a sensor and tracks specially designed targets (Figure 1). The target relies on

the detection of the starburst landmark in the center of the target, the location of the four circular

landmarks, and the resolution of the periodic moiré patterns. The analysis of all of this information

yields six degree of freedom (6-DOF) pose estimation of X, Y, Z and pitch, roll and yaw [6].

1.1.2 How MPT is used

MPT Technology is already being researched and used in a number of applications. Universities in

the US and Germany, including the University of Wisconsin-Milwaukee, University of Hawaii, and

universities in Freiburg and Magdeburg Germany are all participating in the research.

One speci�c area of research is to create motion corrected images in Magnetic Resonance Imaging

(MRI) scans. MRIs rely on a patient to remain steady during the duration of the scan, which can

last very long [7]. If the patient moves during an image it can become blurred and sometimes

be unusable for medical diagnosis. Imaging patients who's movements are di�cult to control are

especially problematic.

Motion tracking during an medical imaging scans is widely studied [8, 2, 9]. Some systems are

designed to work in MR imaging scenarios while others work only in non-magnetic situations.
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Figure 1: Photograph of an MPT Target.

MPT targets can be placed on patients while they are in the bore of an MRI machine. The

data can be processed and report movement to the MRI machine. The scanner can correct for the

motion during the scan. Figure 2 shows the product of the use of the technology. In the image, the

two images on the left have no correction and the two images on the right have motion correction.

Additionally, papers have been published utilizing MPT technology to produce motion corrected

MR images [9].

Along with MRIs, MPT is also being used to perform 3D motion tracking of a person in motion.

For this, multiple targets are a�xed to a person who can perform di�erent tasks. These tasks include

jumping, running in various paths, walking, etc. When this data is combined with data from a force

plate, a recreation of the extremities can be performed and analyzed, as seen in Figures 3 and 4.

The use of MPT technology has been shown to aid in the assessment of injury susceptibility and

diagnostics [10, 11].

1.2 Jump

One phenomena that has been observed is known as a �jump.� A jump is a sharp change in the

estimated depth (Z) in an orientation where there should be very little change. Jumps are of

signi�cantly larger magnitude than the noise and are believed to be attributed to the largest source

of error in MPT.
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Figure 2: Comparison of standard and motion corrected images. The bottom two images have
intentional motion and the right two images have motion correction enabled.

Figure 3: A subject jumping with MPT targets a�xed to them.
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Figure 4: A skeletal recreation of a running subject. Targets were placed on a subject and used to
create a model for analysis.

A strong component of the depth estimation of MPT is related to the location of the four circular

landmarks. The further away the landmarks are from one another, the closer the target is to the

camera. Chapter 2 further explores this idea and shows that landmark estimation is in fact the

cause of the jumps.

1.3 Precision landmark location

Precision landmark location (PLL) is the process of taking the image data and determining precisely

where the landmark is located. PLL is a fundamental technology used in MPT.

1.3.1 History of precision landmark location

Many PLL techniques have been researched over the past few decades. Much investigation into the

detection and location of lines in images [12, 13, 14] which could give accurate position estimation in

a single dimension. Other studies have been done on accuracy of circular �ducials, but only of binary

images [15, 16, 17, 18, 19]. It has also been shown that the use of larger patterns such as bullseyes

[17, 18] or starbursts [20] can o�er more accurate location estimation, however the patterns are much

larger than circular �ducials and would require a much larger target [21]. It has been claimed that a
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bullseye pattern can provide a more precise landmark in the same area as a circular landmark [22],

however this analysis was done using a centroid estimation technique. Gutierrez and Armstrong

showed signi�cant improvements in precision by using alternative estimation techniques and smaller

circular landmarks.

Other studies involve the analysis of multiple images [23, 24] or more complex landmarks [25],

which are not applicable to MPT.

Noise is also a common discussion in the accuracy of landmark location estimation [16, 18, 19,

20, 26] but bias is often never mentioned [27, 28]. It is seen that bias in the estimation of circular

landmarks exists when approaching the precision of PLL. Additionally, this bias is much larger than

the e�ects of noise on the image. Bias a�ects the center estimation of the circular landmarks, which

a�ects the distance measurement of MPT.

1.3.2 Previous investigations into biased estimators

Robinson and Milanfar [27] have investigated the e�ects of biased estimation in image processing.

Their motivation was to improve the accuracy of temporal sampling of similar images. These tech-

niques can be used in robotics to analyze motion of a landscape or of the camera relative to the

surroundings [28]. They show that unbiased estimators do not exist in image processing and that

the e�ects are signi�cant enough to not be ignored.

The authors use a number of di�erent motion estimation techniques to support their claim.

They tested these techniques with multiple di�erent images and large deviations in magnitude of

noise. Additionally, they showed that estimation bias occurs in the shifting of randomly generated

images where the derivative is known. The authors continue by modelling and analyzing the bias

and experimentally validating their predictions.

This previous work is an important introduction to the idea of bias in image registration estima-

tion, however only focuses on the analysis of multiple images and 2-D translation. The groundwork

laid by Robinson and Milanfar can be understood and the ideas can be applied to landmark regis-

tration within a single image. This continuation of their work is what is done in this Thesis.

Additionally, Kim and Menq [28] have studied the e�ects of bias with both translation and depth

changes. They use a normalized cross correlation technique to detect motion. Although their study

investigates the e�ect of bias, it is limited to the detection of shifts and motion in images. This

Thesis investigates the absolute estimation of location from a single image.
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Figure 5: Image of a circular MPT landmark. The center of this landmark is estimated and used
for analysis.

1.3.3 Precision landmark location in MPT

The PLL process used in MPT is a two step process. First, points are located where the intensity

equals a speci�c threshold. A landmark is shown in Figure 5 and a cross section showing the intensity

and an estimation threshold is shown in Figure 6. The estimated contour points should represent

an ellipse, as shown in Figure 7.

The points on the ellipse can then be �t to a known ellipse. The equation from equation 1

where (xk, yk) the kth point, (x0, y0) the estimated center, and ellipse paramaters [a, b, c], can be

used to model an ellipse. Then the error of the estimate as seen in equation 2 can be calculated. A

Newton-Raphson algorithm can be performed to minimize the error and give a best estimate of the

landmark center. The paramaters used showe the accuracy of this procedure to be on the order of

six milipixels; approximately 6/1000ths of a pixel.

1 =
[
a b c

]
(xk − x0)2

(xk − x0) (yk − y0)

(yk − y0)2

 (1)

ε = Σ

z̃k
 a b

b c

 z̃Tk − 1


2

; z̃k =

 xk − x0

yk − y0

 (2)

It is also seen that if the contour points found are ideal, accuracy of the center estimation greatly

improves. Much of this Thesis involves attempts to identify the sources of error in the contour point

estimation in order to approach the ideal contour point locations.
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Figure 6: Cross section of a landmark and an intensity threshold. The line intersections are the
estimated contour points.
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Figure 7: Contour plot of a landmark. The points that create this shape are �t to an ellipse and the
center is accepted as the landmark location.
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1.4 What is in this Thesis?

This Thesis uncovers speci�c information relating to the jump seen. Two main points discovered are

1. There is bias in the PLL process and this bias is much greater than the observed noise

2. Curvature in the intensity pro�le leads to the case where the average intensity over a pixel is

not equal to the intensity at the center of the pixel

Also in this Thesis, di�erent numerical interpolation and PLL techniques are investigated. It is

shown that the magnitude of PLL bias can lead to jump errors of similar magnitude to empirically

observed jumps. It is shown that better interpolation data could lead to more accurate and precise

results. And it is shown that di�erent interpolation techniques can improve PLL. The theories are

tested and shown to improve results with real-world data.
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Figure 8: Setup of the jump experiment with a tilting rotary table, MPT target, camera, and
computer.

2 Experiments That Establish Certainty That Landmarks Cause

Jumps

This chapter explains what the jump phenomena is, how it can be observed, and what has been

done to determine that it is a byproduct of PLL.

