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AN OPTIMAL CONTROL ALGORITHM FOR RAMP METERING 
OF URBAN FREEWAYS

Li Shin Yuan and John B. Kreer 
Michigan State University 
East Lansing, Michigan

Abstract

An urban freeway is treated as a dynamic 
process. A state model for the freeway is 
obtained with sectional traffic densities as states 
and entrance flow rates as controls. A linear 
programming problem is solved to obtain the 
optimal freeway densities and entrance flow 
rates under steady-state conditions, and a state 
regulator is used to minimize the deviations in 
traffic densities from these optimal steady-state 
values.

Introduction

It is well established by theoretical and 
experimental work that a plot of the steady- state 
flow rate, y, (in vehicles per hour) as a function 
of the traffic density, x, (in vehicles per mile) 
for a long uniform section of freeway or street 
with no exit or input points is of the general form 
shown in Figure 1.1 It follows that the density 
on any freeway will eventually exceed the point 
of maximum flow rate if access is uncontrolled 
under heavy demand. Consequently, maximum 
effective use of any freeway facility, or surface 
street network, whether of good or bad design 
and construction, can be realized only by con­ 
trolling its loading. With the high cost of con­ 
struction of urban freeways, even a modest 
increase in the efficiency of their operation will 
result in a considerable economic gain.

A method called ramp metering^ »3 i s being 
used in some cities to keep the freeway density 
below the critical value by controlling entrance 
ramp flow rates. However, existing ramp 
metering systems base their control action only 
on conditions in the immediate vicinity of the 
individual entrance ramps. For an alternative 
this paper describes a freeway control algorithm 
which coordinates the entrance ramp flow rates 
used by the individual controllers to:

(!}• maximize the number of vehicles served 
under conditions of over-demand.

(2) balance the lengths of the ramp queues 
created by access control of the free­ 
way.

(3) suppress the effects of random distur­ 
bances in the traffic flow.

Such a system would be implemented by 
placing vehicle presence detectors at appropri­ 
ately selected locations along the freeway to 
sense vehicle density. This information would 
be transmitted to a digital processor which would 
set the ramp metering rates according to the 
algorithm to be described.

Development of a State Model of a Freeway

The dynamic behavior of a freeway as re­ 
quired for on-line control is dominated by two 
mechanisms: (i) conservation of vehicles , and 
(ii) drivers in the traffic stream reacting to in­ 
creasing density by reducing their speed. 
Mechanism (i) can be expressed mathematically 
by

8t
2. = o

8z

where z is the position coordinate along the free­ 
way. Equation (1) can be interpreted as saying 
that for a short section of freeway the rate of 
change of flow with respect to position along the 
freeway, 8y/9z, is proportional to the difference 
between the flows into and out of the section. If 
this difference is nonzero, a change in density in 
the section as a function of time will be observed.

At any given point the flow and density are 
related by

y = vx (2)

where v is the speed of the vehicles. A number 
of relationships have been proposed for quantita­ 
tively describing (ii). Based on the data taken 
from the Lodge Freeway* the linear model of 
Greenshields appears to be the most realistic for 
these purposes. Thus the speed will be given by

x.' (3)

where v- is the free speed, the limiting value of 
speed as density approaches zero. The jam 
density, at which all vehicles will come to a 
halt, is denoted by x.. Typically x. is approxi­ 
mately 40% of the bumper to bumper density.

Equation (2) is a per lane relationship. If 
at same z the lane densities are assumed to be 
•uniform, (2) combined with (3) can be modified 
so that

y = l(z) v,(l - - )x, for x^ x. x. j (4)

where y and i(z) are the total flow rate and the 
number of lanes in each direction at z.

Entrance and exit ramps are assumed to 
cause a discontinuity in the freeway stream flow 
;by the amount of the ramp flow. The effects of 
the ramps .will enter the model by the presence 
in 9y/8z of terms of the form

-S 
j

2 6(zk)

where 6(z^) is the Dirac impulse function, z** is 
the location of the jth entrance ramp, and yj and 
y|5 are the flows of input ramp j and output ramp 
k respectively. j

Discretization of the Freeway Model————————————————————————————— I

As indicated by (1) and (4) a freeway is a ! 
nonlinear, distributed parameter system. The i 
analysis which follows will employ spatial dis- j 
cretization of (1). Instead of discretizing into 
sections of uniform length, the boundaries 
between sections of the freeway are assumed to 
be chosen so that all exit ramps, entrance ramps, 
and changes in number of lanes occur at the 
boundaries of sections. Additional section 
boundaries may be added at points of pronounced 
change in geometric features of the freeway 
which could be expected to affect the flow of : 
traffic. With these assumptions as to the locaticjn 
of the section boundaries, for each section (1) J
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can be approximated by

dx "Ht" r k-1 k-1 k-1 k _k k 
y -o y -v + 6. v.

