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Incoherent scatter radar estimation of F region ionospheric
composition during frictional heating events

M. Zettergren,1 J. Semeter,2 C. Heinselman,3 and M. Diaz4

Received 17 August 2010; revised 9 November 2010; accepted 15 November 2010; published 28 January 2011.

[1] A method is developed for estimating F region ion composition from incoherent
scatter radar (ISR) measurements during times of frictional ion heating. The technique
addresses ion temperature‐mass ambiguities in the IS spectra by self‐consistently
modeling ion temperature profiles, including the effects of ion temperature anisotropies
and altitude‐independent neutral winds. The modeled temperature profiles are used in a
minimization procedure to estimate ion composition consistent with the recorded IS
spectra. The proposed method is applicable to short‐integration (<5 min) data sets from
either single‐beam or multiple‐beam experiments. Application of the technique to
Sondrestrom ISR measurements shows increases in F region molecular ions in response to
frictional heating, a result consistent with previous theoretical and observational work.
Estimates of ion composition are shown to be relatively insensitive to moderate variations
in the neutral atmospheric model, which serves as input to the method. The technique
developed in this work is uniquely qualified for studying highly variable ion composition
near auroral arcs and associated processes such as molecular ion upflows. It also addresses
a systematic source of error in standard ISR analysis methods when they are applied in
such situations.

Citation: Zettergren, M., J. Semeter, C. Heinselman, and M. Diaz (2011), Incoherent scatter radar estimation of F region
ionospheric composition during frictional heating events, J. Geophys. Res., 116, A01318, doi:10.1029/2010JA016035.

1. Introduction

[2] Incoherent scatter radar (ISR) is one of the most
powerful remote sensing tools for examining the high‐
latitude ionosphere. Transmitted radio waves are scattered by
the ionospheric plasma and received by the ISR. The
received signal covers a spectrum of frequencies, and iono-
spheric plasma parameters are estimated by fitting a theo-
retical model to this IS spectrum. Roughly speaking, the
spectral width of the ion line component of the IS spectrum
yields an estimate of Ti/mi (ion temperature to mass ratio), the
ion line peak to valley ratio gives Te/Ti (electron to ion
temperature ratio), the bulk ion line doppler shift gives vi
(line‐of‐sight drift velocity), and the total scattered power
gives ne (electron density). Unless extremely high‐quality
data exist, ion composition must be assumed in order to
compute absolute ion and electron temperatures [Evans,
1969; Oliver, 1979; Lathuillere et al., 1983]. At the Son-
drestrom ISR facility (of interest to the present work), a static

ion composition profile is generally used to process IS
spectra.
[3] The importance of properly accounting for composi-

tional changes in the auroral F region has been pointed out
by many authors [cf. Zettergren et al., 2010, and references
therein]. One major source of ion composition variability is
changes in chemical balance in the ionosphere due to highly
temperature‐sensitive reaction rates. At high latitudes elec-
tric fields drive the ionospheric plasma through the neutral
atmosphere causing intense frictional heating. Resulting
high ion temperatures drastically modify ion chemical
reaction rates and generally favor conversion of O+ to NO+

[McFarland et al., 1973; Torr et al., 1977; St.‐Maurice and
Torr, 1978; St.‐Maurice and Laneville, 1998] through the
reaction

Oþ þ N2 ! NOþ þ N: ð1Þ

[4] This process can produce substantial amounts of
molecular ions in the F region, creating severe alterations in
ionospheric composition at high latitudes. Composition
variability has been modeled in past work [e.g., Schunk et al.,
1975; Diloy et al., 1996; Zettergren et al., 2010], but has yet
to be accounted for, in a definitive way, in high‐latitude ISR
data analysis.
[5] Various data processing strategies have been devel-

oped to mitigate ion temperature‐mass ambiguities in IS
spectra. Many of these methods rely on reduced parameter
descriptions of the ionospheric density, temperatures, and
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composition, vs. altitude. Oliver [1979] developed such a
method for midlatitudes that specified physical constraints
for temperature and composition profiles for use in fitting IS
spectra. Other, more recent, research has extended these
ideas for use at high latitudes. Cabrit and Kofman [1997]
developed a full profile technique, along with a parameter-
ization of the composition profile, which was used to study
diurnal and seasonal variations in ion composition [Litvine
et al., 1998]. The method proposed by these authors relied
on the simultaneous analysis of both coded pulse and long
pulse data. A similar technique and results were presented
by Shibata et al. [2000]. Such methods produced reliable
results for times when the ionosphere is undisturbed by
strong electric fields and frictional heating.
[6] When the ionosphere is severely disturbed by electric

fields, the reliable analysis of ISR data becomes extremely
difficult [e.g., Lathuillere and Kofman, 2006]. This diffi-
culty is mostly due to the dynamic nature of composition
variability [Zettergren et al., 2010] and the fact that ion
temperature anisotropies [e.g., St.‐Maurice and Schunk,
1979] further complicate the analysis [Raman et al., 1981;
Hubert and Lathuillere, 1989; Lathuillere et al., 1991].
Several approaches have been developed for dealing with
situations of intense ion heating. Lathuillere et al. [1983]
found that, with sufficient integration time (∼5 min),
composition and ion temperature could be simultaneously
extracted from the spectra, provided that a good initial guess
is input into the estimation procedure. Other methods have
relied on specifying either the electron temperature or ion
temperature and fitting the IS spectra for composition. Kelly
and Wickwar [1981] specified electron temperature by
interpolating between reliable data points and used the
results to estimate ion temperature and composition.
Häggström and Collis [1990] used a model of ion heating
to specify ion temperature for use in fitting the spectra for
composition. Their method relied on electric field estimates
from tristatic EISCAT measurements. Gaimard et al.
[1996] also incorporated a model of ion heating into
analysis of EISCAT data, reformulating the spectral esti-
mation problem into one of finding ∣vi − un∣ (ion‐neutral
differential drift speed), ne, Te, p (ion composition
parameter), and Tn (neutral temperature). Their analysis
revealed that only 3 of these parameters could be reliably
determined simultaneously with an automated method.
[7] Some authors have used complex models of iono-

spheric chemistry and transport to specify ion composition
profiles to fitting routines [Blelly et al., 1996; Jenkins et al.,
1997]. Direct modeling of ion composition works in situa-
tions of extended heating, but when the heating is highly
variable the time history of the plasma must be known to
properly calculate ion composition [Zettergren et al., 2010].
This is due to the fact that once ion composition is altered, it
can remain disturbed for long periods of time and convect to
other latitudes and local times. The approaches and studies
outlined above have, in general, confirmed the correlation of
molecular ion densities in the F region with intense electric
fields (a conclusion well supported in related theoretical
work).
[8] The present work develops and evaluates a method-

ology to estimate ion composition during dynamic electric
field disturbances occurring in time scales of < 5 min.
Preference is given to methods applicable to single‐radar,

single‐beam‐position ISR experiments that constitute a sig-
nificant number of past experiments. Such goals immediately
restrict possible approaches to those of specifying ion or
electron temperature in some way and fitting the ISR data for
ion composition. Uncertainties in data sets with short inte-
gration times (< 5 min) are too large to attempt direction
estimation of temperatures and composition simultaneously.
Additional requirements are to account for ion temperature
anisotropies, well documented in regions of strong electric
fields [Gaimard et al., 1996; Hubert et al., 1996], and to deal
with the considerable effects that neutral winds have on ion
frictional heating [St.‐Maurice et al., 1999].

