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ABSTRACT  
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Abstract: Multiple sclerosis (MS) is a chronic debilitating disease affecting the central 

nervous system (CNS) in humans. Experimental autoimmune encephalomyelitis (EAE) 

remains the primary animal model of MS. MS/EAE are considered to be autoimmune 

diseases mediated by CD4+ T helper (TH) cells. The role of B cells and antibody is under 

debate. Previous studies established B cell dependent (induced with recombinant myelin 

oligodendrocyte glycoprotein, [rMOG]) and B cell independent (induced with the 

MOG35-55 peptide) animal models of EAE. The identification  of a unique B cell epitope 

(MOG amino acids [aa] 46-85) preceding the identified protective epitope (MOG61-85) led 

to the hypothesis that these antibodies against MOGaa46-85 were important in epitope 

selection in the rMOG model of EAE. Co-immunization of WT and B cell deficient (B 

cell-/-) mice with MOG35-55 and MOG61-85 resulted in abrogation (B cell-/- mice) or 
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amelioration (WT mice) of EAE. Thus, mice were immunized with MOG35-85 peptide and 

observed for EAE induction. Absence of EAE in WT and B cell-/- mice was observed. 

These results confirmed the protective nature of the MOG61-85 peptide but did not support 

a role for antibodies to MOG46-85 in the selection of the protective epitope. Mechanistic 

studies revealed decreased production of the pro-inflammatory cytokines, interferon 

(INF) γ and interleukin (IL) 17, when immune cells were primed to MOG61-85 in vivo. 

Furthermore, using IL10 deficient (IL10-/-) mice, it was demonstrated that IL10 was 

important in EAE incidence, but not in disease severity, in the presence of the MOG61-85 

epitope. Flow cytometric analysis of spleen cells from these mice demonstrated an 

increase in the number of T cells expressing FoxP3 expression and an increase in the 

CD4+ CD25+ T cell population, but a comparable level of CD4+ T regulatory (Treg) cell 

population. In addition no changes could be detected in the CD8+ T cell population. 

These experiments provide a deeper understanding of the B cell-dependent, rMOG model 

of EAE, demonstrating the role of the MOG61-85 epitope in down-regulating the pro-

inflammatory response leading to protection from EAE, perhaps mediated by CD4+ Treg 

cells.   
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CHAPTER I: INTRODUCTION 

Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis Model 

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous 

system (CNS). In the United States alone, an estimated 350,000 individuals are affected 

(Sospedra and Martin, 2005). The etiology of MS is under debate, but it is generally 

accepted that MS develops in genetically susceptible individuals due to environmental 

triggers such as viral or bacterial infections (Sospedra and Martin, 2005).  Traditionally 

MS has been considered to be an autoimmune disease characterized by demyelination of 

the white matter via immune mechanisms. MS is considered to be mediated by CD4+ T 

helper type 1 (TH1) cells, with B cells and macrophages contributing to its pathogenesis 

(Barnett and Sutton, 2006; Raine, 1997).  

Some of the most common MS symptoms include paralysis, fatigue, walking and 

balancing problems, bladder dysfunction, optic neuritis, among others 

(http://www.nationalmssociety.org). Clinically, MS is classified into 3 subtypes including 

relapsing remitting (RRMS-the most common disease manifestation), primary 

progressive (PPMS) and secondary progressive (SPMS) (Sospedra and Martin, 2005). 

Patients demonstrating the RRMS form of the disease experience periodic episodes or 

symptoms of the disease followed by periods of remission. About 50% of patients 

suffering from RRMS often progress to SPMS. If these patients progress to a SPMS 

disease course, the relapses show a gradual worsening until they merge into a general 

progression. In this case complete remission never occurs. The PPMS disease course is 

characterized by a gradual worsening of the symptoms from onset without any remissions 

(Sospedra and Martin, 2005). 
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Immune-mediated destruction of myelinated CNS tissue leads to plaque 

formation, which is s a well-demarcated lesion characterized by inflammation, 

demyelination and gliosis. These plaques are further classified based on the cellular and 

soluble elements present as Type I through IV, indicative of at least four mechanism of 

pathogenesis and are considered to be the hallmark of MS (Lassmann et al., 1994; 

Sospedra and Martin, 2005). Type I and II lesions have pre-dominantly T cells and 

macrophages contributing to inflammation, along with blood-brain barrier damage. Type 

II lesions are distinguished on the basis of dominant immunoglobulins (Igs) and 

complement deposition at the site of active demyelination. Type III lesions are also 

mediated by T cells and macrophages along with microglial cells. This type is 

distinguished from Types I and II on the basis of its diffused inflammation.   Type IV is 

also mediated by T cells and macrophages but has no detectable changes in the myelin 

components (Lucchinetti et al., 2000). 

In humans, myelin basic protein (MBP) and proteolipid protein (PLP) are the 

most abundant proteins in the CNS, and immune responses to both are noted in MS 

patients (Greer et al., 1997; Meinl et al., 1993). Myelin oligodendrocyte glycoprotein 

(MOG) is a minor constituent of myelin. However, it is found on the surface of the 

myelin sheath and is considered to be the most accessible to the immune system. Hence, 

MOG is considered a candidate for the induction of MS. Using MOG to induce 

experimental autoimmune encephalomyelitis (EAE) in the C57BL/6 (B6) mouse, is now 

a well-established model for studying MS (Bernard et al., 1997). MOG has been known 

to induce both an encephalitogenic T-cell response as well as a demyelinating antibody 

response in susceptible mice (Gold et al., 2006; Oliver et al., 2003). 
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EAE is an animal model resembling MS in humans in its course and 

histopathology and serves as a primary animal model for elucidating MS (Devaux et al., 

1997; Hjelmström et al., 1998; Lyons et al., 1999). As with MS, EAE is characterized by 

inflammation, paralysis and destruction of the myelin sheath (Gold et al., 2006). EAE is 

induced by the immunization of susceptible animals (rats, mice, guinea pigs) with any 

one of the CNS proteins (MBP, PLP, MOG) along with an appropriate adjuvant (Bernard 

et al., 1997; Devaux et al., 1997; Fritz et al., 1983; Gold et al., 2006; McRae et al., 1992). 

The particular antigen used for immunization depends on the species and strain of animal 

utilized. It can also be induced with the passive transfer of CD4+ T cells specific for any 

of the above mentioned proteins (Pettinelli and McFarlin, 1981). 

The immune responses and the clinical picture seen with EAE depends on the 

animal used and the EAE inducing agent (Tuohy et al., 1988). Female SJL/J and male 

PL/J mice, when immunized with MBP, developed a relapsing-remitting disease course. 

Lewis rats, when immunized with MBP, first develop an acute phase of EAE, followed 

by recovery and then a milder form of the disease about a week later (Fritz et al., 1983; 

McFarlin et al., 1974). Conversely, MOG immunizations in NOD/Lt mice result in a 

chronic relapsing disease, whereas B6 mice exhibit a chronic non-remitting disease 

(Bernard et al., 1997). In conclusion, different EAE models are used to study different 

disease courses. 
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Immune responses in MS/EAE 

T effector (Teff) cells in MS/EAE 

 CD4
+
 T cells 

The role of T cells in MS/EAE has been under investigation for several years, 

with both diseases primarily considered to be mediated by CD4+ T TH1 cells. (Sospedra 

and Martin, 2005). MBP specific T cell responses have been demonstrated in the 

peripheral blood of MS patients, as noted by Meinl et al. (1993) and Olsson et al. (1992).  

Immune responses were also noted against PLP in MS patients exhibiting a relapsing-

remitting type of MS; however, their pathogenic role remains to be elucidated (Greer et 

al., 1997). 

T and B cells reactive to MOG have been demonstrated in the peripheral blood as 

well as the CNS of MS patients. MOG reactive T cells were present in increased numbers 

in the peripheral blood and the CNS of MS patients as compared to healthy controls. In 

addition, antibodies specific for MOG were also detected in the blood and CNS of MS 

patients. This immune response, when compared to a healthy control, was significantly 

elevated, implying an active antigen driven process (Sun et al., 1991). MOG is a trans-

membrane protein, and it was demonstrated that a T cell response was generated against 

three extracellular regions of the proteins (amino acids[aa] - 1-22, 34-56 and 64-96). 

These responses were major histocompatibility complex (MHC) class II restricted, 

indicating that these responses were mediated by CD4+ T cells (Kerlero de Rosbo et al., 

1997). An additional response against another trans-membrane region of the protein, 

aa146-154, was also noted (Weissert et al., 2002).  
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In general all three antigens (MOG, MBP, PLP) have been used to induce EAE in 

several different animal models. Moreover in EAE, the immune responses towards 

encephalitogenic regions of the antigen are known to play a major role in disease 

pathogenesis. Specifically in the SJL/J model mice were found to be resistant to relapsing 

EAE induction when they were first tolerized to an encephalitogenic peptide of PLP, but 

not when they were tolerized to a non-encephalitogenic peptide of the protein (Kennedy 

et al., 1990). Thus demonstrating the importance of the encephalitogenic regions of the 

antigens.  

A major criticism of classic EAE models is that it is not a spontaneous disease; it 

must be induced by active immunization of animals or passive transfer of antigen-

activated cells. However, spontaneous EAE was noted in transgenic mice expressing a T 

cell receptor (TCR) specific for MBP (Goverman et al., 1993; Lafaille et al., 1994). 

Interestingly Goverman et al. showed that EAE developed only in those mice which were 

housed in a non-sterile facility, supporting the notion of the disease being induced with 

the aid of certain environmental triggers.   Lafaille et al. further demonstrated that there is 

a sudden increase in the number of CD4+ T cells specific for MBP immediately preceding 

EAE induction in these mice. The authors concluded that these cells represent the first 

burst of interferon gamma (INFγ) that is eventually responsible for EAE progression. The 

same group also demonstrated that CD4+ T helper type 2 (TH2) cells failed to protect 

these mice after the adoptive transfer of CD4+ TH1 cells (Lafaille et al., 1997). EAE was 

also noted in mice expressing a TCR specific for PLP (Waldner et al., 2000). 

 However it was demonstrated that, transgenic mice expressing a TCR for MOG, 

do not develop spontaneous EAE but develop optic neuritis (Bettelli et al., 2003).  Optic 
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neuritis is the inflammation of the optic nerve and is considered to be an early symptom 

of MS. Optic neuritis is manifested as an acute blurring or loss of vision in a single eye 

(http://www.nationalmssociety.org). However, the same group demonstrated that mice 

expressing both T and B cells specific for MOG, develop spontaneous EAE. The authors 

demonstrated that the MOG specific B cells effectively presented the antigen to T cells, 

leading to increased T cell proliferation. The increased MOG specific T cell proliferation 

led to increased immunoglobulin G (IgG) antibody production by B cells. These T and B 

cell responses led to EAE in these mice (Bettelli et al., 2006). 

 

CD8
+
 T cells 

CD8+ cells, previously ignored in MS/EAE pathology, have recently been 

considered as a potential effector cell type. Auto-reactive CD8+ T cells have been 

demonstrated in the peripheral blood and CNS of MS patients (Crawford et al., 2004). 

Another group demonstrated that there were equal numbers of myelin specific CD8+ T 

cells in MS patients and healthy controls. However, there was a functional difference in 

the CD8+ T cells between the two groups. Specifically, the CD8+ T cells from MS 

patients were more activated and demonstrated increased expression of CXCR3 (a 

chemokine receptor), INFγ and Interleukin (IL)10 (Babbe et al., 2000).  

It was demonstrated that MBP-specific CD8+ cells, transferred to Wild Type 

(WT) animals, resulted in EAE induction in these mice. Of note, however, is the fact that 

these cells could induce EAE in severe combined immunodeficiency mice, demonstrating 

that they are not dependent on CD4+ T cells for their pathogenesis (Huseby et al., 2001). 

Similarly, EAE was also observed using MOG specific CD8+ T cells adoptively 
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transferred into B6 mice. Both these results effectively demonstrate the pathogenic role 

of CD8+ Teff cells in EAE pathology (Sun et al., 2001). Interestingly, a CD8+ T cell 

epitope(s) had been identified which overlaps with the known CD4+ T cell epitope 

MOG35-55. It is comprised of MOGaa37-46 and MOGaa44-54 (Ford and Evavold, 2005; 

Sun et al., 2003). Using the MOG37-46 epitope, it was demonstrated that mice developed a 

milder form of the disease, with trafficking of the CD8+ Teff cell population to the CNS. 

These authors hypothesized that these CD8+ T cells then lead to the recruitment of CD4+ 

T cells within the CNS, resulting in a chronic form of EAE in the B6 animal model. 

(Bettini et al., 2009). 

