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Comparison of Terrain Effects in Divergent versus 
Non-Divergent Barotropic Models

Tyler E. Green & Thomas A. Guinn

Abstract

The effects of including terrain in divergent and non-divergent, single-level barotropic models are examined in detail using a global spectral 
model. The non-divergent model solves the barotropic vorticity equation, while the divergent model solves the shallow water equations. In 
both models, the impact of terrain is evaluated by examining the evolution of the predicted heights of a pressure surface. Four simulations 
with initially zonal flow were run for each model using a two-dimensional Gaussian mountain shape for terrain, with two different mean 
fluid depths of 5,000 m and 7,500 m, and two different peak mountain heights of 2,000 m and 4,000 m. One additional simulation was 
completed using real North American terrain, also with initially zonal flow. As the mean fluid depth was decreased, greater differences 
in the predicted height fields between the two models were observed, with the shallow water model producing a more amplified leeside 
trough. The differences are caused by increased convergence downstream of the terrain in the shallow water model compared to the baro-
tropic vorticity equation model as the mean fluid depth is decreased. As the mean fluid depth is increased in the shallow water model, the 
two different models show little difference.

Introduction 
Barotropic models are one of the simplest of 

meteorological models and were the first used for 
successful numerical weather prediction in the early 
1950’s (Charney et al, 1950). Single-level barotropic 
models are broken into two categories: barotropic 
vorticity equation (BVE) models and shallow water 
models (SWMs), also known as barotropic primitive 
equation models (American Meteorological Society, 
2018). Barotropic models assume the velocity of the 
atmospheric winds are constant with height. Although 
this assumption is limiting considering the chaotic and 
non-linear nature of Earth’s atmosphere, they have proved 
valuable for studying fundamental atmospheric motions 
because of their simplicity. Bolin (1955) stated, “Above 
all it is important to start from the simplest possible idea 
about the dynamics of the atmosphere and gradually 
proceed to more complicated models. In doing so we 
can get a better understanding of the relative importance 
of various processes in the atmosphere. In that sense 
the barotropic model offers an excellent starting point.”  
Because of this, barotropic models continue to be widely 
used to study a variety of phenomena, especially those 
related to tropical systems (e.g., Nieto-Ferreia and 
Schubert, 1997; Schubert et al, 1999; Hendricks et al, 
2010; Hendricks et al, 2016). 

In this paper, these two aforementioned barotropic 
models are used to study orographic Rossby waves, and 

the barotropic potential vorticity equation (1) offers a 
simple explanation for the formation of these waves.

In a barotropic fluid, potential vorticity   is 
materially conserved following the fluid.  In (1),  ζg 
represents geostrophic relative vorticity, f is the Coriolis 
parameter given by 2Ωsinϕ, where Ω is the Earth’s 
angular velocity and ϕ is latitude, h represents the height 
of the fluid’s free surface above a specified reference 
level, and  Dh ( )/Dt, is the horizontal material derivative 
following the fluid motion. Due to conservation of 
potential vorticity, as air passes over the leeside of a 
mountain, the height between the Earth’s surface and 
the free surface increases causing an increase in the fluid’s 
relative vorticity, which generates a “leeside trough” 
downwind of mountain ranges (Holton, 1992).This 
phenomenon can lead to surface leeside cyclogenesis 
and is partly responsible for the creation of surface lows 
downwind of the Rocky Mountains that play in an 
important role in the formation of severe weather in the 
U.S. Great Plains. 

In the late 1950’s and early 1960’s, the atmospheric 
modeling community attempted to include terrain 
effects and surface friction in barotropic models 
because forecasts made without these effects 
consistently produced errors in mountainous regions 
(Cressman,1958; 1960). As barotropic models started 
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to give way to more complex models such as multi-level 
primitive equation models, the inclusion of topography 
in single-level barotropic models seemingly went by the 
wayside, as newer multi-level models include topography 
in a more natural manner.