2. Estimation Technique

[9] The approach taken in this work is to model line‐
of‐sight ion temperatures self‐consistently using indirect
observations of the effective electric field (which implicitly
include some neutral wind effects). Discrepancies between a
self‐consistently modeled ion temperature profile and the
corresponding fitted profile are interpreted in terms of errors
in the ion composition assumed by the fitter. The composi-
tion is estimated as that which brings the model results and
data into best agreement. The method outlined here is an
extension and refinement of the author’s dissertation
research [Zettergren, 2009] and an implementation of the
method proposed by Zettergren et al. [2010].

2.1. Modeling Temperature Profiles of O+ and NO+

[10] Ion temperature at high latitudes is controlled by
frictional heating from E? × B drift of the ionospheric
plasma and heat exchange with the neutral atmosphere.
Below ∼350 km ion energy balance equations may be sim-
plified to yield an expression for the parallel temperature for
ion species s [St.‐Maurice et al., 1999]:

Tsk ¼ Tn þ 3

2
�sk

mnh i
3kB

1

1þ �s=Wsð Þ2
E?′
B

� �2

: ð2Þ

[11] In equation (2), Tn is the neutral temperature, bs∥ is a
collision‐type‐dependent coefficient which describes tem-
perature anisotropies [Winkler et al., 1992; McCrea et al.,
1993], hmni is an average mass of the neutral atmospheric
constituents [e.g., Winkler et al., 1992], kB is the Boltzmann
constant, ns is the ion‐neutral collision frequency, Ws is the
gyrofrequency, and B is the geomagnetic field strength.
Neutral atmospheric parameters in equation (2) are taken
from the NRLMSISE‐00 model [Picone et al., 2002], and
the bsjj factor is taken from a synthesis of theoretical cal-
culations by Winkler et al. [1992] and observations by
McCrea et al. [1993]. E ′? is the effective electric field
strength defined by the electric field in a frame of reference
drifting with the neutral gas:

E?′ ¼ E? þ un? � B; ð3Þ

where E? is the electric field in an Earth‐fixed frame of
reference and un? is the neutral wind velocity. Using the
above quantities, the ion temperature may be modeled from
equation (2) provided the effective electric field can be
measured or estimated (see section 2.2).
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[12] In the auroral zone, ion temperatures parallel to the
magnetic field differ substantially from perpendicular tem-
peratures [St.‐Maurice and Schunk, 1979]. In these cases
modeling of both parallel and perpendicular temperatures is
necessary. The perpendicular temperature in the ionosphere
below ∼ 350 km, for species s, is given by an expression
similar in form to the parallel temperature [Winkler et al.,
1992]:

Ts? ¼ Tn þ 3

2
�s?

mnh i
3kB

1

1þ �s=Wsð Þ2
E?′
B

� �2

: ð4Þ

[13] Figure 1 shows the results of modeling species ion
temperatures using equations (2) and (4) with various values
of the effective electric field. Figures 1a and 1b show par-
allel temperatures for NO+ and O+, while Figures 1c and 1d
show perpendicular temperatures. The ion temperatures
increase quite dramatically for increasing electric fields;
a factor of ∼2 increase in temperature for both NO+ and O+

results from an electric field of 50 mV/m. Electric fields
of the order of 100 mV/m are fairly commonly observed
near auroral arcs, and in these cases ion temperatures are
expected to be ∼4 times their quiescent values. For all electric
field values NO+ has a higher temperature parallel to the
geomagnetic field than does O+. All temperature profiles
peak in altitude in the 150–200 km range and then decrease
monotonically with altitude above the peak. For both NO+

and O+, Tsjj is smaller than Ts? at all altitudes. The anisotropy
is most pronounced for O+ above ∼200 km.

[14] For a radar beam oriented at small angles to the
geomagnetic field, the observed ion line spectra will
approximate their typical Maxwellian shape with an effec-
tive temperature along the beam line of sight. This line‐
of‐sight temperature, Ts, will be a combination of parallel
and perpendicular temperatures [e.g., Raman et al., 1981]:

Ts ¼ Tsk cos2 �þ Ts? sin2 �: ð5Þ

[15] In equation (5), � is the angle the ISR beam makes
with the geomagnetic field. As noted by Hubert and
Lathuillere [1989] and Gaimard et al. [1996] the use of
such an approximation in interpreting ISR spectra is appro-
priate only for � ≤ 30°, particularly in situations where E ′?
is large. Writing the models of equations (2) and (4) in the
form Tsjj = Tn + bsjjAE ′?

2 and Ts? = Tn + bs?AE ′?
2, the line‐

of‐sight temperature is

Ts ¼ Tn þ �sk cos2 �þ �s? sin2 �
� �

AE?′2: ð6Þ

2.2. Estimating the Effective Electric Field Magnitude

[16] In order to model ion temperatures self‐consistently
through equation (6), the effective electric field must be
determined. In this work E?′ is calculated directly from
observed ion temperature profiles in regions of known
composition. In the E region (< 150 km altitude), the ions
are molecular, and the fitter ion composition correct.
Therefore, E region temperature measurements may be used

Figure 1. O+ and NO+ parallel and perpendicular temperature for various values of the effective electric
field: (a) parallel NO+ temperature, (b) parallel O+ temperature, (c) perpendicular NO+ temperature, and
(d) perpendicular O+ temperature.
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with equation (6) to estimate E?′ . Note that this method
implicitly takes the effects of the neutral wind into account
(see equation (3)), as opposed to a direct calculation of the
electric field through plasma drifts. This point is critical for
analysis of temperatures and composition at high latitudes
where winds can be substantial during storms [Richmond and
Lu, 2000] and near discrete auroral features [St.‐Maurice
and Schunk, 1981; Eastes et al., 1992]. It is worth noting
that this method of estimating E?′ from temperature does
require the assumption that E?′ does not change with altitude.
This assumption hinges on both the electric field (E?) and
horizontal wind (un?) being constant with altitude. The for-
mer constraint is likely to hold to a high degree of accuracy
[e.g., Kelley, 2009] while the latter (that un? is constant
with altitude) is more questionable and will be reexamined
in section 4.
[17] Using approximations outlined above, there is one

unknown (E?′ ) to solve for using reliable Ts measurements
from the E region. In this work measurements from the 130–
150 km region are used since the temperature gradients
below these altitudes are too large to yield a good deter-
mination of E?′ (e.g., Figure 1). A weighted least squares
solution is applied to estimate E?′ from measurements at
these altitudes for each ion temperature profile.