2.1 Jump observation

To observe a jump, an x-y stage and a tilting rotary table are used. The x-y stage is mounted as

near to the center of the rotary table as possible. A target is then mounted near to the center on

the x-y stage as seen in Figure 8. The x-y stage can be used to adjust the location of the target.

The target is positioned such that the X and Y measurements are as close to constant as possible

during a roll of the rotary table. In this con�guration the X, Y and Z measurements should be very

steady throughout the rest of the experiment. The experiment is intended to create as true a roll

about the Z axis in Figure 9 as possible. A recorded jump can be seen in Figure 10. An example of

a rotation that is not experiencing a jump can be seen in Figure 11.
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Figure 9: MPT target with X, Y and Z axes represented as the right, top, and out of page planes,
respectively.
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Figure 10: Observed jump phenomenon where a clear bias can be observed around 84 degrees.
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Figure 11: Observation of data without a jump occurrence. All errors appear to be random and
show no signi�cant patterns.

2.2 Landmark path interpolation

A numerical experiment was performed by Brian Armstrong that involved a path �tting interpolation

algorithm. The algorithm allowed for any, or all, of the parameters to be estimated. The estimation

�t was quadratic, and the parameters were the center starburst, the four circular landmarks, and

each of the moiré patterns. It was seen that interpolating the four circular landmarks reduced the

errors in Z from an RMS of 0.466 mm to .016 mm. Interpolating more of the parameters did decrease

the RMS values, but only the combination of the circular landmark estimation resulted in such a

signi�cant improvement.

The conclusion of this experiment was that the deviations of the location of the circular landmarks

plays a signi�cant role in the jump seen.

2.3 Statistical investigation

An experiment was performed to see if there are any direct correlations between landmark location

on an imager, roll angle, and a jump.

The process performed is as follows

1. Locate a jump per Section 2.1, mark the locations of the XY Stage and the roll angles.

2. Create a grid of points to be observed with variables X-Stage, Y-Stage, and Roll Angle. Acquire

an image in each con�guration.

3. Process the images.

4. Investigate the Z measurement in di�erent scenarios.
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(a) Does the jump happen when the target is only translated?

i. If so, the phenomena could be an artifact of pixel noise on the imager.

(b) Does the jump happen at a speci�c angle, regardless of location?

i. If so, the phenomena could be an artifact of the target or imager, but not related to

a speci�c pixel.

5. Investigate which, if any, predictors correlate with the measured Z.

The initial investigation from step 4 involved graphing and observing the data in MATLAB. Jumps

were observed during both rotation and translation. A conclusion was made that the jump is not

an artifact of target orientation alone.

A statistical regression proposed by Montgomery et al. [29] was used to see if any predictors

could model a jump. This is an important step because predictors can lead to a better understanding

of the phenomena with respect to multiple dimensions of data. Ideally this understanding would

lead to correction. Regressors investigated were

1. The roll angle of the rotary table

2. The �rst and second order terms of the locations from the X and Y stage

3. The �rst and second order terms of the estimated location of the target

4. The pitch, roll, and yaw location estimations of the target.

The results are included in Table 1. There are a few things that can be determined by this table.

1. There isn't a direct correlation between roll and a jump.

(a) Table Roll isn't an e�ective predictor until 10 of the 15 parameters are used.

2. No subset of the predictors given can provide accurate estimation of a jump; one can not

predict a jump given this information.

(a) The best values of R-squared are around 50% when all of the predictors are used. A

su�cient model would have to predict this much more accurately and with fewer variables.

Further regression techniques were attempted with the pixel locations of each landmark. The con-

clusion that could be made was that the phenomena did not depend on speci�c locations of the

target in space nor speci�c pixels in the imager.
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Vars R-Sq R-sq(adj) Cp S X
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s
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X
*
Y
S
ta
g
e

X Y X
^
2

Y
^
2

P
it
ch

R
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ll

Y
aw

T
a
b
le
R
o
ll

1 8.2 7.5 78.7 .96 X

1 4.8 4.1 86.1 .97 X

2 14.4 13 67.3 .93 X X

2 12.8 11.4 70.8 .93 X X

3 16.4 14.3 65.1 .92 X X X

3 16.3 14.2 65.3 .92 X X X

4 19.8 17.1 59.7 .90 X X X X

4 16.6 13.8 66.5 .92 X X X X

5 25 21.8 50.5 .88 X X X X X

5 24 20.8 52.5 .88 X X X X X

6 33.3 29.9 34.4 .83 X X X X X X

6 29.8 26.2 42 .85 X X X X X X

7 41.3 37.7 19.2 .78 X X X X X X X

7 40.4 36.8 21 .79 X X X X X X X

8 43.1 39.2 17.1 .77 X X X X X X X X

8 42.9 38.9 17.7 .78 X X X X X X X X

9 44.7 40.3 15.7 .77 X X X X X X X X X

9 44.6 40.2 16 .77 X X X X X X X X X

10 47.9 43.3 10.9 .75 X X X X X X X X X X

10 47.6 42.9 11.6 .75 X X X X X X X X X X X

11 49.0 44 10.5 .74 X X X X X X X X X X X

11 48.9 43.9 10.7 .74 X X X X X X X X X X X

12 50.0 44.6 10.4 .74 X X X X X X X X X X X X

12 49.7 44.3 10.9 .74 X X X X X X X X X X X X

13 50.0 44.1 12.2 .74 X X X X X X X X X X X X X

13 50.0 44.1 12.3 .74 X X X X X X X X X X X X X

14 50.1 43.7 14.1 .74 X X X X X X X X X X X X X X

14 50.1 43.6 14.1 .74 X X X X X X X X X X X X X X

15 50.1 43.2 16 .75 X X X X X X X X X X X X X X X

Table 1: Minitab best subset regression. Surprisingly low correlation between all regressors was seen
and almost no correlation between roll angle and measured Z was observed.
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2.4 Summary

This chapter shows that there is a jump phenomena that happens and how to �nd jumps. The jump

is not an artifact of target orientation alone. No set of predictors can accurately model a jump.

An initial theory that small locations on the target were brighter than other locations is discredited

because jumps occur regardless of exact target location. The jump also doesn't have any connection

with landmarks falling on speci�c locations of the pixels, which contradicts theories of �xed pattern

noise of an image sensor playing a direct role. Instead, there is some interaction between the target

and image sensor that requires a deeper investigation. As a result, simulation techniques described

in Chapter 3 and analysis of the current routines in Chapter 4 verify that PLL is the cause of the

jump and that the corrective techniques investigated in Chapters 6 and 7 can signi�cantly reduce

the jump, as seen in Chapter 8.
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Figure 12: A binary image created as the �rst step of landmark simulation.

3 Image Simulation

To validate our suspicion that landmark estimation bias was causing the jump, further investigation

into circular landmark estimation was needed. Using simulated data instead of experimental data,

one knows the exact speci�cations of the image and can compare that with the estimations. Image

Simulation consists of multiple steps, each of which will be described and explained in this chapter.

3.1 High resolution image creation

The �rst step to creating an arti�cial landmark is to create a binary, high resolution image. A set

of tools were created and used to perform this task. A function would compare a given pixel to

a de�ned ellipse. If the center of the pixel is inside the ellipse, that pixel receives a value of 255

(white). If the center of the pixel is outside the ellipse, the value is 0.

The �nal result of this is shown in Figure 12.

The next step proposed by numerous authors [16, 20] is to use a 2D Gaussian Kernel convolution

to create the illuminance function. The Gaussian Kernel is de�ned in equation 3

GaussianKernel =
1

2πσ2
b

e
− x

2+y2

2σ2
b (3)

This was used to create an appropriately sized1 grid. The grid was normalized so that the

integral of the grid was equal to 1. The next step was to convolve the two matrices. The result of

1Appropriately sized means that the points nearest the outside edge are all very close to zero and not still a
signi�cant part of the Gaussian Kernel
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Figure 13: A blurred high resolution image created to simulate the blurring e�ects of optical systems.

this operation is shown in Figure 13

3.2 Low resolution image creation

After the blurred high resolution image has been created, it must be reduced to a low resolution

image. There were two di�erent ways to perform this task that are described in this section.