A review of the literature suggests there has been no 
study comparing the effects of terrain in a single-level 
non-divergent barotropic model (i.e., BVE model) 
versus a single-level divergent model (i.e., SWM). In 
fact, there are no studies in the meteorological literature 
that include terrain effects in SWMs. This is likely due 
to two reasons, the difficulty of initializing a SWM 
with terrain while suppressing unwanted gravity waves, 
and the modeling community’s desire to develop, as 
quickly as possible, more complex primitive equation 
models capable of representing multiple vertical levels. 
Therefore, the purpose of this paper is to investigate 
the inclusion of topography in these two single-level 
barotropic models to find any differences in the flow 
evolution, since the inclusion of terrain is fundamentally 
different for each.

The remainder of the paper is structured in the 
following way. The Model Development and Methods 
Section provides the methods used in the study and 
provides a detailed description of the equations for the 
two different models as well as a detailed discussion of 
the differences in how terrain topography is incorporated 
in the model equations. In the Results Section, we 
present the output from four different idealized 
simulations using two different fluid depths (for the 
SWM), two different idealized topographical mountains, 
and one simulation using actual North American 
topography. In the Discussion Section, we offer insight 
as to why differences between the model simulations 
occur.

Model Development and Methods
The incorporation of terrain is uniquely different 

between the BVE and SWM.  So before describing the 
experiments, we first provide a detailed discussion of 
the model basics as well as how the effects of terrain are 
incorporated into each respective model.

Quasi-Geostrophic BVE (Non-Divergent Barotropic 
Case)

To obtain the form of the BVE used in this study, we 
start with the barotropic potential vorticity equation 
(Holton, 1992).

In (2), Vh represents the horizontal wind vector, ζ is 
the vertical component of relative vorticity, and f is the 
Coriolis parameter. Using the mass continuity equation 
in isobaric coordinates:

where ω=Dp/Dt is vertical velocity and p is pressure, (2) 
can be rewritten as:

Equation (4) states that following the motion of an air 
parcel, the only mechanism that can change the parcel’s 
total vorticity (ζ+f  ) is horizontal velocity divergence 
or convergence. The right-hand side (RHS) of this 
equation is usually referred to as the “divergence term” 
or “stretching term,” and for the purposes of this study, 
this term must be expressed in terms of terrain. Before 
this is done, we simplify the RHS of (4) by replacing the 
absolute vorticity (ζ+f ) by the Coriolis parameter solely. 
On the synoptic scale, this assumption can be made 
by performing a scale analysis, which shows relative 
vorticity is usually much less than Coriolis parameter in 
magnitude. This same assumption is commonly made 
when deriving the quasi-geostrophic vorticity equation 
(e.g., Lackmann, 2012; Holton, 1992). The barotropic 
assumption is then made by integrating both sides of 
equation (4)  in pressure assuming the wind is invariant 
with height, and that the vertical velocity vanishes when 
pressure equals zero (i.e., ω(0)=0):

where ps represents the surface pressure. From this 
equation we obtain the barotropic vorticity equation:

To obtain an equation that includes terrain, we need 
to represent the RHS of (6) with the spatial gradient of 
terrain. To do so, we expand the surface vertical velocity, 
ωs, in height coordinates below:
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In a BVE model, the total mass of the fluid above a 
point at the Earth’s surface never changes with time. 
Because of this, the local time rate of change of surface 
pressure is set to zero in (7), which is the same technique 
used in DeCaria and Van Knowe (2014). Equation (7) is 
then reduced to the following:

Lastly using the hydrostatic relationship:

where ρ represents air density and z is the height of the 
pressure surface, combined with the equation of state, 
the final version of the BVE used in this study is given 
below.

In (10), g is gravity, Rd is the gas constant for dry air, Ts 
is the surface temperature of Earth, and zs is the surface 
(terrain) height. The last forcing term on the RHS of 
(10) is a parameterization of the “divergence” term from 
the vorticity equation, and it represents how flow over 
sloped terrain can modify relative vorticity with time. 
A similar form of (10) was used for the first successful 
instance of numerical weather prediction (Charney, 
1950). The BVE is referred to as a “filtered equation,” 
meaning it does not support gravity or acoustic waves 
as solutions, leaving Rossby waves as solutions (Decaria 
and Van Knowe, 2014). Gravity waves, for example, are 
not usually of meteorological interest on synoptic scales, 
and are therefore not of interest for this study. However, 
they are supported in the SWM equations, which are 
discussed next.