2.3. Ion Temperature in a Mixed‐Species Plasma

[18] As they stand, the models described in section 2.1 are
not directly comparable to ion temperatures estimated from
IS spectra. The standard method of fitting IS spectra for ion
temperature does not actually produce individual estimates
of temperature for each ion species in the plasma. Instead
the spectral fitting process (as typically applied at high‐
latitude stations) produces a single temperature which is, in
a sense, a species averaged temperature. In a plasma con-
sisting of O+ and NO+, ion temperature is approximately
given by Jenkins et al. [1997]:

Ti ¼ p TOþ � TNOþð Þ þ TNOþ ; ð7Þ

where Ti is species average temperature in the line‐of‐sight
direction, TNO+,O+ are line‐of‐sight temperatures for each
individual species, and p ≡ nO+/ne is the standard notation
for fractional atomic ion content. The actual temperature
derived from an IS spectrum is not a simple weighted sum
of individual species temperatures, but such an approxima-
tion is reasonable in the case of an O+ and NO+ plasma.
[19] For a given effective electric field the individual

species temperatures can be calculated through the model
described in section 2.1. The average ion temperature can
therefore be specified as a function of altitude if the com-
position parameter and effective electric field are known. In
subsequent sections we will refer to this ion temperature
using the notation Ti ≡ Ti(z; p), which explicitly indicates
that this variable has dependence the composition parameter
(that we are attempting to estimate) and altitude.

2.4. Formulation of Estimation Technique

[20] The ion composition estimation method is described
by the following procedure.
[21] 1. Ion temperature measurements from the 130–

150 km region are used to estimate the effective electric field.
[22] 2. The effective electric field is used to model the full

line‐of‐sight temperature profile through equation (6).
[23] 3. This temperature profile is then used to as input to

a fitting process (outlined below), thus leaving the ion
composition as a free parameter to be estimated.
[24] The high degree of ambiguity between ion tempera-

ture and mass allows ion temperatures fitted with a particular
ion composition to be mapped to a different composition
without having to refit the IS spectrum, as described by
Waldteufel [1971]. The functions derived by Waldteufel
[1971] give a means to convert a temperature estimated
with p = 0 (denoted Ti0) to what that temperature would be
under a different composition assumption, p1 ≠ 0 with
corresponding temperature denoted Ti1:

Ti1 ¼ Fi p1ð ÞTi0; ð8Þ

where the function Fi is [after Waldteufel, 1971]

Fi pð Þ ¼ �2:902þ 0:785pþ 8:2

pþ 2:1
: ð9Þ

[25] Manipulation of the Waldteufel [1971] relations gives
the following equation relating true ion temperature Ti (with
an unknown true composition p) to temperature derived from
the fitter Ti′ (with corresponding assumed composition p′):

Ti′ ¼ Fi p′ð Þ
Fi pð Þ Ti: ð10Þ

[26] This equation specifies how much the fitted temper-
ature (Ti′) will differ from the true ion temperature (Ti), and
will thus form the basis of later minimization procedures to
determining the unknown true composition, p. Representa-
tive fitter composition profiles (p′) for the data sets of
interest are shown in Figure 2. In both cases, the composi-
tion profiles are representative of quiet conditions with little
ion heating. When strong frictional heating is present, the
true ion composition is likely to vary from these fitter values

Figure 2. Fitter ion composition profiles, p′, for the two
case studies used in this work.
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[Zettergren et al., 2010]. It is worth noting that diurnal
variations in composition can also be substantial [Lei et al.,
2004].
[27] In order to develop a robust estimator of ion com-

position, this work adopts a reduced parameter description
of the ion composition profile. Specifically, the unknown
composition profile is assumed to be described by a set of
parameters, denoted x. As a result both the modeled ion
temperature and Fi(p) coefficient become functions of the
parameter set x, i.e., Ti(z; x) and Fi(z; x), respectively. Under
this parameterization the true ion composition profile can be
found by minimizing the difference between the self‐con-
sistently modeled ion temperature and the fitted temperature,
adjusted by an unknown composition per equation (10). In
the present work, a least squares approach is applied to
provide and estimate (x̂) of the parameter set x:

bx ¼ argmin
x

X
k

Ti′ zkð Þ � Fi p′ð Þ Ti zk ; xð Þ
Fi zk ; xð Þ

� �2( )
: ð11Þ

[28] In this expression the index k runs over the different
altitudes from a given ion temperature profile measurement.

2.5. Parameterization of the Ion Composition Profile

[29] There have been several attempts to characterize the
functional form of p(z), including an empirical representa-
tion [Waldteufel, 1971] and parameterizations based on
physical arguments [Evans and Oliver, 1972; Oliver, 1975,
1979]. In the present estimation scheme we use a functional
form adapted from Oliver [1975]:

p z; xð Þ ¼ 2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8 exp � z�zc

H

� �q : ð12Þ

[30] For this parameterization x = [zc, H], where zc is the
crossover altitude (the altitude at which the plasma is 50%
O+ and 50% molecular ions, and p = 0.5) and H is a scale
height parameter [cf. Oliver, 1975]. This model was devel-
oped for use in the midlatitude ionosphere and ostensibly
applies to the present problem, with auroral impact ionization
playing the role of photoionization. Indeed, this parameter-
ization can be shown to match the essential features of the
ion composition profiles simulated by Zettergren et al.
[2010]. This parameterization is further simplified by
adopting H = 45 km, since, as shown by Zettergren et al.
[2010], H is not strongly dependent on applied effective
electric field. Thus, for our purposes, we need only to solve
for zc to characterize ion composition during the auroral
disturbances.
[31] It is worth noting that this model may not be appro-

priate in cases of extremely strong precipitation or when
electric fields are small. The functional form of ion compo-
sition in such cases is probably more complex, but these
situations are not of interest to the present research so further
analysis is left to future work.