Pixel averaging The �rst method of low resolution image generation is to take the average

intensity over the area of the pixel. This method would accurately simulate one type of 'ideal'

imager; the sensitive area of the pixel is 100% of the pixel area. Real imagers do not have 100%

sensitive area and are often in complex shapes [20]. The equation used is shown in equation 4. The

function I (p) is called the intensity pro�le, a continuous function representing the intensity of light

at a point p.

ILR (p) =
¨

IHR (p) dp (4)

Unless explicitly stated, all calculations were done with the low resolution image created by this

method.

Pixel sampling The second method of low resolution image generation is one I will call pixel

sampling. This method would simulate a di�erent type of 'ideal' imager; one where the sensitive

area is 0% of the pixel area and only a single point at the center of the imager. Pixel sampling



17

Figure 14: The �nal simulated low resolution landmark. Landmarks like these were used during all
of Part II.

was done by assigning the value of the low resolution pixel to be equivalent to the center of the

corresponding high resolution pixel. For example, if the high resolution image were 15 times larger

than the low resolution image, the value of the low resolution pixel [1, 1] would be the value of the

high resolution pixel [6, 6]. Equations 5 and 6 show the homogeneous transformation equivalents of

this. The equation used is equation 7 and the �nal product appears indistinguishable from Figure

14.

HR
LR T =


11 0 −5

0 11 −5

0 0 1

 , LRHRT =


.0909 0 .4545

0 .0909 .4545

0 0 1

 (5)

pLR =


px,LR

py,LR

1

 =LR
HR T


px,HR

py,HR

1

 (6)

ILR (p) = IHR (p0) (7)

The last step to create a fully simulated low resolution image is to quantize the image to an 8-bit

integer. This was done by simply using a round() command built into MATLAB. The �nal products

appear indistinguishable from Figure 14.

After the simulated images were created we were able to run the current center location algorithms

as well as develop and test new algorithms. These algorithms could be modi�ed and tested against

the true values because of the fact that the data was simulated.
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Part II

Numerical Investigation

4 Initial Interpolation Method

A need to investigate the accuracy and properties of the current interpolation technique was nec-

essary. This could uncover model inaccuracies and give way to additional information regarding

landmark estimation. The original technique used is explained, and the results from performing this

technique are analyzed in this chapter.

4.1 Linear interpolation

Linear interpolation was the initial technique used for ellipse �tting. The linear interpolation consists

of two steps: First a set of edge points are determined, then the edge points are �t to an ellipse.

The �rst step is what is being investigated.

The contour point estimation algorithm used a two step process. It �nds transition points, then

interpolates between those points. Edge points are where one pixel is above a certain threshold and

an adjacent pixel is below the threshold. This process is repeated until all possible edge points are

discovered. Once the points are located, the algorithm �ts a straight line connecting the values of

the interior and exterior points. The algorithm solves for the intersection between the �tting line

and the threshold. This intersection is the location of the estimated contour point. A graphic of

this is shown in Figure 15.

Mathematical explanation Let pi be the interior point with coordinates

pi = (x, y) ∈ LowResolutionP ixelCoordinates

and pe be the exterior point with the intensity pro�le I (p)

The coordinates of pe must be one of the following [(x+ 1, y) , (x− 1, y) (x, y + 1) , (x, y − 1)].

Put another way,

pe = pi + ∆p (8)

where ∆p ∈ [(1, 0) , (−1, 0) (0, 1) (0,−1)]. The threshold intensity is Th is known to be such that

I (pe) ≤ Th < I (pi).
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Figure 15: Cross section of a landmark and an intensity threshold. The line intersections are the
estimated contour points.

A line can be �t to I and ∆p where

I (pα) = I (pi) +
I (pe)− I (pi)

|∆p|
∗ α∆p (9)

and pα = pi + α∆p. The equation can be solved for the intersection by setting I (pα) = Th and

solving for pα.

The �nal equation is

pα = pi + (Th− I (pi))
|∆p|

I (pe)− I (pi)
∆p (10)

which will give a unique solution pα in the range (pi,pe] along ∆p. The value pα is the location of

the estimated contour point.

Example In a case where there are nine pixels, say


255 135 81

145 72 0

126 15 18

, and a threshold Th = 120,

there four cases where the intensity is greater than the threshold and �ve cases where the intensity

is less than the threshold. Using standard matrix numbering, we can see that the intensity of the

pixel located at (2, 1) is 135 and the intensity at pixel (3, 1) is 81. This is equivalent to saying

I (2, 1) = 135 I (3, 1) = 81. Interpolation can be done between these two points to estimate an

intensity equal to the threshold. x

1

 =

 2

1

+ (120− 135) 1
81−135

 1

0
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Figure 16: First order ideal and estimated contour points. Both the estimated and ideal points
correctly resemble a circle.

Solving for x, gives the estimated contour point of (2.2778, 1).

Similarly the vertical crossover point between 135 and 72 is

 2

y

 =

 2

1

+(120− 135) 1
72−135

 0

1

.
This gives a second estimated contour point of (2, 1.2381).

Doing this for all other transition points, (2, 1) to (2, 2), and (3, 1) to (3, 2) yields a third and

fourth estimated contour points of (2, 1.3425) and (3, 1.0541).

Ellipse �tting The second step is to �t the points to an ellipse. A Newton-Raphson algorithm

is used to solve for the least squares �t of an ellipse. Data regarding a Newton-Raphson Algorithm

can be found in Section 7.1.1.

4.2 Observations

There are a number of techniques to extract data from the interpolation methods. Section 4.2.1

discusses observations that can be made from looking at individual �ts. Section 4.2.2 discusses

observations from looking at thousands of images. Both techniques are very useful when investigating

the accuracies of di�erent methods.

4.2.1 Looking at a single image

The edge points from linear interpolation can be seen from a single landmark location in Figure 16,

with a zoomed in section located in Figure 17. The ideal contour points (shown as triangles) are

the result of linear analysis on the high resolution image, and are considered to be the ideal contour

point locations.
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Figure 17: Zoomed in �rst order ideal and estimated contour points. Di�erences of varying degrees
between the ideal and estimated contour points can be seen in this example.

It can be seen in Figure 17 that the estimated contour points are often interpolated further away

from the nearest pixel center. This e�ect was almost universal with the linear estimation procedure.

An hypothesis that came from this observation was that if the estimation procedure could arti�cially

�pull� the estimated contour points toward the nearest pixel, a better center estimation would be

the result. This hypothesis led to di�erent corrective techniques, discussed in Chapter 6.

4.2.2 Looking at thousands of images

A MATLAB function was written to loop each method over many di�erent cases. Most of the

investigation involved looking into a circular landmark with a radius of 4 pixels and the center of the

landmark occupying a 101x101 grid across an entire pixel. Pseudocode of the speci�c loop would be

Index = 0;

for XCenter = 7.00:.01:8.00

for YCenter = 7.25:.01.8.25

CalculateCenterOfImage(XCenter, YCenter);

end; end;

The locations of the landmarks were estimated in each case and the deviations from each case are

plotted in Figure 18. The main observations will be shown and discussed in the following parts.

Magnitude of the center o�sets One feature of Figure 18 is the signi�cant deviations between

the measured and true landmark centers. A simple standard deviation calculation from the data
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Figure 18: Observed errors from the linear interpolation method.

produced by the pseudocode in 4.2.2;

σ
ỹ

=

√∑
(ỹ2)

n− 1
(11)

[x̃max, ỹmax] = [max (|x̃|) ,max (|ỹ|)] (12)

where ỹ is the di�erence between the estimated and measured locations, and n is the number

of data points. It is seen that [Devx, Devy] = [.0067, .0068] with maximum o�sets in x and y to be

.0207 in both cases.

Periodicity of the center o�sets Figure 19 shows an apparent periodicity of the errors. The

fact that the estimation is periodic and apparently much greater than any higher frequency changes

observed supports the conclusion that bias in the estimation process exists.