SWM (Divergent Barotropic Case)

The SWM equations consist of a set of three 
prognostic equations, one each for divergence, vorticity, 
and geopotential height. These three equations stem 
from the Navier-Stokes and mass continuity equations 
for a homogeneous, incompressible, inviscid, and 
hydrostatic fluid (Hack and Jakob, 1992). These two 
equations, respectively, are presented below.

In equations (11) and (12), Φ represents the 
geopotential of the pressure surface above some reference 
height, and w=Dz/Dt is the vertical velocity of the free 
surface. To obtain the vorticity equation, the vertical 
component of the curl of equation (11) is taken:

To obtain the divergence equation, the horizontal 
divergence of equation (11) is taken:

In the above equation δ represents horizontal divergence. 
To obtain the tendency equation for Φ, the continuity 
equation (12) is integrated from the terrain height (zs) 
above some reference level (taken to me MSL in this 
study) to the height of the free surface (η), while again 
assuming a barotropic atmosphere.

Performing this integration and simplifying, the 
continuity equation gives a time tendency equation 
for the perturbation geopotential of the free surface 
that includes terrain. (See Appendix A for complete 
derivation).

In (16), Φ' is the perturbation geopotential of the 
pressure surface from the mean state,  Φ , which is also 
representative of the mean depth of the pressure surface. 
Equations (13), (14), and (16) make up the prognostic 
equations for the SWM used in this study.

The SWM equations are also referred to as the 
barotropic primitive equations because they contain 
prognostic equations for vorticity, divergence, and the 
height of a free pressure surface. In addition, these 
equations are often referred to as “unfiltered” because 
they support gravity-wave solutions. Special care must be 
taken in the initialization of the SWM to ensure gravity 
waves are not prominent in the model’s solution, leaving 
Rossby waves as the dominant feature.

Once again, our goal is to evaluate differences in the 
forecasts of a single pressure surface using the BVE vs 
the SWM when terrain is present. Although both sets of 
equations are barotropic, they differ significantly in how 
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they represent divergence. The BVE is a single prognostic 
equation describing how relative vorticity changes on 
a free pressure surface, while the SWM describes how 
vorticity, divergence, and fluid depth evolve. To see how 
the vorticity equations for the two different frameworks 
differ, (13) is rewritten as:

which is the same form of vorticity equation as (2) 
before vertical integration. Therefore, the difference 
between the BVE (10) and the vorticity equation of the 
SWM (17) lies in the “divergence term.” For the BVE, 
this term is parameterized in terms of a terrain gradient 
whereas in the SWM, divergence is a prognostic variable 
that can impact both the vorticity and geopotential 
tendencies. In the SWM system, the effects of terrain 
are incorporated in the mass continuity equation 
(15), which becomes the prognostic equation for the 
geopotential of the free surface (16).

It is also important to discuss how the results from 
the two models are compared, given that the BVE 
model predicts only relative vorticity, while the SWM 
predicts relative vorticity, divergence, and geopotential. 
The results of the simulations will be compared using 
geopotential height. To produce a geopotential height 
field from the results of the BVE model, the non-linear 
balance equation (NLBE) is solved (Hack and Jacob, 
1992). This equation is discussed in more detail in the 
next sub-section and is provided in full in Appendix B. 
This method of generating a geopotential height field 
from the predicted variable of the barotropic vorticity 
equation clearly is an extra step that can generate errors 
in the model forecasts; however, with the simplicity of 
the initial fields used to test the two models (discussed in 
the next subsection), this method is sufficiently accurate 
for this study and was even used with early operational 
models to initialize their simulations (Charney, 1955).