2.6. Physical Constraints for Estimation Procedure

[32] A complicating factor in solving the minimization
problem of equation (11) is that model O+ and NO+

temperatures differ during frictional heating events (see
Figure 1). In particular, TO+jj < TNO+jj from 200 to 300 km.
In some cases of intense heating, this allows the minimiza-
tion method to fit temperature inversions in the 150–300 km
region by using large values for p (indicating a predominantly
oxygen plasma). However, the simulations of Zettergren
et al. [2010] show that intense heating results in mostly
NO+ in this altitude region, and thus should physically
eliminate such solutions. In the present work we use the
approximation Ti ≈ TNO+, a constraint which precludes
unrealistic solutions corresponding to large p.
[33] It can be shown that the adopted constraint (Ti ≈ TNO+)

is valid for a wide range of realistic heating situations. For
small effective electric fields there is little heating and all ion
species temperatures are equal, so Ti ≈ TNO+. For progres-
sively larger values of electric field, p remains small up to
higher altitudes so that the average ion temperature (defined
by equation (7)) is weighted toward NO+ temperature. This
fact remains true even for highly dynamic frictional heating
events. Figure 3 shows comparisons of Ti and TNO+ for
effective electric fields ranging from 25 to 100 mV/m. These
temperature calculations are from the modeling studies
published by Zettergren et al. [2010], though they were not
directly presented in that work. The parallel temperatures are
shown here, as they display the largest differences between
the species O+ and NO+ for a given effective electric field.
These calculations show that Ti does not deviate significantly
from TNO+ for a broad range of electric field values, justi-
fying the constraint Ti ≈ TNO+.
[34] Minor differences (within typical error bar ranges on

temperature fits) between Ti and TNO+ in Figure 3 occur only
at higher altitudes. To avoid incurring bias in the compo-
sition estimates, the altitude domain of the optimization
problem of equation (11) is adjusted (based on simulation
results of Figure 3) to exclude altitudes where the approxi-
mation may yield some systematic error. A final benefit of
using model NO+ temperatures for processing data is that it
avoids complications with modeling O+ temperatures that
arise from large uncertainties in O+‐O collision frequency
(see discussion by Oliver and Glotfelty [1996, and refer-
ences therein]).

2.7. Filtering of Composition Estimates

[35] The premise of the proposed estimation technique is
that the models of equations (2) and (4) are accurate re-
presentations of ion temperature behavior. The success of
each estimate of ion composition is judged by computing
mean square difference between observed ion temperature
corrected with the new composition estimate and model
calculations of ion temperature. This is compared to the
mean square difference between the original temperature
observations and ion temperature modeled with the origi-
nally assumed ion composition. Estimates for which the
mean square data‐model difference is larger than the origi-
nal data‐model difference are rejected.

3. Results From Case Studies

[36] Examples of the proposed estimator for various
experimental modes are presented below. The data sets are
chosen to represent instances of strong ion heating by
electric fields (the situation for which the technique was
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designed). Some secondary effects of relative ion‐neutral
drifts, such as molecular ion upflows and neutral winds, are
inferred from these data sets.

3.1. Observations Parallel to B: Sondrestrom ISR,
26 February 2001

[37] At 0215–0415 UT on 26 February 2001 the Son-
drestrom ISR was operating in dwell mode in the magnetic
zenith and recorded clear evidence of ion heating. Auxiliary
camera and radar data show that the ISR was directed at a
region adjacent to a weak auroral arc and that this arc was
centered on a plasma flow shear [Zettergren et al., 2010].
These conditions remained relatively stable throughout the
0320–0340 UT time period, and represent a situation where
composition is expected to vary dynamically. In the present
work we extend the analysis of these data by Zettergren
et al. [2010]. In this experiment, a 160 ms pulse was used
and the scattered returns were integrated for 30 s.
[38] Figure 4 shows the results of applying the composi-

tion estimation technique to the Sondrestrom 26 February
2001 0215–0415 observations. Figure 4a shows the effec-
tive electric field estimated from E region ion temperature,
and Figure 4b shows bzc (estimated crossover altitude) as a
function of time during the event. Ionospheric composition
above Sondrestrom changes dramatically during this event,
varying from ∼200 km to ∼350 km, often over time scales of
minutes. In some instances (e.g., during 0315–0345 UT) the
F region peak is composed mostly of molecular ions. During
most of the 26 February 2001 case study the effective
electric field appears to modulate the molecular ion content
of the plasma, as expected from previous theoretical work
[Zettergren et al., 2010].

[39] Figure 5 shows a comparison of ion and electron
temperature estimated by the fitter (Ti′ and Te′ ) and tem-
peratures corrected for variable composition (Ti and Te). In
Figure 5a, the fitter ion temperature displays inversions in
the 180–250 km region, characteristic of a wrong fitter
composition profile [Zettergren et al., 2010]. Accounting for
ion composition in the analysis effectively removes these
inversions (Figure 5c). The electron temperature at high
latitudes is controlled by more complex mechanisms, pre-
cipitating electrons and inelastic cooling collisions, and is
more difficult to interpret. However, temperature inversions
can occasionally be picked out in the fitter Te′ estimate in
Figure 5b.
[40] The intense ion frictional heating during the 26

February 2001 event also produced ionospheric plasma
expansion and upwelling which was recorded by the ISR.
This ion frictional heating and upwelling process is often
referred to in the literature as type 1 upflow [e.g., Wahlund
et al., 1992]. An interesting feature of the 26 February 2001
event is that the frictional heating‐induced upflow contains
very large amounts of NO+. Figure 6 shows ion temperature
(corrected for the estimated ion composition) and upward
NO+ fluxes near the F region peak during the 26 February
2001 case study. As seen in these estimates, enhanced ion
temperatures play the dual role of converting the plasma to
molecular ions and enhancing ion pressure to drive type 1
molecular ion upflows. Peak molecular ion fluxes during the
event are quite large, having magnitudes 2–3 × 1013 m−2 s−1.
[41] Type 1 upflows shown in Figure 6 are only one class

of upflows occurring at ionospheric altitude. Another well‐
documented process is the type 2 upflow, which is thought
to be initiated by electron heating processes [Lynch et al.,

Figure 3. Average parallel ion temperature compared with NO+ temperature. (a‐d) E?′ = 25, 50, 75, and
100 mV/m, respectively.
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2007; Zettergren et al., 2007, 2008] followed by plasma
expansion and upwelling. Soft precipitating electrons, which
deposit their energy near the F region peak, drive the
electron heating process responsible for the type 2 upflows.
[42] The data presented in this case study suggest an

important and fundamental difference between the type 1
and type 2 upflowing plasmas. Type 1 upflows should
contain relatively large amounts of molecular ions as com-
pared to type 2 upflows. Frictional heating responsible for
type 1 upflows inherently incites production of NO+ while
causing it to expand upward. In contrast, the precipitation
responsible for type 2 upflows simply heats the existing F
region O+, and likely produces upflow containing mostly
O+. The composition of these ionospheric upflows can also
likely be associated with their location in relation to nearby
auroral arcs. Inside the area of arc‐related precipitation (the
upward current region), electric fields are often small, so any
upflows will be predominantly O+. In arc downward current
regions electric fields are often quite large [e.g., Marklund,
1984; Johnson et al., 1998] and precipitation is weak, so any
upflowing plasma will contain comparatively large amounts
of molecular ions. It is, however, unclear whether molecular
ions fluxes would be more intense than O+ fluxes in type 1
upflows expected in downward current regions. Future
modeling and data analysis should be able to quantify how
the composition of upflowing plasma depends on effective
electric fields and precipitation.