4.2.3 Could this observed bias be related to the jump?

An experiment to test whether there could be a correlation between landmark location bias and the

jump phenomenon was devised. This included a four step procedure.

1. Take an existing image of a target

2. Use the current methods of landmark location to calculate the four circular landmark locations

3. Shift each of the landmarks radially by a magnitude in pixels, comparable to the bias shown

by the simulation

4. Observe the shift in Z



23

7 7.2 7.4 7.6 7.8 8
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02
Differences between true and estimated X centers, Ycenter = 7.400000

Actual X Center

E
rr

or
 (

X
 lo

w
 r

es
 p

ix
el

s)

7 7.2 7.4 7.6 7.8 8
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02
Differences between true and estimated Y centers, Ycenter = 7.250000

Actual X Center

E
rr

or
 (

Y
 lo

w
 r

es
 p

ix
el

s)

Figure 19: An example of the periodic errors observed in the data. When the center of the landmark
was translated across a pixel in one dimension, periodic trends became apparent in most cases.

Step 3 involved taking the initial locations of the four landmarks, call them p2,p3,p4,p5 where p2

is across from p4 and p3 is across from p5. Two lines were created from these two points, p24,p35.

Additionally, circles c2, c3, c4, c5 were created around each point with a radius near the maximum

deviations observed, namely [.02, .02] pixels, or a radius of .02
√

2 pixels.

Two sets of data were constructed using new, simulated positions of each point, p̂2, p̂3,p̂4, p̂5. The

�rst set used the interior intersection of (p24, c2) , (p24, c4) , (p35, c3) , (p35, c5) and the Z measurement

was observed. The second set used the exterior intersections of these points. The initial observed

measurement was Z0 = 1090.870 mm, with the inner and outer measurements being [Zin, Zout] =

[1091.636, 1089.151] mm. The magnitude of the particular jump in the experimental data was a

range of Z from [1089.441, 1091.053] mm.

The conclusion drawn from this experiment was that the magnitude of the estimation bias could

be a main contributor to the Jump.

4.2.4 Bias vs noise

To quantify the e�ect of noise vs bias, an experiment was devised in which random pixel noise was

added to each pixel of an image. Estimation was performed on the noisy images and the results

were quanti�ed with a standard deviation calculation.

It was found that random pixel noise on the order of 5 counts were necessary in order to double

the standard deviation of the errors. The plot of the errors is shown in Figure 20. Imagers can be set

such that pixel noise is on the order of one count for appropriate signal-to-noise characteristics. It

can therefore be concluded that the e�ect of bias is much greater than the e�ect of noise on precision
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Figure 20: E�ects of pixel noise on the observed errors.
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Figure 21: Bed of nails model of a landmark.

landmark location.

4.2.5 The bed of nails model

Pixels only o�er two pieces of information: intensity and position. No information about how light

is distributed across the pixel is available. Due to these limiting quantization factors of imagers, the

only model that can be directly observed is called a bed of nails model, shown in Figure 21.

In the case of PLL, the intensity pro�le, or distribution of light across a pixel, is complex. It

is such that the recorded intensity of the pixel is not equal to the actual intensity at the center

of the pixel. Interpolation methods that use information from two inaccurate pixels are inherently

inaccurate, and PLL is sensitive to errors of this magnitude. Chapter 6 uses techniques to gather

information from more pixels in order to minimize the errors seen from this phenomenon
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Figure 22: Deviations from high resolution image analysis. This case had 11 times greater linear
resolution in the high resolution case.

5 'Perfect' High Resolution Interpolation Techniques

This chapter investigates the possibility of improving estimation if one were given more precise

data. It addresses the question of whether or not better image data and/or modelling techniques

can improve the interpolation techniques.

5.1 High resolution interpolation

Interpolation was performed on the high resolution images created in Section 3. The process involved

using the interpolation axes, ∆p, from Section 4.1. The data used for interpolation, however, was

not subjected to the averaging, sampling, or quantization of the low resolution image. \

The observed deviations form the linear interpolation method were [Devx, Devy] = [0.0067, 0.0068]

mm and a maximum of 0.0207, as seen in Chapter4. By using the information in the high resolution

image, the deviations shown in Figure 22 dropped to [0.001988, 0.002012] mm with a maximum of

0.0064 mm. This is a reduction in errors by a factor of 3. Table 2 shows this information, as well

as the results from Chapter 7.

Could the bias be completely removed?

Our estimation process involved the creation of a high resolution image with a multiplier of 11x11

high resolution pixels per low resolution pixel. It was then investigated whether a larger multiplier

could further reduce the errors. By running the same simulation with 33x33 high resolution pixels,

the deviations were seen to drop to a magnitude of [.0004, .0004], a factor of 50 improvement. The

results of this investigation are shown in Figure 22. It was concluded that with enough data regarding
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Figure 23: Deviations from the high resolution image analysis with 33 times greater linear resolution
in the high resolution case.

the pixel intensity pro�le, much more precise measurements could be performed.

With su�ciently accurate estimated contour points, the bias could be removed.

5.2 Spline interpolation

Spline interpolation, described in Section 6.1.3, was performed on the high resolution images in

order to create more accurate ideal contour points. The motivation for using this method on high

resolution images was that if interpolation led to improvements on high resolution images, it could

then be applied to the low resolution images. The spline �t from the four points appears very linear

and the points did not deviate signi�cantly from the �rst order ideal contour points. It can be seen

that the deviations in Table 2 show no di�erences from the linear interpolation case. As a result,

this technique was not used for low resolution analysis.
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6 Approaches To An Unbiased Estimate Of The Contour Points

Chapters 4 and 5 show that the investigation of more accurate estimated contour points has signif-

icant potential for bene�t. As a result, several methods were investigated in this chapter. Section

6.1 describes the techniques used and Section 6.2 shows the results of the techniques.

6.1 Techniques

Several di�erent interpolation techniques were evaluated. Some of the techniques used the data

from the low resolution images to act as corrective methods, while others used data from the high

resolution images and were designed to be more analytical with the possibility of leading to corrective

methods. Each of the methods used are described in this section and the results of each method are

explained in Section 6.2.

6.1.1 Quadratic interpolation

The quadratic interpolation method is similar to the linear interpolation. The algorithm �ts esti-

mated contour points, then �ts an ellipse to the estimated contour points. There are some subtle

logic changes and some signi�cant contour point estimation algorithm changes.

First, suitable crossover points needed to be determined. For this method, two interior points

were chosen and one exterior point. Unsuitable crossover points are found near the points where

the direction vector ∆p is near to the tangent of the ellipse at that point. In these cases one could

only �nd three adjacent points with the characteristic Outer Point→ Inner Point→ Outer Point

where Inner Points have intensities greater than the threshold, and Outer Points have intensities

below the threshold. Cases like these were not common, but when they did occur the estimator

would use linear interpolation.

Once the suitable points are discovered, a quadratic is �t to the data. The technique used is a

Second Order Newton's Divided-Di�erence Interpolating Polynomial [30].

A second case was considered for interpolation. Two outer points and one inner point were used

for interpolation. These two cases are shown in Figures 24 and 25 and show the comparison with

the �rst order interpolation.

Mathematical explanation

Let pi1,pi2 be the two internal points and pe be the external point such that pe = pi2 + ∆p and

pi1 = pi2 −∆p.