Experimental Setup and Model Specifics

For this study, we performed five different simulations 
for both the BVE model and SWM. All of the 
simulations were developed using MATLAB. The BVE 
codes followed Krishnamurti et al (2006), while the 
SWM codes followed Hack and Jacob (1992).  The 
first four simulations presented used a two-dimensional 
Gaussian shape as topography, while the last simulation 
used real terrain for North America.

The first four simulations presented in this study 

initialize globally zonal flow while changing both the 
mean depth of the fluid as well as the height of the 
smooth two-dimensional Gaussian shape (hereafter 
referred to as “Gaussian mountain”) representing terrain. 
These four simulations were run with peak Gaussian 
mountain heights of 2,000 and 4,000 m, and mean 
fluid depths of 5,000 and 7,500 m. For each simulation, 
the Gaussian mountain is centered on 252˚ longitude 
and 40˚ latitude, placing it in the general region of the 
Rocky Mountains, simply for visualization purposes. The 
Gaussian mountain has a full-width at half maximum of 
3˚ and 5˚ in the longitudinal and latitudinal directions, 
respectively. The mean depth of the fluid and the peak 
height of the Gaussian mountain were adjusted to 
highlight differences between the model equations. The 
mean depth of the fluid only plays a role in the SWM, 
and directly impacts the geopotential tendency, which in 
turn affects the divergence and vorticity tendencies.  In 
addition, the mean depth also affects the pure gravity-
wave speed. A table that summarizes the variables for 
the four different simulations is provided below. The 
simulation number corresponds to frames in Figures 1-4, 
looking at them from left to right, and top to bottom.

Simulation Mean Fluid Depth Peak Mountain 
Height

1 5,000 m 2,000 m
2 7,500 m 2,000 m
3 5,000 m 4,000 m
4 7,500 m 4,000 m

Table 1: Summary of mean fluid depth and peak mountain height 
for the four idealized simulations. Note that each of these four simu-
lations are done for both the BVE and SWM.

By changing the peak height of the Gaussian 
mountain, while keeping the full width at half maximum 
constant, the terrain surface gradients can effectively be 
changed, which impacts the forcing term on the RHS 
of equation (10) in the BVE, as well as the first forcing 
term in equation (16) for the tendency of geopotential in 
the SWM. Because the flow is initialized as zonal, we can 
make comparisons in the four different simulations to 
analyze how changing these variables affects the structure 
of the orographic Rossby wave generated on the leeside 
of the Gaussian mountain.

For the final simulation, we initialized the model 
with the same zonal flow as the previous simulations 
but used real terrain obtained from the National 
Center for Environmental Information on a high 
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spatial-resolution grid (0.0167˚×0.0167˚).  The terrain 
data was then bi-linearly interpolated to the model grid 
for use. This simulation used a mean depth of 5,640 m 
to approximate the height of a 500 hPa forecast.  The 
simulations highlight differences in the two model 
forecasts by using terrain that is less smooth than the 
simple Gaussian mountain.

For both models, we used the Galerkin (spectral) 
method to integrate the prognostic equations on the 
sphere.  Spherical harmonic basis functions were used 
to represent scalar fields on the globe. For the BVE 
model, the prognostic equation is transformed into a 
similar form as Krishnamurti et al (2006) but with an 
extra vorticity forcing term representing terrain. The 
SWM follows the development by Hack and Jakob 
(1992) with a modification to the prognostic equation 
for geopotential representing terrain effects. Each model 
simulation used a 256 × 156 (longitude points × latitude 
points) Gaussian grid with a triangular truncation of 85 
(T85) to avoid aliasing errors of quadratically non-linear 
terms. This specified grid gives a maximum grid spacing 
of 1.4˚ at the equator with a maximum effective grid 
spacing of approximately 2˚.