[43] Several recent studies suggest that high‐altitude ion
outflow to themagnetospheremaybe causally linked to various
ionospheric upflow processes discussed above [Strangeway
et al., 2005; Lynch et al., 2007; Ogawa et al., 2008]. It is
thought that ionospheric upflows deposit large amounts of
plasma into higher‐altitude regions where other processes
like transverse ion heating and parallel potential drops can
accelerate the upflowing ions to escape velocity. It there-
fore seems reasonable to speculate the areas of enhanced
molecular ions and upward molecular ion fluxes are source
regions for molecular ions that have been observed in
the magnetosphere [e.g., Peterson et al., 1994; Lennartsson
et al., 2000].
[44] A close inspection of Figure 4 reveals that many of

the large enhancements in molecular ions are accompanied
by apparent depletions in F region plasma density, e.g.,
∼0250–0300 UT, ∼0315 UT, ∼0326 UT. These depletions
are the result of the fact that NO+ has a shorter chemical
lifetime than O+. Thus, when a large fraction of the plasma is
converted to NO+, more recombination occurs and deple-
tions form. These depletions likely have important implica-
tions for ion upflow resulting from frictional heating. The
enhanced recombination of a NO+ plasma provides a natural
negative feedback in the upward flux of molecular ions. The
effect this negative feedback has on the amount of upflow
produced by frictional heating (type 1) versus upflow from
regions of soft precipitation (type 2) is presently unclear.
However, the enhanced recombination may be the physical

Figure 4. Sondrestrom ISR ion composition case study (26 February 2001): (a) effective electric field,
(b) molecular to atomic ion transition altitude, and (c) plasma density.
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reason that type 2 upflows are typically more intense than
type 1 upflows [Liu et al., 1995]. It may also explain the
somewhat lesser correlation of DC Poynting fluxes (as
compared to precipitating electrons) to outflowing ion flux
[Strangeway et al., 2005].

3.2. Multiple‐Beam Observations: Sondrestrom ISR,
13 November 2003

[45] Data recorded on 13 November 2003 by the Son-
drestrom ISR included observations of intense ion heating
from multiple‐beam positions. This experiment includes
dwells at three different positions corresponding to azimuth
and elevation pairs of (140°,80°), (−99°,70°), (20°,70°). The
first position is the magnetic zenith, while the other two
dwell positions make an angle of ∼26° with the local mag-
netic field. In this ISR experiment, a 320 ms pulse was used,
the scattered returns were integrated for ∼3 min at each
position. In addition to fitted parameters from each beam
position, line of sight velocities from each position are
combined to obtain vector velocities (and electric fields)
under assumptions of uniformity (see work by Thayer [1998]
for details).
[46] The use of an experiment with beam positions

oblique to the geomagnetic field illustrates an application of
the estimation scheme to a data set where ion temperature
anisotropies have to be taken into account in the modeling.
Figure 7 shows the results of applying the composition
estimator to each beam position. Figure 7a shows electric
field magnitude measured by combining line‐of‐sight drifts

from all three positions, Figure 7b shows the effective
electric field from each beam position, and Figure 7c shows
crossover altitude estimated in each beam. As with the
previous case study, enhancements in molecular ion content
in the ionosphere are correlated with the effective electric
field and ion heating. In the present case study there is an
extended disturbance in effective electric field from 1130 to
1530 UT. This period is characterized by increases in
crossover altitude and significant amounts of NO+ near the
F region peak.
[47] Because the 13 November 2003 experiment mode

included direct observations of electric fields as well as
estimates of effective electric fields, it offers an opportunity
to gather some information about neutral winds. Differences
in E?′ and E? are attributable to neutral winds as indicated
by equation (3). Substituting in E? = −vp? × B into this
equation, where vp? is the bulk plasma drift velocity, gives
the effective field in terms of relevant drifts:

E?′ ¼ � vp? � un?
� �� B: ð13Þ

[48] From this equation it can be seen that E?′ < E? implies
substantial neutral winds along the plasma drift direction,
while E?′ > E? requires winds in a different direction from
the plasma drift.
[49] From Figure 7 it is possible to compare electric field

magnitude resolved from the three beam positions (Figure 7a)
with the effective electric field measured from each beam
(Figure 7b). With a few exceptions, E?′ in each beam is
approximately equal to E?′ , implying that the neutral gas is
roughly stationary in the Earth‐fixed reference frame.
Deviations from this pattern are quite interesting. From
1430 to 1530 UT the E? peaks twice at ∼100 mV/m,
while E?′ is constant in all beams at ∼50 mV/m. This dif-
ference is due to strong neutral winds in the plasma drift
direction, which is an expected result of extended collisional

Figure 6. Molecular ion upflow during the 26 February
2001 case study: (a) ion temperature at 300 km altitude cor-
rected for estimated composition and (b) upward NO+ num-
ber flux at 300 km.