 

Role of T Regulatory (Treg) cells  

Tregs in MS 

Evidence now points to a protective role of CD4+ CD25Hi FoxP3+ Treg cells in 

MS. Various studies have demonstrated the presence of these cells within the CNS of MS 

patients. However the abundance of these cells in MS patients as compared to healthy 

controls remains under debate. Some studies have shown a comparable frequency of 

these cells in the periphery and the CNS of MS patients and healthy controls (Haas et al., 

2005), whereas others have shown an increase in their frequencies in MS patients (Feger 

et al., 2007; Kumar et al., 2006). One aspect consistent with all of these findings is that 

the suppressive capacity of these Treg cells is diminished (Viglietta et al., 2004). This 

decrease in the suppressive capacity of these cells is now linked to the development of 

MS. More specifically, these cells have been shown to be down regulated during relapses 

of RRMS, when there is an increase in frequencies of CD4+ TH1 cells (Frisullo et al., 
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2009). The development of MS in these patients has also been linked to the decreased 

expression of Forkhead Box P3 (FoxP3) in these Treg cells (Feger et al., 2007; Venken et 

al., 2008). 

In addition to CD4+ cells, CD8+ Treg cells have also been shown to induce 

tolerance in MS patients (Frisullo et al., 2010). Alterations in the frequencies of 

suppressive CD8+ cells have been demonstrated in the peripheral blood of MS patients 

(Crucian et al., 1995). More specifically, treatment of MS patients with Coapxone has 

been shown to induce a MHC class I restricted CD8+  T cell population. The same group 

later demonstrated that these CD8+ T cells had suppressive functions. These cells were 

found to suppress CD4+ T cell proliferation in a contact-dependent manner. The authors 

also demonstrated that these cells produced increased amounts of INFγ and tumor 

necrosis factor (TNF) α, with no production of IL4 (Karandikar et al., 2002; Tennakoon 

et al., 2006). Therefore Copaxone is thought to prevent relapses of MS, by inducing 

apoptosis in activated cells, through the production of TNF α and not by shifting the 

immune response towards a TH2 cell subset.  

 

Tregs in EAE 

There is now substantial evidence that points towards a protective role of CD4+ 

CD25+ FoxP3+ Treg cells in EAE. Lafaille et.al., demonstrated that the transfer of these 

cells into the previously described mice, expressing a TCR transgenic for MBP, was 

protective against EAE development (Lafaille et al., 1994; Olivares-Villagomez et al., 

1998; Reddy et al., 2004). The presence and action of these Treg cells have also been 

implicated in those animals that are naturally resistant to EAE induction (Reddy et al., 
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2004). Varying results have been obtained for the exact mechanism of Treg cell action. 

Data implicate the amelioration of EAE though the production of anti-inflammatory 

cytokines such as IL10 and/or down-regulation of INFγ, along with expression of 

molecules such as Cytotoxic T-lymphocyte Antigen (CTLA) 4 and Glucocorticoid 

induced Tumor Necrosis Factor Receptor Family related gene (GITR) (Liu et al., 2006; 

McGeachy et al., 2005; O Connor et al., 2007; Zhang et al., 2004). Some research has 

also shown that the presence of CD4+ CD25+ FoxP3+ Treg cells skews the immune 

response towards a TH2 dependent mechanism (Kohm et al., 2002).  Moreover the 

outcome of disease has been shown to be dependent on a critical balance between the 

population of CD4+ Teff cells and CD4+ Treg cells (Stephens et al., 2005). More recently 

another subset of CD4+ T cells expressing latency associated peptide (LAP) has also been 

implicated in possessing suppressive activity (Chen et al., 2008). Antigen-specific 

activation of Treg cell proliferation does not appear to be important, as Treg cells induced 

due to an active vaccination against an irrelevant antigen such as Salmonella vaccine 

expressing colonization factor antigen I can still protect against EAE (Ochoa-Repáraz et 

al., 2007). 

CD8+ Treg cells were also found to be important in EAE suppression. Najafian et 

al. (2003) demonstrated the presence of CD8+ CD28- cells with suppressive function in 

EAE. The authors demonstrated that these cells suppress INFγ production by MOG-

specific CD4+ T cells in a contact-dependent manner. Lee et al. (2008) demonstrated the 

presence of naturally occurring CD8+ CD122+ Treg cells which are important in the 

recovery phase of EAE. Chen at al. who demonstrated the presence of a CD4+ LAP+ 

suppressive T cell population also identified CD8+ LAP+ T cells, with suppressive 
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functions (Chen et al., 2009). Moreover, it was demonstrated that these CD8+ LAP+ T 

cells may or may not possess FoxP3 or CD25 and they were found to suppress EAE in a 

transforming growth factor (TGF) β, INFγ dependent mechanism. 

 

Myeloid derived suppressor cells 

Myeloid derived suppressor cells (MDSCs) are defined as a heterogeneous group 

of immune cells derived from the myeloid lineage and having potent T cell suppressive 

functions. They are primarily derived from myeloid progenitor cells: immature 

macrophages, immature granulocytes and immature dendritic cells (Gabrilovich and 

Nagaraj, 2009). These cells were first described in cancer patients and have recently 

come under investigation as potent effectors of immune responses (Young et al., 1987).  

In mice, these cells are characterized by the presence of the surface makers CD11b and 

GR1 (Kusmartsev et al., 2004) and are further divided based on the expression of the two 

epitopes of GR1, specifically Ly-6G and Ly-6C. Granulocytic MDSCs are CD11b+ Ly-

6G+ Ly-6CLo, whereas monocytic MDSCs are CD11b+ Ly-6G- Ly-6CHi (Youn et al., 

2008).  In humans MDSCs are defined by the presence of CD14–  CD11b+ or CD33+ cells, 

lacking the mature cell markers along with an absence of MHC II molecules (Almand et 

al., 2001; Ochoa et al., 2007). Several different mechanism of suppression by MDSCs 

have been documented as reviewed by Gabrilovich and Nagaraj (2009). 

 An increase in the CD11b+ Ly-6G- Ly-6CHi subset of MDSCs in the spleen, blood 

and CNS of mice with EAE (Zhu et al., 2007). These cells were demonstrated to suppress 

the proliferation of CD4+ and CD8+ T cells. Contradictory to these observations, another 

group demonstrated that these immature cells migrate from the periphery to the CNS 
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where they mature into dendritic cells and macrophages and in turn contribute to the 

pathogenesis of the disease (King et al., 2009; Mildner et al., 2009). Thus a definitive role 

for MDSCs in EAE pathology is unknown. Furthermore, even less is known about the 

role of MDSCs in MS. The role of this novel regulatory population in MS/EAE 

pathogenesis remains under investigation.  

 

B cells in MS/EAE 

The exact role of B cells in the pathogenesis of MS/EAE is still controversial. 

Studies have demonstrated that the CNS of MS patients has a higher percentage of 

memory B cells as compared to the peripheral blood along, with a concomitant reduction 

in the percentage of naïve B cells. The presence of plasma cells within the CNS is still 

under debate (Cepok et al., 2005; Corcione et al., 2004). B cells and antibodies have been 

found in increased concentration, in recently developed plaques as compared to older 

plaques and also as compared to the surrounding unaffected area, but their exact role is 

under investigation (Esiri, 1977; Genain et al., 1999). 

As previously mentioned, 4 distinct types (I-IV) of demyelination have been 

identified in MS patients. In this regard Type II plaques are defined by a significant 

antibody and complement accumulation in active MS lesions, thereby demonstrating at 

least one distinct mechanism of pathogenesis involving B cells (Lucchinetti et al., 2000). 

More recently, it was also demonstrated that that MOG specific antibodies were present 

in active lesions in MS patients (Genain et al., 1999; Lucchinetti et al., 2000) 

One aspect that is generally accepted is that the intrathecal production of 

antibodies in the CNS and the presence of oligoclonal bands (OCBs), particularly of the 
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IgG subtype, in the cerebrospinal fluid (CSF) of MS patients are associated with a worse 

prognosis (Olsson et al., 1976; Villar et al., 2005). The absence of these OCBs is 

associated with a better prognosis (Avasarala et al., 2001; Zeman et al., 1996).  These 

OCBs are composed of antibodies, the specificity of which has been under intense 

debate. Some studies have indicated that these antibodies are produced as a result of an 

antigen driven process and are specific to CNS proteins with specific VDJ regions being 

expressed (Baranzini et al., 1999; Colombo et al., 2000; Genain et al., 1999; Harp et al., 

2007; Qin et al., 1998; Villar et al., 2005), while others have shown that the B cell 

response is not targeted towards any of the CNS proteins (Owens et al., 2009). 

Alternatively, it is hypothesized that the Ig response could also be directed against an 

unknown etiological entity such as a virus (Owens et al., 2006). It has been postulated 

that the identification of the specificities of these antibodies could be used to identify 

potential antigens in MS (Owens et al., 2003). Whether the subtype of Ig is indicative of 

a recent relapse or disease activity or which subtype is a better choice as a diagnostic 

marker is still under debate (Izquierdo et al., 2002; Schneider et al., 2007; Sharief and 

Thompson, 1991).   

Recently, Rituximab, a monoclonal antibody directed against the CD20 antigen 

on B cells has been approved for treatment of MS. In MS patients this drug was found to 

transiently deplete the peripheral B cell population, without many alterations in the Ig 

pool, in terms of the specificity of the Igs produced (Cross et al., 2006). A possible reason 

for this could be that CD20 is not expressed on plasma cells. Because of the short 

duration of this study, no improvement in the clinical score was noted in these patients. In 

another study, Rituximab was found to decrease the number of inflammatory loci in the 
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CNS of MS patients as demonstrated using magnetic resonance imaging (MRI) (Hauser 

et al., 2008). Studies using a transgenic mouse model in which animals express human 

CD20 demonstrated that this drug decreased the B cell population in the periphery, spleen 

and the CNS, along with clinical scores. Significant alterations in the T cell repertoire 

were also noted in these mice (Monson et al., 2011). All of these studies support the 

notion of a pathogenic role of B cells in MS.  

In contrast to the accepted pathogenic role of B cells and antibodies, others have 

demonstrated that some antibodies are effective at promoting remyelination in a model of 

MS. A group of researchers identified two human monoclonal IgM antibodies isolated 

from patients with monoclonal gammopathy, which facilitated remyelination in-vitro 

(Warrington et al., 2000). 

The role of B cells in EAE has been found to be dependent on the animal model 

used and EAE inducing agent used. Early studies demonstrated the importance of B cells 

and/or antibodies in EAE induced by intact proteins (Gausas et al., 1982; Myers et al., 

1992; Willenborg and Prowse, 1983; Willenborg et al., 1986). However further studies 

demonstrated that EAE could be induced in B cell deficient (B cell-/-) animal models with 

the use of shorter antigenic peptides (Dittel et al., 2000; Hjelmström et al., 1998; Lyons et 

al., 1999; Wolf et al., 1996). It was also demonstrated that B cell-/- animals failed to 

recover from EAE indicating that B cells may not be important in disease induction but 

may play a role in recovery (Wolf et al., 1996). The exact mechanism through which B 

cells exert their effects is still under investigation.  

Some studies have suggested that B cells or its products are responsible for the 

pathology, as demonstrated by adoptive transfer experiments in B cell-/- mice (Lyons et 
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al., 2002). Another group (Svensson et al., 2002) has demonstrated that the effects of B 

cells may be through demyelination rather than inflammation in support of the study by 

Lyons et al. (2002).  In addition, anti-MOG antibodies have been detected within the 

CNS of MS patients and also in the CNS of the marmoset EAE model (Genain et al., 

1999). Another group showed that transgenic mice expressing a B cell receptor (BCR) 

specific for MOG resulted in an accelerated and exacerbated disease course (Litzenburger 

et al., 1998). Thus all these experiments support a pathogenic role for B cells in MS. 

The demyelinating potential of anti-MOG antibodies has also been shown in-vitro 

by Kerlero de Rosbo et al. The authors used aggregating fetal rat brain cell cultures which 

develop myelin around themselves to demonstrate this. The authors demonstrated that the 

amount of myelin generated was inversely related to the amount of anti-MOG antibodies 

added to the cultures in presence of complement. However, the addition of anti-MBP 

antibodies did not demonstrate any demyelination (Kerlero de Rosbo et al., 1990). 

Another group showed that T cells specific for MBP induce EAE in Lewis rats without 

demyelination. Over time, these animals develop resistance to EAE induction. However, 

if these mice also receive anti-MOG monoclonal antibodies at the time of T cell transfer, 

they develop severe relapses with a higher degree of demyelination (Linington et al., 

1992). Conversely, other reports suggest that B cells or their products may not play a role 

in EAE pathology since EAE could be induced in B cell-/- animals with shorter peptides  

(Hjelmström et al., 1998; Wolf et al., 1996). In conclusion the role of B cells in EAE 

remains under investigation. 
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Cytokines in MS/EAE 

Most of the disease pathology in EAE has been attributed to the increased 

production of INFγ. However, studies using transgenic INF deficient (INFγ-/-) mice 

demonstrated that the knockout mice developed more severe EAE than WT littermates 

(Ferber et al., 1996; Krakowski and Owens, 1996) indicating that INFγ may not be 

necessary for EAE induction but for its progression. Recently, increased INFγ production 

has been implicated in the up-regulation of Treg cells, which help in disease suppression, 

thus explaining the increased disease severity in INFγ-/- mice (Zhu et al., 2007).  