For the BVE model, the initial time step is performed 
using a forward Euler scheme in spectral space, followed 
by centered-in-time integration in spectral space for all 
remaining time steps. A 100 s time step was used for all 
time steps in the BVE model.  For the SWM, we used a 
semi-implicit scheme following Hack and Jakob (1992), 
where the prognostic equations for geopotential and 
divergence were integrated using an implicit, trapezoidal 
scheme, while the prognostic equation for vorticity was 
integrated explicitly using a centered-in-time scheme. 
The semi-implicit method was chosen for the SWM to 
avoid violating Courant-Friedrichs-Lewy (CFL) criteria 
for the faster, pure gravity waves.  This allowed a time 
step approximately six times larger than the theoretical 
value satisfying the CFL criteria (Bourke, 1972). The 
initial time step for the SWM consisted of six explicit 
time steps of length dt/6 seconds, where dt is the 
time step used for the semi-implicit scheme to avoid 
violating the CFL criteria during these explicit steps. 
The remaining SWM time steps were completed using 
the semi-implicit method discussed above, all with 100 s 
time steps.

For the BVE model (10) the surface temperature in 
the terrain forcing term was assigned a constant value 
of 287K for all simulations used in this study. For given 
values of the wind magnitude and terrain gradients, 

the range of normal Earth temperatures would not 
significantly alter the magnitude of the forcing term, 
therefore justifying the use of a constant temperature 
during the simulations.

To initialize the stream function to produce globally 
zonal flow, we used a single term spherical harmonic 
expansion of rank 0 and degree 1 with an amplitude of 
-2×1010 m2 s. This resulted in a maximum zonal wind 
speed of approximately 30 m s-1 at the equator and 
approximately 23 m s-1  at 40˚ N over the location of the 
Gaussian mountain peak.
In equation (18) Y represents the fully normalized 

spherical harmonic (Yn
m), where m is the rank, n is the 

degree, λ represents longitude, and ϕ represents latitude.
From this streamfunction, an initial vorticity and 

non-divergent wind field are both easily calculated, 
which is done for both the BVE model and the SWM. 
However, for the initialization of the SWM, divergence 
and geopotential must also be specified before model 
integration. To match the initial condition in the 
barotropic vorticity model, the initial divergence 
field is set to zero. As mentioned earlier, because the 
SWM equations are “unfiltered” and allow gravity 
wave solutions, the SWM must be initialized with 
balance between the mass and wind fields to minimize 
the generation of gravity waves early in the model 
simulation. To initialize the geopotential field for the 
SWM, the NLBE is solved using the initial winds 
obtained from the specified streamfunction. Using the 
NLBE also ensures the SWM initially minimizes the 
tendency for gravity wave as well.

As mentioned earlier, one of the likely reasons there 
has not been research with terrain incorporated in single-
level SWMs is the difficulty in initializing the model 
with terrain while avoiding the generation of spurious 
gravity waves due to the initial imbalance of the mass 
and wind fields. To avoid this problem, the model terrain 
is artificially grown over a 12-hour period using a linear 
combination of Hermite polynomials given below (in 
units of hours). 
This amplitude growth function produces a smooth 

polynomial whose amplitude begins as 0 and takes on a 
value of 1 at 12 hours.  Another useful property of (19) 
is the function’s derivatives at the endpoints are both 
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zero, making the mountain grow smoothly at a slow rate 
to start and then taper off smoothly at the end of the 
12-hour period. This helps minimize the excitation of 
gravity waves while the terrain is being included.  The 
results of the five simulations are presented next. 

Results
Figures 1-4 compare the results of the 48-hour BVE 

model and SWM simulations at 12, 24, 36, and 48 
hours using the following structure: the mean depth of 
the simulation varies horizontally across the figure, while 
the Gaussian mountain height varies vertically in the 
figure. Throughout the course of the 48-hour simulation, 

Figure 1: 12-hour forecast results from the four different simulations done with the Gaussian Moun-
tain. All contours are in decameters.

Figure 2: Same as figure 1 but for 24-hour forecast.
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the most noticeable differences between the two model 
simulations occur for the mountain height of 4,000 m 
and mean fluid depth of 5,000 m, because the SWM 
creates a much larger amplitude leeside trough than the 
BVE model. Another less noticeable difference between 
the two model runs occurs in the simulation using a 
Gaussian mountain height of 2,000 m and a mean 
depth of 5,000 m, where the leeside trough is slightly 
more pronounced in the SWM than in the BVE model. 