Figure 5. A comparison of ion and electron temperatures
estimated by fitter (Ti′ and Te′) and temperatures corrected
for variable composition (Ti and Te) for the 26 February
2001 case study: (a) ion temperature from fitter, (b) electron
temperature from fitter, (c) ion temperature corrected for
composition, and (d) electron temperature corrected for
composition.
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momentum transfer between the drifting plasma and
neutral gas. Immediately preceding this event, from 1410
to 1430 UT, is a period with E? ∼20 mV/m and E?′ ∼30–
50 mV/m in each beam. This indicates that the neutral
wind has a large component in a direction away from the
plasma drift.
[50] The occasional differences in E? and E?′ in Figure 7

illustrate the important point that the effective electric field
must be used in modeling the ion temperatures through
equations (2) and (4). The electric field in an Earth‐fixed
frame, E?, cannot accurately be used in the analysis of ion
energy balance, unless additional measurements of the
neutral wind are also available. For example, during 1430–
1530 UT we have effective electric fields that differ from the
electric field by ≈ 50 mV/m. If E? were used to model ion
temperature profile, a drastic overestimate of Ti would result
and the proposed minimization scheme (equation (11))
would interpret this incorrectly as a large concentration of
molecular ions. In a similar manner, if E?′ is used to cal-
culate temperature in situations where E? < E?′ then an
underestimate of molecular ion content would result.
Properly accounting for neutral winds is critical to cor-
rectly estimating ion composition.
[51] There are a few significant spatial variations in ion

composition during the 13 November 2003 case study.
Figure 7c shows ion composition estimated for each beam
position during the experiment. Differences in bzc among
beams occur during the extended heating from 1130 to

1400 UT. It is unclear what the cause of these differences
is, but likely candidates are that the length of time the
plasma has been exposed to heating may differ, or that the
heating may have significant spatial structure.

3.3. Comparison of Estimates With Numerical
Ionospheric Simulations

[52] To evaluate the plausibility of the composition esti-
mates during heating events in the case studies they are
directly compared to ionospheric fluid model calculations
from the TRANSCAR model [Blelly et al., 1996; Lilensten
and Blelly, 2002]. TRANSCAR solves the 13 moment
transport equations, along geomagnetic field lines [Blelly
and Schunk, 1993], for seven different ion species: O+,
H+, N+, N2

+, NO+, O2
+, and e−. All temperature‐dependent

chemistry relevant to the E and F regions is included in the
model [Diloy et al., 1996]. In present comparisons we
adopt the results of Zettergren et al. [2010], who used
TRANSCAR to simulate the response of F region iono-
spheric composition to effective electric fields of varying
strength.
[53] Figure 8 shows a scatterplot bzc versus effective

electric field during the case study events. The data in this
plot consist of the 26 February 2001 0215–0415 UT
(circles) and all beam positions from 13 November 2003 at
1000–1800 UT (triangles). Plotted alongside these compo-
sition estimates are TRANSCAR simulations for 20 s and
60 s exposure times to an effective electric field. Longer
exposure to electric fields will produce progressively larger
variations from quiescent composition, but the bulk of the
response occurs before 60 s exposure [Zettergren et al.,
2010]. In general, the molecular ion content estimated from
these case studies is consistent with the TRANSCAR simu-
lations. Scatter in the plot appears to be mostly due to sta-
tistical uncertainty, but also probably results from diurnal

Figure 7. Electric fields versus effective electric fields at
1000–1800 UT on 13 November 2003. (a) Electric field
in Earth‐fixed reference frame estimated from multiple
positive ion drift measurements. (b) Effective electric field
estimated from ion temperature in E region. (c) Molecular
to atomic ion transition altitude, estimated as described in
section 2.

Figure 8. Estimated molecular to atomic ion transition alti-
tude versus effective electric field for the 26 February 2001
0215–0415 UT and 13 November 2003 1050–1800 UT (all
beam positions) case studies. Also shown are model calcu-
lations adapted from Zettergren et al. [2010].
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variability in composition and changes in composition
induced by neutral atmospheric O/N2 variations.

4. Sensitivity Analysis

[54] The main sources of “model error” for the estimation
technique are possible variations in the neutral atmosphere
from the MSIS values adopted. Here, the robustness of the
technique to variations in the neutral atmosphere is evalu-
ated. The possibility of vertical structure in neutral winds,
which could affect the accuracy of the proposed technique,
is also discussed.

4.1. Sensitivity to O/N2 and Neutral Temperature
Variations

[55] The accuracy of the MSIS neutral atmospheric model
will have some effect on the performance of the proposed
ion composition estimator. To test the sensitivity to neutral
atmosphere variations we run the estimation scheme on the
example case studies (from section 3) using neutral atmo-
spheric parameters altered from the MSIS values. Differ-
ences between the estimates using MSIS and those using the
altered neutral atmospheres give insight into how varying
O/N2 ratios and neutral temperature affect estimates of
composition. These differences are quantified in the current
discussion as

Dbzc ¼ bz MSIS
c �bz ALT

c

	 

; ð14Þ

where bzcMSIS is the crossover altitude estimated using MSIS
atmosphere and bzcALT is the crossover altitude using an altered
atmosphere (the specific alterations are discussed below).
h·i indicates averaging over the entire data set of interest.
Such averaging is useful as it yields a single numerical
variation in crossover altitude due to altering a particular
feature of the neutral atmosphere and easily quantifies
estimator behavior. Table 1 shows a summary of results of
calculating Dbzc for various altered neutral atmospheres, and
is the basis of the rest of the discussion in section 4.
[56] The first test of how neutral variations affect the

estimator is to alter the O/N2 ratio while keeping the neutral
temperature constant. Neutral composition will have some
effect on the model calculations of equations (2) and (4).
The average neutral mass hmni could vary by as much as a
factor of roughly two, depending on the altitude, which will
affect the temperature profile shape in some way. Results of
processing the data sets for various O/N2 ratios are shown in
Table 1. The third column of Table 1 shows the average
error bar for each data set processed using the MSIS
atmosphere. The fourth and fifth columns show the average
variation of crossover altitude (defined by equation (14))

due to altering the MSIS O/N2 by factors of 1/2 and 2,
respectively. For all data sets and O/N2 ratios, the deviation
from the MSIS reference calculations is less than the aver-
age error bar. Closer examinations of individual estimates in
each data set reveals only minor deviations in bzc estimates
when O/N2 is changed.
[57] A realistic possibility, especially during frictional

heating events, is that both the composition and temperature
of the neutral atmosphere deviate significantly from MSIS
values. To test the robustness of the estimator to simulta-
neous Tn and O/N2 variations, the case study data sets are
processed using the different model neutral atmospheres
shown in the first row of plots in Figure 9. Figures 9a–9c
plot O density, N2 density, and neutral temperature for
three different atmospheres: (1) the standard MSIS atmo-
sphere, (2) a heated atmosphere, and (3) a cooler atmosphere.
The heated and cooled atmospheres were chosen to represent
significant deviations of Tn from reference MSIS values. The
exospheric temperature (Tn∞) for the cooler atmosphere is
900 K, for the MSIS reference is 1100 K, and for the heated
atmosphere is 1300 K. The results of applying the estimation
scheme to the 26 February 2001 data sets using each atmo-
sphere are shown in Figures 9d and 9e. Visual inspection
reveals that altering the neutral atmosphere produces minor
deviations in the estimated effective electric field. The
changes in estimated crossover altitude, however, are more
substantial. The temporal trends of increasing and decreasing
amounts of molecular ions in this event are preserved almost
perfectly, even though the estimates are clearly affected by
varying the neutral atmosphere. Similar analysis of data
spanning 13–14 November 2003 (an extension of the case
study period from section 3.2) produced results very much
like those shown in Figure 9.
[58] The sixth and seventh columns of Table 1 show