28

−1 −0.5 0 0.5 1
0

50

100

150

200

250

300

Pixels From Offset (pixels)

In
te

ns
ity

 (
co

un
ts

)

First and Second Order Interpolation

 

 

First Order
Second Order
Threshold

Figure 24: Original second order interpolation method. In this case two points were used from above
the threshold and one was used below the threshold.
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Figure 25: Alternative second order interpolation method. This case used two points below the
threshold and one point above the threshold.
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Then

I (α∆p) ≈ I (pi2)+
I (pi1)− I (pi2)

pi1 − pi2
(α∆p− pi2)+

I(pe)−I(pi1)
pe−pi1

− I(pi1)−I(pi2)
pi1−pi2

pe − pi2
(α∆p− pi2) (α∆p− pi1)

(13)

Simpli�ed, with b0 = I (pi2), b1 = I(pi1)−I(pi2)
pi1−pi2

, and b2 =
I(pe)−I(pi1)

pe−pi1
− I(pi1)−I(pi2)pi1−pi2

pe−pi2
we have

I (α∆p) = b0 + b1 (α∆p− pi2) + b2 (α∆p− pi2) (α∆p− pi1) (14)

We can then let a0 = b0 − b1pi2 + b2pi1pi2, a1 = b1 − b2pi2 − b2pi1, and a2 = b2 so that

I (α∆p) = a0 + a1α∆p + a2 (α∆p)2 (15)

Setting I (pα) = Th and using the quadratic formula, and using the relation pα=pi2 +α∆p. we

arrive at

pα = pi2 +
−a1 ±

√
a2
1 − 4a2 (a0 − Th)

2a2
∆p (16)

The algorithm tests the positive radical case �rst, α∆p1 = −a1+
√
a2
1−4a2(a0−Th)
2a2

If α falls in (0, 1]

then the solution is pα = pi2 +α∆p1. Otherwise the second case is veri�ed to fall along the correct

range. It then accepts the solution α∆p2 = −a1−
√
a2
1−4a2(a0−Th)
2a2

and px = pi2 + α∆p2 .

These points were then used in the same Newton Raphson Ellipse Fitting Algorithm mentioned

in Section 4.1.

6.1.2 Sigmoid method

As seen in Figure 17, the estimated contour points have a tendency to be pushed further away from

the nearest pixel center. A technique was developed to combat this phenomena by correcting the

interpolations with a sigmoidal function instead of a linear one. Sigmoid functions can be used to

improve edge detection in images [31].The sigmoid function used was

f (w;x) = (1− w) ∗ 0.5 +
tanh (2π (x− .5))

2
+ wx (17)

and could produce functions of various sigmoidicity by modifying the linear weight parameter w.

Examples of the varying sigmoidicity can be seen in Figure 26.
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Figure 26: Varying sigmoid interpolation functions used to �pull� the interpolated landmarks toward
the nearest pixel center.
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Figure 27: Example of a spline interpolation process used to try to improve high resolution interpo-
lation accuracy.

6.1.3 Spline interpolation

Spline interpolation is similar to the quadratic interpolation of Section 6.1.1, but has a few distinct

di�erences. First, it uses four points: two internal and two external, call them pi1,pi2,pe1,pe2.

Second, it uses a Third Order Newton's Divided Di�erence Interpolating Polynomial. An example

of the interpolation function can be seen in Figure 27.

Newton's Divided Di�erence Interpolating Polynomial is de�ned as

fn (x) = b0 +
n∑
i=1

bi

i∏
j=0

(x− xj) (18)
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b0 = f (x0)

b1 = f [x1, x0]

where

f [xi, xj ] =
f (xi)− f (xj)

xi − xj

and

bn>1 = f [xn, xn−1, ..., x1, x0]

where

f [xn, xn−1, ..., x1, x0] =
f [xn, xn−1, ..., x1]− f [xn−1, xn−2, ..., x0]

xn − x0

So b0 = I (pi1)

b1 = I(pi2)−I(pi1)
pi2−pi1

etc.

This polynomial is then solved using a Secant Method loop. From using two set points, x−1, x0

the function determines xi+1 = xi − fn(xi)(xi−1−xi)
fn(xi−1)−fn(xi)

. When xi+1−xi
xi+1

< ε the loop has converged to

the �nal point, and xi+1 is accepted as the estimated contour point.

6.1.4 Grid interpolation

A method to introduce surface curvature involved using a grid interpolation estimation procedure.

The estimator would use a 3x3 grid in low resolution coordinates and �t a third order polynomial

to the data. The algorithm would then interpolate along the same axis as the ∆p axis in the Linear

Interpolation 4.1 in order to locate a crossover point. A Secant Method loop was used to determine

the �nal point. This calculation was only done using all of the data from the high resolution image.

Let I (x, y) ≈ f (x, y)

f (x, y) =
[
1, x, y, x2, y2, xy, x3, x2y, xy2, y3

]
R (19)
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By de�ning p0 = (x0, y0) and p = (xi, yi) = (x, y)− p0, then

I (p) ≈ f (p) : p ∈ [(−1.5, 1.5) , (−1.5, 1.5)] (20)

A matrix can then be constructed from the known values.

A(i,j) =
[
1, xi, yj , x2

i , y
2
j , xiyj , x

3
i , x

2
i yj , xiy

2
j , y

3
j

]
(21)

A(i,j) ∈ <qx10 where q = m∗n∗h2, m and n are the number of rows and columns of the simulated

image and h is the linear resolution di�erence between the high and low resolution images.

The o�set p0 was necessary because the matrix A(i,j) was ill-conditioned with large values of x

and y. Ap was a well-conditioned matrix when x and y were in low resolution coordinates, so the

inversion process used below is possible.

The known values of I (p)and p allow the least squares estimation for R ∈ <10

R =
(
A
′
A
)−1

A
′
I (p) (22)

We then have a fully de�ned function f (p) = A (A′A)−1
A′I (p) that is used as the prediction

model.

A Secant algorithm is used to solve f (p + αi∆p) = Th for the appropriate value of αi. The

value pα = p + α∆p + p0 is de�ned to be the estimated contour point.

It has been seen that sometimes the solution to f (p + ∆p) = Th would not exist or not be

discovered by the Secant Method. These cases were undesirable and were ignored in Standard

Deviation (Equation 11) and Maximum Error (Equation 12) calculations.

An example of a pixel grid shape can be seen in Figure 28. The �gure shows the original and �t

images, as well as a surface plot of the area. The black crosses in the image represent each estimation

iteration through the secant method.

6.1.5 Pixel surface interpolation

Pixel Surface Interpolation is the same as Grid Interpolation except that the domain of A is limited

to the area of a single pixel instead of a 3x3 grid. There were points where a solution couldn't

be found, either because the algorithm would have to extrapolate to �nd a solution or the Secant

Method couldn't converge. In these cases the single points were omitted and the ellipse �tting

method was performed with fewer data points.
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Figure 28: A pixel grid interpolation pro�le using 3x3 pixels and high resolution data.

An example of a pixel surface shape can be seen in Figure 29. The �gure shows the interpolated

surface across the pixel, as well as the black crosses, which represent each iteration through the

secant method.

6.2 Results

All of the interpolation methods listed in this section were performed on a number of images. The

speci�c images used are described in the pseudo code in Section 4.2.2 and the numbers are results

of Equations 11 and 12. The results can be seen in Table 2.

Method STDx STDy x̃max ỹmax

Linear .0067 .0068 .0207 .0207
Quadratic .0050 .0051 .0157 .0157

Pixel Grid ab .0052 .0053 .0161 .0198
Pixel Surface b .0020 .0021 .0067 .0067

Spline b .0020 .0020 .0064 .0064
High Resolution, 11 Multiplier b .0020 .0020 .0064 .0064
High Resolution, 33 Multiplier b .0004 .0004 .0012 .0012

aSome data points did not converge and were omitted from the calculations
bThese Calculations were performed using high resolution data

Table 2: Table of results from various elliptical estimation methods.
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Figure 29: A pixel surface interpolation pro�le using high resolution data across a single low reso-
lution pixel.
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Figure 30: Results from the second order interpolation method.

6.2.1 Quadratic interpolation

To attempt to achieve a more precise estimate of the landmark location the method described in

Section 6.1.1 was used. The reasoning was that the transition from interior to exterior pixels was

not linear and perhaps a quadratic estimation would better approximate this nonlinear transition.

Magnitude of the center o�sets The results of running pseudo code from 4.2.2 is shown in

Figure 30. The deviations from using equation 11 is [Devx, Devy] = [.0051, .0052] mmwith extremum

[.016, .016] mm. It seems that the bene�t of using a quadratic interpolation method instead of a

linear method did not improve the estimation signi�cantly enough to justify using this technique.
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Figure 31: First order estimated contour points vs second order estimated contour points.