Interestingly, both simulations with a mean fluid depth 
of 7,500 m had nearly identical results in the predicted 
height fields.

Examining the simulation using real terrain data for 
North America (Fig. 5), we see similar patterns in the 
predicted height field as observed in the simulation 
using a Gaussian mountain peak of 4,000 m and a 
mean depth of 5,000 m. This would be expected given 
the mean depth used in this simulation is 5,640 m 

Figure 3: Same as figure 1 but for 36-hour forecast.

Figure 4: Same as figure 1 but for 48-hour forecast.
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and the maximum topography height in the Rookies 
is approximately 3,000 m. Just as in the previous 
Gaussian mountain simulation, the SWM created a 
more pronounced trough in the height field, even to 
the extent of producing a closed low-pressure center 
downwind of the topography in Greenland. It is 
also apparent that the leeside waves formed in this 
simulation by both models have much higher amplitudes 
than in any of the simulations that used a Gaussian 
mountain. This is likely due to the topography of the 
Rocky Mountains extending farther north than did 
the Gaussian mountain, as well as the Sierra Madre 
mountains extending farther south than the Gaussian 
mountain. Because of the spatial extent of these two 
mountain ranges at approximately the same longitude, 
a constant source of terrain-driven relative vorticity is 
generated to the east along the entire latitudinal extent 
of these ranges. The source of relative vorticity along 
the two mountain ranges would cause the leeside wave 
to continually deepen in amplitude throughout the 
simulation before propagating eastward.

Discussion
From the results presented in the previous section, it 

is apparent there is not a noticeable sensitivity of the 
BVE model to changing the height of the topography, as 
it produces similar results for both Gaussian mountain 
heights. There is a noticeable sensitivity in the SWM, 

however, to a change in the mean fluid depth (it is 
important to note that changing the mean fluid depth 
has no impact on the BVE model). When the SWM 
was run with a smaller mean depth (5,000 m in the 
idealized simulations and 5,640 m in the simulation 
using real terrain) and interacted with taller topography, 
it produced much deeper leeside waves than when a 
larger mean fluid depth was used. Because of this, we 
discuss possible reasons why changing the mean depth in 
the SWM causes the solutions in the two frameworks to 
diverge.

For simplicity, we will consider only the SWM and 
BVE simulations run with a Gaussian mountain peak 
height of 4,000 m. Examining the bottom left panel 
of Fig. 4, we observe that at the end of the SWM 
simulation with a mean depth of 5,000 m, there is a 
large difference between the amplitudes of the leeside 
troughs of the SWM and the BVE model simulations. 
This difference in amplitude would indicate a difference 
in the relative vorticity in the base of these troughs. 
The difference in the vorticity equations was discussed 
in the Methods Section, and to test how divergence is 
handled between the two separate frameworks’ vorticity 
equations, the relative vorticity tendency due to the 
divergence term for each framework was plotted versus 
time for a single grid point. This point was located at 
40˚ North and 100˚ West, which lies just east of the 
mountain. Examining Fig. 6, the relative vorticity 

Figure 5: Results of full 48-hour simulations using real terrain for North America. All contours are in 
decameters.
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forcing due to divergence is stronger in the SWM 
simulations for both fluid depths (the BVE model 
has the same forcing for both simulations because it 
does not depend on mean depth).  More specifically, 
looking at the left panel in Fig. 6, when the mountain 
reaches its peak height at 12 hours (and when the 
forcing for relative vorticity due to divergence reaches 
a maximum) the magnitude of the forcing in the 
SWM is approximately eight times larger than that of 
the BVE model. Again, it is important to note that in 
the BVE model, the relative vorticity term is omitted 
from the divergence term in the vorticity equation for 
synoptic scale motion (see Methods). The same test 
was done with the inclusion of relative vorticity in the 
forcing term for the BVE model, and the differences 
proved to be negligible (not shown). The right panel 
in Fig. 6 shows that even with a larger fluid depth, the 
forcing for relative vorticity by the divergence term is 
again larger in the SWM, but by a smaller margin.  In 
addition, increasing the mean fluid depth decreases the 
difference between the magnitude of the forcing from 
the divergence term in the two frameworks.  This makes 
the structure of the forecasted height match that of the 
BVE model more closely, which is evident in the two 
right panels of Fig. 4. 