Ly r\ J r\ J -i ' -i
(5)

where

= the flow rate at the downstream 
boundary of section k

x = the density in section k corresponding
to yk 

k y. = the input rate of the entrance ramp of
section k 

ky = the flow rate of the output ramp of 
section k

k 6. = 1 if an entrance ramp is located in
1 section k, 0 if no entrance ramp is

located in section k 
k6 = 1 if an exit ramp is located in section 

k, 0 if no exit ramp is located in 
section k 

k d = the physical length of section k

y 

k

= flow rate from uncontrolled section 
of the freeway into section 1

In (8) the symbol 6^ y^ is understood to include 
the contribution of ooth y° and 6.1 y.l in (7a).

Optimal Control of the Freeway

It is reasonable to assume that after the 
freeway is under control, the entrance flow rates 
as well as the traffic densities along the freeway 
will finally approach some steady state values. 
Therefore, the control vector yi(t) is divided 
into a steady state component, called a refer­ 
ence component, which is constant during each 
control interval and a time varying component. 
The reference component is selected on the basis 
of maximizing the total number of vehicles served 
and also balancing the entrance queues using a 
steady state model of the system which con­ 
siders the nonlinearities.

For this reference value of control vector 
there will be a corresponding steady state den­ 
sity in each section of the freeway. A local 
linearization of the freeway model is performed 
about this reference value of density. The vary­ 
ing component of the control vector is deter­ 
mined using standard linear regulator techniques 
based on the linearized model and a quadratic 
performance functional of deviations from 
reference density and reference ramp flow rates.

Since the entrance and exit ramps always occur 
at a section boundary, the convention has been 
adopted to assign them to sections such that an 
entrance (exit) ramp always is at the upstream 
(downstream) end of the section. yn is the out­ 
flow at the end of the freeway onto the city 
street system or outbound into the intercity 
portion of the freeway network. Assuming that, 
at any exit ramp, a known fraction fk (t), of the 
total flow will leave the freeway, the exit flow 
at ramp k is

k ,k ky0 = f y
Using (4) and (6) in (5), it becomes 

dx 1 ' - ' ' ' '- 1 '

(6)

6* Y,1 ] (7a)

.. k-1 -k-1. ..k k. k [x ] . 
(1-6 Q f ) - i vf (x - L k ) +

-k k - 
5 i *i (7b)

The philosophy used here is first to find an 
optimal steady state density vector and then 
regulate the entrance ramp rates to keep the 
state of the system near this vector.

The steady state model can be derived by 
setting dxk/dt to zero in (5), eliminating 6k yk 
using (6), and setting yk = yK,- The result is

1yr =
- 6

p 
k-1 6k yk 

i ir

(9a)

(9b)x '

The dependent variables which are subject to 
control are yk for k = 1, 2, ... n. By recursive 
substitution, explicit expressions for yk are 
obtained as:

k 
yr

(1

+ .

= (1-P- 1 P-
o

.d-e'fX
-6^ 2 fk- 2)..

... + ^y*r ,

'Hi-

yir +

- (1 - 6 f 0
K 2 25 i yir

(10)

k = 2, 3, ... n

where y° is the inflow from the uncontrolled 
portion of the freeway at the upstream end. 
In compact form:

where

= F(x) (8)

F(x) is a vector whose components are the 
terms on the right hand side of (7) involving xk

B = diag [

6.1 62 

?'?'

6n
1

The optimal values for y. are obtained by 
solving the following linear programming 
problem:

Maximize n k k^"^
to the constraints 

k < k
yy r

0 <

, k = 1, Z,

k

:k dk ) yk subject

(H)

y , for all k such that 'im

qk > 0. (12)
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k . k 0 - v. - min (y.'ir VJ i

that q7 = 0.

d. ) for all k such .k-1 k

(13)

where q^ and d^ are the queue length and demand 
rate respectively at entrance ramp k, CQ and c^ 
are two constant weighting vectors, ym and yim 
are the maximum allowable flow rate and 
entrance flow rate respectively and y£ are ex­ 
pressed in terms of y{ T by (9a) and (10).

Note that the object function of the linear 
programming problem always gives higher 
priorities to entrance ramps with longer queues 
and higher demands, so it is designed to balance 
the queues at the entrance ramps while maxi­ 
mizing the freeway service.