Location of the new estimated contour points Figure 31 show the two methods of quadratic

interpolation and linear interpolation (the estimated contour point). There is no de�nite structure

as to whether the estimation is nearer to or further from the nearest pixel. The zoomed in portion

shows a third plot of the ideal contour points from the high resolution image. In many, but not all,

cases the quadratic �t is much closer to the ideal contour points.

6.2.2 Sigmoid method

The results from the sigmoid look-up table were unpromising. Many attempts were made to improve

the estimation by tuning the sigmoidicity. This technique couldn't accurately shift the estimated

contour points toward the ideal contour points with enough consistency to improve center estimation.

As a result, this technique was not considered ideal.

6.2.3 Spline interpolation

The results of the spline interpolation on high resolution image data is shown in Figure 32. These �g-

ures don't show any signi�cant improvement from the linear interpolation method of high resolution

image data and was not considered bene�cial.

6.2.4 Grid interpolation

The grid interpolation method was a technique to attempt to model and understand the curvature

of the landmarks. The though was if we could get a su�cient model from the high resolution data

and it could be well understood, the curvature of the landmark could then be modelled from the

low resolution data. An example of the surface created can be seen in Figure 28. The model did



36

0 2000 4000 6000 8000 10000 12000
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02
X Errors, Spline Interpolation, stdev = 0.001988

Index

Lo
w

 R
es

 P
ix

el
s

0 2000 4000 6000 8000 10000 12000
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02
Y Errors, Spline Interpolation, stdev = 0.002012

Index

Lo
w

 R
es

 P
ix

el
s

Figure 32: Spline interpolation method deviations of the centers.
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Figure 33: Grid interpolation method deviations of the centers.

not su�ciently predict the data and did not o�er any signi�cant estimation bene�ts, as can be seen

in Figure 33. The points that are out of bounds of the plot are where the interpolation failed and

the �t estimation was not possible. As mentioned, those points are omitted from standard deviation

and maximum error calculations.

A comparison of the cross locations form the grid method can be seen in Figure 36. The esti-

mations are often seen closer to the perfect crosses, but by varying degrees. Also, the complexity of

the regressed surface does not guarantee that a crossover point on the interpolation axis exists.

6.2.5 Pixel surface interpolation

After noticing that the curvature of the intensity pro�le across the pixel could a�ect the model, an

attempt was then made to just investigate the pixel pro�le. In two simple cases where the intensity

across a pixel is constant or linear, the intensity at the center is the same as the average intensity.
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Figure 34: First order interpolation vs grid interpolation estimated contour points.
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Figure 35: Surface interpolation method deviations of the centers.

This is not the case when more complex pro�les are considered. An example of a modelled pixel

surface is shown in Figure 29. Modelling the pro�le across a pixel was hypothesized to be able to

give insight as to what exactly could be considered in such cases and possibly assumptions that

could be made given certain low resolution data.

The comparison of the �rst order and the pixel surface estimated contour point locations can

be seen in Figure 36. There seems to be a signi�cant improvement toward the 'perfect' points, but

the estimation does not o�er signi�cant improvement over the linear estimation. The results can be

seen in Figure 35.

No clear patterns were observed regarding the contour across a pixel in the high resolution data.

As a result, it would be very di�cult to accurately model the intensity pro�le across a pixel in all

cases. As a result, this process is not practical for use in actual imaging scenarios.
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Figure 36: First order interpolation vs pixel surface interpolated estimated contour points.

6.3 Conclusion

Curvature in the illuminance function introduces bias in the estimated contour points, which biases

the landmark location. Several techniques were implemented in order to reduce bias in the estimated

contour point locations but were unsuccessful. The e�ect of the bed of nails model is detrimental to

every method that has been tested for contour point interpolation of PLL. Chapter 7 attempts to

utilize all of the data in order to model a landmark to increase PLL accuracy.
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7 Butterworth Tepuy Investigation

Attempts to improve estimation of contour points were shown to be unfruitful. Investigation led to

the possibility of �tting a model to the entire data instead of single pixels. The thought was that

utilizing all of the pixel data would make the model less sensitive to errors in the bed of nails model.

7.1 Techniques

Two techniques are investigated in this chapter, both are variations on the Butterworth Tepuy model.

7.1.1 Butterworth tepuy �t

Gutierrez and Armstrong [20] propose a �t for a circular or ellipsoidal landmark known as the

Butterworth-Tepuy function. The function is supposed to re�ect an image having a �at top, sharp

transition region, and a �at bottom. The Butterworth Tepuy function has ten parameters which we

used as a Û vector.

Û = [x, y; a, b, c, x0, y0, Lmax, Lmin, sb]
T

(23)

The expected illuminousity function is given as

E (x, y) ≈ EBT
(
x, y; Û

)
=

Lmax − Lmin

1 +
(

(x−x0)
2+(y−y0)2

R(x,y)2

)R(x,y)
sb

+ Lmin (24)

The function R (x, y) ∈ <p is de�ned as

R (x, y) = R (x, y; a, b, c, x0, y0) =

√√√√√ (x−x0)
2

(y−y0)2
+ 1

a (x−x0)
2

(y−y0)2
+ 2b (x−x0)

(y−Y0)
+ c

(25)

Let E (x, y) ∈ <p where p = m ∗ n, the size of the low resolution image. As described in [20],

Equation 25 re�ects the distance of a point relative to the ellipse in �gure 37.

Taking EBT

(
Û
)

= E (x, y), then

Φ (x, y) =
δEBT
δU

=
[
∂EBT
∂a

,
∂EBT
∂b

,
∂EBT
∂c

,
∂EBT
∂x0

,
∂EBT
∂y0

,
∂EBT
∂Lmax

,
∂EBT
∂Lmin

,
∂EBT
∂sb

]T
(26)

ε = EBT

(
Û
)
− E (x, y) (27)

where Φ (x, y) ∈ <px8and ε ∈ <p.
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Figure 37: Graphical representation of the R(x,y) function.

By setting

ε = δEBT =
δEBT
δU

δÛ = ΦδÛ (28)

a Newton-Raphson Algorithm can be used to solve for δÛ ∈ <8 that minimizes ε. This uses the

left-pseudo inverse of Φ and solving

δÛ = − (Φ′Φ)−1 Φ′ε (29)

Setting

Ûi+1 = Ûi + δÛi (30)

and iterating until an exit condition is met, namely the relative di�erence

δÛi

Ûi
< α (31)

a �nal model EBT

(
x, y; Û

)
could be reached.

An example of a Butterworth Tepuy landmark can be seen in Figure 39 with the actual landmark

shown in Figure 38.

7.1.2 Butterworth Tepuy �t with 2D Simpsons integration

One last method used proposed by Gutierrez and Armstrong[20] was a 2D-Simpsons Integration

method in conjunction with the Butterworth-Tepuy �t. The 2D Integration was meant to give a
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Figure 38: 3D plot of an original landmark.
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Figure 39: 3D plot of a tepuy �t estimation to a landmark.
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more accurate estimation of pixel values based on a 100% sensitive area pixel model.

A 3x3 grid of points within a pixel were used where if [xc, yc] represents the center of the pixel and

the total pixel area is [xc ± 0.5, yc ± 0, 5] then the grid would include ∆x =
[−1

2 , 0,
1
2

]
, x = xc + ∆x

and, similarly, ∆y =
[−1

2 , 0,
1
2

]
, y = yc + ∆y.

Then, for 2D Simpsons Integration to take place, a weight matrix was created,

W =


1 4 1

4 16 4

1 4 1


This matrix was condensed to a column vector

W = [1, 4, 1, 4, 16, 4, 1, 4, 1]T

and the vector of modeled values

E =
[
EBT

(
x+ ∆x, y + ∆y; Û

)]
(32)

was created.