This analysis helps to explain the difference between 
the BVE model and SWM forecasts due to changing 
the mean depth.  However, a more in-depth look at the 
sensitivity of just the SWM alone to mean fluid depth 
was also desired. To do this, we plotted the atmospheric 
divergence, along with the individual forcing terms that 

comprise the geopotential tendency, at two model grid 
points, one at 40˚ N and 100˚ W, and one at 40˚ N and 
90˚ W.  For each point, we used the same mean fluid 
depths as in the previous experiment and a Gaussian 
mountain height of 4,000 m. In the geopotential 
tendency equation (16), we refer to the first forcing 
term on the RHS as the mass flux term, and we refer 
to the second term on the RHS as the divergence term. 
Looking at the left two panels in Fig. 7, there is a strong 
negative correlation between the atmospheric divergence 
and geopotential tendency (divergence is negative and 
geopotential tendency is positive) in the 5,000 m mean 
depth simulation, with the divergence term accounting 
for most of the forcing for geopotential tendency at 
40˚ N and 100˚ W. This negative correlation is also 
seen in the right two panels in Fig. 7, and we clearly see 
the magnitude of the atmospheric divergence for the 
simulation with mean depth of 7,500 m smaller than 
it was for the mean depth of 5,000 m, which therefore 
had a lesser impact on the geopotential forcing. We 
also observed the geopotential tendency at this point 
just downwind of the mountain was positive, which is 
consistent with the bottom left panels of Figs. 1-4, where 
height rises were found. 

Examining Fig.8, which plots the same variables as 
discussed above but at 40˚ N and 90˚ W (which is 
aligned better with the track of the leeside trough) this 
negative correlation between the atmospheric divergence 
and the geopotential tendency is seen again (divergence 
is positive and geopotential tendency is negative). 
In both bottom panels, atmospheric divergence is 

Figure 6: Comparison of vorticity tendency due to the divergence term in SWM vs BVM for two 
different mean fluid depths and mountain peak of 4,000 m.
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controlling the geopotential tendency at this location, 
as the two forcing terms are similar due to the near-zero 
contribution of geopotential forcing from the mass flux 
term. The larger magnitude of divergence is seen again in 
the simulation with 5,000 m mean depth, which causes 
a larger negative geopotential tendency. This is again 
consistent with the height falls observed as the leeside 
wave moves from west to east over this point during the 
48-hour simulation.

This study demonstrated clear differences in the effects 
of terrain in divergent and non-divergent barotropic 
models because the SWM can create divergence 
throughout the course of its simulation, while the BVE 

model cannot. Changing the gradient of the terrain 
did not have as large of effect on the differences in the 
simulations between the two models as did changing the 
mean fluid depth. This becomes especially clear as the 
mean depth of the SWM is decreased.  The decreased 
fluid depth resulted in greater magnitudes of divergence 
generated on the leeside of terrain, which had a large 
impact on the height tendency.  This, in turn, created 
deeper leeside waves. As the mean depth is increased, the 
results of the two models start to resemble each other 
very closely, which is seen in the two right panels in Figs. 
1-4.

While this research has limited use in operational 

Figure 7: Comparison of atmospheric divergence and geopotential forcings for two different mean 
depths in the SWM. Mountain height used was 4,000 m.