IL10 has also been implicated in suppressing EAE induction and progression. It 

was demonstrated that the loss of CD1dHi CD5+ regulatory B cells producing IL10, 

during EAE induction led to a more severe course of the disease (Matsushita et al., 2008). 

It has also been demonstrated that IL4 deficient (IL4-/-) mice on B6 and BALB/c 

backgrounds were more susceptible to EAE induction. In both strains of mice, there was 

increased inflammation, increased production of pro-inflammatory cytokines and a higher 

degree of demyelination. These results indicated that IL4 is important in modulating the 

severity of the disease (Falcone et al., 1998). Recently, it has also been demonstrated that 

CD4+ and CD8+ T cells expressing the LAP molecule work in a TFGβ dependent 

mechanism to suppress cell proliferation in-vitro (Chen et al., 2008; Chen et al., 2009).  

Another cytokine implicated in EAE pathogenesis is IL17. EAE severity was 

reduced upon immunization of IL17 deficient (IL17-/-) mice with MOG (Komiyama et 

al., 2006). Furthermore, INFγ-/- mice produced greater levels of IL17 than WT mice when 

immunized with MOG. These data establish that IL17 is another important pro-

inflammatory cytokine important in EAE pathogenesis (Komiyama et al., 2006).  



16 

 

 

The B cell dependent and B cell independent model of EAE 

As previously mentioned EAE could be induced in a B cell-/- mice with shorter 

antigenic peptides. One such example is the immunization of B cell-/- animals on a B6 

background with MOG35-55 peptide emulsified in Freud’s complete adjuvant. Studies 

demonstrated that WT B6 mice were susceptible to EAE when immunized with the 

Human Recombinant MOG (rMOG) or with the encephalitogenic human MOG35-55 

peptide. Conversely the B cell-/- animals were only susceptible to EAE when immunized 

with the MOG35-55 peptide and not the rMOG protein (Lyons et al., 2002; Lyons et al., 

1999). The resistance to EAE in B cell-/- mice was not due to a lack of processing and 

presentation of the encephalitogenic MOG35-55 epitope from the rMOG protein, as 

indicated by a similar antigen-specific proliferation and cytokine secretion profiles 

elicited in in vitro cell cultures (Lyons et al., 1999). Further studies demonstrated that 

MOG specific serum or MOG primed B cells transferred to B cell-/- mice reconstituted 

the susceptibility of the B cell-/- mice to rMOG induced EAE. Non-specific serum or non-

specific priming of the transferred B cells failed to induce EAE in the B cell-/- mice. This 

demonstrated that an antigen–specific factor is involved in the development of EAE in 

the B cell-/- mice (Lyons et al., 2002).  

To determine whether the differences in the role of B cells in rMOG vs. MOG35-55 

induced EAE would be evidenced by differences in the B cell repertoire of immunized 

WT mice, characterization of the heavy chain variable region (Vh) repertoire of the CNS-

infiltrating B cells was performed and it showed a preferential use of certain regions in 

both the animal models. Analysis was carried out for the three dominant genes of mouse 

Vh regions, VhJ558, VhQ52 and Vh7183. PCR analysis revealed a comparable amount 
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of VhJ558/Jh region transcripts and VhQ52/Jh region transcripts in the CNS of both the 

animal models. However, Vh7193/Jh region transcripts were observed in the CNS of 

rMOG-immunized mice, but not MOG35-55 immunized mice. Further analysis showed the 

presence of Vh7193/Jh region transcripts in the draining lymph nodes of both models, 

indicating that the lack of these transcripts in the CNS was not due to a failure to prime 

these cells in the periphery. Quantification showed a comparable expression of 7183/Jh2 

and 7183/Jh4 transcripts in the periphery of both animal models, but a lack of 7183/Jh3 

transcripts in the periphery of MOG35-55 immunized mice (Figure 1) (Liu et al., 2012). 

 

Figure 1. qRTPCR analysis of the 7183/Jh2, 3, 4 transcript levels in the draining 

lymph nodes of rMOG and MOG35-55 immunized mice. RNA was extracted from 

lymph node cells of WT animals immunized with either rMOG or MOG35-55, and was 

subjected to qRTPCR for determining the transcript levels of 7183/Jh2, 7183/Jh3 and 

7183/Jh4 gene segments. Results demonstrated a comparable level of the 7183/Jh2 

and 7183/Jh4 transcripts, but a lack of the 7183/Jh3 transcripts in the periphery.  

As B cells and antibody can direct antigen processing and epitope selection, 

peptide mapping of the antibody response to linear epitopes of rMOG was carried out. 

Antibodies were found against the region encompassing the amino acids 21-40 in both 

animal models (rMOG and MOG35-55 peptide immunized mice). In addition, antibodies 

were also found in the rMOG immunized mice against a group of epitopes comprising the 
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amino acids 46-85 which were absent in the MOG peptide induced model (Figure 2). 

Given the location between the two T cell epitopes (aa35-55 and aa61-85 [Discussed 

below]), it is possible that this antibody epitope could be important in epitope selection in 

rMOG-immunized WT mice (Liu et al., 2012). 

 

 

Figure 2. Serum antibody responses to rMOG or MOG35-55 peptide immunizations. 

WT animals were immunized with rMOG or MOG35-55 peptide and serum was collected 

from these animals. The serum was then subjected to antibody peptide mapping analysis, 

using ELISA, to determine the specific antibody responses, seen with each antigen. The 

animals immunized with rMOG or MOG35-55 demonstrated a response against 

MOGaa21-40; however, antibodies were also found in the rMOG immunized mice 

against a group of epitopes comprising the amino acids 46-85. 
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The particular set of T cell epitopes generated is dependent on the phenotype of 

the antigen presenting cell. Furthermore, the unique antibody response detected could 

play a role in epitope selection in the rMOG model. Thus, peptide mapping analysis of 

the T cell epitopes generated in rMOG-immunized WT and B cell-/- mice was performed. 

These studies demonstrated an immune response towards the encephalitogenic epitope, 

amino acids 31-55, in both strains. In addition, the B cell-/- animals also responded to 

another region encompassing the amino acids 61-85, which was absent in the rMOG 

immunized WT mice (Figure 3, Lyons et al. unpublished data). 
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Figure 3. Peptide Mapping for T cell epitopes. Mice (WT and B cell-/-) were 

immunized with rMOG and the lymph nodes extracted 10-14days post immunization 

(dpi). T cells were extracted from the lymph nodes and subjected to proliferation assays 

in response to shorter peptides of the rMOG protein. T cell proliferation was observed 

in response to rMOG as well as MOGaa31-55. In addition, B cell
-/-

 mice also 

responded to MOGaa61-85, which was absent in the WT animals, suggesting that 

aa61-85 might be a cryptic epitope in WT animals. 
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Thus B cell-/- mice, which are resistant to rMOG-induced EAE, reacted to an 

additional epitope (MOG61-85) not noted in rMOG-immunzied WT mice. To determine if 

this epitope could play an active role in disease protection in B cell-/- mice, co-

immunizations of the MOG35-55 and MOG61-85 peptides were performed. Co-

immunization with these 2 peptides prevented EAE in B cell-/- animals. A similar effect 

was also seen in WT animals, although it was less pronounced (Figure 4). This indicated 

that the MOG61-85 was a cryptic epitope in the WT animals and could possibly play a role 

in the resistance of B cell-/- animals towards rMOG induced EAE (Lyons et al. 

unpublished data).  

                WT mice                                                          B cell-/- mice 

 

 

Figure 4. Co-immunization studies with MOG35-55 and MOG61-85 peptides. WT and B 

cell-/- animals were co-immunized with the encephalitogenic MOG35-55 and MOG61-85 

peptide and observed for EAE induction and progression. WT animals co-immunized 

with both the peptides showed a decrease in EAE severity when compared to the animals 

immunized with MOG35-55. Conversely B cell-/- animals co-immunized with both peptides 

showed no EAE induction. These results effectively demonstrated the protective 

nature of the MOG61-85 peptide.  

●  MOG35-55 alone 
○  MOG35-55 + MOG61-85 
■ MOG61-85 alone 
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To investigate whether the observed serum response was involved in the 

generation of the protective immune response, lymph node cells were isolated from B 

cell-/- mice that received rMOG primed serum at the time of rMOG immunization. 

Characterization of the cytokine response in these animals demonstrated that the immune 

response towards the MOG61-85 region was abrogated in these animals (Figure 5). These 

experiments demonstrated that the serum derived factor from the WT animals was 

involved in the antigen processing and presentation in the B cell-/- animals and was thus 

involved in the resistance of the B cell-/- animals towards rMOG induced EAE (Lyons et 

al. unpublished data), leading to the central hypothesis addressed in this thesis below. 

 

Figure 5. Transfer of rMOG primed serum abrogates the immune response towards 

the 61-85 peptide. WT and B cell-/- animals were immunized with rMOG. At the time of 

immunizations, half of the B cell-/- animals also received rMOG primed serum from WT 

animals. 10-14 dpi, lymph node cells were harvested from all three groups of animals and 

cultured in-vitro with rMOG, MOG35-55 and MOG61-85. At 72 hrs, the immune response 

towards MOG61-85 in B cell
-/-

 animals which received serum was completely 

rMOG         MOG
35-55

    MOG
61-85            

rMOG        MOG
35-55

    MOG
61-85

 

72 Hours 96 Hours 
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 abrogated, thus indicating that a serum derived factor prevented the immune 

response towards MOG61-85. 

uMT: B cell-/- mice 

 

Hypothesis 

Previous studies identified B cell dependent (B6 mice immunized with the rMOG 

protein) and B cell independent (B6 mice immunized with MOG35-55) mouse models of 

EAE. Subsequent studies showed distinct T cell and B cell responses in WT and B cell-/- 

mice immunized with these antigens, and identified a protective cryptic T cell epitope 

(MOG61-85) in WT mice immunized with rMOG. Furthermore, peptide mapping analysis 

identified an adjacent B cell epitope within amino acids MOG46-85 implicated in 

processing and presentation of the MOG61-85 epitope.  

This work further investigated the mechanism of protection by the cryptic 

MOG61-85 epitope in rMOG induced EAE and the B cell response in regulating the 

processing and presentation of this epitope. Thus I hypothesized that immunization with 

the longer MOG35-85 peptide will prevent EAE induction in these mice. It was further 

hypothesized that a regulatory T cell population to the MOG61-85 epitope is responsible 

for the lack of EAE in rMOG-immunized B cell-/- B6 mice. This hypothesis was 

addressed by the following Specific Aims. 

  

 

 

 



23 

 

 

Specific Aims 

1) Identify the role of B cells in the generation of the protective immune response 

against MOG61-85 epitope. Our working hypothesis was that a B cell response to 

MOG, amino acids 46-85, regulates the processing and presentation of the 

MOG61-85 epitope. This was investigated by immunizing B cell-/- B6 and WT B6 

mice with a longer peptide encompassing the encephalitogenic MOG35-55 epitope, 

the protective MOG61-85 epitope, and the intervening amino acids. Mice were 

followed for disease induction and progression.   

2) Investigate the immune mediators responsible for the protection observed with the 

MOG61-85 peptide. WT and IL10-/- mice were immunized with MOG35-85 to 

determine the role of IL10 in disease induction and progression. B cell-/- B6 and 

WT B6 mice were immunized with MOG35-55 and the MOG35-85 peptide and 

subjected to cytokine analysis by ELISA and gene expression analysis by qPCR 

utilizing the spleen cells isolated from immunized mice.  

3) Identify the immune cell population responding to the protective MOG61-85 

peptide. The working hypothesis was that the regulatory cell population 

responding should be T cells, since B cell-/- animals lack a functional B cell 

compartment in their immune system. This was demonstrated by flow cytometry 

of spleen cells isolated from either B cell-/- B6, WT B6 or IL10-/- B6 mice 

immunized with the protective MOG35-85. 

 

 

 



24 

 

 

CHAPTER II: MATERIALS AND METHODS 

Mice 

Specific pathogen free female WT B6, B cell-/- and mice genetically deficient in 

Interleukin-10 (IL10-/-) on a B6 background at 6-8 weeks of age were used for the 

experiments. All the mice required for the experiments were bred in-house, from 

breeding pairs purchased from Jackson Laboratories (Bar Harbor, ME). All animals were 

housed in an Association for Assessment and Accreditation of Laboratory Animal Care 

(AAALAC) accredited facility on the University of Wisconsin Milwaukee (UWM) 

campus according to university and National Institutes of Health (NIH) guidelines. All 

the protocols were certified by the Institutional Animal Care and Use Committee. 