The Simpsons Integral in a 3x3 grid is then de�ned as

¨
EBT

(
x, y; Û

)
dxdy ≈ 1

9
hxhyW ∗ E (33)

where hx and hy are de�ned to be the magnitude of the steps in ∆x and ∆y, respectively.

These new points were �t using the Newton-Raphson algorithm described in Section 7.1.1.

7.2 Results

7.2.1 Butterworth Tepuy �t

The Butterworth-Tepuy �t was performed on the low resolution data and produced the most accurate

results of any of the low resolution methods. An image of a landmark and the Butterworth Tepuy

�t can be seen in Figures 38 and 39, respectively. The deviations from the center estimates can be

seen in Figure 40. The magnitude of the deviations appears signi�cantly smaller than the deviations

seen in the original linear case in Figure 18.

There are many di�erences between the Butterworth Tepuy method and the contour point esti-
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Method STDx STDy x̃max ỹmax

Linear .0067 .0068 .0207 .0207
Quadratic .0050 .0051 .0157 .0157
Butterworth .0023 .0024 .0085 .0085

Butterworth 2D .0024 .0025 .0087 .0087
Pixel Grid ab .0052 .0053 .0161 .0198
Pixel Surface b .0020 .0021 .0067 .0067

Spline b .0020 .0020 .0064 .0064
High Resolution, 11 Multiplier b .0020 .0020 .0064 .0064
High Resolution, 33 Multiplier b .0004 .0004 .0012 .0012

aSome data points did not converge and were omitted from the calculations
bThese Calculations were performed using high resolution data

Table 3: Table of results from all corrective methods.

mation methods.

� Taking the entire model into account

The Butterworth-Tepuy �tting process takes into account the entire model, not just two or more

pixel values. This has certain advantages and disadvantages, described below.

� Curvature is accounted for in the model

The Butterworth Tepuy model has curvature, whereas Linear Models do not. Therefore, given

accurate �ts, the errors across a pixel could be greatly reduced.

� All of the data is considered

By increasing the number of data points, there is a reduction in the sensitivity to noise. Linear

Interpolation cases simply ignore almost all of the data above and below a speci�c threshold. The

Butterworth-Tepuy algorithm utilizes all of this data to attempt to predict a model. Theoretically

more data yields a better �t.

� There is no dependence on a threshold

A threshold variable is not considered in a Butterworth Tepuy model. This reduces one less user-

created variable that needs to be implemented in the model.

� The model doesn't consider uneven lighting pro�les

Not all side e�ects are good. In this case, if the lighting pro�le were uneven; say, the �at top or

bottoms weren't �at, the model would currently be unable to predict this. In the future this could

probably be implemented into the model if it were seen to be bene�cial.
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Figure 40: Butterworth Tepuy estimated deviations from center.
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Figure 41: 2D Butterworth Tepuy estimated deviations from center.

7.2.2 Butterworth Tepuy �t with 2D Simpsons integration

Despite promising hypotheses, this integration did not greatly improve the estimation. Investigation

could be performed as to whether a larger integration grid (a 3x3 grid was used) could improve

accuracy. This method was not pursued further, as the Butterworth-Tepuy model seemed su�ciently

accurate to draw conclusions. The results from the investigation can be seen in Figure 41 and the

di�erences between the integrated method and the original Butterworth Tepuy method can be seen

in Figure 42.

7.3 Conclusion

The Butterworth Tepuy algorithm o�ered the best corrective method analytically from the low

resolution image data. The technique is robust enough for practical implementation and accurate
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Figure 42: Di�erences between the two Butterworth methods.

enough to justify use. The magnitude of correction from the Butterworth Tepuy algorithm is similar

to having the original high resolution pixel info, or 121 times more image data. The results from the

Butterworth Tepuy method are very promising and could yield much better estimations with little

jump attributed to bias.
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Part III

Results and Conclusion

8 Butterworth Tepuy method in a jump

A method was created to make the Tepuy algorithm robust enough to deal with actual images. This

is necessary because pixels that are outside the tepuy might be a�ected by the nearby white regions

of the target. The algorithm performs as follows.

1. Locate possible pixels near a tepuy

2. Find which of those pixels are outside the tepuy

3. If the pixels are outside the tepuy, ensure that they are dark enough

4. Fit a tepuy, placing weights on the transition regions

5. Search to �nd if any pixels outside the tepuy are unusually higher than the others and omit

them

6. Repeat steps 4 and 5 for a more precise �t

7. Fit a �nal tepuy

The resulting technique was used to analyze images in Section 8.1.

8.1 Observing depth vs roll angles

The images from the jump referenced in Chapter 2 were re-analyzed with the Butterworth Tepuy

algorithm in place of the contour point estimation algorithm.

The results of the initial observation can be seen in Figure 43. This �gure shows angles where

there are patterns of bias. Between 84 and 84.5 degrees of rotation, there seems to be a spike in the

positive Z direction, away form the regression line of the data. There seem to be a number of these

phenomena over the range of the experiment.

Figure 44 shows the result of the data with the tepuy algorithm applied. The variance of the

tepuy corrected data was less than half of the variance of the standard data. Additionally, the

apparent spikes in the data appear to be all but removed completely. It appears that the bias has

been removed and Gaussian noise dominates the errors. The two data sets over a smaller angle
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Figure 43: Linear interpolated contour point technique Z measurements vs calculated roll.
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Figure 44: Butterworth Tepuy estimation technique Z measurements vs calculated roll

can be seen in Figure 45. The histograms of Figure 46 appear to support the idea that the tepuy

corrected method has much more random errors than the ellipse algorithm.

The di�erences in Z (Figure 47) show that the Tepuy estimation measures closer to the camera

than the ellipse algorithm. The magnitude of the di�erences are on the order of 1mm. This distance

appears to be a�ected by the sharpness of the weighting algorithm used, which is described in Section

8.4.

8.2 Observing locations of each ellipse

Observations can be made on the position of each ellipse individually. In the image set, one ellipse

is especially interesting because it consists of two signi�cantly di�erent magnitudes of motion. The

movement of the estimated location of X with respect to roll shows a range of only .25 pixels, whereas
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Figure 45: Linear estimation of contour points and Butterworth Tepuy corrected estimation of a
jump.
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Figure 46: Histograms of the errors with linear contour point estimation (left) and Butterworth
Tepuy estimation (right).
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Figure 47: Di�erences in measured Z between ellipse �tting and Butterworth Tepuy techniques.
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Figure 48: Estimated X movement of the circular landmark using the Butterworth Tepuy method
(left) and the ellipse method (right)

the Y movement shows movement over 12 pixels. This motion can be seen in Figures 48 and 49.

The estimation and deviations from a second order regression can also be seen in the �gures.

In these �gures it is not clear that the Tepuy �t o�ers a better estimation. Errors and trends can

be seen in both estimation procedures, and the magnitude of the errors are very similar. Although

a second-order regression of Position vs Roll was believed to be su�cient, it is possible that higher

order paths might be necessary in order to estimate the path of a landmark. Additionally, roll is

the X-axis of each of the plots, which is also a measured quantity. It is possible that errors observed

could actually be ampli�ed by the miscalculation of roll angle.

8.3 E�ects of the multiple-pass tepuy algorithm

As described at the beginning of this chapter, the tepuy �tting algorithm takes multiple passes in

order to improve estimation. The e�ects of the measurements from each pass can be seen in Figure

50 with the errors shown in Figure 51.
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Figure 49: Estimated Y movement of the circular landmark using the Butterworth Tepuy method
(left) and the ellipse method (right)



51

80 82 84 86 88
2359

2360

2361

2362

2363

2364

Single Pass Tepuy Correction
Measured Z vs Roll, std = .0956, Range = [2359.575, 2362.394]

Measured Degrees

M
ea

su
re

d 
Z

 (
m

m
)

80 82 84 86 88
2359

2360

2361

2362

2363

2364

Double Pass Tepuy Correction
Measured Z vs Roll, std = .0911, Range = [2359.648, 2362.352]

Measured Degrees

M
ea

su
re

d 
Z

 (
m

m
)

80 82 84 86 88
2359

2360

2361

2362

2363

2364

Triple Pass Tepuy Correction
Measured Z vs Roll, std = .1165, Range = [2359.382, 2362.593]

Measured Degrees

M
ea

su
re

d 
Z

 (
m

m
)

Figure 50: E�ects of multiple passes on the tepuy algorithm. Single pass (upper left), double pass
(upper right) and triple pass (lower) Butterworth Tepuy algorithms.