Figure 8: Comparison of atmospheric divergence and geopotential forcings for two different mean 
depths in the SWM. Mountain height used was 4,000 m.
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forecasting, it does demonstrate the impact terrain 
can have on simulations attempting to isolate basic 
dynamical features using barotropic models. This is 
especially true since some SWM studies over flat terrain 
have used fluid depths as low as 222 m (Nieto-Ferreira 
and Schubert, 1997). If terrain is included, increases 
in the fluid depths to avoid “bottoming out” (i.e., a 
negative fluid depth) could lead to significantly different 
results, which should be considered.  As mentioned 
in the Methods Section, using single level barotropic 
models offer the benefit of their simplicity. Although 
the model equations seem complex, the results of the 
simulations can be more easily explained by the model 
equations compared to, for example, if the full set of 
seven governing equations were used. However, there 
are more complex interactions in the atmosphere that 
can only be represented in a model by using multiple 
vertical levels. For example, in a baroclinic atmosphere 
(where pressure surfaces and density surfaces intersect), 
temperature advections occur on the pressure surface 
and can only be calculated if the model has two or more 
vertical levels. More complex non-barotropic interactions 
could cause the development of the orographic Rossby 
waves in our simulations to be much different, and in 
this way, our study of orographic Rossby waves is limited 
to only pure barotropic effects, which are not often 
observed in the real atmosphere. As Bolin stated in the 
quote provided in Section 1, the barotropic model is 
a good starting point for understanding the dynamics 
of the atmosphere, and that we should gradually 
proceed to more complicated models. The next level of 
complication to be added on to this work would be to 
use multiple vertical model levels and include baroclinic 
effects to analyze the impacts on how these processes 
change the development of these waves.
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Appendix A

Derivation of the Geopotential Tendency Equation with Inclusion of Bottom Topography

To derive the geopotential tendency equation with bottom topography, we first start with a statement of the 
incompressible continuity equation, where w is the vertical velocity of the free surface, ∇ is the horizontal gradient 
operator, and V is the horizontal wind.

The continuity equation is then integrated throughout the depth of the fluid. Looking at (A.1), this depth is from 
z=hB to z=η, where hB is the height of the surface terrain above the reference level z=0, and η is the height of the free 
surface above the reference level  z=0.

In a barotropic atmosphere, the winds, and therefore the divergence of the winds, are both invariant with height. 
Making this assumption, (A.2) becomes:

Using the definition of the total derivative, the left-hand side of (A.3) is expanded below.

The local rate of change of bottom topography  	 is treated as zero and vanishes. Applying the above assumption 
and combining terms on the LHS, we obtain the following equation.

Figure A.1: Shallow water cross section showing different variables for the inclusion of terrain.
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We now break η into a mean height	 above the reference level z=0 seen in (A.1) and a perturbation height h´, also 
seen in (A.1). Substituting this into the above equation, we obtain the following.

Noting that the mean height does not vary with time or space, the above equation simplifies to:

Using the following vector expression, where a is an arbitray scalar and V is an arbitrary vector:

Equation (A.7) can be rewritten as:

Multiplying (A.9) by gravity to obtain the equation in terms of geopotential instead of height and substituting “δ” 
for (∇•V), we obtain the geopotential tendency equation used for this study.
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Appendix B

The Non-linear Balance Equation

The non-linear balance equation is used to initialize a height and wind field while eliminating the initial tendency 
for gravity wave formation.  The equation results from the divergence equation shown below.

For more practical use, the divergence equation is expanded below in spherical coordinates.

In (B.2), μ=sinϕ where ϕ represents latitude, λ represents longitude, and η represents the absolute vorticity. To 
obtain the non-linear balance equation, the local time rate of change of divergence is set to zero, and the Laplacian 
of the geopotential is solved for.

Equation (B.3)  appears complicated and would seem difficult to solve without the use of spectral methods. 
By using the spectral method on a sphere in which the spherical harmonics are eigen functions of the Laplacian 
operator, the above equation is solved relatively easily given an initial wind field.  The result is the initial perturbation 
geopotential field that is in balance with the initial wind field.  Note that while the solving for the perturbation 
geopotential is relatively straightforward, the Laplacian operator does prevent the solution of a unique actual 
geopotential field. This perturbation geopotential field is in balance with the initial wind field, which prevents 
the development of spurious gravity waves at the start of the simulation. This method was used to initialize all 
perturbation geopotential fields for the SWM in this study.
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