 

Antigens 

The MOG35-55 (MEVGWYRSPFSRVVHLYRNGK), MOG61-85 

(QAPEYRGRTELLKDAIGEGKVTLRI) and MOG35-85 

(MEVGWYRSPFSRVVHLYRNGKDQDAEQAPEYRGRTELLKDAIGEGKVTLRI) 

peptides were obtained from GenScript, Piscataway, NJ. These peptides were 

commercially synthesized and then purified by High Performance Liquid 

Chromatography (HPLC). 

 

Immunizations 

Mice were anesthetized using a ketamine (100 mg/ml), xylazine (300 mg/ml) mixture 

(1 ml ketamine + 0.15 ml xylazine + 4.6 ml water) injected intramuscularly and 

immunized with 50 µg or 100 µg MOG35-55 or 100 µg, 125 µg or 250 µg of MOG35-85, 
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emulsified in incomplete freund’s adjuvant (IFA, MP Biochemicals, Solon, OH) 

containing 300 µg Mycobacterium tuberculosis strain H37RA (TB, Difco Laboratories, 

Detroit, MI). Emulsions were prepared using an Omni Mixer Homogenizer mechanical 

mixer and injected subcutaneously, at 2 sites (base of the tail and between the front 

forelimbs).    

300 ng of pertussis toxin (PT) (List Biological labs, Inc., Campbel, CA) in Phosphate 

Buffered saline (PBS-200mg/L, potassium phosphate monobasic-0.2g/lit, potassium 

chloride-0.2g/lit, sodium chloride-8g/lit, sodium phosphate dibasic-1.15g/lit) was also 

injected intraperitoneally at the time of immunization and 72 hours post immunization. 

PT injections are necessary for keeping the day of disease onset consistent in this animal 

model.  

 

Experimental Autoimmune Encepahlomyelitis (EAE) grading and Disease stages 

Immunized animals were assessed daily beginning 7 dpi for clinical signs of EAE. 

Disease severity was scored using a scale from 0 to 5 as follows, 0: no disease; 1: loss of 

tail tone (failure of the tail to helicopter); 2: hind limb weakness (failure to right itself 

when placed on its back), wobbly gate; 3: single hind limb paralysis; 4: both hind limbs 

paralysis; 5: dead or moribund. Mice with a score of >4.0 were euthanized as per protocol 

requirement.  

EAE disease stages were defined as follows: Preclinical: no clinical signs; Onset: 

the first day of clinical score; Peak: grade 4 or the maximal score reached and stable for 3 

days; Recovery: a decrease ≥ 1 grade from the peak score lasting for 3 days; Chronic: 

recovery from the peak score ≥1 grade with a stable score lasting longer than 3 days. 
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Cell Culture 

The immunized mice were sacrificed 29 dpi by anesthetizing them with the ketamine-

xylazine mixture and euthanizing them by cervical dislocation. The mice were pinned 

down on a tray and a small incision made between the back legs gently separating the 

fur/skin from the peritoneal cavity and extended along the length of the abdomen and up 

each leg. The animals were doused with reagent grade ethanol and using sterile forceps 

and scissors the spleens were extracted. The extracted spleens were suspended in Hanks 

Balanced Salt Solution (HBSS) until use. The tissue was then homogenized in sterile 

glass homogenizers and centrifuged to separate the cells from the debris and fat and 

counted with the help of trypan blue staining (90 µl of 0.4% tyrpan blue solution + 10 µl 

of the cells) on a haemocytometer. Cell concentration was determined using the 

following formula: 

(No. of cells counted) (Dilution factor) (104)/ No. of squares counted = cells/ml 

Cells were cultured in complete RPMI 1640 [penicillin (100 U/mL)/streptomycin 

(100 µg/mL), L-glutamate (2 mM), sodium pyruvate (0.1 mM), 2-mecarptoethanol (50 

mM)] supplemented with 10% Fetal bovine serum (FBS) and the appropriate antigen 

(MOG35-55 or MOG61-85) at a concentration of 10 µg/ml at a cell density of 2 X 106  cells 

per ml. A third control group was also set up with no antigen, with the volume being 

made up using RPMI. The cells were cultured for up to 4 days at 37 °C, at 10% CO2.  

 

RNA Extraction 

The cells harvested from the spleens were cultured as described above. Cells were 

recovered by centrifugation at respective time intervals (12 hrs, 24 hrs, 48 hrs) and total 
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mRNA extracted using TRIZOL® reagent (Invitrogen, Carlsbad, CA) according to 

manufacturer’s instructions. The cells were homogenized in 1 ml of TRIZOL reagent per 

5 x 106 – 1 x 107 cells and incubated at room temperature for 5 minutes to allow 

dissolution of nucleoprotein complexes. The cells were then frozen at -80 °C until use. 

After centrifuging the homogenized tissue samples, 200 µl of chloroform per 1 ml of 

TRIZOL reagent was added to the supernatant. The tubes were then shaken vigorously 

for 15 seconds, incubated at room temperature for 2-3 minutes then centrifuged at 

12,000g at 4 °C for 15 minutes. RNA from the upper aqueous layer was precipitated 

using 0.5 ml of isopropanol per 1 ml of TRIZOL.  The precipitated RNA was recovered 

by centrifugation at 12,000 g at 4 °C for 10 minutes and then washed once with 1 ml of 

70% ethanol per 1 ml of TRIZOL. The RNA pellet was air-dried and dissolved in 

molecular grade/RNase free water and stored at -80 °C until use. The RNA yield, 

concentration, and purity were determined by measuring the absorbance’s, at 260 nm and 

280 nm. For determining the absorbance the samples were diluted (1:50 or 1:25) in 1x TE 

buffer (10 mM Tris-HCl, 1 mM EDTA, pH 7.5). A 260/280 ratio of 1.8-2.1 was 

considered acceptable for subsequent experiments. 

 

Reverse Transcription (RT) 

The RT reactions were carried out using the Mastercycler® Gradient PCR machine 

(Eppendorf Scientific, Hauppauge, NY). RNA samples were reverse transcribed to cDNA 

using the RT2 HT First Strand Kit (SA Biosciences, Valencia, CA) according to the 

manufacture’s instructions. This kit was specifically used because of its compatibility 

with the RT2 SYBR Green qPCR master mixes, which were utilized thereafter.  
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In the first step, 8 µl of RNA was added to 6 µl of genomic DNA (gDNA) elimination 

buffer and incubated at room temperature for 10 minutes. 6 µl of the RT master mix was 

added to the above reaction mixture and reverse transcription was carried out at 42 °C for 

15 minutes. The reaction was stopped by heating to 95 °C for 5 minutes. Finally, 91 µl of 

RNase-free or molecular grade water was added to the mixture, which was then stored at 

-20 °C until use.  

 

Quantitative Real Time PCR (qRTPCR) 

qPCR quantifies the initial amount of template DNA present in the sample during the 

amplification reaction whereas Real Time PCR measures the amount of DNA present 

after each amplification cycle. This measurement is based on the increase in fluorescence 

output as the PCR product increases. The point at which the fluorescence crosses a pre-

determined threshold, which is based on the background fluorescence, is called the 

Threshold cycle (Ct). The Ct is further used to determine the amount of the initial 

template cDNA present in the sample.  

The cDNA obtained from the previous step was subjected to qRTPCR analysis to 

determine gene expression. PCR was run using the RT2 SYBR Green qPCR master mix 

from SA Biosciences according to the manufacture’s instructions. The primers required 

for the reaction were also from SA Biosciences and the sequences from the company are 

propriety and hence cannot be disclosed. The reaction mixture for a single reaction had 

the following components: 
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 Table 1. PCR components. 

Component Volume in µl 

RT2 SYB® Green qPCR master mix 12.5 

Primer set 1 

Molecular grade water 10.5 

 

For the reaction, 24 µl of the above soup was added along with 1 µl of the sample. 

The reaction mixture was then held at 95 °C for 10 minutes and amplified at 95 °C for 15 

seconds followed by 60 °C for 1 minute, for a total of 40 cycles. This was followed by a 

melt curve analysis (95 °C for 15 seconds, 60 °C for one minute and 95 °C for 15 

seconds). The melt curve analysis helps determine the specificity of the amplified gene of 

interest. All the reactions were run in triplicate for statistical analysis with β-Actin as the 

house-keeping gene. All PCR analysis was carried out using the StepOnePlus™ Real-

Time PCR System from AB Biosystems, Carlsbad, CA. Analysis was carried out for the 

expression of IL17 and INFγ genes AT 12, 24 and 47hrs, using the Pfaffl method (Pfaffl, 

2001). 

The Pfaffl method utilizes the primer efficiencies for mRNA quantification. For 

determining the primer efficiency, a standard curve for each primer set was run with the 

samples. The Ct values obtained were plotted against the concentration for each dilution. 

The slopes for these standard curves were determined using the equation E = 10[-1/slope]. 

The primer efficiencies were found to be 1.990, 1.936 and 1.988 for INFγ, IL17 and  

β-actin respectively.  
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Figure 6. PCR standard curves obtained for each of the primer sets utilized. A serial 

dilution was carried out using the cDNA samples for the amplification. The slope of each 

line was used to determine primer efficiency. Each standard curve reaction was run in 

duplicate. Ct: Threshold cycle.  

Based on the above primer efficiencies the amount of mRNA was calculated using 

the following formula.  

                              Ratio = (Etarget) 
∆Ct

target
 (control-sample)  

                                           ---------------------------------               
                                                             (Eref) 

∆Ct
ref

 (control-sample)                                     

 
Where, Etarget: PCR efficiency of target gene (IL17 or INFγ) 

Eref: PCR efficiency of reference gene (β-actin) 

∆Cttarget: Difference in the Ct of the control and the sample of the target gene transcript 

level 
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∆Ctref: Difference in the Ct of the control and the sample of the reference gene transcript 

level (Pfaffl, 2001). 

Statistical analysis for the amount of mRNA was carried out using a  

2-way ANOVA in GraphPad Prism software.  

 

Enzyme Linked Imunosorbent Assay (ELISA) 

The animals were immunized, the spleen cells extracted and cultured as described 

above. Cell culture supernatants were taken at regular intervals, (48 hr, 72 hr and 96 hr) 

and subjected to cytokine analysis by ELISA. The cytokines determined included IL10, 

and INFγ. ELISA’s were run using the Ready-Set-Go Kits from eBiosciences (San 

Diego, CA) according to the manufacture’s instructions. The cytokines are detected using 

a colorimetric reaction based on activity of avidin-horseradish peroxidase (HRP) bound 

to the biotinylated detection antibody, on a specific substrate.  

Briefly, 96 well plates (Corning Costar 9018) were coated over-night at 4 °C with 1x 

dilution of the capture antibody in 1x concentration of the coating buffer (PBS Coating 

Buffer). Plates were then washed 5 times with 300 µl of the wash buffer (PBS with 

0.05% Tween 20). The plates were blocked at room temperature for 1 hr using 200 µl of 

the assay diluent. After washing the plates, 100 µl of each sample or the standard was 

added in duplicate to the wells and the plate incubated at room temperature for 2 hrs. 

Following another wash, 100 µl of detection antibody diluted in 1x assay diluent was 

added and the plate incubated at room temperature for 1 hr. After another wash, 100 µl of 

avidin-HRP diluted in 1x Assay diluent was added and the plate incubated at room 

temperature for 30 minutes. Following another wash, 100 µl of the tetramethylbenzidine 
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(TMB) substrate solution was added to the wells and the plate incubated at room 

temperature for 30 minutes, following which 50 µl of the stop solution (2.5N H2SO4) was 

added and the optical density measured at 450 nm. 

For the standards recombinant cytokines at the following concentrations were used. 

For INFγ, Standard Range 2000-15.625 pg/ml in a serial two-fold dilution.  

For IL10, Standard Range 4000-31.25 pg/ml in a serial two-fold dilution.  

The final optical density was measured using a Synergy™ HT Multi-Mode 

Microplate Reader from Biotek, Winooski, VT. An absorbance of >0.1 was considered 

positive. Data was analyzed using a 2-way ANOVA in the GraphPad Prism 5.0 software. 

 

Flow Cytometry 

Cells were isolated from the spleen and cultured in-vitro as previously mentioned. 