It is noted that the variance of the measurements actually increases with each pass. The errors,

however, appear to be slightly more Gaussian after the third pass than the �rst, so it is possible

that the biases were further reduced after the third pass.

A strategy to combat this phenomena would be to modify the target design to allow for more

guaranteed outside pixels. In this case, more data would be kept for analysis and could allow for a

more accurate �t.

8.4 E�ects of weights applied to the Butterworth Tepuy algorithm

The data was weighted to put an emphasis on the transition data instead of the �at regions. The idea

of weighting the transition regions of contour was shown in Chiorboli and Vecci[32]. The function

used to perform this was

Weight (p) = e
−k∗
(

IBT (p)−I
Imax−Imin

)2
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Figure 51: Histogram of the errors from each pass of the tepuy algorithm. Single pass (upper left),
double pass (upper right) and triple pass (lower) Butterworth Tepuy algorithms
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Figure 52: E�ects of weights on the Tepuy algorithm. Double weights (upper left), half weights
(upper right) and standard (lower) are shown.

where k is a constant, IBT (p) is the estimated intensity at the pixel, I is the average intensity over

the pixels being analyzed, and Imin,max are the minimum and maximum intensities, respectively.

Originally k = 2 was used. The graphs of using di�erent values of k are shown in Figure 52 with

the errors in Figure 53. Biases seem much less of a factor when the original, k = 2 weighting was

used than the other two weighted cases. When weighting is turned o�, the variance increases.

8.5 Introducing a gradient to the Butterworth Tepuy algorithm

The calculation for the Butterworth Tepuy was modi�ed to support a 2D gradient, as such.

E (x, y) ≈ EBT
(
x, y; Û

)
=
Lmax (1 + g0x+ g1y)− Lmin

1 +
(

(x−x0)
2+(y−y0)2

R(x,y)2

)R(x,y)
sb

+ Lmin (34)

This gradient was added to simulate non-uniform lighting over the observed area. An example

of a single �t can be seen in Figure 54 where the circles represent the estimation and the crosses
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Figure 53: Errors from di�erent weights of the Tepuy algorithm. Double weights (upper left), half
weights (upper right) and standard (lower) are shown.
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Figure 54: Estimation of a Tepuy with a gradient added.
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Figure 55: Errors with a gradient introduced in Butterworth Tepuy algorithm.

represent the observed data. The full results of the 840 images are shown in Figure 55. The

variance increased using this process and the bias trends seem to appear in the data. Although

this was considered to be a helpful addition to the Butterworth Tepuy algorithm, it seems that this

technique does not improve accuracy.

The maximum gradients observed were on the order of .035 countspixel with most observations being

an order of magnitude smaller than this.
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9 Conclusions/Recap

9.1 Bias as a source of error

It has been shown in Section 4.2.2 that bias exists in precision landmark location. This bias is much

larger than deviations attributed to noise, as shown in Section 4.2.4. It has also been shown in Section

4.2.3 that this bias could be the main cause of the observed jump phenomena. Butterworth Tepuy

estimation minimizes this bias and theoretically should minimize the jump phenomena. Real-world

experiments show this to be the case, and the e�ects of jumps appear to be reduced signi�cantly.

9.2 Curvature of intensity pro�le causes bed of nails to be inaccurate

Curved intensity pro�les yield cases where the average intensity and intensity at the center are two

di�erent values. These di�erences cause a systematic inaccuracy in precision landmark location.

Proper estimation procedures and estimation models as introduced in Section 7.1.2 should be able

to combat the bed of nails inadequacies and provide a better estimation.

9.3 Curvature causes linear interpolation to be inaccurate

Contour point estimation is not accurate enough to perform precision landmark location. They are

not near enough to the true transition locations. This model must be improved upon or, in the case

of Butterworth Tepuy estimation, abandoned completely. Several methods to improve this technique

were quantitatively investigated in this Thesis.

9.4 Butterworth Tepuy o�ers more accurate landmark estimation than

the ellipse algorithm

Errors attributed to bias were reduced by a factor of 3 by using the Butterworth Tepuy algorithm.

The degree of improvement is similar in magnitude to having 11 times the amount of data during

a linear interpolation. Several correction methods were proposed and tested, and the Butterworth

Tepuy method had the best results.

The deviations from real world data were shown to be signi�cantly reduced. This is a strong

veri�cation of the prediction that the Tepuy algorithm o�ers much more accurate results than the

ellipse algorithm.
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9.5 Impact of this Thesis

This research o�ers insight to what causes the errors in MPT. Before the research was performed,

hypotheses were constructed as to why the jump phenomenon was taking place, many of which

suspected imperfections in the imager. The research has shown that the jump phenomenon would

still happen in an ideal imager. Additionally, the research uncovers two facts regarding contour

estimation: the intensity of a pixel is not equal to the intensity at the center of a pixel, and the

contour between two pixels is non-linear. This is due to curvature in the intensity pro�le across the

imager. In studied cases referenced by Tian and Huhns[23] errors were acceptable on the order of

±1 to 0.1 pixels. The accuracy of MPT is sensitive to errors of ±.002 pixels. The precision of this

research is believed to be unparalleled.

This research continues by implementing a corrective algorithm for this phenomenon. Simulation

showed that improvements should be observed and experimental validation supports this theory.

MPT and any other technology that requires the precise location estimation of circular landmarks

can bene�t from the �ndings of this work.

9.6 Future investigations

There are a few di�erent investigative paths that could be further pursued in order to improve

precision landmark location.

9.6.1 Further investigation into modeling the curvature of landmarks

An improvement could potentially be achieved by investigating landmark structure relative to the

bed of nails model. There could potentially be a contour point estimation procedure that would

improve the accuracy of the contour points. This could improve the ellipse estimation technique.

9.6.2 Gather more contour points before the interpolation process

Potentially utilizing more or di�erent interpolation axes could prove to be bene�cial. Instead of

interpolating along pixel boundaries, one could create contours with several neighboring pixels and

interpolate along one or several axes. There is potential for improvement by investigating speci�c

direction vectors, namely ones tangential to the contour of the ellipse being investigated.
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9.6.3 Using more re�ned 2D Simpsons Integration techniques in order to get a better

Butterworth Tepuy estimation

It is very counter-intuitive that the 2D Simpsons Integration technique did not improve landmark

estimation. Perhaps using more precise integration techniques with more samples could yield promis-

ing results.

9.6.4 Robust statistical methods to improve Butterworth Tepuy estimation

Investigations have been done to attempt to create better Butterworth Tepuy estimations using roust

statistics, but have not yielded promising results. A deeper understanding and further attempts to

re�ne the statistical methods could prove bene�cial and lead to a better center estimation.

9.6.5 Modi�cations to the Butterworth Tepuy model

The Butterworth Tepuy model uses the parameter R (x, y). This parameter represents the distance

from a point to the de�ned ellipse on a line through the ellipse center. A more appropriate model of

R (x, y) would represent the distance to a line normal to the ellipse. During most of the investigation

a circular landmark was used in which case the two lines are the same.

Further studies regarding the introduction of higher-order gradients could be tested in order to

account for non-uniform lighting conditions. It is known that non-uniform lighting is the case in

these images, and perhaps knowing that model more precisely could improve estimation.

9.6.6 Modi�cations to the target

Multiple passes were necessary in order to discover which pixels to use in �tting the Butterworth

Tepuy model. This step might not be necessary at all if the targets were designed to have a

more consistent dark region outside of the landmark. This e�ect was not necessary to take into

consideration in the current model but for future revisions it might be bene�cial.
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