Once yir has been determined by linear 
programming, the corresponding value for xr 
can be found by using (9a) and (10) to find yr . 
The reference density for each section can be 
calculated from the flow-density characteristic, 
using the lower of the two densities which is 
possible for the yk, i. e.

k
Y£ r (14)

In the absence of any random disturbances 
in the traffic flow on the freeway maintaining the 
ramp metering rates at yi r should keep the 
density at xr . Since random accelerations and 
decelerations of vehicles in the traffic stream 
are certain to occur, it is necessary to super­ 
impose a variable component on the ramp meter­ 
ing rates to regulate the densities to xr . For 
this purpose let

x(t) - xr + e(t)

and

y£ (t) = yir w(t)

(15)

(16)

where e(t) and w(t) are perturbation vectors. 
Substituting (15) and (16) into (8), expanding 
F(xr + e) around xr by Taylor series expansion, 
and neglecting the second order terms in e 
(F is quadratic in x so that the partial derivatives 
of F with respect to x of order higher than two 
are zero), one has:

e(t) = A e(t) + B w(t) 

e(0) = x(0) - x
(17)

where

A =

with

Ir 1
frx1

8Fn
Bx1"

—

3F 1

a?
3Fn

a?

dF^

8?
3Fn
3xn

= [*

x=x
— - r

(18)

kk (19a)

k,k-l

[1 -

= 0, for i £ k, k-1

(19b)

(19c)

Fortunately, system (17) is completely con­ 
trollable. Due to this complete controllability 
it is well known that an optimal control which 
minimizes the performance functional

J(w) = [< e(t), Qe(t)> 

, Rw(t) > ] dt (20)

(Q is a positive semidefinite and R is a positive 
definite matrix) exists, is unique, and is given 
by the equation:

_ 
(t) = - R

T A # 
B 1 Ke (t) (21)

where K is the constant n x n positive definite 
matrix which is the solution of the algebraic 
Riccati equation:

A

-KA -
A

+ K BR
1

- Q = 0 (22)

the * denotes the optimality and T means trans­ 
pose. The optimal entrance flow rate y* is 
obtained by:

= yir + W(t) = yir

The vector e (t) .is obtained by: 

e*(t) - x(t) - x^

(23)

(24)

where the vector x(t) is measured by the density 
detectors along the freeway.

Implementation of the Control Algorithm

The data which the central controller must 
have in order to compute the optimal entrance j 
ramp rates determined by this algorithm are 
x, d^, q^, X::, V£ and f. These quantities can all! 
be measured using suitably placed vehicle pres-, 
ence detectors. Densities are determined by 
accumulating the fraction of time a vehicle is 
indicated as present by the detector and multi- ' 
plying this by the density of average length 
vehicles which would exist at bumper to bumper 
density. Demand is measured by counting 
vehicles passing a detector at a point far enough 
upstream on the entrance ramp that the queue 
will not reach it. The queues are measured 
from the difference between the counts of the 
demand measuring detectors and the counts of 
detectors placed at the downstream ends of the 
ramps. The fraction of the traffic stream 
leaving at each exit ramp f^- is measured by 
suitably placed detectors. Speeds are measured 
by dividing the time a vehicle presence is 
detected by average vehicle length. By curve 
fitting to a number of pairs of density and 
average vehicle speed measurements it is pos­ 
sible to determine values of xj and V£. These 
latter quantities change slowly so that the fact 
that it takes longer to arrive at an individual 
measurement of them is not serious.
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The flow chart for the computer program 
which would implement the control algorithm is 
shown in Figure 2. The vectors x, x j , Vf, dj., f 
and q^ are monitored continuously. Whenever a 
density above a level judged to be critical is 
detected in any section of the freeway, the op­ 
timal ramp rates are computed and ramp meter­ 
ing is activated. New values of x, di? and q± 
can be obtained approximately once per minute 
from the vehicle detectors. The ramp metering 
is continued until all queues are reduced to 
zero. New values of xr and K are computed and 
used by the controller any time the measure­ 
ments indicate a significant change in Xj or vf 
and when a significant change in the relative 
demands or queue lengths occurs. The latter 
is considered to have occurred whenever the 
inequality

Z 
k

(m)

d i

d (m)

[ cq (m)

m = index of the q. and d. measure-i i ments

e-2 = suitably chosen threshold value 

is satisfied for some value of k. 

Conclusion

It has been demonstrated that well estab­ 
lished techniques of optimal control can be 
applied to the optimization of ramp metering of 

, urban freeways.
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Figure 2. Flow Chart of Optimal Control Algorithm.
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