The cells were harvested at 96 hrs and counted using trypan blue as previously described 

to determine cell count and observe cell viability. These cells were then either subjected 

to centrifugation using the LSM® Lymphocyte Separation Medium (9.4 g sodium 

diatrizoate, 6.2 g ficoll per 100 ml of the LSM) to separate living mononuclear cells or 

directly used for flow cytometry, depending on cell viability. When cells were subjected 

to density gradient centrifugation, cell suspensions were overlaid on 5 ml of LSM and 

centrifuged at 500xg for 30 minutes at 4 °C. Viable cells were then collected from the 

interface and diluted at least 1:2 with HBSS. Cells were then washed twice with HBSS 

and subjected to staining as follows. When density gradient centrifugation was not 

employed, cells were recovered from culture using a 5 ml serological pipet, centrifuged at 

500xg for 10 minutes to pellet cells, and then washed 2x with 10 ml HBSS. Cells were 
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resuspended in (1-2 ml) for counting and were aliquotted at 1-2x106/tube into 1.7 ml 

microcentrifuge tubes for antibody labeling. 

Cells were first incubated over ice for 30 minutes with FC block (eBioscience, San 

Diego, CA) or normal mouse serum (Jackson ImmunoResearch Labs., West Grove, PA), 

so as to reduce non-specific binding through FC receptors. The cells were washed and 

then resuspended in 50 µl FACS wash buffer (PBS - 0.5%, FBS - 0.1%, sodium azide), 

and incubated with 1 µl of the respective antibodies, for cell surface markers, on ice for 

30 minutes. The cells were then washed thrice with the FACS wash buffer and finally 

suspended in 500 µl of the FACS wash buffer for analysis on the flow cytometer.  

Cells were stained with four of the following cell markers conjugated with 

appropriate fluorescent molecule.  

1) FITC conjugated CD4 or CD8 or CD11b (FL1 channel in case of WT or B cell-/- 

mice), if the IL10-GFP mice were used, the production of IL10 was analyzed through 

FL1. 

2) PE conjugated CD4 or CD8 or CD25 or CD28 (FL2 channel) 

3) PerCP-Cy5.5 conjugated FoxP3 (FL3 channel) (Intracellular stain) 

4) APC conjugated CD25 or CD3 or Ly6G (FL4 channel) 

These antibodies were purchased from either Biolegend (San Diego, CA) or 

eBioscience (San Diego, CA). In the case of staining cells for the intracellular molecule, 

FoxP3, the cells were first stained for the surface molecules and then subjected to 

intracellular staining as follows. After the last wash cycle the supernatant was discarded 

and the tube was pulse vortexed to dislodge the pellet. 1 ml of 1x 

fixation/permeabilization solution (eBioscience, San Diego, CA; 1 part 
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fixation/permeabilization concentrate and 3 parts fixation/permeabilization diluent) was 

added to each sample and pulse vortexed. The samples were incubated at 4 °C for 30 

minutes in the dark. Following the incubation, 1x permeabilization buffer (1 ml of the 

permeabilization buffer and 9 ml of distilled water was added to the each sample and then 

centrifuged at 400xg at room temperature for 5 minutes. The pellet was resuspended in 

100 µl of 1x permeabilization buffer and 1 µl of the PerCP-Cy5.5 conjugated FoxP3 

antibody was added and the samples incubated in the dark for 30 minutes on ice. 

Following the incubation the samples were washed thrice with 1 ml of 1x 

permeabilization buffer and the resuspended in 500 µl of the FACS wash buffer for 

further analysis. Controls were run using species, isotype and fluorochrome matched 

antibodies along with single labeled controls. Single-labeled controls were included to 

ensure proper compensation of the flow cytometer. The analysis was performed on a dual 

laser BD FACS Caliubur (BD Biosciences, San Jose, CA) using Cell Quest Pro (BD 

Biosciences, San Jose, CA) and the data analyzed using the FlowJo software (Tree Star, 

Ashland, OR). 

 

Statistical Analysis 

All statistical analysis was carried out using the GraphPad Prism 5.0 (La Jolla, CA) or 

the FlowJo software (Tree Star, Ashland, OR) using the tests indicated.  
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CHAPTER III: SPECIFIC AIM I 
 

Identify the role of B cells in the generation of the protective immune response 

against the MOG61-85 epitope.  

 

Background  

Previous experiments have identified antibody responses in WT animals 

immunized with rMOG against MOGaa21-40 and to an island of epitopes spanning 

MOGaa46-85. In addition, a T cell epitope was identified in B cell-/- mice, comprised of 

MOGaa61-85. Immunizations of WT mice with this MOG61-85 identified it as cryptic 

epitope in WT animals.   

Co-immunizations of WT B6 and B cell-/- mice with the encephalitogenic MOG35-

55 and cryptic MOG61-85 peptides demonstrated an amelioration of clinical EAE severity 

in both strains (Lyons et al. unpublished data). Based on these results I hypothesized that 

antibodies against MOG46-86 were involved in the selection of epitopes in WT mice 

through the regulation of antigen processing and presentation when immunized with 

rMOG. These antibodies facilitated the processing of the encephalitogenic MOG35-55 and 

prevented the processing of the protective MOG61-85 epitope in the WT animals, leading 

to clinical presentation of EAE induction when immunized with rMOG. Conversely, the 

absence of these antibodies in B cell-/- animals led to the processing and presentation of 

the both the encephalitogenic MOG35-55 epitope and the protective MOG61-85 epitope, 

thereby rendering these mice resistant to EAE induction when immunized with rMOG. 

Thus the working hypothesis is that the WT animals immunized with the longer 

MOG35-85 peptide, which encompasses the encephalitogenic MOG35-55 epitope, the 
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  Table 2. Groups of mice immunized with either MOG35-55 or MOG35-85. 

 

 

protective MOG61-85, and the identified B cell epitope, should show EAE induction. 

Conversely the B cell-/- animals immunized with MOG35-85 peptide, should not present 

with EAE induction.  

 

Results  

WT and B cell
-/- 

mice are equally susceptible to EAE induced by MOG35-85. 

WT and B cell-/- animals were immunized with either MOG35-55 or MOG35-85 and 

observed for EAE induction and progression for a period of 29 days. The Aim was 

conducted in three different experiments and the total number of mice in each group was 

as follows (Table 2).  

 

  

 

 

In the first experiment, mice received 100 µg of either peptide emulsified in Freud’s 

incomplete adjuvant containing M. tuberculosis H37RA. In the second experiment, in 

order to keep the molar concentration of the antigenic peptide constant, animals received 

either 125 µg or 250 µg of MOG35-85 and 50 µg or 100 µg of MOG35-55 respectively.  In 

the third set of experiments, animals received 125 µg of MOG35-85 and 50 µg of MOG35-

55. The complied results of all three experiments are as follows. 

Group Mice Antigen used Number of animals in 

group 

1 WT MOG35-55 14 

2 WT MOG35-85 13 

    

3 B cell-/- MOG35-55 13 

4 B cell-/- MOG35-85 16 
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WT and B cell-/- animals immunized with MOG35-55 developed EAE which is 

consistent with previous findings (Lyons et al., 1999). Conversely WT and B cell-/- 

animals immunized with MOG35-85 showed a less severe EAE when compared to the 

animals immunized with MOG35-55. Analysis using a 2-way ANOVA resulted in a p 

value of <0.0001 (Figure 7).  

Figure 7. Immunizations with MOG35-85 peptide results in a decreased disease 

severity in WT and B cell
-/-

 animals as compared to the animals immunized with 

MOG35-55. Animals were immunized with the appropriate peptide and observed for a 

period of 29 days post immunization for EAE induction and progression. These graph 

indicated the complied results of all three experiments. Reduced disease severity in WT 

and B cell
-/-

 animals demonstrated the protective nature of the longer peptide. Error 

bars represent the standard range of EAE scores in that group. Statistical analysis, using a 

2-way ANOVA in the GraphPad Prism software resulted in a p value of <0.0001. 

Among WT animals, significant differences were seen in animals immunized with 

MOG35-55 and MOG35-85. The animals immunized with MOG35-85 demonstrated lower 
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EAE scores and a low incidence when compared to the animals immunized with MOG35-

55. A p value of <0.0001 was achieved for both the parameters (Figure 8, Table 3). 

Statistical analysis on the day of EAE onset and the median maximum score was 

calculated for only those mice that developed EAE (Table 3 & 4). For this reason 

statistically significant results could not be achieved, for both parameters, due to a single 

mouse that developed EAE in the WT group immunized with MOG35-85. However, 

differences between the WT animals immunized with either peptide were evident as all 

the mice in the group immunized with MOG35-55 developed EAE, whereas only one 

mouse in the group immunized with MOG35-85 developed EAE (Table 3 & 4).  
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Figure 8. Analysis of EAE score demonstrated significant differences between 

animals immunized with MOG35-55 or MOG35-85. Above figure demonstrates the Area 

under the curve (AUC) analysis for each of the groups. This analysis takes into 

consideration the area present under each line, which are shown in Figure 7. This analysis 

was used to determine individual differences in EAE score for each mouse in each group. 

WT or B cell-/- animals receiving MOG35-55 had higher scores when compared to the 

animals receiving MOG35-85 supporting the clinical EAE data. Statistically significant 

differences were found between animals that received MOG35-55 or MOG35-85 in both the 

WT and B cell-/- animals. Error bars indicate the average and the standard deviation in the 

AUC score in each group. Statistical analysis was carried out using an Unpaired T test 

(Mann Whitney Test) in the GraphPad Prism software.  
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 Table 3. Incidence rates of EAE induction and the median maximum score. Animals 

were considered positive for EAE induction only if they demonstrated a score of at least 

1 for three consecutive days. Median maximum score takes into consideration only those 

mice which got sick and represents the highest EAE score for each group in terms of its 

frequency. Significant differences were found in WT and B cell
-/-

 animals immunized 

with either MOG35-55 or MOG35-85. A 100% incidence was noted in the group of 

animals immunized with MOG35-55, however a low incidence was seen in the group 

of animals immunized with MOG35-85. In addition the group of animals immunized 

with MOG35-55 had higher median maximum scores as compared to the group 

immunized with MOG35-85. These results were consistent in, both WT and B cell-/- mice. 

A: Data analyzed by Chi-Square analysis 

B: Data analyzed by Mann Whitney T Test 

* Only one mouse developed EAE hence the median maximum score and its p value 

could not be calculated. 

 

 

 

Group Antigen  Incidence      p valuesA  Median Max. Score       p valuesB 

WT MOG35-55 14/14 <0.0001 

 

4±0.4 * 

WT MOG35-85 1/13 2±0* 

B cell-/- MOG35-55 13/13 0.0050  4±0.2 0.0003 

B cell-/- MOG35-85 7/16 1.7±1.1 
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 Table 4. Analysis for the day of EAE onset in only those mice that developed clinical 

EAE. Values represent the average and the standard deviation for the day of onset. 

Differences were seen in WT animals immunized with either MOG35-55 or MOG35-85. 

A significant delay in EAE onset was seen in the group of animals immunized with 

MOG35-85. However, because of the presence of a single mouse that developed EAE in 

the WT mice immunized with MOG35-85, the average day of onset and the p value could 

not be calculated. Similarly, in the B cell
-/-

 animals, a statistically significant delay 

was seen in the day of EAE onset in the group of animals immunized with MOG35-85 

as compared to the group immunized with MOG35-55. Statistical analysis was 

conducted using the Unpaired T test (Mann Whitney Test).   

 

 

 

 

 

 

* Only one mouse developed EAE hence average day of EAE onset and its p value could 

not be calculated. 

Similarly for the B cell-/- animals, immunized with either peptide, significant 

differences were observed. The group immunized with MOG35-85 demonstrated lower 

EAE score, lower incidence and a low median maximum score, with p values of <0.0001, 

0.0050 and 0.0003 respectively (Figure 8, Table 3). In addition, a significant delay in 

EAE onset was seen resulting in a p value of 0.0007 (Table 4).  

Group Antigen  Average day of EAE onset p values  

WT MOG35-55 11.3±3.1 * 

WT MOG35-85 15* 

B cell-/- MOG35-55 9.6±1.5 0.0007 

B cell-/- MOG35-85 15.1±4.2 
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Discussion 

 Previous experiments established two distinct models of EAE. Immunizations 

with rMOG which required B cells/Ab for disease expression and immunizations with the 

encephalitogenic MOG35-55 peptide which did not (Lyons et al., 1999). Further 

experiments identified a second cryptic epitope in the WT animals comprised of 

MOGaa61-85. Co-immunizations with both the MOG35-55 and MOG61-85 led to an 

amelioration of EAE in WT and B cell-/- animals (Lyons et al. unpublished data). This 

effect was more pronounced in the B cell-/- animals when both the peptides were 

emulsified together as compared to those mice which received two separate emulsions. It 

was also shown that antibodies were produced against MOGaa46-85 in the WT animals. 

It was further demonstrated that the immune response towards the MOG61-85 region was 

abrogated by the passive transfer of rMOG primed serum from WT animals into B cell-/- 

animals (Lyons et al. unpublished data). This led to the hypothesis, addressed in this 

thesis, that the immunizations with the longer MOG35-85 peptide will prevent EAE 

induction in B cell-/- animals. Aim 1 investigated this hypothesis. 