average deviations in the value of crossover altitude esti-
mated using atmospheres 2 and 3. These deviations are
larger than the average statistical uncertainties, but still of
roughly the same magnitude. Of course, larger alterations in
the neutral atmosphere from that adopted in the estimator
will produce progressively large errors, but the deviations
used in this analysis are already quite large. The average
differences of 15–20 km are certainly significant, but are
preferable to the alternative of simply specifying a static ion
composition profile.
[59] The estimator sensitivity to other types of neutral

atmospheric variations is quite similar to results summarized
in Table 1. Altering the model neutral temperature profile by
±200 K at all altitudes and varying O/N2 by ±50 % gives
errors of slightly lesser magnitude than those shown in the
sixth and seventh columns of Table 1.

Table 1. Sensitivity of Estimation Technique to Model Input Neutral Atmospherea

1/2 O/N2 2 O/N2 Tn∞ = 1300 K Tn∞ = 900 K
Data Set Beam Position Error Bar Dbzc Dbzc Dbzc Dbzc

26 Feb 2001 mag. Zenith ±13.4 +5.8 −13.1 +18.1 −19.8
13–14 Nov 2003 mag. Zenith ±6.6 +2.7 −5.8 +18.1 −16.4
13–14 Nov 2003 Az 20°, El 70° ±12.8 +4.7 −9.1 +18.7 −15.8
13–14 Nov 2003 Az −99°, El 70° ±11.5 +3.8 −9.5 +17.8 −17.2

aAll table entries are averages over the entire data set and have units of kilometers.
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4.2. Neutral Wind Structure

[60] Our case studies above have highlighted the impor-
tance of including neutral winds in the analysis, but altitude
variability in the winds could also play a significant role in
heating events. Specifically, vertical variations in horizontal
neutral wind velocity could affect ion temperatures by mak-
ing the effective electric field altitude dependent (as indicated
by equation (3)). This would invalidate an assumption used in
the composition estimator: namely, that the effective electric
field is constant with altitude. Whether winds have enough
structure to affect the technique is unclear, but warrants closer
inspection.
[61] Investigating the possible effects of wind structure is

difficult since there are few observations of vertical structure
in zonal and meridional neutral winds at ionospheric alti-
tudes. Rino et al. [1977], Thayer [1998], and St.‐Maurice
et al. [1999] have presented compelling evidence of ver-
tical structure in the E region based on ISR measurements
and analysis of the ion momentum and energy equations.
However, these studies have been limited to regions where
ion composition in known.
[62] Theoretical studies of wind structure by St.‐Maurice

and Schunk [1981] have shown that strong, sustained ion
drifts can produce some structure in neutral wind profiles. In
their simulations, a neutral wind component develops in the
ion drift direction, a response which would lower the
effective electric field (e.g., equation (13)). The neutral wind

component in the ion drift direction maximizes around the
F region plasma density peak, where momentum transfer
from the ions to the neutrals is greatest. In terms of ion
heating, this type of wind profile would decrease ion tem-
perature at the F region peak as opposed to other altitudes.
This effect may be significant to the composition estimator,
which interprets differences between observed ion temper-
ature and model temperatures (calculated with a constant
E?′ ) as being due to variable composition.
[63] Any vertical structure in neutral winds (of the type

simulated by St.‐Maurice and Schunk [1981]) will have a
different effect than variable composition on observed ion
temperature profiles. Figure 10 illustrates this point using
example neutral wind profiles adapted from simulations by
St.‐Maurice and Schunk [1981]. Figure 10a shows typical
winds that develop in response to an extended period of
strong ion flow. The x component of the wind corresponds to
the E? × B direction and the y component is in the direction
opposite to the convection electric field. Figure 10b shows a
comparison of model Ti′ profiles, calculated under various
assumptions, and an average profile (Ti′) corresponding to all
26 February 2001 data for which the E region effective
electric field fell in the range 50–75 mV/m. Each of the
model profiles represent what the standard ISR fitter routines
would output under various circumstances. Model profile 1
is ion temperature using a constant effective electric field
corresponding to observations from 130 to 150 km.
Composition is assumed to be correct and altitude variability

Figure 9. The 26 February 2001 data set processed with three different model neutral atmospheres:
(a) oxygen density, (b) molecular nitrogen density, (c) neutral temperature, (d) estimated effective
electric field, and (e) estimated molecular to atomic ion crossover altitude. The legend in Figure 9a
applies to all plots.
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in neutral winds is assumed negligible. Model profile 2
incorporates winds from Figure 10a to model an altitude‐
dependent E?′ . Model profile 3 incorporates variable com-
position estimated from the average observations, but
assumes a constant E?′ with altitude. Model profile 4 uses
an altitude‐dependent E?′ (again using wind profiles from
Figure 10a) and variable composition.
[64] Careful examination of Figure 10 reveals that the

observations, on average, do not support the existence of
an altitude‐dependent wind profile that maximizes near the
F region peak altitude (∼ 300 km for these data). Instead the
observed high temperature at 150 km and 300 km, the steep
minimum near 200 km, appears support our interpretation of
molecular ion enhancements in the 150–250 km range. The
apparent temperature minimum around 200 km is consis-
tently the right magnitude to be explained by an incorrect
fitter composition profile. It seems unlikely that neutral wind
vertical structure can consistently produce these effects.
Similar analysis of 13–14 November 2003 data yields the
same conclusions.
[65] Time scales associated with wind buildup and com-

position changes seem to favor the interpretation of structure
in ion temperature profiles as being due to an incorrect
fitter composition. The vertical wind structure simulated by
St.‐Maurice and Schunk [1981] represents a steady state
solution to the fluid equations with a constant ion flow
driving the system. In transient situations, the driving ion
flow would slowly build the neutral wind up through col-
lisional momentum transfer. The characteristic time scale for
this process would be roughly the inverse of the neutral ion
collision frequency, probably an hour or longer. For a large
fraction of the initial transient period, neutral winds and the
effective electric field would contain much less vertical
structure than in their final state. This consideration is
important because variations in ion composition occur much

more quickly. Simulations by Zettergren et al. [2010] have
demonstrated that large enhancements in molecular ions due
to frictional heating occur in as little as 20 s. Thus, variable
composition will develop first as a consequence of large ion
drifts that later will produce vertically structured neutral
winds. This does not rule out the possibility of vertical wind
structure, but it does hint that composition variability may
be more commonplace.
[66] Aside from arc‐driven wind changes, other sources of

vertical structure in horizontal winds include atmospheric
tides [e.g., van Eyken et al., 2000; Nozawa et al., 2010] and
gravity waves [e.g., Hickey et al., 2009]. However, it is
unclear whether these processes could have a large effect on
horizontal winds at the F region altitudes of interest to this
paper.