Immunizations with the longer MOG35-85 peptide, led to a decrease in EAE 

severity in WT and B cell-/- mice compared to the mice immunized with MOG35-55 (Figure 

7 & 8). The disease severity was found to be similar in WT and B cell-/- mice immunized 

with MOG35-85 indicating that the B cell epitope present between MOG35-55 and MOG35-85 

was not involved in the selection of the protective MOG61-85 epitope. Had this been the 

case, WT animals should not have processed the protective MOG61-85 peptide and should 

have developed EAE with MOG35-85 immunizations with a severity similar to that noted 

with the shorter MOG35-55 peptide. In agreement with previous data (Lyons et al. 
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unpublished data), B cells did not seem to play any role in protection from EAE induction 

since B cell-/- animals were protected. As a result it is highly unlikely that antibodies will 

have a role to play in this protection observed with MOG35-85 immunizations. This needs 

further investigation. 

These results lead to several new questions. Antibody responses were also seen 

against amino acids immediately preceding the encephalitogenic MOG35-55 epitope (Liu 

et al., 2012). It is possible that these antibodies are the ones which are involved in 

processing and presentation of the encephalitogenic epitope and thus warrant further 

investigation. Another possibility involves the 3-dimensional conformation of the 

MOG35-85 peptide. There is a possibility that the chemically synthesized MOG35-85 

peptide, could not achieve the conformation present in naturally occurring which could 

have confounded these results. 

Another possible explanation for the less severe EAE observed in these 

experiments, could have been due to the lack of processing the antigen. In order to 

address these questions, cells from animals immunized with MOG35-85 were cultured in-

vitro with either MOG35-55 or MOG61-85 and analyzed for cytokine mRNA expression and 

cytokine levels in cell culture supernatants. These data will be discussed in Chapter 4. 
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CHAPTER IV: SPECIFIC AIM 2 

Investigate the immune mediators responsible for the protection observed with the 

MOG61-85 peptide, with the use of MOG35-85. 

 
Background  

The current understanding of MS/EAE is as a CD4+ Th1/Th17 mediated disease: 

the production of pro-inflammatory cytokines such as IFNγ, TNFα, and IL17 within the 

CNS leads to the onset of clinical signs and the progression of disease. Conversely, 

production of anti-inflammatory cytokines such as IL4 and IL10 are protective against 

disease and lead to recovery from active disease. Preliminary data suggested that antigen-

specific production of IL10 in response to MOG61-85 immunizations may play a role in 

the protection of B cell-/- mice to rMOG induced EAE. Thus, these experiments further 

sought to characterize the cytokine response to the MOG61-85 peptide to gain an 

understanding of the mechanism of protection by this cryptic epitope.   

 

Results 

IL10 may play a role in EAE onset 

Preliminary data indicated that IL10 may play a role in the resistance to EAE 

induction using the MOG35-85 peptide (Lyons et al. unpublished data). To investigate this 

possibility IL10-/- and WT animals were immunized with MOG35-55 or MOG35-85 and 

observed for EAE induction and progression for a period of 29 days. The total number of 

animals immunized in each group is as follows (Table 5).  
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       Table 5. Groups of mice immunized with either MOG35-55 or MOG35-85. 

 

 

 

This Aim was conducted as previously described in Aim1 and the complied 

results of all three experiments are as follows. WT and IL10-/- animals immunized with 

MOG35-55 showed EAE induction as is consistent with previous findings (Lyons et al., 

1999). Conversely the WT and IL10-/- animals immunized with MOG35-85 showed a less 

severe EAE induction indicating that IL10 may not play a role in protection with the 

MOG61-85 peptide. Analysis using a 2-way ANOVA resulted in a p value of <0.0001 

(Figures 9). The AUC analysis supported these results, wherein the group of animals 

immunized with MOG35-85 had decreased EAE severity as compared to the group 

immunized with MOG35-55 in, WT as well as IL10-/- mice (Figure 10). Statistically 

significant differences were found between WT and IL10-/- animals immunized with 

MOG35-85, indicating that IL10 may have a role in EAE severity. In order to confirm this 

ELISA was used to determine IL10 protein expression as described below (Figure 10). 

Similar to previous experiments significant differences were found within the WT 

animals immunized with either peptide for EAE severity and incidence with a p value of 

<0.0001 for each parameter analyzed. Statistical analysis could not be conducted for 

Group Mice Antigen used Number of animals in 

group 

1 WT MOG35-55 14 

2 WT MOG35-85 13 

    

3 IL10-/- MOG35-55 11 

4 IL10-/- MOG35-85 10 
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median maximum score and the day of EAE onset as previously explained (Tables 3, 4, 6 

& 7).  

In continuation, in the IL10-/- animals immunized with the longer MOG35-85 

peptide differences were also evident in the analysis of the median maximum score 

(Table 6). Conversely no significant differences were noted between the IL10-/- mice, 

immunized with either peptide for incidence and the day of EAE onset indicating that 

IL10 may be important in incidence, but not in disease severity (Table 6 & 7).  

Figure 9.  EAE severity in WT and IL10
-/-

 mice immunized with MOG35-55 and 

MOG35-85. WT and IL10-/- mice were immunized with the appropriate peptide and 

observed for a period of 29 days for EAE induction and progression. The mice, WT and 

IL10-/-, immunized with MOG35-55 exhibited EAE induction and progression. Moreover 

WT and IL10-/- mice immunized with MOG35-85 exhibited low EAE severity as compared 

to the group of animals immunized with MOG35-55. However this degree of severity was 

found to be similar in WT and IL10-/- mice, indicating that IL10 may not play a role in 

protection from observed with MOG61-85. Error bars indicate the average and the 
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 standard deviation in EAE score for all mice in that particular group. Statistical analysis, 

using a 2-way ANOVA in the GraphPad Prism software resulted in a p value of <0.0001. 

 

 

Figure 10. AUC analysis in WT and IL10
-/-

 mice. In both groups of animals (WT and B 

cell-/-), mice immunized with MOG35-55 had higher EAE scores as compared to the group 

immunized with MOG35-85. However EAE score analysis of IL10-/- mice, immunized with 

MOG35-85, showed that these mice had higher EAE scores when compared with WT 

animals immunized with the same peptide. This resulted in a p value of 0.004 between 

WT and IL10
-/-

 mice immunized with MOG35-85. Error bars indicate the average and 

standard deviation in the AUC in each group. Statistical analysis was carried out using 

the Mann Whitney T test to determine individual group differences, with p values as 

indicated.  
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 Table 6. Incidence of EAE induction and the media maximum score. In WT animals 

immunized with either peptide, statistically significant differences were noted for 

incidence. The p value for the median maximum score could not be calculated as 

previously explained. However for the IL10-/- mice, differences were only noted between 

the groups immunized with MOG35-55 and the group immunized with MOG35-85 for the 

median maximum score, not for the incidence. This indicated that IL10 may have a 

role in EAE incidence, but not severity.  

Group Antigen  Incidence      p valuesA  Median Max. Score       p valuesB 

WT MOG35-55 14/14 <0.0001 

 

4±0.4 * 

WT MOG35-85 1/13 2±0* 

IL10-/- MOG35-55 11/11 0.1459 4±0.3 0.0007 

IL10-/- MOG35-85 7/10 2±1.0 

A: Data analyzed by Chi-Square analysis 

B: Data analyzed by Mann Whitney T Test 

* Only one mouse developed EAE hence the median maximum score and its p value 

could not be calculated. 
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 Table 7. Analysis for the day of EAE onset in only those mice that developed EAE. 

As previously explained statistical analysis could not be conducted in WT animals 

immunized with either MOG35-55 or MOG35-85. In the IL10
-/-

 mice statistical differences 

were not noted in the day of EAE onset between the group of mice immunized with 

MOG35-55 as compared to the group immunized with MOG35-85. This is consistent 

with the previous observation that differences in incidence were also not significant. Data 

analyzed using the Mann Whitney T test. 

Group Antigen  Day of Onset p Values  

WT MOG35-55 11.3±3.1 * 

 WT MOG35-85 15* 

IL10-/- MOG35-55 9.3±2.0 0.14440 

IL10-/- MOG35-85 10.8±0.8 

* Only one mouse developed EAE hence average day of EAE onset and its p value could 

not be calculated. 

In Figure 10, significant differences in EAE score were noted between WT and 

IL10-/- mice immunized with MOG35-85. This indicated that IL10 may a partial role in the 

protection seen with MOG61-85. To further investigate this possibility spleens were 

harvested from WT mice 29 days post immunization with either MOG35-55 or MOG35-85 

and cultured in-vitro, in three separate culture conditions: MOG35-55, MOG61-85 and 

without antigen. The cells were cultured in complete RPMI supplemented with FBS and 

the respective antigen. Cell culture supernatants were taken for cytokine detection using 

ELISA at 48, 72 and 96 hrs. The IL10 levels were found to be below the level of 

detection, i.e. 31.25 pg/ml in all samples. These results further support the clinical 
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observations of EAE in IL10-/- mice and demonstrate that IL10 does not play a role in the 

protection observed with MOG61-85. 

 

Cells primed to MOG35-85 produce decreased amounts of pro-inflammatory cytokines.  

To further investigate a potential mechanism of protection by the MOG61-85 

peptide, spleens were harvested from WT mice 29 days post immunizations with MOG35-

55 and MOG35-85 and cultured in-vitro under three separate conditions. The cells were 

cultured in RPMI containing either MOG35-55, MOG61-85 or no antigen. Aliquots were 

then taken at appropriate time intervals for qPCR analysis and ELISA.   

qPCR analysis demonstrated that the cells primed to MOG35-55 in-vivo and then 

cultured with MOG35-55 in-vitro had the highest level of INFγ mRNA expression as is 

consistent with previous findings (Lyons et al., 1999). Conversely, there was a decrease 

in MOG35-55-specific INFγ  mRNA expression when the cells were primed to MOG35-85 

in-vivo. There was also a delay in the kinetics of INFγ mRNA expression when the 

cultures were primed to MOG35-85 in-vivo and then cultured with MOG35-55 in-vitro. 

Statistically significant results were seen at all three time points (Figure 11).  

Similarly the highest IL17 mRNA expression was seen in the cultures primed in-

vivo with MOG35-55 and then cultured in-vitro with MOG35-55. Conversely a decrease in 

the IL17 mRNA expression was observed when the cells were primed to MOG35-85 in-

vivo and then cultured with MOG35-55 in-vitro. Significant differences were observed at 

24 and 48 hrs, with p values of <0.01 and <0.001 respectively (Figure 12).  

Very little INFγ and IL17 mRNA was observed when the cells were cultured in-

vitro with MOG61-85 irrespective of the in-vivo priming agent (Figure 11 & 12). 
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 qPCR Analysis

 

Figure 11. The graph represents INFγ mRNA levels. Results were obtained after 

normalizing it to the culture without antigen with β-actin run as a house-keeping gene 

using the ∆∆Ct method. In general, cells exposed to MOG35-55 in-vivo and in-vitro had 

increased INFγ mRNA levels. Conversely cells primed to MOG35-85 in-vivo and then 

cultured with MOG35-55  in-vitro showed delayed production of INFγ mRNA. Also cells 

cultured with MOG61-85 in-vitro demonstrated low INFγ mRNA levels. Statistical analysis 

was carried out using a 2-way ANOVA followed by Bonferroni posthoc analysis. The 

error bars indicate the deviations between the replicates. These resulted indicated that 

the MOG35-85 had anti-inflammatory potential.  
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 qPCR Analysis

 

Figure 12. Analysis for IL17 mRNA expression. Highest mRNA expression was seen 

when the cells were primed to MOG35-55 in-vivo and then cultured in-vitro with MOG35-55.  

A delay in IL17 mRNA expression along with low level of expression was observed 

when the cells were primed with MOG35-85 in-vivo and then cultured with MOG35-55 in-

vitro. Very low levels of IL17 mRNA was noted when the cells were cultured with 

MOG61-85 in-vitro, irrespective of the in-vivo priming agent. Statistical analysis was 

carried out using a 2-way ANOVA followed by Bonferroni posthoc analysis. Error bars 

indicate the deviations between the replicates. These results also support an anti-

inflammatory role for the longer peptide.  

The level of protein expression for INFγ was analyzed using ELISA. These 

results were consistent with the gene expression data obtained from qPCR. The cell 

primed with MOG35-55 in-vivo and the cultured in-vitro with MOG35-55 demonstrated the 

highest levels of INFγ. There was a decrease in the INFγ levels when the cells were 

primed in-vivo with MOG35-85 and then cultured with MOG35-55 in-vitro. Conversely the 
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cells cultured with MOG61-85 in-vitro showed no INFγ production (Figure 13). However 

further experiments are required to achieve statistical significance. 