4.3. Incorporating Additional Measurements Into
Analysis

[67] The analysis presented in sections 4.1 and 4.2 sug-
gests that if the neutral winds and temperatures are properly
constrained, the composition estimator should be accurate
(even if O/N2 is not precisely known). The most straightfor-
ward approach to addressing errors due to neutral temperature
variations and wind structure would be to incorporate direct
measurements into the analysis developed in this work.
Fabry‐Perot interferometers (FPIs), often used in studying
neutral dynamics in the auroral zone [e.g., Cierpka et al.,
2000], are capable of resolving neutral temperatures and
drifts from multiple‐position airglow measurements. How-
ever, the derived quantities are representative of the altitude
of the emission layer. Untangling the effects of winds, tem-
peratures, and composition in our studies requires knowledge
of Tn and un? at both E and F region altitudes, so emissions
from both these regions are needed. The 557.7 nm and
630.0 nm oxygen emissions, peaking at around 110 km

Figure 10. A comparison of average observed temperature profile with model calculations made
under different assumptions. (a) Structured wind profiles adapted from St.‐Maurice and Schunk [1981].
(b) Model calculations and average temperature profile for all 26 February 2001 records having significant
heating. Profile 1 was modeled assuming that the fitter composition is correct and that there is no vertical
structure in the neutral wind. Profile 2 incorporates an altitude‐dependent effective electric field calculated
from the wind profiles in Figure 10a. Profile 3 has been adjusted to mimic what the standard fitter routines
would output if the true ion composition profile had zc = 245 km. The effective electric field has been held
constant with altitude in profile 3. Profile 4 has been modeled with an altitude‐dependent effective electric
field and adjusted for a composition profile with zc = 245 km.
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and 250 km, respectively, are the best candidates for such
an analysis. Thus, using multiposition FPI measurements
of these airglow/auroral features, one may be able to
suitably constrain Tn(z) and un?(z) and address sources of
error in our current analysis. However, this is a substantial
project beyond the scope of the current research and is left
to future inquiries.

5. Summary and Conclusions

[68] This work has developed a method to estimate ion
composition from ISR data during instances of ion frictional
heating. The method self‐consistently models ion tempera-
ture profiles during heating from effective electric field
calculations. These modeled temperature profiles are com-
pared to the fitted ion temperature profiles, and differences
are interpreted in terms of the ion composition needed to
bring the fitted and modeled profiles into agreement. Tem-
perature anisotropies, which are commonplace in auroral
regions [St.‐Maurice and Schunk, 1979], are properly
accounted for in the modeling. The composition estimator is
applicable to experiments with beam positions at angles of
� < 30° to the geomagnetic field, where the IS spectra can
be interpreted in terms of line‐of‐sight temperature. Neu-
tral wind effects are partially accounted for through the use
of effective electric fields in the model calculations (as
opposed to electric fields in the Earth‐fixed reference
frame). This feature is shown (through analysis of 13
November 2003 data) to be critical to the accuracy of the
technique.
[69] The ion composition technique is applied to two

example data sets: (1) magnetic zenith observations of
ion heating near an auroral arc on 26 February 2001 and
(2) multiple‐beam‐position observations of ion heating and
electric fields on 13 November 2003. Results from both case
studies demonstrate the expected correlation of ion heating
and enhancements of molecular ions driven by the temper-
ature‐dependent reaction of equation (1). Intense ion heating
adjacent to an auroral arc, during the 26 February 2001
event, is observed to produce large upward fluxes of NO+

near the F region peak. The 13 November 2003 case study
demonstrated the validity of the proposed estimation scheme
with measurements oblique to the magnetic field. Substan-
tial neutral winds during this case study are inferred through
comparison of electric fields and effective electric fields.
[70] The research presented herein yields the following

conclusions and comments.
[71] 1. Estimates of enhanced molecular ions in regions of

strong effective electric fields are consistent with theoretical
simulations. This result serves to effectively verify the
accuracy of the ion composition estimation technique.
[72] 2. Regions of NO+ upflow adjacent to an auroral arc

(in the 26 February 2001 data) are found to be plausible
sources for outflowing molecular ions. These type 1 upflows
likely have a different ion content than type 2 upflows ini-
tiated within auroral arcs.
[73] 3. Effective electric fields during frictional heating

events are often quite different from the electric field in the
Earth‐fixed frame of reference. Thus, it is critical to account
for the neutral wind when analyzing ion energy balance.
[74] 4. The composition estimator developed in this work

is reasonably robust to neutral atmospheric parameters used

in the modeling of ion temperature. Variations in Tn of
±200 K and O/N2 of a factor of two from the standard MSIS
values produce biases of similar magnitude to statistical
uncertainty inherent in the data.
[75] 5. Vertical structure in neutral winds may have a

substantial effect on the accuracy of the proposed technique.
However, initial data analysis appears to reveal no sustained
wind structure during to the case studies presented.
[76] 6. A suitably configured Fabry‐Perot interferometer

system could likely address most major sources of uncer-
tainty for the proposed technique.
[77] The composition estimator is well suited to studies of

upflowing ion composition around auroral arcs, and to
indirect studies of the influence of neutral winds on ion
composition and density structure. The approach is remi-
niscent of previous attempts to resolve ion composition in
auroral regions [Häggström and Collis, 1990], with several
very important exceptions. The technique does not require
multistatic measurements or multiple‐beam positions to
function properly, and is therefore suited to experiments with
relatively high sampling rates (e.g., 26 February 2001 event
used 30 s data). Thus, the method is uniquely qualified to
resolve dynamic variations in composition that occur near
auroral arcs. Models used in this study are more sophisticated
than those used in past attempts to calculate ion composition
at high latitudes and include the significant effects of tem-
perature anisotropies and partially account for the influence
of neutral winds on ion heating. Last, the validity of the
technique is demonstrated through careful comparisons with
simulations and thorough error analysis. Gaimard et al.
[1996] have also used a similar model of ion heating to
constrain Ti, but applied their data analysis to individual
spectra, instead of focusing on interpretation of entire com-
position and temperature profiles, as in this work.
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