 

ELISA - INFγ 

 

Figure 13. Cell culture supernatants collected at 48, 72 and 96 hrs, were subjected to 

INFγ analysis. Cells exposed to MOG35-55 in-vivo as well as in-vitro demonstrated the 

highest levels of INFγ.  A delay as well as a decrease in INFγ expression was noted when 

the cells were primed with MOG35-85 in-vivo and then cultured in-vitro with MOG35-55. 

Conversely cells exposed to MOG61-85 in-vitro irrespective of the in-vivo priming agent 

produced less INFγ.  Statistical analysis was carried out using a 2-way ANOVA followed 

by Bonferroni posthoc analysis. These results are from a single experiment and thus no 

error bars could be generated. Thus these results demonstrated the anti-inflammatory 

role of MOG61-85. 

INFg: Interferon gamma 
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Discussion  

This Aim was designed to look at some of the potential effector molecules by which 

mice were protected against EAE induction when immunized with MOG35-85. Preliminary 

data (Lyons et al. unpublished data) indicated that IL10 may play a role in the protection 

observed with MOG61-85. Thus, the role of IL10 in EAE amelioration by MOG61-85 was 

investigated further.  

IL10-/- mice were immunized with either MOG35-55 or MOG35-85 and observed for 

EAE induction and progression. Contrary to our hypothesis, IL10-/- mice presented with 

less severe EAE when immunized with MOG35-85 compared to animals immunized with 

MOG35-55. A lack of a role for IL10 in disease amelioration was further supported by 

ELISA for IL10 in cell culture supernatants, as no protein was detected in any of the 

samples. Thus, these results indicated that there were some other mechanisms involved.  

The role of pro-inflammatory molecules in mediating MS/EAE is well-established 

(Sospedra and Martin, 2005). Given the lack of a role for IL10 in the observed 

amelioration by MOG61-85, we investigated whether the low level of EAE severity could 

be due to a down-regulation in pro-inflammatory cytokines. In the experiments, the cells 

from WT mice, were first primed in-vivo by immunization of mice with either MOG35-55 

or MOG35-85 and then cultured with either MOG35-55 or MOG61-85 or no antigen in-vitro. 

In general, cells primed to MOG35-55 in-vivo and cultured with MOG35-55 in-vitro 

demonstrated greater INFγ and IL17 mRNA levels. This correlated with the clinical data 

which showed that the mice immunized with MOG35-55 had a worse disease course as 

compared to the ones immunized with MOG35-85. These results support previous results 
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establishing that the disease is mediated in large part by pro-inflammatory cytokines 

(Sospedra and Martin, 2005).  

A delay in the increase in levels of these pro-inflammatory cytokines was observed 

when the cells were primed with MOG35-85 in-vivo and then cultured with MOG35-55 in-

vitro. This demonstrated that the cells were being primed to the MOG35-55 peptide in-vivo 

but the presence of the protected MOG61-85 epitope inhibited the production of these pro-

inflammatory cytokines and possibly suppressed EAE. A similar trend was seen in INFγ 

levels in the cell culture supernatants using ELISA, supporting the results of the qPCR 

analysis. ELISA data also indicated that the INFγ mRNA observed with qPCR was being 

translated into proteins. Very little IFNγ or IL17 mRNA expression was observed when 

the cells were cultured in-vitro with MOG61-85. This is not surprising, given that this 

epitope is protective against EAE (Lyons et al. unpublished data).  

These results demonstrated two different aspects related to the hypothesis. First, a 

decrease in amounts of pro-inflammatory cytokines was observed in the presence of the 

protective MOG61-85 epitope. However, the mechanism leading to this observation is not 

clear and necessitates the analysis of other anti-inflammatory cytokines such as IL4 or 

TGFβ. Analysis of IL4 may provide useful information to the mechanism of protection. 

Secondly, it was effectively demonstrated that the animals immunized with MOG35-85 

could process and present the antigen, specifically the encephalitogenic MOG35-55 

epitope, since these cells responded to this epitope in-vitro. Thus, the lack of EAE in 

these animals was not due to a failure to process and present the antigen. Along with the 

effector molecules another possible mechanism of protection is directly through cell-to-

cell contact. Trans-well assays with similar settings will help answer this question.  



56 

 

 

CHAPTER V: SPECIFIC AIM 3 

Identify the immune cell population responding to the protective MOG61-85 

peptide. 

 

Background 

Previous data demonstrated that B cell-/- mice are resistant to the induction of 

EAE when immunized with rMOG. Preliminary data suggested that this is because a 

protective immune response is generated to the MOG61-85 region in the absence of B cells. 

Experiments in Aim 1 demonstrated that both WT and B cell-/- B6 mice were resistant to 

EAE induced by MOG35-85, encompassing the encephalitogenic MOG35-55 epitope, the 

protective MOG61-85 epitope, and a putative B cell epitope, MOG41-85. The protective 

response was generated in the absence of B cells, and preliminary data suggested that 

IL10 had no role to play in EAE severity, indicating that there were some other 

mechanisms involved. Thus Aim 3 tried to identify the cells responsible for EAE 

resistance seen in these animals. We hypothesized that a MOG61-85-specific regulatory T 

cell population is the responsible population in protection of B cell-/- mice to rMOG-

induced EAE.  

 

Results  

An increase in the number of cells expressing FoxP3 is observed when mice are primed 

with MOG35-85 in vivo.  

Preliminary data indicated that an antigen-specific immune response to MOG61-85 

actively suppressed EAE induced by the encephalitogenic MOG35-55 peptide (Lyons et al. 
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unpublished data). Recent data identified a role for Treg cells in controlling autoimmune 

responses, such as those seen in in MS/EAE (Sospedra and Martin, 2005). To further 

characterize the MOG61-85 response, spleens were harvested 29 dpi from mice which were 

immunized with either MOG35-55 or MOG35-85. Single cell suspensions were prepared and 

cultured in-vitro with either MOG35-55 or MOG61-85 to increase antigen specific cell 

proliferation. The cells were harvested at 96 hrs and analyzed by flow cytometry.  

Early experiments attempted to remove dead cells via density gradient 

centrifugation. However, this led to substantial cell loss, with insufficient cells for 

analysis. Thus, data presented are from cells recovered from culture by centrifugation and 

washed 2x in media. Cell debris was removed by increasing the threshold of the forward 

scatter for sample collection and further gating on fluorescence staining during analysis. 

Using FlowJo analysis software, the cells were first gated on the presence of CD3/side 

scatter data to isolate T cells and were then analyzed for the expression of the FoxP3 

transcription factor, which is expressed by Treg cells.  

Similar number of cells expressing FoxP3 was noted when they were cultured 

with MOG35-55 in-vitro (2.85% and 2.88%). Conversely, increased percentage of cells 

expressing FoxP3 was noted when the they were cultured with MOG61-85 in-vitro (3.32% 

and 5.89%). This increase was much more evident when the cells were first primed with 

MOG35-85 in-vivo and the cultured with MOG61-85 in-vitro. This was an 80% increase in 

the number of cells expressing FoxP3 when the cells were primed to MOG35-85 in-vivo 

(Figure 14).  It was also interesting to note that there was an increase in the number of 

cells expressing FoxP3 when the cells primed with MOG35-55 in-vivo and the cultured 
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with MOG61-85 in-vitro. These results are based on a background correction of 0.233% in 

the isotype-matched controls (Figure 15). 

Figure 14. FoxP3 expression in T cells. Spleens were harvested from WT mice 

immunized with MOG35-55 or MOG35-85 and cultured in-vitro with MOG35-55 or MOG61-85. 

Decreased FoxP3 expression was noted when the cells were cultured with MOG35-55 

as compared to the cells cultured in presence of MOG61-85. This increase was much 
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 more evident when the cells were first primed with MOG35-85 in-vivo and the 

cultured with MOG61-85 in-vitro.  

Figure 15. Control for the analysis of FoxP3 expression in T cells. The cells were 

stained with species, isotype and fluorochrome matched antibodies. The control 

exhibited a background of 0.233% FoxP3
+
 cells. 

 

An increase is also seen in the percentage of CD3
+
 CD4

+
 CD25

+ 
T cells, but a 

comparable level of CD4
+
Treg cells. 

In addition to FoxP3, Treg cells also express CD4 and CD25. To further 

characterize the responding populations, expression of CD4 and CD25 on the CD3+ T 

cells was characterized. Analysis for CD4 and CD25 gated on CD3 & side scatter 

demonstrated comparable frequencies of CD3+ CD4+ CD25+ T cells in all cultures 

(2.76%, 2.2.5% and 2.19%) except when the cells were primed with MOG35-85 in-vivo 

and then cultured with MOG61-85 in-vitro (4.00%) (Figure 16). Analysis was also carried 
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out on the corresponding control so that it could be established that the double positive 

population was real (Figure 17). 

 

Figure 16. CD3
+
 CD4

+ 
CD25

+
 T cells within the CD3/side scatter gate. The cells gated 

on CD3/side scatter were further gated on the presence of CD4 and CD25 on their cell 

surface. An increase was seen in those cells which were primed in-vivo with MOG35-85 

and cultured in-vitro with MOG61-85. 
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Figure 17. Control for the analysis of CD3
+
 CD4

+
 CD25

+
 T cells. The cells were 

stained with species, isotype and fluorochrome matched antibodies. The control 

demonstrated that there was no non-specific staining in the samples. 

 

Lastly, the expression of FoxP3 by CD3+ CD4+ CD25+ T cells was analyzed. 

Generally, a lower expression level was seen on cells cultured in-vitro with MOG35-55 

(67.7% and 64.0% of cells expressing FoxP3) as compared with the cells cultured with 

MOG61-85 (76.5% and 76.5% of cells expressing FoxP3) irrespective of the in-vivo 

priming agent.  However taking into consideration the low numbers of cells initially 

present in the CD3+ CD4+ CD25+ T cell gate, further experiments are necessary to 

confirm observations for these CD4+ Treg cells (Figure 18). 
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Figure 18. Percentage of CD3
+
 CD4

+
 CD25

+
 FoxP3

+
 Treg cells. The cells within the 

CD3+ CD4+ CD25+ gate were analyzed for the expression of FoxP3. A comparable level 

of CD4
+
 Treg cells were seen in all the samples. 
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The CD8
+ 

T cell numbers varied between the cell cultures. 

The cells within the CD3/side scatter gate were also analyzed for the expression 

of CD8. Levels of CD8+ T cells varied between all the cultures. Moreover very few cells 

were found which were CD3+ CD8+ CD25+, in all the cell cultures. The low percentage of 

CD8+ T cells, along with few total events which occurred, make analyzing the CD8 data 

difficult (Figure 19).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



64 

 

 

 

 

Figure 19. Percentage of CD3
+
 CD8

+
 CD25

+
 T cells within the CD3/side scatter gate. 

The cells within the CD3/side scatter gate were analyzed for the expression of CD8 and 

CD25. Very few CD8
+
 CD25

+
 T cells were noted in all cultures. This indicated that it 

maybe the CD4
+
 Treg cells which are responding to the MOG61-85 epitope.  
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Discussion  

This specific aim investigated the specific cell population that was responding to the 

protective MOG61-85 epitope. Since B cell-/- animals did not present with EAE after 

immunizing with rMOG, it was hypothesized that the cells responding to the MOG61-85 

epitope, important to amelioration of MOG-induced EAE, should be other than B cells. 

Thus, our analysis focused on Treg cells.  

For analysis of the Treg cell population, the cells were first gated by virtue of the 

expression of the pan-T cell marker, CD3, and side scatter characteristics (Figure 20). 

The traditional lymphocyte gate could not be used because of the high amounts of dead 

cells and debris that interfered with analysis.  

Figure 20. The CD3/side scatter gate set in FlowJo for data analysis. The traditional 

lymphocyte gate could not be set up because of the high amount of dead cells and debris 

in the samples. The CD3
+
 gated cells were further used for analysis. 
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Next, FoxP3 expression was analyzed in the above gated population. As shown in 

Figure 14, there was an increase in the FoxP3 expressing cell population when the cells 

were cultured with MOG61-85, lending support to the hypothesis that it is a Treg cell 

population that is responding to the MOG61-85 region.  

In order to determine which of the Treg cells (CD4 or CD8) were responding, the T 

cells were further analyzed for the expression of these markers and CD25. As 

demonstrated in Figure 16, there was an increase in the CD4+CD25+ double positive cell 

population when the cells were primed in-vivo with MOG35-85 and cultured in-vitro with 

MOG61-85. This indicated that it is a CD4+ T cell population that is responding to the 

MOG61-85 epitope. In order to determine if this CD4+ T cells were in fact CD4+ Treg cells, 

the expression of FoxP3 in these cells was analyzed. Gating on CD4+CD25+ T cells 

revealed comparable populations of FoxP3+ cells in all cultures (Figure 18). This, along 

with the fact that the CD3+ CD4+ CD25+ T cell gate had very few events, makes it 

difficult to draw conclusions about the role of these CD4+ Treg cells. Another possibility 

is the fact that the entire CD4+ T cell population (Teff cells as well as Treg cells) were 

expanded in response to the MOG61-85 region. Another point to note is the fact that cells 

primed to MOG35-55 in-vivo also seem to respond to MOG61-85 in-vitro, which was not 

expected. A possible explanation for this could be the fact the since these animals 

exhibited EAE, their cells were primed to the endogenous MOG61-85.  

Lastly, to determine if it were the CD8+ T cells responding to the MOG61-85 epitope, 

the CD3 gated T cells were gated on the presence of CD8 and CD25 (Figure 19). 

Surprisingly very few cells expressing both CD8+ CD25+ were noted in all cultures, with 

most of the cells being CD8- CD25+, indicating that these could be the CD4+ T cells. The 
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FoxP3 expression in these CD8+ T cells was also found to be comparable in all cultures 

(Data not shown). Recent literature has described a unique population of CD8+ LAP+ T 

cells with suppressive functions in EAE (Chen et al., 2009). These cells may or may not 

express CD25 and/or FoxP3. Thus, it would be interesting to see if the small percentage 

of the CD8+ T cells seen, did express LAP. However, the above data indicated that CD8+ 

T were not responding to the MOG61-85 region.  

Another potential population to be looked into is the MDSCs. Preliminary analysis 

indicated a decrease in MDSCs when the cells are cultured with MOG35-85 (Data not 

shown). However further experiments are required before any conclusions can be made. 

In summary these results indicated an increase in the number of T cells expressing FoxP3 

in response to MOG61-85, however further experiments are required before any 

conclusions can be made regarding the cell population responding to MOG61-85. 
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CHAPTER VI: DISCUSSION AND CONCLUSION 

Discussion 

Previous studies have established B cell dependent (rMOG-induced) and B cell 

independent (MOG35-55-induced) models of EAE in B6 mice. Previous studies showed 

also distinct B cell responses in WT animals when immunized with rMOG or MOG35-55, 

with a group of antibodies directed against MOGaa46-85, present in the rMOG induced 

model but not in the MOG peptide induced model (Liu et al., 2012). Analysis of the T 

cell response in rMOG-immunized WT and B cell-/- mice identified an additional T cell 

epitope in B cell-/- mice comprised of MOGaa61-85 (Lyons et al. unpublished data). Co-

immunizations with MOG35-55 and MOG61-85 demonstrated an amelioration of EAE in 

these mice. Additionally, it was demonstrated that a serum derived factor from WT 

animals reconstituted rMOG-induced EAE in B cell-/- mice and abrogated the immune 

response seen in B cell-/- animals towards MOG61-85 (Lyons et al. unpublished data). This 

project aimed to look into the mechanism of protection against EAE induction when the 

animals were co-immunized with the encephalitogenic MOG35-55 and the protective 

MOG61-85 peptide.  

Aim 1 investigated the role of the putative B cell epitope embedded within 

MOGaa 61-85 in selection of the protective MOG61-85 epitope. Immunization of WT and 

B cell-/- animals with the longer MOG35-85 peptide, encompassing the encephalitogenic 

MOG35-55 epitope, the protective MOG61-85 epitope, and the putative B cell epitope 

located within MOGaa41-85, demonstrated a decrease in disease severity in WT as well 

as B cell-/- mice when compared to the animals immunized with MOG35-55. This led to the 

conclusion that the intervening region between the MOG35-55 and MOG61-85 peptides did 
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not play a role in the processing and presentation of the MOG61-85 epitope. However, 

certain aspects in these results must be taken into account. These results indicated that 

aa41-86 are not involved in antigen processing and presentation of rMOG, but the three 

dimensional conformation of the rMOG molecule needs to be in taken into account. 

Results could be confounded if the chemically synthesized MOG35-85 could not achieve 

the native conformation present in the naturally occurring protein. Serum from WT mice 

immunized with MOG35-55 and MOG35-85 has been collected. Peptide mapping analysis 

can be carried out on these samples to see the responses against linear epitopes. Presence 

of an antibody response towards MOGaa46-85 will help confirm that this region is not 

involved in antigen processing and presentation. It can then be determined if the other B 

cell epitopes (MOGaa21-40, MOGaa101-125) identified are involved in antigen 

processing and presentation. Conversely, the absence of an antibody response towards 

MOGaa46-85 will lend credibility to the conformational epitope hypothesis. Better 

understanding of antigen processing and presentation in these animals might help us gain 

a better understanding of the immune responses occurring in MS. This is important 

considering that T cell responses have been noted in MS against aa1-22, 34-56 and 64-96 

(Kerlero de Rosbo et al., 1997).  

IL10 is considered to be an anti-inflammatory cytokine (Matsushita et al., 2008). 

Previous results suggested that IL10 may be important in the protection seen with 

MOG61-85 (Lyons et al. unpublished data). Thus, IL10-/- mice were immunized with 

MOG35-55 and MOG35-85 peptides and observed for EAE induction and progression. The 

incidence of EAE in IL10-/- mice was not significantly affected by the longer MOG35-85 

peptide when compared to the group immunized with MOG35-55, implicating a role for 
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IL10 in the decreased incidence noted in WT and B cell-/- mice upon immunization with 

the MOG35-85 peptide. However, clinical severity in those IL10-/- mice immunized with 

MOG35-85 that developed clinical signs was significantly decreased to that observed in 

MOG35-55 immunized IL10-/- mice, indicating that IL10 is not important in ameliorating 

EAE severity by MOG61-85. This was supported by the fact that the cells isolated from 

MOG35-85 primed WT mice and cultured in-vitro with MOG61-85 did not produce any 

detectable IL10 as demonstrated by ELISA. This showed that mechanisms other than 

those mediated by IL10 are important in the decrease in EAE severity seen with MOG61-

85 peptide and necessitates the identification of other anti-inflammatory cytokines 

important in this model of MS. However IL10 was found to be important in incidence, 

indicating that different disease stages in EAE are mediated by different cytokines. Some 

might be more important in induction, others in progression and disease severity.  It 

would be interesting to look at the cytokine expression of cells harvested from mice at 

different disease stages, such as onset, peak, recovery and chronic. Thus, it can be 

hypothesized that MOG61-85 prevents EAE induction in an IL10 dependent mechanism, 

but the decrease in EAE severity is due to some other unidentified effector molecules.  

Results also demonstrated that there was a substantial decrease in the levels INFγ 

and IL17 mRNA in WT animals when the cells were cultured in the presence of MOG61-

85. This correlated with the decrease in clinical severity in these animals. Further studies 

using cells from B cell-/- and IL10-/- mice should be carried out to demonstrate if similar 

effects are observed in these mice too.  The decrease in INFγ mRNA expression was 

associated with a decrease in protein expression as seen with ELISA. Further experiments 

are required to establish IL17 protein levels. The identification of other potential effector 
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molecules could eventually translate into therapies for MS patients and a better 

understanding about the pathogenesis of the disease. 

Lastly it was demonstrated that there was an increase in the expression of FoxP3 

following priming with MOG61-85. This is in agreement with previous observations by 

Feger et al. 2007 that increased FoxP3 expression correlated with amelioration of EAE. 

There was also an increase seen in the percentage of CD4+ CD25+ FoxP3+ T cells in the 

cultures with MOG61-85. These results suggest that these CD4+ Treg cells are important in 

the protection seen with MOG61-85. However this potential role of CD4+ Treg cells in the 

protection mediated by the MOG61-85 epitope warrants further investigation.  

 Analysis was also carried out for the presence of CD8+ T cells. Very few CD8+ 

CD25+ T cells were noted in all the cultures. Interestingly, an increase in CD8+CD25- T 

cells was noted in cells cultured with MOG35-55 as compared to the cells cultured with 

MOG61-85. It is interesting to speculate that this increase in CD8+ T cells represents 

pathogenic CD8+ T cells, as previously described (Bettini et al., 2009). In addition, a very 

low percentage of CD8+ CD25+ FoxP3+ T cells were noted in the samples and further 

experiments are required before any conclusions can be drawn regarding the role of these 

cells in the clinical effect of MOG61-85. The identification of CD8+ T cell populations is 

important in the context of the recently identified CD8+ LAP+ Treg cells, which may or 

may not express the traditional Treg cell markers, CD25 and FoxP3 (Chen et al., 2009).   

  

Limitations and Future Directions 

Previous experiments had identified unique B cell epitopes in WT mice 

immunized with rMOG. These consisted of MOGaa21-40 and MOGaa41-86 (Liu et al., 
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2012). These results led to the central hypothesis of this project, that the antibodies 

against MOGaa41-86 were somehow involved in the antigen processing and presentation 

of rMOG in WT animals. In the presence of B cells, WT mice fail to develop a response 

towards the protective MOG61-85 and ultimately led to EAE induction in WT mice 

immunized with rMOG. Conversely, the absence of these antibodies in B cell-/- animals 

allowed for the selection of the protective MOG61-85 epitope and the prevention of EAE 

when these mice were immunized with rMOG. However, the hypothesis that MOGaa46-

85 in the form of the longer peptide (MOG35-85) regulated antigen processing and 

presentation was disproved by the results of Aim 1. There could possibly be two reasons 

for this. Firstly, other identified B cell epitopes besides MOGaa46-86 are important in 

preventing the selection of the protective MOG61-85 epitope. These B cell epitopes include 

MOGaa21-40 and MOGaa101-125 within the rMOG protein.  This hypothesis can be 

further investigated by including these epitopes in immunization experiments. Secondly, 

the conformation of the chemically synthesized MOG35-85 needs to be taken into 

consideration as previously described. Further investigation of the mechanism of epitope 

selection by B cells would help us better define the mechanism of EAE induction in this 

animal model. 

In addition, previous data had suggested a role for IL10 in the protection afforded 

by the MOG61-85 epitope.  As discussed above, the role of IL10 in the process appears to 

be in preventing disease onset rather than remediating disease severity. Data do suggest 

that amelioration of disease may be dependent on decreased production of 

proinflammatory cytokines, IFNγ and IL17. Further support for this would be obtained 

from analysis of cytokine secretion in IL10-/- mice. However, qPCR could not be applied 
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for IL10 quantification due to unexplained difficulty in the isolation of total RNA from 

tissues and technical difficulties with the designed IL10 qPCR assay.  Once these 

technical issues are resolved, these experiments will be completed.  

This work looked at some of the pro-inflammatory cytokines that have been 

implicated in MS/EAE pathogenesis. However there are several more potential effector 

molecules which can be analyzed. This becomes important in light of the finding that 

IL10 is not the only player in the protection obtained with MOG61-85. Characterization of 

other potential cytokines implicated in EAE pathogenesis, such as IL4 and TGFβ, may 

shed light on the mechanism of protection by MOG61-85 (Chen et al., 2008; Chen et al., 

2009; Falcone et al., 1998). In addition, the results of Aim 2 were defined in WT animals, 

not in B cell-/- animals, and thus experiments can be run to see if these results correlate 

with each other. 

The cell population responding to MOG61-85 also needs to be further defined. 

Assays can be conducted to determine proliferation of cells to MOG61-85 using 

Carboxyfluorescein succinimidyl ester (CFSE) staining. This could help us identify 

smaller cell populations responding to the protective MOG61-85 epitope. Co-culture 

studies with MOG35-55 and MOG61-85 can also be carried out to determine if the presence 

of the protective epitope alters the cellular response to the encephalitogenic epitope. 

There was an increase seen in the number of cells expressing FoxP3; however, no 

conclusions could be drawn regarding Treg cells from these experiments. Further 

experiments could increase the total number of cells used for cell culture and thus remove 

the problem of losing cells in the density gradient centrifugation step. This would also 
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help separate out the live cells and help define smaller cell populations, which might have 

been masked in all the debris and dead cells in the samples.  

It can also be studied whether the CD8+ T cells seen are the recently described 

CD8+ LAP+ T cells using flow cytometry. The recently published CD8+ LAP+ T 

regulatory cells have been shown to act in a contact dependent manner. It can thus be 

hypothesized that if the CD8+ T cell population were indeed these cells, their effects 

would be diminished if these cells were cultured in trans-well plates. This too will help us 

further define the immune cell population responding to MOG61-85. 

 

Conclusion 

In conclusion, it can be said that the B cell epitope within MOGaa46-85 does not 

play a role in the processing and presentation of the antigen. These results also 

demonstrated the protective nature of the MOG61-85 epitope, along with the role of IL10 in 

disease incidence. Lastly, an increase in the FoxP3 expression was seen when the cells 

were cultured with MOG61-85, again demonstrating that the protective effects of MOG61-85 

might at least in part be due to the expansion of a CD4+ Treg cell population. 
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